diff options
author | robot-piglet <robot-piglet@yandex-team.com> | 2023-10-04 11:10:34 +0300 |
---|---|---|
committer | robot-piglet <robot-piglet@yandex-team.com> | 2023-10-04 11:21:56 +0300 |
commit | b2469278d6f4507d422ffccfda7a76770bf48a0a (patch) | |
tree | 0cf142b15bbb4557e2892cdbe5819f4a3091087b /contrib | |
parent | dbec1d3c5ffa5a96dda559ad51ea32ab217cdea9 (diff) | |
download | ydb-b2469278d6f4507d422ffccfda7a76770bf48a0a.tar.gz |
Intermediate changes
Diffstat (limited to 'contrib')
3 files changed, 1564 insertions, 3 deletions
diff --git a/contrib/python/numpy/py3/numpy/random/.gitignore b/contrib/python/numpy/py3/numpy/random/.gitignore deleted file mode 100644 index fea3f955ac..0000000000 --- a/contrib/python/numpy/py3/numpy/random/.gitignore +++ /dev/null @@ -1,3 +0,0 @@ -# generated files -_bounded_integers.pyx -_bounded_integers.pxd diff --git a/contrib/python/numpy/py3/numpy/random/_bounded_integers.pxd b/contrib/python/numpy/py3/numpy/random/_bounded_integers.pxd new file mode 100644 index 0000000000..7e41463a90 --- /dev/null +++ b/contrib/python/numpy/py3/numpy/random/_bounded_integers.pxd @@ -0,0 +1,29 @@ +from libc.stdint cimport (uint8_t, uint16_t, uint32_t, uint64_t, + int8_t, int16_t, int32_t, int64_t, intptr_t) +import numpy as np +cimport numpy as np +ctypedef np.npy_bool bool_t + +from numpy.random cimport bitgen_t + +cdef inline uint64_t _gen_mask(uint64_t max_val) nogil: + """Mask generator for use in bounded random numbers""" + # Smallest bit mask >= max + cdef uint64_t mask = max_val + mask |= mask >> 1 + mask |= mask >> 2 + mask |= mask >> 4 + mask |= mask >> 8 + mask |= mask >> 16 + mask |= mask >> 32 + return mask + +cdef object _rand_uint64(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_uint32(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_uint16(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_uint8(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_bool(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_int64(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_int32(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_int16(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_int8(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) diff --git a/contrib/python/numpy/py3/numpy/random/_bounded_integers.pyx b/contrib/python/numpy/py3/numpy/random/_bounded_integers.pyx new file mode 100644 index 0000000000..fe9731c287 --- /dev/null +++ b/contrib/python/numpy/py3/numpy/random/_bounded_integers.pyx @@ -0,0 +1,1535 @@ +#!python +#cython: wraparound=False, nonecheck=False, boundscheck=False, cdivision=True + +import numpy as np +cimport numpy as np + +__all__ = [] + +np.import_array() + + +cdef extern from "numpy/random/distributions.h": + # Generate random numbers in closed interval [off, off + rng]. + uint64_t random_bounded_uint64(bitgen_t *bitgen_state, + uint64_t off, uint64_t rng, + uint64_t mask, bint use_masked) nogil + uint32_t random_buffered_bounded_uint32(bitgen_t *bitgen_state, + uint32_t off, uint32_t rng, + uint32_t mask, bint use_masked, + int *bcnt, uint32_t *buf) nogil + uint16_t random_buffered_bounded_uint16(bitgen_t *bitgen_state, + uint16_t off, uint16_t rng, + uint16_t mask, bint use_masked, + int *bcnt, uint32_t *buf) nogil + uint8_t random_buffered_bounded_uint8(bitgen_t *bitgen_state, + uint8_t off, uint8_t rng, + uint8_t mask, bint use_masked, + int *bcnt, uint32_t *buf) nogil + np.npy_bool random_buffered_bounded_bool(bitgen_t *bitgen_state, + np.npy_bool off, np.npy_bool rng, + np.npy_bool mask, bint use_masked, + int *bcnt, uint32_t *buf) nogil + void random_bounded_uint64_fill(bitgen_t *bitgen_state, + uint64_t off, uint64_t rng, np.npy_intp cnt, + bint use_masked, + uint64_t *out) nogil + void random_bounded_uint32_fill(bitgen_t *bitgen_state, + uint32_t off, uint32_t rng, np.npy_intp cnt, + bint use_masked, + uint32_t *out) nogil + void random_bounded_uint16_fill(bitgen_t *bitgen_state, + uint16_t off, uint16_t rng, np.npy_intp cnt, + bint use_masked, + uint16_t *out) nogil + void random_bounded_uint8_fill(bitgen_t *bitgen_state, + uint8_t off, uint8_t rng, np.npy_intp cnt, + bint use_masked, + uint8_t *out) nogil + void random_bounded_bool_fill(bitgen_t *bitgen_state, + np.npy_bool off, np.npy_bool rng, np.npy_intp cnt, + bint use_masked, + np.npy_bool *out) nogil + + +cdef object format_bounds_error(bint closed, object low): + # Special case low == 0 to provide a better exception for users + # since low = 0 is the default single-argument case. + if not np.any(low): + comp = '<' if closed else '<=' + return f'high {comp} 0' + else: + comp = '>' if closed else '>=' + return f'low {comp} high' + + + + +cdef object _rand_uint32_broadcast(np.ndarray low, np.ndarray high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + Array path for smaller integer types + + This path is simpler since the high value in the open interval [low, high) + must be in-range for the next larger type, uint64. Here we case to + this type for checking and the recast to uint32 when producing the + random integers. + """ + cdef uint32_t rng, last_rng, off, val, mask, out_val, is_open + cdef uint32_t buf + cdef uint32_t *out_data + cdef uint64_t low_v, high_v + cdef np.ndarray low_arr, high_arr, out_arr + cdef np.npy_intp i, cnt + cdef np.broadcast it + cdef int buf_rem = 0 + + # Array path + is_open = not closed + low_arr = <np.ndarray>low + high_arr = <np.ndarray>high + if np.any(np.less(low_arr, 0)): + raise ValueError('low is out of bounds for uint32') + if closed: + high_comp = np.greater_equal + low_high_comp = np.greater + else: + high_comp = np.greater + low_high_comp = np.greater_equal + + if np.any(high_comp(high_arr, 0X100000000ULL)): + raise ValueError('high is out of bounds for uint32') + if np.any(low_high_comp(low_arr, high_arr)): + raise ValueError(format_bounds_error(closed, low_arr)) + + low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_UINT64, np.NPY_ALIGNED | np.NPY_FORCECAST) + high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_UINT64, np.NPY_ALIGNED | np.NPY_FORCECAST) + + if size is not None: + out_arr = <np.ndarray>np.empty(size, np.uint32) + else: + it = np.PyArray_MultiIterNew2(low_arr, high_arr) + out_arr = <np.ndarray>np.empty(it.shape, np.uint32) + + it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr) + out_data = <uint32_t *>np.PyArray_DATA(out_arr) + cnt = np.PyArray_SIZE(out_arr) + mask = last_rng = 0 + with lock, nogil: + for i in range(cnt): + low_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 0))[0] + high_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 1))[0] + # Subtract 1 since generator produces values on the closed int [off, off+rng] + rng = <uint32_t>((high_v - is_open) - low_v) + off = <uint32_t>(<uint64_t>low_v) + + if rng != last_rng: + # Smallest bit mask >= max + mask = <uint32_t>_gen_mask(rng) + + out_data[i] = random_buffered_bounded_uint32(state, off, rng, mask, use_masked, &buf_rem, &buf) + + np.PyArray_MultiIter_NEXT(it) + return out_arr + +cdef object _rand_uint16_broadcast(np.ndarray low, np.ndarray high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + Array path for smaller integer types + + This path is simpler since the high value in the open interval [low, high) + must be in-range for the next larger type, uint32. Here we case to + this type for checking and the recast to uint16 when producing the + random integers. + """ + cdef uint16_t rng, last_rng, off, val, mask, out_val, is_open + cdef uint32_t buf + cdef uint16_t *out_data + cdef uint32_t low_v, high_v + cdef np.ndarray low_arr, high_arr, out_arr + cdef np.npy_intp i, cnt + cdef np.broadcast it + cdef int buf_rem = 0 + + # Array path + is_open = not closed + low_arr = <np.ndarray>low + high_arr = <np.ndarray>high + if np.any(np.less(low_arr, 0)): + raise ValueError('low is out of bounds for uint16') + if closed: + high_comp = np.greater_equal + low_high_comp = np.greater + else: + high_comp = np.greater + low_high_comp = np.greater_equal + + if np.any(high_comp(high_arr, 0X10000UL)): + raise ValueError('high is out of bounds for uint16') + if np.any(low_high_comp(low_arr, high_arr)): + raise ValueError(format_bounds_error(closed, low_arr)) + + low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_UINT32, np.NPY_ALIGNED | np.NPY_FORCECAST) + high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_UINT32, np.NPY_ALIGNED | np.NPY_FORCECAST) + + if size is not None: + out_arr = <np.ndarray>np.empty(size, np.uint16) + else: + it = np.PyArray_MultiIterNew2(low_arr, high_arr) + out_arr = <np.ndarray>np.empty(it.shape, np.uint16) + + it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr) + out_data = <uint16_t *>np.PyArray_DATA(out_arr) + cnt = np.PyArray_SIZE(out_arr) + mask = last_rng = 0 + with lock, nogil: + for i in range(cnt): + low_v = (<uint32_t*>np.PyArray_MultiIter_DATA(it, 0))[0] + high_v = (<uint32_t*>np.PyArray_MultiIter_DATA(it, 1))[0] + # Subtract 1 since generator produces values on the closed int [off, off+rng] + rng = <uint16_t>((high_v - is_open) - low_v) + off = <uint16_t>(<uint32_t>low_v) + + if rng != last_rng: + # Smallest bit mask >= max + mask = <uint16_t>_gen_mask(rng) + + out_data[i] = random_buffered_bounded_uint16(state, off, rng, mask, use_masked, &buf_rem, &buf) + + np.PyArray_MultiIter_NEXT(it) + return out_arr + +cdef object _rand_uint8_broadcast(np.ndarray low, np.ndarray high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + Array path for smaller integer types + + This path is simpler since the high value in the open interval [low, high) + must be in-range for the next larger type, uint16. Here we case to + this type for checking and the recast to uint8 when producing the + random integers. + """ + cdef uint8_t rng, last_rng, off, val, mask, out_val, is_open + cdef uint32_t buf + cdef uint8_t *out_data + cdef uint16_t low_v, high_v + cdef np.ndarray low_arr, high_arr, out_arr + cdef np.npy_intp i, cnt + cdef np.broadcast it + cdef int buf_rem = 0 + + # Array path + is_open = not closed + low_arr = <np.ndarray>low + high_arr = <np.ndarray>high + if np.any(np.less(low_arr, 0)): + raise ValueError('low is out of bounds for uint8') + if closed: + high_comp = np.greater_equal + low_high_comp = np.greater + else: + high_comp = np.greater + low_high_comp = np.greater_equal + + if np.any(high_comp(high_arr, 0X100UL)): + raise ValueError('high is out of bounds for uint8') + if np.any(low_high_comp(low_arr, high_arr)): + raise ValueError(format_bounds_error(closed, low_arr)) + + low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_UINT16, np.NPY_ALIGNED | np.NPY_FORCECAST) + high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_UINT16, np.NPY_ALIGNED | np.NPY_FORCECAST) + + if size is not None: + out_arr = <np.ndarray>np.empty(size, np.uint8) + else: + it = np.PyArray_MultiIterNew2(low_arr, high_arr) + out_arr = <np.ndarray>np.empty(it.shape, np.uint8) + + it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr) + out_data = <uint8_t *>np.PyArray_DATA(out_arr) + cnt = np.PyArray_SIZE(out_arr) + mask = last_rng = 0 + with lock, nogil: + for i in range(cnt): + low_v = (<uint16_t*>np.PyArray_MultiIter_DATA(it, 0))[0] + high_v = (<uint16_t*>np.PyArray_MultiIter_DATA(it, 1))[0] + # Subtract 1 since generator produces values on the closed int [off, off+rng] + rng = <uint8_t>((high_v - is_open) - low_v) + off = <uint8_t>(<uint16_t>low_v) + + if rng != last_rng: + # Smallest bit mask >= max + mask = <uint8_t>_gen_mask(rng) + + out_data[i] = random_buffered_bounded_uint8(state, off, rng, mask, use_masked, &buf_rem, &buf) + + np.PyArray_MultiIter_NEXT(it) + return out_arr + +cdef object _rand_bool_broadcast(np.ndarray low, np.ndarray high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + Array path for smaller integer types + + This path is simpler since the high value in the open interval [low, high) + must be in-range for the next larger type, uint8. Here we case to + this type for checking and the recast to bool when producing the + random integers. + """ + cdef bool_t rng, last_rng, off, val, mask, out_val, is_open + cdef uint32_t buf + cdef bool_t *out_data + cdef uint8_t low_v, high_v + cdef np.ndarray low_arr, high_arr, out_arr + cdef np.npy_intp i, cnt + cdef np.broadcast it + cdef int buf_rem = 0 + + # Array path + is_open = not closed + low_arr = <np.ndarray>low + high_arr = <np.ndarray>high + if np.any(np.less(low_arr, 0)): + raise ValueError('low is out of bounds for bool') + if closed: + high_comp = np.greater_equal + low_high_comp = np.greater + else: + high_comp = np.greater + low_high_comp = np.greater_equal + + if np.any(high_comp(high_arr, 0x2UL)): + raise ValueError('high is out of bounds for bool') + if np.any(low_high_comp(low_arr, high_arr)): + raise ValueError(format_bounds_error(closed, low_arr)) + + low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_UINT8, np.NPY_ALIGNED | np.NPY_FORCECAST) + high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_UINT8, np.NPY_ALIGNED | np.NPY_FORCECAST) + + if size is not None: + out_arr = <np.ndarray>np.empty(size, np.bool_) + else: + it = np.PyArray_MultiIterNew2(low_arr, high_arr) + out_arr = <np.ndarray>np.empty(it.shape, np.bool_) + + it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr) + out_data = <bool_t *>np.PyArray_DATA(out_arr) + cnt = np.PyArray_SIZE(out_arr) + mask = last_rng = 0 + with lock, nogil: + for i in range(cnt): + low_v = (<uint8_t*>np.PyArray_MultiIter_DATA(it, 0))[0] + high_v = (<uint8_t*>np.PyArray_MultiIter_DATA(it, 1))[0] + # Subtract 1 since generator produces values on the closed int [off, off+rng] + rng = <bool_t>((high_v - is_open) - low_v) + off = <bool_t>(<uint8_t>low_v) + + if rng != last_rng: + # Smallest bit mask >= max + mask = <bool_t>_gen_mask(rng) + + out_data[i] = random_buffered_bounded_bool(state, off, rng, mask, use_masked, &buf_rem, &buf) + + np.PyArray_MultiIter_NEXT(it) + return out_arr + +cdef object _rand_int32_broadcast(np.ndarray low, np.ndarray high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + Array path for smaller integer types + + This path is simpler since the high value in the open interval [low, high) + must be in-range for the next larger type, uint64. Here we case to + this type for checking and the recast to int32 when producing the + random integers. + """ + cdef uint32_t rng, last_rng, off, val, mask, out_val, is_open + cdef uint32_t buf + cdef uint32_t *out_data + cdef uint64_t low_v, high_v + cdef np.ndarray low_arr, high_arr, out_arr + cdef np.npy_intp i, cnt + cdef np.broadcast it + cdef int buf_rem = 0 + + # Array path + is_open = not closed + low_arr = <np.ndarray>low + high_arr = <np.ndarray>high + if np.any(np.less(low_arr, -0x80000000LL)): + raise ValueError('low is out of bounds for int32') + if closed: + high_comp = np.greater_equal + low_high_comp = np.greater + else: + high_comp = np.greater + low_high_comp = np.greater_equal + + if np.any(high_comp(high_arr, 0x80000000LL)): + raise ValueError('high is out of bounds for int32') + if np.any(low_high_comp(low_arr, high_arr)): + raise ValueError(format_bounds_error(closed, low_arr)) + + low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_INT64, np.NPY_ALIGNED | np.NPY_FORCECAST) + high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_INT64, np.NPY_ALIGNED | np.NPY_FORCECAST) + + if size is not None: + out_arr = <np.ndarray>np.empty(size, np.int32) + else: + it = np.PyArray_MultiIterNew2(low_arr, high_arr) + out_arr = <np.ndarray>np.empty(it.shape, np.int32) + + it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr) + out_data = <uint32_t *>np.PyArray_DATA(out_arr) + cnt = np.PyArray_SIZE(out_arr) + mask = last_rng = 0 + with lock, nogil: + for i in range(cnt): + low_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 0))[0] + high_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 1))[0] + # Subtract 1 since generator produces values on the closed int [off, off+rng] + rng = <uint32_t>((high_v - is_open) - low_v) + off = <uint32_t>(<uint64_t>low_v) + + if rng != last_rng: + # Smallest bit mask >= max + mask = <uint32_t>_gen_mask(rng) + + out_data[i] = random_buffered_bounded_uint32(state, off, rng, mask, use_masked, &buf_rem, &buf) + + np.PyArray_MultiIter_NEXT(it) + return out_arr + +cdef object _rand_int16_broadcast(np.ndarray low, np.ndarray high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + Array path for smaller integer types + + This path is simpler since the high value in the open interval [low, high) + must be in-range for the next larger type, uint32. Here we case to + this type for checking and the recast to int16 when producing the + random integers. + """ + cdef uint16_t rng, last_rng, off, val, mask, out_val, is_open + cdef uint32_t buf + cdef uint16_t *out_data + cdef uint32_t low_v, high_v + cdef np.ndarray low_arr, high_arr, out_arr + cdef np.npy_intp i, cnt + cdef np.broadcast it + cdef int buf_rem = 0 + + # Array path + is_open = not closed + low_arr = <np.ndarray>low + high_arr = <np.ndarray>high + if np.any(np.less(low_arr, -0x8000LL)): + raise ValueError('low is out of bounds for int16') + if closed: + high_comp = np.greater_equal + low_high_comp = np.greater + else: + high_comp = np.greater + low_high_comp = np.greater_equal + + if np.any(high_comp(high_arr, 0x8000LL)): + raise ValueError('high is out of bounds for int16') + if np.any(low_high_comp(low_arr, high_arr)): + raise ValueError(format_bounds_error(closed, low_arr)) + + low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_INT32, np.NPY_ALIGNED | np.NPY_FORCECAST) + high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_INT32, np.NPY_ALIGNED | np.NPY_FORCECAST) + + if size is not None: + out_arr = <np.ndarray>np.empty(size, np.int16) + else: + it = np.PyArray_MultiIterNew2(low_arr, high_arr) + out_arr = <np.ndarray>np.empty(it.shape, np.int16) + + it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr) + out_data = <uint16_t *>np.PyArray_DATA(out_arr) + cnt = np.PyArray_SIZE(out_arr) + mask = last_rng = 0 + with lock, nogil: + for i in range(cnt): + low_v = (<uint32_t*>np.PyArray_MultiIter_DATA(it, 0))[0] + high_v = (<uint32_t*>np.PyArray_MultiIter_DATA(it, 1))[0] + # Subtract 1 since generator produces values on the closed int [off, off+rng] + rng = <uint16_t>((high_v - is_open) - low_v) + off = <uint16_t>(<uint32_t>low_v) + + if rng != last_rng: + # Smallest bit mask >= max + mask = <uint16_t>_gen_mask(rng) + + out_data[i] = random_buffered_bounded_uint16(state, off, rng, mask, use_masked, &buf_rem, &buf) + + np.PyArray_MultiIter_NEXT(it) + return out_arr + +cdef object _rand_int8_broadcast(np.ndarray low, np.ndarray high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + Array path for smaller integer types + + This path is simpler since the high value in the open interval [low, high) + must be in-range for the next larger type, uint16. Here we case to + this type for checking and the recast to int8 when producing the + random integers. + """ + cdef uint8_t rng, last_rng, off, val, mask, out_val, is_open + cdef uint32_t buf + cdef uint8_t *out_data + cdef uint16_t low_v, high_v + cdef np.ndarray low_arr, high_arr, out_arr + cdef np.npy_intp i, cnt + cdef np.broadcast it + cdef int buf_rem = 0 + + # Array path + is_open = not closed + low_arr = <np.ndarray>low + high_arr = <np.ndarray>high + if np.any(np.less(low_arr, -0x80LL)): + raise ValueError('low is out of bounds for int8') + if closed: + high_comp = np.greater_equal + low_high_comp = np.greater + else: + high_comp = np.greater + low_high_comp = np.greater_equal + + if np.any(high_comp(high_arr, 0x80LL)): + raise ValueError('high is out of bounds for int8') + if np.any(low_high_comp(low_arr, high_arr)): + raise ValueError(format_bounds_error(closed, low_arr)) + + low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_INT16, np.NPY_ALIGNED | np.NPY_FORCECAST) + high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_INT16, np.NPY_ALIGNED | np.NPY_FORCECAST) + + if size is not None: + out_arr = <np.ndarray>np.empty(size, np.int8) + else: + it = np.PyArray_MultiIterNew2(low_arr, high_arr) + out_arr = <np.ndarray>np.empty(it.shape, np.int8) + + it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr) + out_data = <uint8_t *>np.PyArray_DATA(out_arr) + cnt = np.PyArray_SIZE(out_arr) + mask = last_rng = 0 + with lock, nogil: + for i in range(cnt): + low_v = (<uint16_t*>np.PyArray_MultiIter_DATA(it, 0))[0] + high_v = (<uint16_t*>np.PyArray_MultiIter_DATA(it, 1))[0] + # Subtract 1 since generator produces values on the closed int [off, off+rng] + rng = <uint8_t>((high_v - is_open) - low_v) + off = <uint8_t>(<uint16_t>low_v) + + if rng != last_rng: + # Smallest bit mask >= max + mask = <uint8_t>_gen_mask(rng) + + out_data[i] = random_buffered_bounded_uint8(state, off, rng, mask, use_masked, &buf_rem, &buf) + + np.PyArray_MultiIter_NEXT(it) + return out_arr + + +cdef object _rand_uint64_broadcast(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + Array path for 64-bit integer types + + Requires special treatment since the high value can be out-of-range for + the largest (64 bit) integer type since the generator is specified on the + interval [low,high). + + The internal generator does not have this issue since it generates from + the closes interval [low, high-1] and high-1 is always in range for the + 64 bit integer type. + """ + + cdef np.ndarray low_arr, high_arr, out_arr, highm1_arr + cdef np.npy_intp i, cnt, n + cdef np.broadcast it + cdef object closed_upper + cdef uint64_t *out_data + cdef uint64_t *highm1_data + cdef uint64_t low_v, high_v + cdef uint64_t rng, last_rng, val, mask, off, out_val + + low_arr = <np.ndarray>low + high_arr = <np.ndarray>high + + if np.any(np.less(low_arr, 0x0ULL)): + raise ValueError('low is out of bounds for uint64') + dt = high_arr.dtype + if closed or np.issubdtype(dt, np.integer): + # Avoid object dtype path if already an integer + high_lower_comp = np.less if closed else np.less_equal + if np.any(high_lower_comp(high_arr, 0x0ULL)): + raise ValueError(format_bounds_error(closed, low_arr)) + high_m1 = high_arr if closed else high_arr - dt.type(1) + if np.any(np.greater(high_m1, 0xFFFFFFFFFFFFFFFFULL)): + raise ValueError('high is out of bounds for uint64') + highm1_arr = <np.ndarray>np.PyArray_FROM_OTF(high_m1, np.NPY_UINT64, np.NPY_ALIGNED | np.NPY_FORCECAST) + else: + # If input is object or a floating type + highm1_arr = <np.ndarray>np.empty_like(high_arr, dtype=np.uint64) + highm1_data = <uint64_t *>np.PyArray_DATA(highm1_arr) + cnt = np.PyArray_SIZE(high_arr) + flat = high_arr.flat + for i in range(cnt): + # Subtract 1 since generator produces values on the closed int [off, off+rng] + closed_upper = int(flat[i]) - 1 + if closed_upper > 0xFFFFFFFFFFFFFFFFULL: + raise ValueError('high is out of bounds for uint64') + if closed_upper < 0x0ULL: + raise ValueError(format_bounds_error(closed, low_arr)) + highm1_data[i] = <uint64_t>closed_upper + + if np.any(np.greater(low_arr, highm1_arr)): + raise ValueError(format_bounds_error(closed, low_arr)) + + high_arr = highm1_arr + low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_UINT64, np.NPY_ALIGNED | np.NPY_FORCECAST) + + if size is not None: + out_arr = <np.ndarray>np.empty(size, np.uint64) + else: + it = np.PyArray_MultiIterNew2(low_arr, high_arr) + out_arr = <np.ndarray>np.empty(it.shape, np.uint64) + + it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr) + out_data = <uint64_t *>np.PyArray_DATA(out_arr) + n = np.PyArray_SIZE(out_arr) + mask = last_rng = 0 + with lock, nogil: + for i in range(n): + low_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 0))[0] + high_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 1))[0] + # Generator produces values on the closed int [off, off+rng], -1 subtracted above + rng = <uint64_t>(high_v - low_v) + off = <uint64_t>(<uint64_t>low_v) + + if rng != last_rng: + mask = _gen_mask(rng) + out_data[i] = random_bounded_uint64(state, off, rng, mask, use_masked) + + np.PyArray_MultiIter_NEXT(it) + + return out_arr + +cdef object _rand_int64_broadcast(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + Array path for 64-bit integer types + + Requires special treatment since the high value can be out-of-range for + the largest (64 bit) integer type since the generator is specified on the + interval [low,high). + + The internal generator does not have this issue since it generates from + the closes interval [low, high-1] and high-1 is always in range for the + 64 bit integer type. + """ + + cdef np.ndarray low_arr, high_arr, out_arr, highm1_arr + cdef np.npy_intp i, cnt, n + cdef np.broadcast it + cdef object closed_upper + cdef uint64_t *out_data + cdef int64_t *highm1_data + cdef int64_t low_v, high_v + cdef uint64_t rng, last_rng, val, mask, off, out_val + + low_arr = <np.ndarray>low + high_arr = <np.ndarray>high + + if np.any(np.less(low_arr, -0x8000000000000000LL)): + raise ValueError('low is out of bounds for int64') + dt = high_arr.dtype + if closed or np.issubdtype(dt, np.integer): + # Avoid object dtype path if already an integer + high_lower_comp = np.less if closed else np.less_equal + if np.any(high_lower_comp(high_arr, -0x8000000000000000LL)): + raise ValueError(format_bounds_error(closed, low_arr)) + high_m1 = high_arr if closed else high_arr - dt.type(1) + if np.any(np.greater(high_m1, 0x7FFFFFFFFFFFFFFFLL)): + raise ValueError('high is out of bounds for int64') + highm1_arr = <np.ndarray>np.PyArray_FROM_OTF(high_m1, np.NPY_INT64, np.NPY_ALIGNED | np.NPY_FORCECAST) + else: + # If input is object or a floating type + highm1_arr = <np.ndarray>np.empty_like(high_arr, dtype=np.int64) + highm1_data = <int64_t *>np.PyArray_DATA(highm1_arr) + cnt = np.PyArray_SIZE(high_arr) + flat = high_arr.flat + for i in range(cnt): + # Subtract 1 since generator produces values on the closed int [off, off+rng] + closed_upper = int(flat[i]) - 1 + if closed_upper > 0x7FFFFFFFFFFFFFFFLL: + raise ValueError('high is out of bounds for int64') + if closed_upper < -0x8000000000000000LL: + raise ValueError(format_bounds_error(closed, low_arr)) + highm1_data[i] = <int64_t>closed_upper + + if np.any(np.greater(low_arr, highm1_arr)): + raise ValueError(format_bounds_error(closed, low_arr)) + + high_arr = highm1_arr + low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_INT64, np.NPY_ALIGNED | np.NPY_FORCECAST) + + if size is not None: + out_arr = <np.ndarray>np.empty(size, np.int64) + else: + it = np.PyArray_MultiIterNew2(low_arr, high_arr) + out_arr = <np.ndarray>np.empty(it.shape, np.int64) + + it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr) + out_data = <uint64_t *>np.PyArray_DATA(out_arr) + n = np.PyArray_SIZE(out_arr) + mask = last_rng = 0 + with lock, nogil: + for i in range(n): + low_v = (<int64_t*>np.PyArray_MultiIter_DATA(it, 0))[0] + high_v = (<int64_t*>np.PyArray_MultiIter_DATA(it, 1))[0] + # Generator produces values on the closed int [off, off+rng], -1 subtracted above + rng = <uint64_t>(high_v - low_v) + off = <uint64_t>(<int64_t>low_v) + + if rng != last_rng: + mask = _gen_mask(rng) + out_data[i] = random_bounded_uint64(state, off, rng, mask, use_masked) + + np.PyArray_MultiIter_NEXT(it) + + return out_arr + + +cdef object _rand_uint64(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + _rand_uint64(low, high, size, use_masked, *state, lock) + + Return random `np.uint64` integers from `low` (inclusive) to `high` (exclusive). + + Return random integers from the "discrete uniform" distribution in the + interval [`low`, `high`). If `high` is None (the default), + then results are from [0, `low`). On entry the arguments are presumed + to have been validated for size and order for the `np.uint64` type. + + Parameters + ---------- + low : int or array-like + Lowest (signed) integer to be drawn from the distribution (unless + ``high=None``, in which case this parameter is the *highest* such + integer). + high : int or array-like + If provided, one above the largest (signed) integer to be drawn from the + distribution (see above for behavior if ``high=None``). + size : int or tuple of ints + Output shape. If the given shape is, e.g., ``(m, n, k)``, then + ``m * n * k`` samples are drawn. Default is None, in which case a + single value is returned. + use_masked : bool + If True then rejection sampling with a range mask is used else Lemire's algorithm is used. + closed : bool + If True then sample from [low, high]. If False, sample [low, high) + state : bit generator + Bit generator state to use in the core random number generators + lock : threading.Lock + Lock to prevent multiple using a single generator simultaneously + + Returns + ------- + out : python scalar or ndarray of np.uint64 + `size`-shaped array of random integers from the appropriate + distribution, or a single such random int if `size` not provided. + + Notes + ----- + The internal integer generator produces values from the closed + interval [low, high-(not closed)]. This requires some care since + high can be out-of-range for uint64. The scalar path leaves + integers as Python integers until the 1 has been subtracted to + avoid needing to cast to a larger type. + """ + cdef np.ndarray out_arr, low_arr, high_arr + cdef uint64_t rng, off, out_val + cdef uint64_t *out_data + cdef np.npy_intp i, n, cnt + + if size is not None: + if (np.prod(size) == 0): + return np.empty(size, dtype=np.uint64) + + low_arr = <np.ndarray>np.array(low, copy=False) + high_arr = <np.ndarray>np.array(high, copy=False) + low_ndim = np.PyArray_NDIM(low_arr) + high_ndim = np.PyArray_NDIM(high_arr) + if low_ndim == 0 and high_ndim == 0: + low = int(low_arr) + high = int(high_arr) + # Subtract 1 since internal generator produces on closed interval [low, high] + if not closed: + high -= 1 + + if low < 0x0ULL: + raise ValueError("low is out of bounds for uint64") + if high > 0xFFFFFFFFFFFFFFFFULL: + raise ValueError("high is out of bounds for uint64") + if low > high: # -1 already subtracted, closed interval + raise ValueError(format_bounds_error(closed, low)) + + rng = <uint64_t>(high - low) + off = <uint64_t>(<uint64_t>low) + if size is None: + with lock: + random_bounded_uint64_fill(state, off, rng, 1, use_masked, &out_val) + return np.uint64(<uint64_t>out_val) + else: + out_arr = <np.ndarray>np.empty(size, np.uint64) + cnt = np.PyArray_SIZE(out_arr) + out_data = <uint64_t *>np.PyArray_DATA(out_arr) + with lock, nogil: + random_bounded_uint64_fill(state, off, rng, cnt, use_masked, out_data) + return out_arr + return _rand_uint64_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock) + +cdef object _rand_uint32(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + _rand_uint32(low, high, size, use_masked, *state, lock) + + Return random `np.uint32` integers from `low` (inclusive) to `high` (exclusive). + + Return random integers from the "discrete uniform" distribution in the + interval [`low`, `high`). If `high` is None (the default), + then results are from [0, `low`). On entry the arguments are presumed + to have been validated for size and order for the `np.uint32` type. + + Parameters + ---------- + low : int or array-like + Lowest (signed) integer to be drawn from the distribution (unless + ``high=None``, in which case this parameter is the *highest* such + integer). + high : int or array-like + If provided, one above the largest (signed) integer to be drawn from the + distribution (see above for behavior if ``high=None``). + size : int or tuple of ints + Output shape. If the given shape is, e.g., ``(m, n, k)``, then + ``m * n * k`` samples are drawn. Default is None, in which case a + single value is returned. + use_masked : bool + If True then rejection sampling with a range mask is used else Lemire's algorithm is used. + closed : bool + If True then sample from [low, high]. If False, sample [low, high) + state : bit generator + Bit generator state to use in the core random number generators + lock : threading.Lock + Lock to prevent multiple using a single generator simultaneously + + Returns + ------- + out : python scalar or ndarray of np.uint32 + `size`-shaped array of random integers from the appropriate + distribution, or a single such random int if `size` not provided. + + Notes + ----- + The internal integer generator produces values from the closed + interval [low, high-(not closed)]. This requires some care since + high can be out-of-range for uint32. The scalar path leaves + integers as Python integers until the 1 has been subtracted to + avoid needing to cast to a larger type. + """ + cdef np.ndarray out_arr, low_arr, high_arr + cdef uint32_t rng, off, out_val + cdef uint32_t *out_data + cdef np.npy_intp i, n, cnt + + if size is not None: + if (np.prod(size) == 0): + return np.empty(size, dtype=np.uint32) + + low_arr = <np.ndarray>np.array(low, copy=False) + high_arr = <np.ndarray>np.array(high, copy=False) + low_ndim = np.PyArray_NDIM(low_arr) + high_ndim = np.PyArray_NDIM(high_arr) + if low_ndim == 0 and high_ndim == 0: + low = int(low_arr) + high = int(high_arr) + # Subtract 1 since internal generator produces on closed interval [low, high] + if not closed: + high -= 1 + + if low < 0x0UL: + raise ValueError("low is out of bounds for uint32") + if high > 0XFFFFFFFFUL: + raise ValueError("high is out of bounds for uint32") + if low > high: # -1 already subtracted, closed interval + raise ValueError(format_bounds_error(closed, low)) + + rng = <uint32_t>(high - low) + off = <uint32_t>(<uint32_t>low) + if size is None: + with lock: + random_bounded_uint32_fill(state, off, rng, 1, use_masked, &out_val) + return np.uint32(<uint32_t>out_val) + else: + out_arr = <np.ndarray>np.empty(size, np.uint32) + cnt = np.PyArray_SIZE(out_arr) + out_data = <uint32_t *>np.PyArray_DATA(out_arr) + with lock, nogil: + random_bounded_uint32_fill(state, off, rng, cnt, use_masked, out_data) + return out_arr + return _rand_uint32_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock) + +cdef object _rand_uint16(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + _rand_uint16(low, high, size, use_masked, *state, lock) + + Return random `np.uint16` integers from `low` (inclusive) to `high` (exclusive). + + Return random integers from the "discrete uniform" distribution in the + interval [`low`, `high`). If `high` is None (the default), + then results are from [0, `low`). On entry the arguments are presumed + to have been validated for size and order for the `np.uint16` type. + + Parameters + ---------- + low : int or array-like + Lowest (signed) integer to be drawn from the distribution (unless + ``high=None``, in which case this parameter is the *highest* such + integer). + high : int or array-like + If provided, one above the largest (signed) integer to be drawn from the + distribution (see above for behavior if ``high=None``). + size : int or tuple of ints + Output shape. If the given shape is, e.g., ``(m, n, k)``, then + ``m * n * k`` samples are drawn. Default is None, in which case a + single value is returned. + use_masked : bool + If True then rejection sampling with a range mask is used else Lemire's algorithm is used. + closed : bool + If True then sample from [low, high]. If False, sample [low, high) + state : bit generator + Bit generator state to use in the core random number generators + lock : threading.Lock + Lock to prevent multiple using a single generator simultaneously + + Returns + ------- + out : python scalar or ndarray of np.uint16 + `size`-shaped array of random integers from the appropriate + distribution, or a single such random int if `size` not provided. + + Notes + ----- + The internal integer generator produces values from the closed + interval [low, high-(not closed)]. This requires some care since + high can be out-of-range for uint16. The scalar path leaves + integers as Python integers until the 1 has been subtracted to + avoid needing to cast to a larger type. + """ + cdef np.ndarray out_arr, low_arr, high_arr + cdef uint16_t rng, off, out_val + cdef uint16_t *out_data + cdef np.npy_intp i, n, cnt + + if size is not None: + if (np.prod(size) == 0): + return np.empty(size, dtype=np.uint16) + + low_arr = <np.ndarray>np.array(low, copy=False) + high_arr = <np.ndarray>np.array(high, copy=False) + low_ndim = np.PyArray_NDIM(low_arr) + high_ndim = np.PyArray_NDIM(high_arr) + if low_ndim == 0 and high_ndim == 0: + low = int(low_arr) + high = int(high_arr) + # Subtract 1 since internal generator produces on closed interval [low, high] + if not closed: + high -= 1 + + if low < 0x0UL: + raise ValueError("low is out of bounds for uint16") + if high > 0XFFFFUL: + raise ValueError("high is out of bounds for uint16") + if low > high: # -1 already subtracted, closed interval + raise ValueError(format_bounds_error(closed, low)) + + rng = <uint16_t>(high - low) + off = <uint16_t>(<uint16_t>low) + if size is None: + with lock: + random_bounded_uint16_fill(state, off, rng, 1, use_masked, &out_val) + return np.uint16(<uint16_t>out_val) + else: + out_arr = <np.ndarray>np.empty(size, np.uint16) + cnt = np.PyArray_SIZE(out_arr) + out_data = <uint16_t *>np.PyArray_DATA(out_arr) + with lock, nogil: + random_bounded_uint16_fill(state, off, rng, cnt, use_masked, out_data) + return out_arr + return _rand_uint16_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock) + +cdef object _rand_uint8(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + _rand_uint8(low, high, size, use_masked, *state, lock) + + Return random `np.uint8` integers from `low` (inclusive) to `high` (exclusive). + + Return random integers from the "discrete uniform" distribution in the + interval [`low`, `high`). If `high` is None (the default), + then results are from [0, `low`). On entry the arguments are presumed + to have been validated for size and order for the `np.uint8` type. + + Parameters + ---------- + low : int or array-like + Lowest (signed) integer to be drawn from the distribution (unless + ``high=None``, in which case this parameter is the *highest* such + integer). + high : int or array-like + If provided, one above the largest (signed) integer to be drawn from the + distribution (see above for behavior if ``high=None``). + size : int or tuple of ints + Output shape. If the given shape is, e.g., ``(m, n, k)``, then + ``m * n * k`` samples are drawn. Default is None, in which case a + single value is returned. + use_masked : bool + If True then rejection sampling with a range mask is used else Lemire's algorithm is used. + closed : bool + If True then sample from [low, high]. If False, sample [low, high) + state : bit generator + Bit generator state to use in the core random number generators + lock : threading.Lock + Lock to prevent multiple using a single generator simultaneously + + Returns + ------- + out : python scalar or ndarray of np.uint8 + `size`-shaped array of random integers from the appropriate + distribution, or a single such random int if `size` not provided. + + Notes + ----- + The internal integer generator produces values from the closed + interval [low, high-(not closed)]. This requires some care since + high can be out-of-range for uint8. The scalar path leaves + integers as Python integers until the 1 has been subtracted to + avoid needing to cast to a larger type. + """ + cdef np.ndarray out_arr, low_arr, high_arr + cdef uint8_t rng, off, out_val + cdef uint8_t *out_data + cdef np.npy_intp i, n, cnt + + if size is not None: + if (np.prod(size) == 0): + return np.empty(size, dtype=np.uint8) + + low_arr = <np.ndarray>np.array(low, copy=False) + high_arr = <np.ndarray>np.array(high, copy=False) + low_ndim = np.PyArray_NDIM(low_arr) + high_ndim = np.PyArray_NDIM(high_arr) + if low_ndim == 0 and high_ndim == 0: + low = int(low_arr) + high = int(high_arr) + # Subtract 1 since internal generator produces on closed interval [low, high] + if not closed: + high -= 1 + + if low < 0x0UL: + raise ValueError("low is out of bounds for uint8") + if high > 0XFFUL: + raise ValueError("high is out of bounds for uint8") + if low > high: # -1 already subtracted, closed interval + raise ValueError(format_bounds_error(closed, low)) + + rng = <uint8_t>(high - low) + off = <uint8_t>(<uint8_t>low) + if size is None: + with lock: + random_bounded_uint8_fill(state, off, rng, 1, use_masked, &out_val) + return np.uint8(<uint8_t>out_val) + else: + out_arr = <np.ndarray>np.empty(size, np.uint8) + cnt = np.PyArray_SIZE(out_arr) + out_data = <uint8_t *>np.PyArray_DATA(out_arr) + with lock, nogil: + random_bounded_uint8_fill(state, off, rng, cnt, use_masked, out_data) + return out_arr + return _rand_uint8_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock) + +cdef object _rand_bool(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + _rand_bool(low, high, size, use_masked, *state, lock) + + Return random `np.bool_` integers from `low` (inclusive) to `high` (exclusive). + + Return random integers from the "discrete uniform" distribution in the + interval [`low`, `high`). If `high` is None (the default), + then results are from [0, `low`). On entry the arguments are presumed + to have been validated for size and order for the `np.bool_` type. + + Parameters + ---------- + low : int or array-like + Lowest (signed) integer to be drawn from the distribution (unless + ``high=None``, in which case this parameter is the *highest* such + integer). + high : int or array-like + If provided, one above the largest (signed) integer to be drawn from the + distribution (see above for behavior if ``high=None``). + size : int or tuple of ints + Output shape. If the given shape is, e.g., ``(m, n, k)``, then + ``m * n * k`` samples are drawn. Default is None, in which case a + single value is returned. + use_masked : bool + If True then rejection sampling with a range mask is used else Lemire's algorithm is used. + closed : bool + If True then sample from [low, high]. If False, sample [low, high) + state : bit generator + Bit generator state to use in the core random number generators + lock : threading.Lock + Lock to prevent multiple using a single generator simultaneously + + Returns + ------- + out : python scalar or ndarray of np.bool_ + `size`-shaped array of random integers from the appropriate + distribution, or a single such random int if `size` not provided. + + Notes + ----- + The internal integer generator produces values from the closed + interval [low, high-(not closed)]. This requires some care since + high can be out-of-range for bool. The scalar path leaves + integers as Python integers until the 1 has been subtracted to + avoid needing to cast to a larger type. + """ + cdef np.ndarray out_arr, low_arr, high_arr + cdef bool_t rng, off, out_val + cdef bool_t *out_data + cdef np.npy_intp i, n, cnt + + if size is not None: + if (np.prod(size) == 0): + return np.empty(size, dtype=np.bool_) + + low_arr = <np.ndarray>np.array(low, copy=False) + high_arr = <np.ndarray>np.array(high, copy=False) + low_ndim = np.PyArray_NDIM(low_arr) + high_ndim = np.PyArray_NDIM(high_arr) + if low_ndim == 0 and high_ndim == 0: + low = int(low_arr) + high = int(high_arr) + # Subtract 1 since internal generator produces on closed interval [low, high] + if not closed: + high -= 1 + + if low < 0x0UL: + raise ValueError("low is out of bounds for bool") + if high > 0x1UL: + raise ValueError("high is out of bounds for bool") + if low > high: # -1 already subtracted, closed interval + raise ValueError(format_bounds_error(closed, low)) + + rng = <bool_t>(high - low) + off = <bool_t>(<bool_t>low) + if size is None: + with lock: + random_bounded_bool_fill(state, off, rng, 1, use_masked, &out_val) + return np.bool_(<bool_t>out_val) + else: + out_arr = <np.ndarray>np.empty(size, np.bool_) + cnt = np.PyArray_SIZE(out_arr) + out_data = <bool_t *>np.PyArray_DATA(out_arr) + with lock, nogil: + random_bounded_bool_fill(state, off, rng, cnt, use_masked, out_data) + return out_arr + return _rand_bool_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock) + +cdef object _rand_int64(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + _rand_int64(low, high, size, use_masked, *state, lock) + + Return random `np.int64` integers from `low` (inclusive) to `high` (exclusive). + + Return random integers from the "discrete uniform" distribution in the + interval [`low`, `high`). If `high` is None (the default), + then results are from [0, `low`). On entry the arguments are presumed + to have been validated for size and order for the `np.int64` type. + + Parameters + ---------- + low : int or array-like + Lowest (signed) integer to be drawn from the distribution (unless + ``high=None``, in which case this parameter is the *highest* such + integer). + high : int or array-like + If provided, one above the largest (signed) integer to be drawn from the + distribution (see above for behavior if ``high=None``). + size : int or tuple of ints + Output shape. If the given shape is, e.g., ``(m, n, k)``, then + ``m * n * k`` samples are drawn. Default is None, in which case a + single value is returned. + use_masked : bool + If True then rejection sampling with a range mask is used else Lemire's algorithm is used. + closed : bool + If True then sample from [low, high]. If False, sample [low, high) + state : bit generator + Bit generator state to use in the core random number generators + lock : threading.Lock + Lock to prevent multiple using a single generator simultaneously + + Returns + ------- + out : python scalar or ndarray of np.int64 + `size`-shaped array of random integers from the appropriate + distribution, or a single such random int if `size` not provided. + + Notes + ----- + The internal integer generator produces values from the closed + interval [low, high-(not closed)]. This requires some care since + high can be out-of-range for uint64. The scalar path leaves + integers as Python integers until the 1 has been subtracted to + avoid needing to cast to a larger type. + """ + cdef np.ndarray out_arr, low_arr, high_arr + cdef uint64_t rng, off, out_val + cdef uint64_t *out_data + cdef np.npy_intp i, n, cnt + + if size is not None: + if (np.prod(size) == 0): + return np.empty(size, dtype=np.int64) + + low_arr = <np.ndarray>np.array(low, copy=False) + high_arr = <np.ndarray>np.array(high, copy=False) + low_ndim = np.PyArray_NDIM(low_arr) + high_ndim = np.PyArray_NDIM(high_arr) + if low_ndim == 0 and high_ndim == 0: + low = int(low_arr) + high = int(high_arr) + # Subtract 1 since internal generator produces on closed interval [low, high] + if not closed: + high -= 1 + + if low < -0x8000000000000000LL: + raise ValueError("low is out of bounds for int64") + if high > 0x7FFFFFFFFFFFFFFFL: + raise ValueError("high is out of bounds for int64") + if low > high: # -1 already subtracted, closed interval + raise ValueError(format_bounds_error(closed, low)) + + rng = <uint64_t>(high - low) + off = <uint64_t>(<int64_t>low) + if size is None: + with lock: + random_bounded_uint64_fill(state, off, rng, 1, use_masked, &out_val) + return np.int64(<int64_t>out_val) + else: + out_arr = <np.ndarray>np.empty(size, np.int64) + cnt = np.PyArray_SIZE(out_arr) + out_data = <uint64_t *>np.PyArray_DATA(out_arr) + with lock, nogil: + random_bounded_uint64_fill(state, off, rng, cnt, use_masked, out_data) + return out_arr + return _rand_int64_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock) + +cdef object _rand_int32(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + _rand_int32(low, high, size, use_masked, *state, lock) + + Return random `np.int32` integers from `low` (inclusive) to `high` (exclusive). + + Return random integers from the "discrete uniform" distribution in the + interval [`low`, `high`). If `high` is None (the default), + then results are from [0, `low`). On entry the arguments are presumed + to have been validated for size and order for the `np.int32` type. + + Parameters + ---------- + low : int or array-like + Lowest (signed) integer to be drawn from the distribution (unless + ``high=None``, in which case this parameter is the *highest* such + integer). + high : int or array-like + If provided, one above the largest (signed) integer to be drawn from the + distribution (see above for behavior if ``high=None``). + size : int or tuple of ints + Output shape. If the given shape is, e.g., ``(m, n, k)``, then + ``m * n * k`` samples are drawn. Default is None, in which case a + single value is returned. + use_masked : bool + If True then rejection sampling with a range mask is used else Lemire's algorithm is used. + closed : bool + If True then sample from [low, high]. If False, sample [low, high) + state : bit generator + Bit generator state to use in the core random number generators + lock : threading.Lock + Lock to prevent multiple using a single generator simultaneously + + Returns + ------- + out : python scalar or ndarray of np.int32 + `size`-shaped array of random integers from the appropriate + distribution, or a single such random int if `size` not provided. + + Notes + ----- + The internal integer generator produces values from the closed + interval [low, high-(not closed)]. This requires some care since + high can be out-of-range for uint32. The scalar path leaves + integers as Python integers until the 1 has been subtracted to + avoid needing to cast to a larger type. + """ + cdef np.ndarray out_arr, low_arr, high_arr + cdef uint32_t rng, off, out_val + cdef uint32_t *out_data + cdef np.npy_intp i, n, cnt + + if size is not None: + if (np.prod(size) == 0): + return np.empty(size, dtype=np.int32) + + low_arr = <np.ndarray>np.array(low, copy=False) + high_arr = <np.ndarray>np.array(high, copy=False) + low_ndim = np.PyArray_NDIM(low_arr) + high_ndim = np.PyArray_NDIM(high_arr) + if low_ndim == 0 and high_ndim == 0: + low = int(low_arr) + high = int(high_arr) + # Subtract 1 since internal generator produces on closed interval [low, high] + if not closed: + high -= 1 + + if low < -0x80000000L: + raise ValueError("low is out of bounds for int32") + if high > 0x7FFFFFFFL: + raise ValueError("high is out of bounds for int32") + if low > high: # -1 already subtracted, closed interval + raise ValueError(format_bounds_error(closed, low)) + + rng = <uint32_t>(high - low) + off = <uint32_t>(<int32_t>low) + if size is None: + with lock: + random_bounded_uint32_fill(state, off, rng, 1, use_masked, &out_val) + return np.int32(<int32_t>out_val) + else: + out_arr = <np.ndarray>np.empty(size, np.int32) + cnt = np.PyArray_SIZE(out_arr) + out_data = <uint32_t *>np.PyArray_DATA(out_arr) + with lock, nogil: + random_bounded_uint32_fill(state, off, rng, cnt, use_masked, out_data) + return out_arr + return _rand_int32_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock) + +cdef object _rand_int16(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + _rand_int16(low, high, size, use_masked, *state, lock) + + Return random `np.int16` integers from `low` (inclusive) to `high` (exclusive). + + Return random integers from the "discrete uniform" distribution in the + interval [`low`, `high`). If `high` is None (the default), + then results are from [0, `low`). On entry the arguments are presumed + to have been validated for size and order for the `np.int16` type. + + Parameters + ---------- + low : int or array-like + Lowest (signed) integer to be drawn from the distribution (unless + ``high=None``, in which case this parameter is the *highest* such + integer). + high : int or array-like + If provided, one above the largest (signed) integer to be drawn from the + distribution (see above for behavior if ``high=None``). + size : int or tuple of ints + Output shape. If the given shape is, e.g., ``(m, n, k)``, then + ``m * n * k`` samples are drawn. Default is None, in which case a + single value is returned. + use_masked : bool + If True then rejection sampling with a range mask is used else Lemire's algorithm is used. + closed : bool + If True then sample from [low, high]. If False, sample [low, high) + state : bit generator + Bit generator state to use in the core random number generators + lock : threading.Lock + Lock to prevent multiple using a single generator simultaneously + + Returns + ------- + out : python scalar or ndarray of np.int16 + `size`-shaped array of random integers from the appropriate + distribution, or a single such random int if `size` not provided. + + Notes + ----- + The internal integer generator produces values from the closed + interval [low, high-(not closed)]. This requires some care since + high can be out-of-range for uint16. The scalar path leaves + integers as Python integers until the 1 has been subtracted to + avoid needing to cast to a larger type. + """ + cdef np.ndarray out_arr, low_arr, high_arr + cdef uint16_t rng, off, out_val + cdef uint16_t *out_data + cdef np.npy_intp i, n, cnt + + if size is not None: + if (np.prod(size) == 0): + return np.empty(size, dtype=np.int16) + + low_arr = <np.ndarray>np.array(low, copy=False) + high_arr = <np.ndarray>np.array(high, copy=False) + low_ndim = np.PyArray_NDIM(low_arr) + high_ndim = np.PyArray_NDIM(high_arr) + if low_ndim == 0 and high_ndim == 0: + low = int(low_arr) + high = int(high_arr) + # Subtract 1 since internal generator produces on closed interval [low, high] + if not closed: + high -= 1 + + if low < -0x8000L: + raise ValueError("low is out of bounds for int16") + if high > 0x7FFFL: + raise ValueError("high is out of bounds for int16") + if low > high: # -1 already subtracted, closed interval + raise ValueError(format_bounds_error(closed, low)) + + rng = <uint16_t>(high - low) + off = <uint16_t>(<int16_t>low) + if size is None: + with lock: + random_bounded_uint16_fill(state, off, rng, 1, use_masked, &out_val) + return np.int16(<int16_t>out_val) + else: + out_arr = <np.ndarray>np.empty(size, np.int16) + cnt = np.PyArray_SIZE(out_arr) + out_data = <uint16_t *>np.PyArray_DATA(out_arr) + with lock, nogil: + random_bounded_uint16_fill(state, off, rng, cnt, use_masked, out_data) + return out_arr + return _rand_int16_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock) + +cdef object _rand_int8(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + _rand_int8(low, high, size, use_masked, *state, lock) + + Return random `np.int8` integers from `low` (inclusive) to `high` (exclusive). + + Return random integers from the "discrete uniform" distribution in the + interval [`low`, `high`). If `high` is None (the default), + then results are from [0, `low`). On entry the arguments are presumed + to have been validated for size and order for the `np.int8` type. + + Parameters + ---------- + low : int or array-like + Lowest (signed) integer to be drawn from the distribution (unless + ``high=None``, in which case this parameter is the *highest* such + integer). + high : int or array-like + If provided, one above the largest (signed) integer to be drawn from the + distribution (see above for behavior if ``high=None``). + size : int or tuple of ints + Output shape. If the given shape is, e.g., ``(m, n, k)``, then + ``m * n * k`` samples are drawn. Default is None, in which case a + single value is returned. + use_masked : bool + If True then rejection sampling with a range mask is used else Lemire's algorithm is used. + closed : bool + If True then sample from [low, high]. If False, sample [low, high) + state : bit generator + Bit generator state to use in the core random number generators + lock : threading.Lock + Lock to prevent multiple using a single generator simultaneously + + Returns + ------- + out : python scalar or ndarray of np.int8 + `size`-shaped array of random integers from the appropriate + distribution, or a single such random int if `size` not provided. + + Notes + ----- + The internal integer generator produces values from the closed + interval [low, high-(not closed)]. This requires some care since + high can be out-of-range for uint8. The scalar path leaves + integers as Python integers until the 1 has been subtracted to + avoid needing to cast to a larger type. + """ + cdef np.ndarray out_arr, low_arr, high_arr + cdef uint8_t rng, off, out_val + cdef uint8_t *out_data + cdef np.npy_intp i, n, cnt + + if size is not None: + if (np.prod(size) == 0): + return np.empty(size, dtype=np.int8) + + low_arr = <np.ndarray>np.array(low, copy=False) + high_arr = <np.ndarray>np.array(high, copy=False) + low_ndim = np.PyArray_NDIM(low_arr) + high_ndim = np.PyArray_NDIM(high_arr) + if low_ndim == 0 and high_ndim == 0: + low = int(low_arr) + high = int(high_arr) + # Subtract 1 since internal generator produces on closed interval [low, high] + if not closed: + high -= 1 + + if low < -0x80L: + raise ValueError("low is out of bounds for int8") + if high > 0x7FL: + raise ValueError("high is out of bounds for int8") + if low > high: # -1 already subtracted, closed interval + raise ValueError(format_bounds_error(closed, low)) + + rng = <uint8_t>(high - low) + off = <uint8_t>(<int8_t>low) + if size is None: + with lock: + random_bounded_uint8_fill(state, off, rng, 1, use_masked, &out_val) + return np.int8(<int8_t>out_val) + else: + out_arr = <np.ndarray>np.empty(size, np.int8) + cnt = np.PyArray_SIZE(out_arr) + out_data = <uint8_t *>np.PyArray_DATA(out_arr) + with lock, nogil: + random_bounded_uint8_fill(state, off, rng, cnt, use_masked, out_data) + return out_arr + return _rand_int8_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock) |