aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Python/compile.c
diff options
context:
space:
mode:
authornkozlovskiy <nmk@ydb.tech>2023-09-29 12:24:06 +0300
committernkozlovskiy <nmk@ydb.tech>2023-09-29 12:41:34 +0300
commite0e3e1717e3d33762ce61950504f9637a6e669ed (patch)
treebca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python3/src/Python/compile.c
parent38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff)
downloadydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz
add ydb deps
Diffstat (limited to 'contrib/tools/python3/src/Python/compile.c')
-rw-r--r--contrib/tools/python3/src/Python/compile.c9456
1 files changed, 9456 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Python/compile.c b/contrib/tools/python3/src/Python/compile.c
new file mode 100644
index 0000000000..558df3fca6
--- /dev/null
+++ b/contrib/tools/python3/src/Python/compile.c
@@ -0,0 +1,9456 @@
+/*
+ * This file compiles an abstract syntax tree (AST) into Python bytecode.
+ *
+ * The primary entry point is _PyAST_Compile(), which returns a
+ * PyCodeObject. The compiler makes several passes to build the code
+ * object:
+ * 1. Checks for future statements. See future.c
+ * 2. Builds a symbol table. See symtable.c.
+ * 3. Generate code for basic blocks. See compiler_mod() in this file.
+ * 4. Assemble the basic blocks into final code. See assemble() in
+ * this file.
+ * 5. Optimize the byte code (peephole optimizations).
+ *
+ * Note that compiler_mod() suggests module, but the module ast type
+ * (mod_ty) has cases for expressions and interactive statements.
+ *
+ * CAUTION: The VISIT_* macros abort the current function when they
+ * encounter a problem. So don't invoke them when there is memory
+ * which needs to be released. Code blocks are OK, as the compiler
+ * structure takes care of releasing those. Use the arena to manage
+ * objects.
+ */
+
+#include <stdbool.h>
+
+// Need _PyOpcode_RelativeJump of pycore_opcode.h
+#define NEED_OPCODE_TABLES
+
+#include "Python.h"
+#include "pycore_ast.h" // _PyAST_GetDocString()
+#include "pycore_code.h" // _PyCode_New()
+#include "pycore_compile.h" // _PyFuture_FromAST()
+#include "pycore_long.h" // _PyLong_GetZero()
+#include "pycore_opcode.h" // _PyOpcode_Caches
+#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
+#include "pycore_symtable.h" // PySTEntryObject
+
+
+#define DEFAULT_BLOCK_SIZE 16
+#define DEFAULT_CODE_SIZE 128
+#define DEFAULT_LNOTAB_SIZE 16
+#define DEFAULT_CNOTAB_SIZE 32
+
+#define COMP_GENEXP 0
+#define COMP_LISTCOMP 1
+#define COMP_SETCOMP 2
+#define COMP_DICTCOMP 3
+
+/* A soft limit for stack use, to avoid excessive
+ * memory use for large constants, etc.
+ *
+ * The value 30 is plucked out of thin air.
+ * Code that could use more stack than this is
+ * rare, so the exact value is unimportant.
+ */
+#define STACK_USE_GUIDELINE 30
+
+/* If we exceed this limit, it should
+ * be considered a compiler bug.
+ * Currently it should be impossible
+ * to exceed STACK_USE_GUIDELINE * 100,
+ * as 100 is the maximum parse depth.
+ * For performance reasons we will
+ * want to reduce this to a
+ * few hundred in the future.
+ *
+ * NOTE: Whatever MAX_ALLOWED_STACK_USE is
+ * set to, it should never restrict what Python
+ * we can write, just how we compile it.
+ */
+#define MAX_ALLOWED_STACK_USE (STACK_USE_GUIDELINE * 100)
+
+
+/* Pseudo-instructions used in the compiler,
+ * but turned into NOPs or other instructions
+ * by the assembler. */
+#define SETUP_FINALLY -1
+#define SETUP_CLEANUP -2
+#define SETUP_WITH -3
+#define POP_BLOCK -4
+#define JUMP -5
+#define JUMP_NO_INTERRUPT -6
+#define POP_JUMP_IF_FALSE -7
+#define POP_JUMP_IF_TRUE -8
+#define POP_JUMP_IF_NONE -9
+#define POP_JUMP_IF_NOT_NONE -10
+
+#define MIN_VIRTUAL_OPCODE -10
+#define MAX_ALLOWED_OPCODE 254
+
+#define IS_WITHIN_OPCODE_RANGE(opcode) \
+ ((opcode) >= MIN_VIRTUAL_OPCODE && (opcode) <= MAX_ALLOWED_OPCODE)
+
+#define IS_VIRTUAL_OPCODE(opcode) ((opcode) < 0)
+
+#define IS_VIRTUAL_JUMP_OPCODE(opcode) \
+ ((opcode) == JUMP || \
+ (opcode) == JUMP_NO_INTERRUPT || \
+ (opcode) == POP_JUMP_IF_NONE || \
+ (opcode) == POP_JUMP_IF_NOT_NONE || \
+ (opcode) == POP_JUMP_IF_FALSE || \
+ (opcode) == POP_JUMP_IF_TRUE)
+
+/* opcodes which are not emitted in codegen stage, only by the assembler */
+#define IS_ASSEMBLER_OPCODE(opcode) \
+ ((opcode) == JUMP_FORWARD || \
+ (opcode) == JUMP_BACKWARD || \
+ (opcode) == JUMP_BACKWARD_NO_INTERRUPT || \
+ (opcode) == POP_JUMP_FORWARD_IF_NONE || \
+ (opcode) == POP_JUMP_BACKWARD_IF_NONE || \
+ (opcode) == POP_JUMP_FORWARD_IF_NOT_NONE || \
+ (opcode) == POP_JUMP_BACKWARD_IF_NOT_NONE || \
+ (opcode) == POP_JUMP_FORWARD_IF_TRUE || \
+ (opcode) == POP_JUMP_BACKWARD_IF_TRUE || \
+ (opcode) == POP_JUMP_FORWARD_IF_FALSE || \
+ (opcode) == POP_JUMP_BACKWARD_IF_FALSE)
+
+
+#define IS_BACKWARDS_JUMP_OPCODE(opcode) \
+ ((opcode) == JUMP_BACKWARD || \
+ (opcode) == JUMP_BACKWARD_NO_INTERRUPT || \
+ (opcode) == POP_JUMP_BACKWARD_IF_NONE || \
+ (opcode) == POP_JUMP_BACKWARD_IF_NOT_NONE || \
+ (opcode) == POP_JUMP_BACKWARD_IF_TRUE || \
+ (opcode) == POP_JUMP_BACKWARD_IF_FALSE)
+
+
+#define IS_TOP_LEVEL_AWAIT(c) ( \
+ (c->c_flags->cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT) \
+ && (c->u->u_ste->ste_type == ModuleBlock))
+
+struct instr {
+ int i_opcode;
+ int i_oparg;
+ /* target block (if jump instruction) */
+ struct basicblock_ *i_target;
+ /* target block when exception is raised, should not be set by front-end. */
+ struct basicblock_ *i_except;
+ int i_lineno;
+ int i_end_lineno;
+ int i_col_offset;
+ int i_end_col_offset;
+};
+
+typedef struct excepthandler {
+ struct instr *setup;
+ int offset;
+} ExceptHandler;
+
+typedef struct exceptstack {
+ struct basicblock_ *handlers[CO_MAXBLOCKS+1];
+ int depth;
+} ExceptStack;
+
+#define LOG_BITS_PER_INT 5
+#define MASK_LOW_LOG_BITS 31
+
+static inline int
+is_bit_set_in_table(const uint32_t *table, int bitindex) {
+ /* Is the relevant bit set in the relevant word? */
+ /* 256 bits fit into 8 32-bits words.
+ * Word is indexed by (bitindex>>ln(size of int in bits)).
+ * Bit within word is the low bits of bitindex.
+ */
+ if (bitindex >= 0 && bitindex < 256) {
+ uint32_t word = table[bitindex >> LOG_BITS_PER_INT];
+ return (word >> (bitindex & MASK_LOW_LOG_BITS)) & 1;
+ }
+ else {
+ return 0;
+ }
+}
+
+static inline int
+is_relative_jump(struct instr *i)
+{
+ return is_bit_set_in_table(_PyOpcode_RelativeJump, i->i_opcode);
+}
+
+static inline int
+is_block_push(struct instr *instr)
+{
+ int opcode = instr->i_opcode;
+ return opcode == SETUP_FINALLY || opcode == SETUP_WITH || opcode == SETUP_CLEANUP;
+}
+
+static inline int
+is_jump(struct instr *i)
+{
+ return IS_VIRTUAL_JUMP_OPCODE(i->i_opcode) ||
+ is_bit_set_in_table(_PyOpcode_Jump, i->i_opcode);
+}
+
+static int
+instr_size(struct instr *instruction)
+{
+ int opcode = instruction->i_opcode;
+ assert(!IS_VIRTUAL_OPCODE(opcode));
+ int oparg = HAS_ARG(opcode) ? instruction->i_oparg : 0;
+ int extended_args = (0xFFFFFF < oparg) + (0xFFFF < oparg) + (0xFF < oparg);
+ int caches = _PyOpcode_Caches[opcode];
+ return extended_args + 1 + caches;
+}
+
+static void
+write_instr(_Py_CODEUNIT *codestr, struct instr *instruction, int ilen)
+{
+ int opcode = instruction->i_opcode;
+ assert(!IS_VIRTUAL_OPCODE(opcode));
+ int oparg = HAS_ARG(opcode) ? instruction->i_oparg : 0;
+ int caches = _PyOpcode_Caches[opcode];
+ switch (ilen - caches) {
+ case 4:
+ *codestr++ = _Py_MAKECODEUNIT(EXTENDED_ARG, (oparg >> 24) & 0xFF);
+ /* fall through */
+ case 3:
+ *codestr++ = _Py_MAKECODEUNIT(EXTENDED_ARG, (oparg >> 16) & 0xFF);
+ /* fall through */
+ case 2:
+ *codestr++ = _Py_MAKECODEUNIT(EXTENDED_ARG, (oparg >> 8) & 0xFF);
+ /* fall through */
+ case 1:
+ *codestr++ = _Py_MAKECODEUNIT(opcode, oparg & 0xFF);
+ break;
+ default:
+ Py_UNREACHABLE();
+ }
+ while (caches--) {
+ *codestr++ = _Py_MAKECODEUNIT(CACHE, 0);
+ }
+}
+
+typedef struct basicblock_ {
+ /* Each basicblock in a compilation unit is linked via b_list in the
+ reverse order that the block are allocated. b_list points to the next
+ block, not to be confused with b_next, which is next by control flow. */
+ struct basicblock_ *b_list;
+ /* Exception stack at start of block, used by assembler to create the exception handling table */
+ ExceptStack *b_exceptstack;
+ /* pointer to an array of instructions, initially NULL */
+ struct instr *b_instr;
+ /* If b_next is non-NULL, it is a pointer to the next
+ block reached by normal control flow. */
+ struct basicblock_ *b_next;
+ /* number of instructions used */
+ int b_iused;
+ /* length of instruction array (b_instr) */
+ int b_ialloc;
+ /* Number of predecssors that a block has. */
+ int b_predecessors;
+ /* depth of stack upon entry of block, computed by stackdepth() */
+ int b_startdepth;
+ /* instruction offset for block, computed by assemble_jump_offsets() */
+ int b_offset;
+ /* Basic block has no fall through (it ends with a return, raise or jump) */
+ unsigned b_nofallthrough : 1;
+ /* Basic block is an exception handler that preserves lasti */
+ unsigned b_preserve_lasti : 1;
+ /* Used by compiler passes to mark whether they have visited a basic block. */
+ unsigned b_visited : 1;
+ /* Basic block exits scope (it ends with a return or raise) */
+ unsigned b_exit : 1;
+ /* b_return is true if a RETURN_VALUE opcode is inserted. */
+ unsigned b_return : 1;
+} basicblock;
+
+/* fblockinfo tracks the current frame block.
+
+A frame block is used to handle loops, try/except, and try/finally.
+It's called a frame block to distinguish it from a basic block in the
+compiler IR.
+*/
+
+enum fblocktype { WHILE_LOOP, FOR_LOOP, TRY_EXCEPT, FINALLY_TRY, FINALLY_END,
+ WITH, ASYNC_WITH, HANDLER_CLEANUP, POP_VALUE, EXCEPTION_HANDLER,
+ EXCEPTION_GROUP_HANDLER, ASYNC_COMPREHENSION_GENERATOR };
+
+struct fblockinfo {
+ enum fblocktype fb_type;
+ basicblock *fb_block;
+ /* (optional) type-specific exit or cleanup block */
+ basicblock *fb_exit;
+ /* (optional) additional information required for unwinding */
+ void *fb_datum;
+};
+
+enum {
+ COMPILER_SCOPE_MODULE,
+ COMPILER_SCOPE_CLASS,
+ COMPILER_SCOPE_FUNCTION,
+ COMPILER_SCOPE_ASYNC_FUNCTION,
+ COMPILER_SCOPE_LAMBDA,
+ COMPILER_SCOPE_COMPREHENSION,
+};
+
+/* The following items change on entry and exit of code blocks.
+ They must be saved and restored when returning to a block.
+*/
+struct compiler_unit {
+ PySTEntryObject *u_ste;
+
+ PyObject *u_name;
+ PyObject *u_qualname; /* dot-separated qualified name (lazy) */
+ int u_scope_type;
+
+ /* The following fields are dicts that map objects to
+ the index of them in co_XXX. The index is used as
+ the argument for opcodes that refer to those collections.
+ */
+ PyObject *u_consts; /* all constants */
+ PyObject *u_names; /* all names */
+ PyObject *u_varnames; /* local variables */
+ PyObject *u_cellvars; /* cell variables */
+ PyObject *u_freevars; /* free variables */
+
+ PyObject *u_private; /* for private name mangling */
+
+ Py_ssize_t u_argcount; /* number of arguments for block */
+ Py_ssize_t u_posonlyargcount; /* number of positional only arguments for block */
+ Py_ssize_t u_kwonlyargcount; /* number of keyword only arguments for block */
+ /* Pointer to the most recently allocated block. By following b_list
+ members, you can reach all early allocated blocks. */
+ basicblock *u_blocks;
+ basicblock *u_curblock; /* pointer to current block */
+
+ int u_nfblocks;
+ struct fblockinfo u_fblock[CO_MAXBLOCKS];
+
+ int u_firstlineno; /* the first lineno of the block */
+ int u_lineno; /* the lineno for the current stmt */
+ int u_col_offset; /* the offset of the current stmt */
+ int u_end_lineno; /* the end line of the current stmt */
+ int u_end_col_offset; /* the end offset of the current stmt */
+
+ /* true if we need to create an implicit basicblock before the next instr */
+ int u_need_new_implicit_block;
+};
+
+/* This struct captures the global state of a compilation.
+
+The u pointer points to the current compilation unit, while units
+for enclosing blocks are stored in c_stack. The u and c_stack are
+managed by compiler_enter_scope() and compiler_exit_scope().
+
+Note that we don't track recursion levels during compilation - the
+task of detecting and rejecting excessive levels of nesting is
+handled by the symbol analysis pass.
+
+*/
+
+struct compiler {
+ PyObject *c_filename;
+ struct symtable *c_st;
+ PyFutureFeatures *c_future; /* pointer to module's __future__ */
+ PyCompilerFlags *c_flags;
+
+ int c_optimize; /* optimization level */
+ int c_interactive; /* true if in interactive mode */
+ int c_nestlevel;
+ PyObject *c_const_cache; /* Python dict holding all constants,
+ including names tuple */
+ struct compiler_unit *u; /* compiler state for current block */
+ PyObject *c_stack; /* Python list holding compiler_unit ptrs */
+ PyArena *c_arena; /* pointer to memory allocation arena */
+};
+
+typedef struct {
+ // A list of strings corresponding to name captures. It is used to track:
+ // - Repeated name assignments in the same pattern.
+ // - Different name assignments in alternatives.
+ // - The order of name assignments in alternatives.
+ PyObject *stores;
+ // If 0, any name captures against our subject will raise.
+ int allow_irrefutable;
+ // An array of blocks to jump to on failure. Jumping to fail_pop[i] will pop
+ // i items off of the stack. The end result looks like this (with each block
+ // falling through to the next):
+ // fail_pop[4]: POP_TOP
+ // fail_pop[3]: POP_TOP
+ // fail_pop[2]: POP_TOP
+ // fail_pop[1]: POP_TOP
+ // fail_pop[0]: NOP
+ basicblock **fail_pop;
+ // The current length of fail_pop.
+ Py_ssize_t fail_pop_size;
+ // The number of items on top of the stack that need to *stay* on top of the
+ // stack. Variable captures go beneath these. All of them will be popped on
+ // failure.
+ Py_ssize_t on_top;
+} pattern_context;
+
+static int compiler_enter_scope(struct compiler *, identifier, int, void *, int);
+static void compiler_free(struct compiler *);
+static basicblock *compiler_new_block(struct compiler *);
+static int compiler_next_instr(basicblock *);
+static int compiler_addop(struct compiler *, int);
+static int compiler_addop_i(struct compiler *, int, Py_ssize_t);
+static int compiler_addop_j(struct compiler *, int, basicblock *);
+static int compiler_addop_j_noline(struct compiler *, int, basicblock *);
+static int compiler_error(struct compiler *, const char *, ...);
+static int compiler_warn(struct compiler *, const char *, ...);
+static int compiler_nameop(struct compiler *, identifier, expr_context_ty);
+
+static PyCodeObject *compiler_mod(struct compiler *, mod_ty);
+static int compiler_visit_stmt(struct compiler *, stmt_ty);
+static int compiler_visit_keyword(struct compiler *, keyword_ty);
+static int compiler_visit_expr(struct compiler *, expr_ty);
+static int compiler_augassign(struct compiler *, stmt_ty);
+static int compiler_annassign(struct compiler *, stmt_ty);
+static int compiler_subscript(struct compiler *, expr_ty);
+static int compiler_slice(struct compiler *, expr_ty);
+
+static int are_all_items_const(asdl_expr_seq *, Py_ssize_t, Py_ssize_t);
+
+
+static int compiler_with(struct compiler *, stmt_ty, int);
+static int compiler_async_with(struct compiler *, stmt_ty, int);
+static int compiler_async_for(struct compiler *, stmt_ty);
+static int validate_keywords(struct compiler *c, asdl_keyword_seq *keywords);
+static int compiler_call_simple_kw_helper(struct compiler *c,
+ asdl_keyword_seq *keywords,
+ Py_ssize_t nkwelts);
+static int compiler_call_helper(struct compiler *c, int n,
+ asdl_expr_seq *args,
+ asdl_keyword_seq *keywords);
+static int compiler_try_except(struct compiler *, stmt_ty);
+static int compiler_try_star_except(struct compiler *, stmt_ty);
+static int compiler_set_qualname(struct compiler *);
+
+static int compiler_sync_comprehension_generator(
+ struct compiler *c,
+ asdl_comprehension_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type);
+
+static int compiler_async_comprehension_generator(
+ struct compiler *c,
+ asdl_comprehension_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type);
+
+static int compiler_pattern(struct compiler *, pattern_ty, pattern_context *);
+static int compiler_match(struct compiler *, stmt_ty);
+static int compiler_pattern_subpattern(struct compiler *, pattern_ty,
+ pattern_context *);
+
+static void clean_basic_block(basicblock *bb);
+
+static PyCodeObject *assemble(struct compiler *, int addNone);
+
+#define CAPSULE_NAME "compile.c compiler unit"
+
+PyObject *
+_Py_Mangle(PyObject *privateobj, PyObject *ident)
+{
+ /* Name mangling: __private becomes _classname__private.
+ This is independent from how the name is used. */
+ PyObject *result;
+ size_t nlen, plen, ipriv;
+ Py_UCS4 maxchar;
+ if (privateobj == NULL || !PyUnicode_Check(privateobj) ||
+ PyUnicode_READ_CHAR(ident, 0) != '_' ||
+ PyUnicode_READ_CHAR(ident, 1) != '_') {
+ Py_INCREF(ident);
+ return ident;
+ }
+ nlen = PyUnicode_GET_LENGTH(ident);
+ plen = PyUnicode_GET_LENGTH(privateobj);
+ /* Don't mangle __id__ or names with dots.
+
+ The only time a name with a dot can occur is when
+ we are compiling an import statement that has a
+ package name.
+
+ TODO(jhylton): Decide whether we want to support
+ mangling of the module name, e.g. __M.X.
+ */
+ if ((PyUnicode_READ_CHAR(ident, nlen-1) == '_' &&
+ PyUnicode_READ_CHAR(ident, nlen-2) == '_') ||
+ PyUnicode_FindChar(ident, '.', 0, nlen, 1) != -1) {
+ Py_INCREF(ident);
+ return ident; /* Don't mangle __whatever__ */
+ }
+ /* Strip leading underscores from class name */
+ ipriv = 0;
+ while (PyUnicode_READ_CHAR(privateobj, ipriv) == '_')
+ ipriv++;
+ if (ipriv == plen) {
+ Py_INCREF(ident);
+ return ident; /* Don't mangle if class is just underscores */
+ }
+ plen -= ipriv;
+
+ if (plen + nlen >= PY_SSIZE_T_MAX - 1) {
+ PyErr_SetString(PyExc_OverflowError,
+ "private identifier too large to be mangled");
+ return NULL;
+ }
+
+ maxchar = PyUnicode_MAX_CHAR_VALUE(ident);
+ if (PyUnicode_MAX_CHAR_VALUE(privateobj) > maxchar)
+ maxchar = PyUnicode_MAX_CHAR_VALUE(privateobj);
+
+ result = PyUnicode_New(1 + nlen + plen, maxchar);
+ if (!result)
+ return 0;
+ /* ident = "_" + priv[ipriv:] + ident # i.e. 1+plen+nlen bytes */
+ PyUnicode_WRITE(PyUnicode_KIND(result), PyUnicode_DATA(result), 0, '_');
+ if (PyUnicode_CopyCharacters(result, 1, privateobj, ipriv, plen) < 0) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ if (PyUnicode_CopyCharacters(result, plen+1, ident, 0, nlen) < 0) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ assert(_PyUnicode_CheckConsistency(result, 1));
+ return result;
+}
+
+static int
+compiler_init(struct compiler *c)
+{
+ memset(c, 0, sizeof(struct compiler));
+
+ c->c_const_cache = PyDict_New();
+ if (!c->c_const_cache) {
+ return 0;
+ }
+
+ c->c_stack = PyList_New(0);
+ if (!c->c_stack) {
+ Py_CLEAR(c->c_const_cache);
+ return 0;
+ }
+
+ return 1;
+}
+
+PyCodeObject *
+_PyAST_Compile(mod_ty mod, PyObject *filename, PyCompilerFlags *flags,
+ int optimize, PyArena *arena)
+{
+ struct compiler c;
+ PyCodeObject *co = NULL;
+ PyCompilerFlags local_flags = _PyCompilerFlags_INIT;
+ int merged;
+ if (!compiler_init(&c))
+ return NULL;
+ Py_INCREF(filename);
+ c.c_filename = filename;
+ c.c_arena = arena;
+ c.c_future = _PyFuture_FromAST(mod, filename);
+ if (c.c_future == NULL)
+ goto finally;
+ if (!flags) {
+ flags = &local_flags;
+ }
+ merged = c.c_future->ff_features | flags->cf_flags;
+ c.c_future->ff_features = merged;
+ flags->cf_flags = merged;
+ c.c_flags = flags;
+ c.c_optimize = (optimize == -1) ? _Py_GetConfig()->optimization_level : optimize;
+ c.c_nestlevel = 0;
+
+ _PyASTOptimizeState state;
+ state.optimize = c.c_optimize;
+ state.ff_features = merged;
+
+ if (!_PyAST_Optimize(mod, arena, &state)) {
+ goto finally;
+ }
+
+ c.c_st = _PySymtable_Build(mod, filename, c.c_future);
+ if (c.c_st == NULL) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_SystemError, "no symtable");
+ goto finally;
+ }
+
+ co = compiler_mod(&c, mod);
+
+ finally:
+ compiler_free(&c);
+ assert(co || PyErr_Occurred());
+ return co;
+}
+
+static void
+compiler_free(struct compiler *c)
+{
+ if (c->c_st)
+ _PySymtable_Free(c->c_st);
+ if (c->c_future)
+ PyObject_Free(c->c_future);
+ Py_XDECREF(c->c_filename);
+ Py_DECREF(c->c_const_cache);
+ Py_DECREF(c->c_stack);
+}
+
+static PyObject *
+list2dict(PyObject *list)
+{
+ Py_ssize_t i, n;
+ PyObject *v, *k;
+ PyObject *dict = PyDict_New();
+ if (!dict) return NULL;
+
+ n = PyList_Size(list);
+ for (i = 0; i < n; i++) {
+ v = PyLong_FromSsize_t(i);
+ if (!v) {
+ Py_DECREF(dict);
+ return NULL;
+ }
+ k = PyList_GET_ITEM(list, i);
+ if (PyDict_SetItem(dict, k, v) < 0) {
+ Py_DECREF(v);
+ Py_DECREF(dict);
+ return NULL;
+ }
+ Py_DECREF(v);
+ }
+ return dict;
+}
+
+/* Return new dict containing names from src that match scope(s).
+
+src is a symbol table dictionary. If the scope of a name matches
+either scope_type or flag is set, insert it into the new dict. The
+values are integers, starting at offset and increasing by one for
+each key.
+*/
+
+static PyObject *
+dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset)
+{
+ Py_ssize_t i = offset, scope, num_keys, key_i;
+ PyObject *k, *v, *dest = PyDict_New();
+ PyObject *sorted_keys;
+
+ assert(offset >= 0);
+ if (dest == NULL)
+ return NULL;
+
+ /* Sort the keys so that we have a deterministic order on the indexes
+ saved in the returned dictionary. These indexes are used as indexes
+ into the free and cell var storage. Therefore if they aren't
+ deterministic, then the generated bytecode is not deterministic.
+ */
+ sorted_keys = PyDict_Keys(src);
+ if (sorted_keys == NULL)
+ return NULL;
+ if (PyList_Sort(sorted_keys) != 0) {
+ Py_DECREF(sorted_keys);
+ return NULL;
+ }
+ num_keys = PyList_GET_SIZE(sorted_keys);
+
+ for (key_i = 0; key_i < num_keys; key_i++) {
+ /* XXX this should probably be a macro in symtable.h */
+ long vi;
+ k = PyList_GET_ITEM(sorted_keys, key_i);
+ v = PyDict_GetItemWithError(src, k);
+ assert(v && PyLong_Check(v));
+ vi = PyLong_AS_LONG(v);
+ scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK;
+
+ if (scope == scope_type || vi & flag) {
+ PyObject *item = PyLong_FromSsize_t(i);
+ if (item == NULL) {
+ Py_DECREF(sorted_keys);
+ Py_DECREF(dest);
+ return NULL;
+ }
+ i++;
+ if (PyDict_SetItem(dest, k, item) < 0) {
+ Py_DECREF(sorted_keys);
+ Py_DECREF(item);
+ Py_DECREF(dest);
+ return NULL;
+ }
+ Py_DECREF(item);
+ }
+ }
+ Py_DECREF(sorted_keys);
+ return dest;
+}
+
+static void
+compiler_unit_check(struct compiler_unit *u)
+{
+ basicblock *block;
+ for (block = u->u_blocks; block != NULL; block = block->b_list) {
+ assert(!_PyMem_IsPtrFreed(block));
+ if (block->b_instr != NULL) {
+ assert(block->b_ialloc > 0);
+ assert(block->b_iused >= 0);
+ assert(block->b_ialloc >= block->b_iused);
+ }
+ else {
+ assert (block->b_iused == 0);
+ assert (block->b_ialloc == 0);
+ }
+ }
+}
+
+static void
+compiler_unit_free(struct compiler_unit *u)
+{
+ basicblock *b, *next;
+
+ compiler_unit_check(u);
+ b = u->u_blocks;
+ while (b != NULL) {
+ if (b->b_instr)
+ PyObject_Free((void *)b->b_instr);
+ next = b->b_list;
+ PyObject_Free((void *)b);
+ b = next;
+ }
+ Py_CLEAR(u->u_ste);
+ Py_CLEAR(u->u_name);
+ Py_CLEAR(u->u_qualname);
+ Py_CLEAR(u->u_consts);
+ Py_CLEAR(u->u_names);
+ Py_CLEAR(u->u_varnames);
+ Py_CLEAR(u->u_freevars);
+ Py_CLEAR(u->u_cellvars);
+ Py_CLEAR(u->u_private);
+ PyObject_Free(u);
+}
+
+static int
+compiler_set_qualname(struct compiler *c)
+{
+ Py_ssize_t stack_size;
+ struct compiler_unit *u = c->u;
+ PyObject *name, *base;
+
+ base = NULL;
+ stack_size = PyList_GET_SIZE(c->c_stack);
+ assert(stack_size >= 1);
+ if (stack_size > 1) {
+ int scope, force_global = 0;
+ struct compiler_unit *parent;
+ PyObject *mangled, *capsule;
+
+ capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1);
+ parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
+ assert(parent);
+
+ if (u->u_scope_type == COMPILER_SCOPE_FUNCTION
+ || u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
+ || u->u_scope_type == COMPILER_SCOPE_CLASS) {
+ assert(u->u_name);
+ mangled = _Py_Mangle(parent->u_private, u->u_name);
+ if (!mangled)
+ return 0;
+ scope = _PyST_GetScope(parent->u_ste, mangled);
+ Py_DECREF(mangled);
+ assert(scope != GLOBAL_IMPLICIT);
+ if (scope == GLOBAL_EXPLICIT)
+ force_global = 1;
+ }
+
+ if (!force_global) {
+ if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION
+ || parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
+ || parent->u_scope_type == COMPILER_SCOPE_LAMBDA)
+ {
+ _Py_DECLARE_STR(dot_locals, ".<locals>");
+ base = PyUnicode_Concat(parent->u_qualname,
+ &_Py_STR(dot_locals));
+ if (base == NULL)
+ return 0;
+ }
+ else {
+ Py_INCREF(parent->u_qualname);
+ base = parent->u_qualname;
+ }
+ }
+ }
+
+ if (base != NULL) {
+ _Py_DECLARE_STR(dot, ".");
+ name = PyUnicode_Concat(base, &_Py_STR(dot));
+ Py_DECREF(base);
+ if (name == NULL)
+ return 0;
+ PyUnicode_Append(&name, u->u_name);
+ if (name == NULL)
+ return 0;
+ }
+ else {
+ Py_INCREF(u->u_name);
+ name = u->u_name;
+ }
+ u->u_qualname = name;
+
+ return 1;
+}
+
+
+/* Allocate a new block and return a pointer to it.
+ Returns NULL on error.
+*/
+
+static basicblock *
+compiler_new_block(struct compiler *c)
+{
+ basicblock *b;
+ struct compiler_unit *u;
+
+ u = c->u;
+ b = (basicblock *)PyObject_Calloc(1, sizeof(basicblock));
+ if (b == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+ /* Extend the singly linked list of blocks with new block. */
+ b->b_list = u->u_blocks;
+ u->u_blocks = b;
+ return b;
+}
+
+static basicblock *
+compiler_use_next_block(struct compiler *c, basicblock *block)
+{
+ assert(block != NULL);
+ c->u->u_curblock->b_next = block;
+ c->u->u_curblock = block;
+ c->u->u_need_new_implicit_block = 0;
+ return block;
+}
+
+static basicblock *
+compiler_copy_block(struct compiler *c, basicblock *block)
+{
+ /* Cannot copy a block if it has a fallthrough, since
+ * a block can only have one fallthrough predecessor.
+ */
+ assert(block->b_nofallthrough);
+ basicblock *result = compiler_new_block(c);
+ if (result == NULL) {
+ return NULL;
+ }
+ for (int i = 0; i < block->b_iused; i++) {
+ int n = compiler_next_instr(result);
+ if (n < 0) {
+ return NULL;
+ }
+ result->b_instr[n] = block->b_instr[i];
+ }
+ result->b_exit = block->b_exit;
+ result->b_nofallthrough = 1;
+ return result;
+}
+
+/* Returns the offset of the next instruction in the current block's
+ b_instr array. Resizes the b_instr as necessary.
+ Returns -1 on failure.
+*/
+
+static int
+compiler_next_instr(basicblock *b)
+{
+ assert(b != NULL);
+ if (b->b_instr == NULL) {
+ b->b_instr = (struct instr *)PyObject_Calloc(
+ DEFAULT_BLOCK_SIZE, sizeof(struct instr));
+ if (b->b_instr == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ b->b_ialloc = DEFAULT_BLOCK_SIZE;
+ }
+ else if (b->b_iused == b->b_ialloc) {
+ struct instr *tmp;
+ size_t oldsize, newsize;
+ oldsize = b->b_ialloc * sizeof(struct instr);
+ newsize = oldsize << 1;
+
+ if (oldsize > (SIZE_MAX >> 1)) {
+ PyErr_NoMemory();
+ return -1;
+ }
+
+ if (newsize == 0) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ b->b_ialloc <<= 1;
+ tmp = (struct instr *)PyObject_Realloc(
+ (void *)b->b_instr, newsize);
+ if (tmp == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ b->b_instr = tmp;
+ memset((char *)b->b_instr + oldsize, 0, newsize - oldsize);
+ }
+ return b->b_iused++;
+}
+
+/* Set the line number and column offset for the following instructions.
+
+ The line number is reset in the following cases:
+ - when entering a new scope
+ - on each statement
+ - on each expression and sub-expression
+ - before the "except" and "finally" clauses
+*/
+
+#define SET_LOC(c, x) \
+ (c)->u->u_lineno = (x)->lineno; \
+ (c)->u->u_col_offset = (x)->col_offset; \
+ (c)->u->u_end_lineno = (x)->end_lineno; \
+ (c)->u->u_end_col_offset = (x)->end_col_offset;
+
+// Artificial instructions
+#define UNSET_LOC(c) \
+ (c)->u->u_lineno = -1; \
+ (c)->u->u_col_offset = -1; \
+ (c)->u->u_end_lineno = -1; \
+ (c)->u->u_end_col_offset = -1;
+
+#define COPY_INSTR_LOC(old, new) \
+ (new).i_lineno = (old).i_lineno; \
+ (new).i_col_offset = (old).i_col_offset; \
+ (new).i_end_lineno = (old).i_end_lineno; \
+ (new).i_end_col_offset = (old).i_end_col_offset;
+
+/* Return the stack effect of opcode with argument oparg.
+
+ Some opcodes have different stack effect when jump to the target and
+ when not jump. The 'jump' parameter specifies the case:
+
+ * 0 -- when not jump
+ * 1 -- when jump
+ * -1 -- maximal
+ */
+static int
+stack_effect(int opcode, int oparg, int jump)
+{
+ switch (opcode) {
+ case NOP:
+ case EXTENDED_ARG:
+ case RESUME:
+ case CACHE:
+ return 0;
+
+ /* Stack manipulation */
+ case POP_TOP:
+ return -1;
+ case SWAP:
+ return 0;
+
+ /* Unary operators */
+ case UNARY_POSITIVE:
+ case UNARY_NEGATIVE:
+ case UNARY_NOT:
+ case UNARY_INVERT:
+ return 0;
+
+ case SET_ADD:
+ case LIST_APPEND:
+ return -1;
+ case MAP_ADD:
+ return -2;
+
+ case BINARY_SUBSCR:
+ return -1;
+ case STORE_SUBSCR:
+ return -3;
+ case DELETE_SUBSCR:
+ return -2;
+
+ case GET_ITER:
+ return 0;
+
+ case PRINT_EXPR:
+ return -1;
+ case LOAD_BUILD_CLASS:
+ return 1;
+
+ case RETURN_VALUE:
+ return -1;
+ case IMPORT_STAR:
+ return -1;
+ case SETUP_ANNOTATIONS:
+ return 0;
+ case ASYNC_GEN_WRAP:
+ case YIELD_VALUE:
+ return 0;
+ case POP_BLOCK:
+ return 0;
+ case POP_EXCEPT:
+ return -1;
+
+ case STORE_NAME:
+ return -1;
+ case DELETE_NAME:
+ return 0;
+ case UNPACK_SEQUENCE:
+ return oparg-1;
+ case UNPACK_EX:
+ return (oparg&0xFF) + (oparg>>8);
+ case FOR_ITER:
+ /* -1 at end of iterator, 1 if continue iterating. */
+ return jump > 0 ? -1 : 1;
+ case SEND:
+ return jump > 0 ? -1 : 0;
+ case STORE_ATTR:
+ return -2;
+ case DELETE_ATTR:
+ return -1;
+ case STORE_GLOBAL:
+ return -1;
+ case DELETE_GLOBAL:
+ return 0;
+ case LOAD_CONST:
+ return 1;
+ case LOAD_NAME:
+ return 1;
+ case BUILD_TUPLE:
+ case BUILD_LIST:
+ case BUILD_SET:
+ case BUILD_STRING:
+ return 1-oparg;
+ case BUILD_MAP:
+ return 1 - 2*oparg;
+ case BUILD_CONST_KEY_MAP:
+ return -oparg;
+ case LOAD_ATTR:
+ return 0;
+ case COMPARE_OP:
+ case IS_OP:
+ case CONTAINS_OP:
+ return -1;
+ case CHECK_EXC_MATCH:
+ return 0;
+ case CHECK_EG_MATCH:
+ return 0;
+ case IMPORT_NAME:
+ return -1;
+ case IMPORT_FROM:
+ return 1;
+
+ /* Jumps */
+ case JUMP_FORWARD:
+ case JUMP_BACKWARD:
+ case JUMP:
+ case JUMP_BACKWARD_NO_INTERRUPT:
+ case JUMP_NO_INTERRUPT:
+ return 0;
+
+ case JUMP_IF_TRUE_OR_POP:
+ case JUMP_IF_FALSE_OR_POP:
+ return jump ? 0 : -1;
+
+ case POP_JUMP_BACKWARD_IF_NONE:
+ case POP_JUMP_FORWARD_IF_NONE:
+ case POP_JUMP_IF_NONE:
+ case POP_JUMP_BACKWARD_IF_NOT_NONE:
+ case POP_JUMP_FORWARD_IF_NOT_NONE:
+ case POP_JUMP_IF_NOT_NONE:
+ case POP_JUMP_FORWARD_IF_FALSE:
+ case POP_JUMP_BACKWARD_IF_FALSE:
+ case POP_JUMP_IF_FALSE:
+ case POP_JUMP_FORWARD_IF_TRUE:
+ case POP_JUMP_BACKWARD_IF_TRUE:
+ case POP_JUMP_IF_TRUE:
+ return -1;
+
+ case LOAD_GLOBAL:
+ return (oparg & 1) + 1;
+
+ /* Exception handling pseudo-instructions */
+ case SETUP_FINALLY:
+ /* 0 in the normal flow.
+ * Restore the stack position and push 1 value before jumping to
+ * the handler if an exception be raised. */
+ return jump ? 1 : 0;
+ case SETUP_CLEANUP:
+ /* As SETUP_FINALLY, but pushes lasti as well */
+ return jump ? 2 : 0;
+ case SETUP_WITH:
+ /* 0 in the normal flow.
+ * Restore the stack position to the position before the result
+ * of __(a)enter__ and push 2 values before jumping to the handler
+ * if an exception be raised. */
+ return jump ? 1 : 0;
+
+ case PREP_RERAISE_STAR:
+ return -1;
+ case RERAISE:
+ return -1;
+ case PUSH_EXC_INFO:
+ return 1;
+
+ case WITH_EXCEPT_START:
+ return 1;
+
+ case LOAD_FAST:
+ return 1;
+ case STORE_FAST:
+ return -1;
+ case DELETE_FAST:
+ return 0;
+
+ case RETURN_GENERATOR:
+ return 0;
+
+ case RAISE_VARARGS:
+ return -oparg;
+
+ /* Functions and calls */
+ case PRECALL:
+ return -oparg;
+ case KW_NAMES:
+ return 0;
+ case CALL:
+ return -1;
+
+ case CALL_FUNCTION_EX:
+ return -2 - ((oparg & 0x01) != 0);
+ case MAKE_FUNCTION:
+ return 0 - ((oparg & 0x01) != 0) - ((oparg & 0x02) != 0) -
+ ((oparg & 0x04) != 0) - ((oparg & 0x08) != 0);
+ case BUILD_SLICE:
+ if (oparg == 3)
+ return -2;
+ else
+ return -1;
+
+ /* Closures */
+ case MAKE_CELL:
+ case COPY_FREE_VARS:
+ return 0;
+ case LOAD_CLOSURE:
+ return 1;
+ case LOAD_DEREF:
+ case LOAD_CLASSDEREF:
+ return 1;
+ case STORE_DEREF:
+ return -1;
+ case DELETE_DEREF:
+ return 0;
+
+ /* Iterators and generators */
+ case GET_AWAITABLE:
+ return 0;
+
+ case BEFORE_ASYNC_WITH:
+ case BEFORE_WITH:
+ return 1;
+ case GET_AITER:
+ return 0;
+ case GET_ANEXT:
+ return 1;
+ case GET_YIELD_FROM_ITER:
+ return 0;
+ case END_ASYNC_FOR:
+ return -2;
+ case FORMAT_VALUE:
+ /* If there's a fmt_spec on the stack, we go from 2->1,
+ else 1->1. */
+ return (oparg & FVS_MASK) == FVS_HAVE_SPEC ? -1 : 0;
+ case LOAD_METHOD:
+ return 1;
+ case LOAD_ASSERTION_ERROR:
+ return 1;
+ case LIST_TO_TUPLE:
+ return 0;
+ case LIST_EXTEND:
+ case SET_UPDATE:
+ case DICT_MERGE:
+ case DICT_UPDATE:
+ return -1;
+ case MATCH_CLASS:
+ return -2;
+ case GET_LEN:
+ case MATCH_MAPPING:
+ case MATCH_SEQUENCE:
+ case MATCH_KEYS:
+ return 1;
+ case COPY:
+ case PUSH_NULL:
+ return 1;
+ case BINARY_OP:
+ return -1;
+ default:
+ return PY_INVALID_STACK_EFFECT;
+ }
+ return PY_INVALID_STACK_EFFECT; /* not reachable */
+}
+
+int
+PyCompile_OpcodeStackEffectWithJump(int opcode, int oparg, int jump)
+{
+ return stack_effect(opcode, oparg, jump);
+}
+
+int
+PyCompile_OpcodeStackEffect(int opcode, int oparg)
+{
+ return stack_effect(opcode, oparg, -1);
+}
+
+static int is_end_of_basic_block(struct instr *instr)
+{
+ int opcode = instr->i_opcode;
+
+ return is_jump(instr) ||
+ opcode == RETURN_VALUE ||
+ opcode == RAISE_VARARGS ||
+ opcode == RERAISE;
+}
+
+static int
+compiler_use_new_implicit_block_if_needed(struct compiler *c)
+{
+ if (c->u->u_need_new_implicit_block) {
+ basicblock *b = compiler_new_block(c);
+ if (b == NULL) {
+ return -1;
+ }
+ compiler_use_next_block(c, b);
+ }
+ return 0;
+}
+
+static void
+compiler_check_if_end_of_block(struct compiler *c, struct instr *instr)
+{
+ if (is_end_of_basic_block(instr)) {
+ c->u->u_need_new_implicit_block = 1;
+ }
+}
+
+/* Add an opcode with no argument.
+ Returns 0 on failure, 1 on success.
+*/
+
+static int
+compiler_addop_line(struct compiler *c, int opcode, int line,
+ int end_line, int col_offset, int end_col_offset)
+{
+ assert(IS_WITHIN_OPCODE_RANGE(opcode));
+ assert(!IS_ASSEMBLER_OPCODE(opcode));
+ assert(!HAS_ARG(opcode) || IS_ARTIFICIAL(opcode));
+
+ if (compiler_use_new_implicit_block_if_needed(c) < 0) {
+ return -1;
+ }
+
+ basicblock *b = c->u->u_curblock;
+ int off = compiler_next_instr(b);
+ if (off < 0) {
+ return 0;
+ }
+ struct instr *i = &b->b_instr[off];
+ i->i_opcode = opcode;
+ i->i_oparg = 0;
+ if (opcode == RETURN_VALUE) {
+ b->b_return = 1;
+ }
+ i->i_lineno = line;
+ i->i_end_lineno = end_line;
+ i->i_col_offset = col_offset;
+ i->i_end_col_offset = end_col_offset;
+
+ compiler_check_if_end_of_block(c, i);
+ return 1;
+}
+
+static int
+compiler_addop(struct compiler *c, int opcode)
+{
+ return compiler_addop_line(c, opcode, c->u->u_lineno, c->u->u_end_lineno,
+ c->u->u_col_offset, c->u->u_end_col_offset);
+}
+
+static int
+compiler_addop_noline(struct compiler *c, int opcode)
+{
+ return compiler_addop_line(c, opcode, -1, 0, 0, 0);
+}
+
+
+static Py_ssize_t
+compiler_add_o(PyObject *dict, PyObject *o)
+{
+ PyObject *v;
+ Py_ssize_t arg;
+
+ v = PyDict_GetItemWithError(dict, o);
+ if (!v) {
+ if (PyErr_Occurred()) {
+ return -1;
+ }
+ arg = PyDict_GET_SIZE(dict);
+ v = PyLong_FromSsize_t(arg);
+ if (!v) {
+ return -1;
+ }
+ if (PyDict_SetItem(dict, o, v) < 0) {
+ Py_DECREF(v);
+ return -1;
+ }
+ Py_DECREF(v);
+ }
+ else
+ arg = PyLong_AsLong(v);
+ return arg;
+}
+
+// Merge const *o* recursively and return constant key object.
+static PyObject*
+merge_consts_recursive(struct compiler *c, PyObject *o)
+{
+ // None and Ellipsis are singleton, and key is the singleton.
+ // No need to merge object and key.
+ if (o == Py_None || o == Py_Ellipsis) {
+ Py_INCREF(o);
+ return o;
+ }
+
+ PyObject *key = _PyCode_ConstantKey(o);
+ if (key == NULL) {
+ return NULL;
+ }
+
+ // t is borrowed reference
+ PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key);
+ if (t != key) {
+ // o is registered in c_const_cache. Just use it.
+ Py_XINCREF(t);
+ Py_DECREF(key);
+ return t;
+ }
+
+ // We registered o in c_const_cache.
+ // When o is a tuple or frozenset, we want to merge its
+ // items too.
+ if (PyTuple_CheckExact(o)) {
+ Py_ssize_t len = PyTuple_GET_SIZE(o);
+ for (Py_ssize_t i = 0; i < len; i++) {
+ PyObject *item = PyTuple_GET_ITEM(o, i);
+ PyObject *u = merge_consts_recursive(c, item);
+ if (u == NULL) {
+ Py_DECREF(key);
+ return NULL;
+ }
+
+ // See _PyCode_ConstantKey()
+ PyObject *v; // borrowed
+ if (PyTuple_CheckExact(u)) {
+ v = PyTuple_GET_ITEM(u, 1);
+ }
+ else {
+ v = u;
+ }
+ if (v != item) {
+ Py_INCREF(v);
+ PyTuple_SET_ITEM(o, i, v);
+ Py_DECREF(item);
+ }
+
+ Py_DECREF(u);
+ }
+ }
+ else if (PyFrozenSet_CheckExact(o)) {
+ // *key* is tuple. And its first item is frozenset of
+ // constant keys.
+ // See _PyCode_ConstantKey() for detail.
+ assert(PyTuple_CheckExact(key));
+ assert(PyTuple_GET_SIZE(key) == 2);
+
+ Py_ssize_t len = PySet_GET_SIZE(o);
+ if (len == 0) { // empty frozenset should not be re-created.
+ return key;
+ }
+ PyObject *tuple = PyTuple_New(len);
+ if (tuple == NULL) {
+ Py_DECREF(key);
+ return NULL;
+ }
+ Py_ssize_t i = 0, pos = 0;
+ PyObject *item;
+ Py_hash_t hash;
+ while (_PySet_NextEntry(o, &pos, &item, &hash)) {
+ PyObject *k = merge_consts_recursive(c, item);
+ if (k == NULL) {
+ Py_DECREF(tuple);
+ Py_DECREF(key);
+ return NULL;
+ }
+ PyObject *u;
+ if (PyTuple_CheckExact(k)) {
+ u = PyTuple_GET_ITEM(k, 1);
+ Py_INCREF(u);
+ Py_DECREF(k);
+ }
+ else {
+ u = k;
+ }
+ PyTuple_SET_ITEM(tuple, i, u); // Steals reference of u.
+ i++;
+ }
+
+ // Instead of rewriting o, we create new frozenset and embed in the
+ // key tuple. Caller should get merged frozenset from the key tuple.
+ PyObject *new = PyFrozenSet_New(tuple);
+ Py_DECREF(tuple);
+ if (new == NULL) {
+ Py_DECREF(key);
+ return NULL;
+ }
+ assert(PyTuple_GET_ITEM(key, 1) == o);
+ Py_DECREF(o);
+ PyTuple_SET_ITEM(key, 1, new);
+ }
+
+ return key;
+}
+
+static Py_ssize_t
+compiler_add_const(struct compiler *c, PyObject *o)
+{
+ PyObject *key = merge_consts_recursive(c, o);
+ if (key == NULL) {
+ return -1;
+ }
+
+ Py_ssize_t arg = compiler_add_o(c->u->u_consts, key);
+ Py_DECREF(key);
+ return arg;
+}
+
+static int
+compiler_addop_load_const(struct compiler *c, PyObject *o)
+{
+ Py_ssize_t arg = compiler_add_const(c, o);
+ if (arg < 0)
+ return 0;
+ return compiler_addop_i(c, LOAD_CONST, arg);
+}
+
+static int
+compiler_addop_o(struct compiler *c, int opcode, PyObject *dict,
+ PyObject *o)
+{
+ Py_ssize_t arg = compiler_add_o(dict, o);
+ if (arg < 0)
+ return 0;
+ return compiler_addop_i(c, opcode, arg);
+}
+
+static int
+compiler_addop_name(struct compiler *c, int opcode, PyObject *dict,
+ PyObject *o)
+{
+ Py_ssize_t arg;
+
+ PyObject *mangled = _Py_Mangle(c->u->u_private, o);
+ if (!mangled)
+ return 0;
+ arg = compiler_add_o(dict, mangled);
+ Py_DECREF(mangled);
+ if (arg < 0)
+ return 0;
+ return compiler_addop_i(c, opcode, arg);
+}
+
+/* Add an opcode with an integer argument.
+ Returns 0 on failure, 1 on success.
+*/
+
+static int
+compiler_addop_i_line(struct compiler *c, int opcode, Py_ssize_t oparg,
+ int lineno, int end_lineno,
+ int col_offset, int end_col_offset)
+{
+ /* oparg value is unsigned, but a signed C int is usually used to store
+ it in the C code (like Python/ceval.c).
+
+ Limit to 32-bit signed C int (rather than INT_MAX) for portability.
+
+ The argument of a concrete bytecode instruction is limited to 8-bit.
+ EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */
+
+ assert(IS_WITHIN_OPCODE_RANGE(opcode));
+ assert(!IS_ASSEMBLER_OPCODE(opcode));
+ assert(HAS_ARG(opcode));
+ assert(0 <= oparg && oparg <= 2147483647);
+
+ if (compiler_use_new_implicit_block_if_needed(c) < 0) {
+ return -1;
+ }
+
+ basicblock *b = c->u->u_curblock;
+ int off = compiler_next_instr(b);
+ if (off < 0) {
+ return 0;
+ }
+ struct instr *i = &b->b_instr[off];
+ i->i_opcode = opcode;
+ i->i_oparg = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int);
+ i->i_lineno = lineno;
+ i->i_end_lineno = end_lineno;
+ i->i_col_offset = col_offset;
+ i->i_end_col_offset = end_col_offset;
+
+ compiler_check_if_end_of_block(c, i);
+ return 1;
+}
+
+static int
+compiler_addop_i(struct compiler *c, int opcode, Py_ssize_t oparg)
+{
+ return compiler_addop_i_line(c, opcode, oparg,
+ c->u->u_lineno, c->u->u_end_lineno,
+ c->u->u_col_offset, c->u->u_end_col_offset);
+}
+
+static int
+compiler_addop_i_noline(struct compiler *c, int opcode, Py_ssize_t oparg)
+{
+ return compiler_addop_i_line(c, opcode, oparg, -1, 0, 0, 0);
+}
+
+static int add_jump_to_block(struct compiler *c, int opcode,
+ int lineno, int end_lineno,
+ int col_offset, int end_col_offset,
+ basicblock *target)
+{
+ assert(IS_WITHIN_OPCODE_RANGE(opcode));
+ assert(!IS_ASSEMBLER_OPCODE(opcode));
+ assert(HAS_ARG(opcode) || IS_VIRTUAL_OPCODE(opcode));
+ assert(target != NULL);
+
+ if (compiler_use_new_implicit_block_if_needed(c) < 0) {
+ return -1;
+ }
+
+ basicblock *b = c->u->u_curblock;
+ int off = compiler_next_instr(b);
+ struct instr *i = &b->b_instr[off];
+ if (off < 0) {
+ return 0;
+ }
+ i->i_opcode = opcode;
+ i->i_target = target;
+ i->i_lineno = lineno;
+ i->i_end_lineno = end_lineno;
+ i->i_col_offset = col_offset;
+ i->i_end_col_offset = end_col_offset;
+
+ compiler_check_if_end_of_block(c, i);
+ return 1;
+}
+
+static int
+compiler_addop_j(struct compiler *c, int opcode, basicblock *b)
+{
+ return add_jump_to_block(c, opcode, c->u->u_lineno,
+ c->u->u_end_lineno, c->u->u_col_offset,
+ c->u->u_end_col_offset, b);
+}
+
+static int
+compiler_addop_j_noline(struct compiler *c, int opcode, basicblock *b)
+{
+ return add_jump_to_block(c, opcode, -1, 0, 0, 0, b);
+}
+
+#define ADDOP(C, OP) { \
+ if (!compiler_addop((C), (OP))) \
+ return 0; \
+}
+
+#define ADDOP_NOLINE(C, OP) { \
+ if (!compiler_addop_noline((C), (OP))) \
+ return 0; \
+}
+
+#define ADDOP_IN_SCOPE(C, OP) { \
+ if (!compiler_addop((C), (OP))) { \
+ compiler_exit_scope(c); \
+ return 0; \
+ } \
+}
+
+#define ADDOP_LOAD_CONST(C, O) { \
+ if (!compiler_addop_load_const((C), (O))) \
+ return 0; \
+}
+
+/* Same as ADDOP_LOAD_CONST, but steals a reference. */
+#define ADDOP_LOAD_CONST_NEW(C, O) { \
+ PyObject *__new_const = (O); \
+ if (__new_const == NULL) { \
+ return 0; \
+ } \
+ if (!compiler_addop_load_const((C), __new_const)) { \
+ Py_DECREF(__new_const); \
+ return 0; \
+ } \
+ Py_DECREF(__new_const); \
+}
+
+#define ADDOP_N(C, OP, O, TYPE) { \
+ assert(!HAS_CONST(OP)); /* use ADDOP_LOAD_CONST_NEW */ \
+ if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) { \
+ Py_DECREF((O)); \
+ return 0; \
+ } \
+ Py_DECREF((O)); \
+}
+
+#define ADDOP_NAME(C, OP, O, TYPE) { \
+ if (!compiler_addop_name((C), (OP), (C)->u->u_ ## TYPE, (O))) \
+ return 0; \
+}
+
+#define ADDOP_I(C, OP, O) { \
+ if (!compiler_addop_i((C), (OP), (O))) \
+ return 0; \
+}
+
+#define ADDOP_I_NOLINE(C, OP, O) { \
+ if (!compiler_addop_i_noline((C), (OP), (O))) \
+ return 0; \
+}
+
+#define ADDOP_JUMP(C, OP, O) { \
+ if (!compiler_addop_j((C), (OP), (O))) \
+ return 0; \
+}
+
+/* Add a jump with no line number.
+ * Used for artificial jumps that have no corresponding
+ * token in the source code. */
+#define ADDOP_JUMP_NOLINE(C, OP, O) { \
+ if (!compiler_addop_j_noline((C), (OP), (O))) \
+ return 0; \
+}
+
+#define ADDOP_COMPARE(C, CMP) { \
+ if (!compiler_addcompare((C), (cmpop_ty)(CMP))) \
+ return 0; \
+}
+
+#define ADDOP_BINARY(C, BINOP) \
+ RETURN_IF_FALSE(addop_binary((C), (BINOP), false))
+
+#define ADDOP_INPLACE(C, BINOP) \
+ RETURN_IF_FALSE(addop_binary((C), (BINOP), true))
+
+/* VISIT and VISIT_SEQ takes an ASDL type as their second argument. They use
+ the ASDL name to synthesize the name of the C type and the visit function.
+*/
+
+#define ADD_YIELD_FROM(C, await) \
+ RETURN_IF_FALSE(compiler_add_yield_from((C), (await)))
+
+#define POP_EXCEPT_AND_RERAISE(C) \
+ RETURN_IF_FALSE(compiler_pop_except_and_reraise((C)))
+
+#define ADDOP_YIELD(C) \
+ RETURN_IF_FALSE(addop_yield(C))
+
+#define VISIT(C, TYPE, V) {\
+ if (!compiler_visit_ ## TYPE((C), (V))) \
+ return 0; \
+}
+
+#define VISIT_IN_SCOPE(C, TYPE, V) {\
+ if (!compiler_visit_ ## TYPE((C), (V))) { \
+ compiler_exit_scope(c); \
+ return 0; \
+ } \
+}
+
+#define VISIT_SEQ(C, TYPE, SEQ) { \
+ int _i; \
+ asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \
+ for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
+ TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
+ if (!compiler_visit_ ## TYPE((C), elt)) \
+ return 0; \
+ } \
+}
+
+#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \
+ int _i; \
+ asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \
+ for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
+ TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
+ if (!compiler_visit_ ## TYPE((C), elt)) { \
+ compiler_exit_scope(c); \
+ return 0; \
+ } \
+ } \
+}
+
+#define RETURN_IF_FALSE(X) \
+ if (!(X)) { \
+ return 0; \
+ }
+
+static int
+compiler_enter_scope(struct compiler *c, identifier name,
+ int scope_type, void *key, int lineno)
+{
+ struct compiler_unit *u;
+ basicblock *block;
+
+ u = (struct compiler_unit *)PyObject_Calloc(1, sizeof(
+ struct compiler_unit));
+ if (!u) {
+ PyErr_NoMemory();
+ return 0;
+ }
+ u->u_scope_type = scope_type;
+ u->u_argcount = 0;
+ u->u_posonlyargcount = 0;
+ u->u_kwonlyargcount = 0;
+ u->u_ste = PySymtable_Lookup(c->c_st, key);
+ if (!u->u_ste) {
+ compiler_unit_free(u);
+ return 0;
+ }
+ Py_INCREF(name);
+ u->u_name = name;
+ u->u_varnames = list2dict(u->u_ste->ste_varnames);
+ if (!u->u_varnames) {
+ compiler_unit_free(u);
+ return 0;
+ }
+ u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0);
+ if (!u->u_cellvars) {
+ compiler_unit_free(u);
+ return 0;
+ }
+ if (u->u_ste->ste_needs_class_closure) {
+ /* Cook up an implicit __class__ cell. */
+ int res;
+ assert(u->u_scope_type == COMPILER_SCOPE_CLASS);
+ assert(PyDict_GET_SIZE(u->u_cellvars) == 0);
+ res = PyDict_SetItem(u->u_cellvars, &_Py_ID(__class__),
+ _PyLong_GetZero());
+ if (res < 0) {
+ compiler_unit_free(u);
+ return 0;
+ }
+ }
+
+ u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS,
+ PyDict_GET_SIZE(u->u_cellvars));
+ if (!u->u_freevars) {
+ compiler_unit_free(u);
+ return 0;
+ }
+
+ u->u_blocks = NULL;
+ u->u_nfblocks = 0;
+ u->u_firstlineno = lineno;
+ u->u_lineno = lineno;
+ u->u_col_offset = 0;
+ u->u_end_lineno = lineno;
+ u->u_end_col_offset = 0;
+ u->u_consts = PyDict_New();
+ if (!u->u_consts) {
+ compiler_unit_free(u);
+ return 0;
+ }
+ u->u_names = PyDict_New();
+ if (!u->u_names) {
+ compiler_unit_free(u);
+ return 0;
+ }
+
+ u->u_private = NULL;
+
+ /* Push the old compiler_unit on the stack. */
+ if (c->u) {
+ PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL);
+ if (!capsule || PyList_Append(c->c_stack, capsule) < 0) {
+ Py_XDECREF(capsule);
+ compiler_unit_free(u);
+ return 0;
+ }
+ Py_DECREF(capsule);
+ u->u_private = c->u->u_private;
+ Py_XINCREF(u->u_private);
+ }
+ c->u = u;
+
+ c->c_nestlevel++;
+
+ block = compiler_new_block(c);
+ if (block == NULL)
+ return 0;
+ c->u->u_curblock = block;
+
+ if (u->u_scope_type == COMPILER_SCOPE_MODULE) {
+ c->u->u_lineno = 0;
+ }
+ else {
+ if (!compiler_set_qualname(c))
+ return 0;
+ }
+ ADDOP_I(c, RESUME, 0);
+
+ if (u->u_scope_type == COMPILER_SCOPE_MODULE) {
+ c->u->u_lineno = -1;
+ }
+ return 1;
+}
+
+static void
+compiler_exit_scope(struct compiler *c)
+{
+ // Don't call PySequence_DelItem() with an exception raised
+ PyObject *exc_type, *exc_val, *exc_tb;
+ PyErr_Fetch(&exc_type, &exc_val, &exc_tb);
+
+ c->c_nestlevel--;
+ compiler_unit_free(c->u);
+ /* Restore c->u to the parent unit. */
+ Py_ssize_t n = PyList_GET_SIZE(c->c_stack) - 1;
+ if (n >= 0) {
+ PyObject *capsule = PyList_GET_ITEM(c->c_stack, n);
+ c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
+ assert(c->u);
+ /* we are deleting from a list so this really shouldn't fail */
+ if (PySequence_DelItem(c->c_stack, n) < 0) {
+ _PyErr_WriteUnraisableMsg("on removing the last compiler "
+ "stack item", NULL);
+ }
+ compiler_unit_check(c->u);
+ }
+ else {
+ c->u = NULL;
+ }
+
+ PyErr_Restore(exc_type, exc_val, exc_tb);
+}
+
+/* Search if variable annotations are present statically in a block. */
+
+static int
+find_ann(asdl_stmt_seq *stmts)
+{
+ int i, j, res = 0;
+ stmt_ty st;
+
+ for (i = 0; i < asdl_seq_LEN(stmts); i++) {
+ st = (stmt_ty)asdl_seq_GET(stmts, i);
+ switch (st->kind) {
+ case AnnAssign_kind:
+ return 1;
+ case For_kind:
+ res = find_ann(st->v.For.body) ||
+ find_ann(st->v.For.orelse);
+ break;
+ case AsyncFor_kind:
+ res = find_ann(st->v.AsyncFor.body) ||
+ find_ann(st->v.AsyncFor.orelse);
+ break;
+ case While_kind:
+ res = find_ann(st->v.While.body) ||
+ find_ann(st->v.While.orelse);
+ break;
+ case If_kind:
+ res = find_ann(st->v.If.body) ||
+ find_ann(st->v.If.orelse);
+ break;
+ case With_kind:
+ res = find_ann(st->v.With.body);
+ break;
+ case AsyncWith_kind:
+ res = find_ann(st->v.AsyncWith.body);
+ break;
+ case Try_kind:
+ for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) {
+ excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
+ st->v.Try.handlers, j);
+ if (find_ann(handler->v.ExceptHandler.body)) {
+ return 1;
+ }
+ }
+ res = find_ann(st->v.Try.body) ||
+ find_ann(st->v.Try.finalbody) ||
+ find_ann(st->v.Try.orelse);
+ break;
+ case TryStar_kind:
+ for (j = 0; j < asdl_seq_LEN(st->v.TryStar.handlers); j++) {
+ excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
+ st->v.TryStar.handlers, j);
+ if (find_ann(handler->v.ExceptHandler.body)) {
+ return 1;
+ }
+ }
+ res = find_ann(st->v.TryStar.body) ||
+ find_ann(st->v.TryStar.finalbody) ||
+ find_ann(st->v.TryStar.orelse);
+ break;
+ case Match_kind:
+ for (j = 0; j < asdl_seq_LEN(st->v.Match.cases); j++) {
+ match_case_ty match_case = (match_case_ty)asdl_seq_GET(
+ st->v.Match.cases, j);
+ if (find_ann(match_case->body)) {
+ return true;
+ }
+ }
+ break;
+ default:
+ res = 0;
+ }
+ if (res) {
+ break;
+ }
+ }
+ return res;
+}
+
+/*
+ * Frame block handling functions
+ */
+
+static int
+compiler_push_fblock(struct compiler *c, enum fblocktype t, basicblock *b,
+ basicblock *exit, void *datum)
+{
+ struct fblockinfo *f;
+ if (c->u->u_nfblocks >= CO_MAXBLOCKS) {
+ return compiler_error(c, "too many statically nested blocks");
+ }
+ f = &c->u->u_fblock[c->u->u_nfblocks++];
+ f->fb_type = t;
+ f->fb_block = b;
+ f->fb_exit = exit;
+ f->fb_datum = datum;
+ return 1;
+}
+
+static void
+compiler_pop_fblock(struct compiler *c, enum fblocktype t, basicblock *b)
+{
+ struct compiler_unit *u = c->u;
+ assert(u->u_nfblocks > 0);
+ u->u_nfblocks--;
+ assert(u->u_fblock[u->u_nfblocks].fb_type == t);
+ assert(u->u_fblock[u->u_nfblocks].fb_block == b);
+}
+
+static int
+compiler_call_exit_with_nones(struct compiler *c) {
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP_I(c, PRECALL, 2);
+ ADDOP_I(c, CALL, 2);
+ return 1;
+}
+
+static int
+compiler_add_yield_from(struct compiler *c, int await)
+{
+ basicblock *start, *resume, *exit;
+ start = compiler_new_block(c);
+ resume = compiler_new_block(c);
+ exit = compiler_new_block(c);
+ if (start == NULL || resume == NULL || exit == NULL) {
+ return 0;
+ }
+ compiler_use_next_block(c, start);
+ ADDOP_JUMP(c, SEND, exit);
+ compiler_use_next_block(c, resume);
+ ADDOP(c, YIELD_VALUE);
+ ADDOP_I(c, RESUME, await ? 3 : 2);
+ ADDOP_JUMP(c, JUMP_NO_INTERRUPT, start);
+ compiler_use_next_block(c, exit);
+ return 1;
+}
+
+static int
+compiler_pop_except_and_reraise(struct compiler *c)
+{
+ /* Stack contents
+ * [exc_info, lasti, exc] COPY 3
+ * [exc_info, lasti, exc, exc_info] POP_EXCEPT
+ * [exc_info, lasti, exc] RERAISE 1
+ * (exception_unwind clears the stack)
+ */
+
+ ADDOP_I(c, COPY, 3);
+ ADDOP(c, POP_EXCEPT);
+ ADDOP_I(c, RERAISE, 1);
+ return 1;
+}
+
+/* Unwind a frame block. If preserve_tos is true, the TOS before
+ * popping the blocks will be restored afterwards, unless another
+ * return, break or continue is found. In which case, the TOS will
+ * be popped.
+ */
+static int
+compiler_unwind_fblock(struct compiler *c, struct fblockinfo *info,
+ int preserve_tos)
+{
+ switch (info->fb_type) {
+ case WHILE_LOOP:
+ case EXCEPTION_HANDLER:
+ case EXCEPTION_GROUP_HANDLER:
+ case ASYNC_COMPREHENSION_GENERATOR:
+ return 1;
+
+ case FOR_LOOP:
+ /* Pop the iterator */
+ if (preserve_tos) {
+ ADDOP_I(c, SWAP, 2);
+ }
+ ADDOP(c, POP_TOP);
+ return 1;
+
+ case TRY_EXCEPT:
+ ADDOP(c, POP_BLOCK);
+ return 1;
+
+ case FINALLY_TRY:
+ /* This POP_BLOCK gets the line number of the unwinding statement */
+ ADDOP(c, POP_BLOCK);
+ if (preserve_tos) {
+ if (!compiler_push_fblock(c, POP_VALUE, NULL, NULL, NULL)) {
+ return 0;
+ }
+ }
+ /* Emit the finally block */
+ VISIT_SEQ(c, stmt, info->fb_datum);
+ if (preserve_tos) {
+ compiler_pop_fblock(c, POP_VALUE, NULL);
+ }
+ /* The finally block should appear to execute after the
+ * statement causing the unwinding, so make the unwinding
+ * instruction artificial */
+ UNSET_LOC(c);
+ return 1;
+
+ case FINALLY_END:
+ if (preserve_tos) {
+ ADDOP_I(c, SWAP, 2);
+ }
+ ADDOP(c, POP_TOP); /* exc_value */
+ if (preserve_tos) {
+ ADDOP_I(c, SWAP, 2);
+ }
+ ADDOP(c, POP_BLOCK);
+ ADDOP(c, POP_EXCEPT);
+ return 1;
+
+ case WITH:
+ case ASYNC_WITH:
+ SET_LOC(c, (stmt_ty)info->fb_datum);
+ ADDOP(c, POP_BLOCK);
+ if (preserve_tos) {
+ ADDOP_I(c, SWAP, 2);
+ }
+ if(!compiler_call_exit_with_nones(c)) {
+ return 0;
+ }
+ if (info->fb_type == ASYNC_WITH) {
+ ADDOP_I(c, GET_AWAITABLE, 2);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADD_YIELD_FROM(c, 1);
+ }
+ ADDOP(c, POP_TOP);
+ /* The exit block should appear to execute after the
+ * statement causing the unwinding, so make the unwinding
+ * instruction artificial */
+ UNSET_LOC(c);
+ return 1;
+
+ case HANDLER_CLEANUP:
+ if (info->fb_datum) {
+ ADDOP(c, POP_BLOCK);
+ }
+ if (preserve_tos) {
+ ADDOP_I(c, SWAP, 2);
+ }
+ ADDOP(c, POP_BLOCK);
+ ADDOP(c, POP_EXCEPT);
+ if (info->fb_datum) {
+ ADDOP_LOAD_CONST(c, Py_None);
+ compiler_nameop(c, info->fb_datum, Store);
+ compiler_nameop(c, info->fb_datum, Del);
+ }
+ return 1;
+
+ case POP_VALUE:
+ if (preserve_tos) {
+ ADDOP_I(c, SWAP, 2);
+ }
+ ADDOP(c, POP_TOP);
+ return 1;
+ }
+ Py_UNREACHABLE();
+}
+
+/** Unwind block stack. If loop is not NULL, then stop when the first loop is encountered. */
+static int
+compiler_unwind_fblock_stack(struct compiler *c, int preserve_tos, struct fblockinfo **loop) {
+ if (c->u->u_nfblocks == 0) {
+ return 1;
+ }
+ struct fblockinfo *top = &c->u->u_fblock[c->u->u_nfblocks-1];
+ if (top->fb_type == EXCEPTION_GROUP_HANDLER) {
+ return compiler_error(
+ c, "'break', 'continue' and 'return' cannot appear in an except* block");
+ }
+ if (loop != NULL && (top->fb_type == WHILE_LOOP || top->fb_type == FOR_LOOP)) {
+ *loop = top;
+ return 1;
+ }
+ struct fblockinfo copy = *top;
+ c->u->u_nfblocks--;
+ if (!compiler_unwind_fblock(c, &copy, preserve_tos)) {
+ return 0;
+ }
+ if (!compiler_unwind_fblock_stack(c, preserve_tos, loop)) {
+ return 0;
+ }
+ c->u->u_fblock[c->u->u_nfblocks] = copy;
+ c->u->u_nfblocks++;
+ return 1;
+}
+
+/* Compile a sequence of statements, checking for a docstring
+ and for annotations. */
+
+static int
+compiler_body(struct compiler *c, asdl_stmt_seq *stmts)
+{
+ int i = 0;
+ stmt_ty st;
+ PyObject *docstring;
+
+ /* Set current line number to the line number of first statement.
+ This way line number for SETUP_ANNOTATIONS will always
+ coincide with the line number of first "real" statement in module.
+ If body is empty, then lineno will be set later in assemble. */
+ if (c->u->u_scope_type == COMPILER_SCOPE_MODULE && asdl_seq_LEN(stmts)) {
+ st = (stmt_ty)asdl_seq_GET(stmts, 0);
+ SET_LOC(c, st);
+ }
+ /* Every annotated class and module should have __annotations__. */
+ if (find_ann(stmts)) {
+ ADDOP(c, SETUP_ANNOTATIONS);
+ }
+ if (!asdl_seq_LEN(stmts))
+ return 1;
+ /* if not -OO mode, set docstring */
+ if (c->c_optimize < 2) {
+ docstring = _PyAST_GetDocString(stmts);
+ if (docstring) {
+ i = 1;
+ st = (stmt_ty)asdl_seq_GET(stmts, 0);
+ assert(st->kind == Expr_kind);
+ VISIT(c, expr, st->v.Expr.value);
+ UNSET_LOC(c);
+ if (!compiler_nameop(c, &_Py_ID(__doc__), Store))
+ return 0;
+ }
+ }
+ for (; i < asdl_seq_LEN(stmts); i++)
+ VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));
+ return 1;
+}
+
+static PyCodeObject *
+compiler_mod(struct compiler *c, mod_ty mod)
+{
+ PyCodeObject *co;
+ int addNone = 1;
+ _Py_DECLARE_STR(anon_module, "<module>");
+ if (!compiler_enter_scope(c, &_Py_STR(anon_module), COMPILER_SCOPE_MODULE,
+ mod, 1)) {
+ return NULL;
+ }
+ c->u->u_lineno = 1;
+ switch (mod->kind) {
+ case Module_kind:
+ if (!compiler_body(c, mod->v.Module.body)) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+ break;
+ case Interactive_kind:
+ if (find_ann(mod->v.Interactive.body)) {
+ ADDOP(c, SETUP_ANNOTATIONS);
+ }
+ c->c_interactive = 1;
+ VISIT_SEQ_IN_SCOPE(c, stmt, mod->v.Interactive.body);
+ break;
+ case Expression_kind:
+ VISIT_IN_SCOPE(c, expr, mod->v.Expression.body);
+ addNone = 0;
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "module kind %d should not be possible",
+ mod->kind);
+ return 0;
+ }
+ co = assemble(c, addNone);
+ compiler_exit_scope(c);
+ return co;
+}
+
+/* The test for LOCAL must come before the test for FREE in order to
+ handle classes where name is both local and free. The local var is
+ a method and the free var is a free var referenced within a method.
+*/
+
+static int
+get_ref_type(struct compiler *c, PyObject *name)
+{
+ int scope;
+ if (c->u->u_scope_type == COMPILER_SCOPE_CLASS &&
+ _PyUnicode_EqualToASCIIString(name, "__class__"))
+ return CELL;
+ scope = _PyST_GetScope(c->u->u_ste, name);
+ if (scope == 0) {
+ PyErr_Format(PyExc_SystemError,
+ "_PyST_GetScope(name=%R) failed: "
+ "unknown scope in unit %S (%R); "
+ "symbols: %R; locals: %R; globals: %R",
+ name,
+ c->u->u_name, c->u->u_ste->ste_id,
+ c->u->u_ste->ste_symbols, c->u->u_varnames, c->u->u_names);
+ return -1;
+ }
+ return scope;
+}
+
+static int
+compiler_lookup_arg(PyObject *dict, PyObject *name)
+{
+ PyObject *v;
+ v = PyDict_GetItemWithError(dict, name);
+ if (v == NULL)
+ return -1;
+ return PyLong_AS_LONG(v);
+}
+
+static int
+compiler_make_closure(struct compiler *c, PyCodeObject *co, Py_ssize_t flags,
+ PyObject *qualname)
+{
+ if (qualname == NULL)
+ qualname = co->co_name;
+
+ if (co->co_nfreevars) {
+ int i = co->co_nlocals + co->co_nplaincellvars;
+ for (; i < co->co_nlocalsplus; ++i) {
+ /* Bypass com_addop_varname because it will generate
+ LOAD_DEREF but LOAD_CLOSURE is needed.
+ */
+ PyObject *name = PyTuple_GET_ITEM(co->co_localsplusnames, i);
+
+ /* Special case: If a class contains a method with a
+ free variable that has the same name as a method,
+ the name will be considered free *and* local in the
+ class. It should be handled by the closure, as
+ well as by the normal name lookup logic.
+ */
+ int reftype = get_ref_type(c, name);
+ if (reftype == -1) {
+ return 0;
+ }
+ int arg;
+ if (reftype == CELL) {
+ arg = compiler_lookup_arg(c->u->u_cellvars, name);
+ }
+ else {
+ arg = compiler_lookup_arg(c->u->u_freevars, name);
+ }
+ if (arg == -1) {
+ PyObject *freevars = _PyCode_GetFreevars(co);
+ if (freevars == NULL) {
+ PyErr_Clear();
+ }
+ PyErr_Format(PyExc_SystemError,
+ "compiler_lookup_arg(name=%R) with reftype=%d failed in %S; "
+ "freevars of code %S: %R",
+ name,
+ reftype,
+ c->u->u_name,
+ co->co_name,
+ freevars);
+ Py_DECREF(freevars);
+ return 0;
+ }
+ ADDOP_I(c, LOAD_CLOSURE, arg);
+ }
+ flags |= 0x08;
+ ADDOP_I(c, BUILD_TUPLE, co->co_nfreevars);
+ }
+ ADDOP_LOAD_CONST(c, (PyObject*)co);
+ ADDOP_I(c, MAKE_FUNCTION, flags);
+ return 1;
+}
+
+static int
+compiler_decorators(struct compiler *c, asdl_expr_seq* decos)
+{
+ int i;
+
+ if (!decos)
+ return 1;
+
+ for (i = 0; i < asdl_seq_LEN(decos); i++) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i));
+ }
+ return 1;
+}
+
+static int
+compiler_apply_decorators(struct compiler *c, asdl_expr_seq* decos)
+{
+ if (!decos)
+ return 1;
+
+ int old_lineno = c->u->u_lineno;
+ int old_end_lineno = c->u->u_end_lineno;
+ int old_col_offset = c->u->u_col_offset;
+ int old_end_col_offset = c->u->u_end_col_offset;
+ for (Py_ssize_t i = asdl_seq_LEN(decos) - 1; i > -1; i--) {
+ SET_LOC(c, (expr_ty)asdl_seq_GET(decos, i));
+ ADDOP_I(c, PRECALL, 0);
+ ADDOP_I(c, CALL, 0);
+ }
+ c->u->u_lineno = old_lineno;
+ c->u->u_end_lineno = old_end_lineno;
+ c->u->u_col_offset = old_col_offset;
+ c->u->u_end_col_offset = old_end_col_offset;
+ return 1;
+}
+
+static int
+compiler_visit_kwonlydefaults(struct compiler *c, asdl_arg_seq *kwonlyargs,
+ asdl_expr_seq *kw_defaults)
+{
+ /* Push a dict of keyword-only default values.
+
+ Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed.
+ */
+ int i;
+ PyObject *keys = NULL;
+
+ for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) {
+ arg_ty arg = asdl_seq_GET(kwonlyargs, i);
+ expr_ty default_ = asdl_seq_GET(kw_defaults, i);
+ if (default_) {
+ PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg);
+ if (!mangled) {
+ goto error;
+ }
+ if (keys == NULL) {
+ keys = PyList_New(1);
+ if (keys == NULL) {
+ Py_DECREF(mangled);
+ return 0;
+ }
+ PyList_SET_ITEM(keys, 0, mangled);
+ }
+ else {
+ int res = PyList_Append(keys, mangled);
+ Py_DECREF(mangled);
+ if (res == -1) {
+ goto error;
+ }
+ }
+ if (!compiler_visit_expr(c, default_)) {
+ goto error;
+ }
+ }
+ }
+ if (keys != NULL) {
+ Py_ssize_t default_count = PyList_GET_SIZE(keys);
+ PyObject *keys_tuple = PyList_AsTuple(keys);
+ Py_DECREF(keys);
+ ADDOP_LOAD_CONST_NEW(c, keys_tuple);
+ ADDOP_I(c, BUILD_CONST_KEY_MAP, default_count);
+ assert(default_count > 0);
+ return 1;
+ }
+ else {
+ return -1;
+ }
+
+error:
+ Py_XDECREF(keys);
+ return 0;
+}
+
+static int
+compiler_visit_annexpr(struct compiler *c, expr_ty annotation)
+{
+ ADDOP_LOAD_CONST_NEW(c, _PyAST_ExprAsUnicode(annotation));
+ return 1;
+}
+
+static int
+compiler_visit_argannotation(struct compiler *c, identifier id,
+ expr_ty annotation, Py_ssize_t *annotations_len)
+{
+ if (!annotation) {
+ return 1;
+ }
+
+ PyObject *mangled = _Py_Mangle(c->u->u_private, id);
+ if (!mangled) {
+ return 0;
+ }
+ ADDOP_LOAD_CONST(c, mangled);
+ Py_DECREF(mangled);
+
+ if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) {
+ VISIT(c, annexpr, annotation);
+ }
+ else {
+ if (annotation->kind == Starred_kind) {
+ // *args: *Ts (where Ts is a TypeVarTuple).
+ // Do [annotation_value] = [*Ts].
+ // (Note that in theory we could end up here even for an argument
+ // other than *args, but in practice the grammar doesn't allow it.)
+ VISIT(c, expr, annotation->v.Starred.value);
+ ADDOP_I(c, UNPACK_SEQUENCE, (Py_ssize_t) 1);
+ }
+ else {
+ VISIT(c, expr, annotation);
+ }
+ }
+ *annotations_len += 2;
+ return 1;
+}
+
+static int
+compiler_visit_argannotations(struct compiler *c, asdl_arg_seq* args,
+ Py_ssize_t *annotations_len)
+{
+ int i;
+ for (i = 0; i < asdl_seq_LEN(args); i++) {
+ arg_ty arg = (arg_ty)asdl_seq_GET(args, i);
+ if (!compiler_visit_argannotation(
+ c,
+ arg->arg,
+ arg->annotation,
+ annotations_len))
+ return 0;
+ }
+ return 1;
+}
+
+static int
+compiler_visit_annotations(struct compiler *c, arguments_ty args,
+ expr_ty returns)
+{
+ /* Push arg annotation names and values.
+ The expressions are evaluated out-of-order wrt the source code.
+
+ Return 0 on error, -1 if no annotations pushed, 1 if a annotations is pushed.
+ */
+ Py_ssize_t annotations_len = 0;
+
+ if (!compiler_visit_argannotations(c, args->args, &annotations_len))
+ return 0;
+ if (!compiler_visit_argannotations(c, args->posonlyargs, &annotations_len))
+ return 0;
+ if (args->vararg && args->vararg->annotation &&
+ !compiler_visit_argannotation(c, args->vararg->arg,
+ args->vararg->annotation, &annotations_len))
+ return 0;
+ if (!compiler_visit_argannotations(c, args->kwonlyargs, &annotations_len))
+ return 0;
+ if (args->kwarg && args->kwarg->annotation &&
+ !compiler_visit_argannotation(c, args->kwarg->arg,
+ args->kwarg->annotation, &annotations_len))
+ return 0;
+
+ if (!compiler_visit_argannotation(c, &_Py_ID(return), returns,
+ &annotations_len)) {
+ return 0;
+ }
+
+ if (annotations_len) {
+ ADDOP_I(c, BUILD_TUPLE, annotations_len);
+ return 1;
+ }
+
+ return -1;
+}
+
+static int
+compiler_visit_defaults(struct compiler *c, arguments_ty args)
+{
+ VISIT_SEQ(c, expr, args->defaults);
+ ADDOP_I(c, BUILD_TUPLE, asdl_seq_LEN(args->defaults));
+ return 1;
+}
+
+static Py_ssize_t
+compiler_default_arguments(struct compiler *c, arguments_ty args)
+{
+ Py_ssize_t funcflags = 0;
+ if (args->defaults && asdl_seq_LEN(args->defaults) > 0) {
+ if (!compiler_visit_defaults(c, args))
+ return -1;
+ funcflags |= 0x01;
+ }
+ if (args->kwonlyargs) {
+ int res = compiler_visit_kwonlydefaults(c, args->kwonlyargs,
+ args->kw_defaults);
+ if (res == 0) {
+ return -1;
+ }
+ else if (res > 0) {
+ funcflags |= 0x02;
+ }
+ }
+ return funcflags;
+}
+
+static int
+forbidden_name(struct compiler *c, identifier name, expr_context_ty ctx)
+{
+
+ if (ctx == Store && _PyUnicode_EqualToASCIIString(name, "__debug__")) {
+ compiler_error(c, "cannot assign to __debug__");
+ return 1;
+ }
+ if (ctx == Del && _PyUnicode_EqualToASCIIString(name, "__debug__")) {
+ compiler_error(c, "cannot delete __debug__");
+ return 1;
+ }
+ return 0;
+}
+
+static int
+compiler_check_debug_one_arg(struct compiler *c, arg_ty arg)
+{
+ if (arg != NULL) {
+ if (forbidden_name(c, arg->arg, Store))
+ return 0;
+ }
+ return 1;
+}
+
+static int
+compiler_check_debug_args_seq(struct compiler *c, asdl_arg_seq *args)
+{
+ if (args != NULL) {
+ for (Py_ssize_t i = 0, n = asdl_seq_LEN(args); i < n; i++) {
+ if (!compiler_check_debug_one_arg(c, asdl_seq_GET(args, i)))
+ return 0;
+ }
+ }
+ return 1;
+}
+
+static int
+compiler_check_debug_args(struct compiler *c, arguments_ty args)
+{
+ if (!compiler_check_debug_args_seq(c, args->posonlyargs))
+ return 0;
+ if (!compiler_check_debug_args_seq(c, args->args))
+ return 0;
+ if (!compiler_check_debug_one_arg(c, args->vararg))
+ return 0;
+ if (!compiler_check_debug_args_seq(c, args->kwonlyargs))
+ return 0;
+ if (!compiler_check_debug_one_arg(c, args->kwarg))
+ return 0;
+ return 1;
+}
+
+static int
+compiler_function(struct compiler *c, stmt_ty s, int is_async)
+{
+ PyCodeObject *co;
+ PyObject *qualname, *docstring = NULL;
+ arguments_ty args;
+ expr_ty returns;
+ identifier name;
+ asdl_expr_seq* decos;
+ asdl_stmt_seq *body;
+ Py_ssize_t i, funcflags;
+ int annotations;
+ int scope_type;
+ int firstlineno;
+
+ if (is_async) {
+ assert(s->kind == AsyncFunctionDef_kind);
+
+ args = s->v.AsyncFunctionDef.args;
+ returns = s->v.AsyncFunctionDef.returns;
+ decos = s->v.AsyncFunctionDef.decorator_list;
+ name = s->v.AsyncFunctionDef.name;
+ body = s->v.AsyncFunctionDef.body;
+
+ scope_type = COMPILER_SCOPE_ASYNC_FUNCTION;
+ } else {
+ assert(s->kind == FunctionDef_kind);
+
+ args = s->v.FunctionDef.args;
+ returns = s->v.FunctionDef.returns;
+ decos = s->v.FunctionDef.decorator_list;
+ name = s->v.FunctionDef.name;
+ body = s->v.FunctionDef.body;
+
+ scope_type = COMPILER_SCOPE_FUNCTION;
+ }
+
+ if (!compiler_check_debug_args(c, args))
+ return 0;
+
+ if (!compiler_decorators(c, decos))
+ return 0;
+
+ firstlineno = s->lineno;
+ if (asdl_seq_LEN(decos)) {
+ firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
+ }
+
+ funcflags = compiler_default_arguments(c, args);
+ if (funcflags == -1) {
+ return 0;
+ }
+
+ annotations = compiler_visit_annotations(c, args, returns);
+ if (annotations == 0) {
+ return 0;
+ }
+ else if (annotations > 0) {
+ funcflags |= 0x04;
+ }
+
+ if (!compiler_enter_scope(c, name, scope_type, (void *)s, firstlineno)) {
+ return 0;
+ }
+
+ /* if not -OO mode, add docstring */
+ if (c->c_optimize < 2) {
+ docstring = _PyAST_GetDocString(body);
+ }
+ if (compiler_add_const(c, docstring ? docstring : Py_None) < 0) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+
+ c->u->u_argcount = asdl_seq_LEN(args->args);
+ c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
+ c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
+ for (i = docstring ? 1 : 0; i < asdl_seq_LEN(body); i++) {
+ VISIT_IN_SCOPE(c, stmt, (stmt_ty)asdl_seq_GET(body, i));
+ }
+ co = assemble(c, 1);
+ qualname = c->u->u_qualname;
+ Py_INCREF(qualname);
+ compiler_exit_scope(c);
+ if (co == NULL) {
+ Py_XDECREF(qualname);
+ Py_XDECREF(co);
+ return 0;
+ }
+
+ if (!compiler_make_closure(c, co, funcflags, qualname)) {
+ Py_DECREF(qualname);
+ Py_DECREF(co);
+ return 0;
+ }
+ Py_DECREF(qualname);
+ Py_DECREF(co);
+
+ if (!compiler_apply_decorators(c, decos))
+ return 0;
+ return compiler_nameop(c, name, Store);
+}
+
+static int
+compiler_class(struct compiler *c, stmt_ty s)
+{
+ PyCodeObject *co;
+ int i, firstlineno;
+ asdl_expr_seq *decos = s->v.ClassDef.decorator_list;
+
+ if (!compiler_decorators(c, decos))
+ return 0;
+
+ firstlineno = s->lineno;
+ if (asdl_seq_LEN(decos)) {
+ firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
+ }
+
+ /* ultimately generate code for:
+ <name> = __build_class__(<func>, <name>, *<bases>, **<keywords>)
+ where:
+ <func> is a zero arg function/closure created from the class body.
+ It mutates its locals to build the class namespace.
+ <name> is the class name
+ <bases> is the positional arguments and *varargs argument
+ <keywords> is the keyword arguments and **kwds argument
+ This borrows from compiler_call.
+ */
+
+ /* 1. compile the class body into a code object */
+ if (!compiler_enter_scope(c, s->v.ClassDef.name,
+ COMPILER_SCOPE_CLASS, (void *)s, firstlineno)) {
+ return 0;
+ }
+ /* this block represents what we do in the new scope */
+ {
+ /* use the class name for name mangling */
+ Py_INCREF(s->v.ClassDef.name);
+ Py_XSETREF(c->u->u_private, s->v.ClassDef.name);
+ /* load (global) __name__ ... */
+ if (!compiler_nameop(c, &_Py_ID(__name__), Load)) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+ /* ... and store it as __module__ */
+ if (!compiler_nameop(c, &_Py_ID(__module__), Store)) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+ assert(c->u->u_qualname);
+ ADDOP_LOAD_CONST(c, c->u->u_qualname);
+ if (!compiler_nameop(c, &_Py_ID(__qualname__), Store)) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+ /* compile the body proper */
+ if (!compiler_body(c, s->v.ClassDef.body)) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+ /* The following code is artificial */
+ UNSET_LOC(c);
+ /* Return __classcell__ if it is referenced, otherwise return None */
+ if (c->u->u_ste->ste_needs_class_closure) {
+ /* Store __classcell__ into class namespace & return it */
+ i = compiler_lookup_arg(c->u->u_cellvars, &_Py_ID(__class__));
+ if (i < 0) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+ assert(i == 0);
+
+ ADDOP_I(c, LOAD_CLOSURE, i);
+ ADDOP_I(c, COPY, 1);
+ if (!compiler_nameop(c, &_Py_ID(__classcell__), Store)) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+ }
+ else {
+ /* No methods referenced __class__, so just return None */
+ assert(PyDict_GET_SIZE(c->u->u_cellvars) == 0);
+ ADDOP_LOAD_CONST(c, Py_None);
+ }
+ ADDOP_IN_SCOPE(c, RETURN_VALUE);
+ /* create the code object */
+ co = assemble(c, 1);
+ }
+ /* leave the new scope */
+ compiler_exit_scope(c);
+ if (co == NULL)
+ return 0;
+
+ /* 2. load the 'build_class' function */
+ ADDOP(c, PUSH_NULL);
+ ADDOP(c, LOAD_BUILD_CLASS);
+
+ /* 3. load a function (or closure) made from the code object */
+ if (!compiler_make_closure(c, co, 0, NULL)) {
+ Py_DECREF(co);
+ return 0;
+ }
+ Py_DECREF(co);
+
+ /* 4. load class name */
+ ADDOP_LOAD_CONST(c, s->v.ClassDef.name);
+
+ /* 5. generate the rest of the code for the call */
+ if (!compiler_call_helper(c, 2, s->v.ClassDef.bases, s->v.ClassDef.keywords))
+ return 0;
+ /* 6. apply decorators */
+ if (!compiler_apply_decorators(c, decos))
+ return 0;
+
+ /* 7. store into <name> */
+ if (!compiler_nameop(c, s->v.ClassDef.name, Store))
+ return 0;
+ return 1;
+}
+
+/* Return 0 if the expression is a constant value except named singletons.
+ Return 1 otherwise. */
+static int
+check_is_arg(expr_ty e)
+{
+ if (e->kind != Constant_kind) {
+ return 1;
+ }
+ PyObject *value = e->v.Constant.value;
+ return (value == Py_None
+ || value == Py_False
+ || value == Py_True
+ || value == Py_Ellipsis);
+}
+
+/* Check operands of identity chacks ("is" and "is not").
+ Emit a warning if any operand is a constant except named singletons.
+ Return 0 on error.
+ */
+static int
+check_compare(struct compiler *c, expr_ty e)
+{
+ Py_ssize_t i, n;
+ int left = check_is_arg(e->v.Compare.left);
+ n = asdl_seq_LEN(e->v.Compare.ops);
+ for (i = 0; i < n; i++) {
+ cmpop_ty op = (cmpop_ty)asdl_seq_GET(e->v.Compare.ops, i);
+ int right = check_is_arg((expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
+ if (op == Is || op == IsNot) {
+ if (!right || !left) {
+ const char *msg = (op == Is)
+ ? "\"is\" with a literal. Did you mean \"==\"?"
+ : "\"is not\" with a literal. Did you mean \"!=\"?";
+ return compiler_warn(c, msg);
+ }
+ }
+ left = right;
+ }
+ return 1;
+}
+
+static int compiler_addcompare(struct compiler *c, cmpop_ty op)
+{
+ int cmp;
+ switch (op) {
+ case Eq:
+ cmp = Py_EQ;
+ break;
+ case NotEq:
+ cmp = Py_NE;
+ break;
+ case Lt:
+ cmp = Py_LT;
+ break;
+ case LtE:
+ cmp = Py_LE;
+ break;
+ case Gt:
+ cmp = Py_GT;
+ break;
+ case GtE:
+ cmp = Py_GE;
+ break;
+ case Is:
+ ADDOP_I(c, IS_OP, 0);
+ return 1;
+ case IsNot:
+ ADDOP_I(c, IS_OP, 1);
+ return 1;
+ case In:
+ ADDOP_I(c, CONTAINS_OP, 0);
+ return 1;
+ case NotIn:
+ ADDOP_I(c, CONTAINS_OP, 1);
+ return 1;
+ default:
+ Py_UNREACHABLE();
+ }
+ ADDOP_I(c, COMPARE_OP, cmp);
+ return 1;
+}
+
+
+
+static int
+compiler_jump_if(struct compiler *c, expr_ty e, basicblock *next, int cond)
+{
+ switch (e->kind) {
+ case UnaryOp_kind:
+ if (e->v.UnaryOp.op == Not)
+ return compiler_jump_if(c, e->v.UnaryOp.operand, next, !cond);
+ /* fallback to general implementation */
+ break;
+ case BoolOp_kind: {
+ asdl_expr_seq *s = e->v.BoolOp.values;
+ Py_ssize_t i, n = asdl_seq_LEN(s) - 1;
+ assert(n >= 0);
+ int cond2 = e->v.BoolOp.op == Or;
+ basicblock *next2 = next;
+ if (!cond2 != !cond) {
+ next2 = compiler_new_block(c);
+ if (next2 == NULL)
+ return 0;
+ }
+ for (i = 0; i < n; ++i) {
+ if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, i), next2, cond2))
+ return 0;
+ }
+ if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, n), next, cond))
+ return 0;
+ if (next2 != next)
+ compiler_use_next_block(c, next2);
+ return 1;
+ }
+ case IfExp_kind: {
+ basicblock *end, *next2;
+ end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ next2 = compiler_new_block(c);
+ if (next2 == NULL)
+ return 0;
+ if (!compiler_jump_if(c, e->v.IfExp.test, next2, 0))
+ return 0;
+ if (!compiler_jump_if(c, e->v.IfExp.body, next, cond))
+ return 0;
+ ADDOP_JUMP_NOLINE(c, JUMP, end);
+ compiler_use_next_block(c, next2);
+ if (!compiler_jump_if(c, e->v.IfExp.orelse, next, cond))
+ return 0;
+ compiler_use_next_block(c, end);
+ return 1;
+ }
+ case Compare_kind: {
+ SET_LOC(c, e);
+ Py_ssize_t i, n = asdl_seq_LEN(e->v.Compare.ops) - 1;
+ if (n > 0) {
+ if (!check_compare(c, e)) {
+ return 0;
+ }
+ basicblock *cleanup = compiler_new_block(c);
+ if (cleanup == NULL)
+ return 0;
+ VISIT(c, expr, e->v.Compare.left);
+ for (i = 0; i < n; i++) {
+ VISIT(c, expr,
+ (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
+ ADDOP_I(c, SWAP, 2);
+ ADDOP_I(c, COPY, 2);
+ ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i));
+ ADDOP_JUMP(c, POP_JUMP_IF_FALSE, cleanup);
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
+ ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n));
+ ADDOP_JUMP(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
+ basicblock *end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ ADDOP_JUMP_NOLINE(c, JUMP, end);
+ compiler_use_next_block(c, cleanup);
+ ADDOP(c, POP_TOP);
+ if (!cond) {
+ ADDOP_JUMP_NOLINE(c, JUMP, next);
+ }
+ compiler_use_next_block(c, end);
+ return 1;
+ }
+ /* fallback to general implementation */
+ break;
+ }
+ default:
+ /* fallback to general implementation */
+ break;
+ }
+
+ /* general implementation */
+ VISIT(c, expr, e);
+ ADDOP_JUMP(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
+ return 1;
+}
+
+static int
+compiler_ifexp(struct compiler *c, expr_ty e)
+{
+ basicblock *end, *next;
+
+ assert(e->kind == IfExp_kind);
+ end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ next = compiler_new_block(c);
+ if (next == NULL)
+ return 0;
+ if (!compiler_jump_if(c, e->v.IfExp.test, next, 0))
+ return 0;
+ VISIT(c, expr, e->v.IfExp.body);
+ ADDOP_JUMP_NOLINE(c, JUMP, end);
+ compiler_use_next_block(c, next);
+ VISIT(c, expr, e->v.IfExp.orelse);
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+static int
+compiler_lambda(struct compiler *c, expr_ty e)
+{
+ PyCodeObject *co;
+ PyObject *qualname;
+ Py_ssize_t funcflags;
+ arguments_ty args = e->v.Lambda.args;
+ assert(e->kind == Lambda_kind);
+
+ if (!compiler_check_debug_args(c, args))
+ return 0;
+
+ funcflags = compiler_default_arguments(c, args);
+ if (funcflags == -1) {
+ return 0;
+ }
+
+ _Py_DECLARE_STR(anon_lambda, "<lambda>");
+ if (!compiler_enter_scope(c, &_Py_STR(anon_lambda), COMPILER_SCOPE_LAMBDA,
+ (void *)e, e->lineno)) {
+ return 0;
+ }
+ /* Make None the first constant, so the lambda can't have a
+ docstring. */
+ if (compiler_add_const(c, Py_None) < 0)
+ return 0;
+
+ c->u->u_argcount = asdl_seq_LEN(args->args);
+ c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
+ c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
+ VISIT_IN_SCOPE(c, expr, e->v.Lambda.body);
+ if (c->u->u_ste->ste_generator) {
+ co = assemble(c, 0);
+ }
+ else {
+ ADDOP_IN_SCOPE(c, RETURN_VALUE);
+ co = assemble(c, 1);
+ }
+ qualname = c->u->u_qualname;
+ Py_INCREF(qualname);
+ compiler_exit_scope(c);
+ if (co == NULL) {
+ Py_DECREF(qualname);
+ return 0;
+ }
+
+ if (!compiler_make_closure(c, co, funcflags, qualname)) {
+ Py_DECREF(qualname);
+ Py_DECREF(co);
+ return 0;
+ }
+ Py_DECREF(qualname);
+ Py_DECREF(co);
+
+ return 1;
+}
+
+static int
+compiler_if(struct compiler *c, stmt_ty s)
+{
+ basicblock *end, *next;
+ assert(s->kind == If_kind);
+ end = compiler_new_block(c);
+ if (end == NULL) {
+ return 0;
+ }
+ if (asdl_seq_LEN(s->v.If.orelse)) {
+ next = compiler_new_block(c);
+ if (next == NULL) {
+ return 0;
+ }
+ }
+ else {
+ next = end;
+ }
+ if (!compiler_jump_if(c, s->v.If.test, next, 0)) {
+ return 0;
+ }
+ VISIT_SEQ(c, stmt, s->v.If.body);
+ if (asdl_seq_LEN(s->v.If.orelse)) {
+ ADDOP_JUMP_NOLINE(c, JUMP, end);
+ compiler_use_next_block(c, next);
+ VISIT_SEQ(c, stmt, s->v.If.orelse);
+ }
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+static int
+compiler_for(struct compiler *c, stmt_ty s)
+{
+ basicblock *start, *body, *cleanup, *end;
+
+ start = compiler_new_block(c);
+ body = compiler_new_block(c);
+ cleanup = compiler_new_block(c);
+ end = compiler_new_block(c);
+ if (start == NULL || body == NULL || end == NULL || cleanup == NULL) {
+ return 0;
+ }
+ if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) {
+ return 0;
+ }
+ VISIT(c, expr, s->v.For.iter);
+ ADDOP(c, GET_ITER);
+ compiler_use_next_block(c, start);
+ ADDOP_JUMP(c, FOR_ITER, cleanup);
+ compiler_use_next_block(c, body);
+ VISIT(c, expr, s->v.For.target);
+ VISIT_SEQ(c, stmt, s->v.For.body);
+ /* Mark jump as artificial */
+ UNSET_LOC(c);
+ ADDOP_JUMP(c, JUMP, start);
+ compiler_use_next_block(c, cleanup);
+
+ compiler_pop_fblock(c, FOR_LOOP, start);
+
+ VISIT_SEQ(c, stmt, s->v.For.orelse);
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+
+static int
+compiler_async_for(struct compiler *c, stmt_ty s)
+{
+ basicblock *start, *except, *end;
+ if (IS_TOP_LEVEL_AWAIT(c)){
+ c->u->u_ste->ste_coroutine = 1;
+ } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION) {
+ return compiler_error(c, "'async for' outside async function");
+ }
+
+ start = compiler_new_block(c);
+ except = compiler_new_block(c);
+ end = compiler_new_block(c);
+
+ if (start == NULL || except == NULL || end == NULL) {
+ return 0;
+ }
+ VISIT(c, expr, s->v.AsyncFor.iter);
+ ADDOP(c, GET_AITER);
+
+ compiler_use_next_block(c, start);
+ if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) {
+ return 0;
+ }
+ /* SETUP_FINALLY to guard the __anext__ call */
+ ADDOP_JUMP(c, SETUP_FINALLY, except);
+ ADDOP(c, GET_ANEXT);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADD_YIELD_FROM(c, 1);
+ ADDOP(c, POP_BLOCK); /* for SETUP_FINALLY */
+
+ /* Success block for __anext__ */
+ VISIT(c, expr, s->v.AsyncFor.target);
+ VISIT_SEQ(c, stmt, s->v.AsyncFor.body);
+ /* Mark jump as artificial */
+ UNSET_LOC(c);
+ ADDOP_JUMP(c, JUMP, start);
+
+ compiler_pop_fblock(c, FOR_LOOP, start);
+
+ /* Except block for __anext__ */
+ compiler_use_next_block(c, except);
+
+ /* Use same line number as the iterator,
+ * as the END_ASYNC_FOR succeeds the `for`, not the body. */
+ SET_LOC(c, s->v.AsyncFor.iter);
+ ADDOP(c, END_ASYNC_FOR);
+
+ /* `else` block */
+ VISIT_SEQ(c, stmt, s->v.For.orelse);
+
+ compiler_use_next_block(c, end);
+
+ return 1;
+}
+
+static int
+compiler_while(struct compiler *c, stmt_ty s)
+{
+ basicblock *loop, *body, *end, *anchor = NULL;
+ loop = compiler_new_block(c);
+ body = compiler_new_block(c);
+ anchor = compiler_new_block(c);
+ end = compiler_new_block(c);
+ if (loop == NULL || body == NULL || anchor == NULL || end == NULL) {
+ return 0;
+ }
+ compiler_use_next_block(c, loop);
+ if (!compiler_push_fblock(c, WHILE_LOOP, loop, end, NULL)) {
+ return 0;
+ }
+ if (!compiler_jump_if(c, s->v.While.test, anchor, 0)) {
+ return 0;
+ }
+
+ compiler_use_next_block(c, body);
+ VISIT_SEQ(c, stmt, s->v.While.body);
+ SET_LOC(c, s);
+ if (!compiler_jump_if(c, s->v.While.test, body, 1)) {
+ return 0;
+ }
+
+ compiler_pop_fblock(c, WHILE_LOOP, loop);
+
+ compiler_use_next_block(c, anchor);
+ if (s->v.While.orelse) {
+ VISIT_SEQ(c, stmt, s->v.While.orelse);
+ }
+ compiler_use_next_block(c, end);
+
+ return 1;
+}
+
+static int
+compiler_return(struct compiler *c, stmt_ty s)
+{
+ int preserve_tos = ((s->v.Return.value != NULL) &&
+ (s->v.Return.value->kind != Constant_kind));
+ if (c->u->u_ste->ste_type != FunctionBlock)
+ return compiler_error(c, "'return' outside function");
+ if (s->v.Return.value != NULL &&
+ c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator)
+ {
+ return compiler_error(
+ c, "'return' with value in async generator");
+ }
+ if (preserve_tos) {
+ VISIT(c, expr, s->v.Return.value);
+ } else {
+ /* Emit instruction with line number for return value */
+ if (s->v.Return.value != NULL) {
+ SET_LOC(c, s->v.Return.value);
+ ADDOP(c, NOP);
+ }
+ }
+ if (s->v.Return.value == NULL || s->v.Return.value->lineno != s->lineno) {
+ SET_LOC(c, s);
+ ADDOP(c, NOP);
+ }
+
+ if (!compiler_unwind_fblock_stack(c, preserve_tos, NULL))
+ return 0;
+ if (s->v.Return.value == NULL) {
+ ADDOP_LOAD_CONST(c, Py_None);
+ }
+ else if (!preserve_tos) {
+ ADDOP_LOAD_CONST(c, s->v.Return.value->v.Constant.value);
+ }
+ ADDOP(c, RETURN_VALUE);
+
+ return 1;
+}
+
+static int
+compiler_break(struct compiler *c)
+{
+ struct fblockinfo *loop = NULL;
+ int u_lineno = c->u->u_lineno;
+ int u_col_offset = c->u->u_col_offset;
+ int u_end_lineno = c->u->u_end_lineno;
+ int u_end_col_offset = c->u->u_end_col_offset;
+ /* Emit instruction with line number */
+ ADDOP(c, NOP);
+ if (!compiler_unwind_fblock_stack(c, 0, &loop)) {
+ return 0;
+ }
+ if (loop == NULL) {
+ c->u->u_lineno = u_lineno;
+ c->u->u_col_offset = u_col_offset;
+ c->u->u_end_lineno = u_end_lineno;
+ c->u->u_end_col_offset = u_end_col_offset;
+ return compiler_error(c, "'break' outside loop");
+ }
+ if (!compiler_unwind_fblock(c, loop, 0)) {
+ return 0;
+ }
+ ADDOP_JUMP(c, JUMP, loop->fb_exit);
+ return 1;
+}
+
+static int
+compiler_continue(struct compiler *c)
+{
+ struct fblockinfo *loop = NULL;
+ int u_lineno = c->u->u_lineno;
+ int u_col_offset = c->u->u_col_offset;
+ int u_end_lineno = c->u->u_end_lineno;
+ int u_end_col_offset = c->u->u_end_col_offset;
+ /* Emit instruction with line number */
+ ADDOP(c, NOP);
+ if (!compiler_unwind_fblock_stack(c, 0, &loop)) {
+ return 0;
+ }
+ if (loop == NULL) {
+ c->u->u_lineno = u_lineno;
+ c->u->u_col_offset = u_col_offset;
+ c->u->u_end_lineno = u_end_lineno;
+ c->u->u_end_col_offset = u_end_col_offset;
+ return compiler_error(c, "'continue' not properly in loop");
+ }
+ ADDOP_JUMP(c, JUMP, loop->fb_block);
+ return 1;
+}
+
+
+/* Code generated for "try: <body> finally: <finalbody>" is as follows:
+
+ SETUP_FINALLY L
+ <code for body>
+ POP_BLOCK
+ <code for finalbody>
+ JUMP E
+ L:
+ <code for finalbody>
+ E:
+
+ The special instructions use the block stack. Each block
+ stack entry contains the instruction that created it (here
+ SETUP_FINALLY), the level of the value stack at the time the
+ block stack entry was created, and a label (here L).
+
+ SETUP_FINALLY:
+ Pushes the current value stack level and the label
+ onto the block stack.
+ POP_BLOCK:
+ Pops en entry from the block stack.
+
+ The block stack is unwound when an exception is raised:
+ when a SETUP_FINALLY entry is found, the raised and the caught
+ exceptions are pushed onto the value stack (and the exception
+ condition is cleared), and the interpreter jumps to the label
+ gotten from the block stack.
+*/
+
+static int
+compiler_try_finally(struct compiler *c, stmt_ty s)
+{
+ basicblock *body, *end, *exit, *cleanup;
+
+ body = compiler_new_block(c);
+ end = compiler_new_block(c);
+ exit = compiler_new_block(c);
+ cleanup = compiler_new_block(c);
+ if (body == NULL || end == NULL || exit == NULL || cleanup == NULL) {
+ return 0;
+ }
+ /* `try` block */
+ ADDOP_JUMP(c, SETUP_FINALLY, end);
+ compiler_use_next_block(c, body);
+ if (!compiler_push_fblock(c, FINALLY_TRY, body, end, s->v.Try.finalbody))
+ return 0;
+ if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) {
+ if (!compiler_try_except(c, s))
+ return 0;
+ }
+ else {
+ VISIT_SEQ(c, stmt, s->v.Try.body);
+ }
+ ADDOP_NOLINE(c, POP_BLOCK);
+ compiler_pop_fblock(c, FINALLY_TRY, body);
+ VISIT_SEQ(c, stmt, s->v.Try.finalbody);
+ ADDOP_JUMP_NOLINE(c, JUMP, exit);
+ /* `finally` block */
+ compiler_use_next_block(c, end);
+
+ UNSET_LOC(c);
+ ADDOP_JUMP(c, SETUP_CLEANUP, cleanup);
+ ADDOP(c, PUSH_EXC_INFO);
+ if (!compiler_push_fblock(c, FINALLY_END, end, NULL, NULL))
+ return 0;
+ VISIT_SEQ(c, stmt, s->v.Try.finalbody);
+ compiler_pop_fblock(c, FINALLY_END, end);
+ ADDOP_I(c, RERAISE, 0);
+ compiler_use_next_block(c, cleanup);
+ POP_EXCEPT_AND_RERAISE(c);
+ compiler_use_next_block(c, exit);
+ return 1;
+}
+
+static int
+compiler_try_star_finally(struct compiler *c, stmt_ty s)
+{
+ basicblock *body = compiler_new_block(c);
+ if (body == NULL) {
+ return 0;
+ }
+ basicblock *end = compiler_new_block(c);
+ if (!end) {
+ return 0;
+ }
+ basicblock *exit = compiler_new_block(c);
+ if (!exit) {
+ return 0;
+ }
+ basicblock *cleanup = compiler_new_block(c);
+ if (!cleanup) {
+ return 0;
+ }
+ /* `try` block */
+ ADDOP_JUMP(c, SETUP_FINALLY, end);
+ compiler_use_next_block(c, body);
+ if (!compiler_push_fblock(c, FINALLY_TRY, body, end, s->v.TryStar.finalbody)) {
+ return 0;
+ }
+ if (s->v.TryStar.handlers && asdl_seq_LEN(s->v.TryStar.handlers)) {
+ if (!compiler_try_star_except(c, s)) {
+ return 0;
+ }
+ }
+ else {
+ VISIT_SEQ(c, stmt, s->v.TryStar.body);
+ }
+ ADDOP_NOLINE(c, POP_BLOCK);
+ compiler_pop_fblock(c, FINALLY_TRY, body);
+ VISIT_SEQ(c, stmt, s->v.TryStar.finalbody);
+ ADDOP_JUMP_NOLINE(c, JUMP, exit);
+ /* `finally` block */
+ compiler_use_next_block(c, end);
+
+ UNSET_LOC(c);
+ ADDOP_JUMP(c, SETUP_CLEANUP, cleanup);
+ ADDOP(c, PUSH_EXC_INFO);
+ if (!compiler_push_fblock(c, FINALLY_END, end, NULL, NULL)) {
+ return 0;
+ }
+ VISIT_SEQ(c, stmt, s->v.TryStar.finalbody);
+ compiler_pop_fblock(c, FINALLY_END, end);
+ ADDOP_I(c, RERAISE, 0);
+ compiler_use_next_block(c, cleanup);
+ POP_EXCEPT_AND_RERAISE(c);
+ compiler_use_next_block(c, exit);
+ return 1;
+}
+
+
+/*
+ Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...":
+ (The contents of the value stack is shown in [], with the top
+ at the right; 'tb' is trace-back info, 'val' the exception's
+ associated value, and 'exc' the exception.)
+
+ Value stack Label Instruction Argument
+ [] SETUP_FINALLY L1
+ [] <code for S>
+ [] POP_BLOCK
+ [] JUMP L0
+
+ [exc] L1: <evaluate E1> )
+ [exc, E1] CHECK_EXC_MATCH )
+ [exc, bool] POP_JUMP_IF_FALSE L2 ) only if E1
+ [exc] <assign to V1> (or POP if no V1)
+ [] <code for S1>
+ JUMP L0
+
+ [exc] L2: <evaluate E2>
+ .............................etc.......................
+
+ [exc] Ln+1: RERAISE # re-raise exception
+
+ [] L0: <next statement>
+
+ Of course, parts are not generated if Vi or Ei is not present.
+*/
+static int
+compiler_try_except(struct compiler *c, stmt_ty s)
+{
+ basicblock *body, *except, *end, *cleanup;
+ Py_ssize_t i, n;
+
+ body = compiler_new_block(c);
+ except = compiler_new_block(c);
+ end = compiler_new_block(c);
+ cleanup = compiler_new_block(c);
+ if (body == NULL || except == NULL || end == NULL || cleanup == NULL)
+ return 0;
+ ADDOP_JUMP(c, SETUP_FINALLY, except);
+ compiler_use_next_block(c, body);
+ if (!compiler_push_fblock(c, TRY_EXCEPT, body, NULL, NULL))
+ return 0;
+ VISIT_SEQ(c, stmt, s->v.Try.body);
+ compiler_pop_fblock(c, TRY_EXCEPT, body);
+ ADDOP_NOLINE(c, POP_BLOCK);
+ if (s->v.Try.orelse && asdl_seq_LEN(s->v.Try.orelse)) {
+ VISIT_SEQ(c, stmt, s->v.Try.orelse);
+ }
+ ADDOP_JUMP_NOLINE(c, JUMP, end);
+ n = asdl_seq_LEN(s->v.Try.handlers);
+ compiler_use_next_block(c, except);
+
+ UNSET_LOC(c);
+ ADDOP_JUMP(c, SETUP_CLEANUP, cleanup);
+ ADDOP(c, PUSH_EXC_INFO);
+ /* Runtime will push a block here, so we need to account for that */
+ if (!compiler_push_fblock(c, EXCEPTION_HANDLER, NULL, NULL, NULL))
+ return 0;
+ for (i = 0; i < n; i++) {
+ excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
+ s->v.Try.handlers, i);
+ SET_LOC(c, handler);
+ if (!handler->v.ExceptHandler.type && i < n-1) {
+ return compiler_error(c, "default 'except:' must be last");
+ }
+ except = compiler_new_block(c);
+ if (except == NULL)
+ return 0;
+ if (handler->v.ExceptHandler.type) {
+ VISIT(c, expr, handler->v.ExceptHandler.type);
+ ADDOP(c, CHECK_EXC_MATCH);
+ ADDOP_JUMP(c, POP_JUMP_IF_FALSE, except);
+ }
+ if (handler->v.ExceptHandler.name) {
+ basicblock *cleanup_end, *cleanup_body;
+
+ cleanup_end = compiler_new_block(c);
+ cleanup_body = compiler_new_block(c);
+ if (cleanup_end == NULL || cleanup_body == NULL) {
+ return 0;
+ }
+
+ compiler_nameop(c, handler->v.ExceptHandler.name, Store);
+
+ /*
+ try:
+ # body
+ except type as name:
+ try:
+ # body
+ finally:
+ name = None # in case body contains "del name"
+ del name
+ */
+
+ /* second try: */
+ ADDOP_JUMP(c, SETUP_CLEANUP, cleanup_end);
+ compiler_use_next_block(c, cleanup_body);
+ if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, handler->v.ExceptHandler.name))
+ return 0;
+
+ /* second # body */
+ VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
+ compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
+ /* name = None; del name; # Mark as artificial */
+ UNSET_LOC(c);
+ ADDOP(c, POP_BLOCK);
+ ADDOP(c, POP_BLOCK);
+ ADDOP(c, POP_EXCEPT);
+ ADDOP_LOAD_CONST(c, Py_None);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Store);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Del);
+ ADDOP_JUMP(c, JUMP, end);
+
+ /* except: */
+ compiler_use_next_block(c, cleanup_end);
+
+ /* name = None; del name; # Mark as artificial */
+ UNSET_LOC(c);
+
+ ADDOP_LOAD_CONST(c, Py_None);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Store);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Del);
+
+ ADDOP_I(c, RERAISE, 1);
+ }
+ else {
+ basicblock *cleanup_body;
+
+ cleanup_body = compiler_new_block(c);
+ if (!cleanup_body)
+ return 0;
+
+ ADDOP(c, POP_TOP); /* exc_value */
+ compiler_use_next_block(c, cleanup_body);
+ if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, NULL))
+ return 0;
+ VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
+ compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
+ UNSET_LOC(c);
+ ADDOP(c, POP_BLOCK);
+ ADDOP(c, POP_EXCEPT);
+ ADDOP_JUMP(c, JUMP, end);
+ }
+ compiler_use_next_block(c, except);
+ }
+ /* Mark as artificial */
+ UNSET_LOC(c);
+ compiler_pop_fblock(c, EXCEPTION_HANDLER, NULL);
+ ADDOP_I(c, RERAISE, 0);
+ compiler_use_next_block(c, cleanup);
+ POP_EXCEPT_AND_RERAISE(c);
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+/*
+ Code generated for "try: S except* E1 as V1: S1 except* E2 as V2: S2 ...":
+ (The contents of the value stack is shown in [], with the top
+ at the right; 'tb' is trace-back info, 'val' the exception instance,
+ and 'typ' the exception's type.)
+
+ Value stack Label Instruction Argument
+ [] SETUP_FINALLY L1
+ [] <code for S>
+ [] POP_BLOCK
+ [] JUMP L0
+
+ [exc] L1: COPY 1 ) save copy of the original exception
+ [orig, exc] BUILD_LIST ) list for raised/reraised excs ("result")
+ [orig, exc, res] SWAP 2
+
+ [orig, res, exc] <evaluate E1>
+ [orig, res, exc, E1] CHECK_EG_MATCH
+ [orig, res, rest/exc, match?] COPY 1
+ [orig, res, rest/exc, match?, match?] POP_JUMP_IF_NONE C1
+
+ [orig, res, rest, match] <assign to V1> (or POP if no V1)
+
+ [orig, res, rest] SETUP_FINALLY R1
+ [orig, res, rest] <code for S1>
+ [orig, res, rest] JUMP L2
+
+ [orig, res, rest, i, v] R1: LIST_APPEND 3 ) exc raised in except* body - add to res
+ [orig, res, rest, i] POP
+ [orig, res, rest] JUMP LE2
+
+ [orig, res, rest] L2: NOP ) for lineno
+ [orig, res, rest] JUMP LE2
+
+ [orig, res, rest/exc, None] C1: POP
+
+ [orig, res, rest] LE2: <evaluate E2>
+ .............................etc.......................
+
+ [orig, res, rest] Ln+1: LIST_APPEND 1 ) add unhandled exc to res (could be None)
+
+ [orig, res] PREP_RERAISE_STAR
+ [exc] COPY 1
+ [exc, exc] POP_JUMP_IF_NOT_NONE RER
+ [exc] POP_TOP
+ [] JUMP L0
+
+ [exc] RER: SWAP 2
+ [exc, prev_exc_info] POP_EXCEPT
+ [exc] RERAISE 0
+
+ [] L0: <next statement>
+*/
+static int
+compiler_try_star_except(struct compiler *c, stmt_ty s)
+{
+ basicblock *body = compiler_new_block(c);
+ if (body == NULL) {
+ return 0;
+ }
+ basicblock *except = compiler_new_block(c);
+ if (except == NULL) {
+ return 0;
+ }
+ basicblock *orelse = compiler_new_block(c);
+ if (orelse == NULL) {
+ return 0;
+ }
+ basicblock *end = compiler_new_block(c);
+ if (end == NULL) {
+ return 0;
+ }
+ basicblock *cleanup = compiler_new_block(c);
+ if (cleanup == NULL) {
+ return 0;
+ }
+ basicblock *reraise_star = compiler_new_block(c);
+ if (reraise_star == NULL) {
+ return 0;
+ }
+
+ ADDOP_JUMP(c, SETUP_FINALLY, except);
+ compiler_use_next_block(c, body);
+ if (!compiler_push_fblock(c, TRY_EXCEPT, body, NULL, NULL)) {
+ return 0;
+ }
+ VISIT_SEQ(c, stmt, s->v.TryStar.body);
+ compiler_pop_fblock(c, TRY_EXCEPT, body);
+ ADDOP_NOLINE(c, POP_BLOCK);
+ ADDOP_JUMP_NOLINE(c, JUMP, orelse);
+ Py_ssize_t n = asdl_seq_LEN(s->v.TryStar.handlers);
+ compiler_use_next_block(c, except);
+
+ UNSET_LOC(c);
+ ADDOP_JUMP(c, SETUP_CLEANUP, cleanup);
+ ADDOP(c, PUSH_EXC_INFO);
+ /* Runtime will push a block here, so we need to account for that */
+ if (!compiler_push_fblock(c, EXCEPTION_GROUP_HANDLER,
+ NULL, NULL, "except handler")) {
+ return 0;
+ }
+ for (Py_ssize_t i = 0; i < n; i++) {
+ excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
+ s->v.TryStar.handlers, i);
+ SET_LOC(c, handler);
+ except = compiler_new_block(c);
+ if (except == NULL) {
+ return 0;
+ }
+ basicblock *except_with_error = compiler_new_block(c);
+ if (except_with_error == NULL) {
+ return 0;
+ }
+ basicblock *no_match = compiler_new_block(c);
+ if (no_match == NULL) {
+ return 0;
+ }
+ if (i == 0) {
+ /* Push the original EG into the stack */
+ /*
+ [exc] COPY 1
+ [orig, exc]
+ */
+ ADDOP_I(c, COPY, 1);
+
+ /* create empty list for exceptions raised/reraise in the except* blocks */
+ /*
+ [orig, exc] BUILD_LIST
+ [orig, exc, []] SWAP 2
+ [orig, [], exc]
+ */
+ ADDOP_I(c, BUILD_LIST, 0);
+ ADDOP_I(c, SWAP, 2);
+ }
+ if (handler->v.ExceptHandler.type) {
+ VISIT(c, expr, handler->v.ExceptHandler.type);
+ ADDOP(c, CHECK_EG_MATCH);
+ ADDOP_I(c, COPY, 1);
+ ADDOP_JUMP(c, POP_JUMP_IF_NONE, no_match);
+ }
+
+ basicblock *cleanup_end = compiler_new_block(c);
+ if (cleanup_end == NULL) {
+ return 0;
+ }
+ basicblock *cleanup_body = compiler_new_block(c);
+ if (cleanup_body == NULL) {
+ return 0;
+ }
+
+ if (handler->v.ExceptHandler.name) {
+ compiler_nameop(c, handler->v.ExceptHandler.name, Store);
+ }
+ else {
+ ADDOP(c, POP_TOP); // match
+ }
+
+ /*
+ try:
+ # body
+ except type as name:
+ try:
+ # body
+ finally:
+ name = None # in case body contains "del name"
+ del name
+ */
+ /* second try: */
+ ADDOP_JUMP(c, SETUP_CLEANUP, cleanup_end);
+ compiler_use_next_block(c, cleanup_body);
+ if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, handler->v.ExceptHandler.name))
+ return 0;
+
+ /* second # body */
+ VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
+ compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
+ /* name = None; del name; # Mark as artificial */
+ UNSET_LOC(c);
+ ADDOP(c, POP_BLOCK);
+ if (handler->v.ExceptHandler.name) {
+ ADDOP_LOAD_CONST(c, Py_None);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Store);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Del);
+ }
+ ADDOP_JUMP(c, JUMP, except);
+
+ /* except: */
+ compiler_use_next_block(c, cleanup_end);
+
+ /* name = None; del name; # Mark as artificial */
+ UNSET_LOC(c);
+
+ if (handler->v.ExceptHandler.name) {
+ ADDOP_LOAD_CONST(c, Py_None);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Store);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Del);
+ }
+
+ /* add exception raised to the res list */
+ ADDOP_I(c, LIST_APPEND, 3); // exc
+ ADDOP(c, POP_TOP); // lasti
+
+ ADDOP_JUMP(c, JUMP, except_with_error);
+ compiler_use_next_block(c, except);
+ ADDOP(c, NOP); // to hold a propagated location info
+ ADDOP_JUMP(c, JUMP, except_with_error);
+ compiler_use_next_block(c, no_match);
+ ADDOP(c, POP_TOP); // match (None)
+
+ compiler_use_next_block(c, except_with_error);
+
+ if (i == n - 1) {
+ /* Add exc to the list (if not None it's the unhandled part of the EG) */
+ ADDOP_I(c, LIST_APPEND, 1);
+ ADDOP_JUMP(c, JUMP, reraise_star);
+ }
+ }
+ /* Mark as artificial */
+ UNSET_LOC(c);
+ compiler_pop_fblock(c, EXCEPTION_GROUP_HANDLER, NULL);
+ basicblock *reraise = compiler_new_block(c);
+ if (!reraise) {
+ return 0;
+ }
+
+ compiler_use_next_block(c, reraise_star);
+ ADDOP(c, PREP_RERAISE_STAR);
+ ADDOP_I(c, COPY, 1);
+ ADDOP_JUMP(c, POP_JUMP_IF_NOT_NONE, reraise);
+
+ /* Nothing to reraise */
+ ADDOP(c, POP_TOP);
+ ADDOP(c, POP_BLOCK);
+ ADDOP(c, POP_EXCEPT);
+ ADDOP_JUMP(c, JUMP, end);
+ compiler_use_next_block(c, reraise);
+ ADDOP(c, POP_BLOCK);
+ ADDOP_I(c, SWAP, 2);
+ ADDOP(c, POP_EXCEPT);
+ ADDOP_I(c, RERAISE, 0);
+ compiler_use_next_block(c, cleanup);
+ POP_EXCEPT_AND_RERAISE(c);
+ compiler_use_next_block(c, orelse);
+ VISIT_SEQ(c, stmt, s->v.TryStar.orelse);
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+static int
+compiler_try(struct compiler *c, stmt_ty s) {
+ if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody))
+ return compiler_try_finally(c, s);
+ else
+ return compiler_try_except(c, s);
+}
+
+static int
+compiler_try_star(struct compiler *c, stmt_ty s)
+{
+ if (s->v.TryStar.finalbody && asdl_seq_LEN(s->v.TryStar.finalbody)) {
+ return compiler_try_star_finally(c, s);
+ }
+ else {
+ return compiler_try_star_except(c, s);
+ }
+}
+
+static int
+compiler_import_as(struct compiler *c, identifier name, identifier asname)
+{
+ /* The IMPORT_NAME opcode was already generated. This function
+ merely needs to bind the result to a name.
+
+ If there is a dot in name, we need to split it and emit a
+ IMPORT_FROM for each name.
+ */
+ Py_ssize_t len = PyUnicode_GET_LENGTH(name);
+ Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0, len, 1);
+ if (dot == -2)
+ return 0;
+ if (dot != -1) {
+ /* Consume the base module name to get the first attribute */
+ while (1) {
+ Py_ssize_t pos = dot + 1;
+ PyObject *attr;
+ dot = PyUnicode_FindChar(name, '.', pos, len, 1);
+ if (dot == -2)
+ return 0;
+ attr = PyUnicode_Substring(name, pos, (dot != -1) ? dot : len);
+ if (!attr)
+ return 0;
+ ADDOP_N(c, IMPORT_FROM, attr, names);
+ if (dot == -1) {
+ break;
+ }
+ ADDOP_I(c, SWAP, 2);
+ ADDOP(c, POP_TOP);
+ }
+ if (!compiler_nameop(c, asname, Store)) {
+ return 0;
+ }
+ ADDOP(c, POP_TOP);
+ return 1;
+ }
+ return compiler_nameop(c, asname, Store);
+}
+
+static int
+compiler_import(struct compiler *c, stmt_ty s)
+{
+ /* The Import node stores a module name like a.b.c as a single
+ string. This is convenient for all cases except
+ import a.b.c as d
+ where we need to parse that string to extract the individual
+ module names.
+ XXX Perhaps change the representation to make this case simpler?
+ */
+ Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names);
+
+ PyObject *zero = _PyLong_GetZero(); // borrowed reference
+ for (i = 0; i < n; i++) {
+ alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i);
+ int r;
+
+ ADDOP_LOAD_CONST(c, zero);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP_NAME(c, IMPORT_NAME, alias->name, names);
+
+ if (alias->asname) {
+ r = compiler_import_as(c, alias->name, alias->asname);
+ if (!r)
+ return r;
+ }
+ else {
+ identifier tmp = alias->name;
+ Py_ssize_t dot = PyUnicode_FindChar(
+ alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1);
+ if (dot != -1) {
+ tmp = PyUnicode_Substring(alias->name, 0, dot);
+ if (tmp == NULL)
+ return 0;
+ }
+ r = compiler_nameop(c, tmp, Store);
+ if (dot != -1) {
+ Py_DECREF(tmp);
+ }
+ if (!r)
+ return r;
+ }
+ }
+ return 1;
+}
+
+static int
+compiler_from_import(struct compiler *c, stmt_ty s)
+{
+ Py_ssize_t i, n = asdl_seq_LEN(s->v.ImportFrom.names);
+ PyObject *names;
+
+ ADDOP_LOAD_CONST_NEW(c, PyLong_FromLong(s->v.ImportFrom.level));
+
+ names = PyTuple_New(n);
+ if (!names)
+ return 0;
+
+ /* build up the names */
+ for (i = 0; i < n; i++) {
+ alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
+ Py_INCREF(alias->name);
+ PyTuple_SET_ITEM(names, i, alias->name);
+ }
+
+ if (s->lineno > c->c_future->ff_lineno && s->v.ImportFrom.module &&
+ _PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__")) {
+ Py_DECREF(names);
+ return compiler_error(c, "from __future__ imports must occur "
+ "at the beginning of the file");
+ }
+ ADDOP_LOAD_CONST_NEW(c, names);
+
+ if (s->v.ImportFrom.module) {
+ ADDOP_NAME(c, IMPORT_NAME, s->v.ImportFrom.module, names);
+ }
+ else {
+ _Py_DECLARE_STR(empty, "");
+ ADDOP_NAME(c, IMPORT_NAME, &_Py_STR(empty), names);
+ }
+ for (i = 0; i < n; i++) {
+ alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
+ identifier store_name;
+
+ if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') {
+ assert(n == 1);
+ ADDOP(c, IMPORT_STAR);
+ return 1;
+ }
+
+ ADDOP_NAME(c, IMPORT_FROM, alias->name, names);
+ store_name = alias->name;
+ if (alias->asname)
+ store_name = alias->asname;
+
+ if (!compiler_nameop(c, store_name, Store)) {
+ return 0;
+ }
+ }
+ /* remove imported module */
+ ADDOP(c, POP_TOP);
+ return 1;
+}
+
+static int
+compiler_assert(struct compiler *c, stmt_ty s)
+{
+ basicblock *end;
+
+ /* Always emit a warning if the test is a non-zero length tuple */
+ if ((s->v.Assert.test->kind == Tuple_kind &&
+ asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) ||
+ (s->v.Assert.test->kind == Constant_kind &&
+ PyTuple_Check(s->v.Assert.test->v.Constant.value) &&
+ PyTuple_Size(s->v.Assert.test->v.Constant.value) > 0))
+ {
+ if (!compiler_warn(c, "assertion is always true, "
+ "perhaps remove parentheses?"))
+ {
+ return 0;
+ }
+ }
+ if (c->c_optimize)
+ return 1;
+ end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ if (!compiler_jump_if(c, s->v.Assert.test, end, 1))
+ return 0;
+ ADDOP(c, LOAD_ASSERTION_ERROR);
+ if (s->v.Assert.msg) {
+ VISIT(c, expr, s->v.Assert.msg);
+ ADDOP_I(c, PRECALL, 0);
+ ADDOP_I(c, CALL, 0);
+ }
+ ADDOP_I(c, RAISE_VARARGS, 1);
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+static int
+compiler_visit_stmt_expr(struct compiler *c, expr_ty value)
+{
+ if (c->c_interactive && c->c_nestlevel <= 1) {
+ VISIT(c, expr, value);
+ ADDOP(c, PRINT_EXPR);
+ return 1;
+ }
+
+ if (value->kind == Constant_kind) {
+ /* ignore constant statement */
+ ADDOP(c, NOP);
+ return 1;
+ }
+
+ VISIT(c, expr, value);
+ /* Mark POP_TOP as artificial */
+ UNSET_LOC(c);
+ ADDOP(c, POP_TOP);
+ return 1;
+}
+
+static int
+compiler_visit_stmt(struct compiler *c, stmt_ty s)
+{
+ Py_ssize_t i, n;
+
+ /* Always assign a lineno to the next instruction for a stmt. */
+ SET_LOC(c, s);
+
+ switch (s->kind) {
+ case FunctionDef_kind:
+ return compiler_function(c, s, 0);
+ case ClassDef_kind:
+ return compiler_class(c, s);
+ case Return_kind:
+ return compiler_return(c, s);
+ case Delete_kind:
+ VISIT_SEQ(c, expr, s->v.Delete.targets)
+ break;
+ case Assign_kind:
+ n = asdl_seq_LEN(s->v.Assign.targets);
+ VISIT(c, expr, s->v.Assign.value);
+ for (i = 0; i < n; i++) {
+ if (i < n - 1) {
+ ADDOP_I(c, COPY, 1);
+ }
+ VISIT(c, expr,
+ (expr_ty)asdl_seq_GET(s->v.Assign.targets, i));
+ }
+ break;
+ case AugAssign_kind:
+ return compiler_augassign(c, s);
+ case AnnAssign_kind:
+ return compiler_annassign(c, s);
+ case For_kind:
+ return compiler_for(c, s);
+ case While_kind:
+ return compiler_while(c, s);
+ case If_kind:
+ return compiler_if(c, s);
+ case Match_kind:
+ return compiler_match(c, s);
+ case Raise_kind:
+ n = 0;
+ if (s->v.Raise.exc) {
+ VISIT(c, expr, s->v.Raise.exc);
+ n++;
+ if (s->v.Raise.cause) {
+ VISIT(c, expr, s->v.Raise.cause);
+ n++;
+ }
+ }
+ ADDOP_I(c, RAISE_VARARGS, (int)n);
+ break;
+ case Try_kind:
+ return compiler_try(c, s);
+ case TryStar_kind:
+ return compiler_try_star(c, s);
+ case Assert_kind:
+ return compiler_assert(c, s);
+ case Import_kind:
+ return compiler_import(c, s);
+ case ImportFrom_kind:
+ return compiler_from_import(c, s);
+ case Global_kind:
+ case Nonlocal_kind:
+ break;
+ case Expr_kind:
+ return compiler_visit_stmt_expr(c, s->v.Expr.value);
+ case Pass_kind:
+ ADDOP(c, NOP);
+ break;
+ case Break_kind:
+ return compiler_break(c);
+ case Continue_kind:
+ return compiler_continue(c);
+ case With_kind:
+ return compiler_with(c, s, 0);
+ case AsyncFunctionDef_kind:
+ return compiler_function(c, s, 1);
+ case AsyncWith_kind:
+ return compiler_async_with(c, s, 0);
+ case AsyncFor_kind:
+ return compiler_async_for(c, s);
+ }
+
+ return 1;
+}
+
+static int
+unaryop(unaryop_ty op)
+{
+ switch (op) {
+ case Invert:
+ return UNARY_INVERT;
+ case Not:
+ return UNARY_NOT;
+ case UAdd:
+ return UNARY_POSITIVE;
+ case USub:
+ return UNARY_NEGATIVE;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "unary op %d should not be possible", op);
+ return 0;
+ }
+}
+
+static int
+addop_binary(struct compiler *c, operator_ty binop, bool inplace)
+{
+ int oparg;
+ switch (binop) {
+ case Add:
+ oparg = inplace ? NB_INPLACE_ADD : NB_ADD;
+ break;
+ case Sub:
+ oparg = inplace ? NB_INPLACE_SUBTRACT : NB_SUBTRACT;
+ break;
+ case Mult:
+ oparg = inplace ? NB_INPLACE_MULTIPLY : NB_MULTIPLY;
+ break;
+ case MatMult:
+ oparg = inplace ? NB_INPLACE_MATRIX_MULTIPLY : NB_MATRIX_MULTIPLY;
+ break;
+ case Div:
+ oparg = inplace ? NB_INPLACE_TRUE_DIVIDE : NB_TRUE_DIVIDE;
+ break;
+ case Mod:
+ oparg = inplace ? NB_INPLACE_REMAINDER : NB_REMAINDER;
+ break;
+ case Pow:
+ oparg = inplace ? NB_INPLACE_POWER : NB_POWER;
+ break;
+ case LShift:
+ oparg = inplace ? NB_INPLACE_LSHIFT : NB_LSHIFT;
+ break;
+ case RShift:
+ oparg = inplace ? NB_INPLACE_RSHIFT : NB_RSHIFT;
+ break;
+ case BitOr:
+ oparg = inplace ? NB_INPLACE_OR : NB_OR;
+ break;
+ case BitXor:
+ oparg = inplace ? NB_INPLACE_XOR : NB_XOR;
+ break;
+ case BitAnd:
+ oparg = inplace ? NB_INPLACE_AND : NB_AND;
+ break;
+ case FloorDiv:
+ oparg = inplace ? NB_INPLACE_FLOOR_DIVIDE : NB_FLOOR_DIVIDE;
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError, "%s op %d should not be possible",
+ inplace ? "inplace" : "binary", binop);
+ return 0;
+ }
+ ADDOP_I(c, BINARY_OP, oparg);
+ return 1;
+}
+
+
+static int
+addop_yield(struct compiler *c) {
+ if (c->u->u_ste->ste_generator && c->u->u_ste->ste_coroutine) {
+ ADDOP(c, ASYNC_GEN_WRAP);
+ }
+ ADDOP(c, YIELD_VALUE);
+ ADDOP_I(c, RESUME, 1);
+ return 1;
+}
+
+static int
+compiler_nameop(struct compiler *c, identifier name, expr_context_ty ctx)
+{
+ int op, scope;
+ Py_ssize_t arg;
+ enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype;
+
+ PyObject *dict = c->u->u_names;
+ PyObject *mangled;
+
+ assert(!_PyUnicode_EqualToASCIIString(name, "None") &&
+ !_PyUnicode_EqualToASCIIString(name, "True") &&
+ !_PyUnicode_EqualToASCIIString(name, "False"));
+
+ if (forbidden_name(c, name, ctx))
+ return 0;
+
+ mangled = _Py_Mangle(c->u->u_private, name);
+ if (!mangled)
+ return 0;
+
+ op = 0;
+ optype = OP_NAME;
+ scope = _PyST_GetScope(c->u->u_ste, mangled);
+ switch (scope) {
+ case FREE:
+ dict = c->u->u_freevars;
+ optype = OP_DEREF;
+ break;
+ case CELL:
+ dict = c->u->u_cellvars;
+ optype = OP_DEREF;
+ break;
+ case LOCAL:
+ if (c->u->u_ste->ste_type == FunctionBlock)
+ optype = OP_FAST;
+ break;
+ case GLOBAL_IMPLICIT:
+ if (c->u->u_ste->ste_type == FunctionBlock)
+ optype = OP_GLOBAL;
+ break;
+ case GLOBAL_EXPLICIT:
+ optype = OP_GLOBAL;
+ break;
+ default:
+ /* scope can be 0 */
+ break;
+ }
+
+ /* XXX Leave assert here, but handle __doc__ and the like better */
+ assert(scope || PyUnicode_READ_CHAR(name, 0) == '_');
+
+ switch (optype) {
+ case OP_DEREF:
+ switch (ctx) {
+ case Load:
+ op = (c->u->u_ste->ste_type == ClassBlock) ? LOAD_CLASSDEREF : LOAD_DEREF;
+ break;
+ case Store: op = STORE_DEREF; break;
+ case Del: op = DELETE_DEREF; break;
+ }
+ break;
+ case OP_FAST:
+ switch (ctx) {
+ case Load: op = LOAD_FAST; break;
+ case Store: op = STORE_FAST; break;
+ case Del: op = DELETE_FAST; break;
+ }
+ ADDOP_N(c, op, mangled, varnames);
+ return 1;
+ case OP_GLOBAL:
+ switch (ctx) {
+ case Load: op = LOAD_GLOBAL; break;
+ case Store: op = STORE_GLOBAL; break;
+ case Del: op = DELETE_GLOBAL; break;
+ }
+ break;
+ case OP_NAME:
+ switch (ctx) {
+ case Load: op = LOAD_NAME; break;
+ case Store: op = STORE_NAME; break;
+ case Del: op = DELETE_NAME; break;
+ }
+ break;
+ }
+
+ assert(op);
+ arg = compiler_add_o(dict, mangled);
+ Py_DECREF(mangled);
+ if (arg < 0) {
+ return 0;
+ }
+ if (op == LOAD_GLOBAL) {
+ arg <<= 1;
+ }
+ return compiler_addop_i(c, op, arg);
+}
+
+static int
+compiler_boolop(struct compiler *c, expr_ty e)
+{
+ basicblock *end;
+ int jumpi;
+ Py_ssize_t i, n;
+ asdl_expr_seq *s;
+
+ assert(e->kind == BoolOp_kind);
+ if (e->v.BoolOp.op == And)
+ jumpi = JUMP_IF_FALSE_OR_POP;
+ else
+ jumpi = JUMP_IF_TRUE_OR_POP;
+ end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ s = e->v.BoolOp.values;
+ n = asdl_seq_LEN(s) - 1;
+ assert(n >= 0);
+ for (i = 0; i < n; ++i) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i));
+ ADDOP_JUMP(c, jumpi, end);
+ basicblock *next = compiler_new_block(c);
+ if (next == NULL) {
+ return 0;
+ }
+ compiler_use_next_block(c, next);
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n));
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+static int
+starunpack_helper(struct compiler *c, asdl_expr_seq *elts, int pushed,
+ int build, int add, int extend, int tuple)
+{
+ Py_ssize_t n = asdl_seq_LEN(elts);
+ if (n > 2 && are_all_items_const(elts, 0, n)) {
+ PyObject *folded = PyTuple_New(n);
+ if (folded == NULL) {
+ return 0;
+ }
+ PyObject *val;
+ for (Py_ssize_t i = 0; i < n; i++) {
+ val = ((expr_ty)asdl_seq_GET(elts, i))->v.Constant.value;
+ Py_INCREF(val);
+ PyTuple_SET_ITEM(folded, i, val);
+ }
+ if (tuple && !pushed) {
+ ADDOP_LOAD_CONST_NEW(c, folded);
+ } else {
+ if (add == SET_ADD) {
+ Py_SETREF(folded, PyFrozenSet_New(folded));
+ if (folded == NULL) {
+ return 0;
+ }
+ }
+ ADDOP_I(c, build, pushed);
+ ADDOP_LOAD_CONST_NEW(c, folded);
+ ADDOP_I(c, extend, 1);
+ if (tuple) {
+ ADDOP(c, LIST_TO_TUPLE);
+ }
+ }
+ return 1;
+ }
+
+ int big = n+pushed > STACK_USE_GUIDELINE;
+ int seen_star = 0;
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ if (elt->kind == Starred_kind) {
+ seen_star = 1;
+ }
+ }
+ if (!seen_star && !big) {
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ VISIT(c, expr, elt);
+ }
+ if (tuple) {
+ ADDOP_I(c, BUILD_TUPLE, n+pushed);
+ } else {
+ ADDOP_I(c, build, n+pushed);
+ }
+ return 1;
+ }
+ int sequence_built = 0;
+ if (big) {
+ ADDOP_I(c, build, pushed);
+ sequence_built = 1;
+ }
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ if (elt->kind == Starred_kind) {
+ if (sequence_built == 0) {
+ ADDOP_I(c, build, i+pushed);
+ sequence_built = 1;
+ }
+ VISIT(c, expr, elt->v.Starred.value);
+ ADDOP_I(c, extend, 1);
+ }
+ else {
+ VISIT(c, expr, elt);
+ if (sequence_built) {
+ ADDOP_I(c, add, 1);
+ }
+ }
+ }
+ assert(sequence_built);
+ if (tuple) {
+ ADDOP(c, LIST_TO_TUPLE);
+ }
+ return 1;
+}
+
+static int
+unpack_helper(struct compiler *c, asdl_expr_seq *elts)
+{
+ Py_ssize_t n = asdl_seq_LEN(elts);
+ int seen_star = 0;
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ if (elt->kind == Starred_kind && !seen_star) {
+ if ((i >= (1 << 8)) ||
+ (n-i-1 >= (INT_MAX >> 8)))
+ return compiler_error(c,
+ "too many expressions in "
+ "star-unpacking assignment");
+ ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8)));
+ seen_star = 1;
+ }
+ else if (elt->kind == Starred_kind) {
+ return compiler_error(c,
+ "multiple starred expressions in assignment");
+ }
+ }
+ if (!seen_star) {
+ ADDOP_I(c, UNPACK_SEQUENCE, n);
+ }
+ return 1;
+}
+
+static int
+assignment_helper(struct compiler *c, asdl_expr_seq *elts)
+{
+ Py_ssize_t n = asdl_seq_LEN(elts);
+ RETURN_IF_FALSE(unpack_helper(c, elts));
+ for (Py_ssize_t i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ VISIT(c, expr, elt->kind != Starred_kind ? elt : elt->v.Starred.value);
+ }
+ return 1;
+}
+
+static int
+compiler_list(struct compiler *c, expr_ty e)
+{
+ asdl_expr_seq *elts = e->v.List.elts;
+ if (e->v.List.ctx == Store) {
+ return assignment_helper(c, elts);
+ }
+ else if (e->v.List.ctx == Load) {
+ return starunpack_helper(c, elts, 0, BUILD_LIST,
+ LIST_APPEND, LIST_EXTEND, 0);
+ }
+ else
+ VISIT_SEQ(c, expr, elts);
+ return 1;
+}
+
+static int
+compiler_tuple(struct compiler *c, expr_ty e)
+{
+ asdl_expr_seq *elts = e->v.Tuple.elts;
+ if (e->v.Tuple.ctx == Store) {
+ return assignment_helper(c, elts);
+ }
+ else if (e->v.Tuple.ctx == Load) {
+ return starunpack_helper(c, elts, 0, BUILD_LIST,
+ LIST_APPEND, LIST_EXTEND, 1);
+ }
+ else
+ VISIT_SEQ(c, expr, elts);
+ return 1;
+}
+
+static int
+compiler_set(struct compiler *c, expr_ty e)
+{
+ return starunpack_helper(c, e->v.Set.elts, 0, BUILD_SET,
+ SET_ADD, SET_UPDATE, 0);
+}
+
+static int
+are_all_items_const(asdl_expr_seq *seq, Py_ssize_t begin, Py_ssize_t end)
+{
+ Py_ssize_t i;
+ for (i = begin; i < end; i++) {
+ expr_ty key = (expr_ty)asdl_seq_GET(seq, i);
+ if (key == NULL || key->kind != Constant_kind)
+ return 0;
+ }
+ return 1;
+}
+
+static int
+compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end)
+{
+ Py_ssize_t i, n = end - begin;
+ PyObject *keys, *key;
+ int big = n*2 > STACK_USE_GUIDELINE;
+ if (n > 1 && !big && are_all_items_const(e->v.Dict.keys, begin, end)) {
+ for (i = begin; i < end; i++) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
+ }
+ keys = PyTuple_New(n);
+ if (keys == NULL) {
+ return 0;
+ }
+ for (i = begin; i < end; i++) {
+ key = ((expr_ty)asdl_seq_GET(e->v.Dict.keys, i))->v.Constant.value;
+ Py_INCREF(key);
+ PyTuple_SET_ITEM(keys, i - begin, key);
+ }
+ ADDOP_LOAD_CONST_NEW(c, keys);
+ ADDOP_I(c, BUILD_CONST_KEY_MAP, n);
+ return 1;
+ }
+ if (big) {
+ ADDOP_I(c, BUILD_MAP, 0);
+ }
+ for (i = begin; i < end; i++) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i));
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
+ if (big) {
+ ADDOP_I(c, MAP_ADD, 1);
+ }
+ }
+ if (!big) {
+ ADDOP_I(c, BUILD_MAP, n);
+ }
+ return 1;
+}
+
+static int
+compiler_dict(struct compiler *c, expr_ty e)
+{
+ Py_ssize_t i, n, elements;
+ int have_dict;
+ int is_unpacking = 0;
+ n = asdl_seq_LEN(e->v.Dict.values);
+ have_dict = 0;
+ elements = 0;
+ for (i = 0; i < n; i++) {
+ is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL;
+ if (is_unpacking) {
+ if (elements) {
+ if (!compiler_subdict(c, e, i - elements, i)) {
+ return 0;
+ }
+ if (have_dict) {
+ ADDOP_I(c, DICT_UPDATE, 1);
+ }
+ have_dict = 1;
+ elements = 0;
+ }
+ if (have_dict == 0) {
+ ADDOP_I(c, BUILD_MAP, 0);
+ have_dict = 1;
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
+ ADDOP_I(c, DICT_UPDATE, 1);
+ }
+ else {
+ if (elements*2 > STACK_USE_GUIDELINE) {
+ if (!compiler_subdict(c, e, i - elements, i + 1)) {
+ return 0;
+ }
+ if (have_dict) {
+ ADDOP_I(c, DICT_UPDATE, 1);
+ }
+ have_dict = 1;
+ elements = 0;
+ }
+ else {
+ elements++;
+ }
+ }
+ }
+ if (elements) {
+ if (!compiler_subdict(c, e, n - elements, n)) {
+ return 0;
+ }
+ if (have_dict) {
+ ADDOP_I(c, DICT_UPDATE, 1);
+ }
+ have_dict = 1;
+ }
+ if (!have_dict) {
+ ADDOP_I(c, BUILD_MAP, 0);
+ }
+ return 1;
+}
+
+static int
+compiler_compare(struct compiler *c, expr_ty e)
+{
+ Py_ssize_t i, n;
+
+ if (!check_compare(c, e)) {
+ return 0;
+ }
+ VISIT(c, expr, e->v.Compare.left);
+ assert(asdl_seq_LEN(e->v.Compare.ops) > 0);
+ n = asdl_seq_LEN(e->v.Compare.ops) - 1;
+ if (n == 0) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0));
+ ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, 0));
+ }
+ else {
+ basicblock *cleanup = compiler_new_block(c);
+ if (cleanup == NULL)
+ return 0;
+ for (i = 0; i < n; i++) {
+ VISIT(c, expr,
+ (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
+ ADDOP_I(c, SWAP, 2);
+ ADDOP_I(c, COPY, 2);
+ ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i));
+ ADDOP_JUMP(c, JUMP_IF_FALSE_OR_POP, cleanup);
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
+ ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n));
+ basicblock *end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ ADDOP_JUMP_NOLINE(c, JUMP, end);
+ compiler_use_next_block(c, cleanup);
+ ADDOP_I(c, SWAP, 2);
+ ADDOP(c, POP_TOP);
+ compiler_use_next_block(c, end);
+ }
+ return 1;
+}
+
+static PyTypeObject *
+infer_type(expr_ty e)
+{
+ switch (e->kind) {
+ case Tuple_kind:
+ return &PyTuple_Type;
+ case List_kind:
+ case ListComp_kind:
+ return &PyList_Type;
+ case Dict_kind:
+ case DictComp_kind:
+ return &PyDict_Type;
+ case Set_kind:
+ case SetComp_kind:
+ return &PySet_Type;
+ case GeneratorExp_kind:
+ return &PyGen_Type;
+ case Lambda_kind:
+ return &PyFunction_Type;
+ case JoinedStr_kind:
+ case FormattedValue_kind:
+ return &PyUnicode_Type;
+ case Constant_kind:
+ return Py_TYPE(e->v.Constant.value);
+ default:
+ return NULL;
+ }
+}
+
+static int
+check_caller(struct compiler *c, expr_ty e)
+{
+ switch (e->kind) {
+ case Constant_kind:
+ case Tuple_kind:
+ case List_kind:
+ case ListComp_kind:
+ case Dict_kind:
+ case DictComp_kind:
+ case Set_kind:
+ case SetComp_kind:
+ case GeneratorExp_kind:
+ case JoinedStr_kind:
+ case FormattedValue_kind:
+ return compiler_warn(c, "'%.200s' object is not callable; "
+ "perhaps you missed a comma?",
+ infer_type(e)->tp_name);
+ default:
+ return 1;
+ }
+}
+
+static int
+check_subscripter(struct compiler *c, expr_ty e)
+{
+ PyObject *v;
+
+ switch (e->kind) {
+ case Constant_kind:
+ v = e->v.Constant.value;
+ if (!(v == Py_None || v == Py_Ellipsis ||
+ PyLong_Check(v) || PyFloat_Check(v) || PyComplex_Check(v) ||
+ PyAnySet_Check(v)))
+ {
+ return 1;
+ }
+ /* fall through */
+ case Set_kind:
+ case SetComp_kind:
+ case GeneratorExp_kind:
+ case Lambda_kind:
+ return compiler_warn(c, "'%.200s' object is not subscriptable; "
+ "perhaps you missed a comma?",
+ infer_type(e)->tp_name);
+ default:
+ return 1;
+ }
+}
+
+static int
+check_index(struct compiler *c, expr_ty e, expr_ty s)
+{
+ PyObject *v;
+
+ PyTypeObject *index_type = infer_type(s);
+ if (index_type == NULL
+ || PyType_FastSubclass(index_type, Py_TPFLAGS_LONG_SUBCLASS)
+ || index_type == &PySlice_Type) {
+ return 1;
+ }
+
+ switch (e->kind) {
+ case Constant_kind:
+ v = e->v.Constant.value;
+ if (!(PyUnicode_Check(v) || PyBytes_Check(v) || PyTuple_Check(v))) {
+ return 1;
+ }
+ /* fall through */
+ case Tuple_kind:
+ case List_kind:
+ case ListComp_kind:
+ case JoinedStr_kind:
+ case FormattedValue_kind:
+ return compiler_warn(c, "%.200s indices must be integers or slices, "
+ "not %.200s; "
+ "perhaps you missed a comma?",
+ infer_type(e)->tp_name,
+ index_type->tp_name);
+ default:
+ return 1;
+ }
+}
+
+static int
+is_import_originated(struct compiler *c, expr_ty e)
+{
+ /* Check whether the global scope has an import named
+ e, if it is a Name object. For not traversing all the
+ scope stack every time this function is called, it will
+ only check the global scope to determine whether something
+ is imported or not. */
+
+ if (e->kind != Name_kind) {
+ return 0;
+ }
+
+ long flags = _PyST_GetSymbol(c->c_st->st_top, e->v.Name.id);
+ return flags & DEF_IMPORT;
+}
+
+// If an attribute access spans multiple lines, update the current start
+// location to point to the attribute name.
+static void
+update_start_location_to_match_attr(struct compiler *c, expr_ty attr)
+{
+ assert(attr->kind == Attribute_kind);
+ if (c->u->u_lineno != attr->end_lineno) {
+ c->u->u_lineno = attr->end_lineno;
+ int len = (int)PyUnicode_GET_LENGTH(attr->v.Attribute.attr);
+ if (len <= attr->end_col_offset) {
+ c->u->u_col_offset = attr->end_col_offset - len;
+ }
+ else {
+ // GH-94694: Somebody's compiling weird ASTs. Just drop the columns:
+ c->u->u_col_offset = -1;
+ c->u->u_end_col_offset = -1;
+ }
+ // Make sure the end position still follows the start position, even for
+ // weird ASTs:
+ c->u->u_end_lineno = Py_MAX(c->u->u_lineno, c->u->u_end_lineno);
+ if (c->u->u_lineno == c->u->u_end_lineno) {
+ c->u->u_end_col_offset = Py_MAX(c->u->u_col_offset,
+ c->u->u_end_col_offset);
+ }
+ }
+}
+
+// Return 1 if the method call was optimized, -1 if not, and 0 on error.
+static int
+maybe_optimize_method_call(struct compiler *c, expr_ty e)
+{
+ Py_ssize_t argsl, i, kwdsl;
+ expr_ty meth = e->v.Call.func;
+ asdl_expr_seq *args = e->v.Call.args;
+ asdl_keyword_seq *kwds = e->v.Call.keywords;
+
+ /* Check that the call node is an attribute access */
+ if (meth->kind != Attribute_kind || meth->v.Attribute.ctx != Load) {
+ return -1;
+ }
+
+ /* Check that the base object is not something that is imported */
+ if (is_import_originated(c, meth->v.Attribute.value)) {
+ return -1;
+ }
+
+ /* Check that there aren't too many arguments */
+ argsl = asdl_seq_LEN(args);
+ kwdsl = asdl_seq_LEN(kwds);
+ if (argsl + kwdsl + (kwdsl != 0) >= STACK_USE_GUIDELINE) {
+ return -1;
+ }
+ /* Check that there are no *varargs types of arguments. */
+ for (i = 0; i < argsl; i++) {
+ expr_ty elt = asdl_seq_GET(args, i);
+ if (elt->kind == Starred_kind) {
+ return -1;
+ }
+ }
+
+ for (i = 0; i < kwdsl; i++) {
+ keyword_ty kw = asdl_seq_GET(kwds, i);
+ if (kw->arg == NULL) {
+ return -1;
+ }
+ }
+ /* Alright, we can optimize the code. */
+ VISIT(c, expr, meth->v.Attribute.value);
+ SET_LOC(c, meth);
+ update_start_location_to_match_attr(c, meth);
+ ADDOP_NAME(c, LOAD_METHOD, meth->v.Attribute.attr, names);
+ VISIT_SEQ(c, expr, e->v.Call.args);
+
+ if (kwdsl) {
+ VISIT_SEQ(c, keyword, kwds);
+ if (!compiler_call_simple_kw_helper(c, kwds, kwdsl)) {
+ return 0;
+ };
+ }
+ SET_LOC(c, e);
+ update_start_location_to_match_attr(c, meth);
+ ADDOP_I(c, PRECALL, argsl + kwdsl);
+ ADDOP_I(c, CALL, argsl + kwdsl);
+ return 1;
+}
+
+static int
+validate_keywords(struct compiler *c, asdl_keyword_seq *keywords)
+{
+ Py_ssize_t nkeywords = asdl_seq_LEN(keywords);
+ for (Py_ssize_t i = 0; i < nkeywords; i++) {
+ keyword_ty key = ((keyword_ty)asdl_seq_GET(keywords, i));
+ if (key->arg == NULL) {
+ continue;
+ }
+ if (forbidden_name(c, key->arg, Store)) {
+ return -1;
+ }
+ for (Py_ssize_t j = i + 1; j < nkeywords; j++) {
+ keyword_ty other = ((keyword_ty)asdl_seq_GET(keywords, j));
+ if (other->arg && !PyUnicode_Compare(key->arg, other->arg)) {
+ SET_LOC(c, other);
+ compiler_error(c, "keyword argument repeated: %U", key->arg);
+ return -1;
+ }
+ }
+ }
+ return 0;
+}
+
+static int
+compiler_call(struct compiler *c, expr_ty e)
+{
+ if (validate_keywords(c, e->v.Call.keywords) == -1) {
+ return 0;
+ }
+ int ret = maybe_optimize_method_call(c, e);
+ if (ret >= 0) {
+ return ret;
+ }
+ if (!check_caller(c, e->v.Call.func)) {
+ return 0;
+ }
+ SET_LOC(c, e->v.Call.func);
+ ADDOP(c, PUSH_NULL);
+ SET_LOC(c, e);
+ VISIT(c, expr, e->v.Call.func);
+ return compiler_call_helper(c, 0,
+ e->v.Call.args,
+ e->v.Call.keywords);
+}
+
+static int
+compiler_joined_str(struct compiler *c, expr_ty e)
+{
+
+ Py_ssize_t value_count = asdl_seq_LEN(e->v.JoinedStr.values);
+ if (value_count > STACK_USE_GUIDELINE) {
+ _Py_DECLARE_STR(empty, "");
+ ADDOP_LOAD_CONST_NEW(c, Py_NewRef(&_Py_STR(empty)));
+ ADDOP_NAME(c, LOAD_METHOD, &_Py_ID(join), names);
+ ADDOP_I(c, BUILD_LIST, 0);
+ for (Py_ssize_t i = 0; i < asdl_seq_LEN(e->v.JoinedStr.values); i++) {
+ VISIT(c, expr, asdl_seq_GET(e->v.JoinedStr.values, i));
+ ADDOP_I(c, LIST_APPEND, 1);
+ }
+ ADDOP_I(c, PRECALL, 1);
+ ADDOP_I(c, CALL, 1);
+ }
+ else {
+ VISIT_SEQ(c, expr, e->v.JoinedStr.values);
+ if (asdl_seq_LEN(e->v.JoinedStr.values) != 1) {
+ ADDOP_I(c, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values));
+ }
+ }
+ return 1;
+}
+
+/* Used to implement f-strings. Format a single value. */
+static int
+compiler_formatted_value(struct compiler *c, expr_ty e)
+{
+ /* Our oparg encodes 2 pieces of information: the conversion
+ character, and whether or not a format_spec was provided.
+
+ Convert the conversion char to 3 bits:
+ : 000 0x0 FVC_NONE The default if nothing specified.
+ !s : 001 0x1 FVC_STR
+ !r : 010 0x2 FVC_REPR
+ !a : 011 0x3 FVC_ASCII
+
+ next bit is whether or not we have a format spec:
+ yes : 100 0x4
+ no : 000 0x0
+ */
+
+ int conversion = e->v.FormattedValue.conversion;
+ int oparg;
+
+ /* The expression to be formatted. */
+ VISIT(c, expr, e->v.FormattedValue.value);
+
+ switch (conversion) {
+ case 's': oparg = FVC_STR; break;
+ case 'r': oparg = FVC_REPR; break;
+ case 'a': oparg = FVC_ASCII; break;
+ case -1: oparg = FVC_NONE; break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "Unrecognized conversion character %d", conversion);
+ return 0;
+ }
+ if (e->v.FormattedValue.format_spec) {
+ /* Evaluate the format spec, and update our opcode arg. */
+ VISIT(c, expr, e->v.FormattedValue.format_spec);
+ oparg |= FVS_HAVE_SPEC;
+ }
+
+ /* And push our opcode and oparg */
+ ADDOP_I(c, FORMAT_VALUE, oparg);
+
+ return 1;
+}
+
+static int
+compiler_subkwargs(struct compiler *c, asdl_keyword_seq *keywords, Py_ssize_t begin, Py_ssize_t end)
+{
+ Py_ssize_t i, n = end - begin;
+ keyword_ty kw;
+ PyObject *keys, *key;
+ assert(n > 0);
+ int big = n*2 > STACK_USE_GUIDELINE;
+ if (n > 1 && !big) {
+ for (i = begin; i < end; i++) {
+ kw = asdl_seq_GET(keywords, i);
+ VISIT(c, expr, kw->value);
+ }
+ keys = PyTuple_New(n);
+ if (keys == NULL) {
+ return 0;
+ }
+ for (i = begin; i < end; i++) {
+ key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg;
+ Py_INCREF(key);
+ PyTuple_SET_ITEM(keys, i - begin, key);
+ }
+ ADDOP_LOAD_CONST_NEW(c, keys);
+ ADDOP_I(c, BUILD_CONST_KEY_MAP, n);
+ return 1;
+ }
+ if (big) {
+ ADDOP_I_NOLINE(c, BUILD_MAP, 0);
+ }
+ for (i = begin; i < end; i++) {
+ kw = asdl_seq_GET(keywords, i);
+ ADDOP_LOAD_CONST(c, kw->arg);
+ VISIT(c, expr, kw->value);
+ if (big) {
+ ADDOP_I_NOLINE(c, MAP_ADD, 1);
+ }
+ }
+ if (!big) {
+ ADDOP_I(c, BUILD_MAP, n);
+ }
+ return 1;
+}
+
+/* Used by compiler_call_helper and maybe_optimize_method_call to emit
+ * KW_NAMES before CALL.
+ * Returns 1 on success, 0 on error.
+ */
+static int
+compiler_call_simple_kw_helper(struct compiler *c,
+ asdl_keyword_seq *keywords,
+ Py_ssize_t nkwelts)
+{
+ PyObject *names;
+ names = PyTuple_New(nkwelts);
+ if (names == NULL) {
+ return 0;
+ }
+ for (int i = 0; i < nkwelts; i++) {
+ keyword_ty kw = asdl_seq_GET(keywords, i);
+ Py_INCREF(kw->arg);
+ PyTuple_SET_ITEM(names, i, kw->arg);
+ }
+ Py_ssize_t arg = compiler_add_const(c, names);
+ if (arg < 0) {
+ return 0;
+ }
+ Py_DECREF(names);
+ ADDOP_I(c, KW_NAMES, arg);
+ return 1;
+}
+
+
+/* shared code between compiler_call and compiler_class */
+static int
+compiler_call_helper(struct compiler *c,
+ int n, /* Args already pushed */
+ asdl_expr_seq *args,
+ asdl_keyword_seq *keywords)
+{
+ Py_ssize_t i, nseen, nelts, nkwelts;
+
+ if (validate_keywords(c, keywords) == -1) {
+ return 0;
+ }
+
+ nelts = asdl_seq_LEN(args);
+ nkwelts = asdl_seq_LEN(keywords);
+
+ if (nelts + nkwelts*2 > STACK_USE_GUIDELINE) {
+ goto ex_call;
+ }
+ for (i = 0; i < nelts; i++) {
+ expr_ty elt = asdl_seq_GET(args, i);
+ if (elt->kind == Starred_kind) {
+ goto ex_call;
+ }
+ }
+ for (i = 0; i < nkwelts; i++) {
+ keyword_ty kw = asdl_seq_GET(keywords, i);
+ if (kw->arg == NULL) {
+ goto ex_call;
+ }
+ }
+
+ /* No * or ** args, so can use faster calling sequence */
+ for (i = 0; i < nelts; i++) {
+ expr_ty elt = asdl_seq_GET(args, i);
+ assert(elt->kind != Starred_kind);
+ VISIT(c, expr, elt);
+ }
+ if (nkwelts) {
+ VISIT_SEQ(c, keyword, keywords);
+ if (!compiler_call_simple_kw_helper(c, keywords, nkwelts)) {
+ return 0;
+ };
+ }
+ ADDOP_I(c, PRECALL, n + nelts + nkwelts);
+ ADDOP_I(c, CALL, n + nelts + nkwelts);
+ return 1;
+
+ex_call:
+
+ /* Do positional arguments. */
+ if (n ==0 && nelts == 1 && ((expr_ty)asdl_seq_GET(args, 0))->kind == Starred_kind) {
+ VISIT(c, expr, ((expr_ty)asdl_seq_GET(args, 0))->v.Starred.value);
+ }
+ else if (starunpack_helper(c, args, n, BUILD_LIST,
+ LIST_APPEND, LIST_EXTEND, 1) == 0) {
+ return 0;
+ }
+ /* Then keyword arguments */
+ if (nkwelts) {
+ /* Has a new dict been pushed */
+ int have_dict = 0;
+
+ nseen = 0; /* the number of keyword arguments on the stack following */
+ for (i = 0; i < nkwelts; i++) {
+ keyword_ty kw = asdl_seq_GET(keywords, i);
+ if (kw->arg == NULL) {
+ /* A keyword argument unpacking. */
+ if (nseen) {
+ if (!compiler_subkwargs(c, keywords, i - nseen, i)) {
+ return 0;
+ }
+ if (have_dict) {
+ ADDOP_I(c, DICT_MERGE, 1);
+ }
+ have_dict = 1;
+ nseen = 0;
+ }
+ if (!have_dict) {
+ ADDOP_I(c, BUILD_MAP, 0);
+ have_dict = 1;
+ }
+ VISIT(c, expr, kw->value);
+ ADDOP_I(c, DICT_MERGE, 1);
+ }
+ else {
+ nseen++;
+ }
+ }
+ if (nseen) {
+ /* Pack up any trailing keyword arguments. */
+ if (!compiler_subkwargs(c, keywords, nkwelts - nseen, nkwelts)) {
+ return 0;
+ }
+ if (have_dict) {
+ ADDOP_I(c, DICT_MERGE, 1);
+ }
+ have_dict = 1;
+ }
+ assert(have_dict);
+ }
+ ADDOP_I(c, CALL_FUNCTION_EX, nkwelts > 0);
+ return 1;
+}
+
+
+/* List and set comprehensions and generator expressions work by creating a
+ nested function to perform the actual iteration. This means that the
+ iteration variables don't leak into the current scope.
+ The defined function is called immediately following its definition, with the
+ result of that call being the result of the expression.
+ The LC/SC version returns the populated container, while the GE version is
+ flagged in symtable.c as a generator, so it returns the generator object
+ when the function is called.
+
+ Possible cleanups:
+ - iterate over the generator sequence instead of using recursion
+*/
+
+
+static int
+compiler_comprehension_generator(struct compiler *c,
+ asdl_comprehension_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type)
+{
+ comprehension_ty gen;
+ gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
+ if (gen->is_async) {
+ return compiler_async_comprehension_generator(
+ c, generators, gen_index, depth, elt, val, type);
+ } else {
+ return compiler_sync_comprehension_generator(
+ c, generators, gen_index, depth, elt, val, type);
+ }
+}
+
+static int
+compiler_sync_comprehension_generator(struct compiler *c,
+ asdl_comprehension_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type)
+{
+ /* generate code for the iterator, then each of the ifs,
+ and then write to the element */
+
+ comprehension_ty gen;
+ basicblock *start, *anchor, *if_cleanup;
+ Py_ssize_t i, n;
+
+ start = compiler_new_block(c);
+ if_cleanup = compiler_new_block(c);
+ anchor = compiler_new_block(c);
+
+ if (start == NULL || if_cleanup == NULL || anchor == NULL) {
+ return 0;
+ }
+
+ gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
+
+ if (gen_index == 0) {
+ /* Receive outermost iter as an implicit argument */
+ c->u->u_argcount = 1;
+ ADDOP_I(c, LOAD_FAST, 0);
+ }
+ else {
+ /* Sub-iter - calculate on the fly */
+ /* Fast path for the temporary variable assignment idiom:
+ for y in [f(x)]
+ */
+ asdl_expr_seq *elts;
+ switch (gen->iter->kind) {
+ case List_kind:
+ elts = gen->iter->v.List.elts;
+ break;
+ case Tuple_kind:
+ elts = gen->iter->v.Tuple.elts;
+ break;
+ default:
+ elts = NULL;
+ }
+ if (asdl_seq_LEN(elts) == 1) {
+ expr_ty elt = asdl_seq_GET(elts, 0);
+ if (elt->kind != Starred_kind) {
+ VISIT(c, expr, elt);
+ start = NULL;
+ }
+ }
+ if (start) {
+ VISIT(c, expr, gen->iter);
+ ADDOP(c, GET_ITER);
+ }
+ }
+ if (start) {
+ depth++;
+ compiler_use_next_block(c, start);
+ ADDOP_JUMP(c, FOR_ITER, anchor);
+ }
+ VISIT(c, expr, gen->target);
+
+ /* XXX this needs to be cleaned up...a lot! */
+ n = asdl_seq_LEN(gen->ifs);
+ for (i = 0; i < n; i++) {
+ expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
+ if (!compiler_jump_if(c, e, if_cleanup, 0))
+ return 0;
+ }
+
+ if (++gen_index < asdl_seq_LEN(generators))
+ if (!compiler_comprehension_generator(c,
+ generators, gen_index, depth,
+ elt, val, type))
+ return 0;
+
+ /* only append after the last for generator */
+ if (gen_index >= asdl_seq_LEN(generators)) {
+ /* comprehension specific code */
+ switch (type) {
+ case COMP_GENEXP:
+ VISIT(c, expr, elt);
+ ADDOP_YIELD(c);
+ ADDOP(c, POP_TOP);
+ break;
+ case COMP_LISTCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, LIST_APPEND, depth + 1);
+ break;
+ case COMP_SETCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, SET_ADD, depth + 1);
+ break;
+ case COMP_DICTCOMP:
+ /* With '{k: v}', k is evaluated before v, so we do
+ the same. */
+ VISIT(c, expr, elt);
+ VISIT(c, expr, val);
+ ADDOP_I(c, MAP_ADD, depth + 1);
+ break;
+ default:
+ return 0;
+ }
+ }
+ compiler_use_next_block(c, if_cleanup);
+ if (start) {
+ ADDOP_JUMP(c, JUMP, start);
+ compiler_use_next_block(c, anchor);
+ }
+
+ return 1;
+}
+
+static int
+compiler_async_comprehension_generator(struct compiler *c,
+ asdl_comprehension_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type)
+{
+ comprehension_ty gen;
+ basicblock *start, *if_cleanup, *except;
+ Py_ssize_t i, n;
+ start = compiler_new_block(c);
+ except = compiler_new_block(c);
+ if_cleanup = compiler_new_block(c);
+
+ if (start == NULL || if_cleanup == NULL || except == NULL) {
+ return 0;
+ }
+
+ gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
+
+ if (gen_index == 0) {
+ /* Receive outermost iter as an implicit argument */
+ c->u->u_argcount = 1;
+ ADDOP_I(c, LOAD_FAST, 0);
+ }
+ else {
+ /* Sub-iter - calculate on the fly */
+ VISIT(c, expr, gen->iter);
+ ADDOP(c, GET_AITER);
+ }
+
+ compiler_use_next_block(c, start);
+ /* Runtime will push a block here, so we need to account for that */
+ if (!compiler_push_fblock(c, ASYNC_COMPREHENSION_GENERATOR, start,
+ NULL, NULL)) {
+ return 0;
+ }
+
+ ADDOP_JUMP(c, SETUP_FINALLY, except);
+ ADDOP(c, GET_ANEXT);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADD_YIELD_FROM(c, 1);
+ ADDOP(c, POP_BLOCK);
+ VISIT(c, expr, gen->target);
+
+ n = asdl_seq_LEN(gen->ifs);
+ for (i = 0; i < n; i++) {
+ expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
+ if (!compiler_jump_if(c, e, if_cleanup, 0))
+ return 0;
+ }
+
+ depth++;
+ if (++gen_index < asdl_seq_LEN(generators))
+ if (!compiler_comprehension_generator(c,
+ generators, gen_index, depth,
+ elt, val, type))
+ return 0;
+
+ /* only append after the last for generator */
+ if (gen_index >= asdl_seq_LEN(generators)) {
+ /* comprehension specific code */
+ switch (type) {
+ case COMP_GENEXP:
+ VISIT(c, expr, elt);
+ ADDOP_YIELD(c);
+ ADDOP(c, POP_TOP);
+ break;
+ case COMP_LISTCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, LIST_APPEND, depth + 1);
+ break;
+ case COMP_SETCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, SET_ADD, depth + 1);
+ break;
+ case COMP_DICTCOMP:
+ /* With '{k: v}', k is evaluated before v, so we do
+ the same. */
+ VISIT(c, expr, elt);
+ VISIT(c, expr, val);
+ ADDOP_I(c, MAP_ADD, depth + 1);
+ break;
+ default:
+ return 0;
+ }
+ }
+ compiler_use_next_block(c, if_cleanup);
+ ADDOP_JUMP(c, JUMP, start);
+
+ compiler_pop_fblock(c, ASYNC_COMPREHENSION_GENERATOR, start);
+
+ compiler_use_next_block(c, except);
+ //UNSET_LOC(c);
+
+ ADDOP(c, END_ASYNC_FOR);
+
+ return 1;
+}
+
+static int
+compiler_comprehension(struct compiler *c, expr_ty e, int type,
+ identifier name, asdl_comprehension_seq *generators, expr_ty elt,
+ expr_ty val)
+{
+ PyCodeObject *co = NULL;
+ comprehension_ty outermost;
+ PyObject *qualname = NULL;
+ int scope_type = c->u->u_scope_type;
+ int is_async_generator = 0;
+ int is_top_level_await = IS_TOP_LEVEL_AWAIT(c);
+
+ outermost = (comprehension_ty) asdl_seq_GET(generators, 0);
+ if (!compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION,
+ (void *)e, e->lineno))
+ {
+ goto error;
+ }
+ SET_LOC(c, e);
+
+ is_async_generator = c->u->u_ste->ste_coroutine;
+
+ if (is_async_generator && type != COMP_GENEXP &&
+ scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
+ scope_type != COMPILER_SCOPE_COMPREHENSION &&
+ !is_top_level_await)
+ {
+ compiler_error(c, "asynchronous comprehension outside of "
+ "an asynchronous function");
+ goto error_in_scope;
+ }
+
+ if (type != COMP_GENEXP) {
+ int op;
+ switch (type) {
+ case COMP_LISTCOMP:
+ op = BUILD_LIST;
+ break;
+ case COMP_SETCOMP:
+ op = BUILD_SET;
+ break;
+ case COMP_DICTCOMP:
+ op = BUILD_MAP;
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "unknown comprehension type %d", type);
+ goto error_in_scope;
+ }
+
+ ADDOP_I(c, op, 0);
+ }
+
+ if (!compiler_comprehension_generator(c, generators, 0, 0, elt,
+ val, type))
+ goto error_in_scope;
+
+ if (type != COMP_GENEXP) {
+ ADDOP(c, RETURN_VALUE);
+ }
+
+ co = assemble(c, 1);
+ qualname = c->u->u_qualname;
+ Py_INCREF(qualname);
+ compiler_exit_scope(c);
+ if (is_top_level_await && is_async_generator){
+ c->u->u_ste->ste_coroutine = 1;
+ }
+ if (co == NULL)
+ goto error;
+
+ if (!compiler_make_closure(c, co, 0, qualname)) {
+ goto error;
+ }
+ Py_DECREF(qualname);
+ Py_DECREF(co);
+
+ VISIT(c, expr, outermost->iter);
+
+ if (outermost->is_async) {
+ ADDOP(c, GET_AITER);
+ } else {
+ ADDOP(c, GET_ITER);
+ }
+
+ ADDOP_I(c, PRECALL, 0);
+ ADDOP_I(c, CALL, 0);
+
+ if (is_async_generator && type != COMP_GENEXP) {
+ ADDOP_I(c, GET_AWAITABLE, 0);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADD_YIELD_FROM(c, 1);
+ }
+
+ return 1;
+error_in_scope:
+ compiler_exit_scope(c);
+error:
+ Py_XDECREF(qualname);
+ Py_XDECREF(co);
+ return 0;
+}
+
+static int
+compiler_genexp(struct compiler *c, expr_ty e)
+{
+ assert(e->kind == GeneratorExp_kind);
+ _Py_DECLARE_STR(anon_genexpr, "<genexpr>");
+ return compiler_comprehension(c, e, COMP_GENEXP, &_Py_STR(anon_genexpr),
+ e->v.GeneratorExp.generators,
+ e->v.GeneratorExp.elt, NULL);
+}
+
+static int
+compiler_listcomp(struct compiler *c, expr_ty e)
+{
+ assert(e->kind == ListComp_kind);
+ _Py_DECLARE_STR(anon_listcomp, "<listcomp>");
+ return compiler_comprehension(c, e, COMP_LISTCOMP, &_Py_STR(anon_listcomp),
+ e->v.ListComp.generators,
+ e->v.ListComp.elt, NULL);
+}
+
+static int
+compiler_setcomp(struct compiler *c, expr_ty e)
+{
+ assert(e->kind == SetComp_kind);
+ _Py_DECLARE_STR(anon_setcomp, "<setcomp>");
+ return compiler_comprehension(c, e, COMP_SETCOMP, &_Py_STR(anon_setcomp),
+ e->v.SetComp.generators,
+ e->v.SetComp.elt, NULL);
+}
+
+
+static int
+compiler_dictcomp(struct compiler *c, expr_ty e)
+{
+ assert(e->kind == DictComp_kind);
+ _Py_DECLARE_STR(anon_dictcomp, "<dictcomp>");
+ return compiler_comprehension(c, e, COMP_DICTCOMP, &_Py_STR(anon_dictcomp),
+ e->v.DictComp.generators,
+ e->v.DictComp.key, e->v.DictComp.value);
+}
+
+
+static int
+compiler_visit_keyword(struct compiler *c, keyword_ty k)
+{
+ VISIT(c, expr, k->value);
+ return 1;
+}
+
+
+static int
+compiler_with_except_finish(struct compiler *c, basicblock * cleanup) {
+ UNSET_LOC(c);
+ basicblock *exit;
+ exit = compiler_new_block(c);
+ if (exit == NULL)
+ return 0;
+ ADDOP_JUMP(c, POP_JUMP_IF_TRUE, exit);
+ ADDOP_I(c, RERAISE, 2);
+ compiler_use_next_block(c, cleanup);
+ POP_EXCEPT_AND_RERAISE(c);
+ compiler_use_next_block(c, exit);
+ ADDOP(c, POP_TOP); /* exc_value */
+ ADDOP(c, POP_BLOCK);
+ ADDOP(c, POP_EXCEPT);
+ ADDOP(c, POP_TOP);
+ ADDOP(c, POP_TOP);
+ return 1;
+}
+
+/*
+ Implements the async with statement.
+
+ The semantics outlined in that PEP are as follows:
+
+ async with EXPR as VAR:
+ BLOCK
+
+ It is implemented roughly as:
+
+ context = EXPR
+ exit = context.__aexit__ # not calling it
+ value = await context.__aenter__()
+ try:
+ VAR = value # if VAR present in the syntax
+ BLOCK
+ finally:
+ if an exception was raised:
+ exc = copy of (exception, instance, traceback)
+ else:
+ exc = (None, None, None)
+ if not (await exit(*exc)):
+ raise
+ */
+static int
+compiler_async_with(struct compiler *c, stmt_ty s, int pos)
+{
+ basicblock *block, *final, *exit, *cleanup;
+ withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos);
+
+ assert(s->kind == AsyncWith_kind);
+ if (IS_TOP_LEVEL_AWAIT(c)){
+ c->u->u_ste->ste_coroutine = 1;
+ } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION){
+ return compiler_error(c, "'async with' outside async function");
+ }
+
+ block = compiler_new_block(c);
+ final = compiler_new_block(c);
+ exit = compiler_new_block(c);
+ cleanup = compiler_new_block(c);
+ if (!block || !final || !exit || !cleanup)
+ return 0;
+
+ /* Evaluate EXPR */
+ VISIT(c, expr, item->context_expr);
+
+ ADDOP(c, BEFORE_ASYNC_WITH);
+ ADDOP_I(c, GET_AWAITABLE, 1);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADD_YIELD_FROM(c, 1);
+
+ ADDOP_JUMP(c, SETUP_WITH, final);
+
+ /* SETUP_WITH pushes a finally block. */
+ compiler_use_next_block(c, block);
+ if (!compiler_push_fblock(c, ASYNC_WITH, block, final, s)) {
+ return 0;
+ }
+
+ if (item->optional_vars) {
+ VISIT(c, expr, item->optional_vars);
+ }
+ else {
+ /* Discard result from context.__aenter__() */
+ ADDOP(c, POP_TOP);
+ }
+
+ pos++;
+ if (pos == asdl_seq_LEN(s->v.AsyncWith.items))
+ /* BLOCK code */
+ VISIT_SEQ(c, stmt, s->v.AsyncWith.body)
+ else if (!compiler_async_with(c, s, pos))
+ return 0;
+
+ compiler_pop_fblock(c, ASYNC_WITH, block);
+ ADDOP(c, POP_BLOCK);
+ /* End of body; start the cleanup */
+
+ /* For successful outcome:
+ * call __exit__(None, None, None)
+ */
+ SET_LOC(c, s);
+ if(!compiler_call_exit_with_nones(c))
+ return 0;
+ ADDOP_I(c, GET_AWAITABLE, 2);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADD_YIELD_FROM(c, 1);
+
+ ADDOP(c, POP_TOP);
+
+ ADDOP_JUMP(c, JUMP, exit);
+
+ /* For exceptional outcome: */
+ compiler_use_next_block(c, final);
+
+ ADDOP_JUMP(c, SETUP_CLEANUP, cleanup);
+ ADDOP(c, PUSH_EXC_INFO);
+ ADDOP(c, WITH_EXCEPT_START);
+ ADDOP_I(c, GET_AWAITABLE, 2);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADD_YIELD_FROM(c, 1);
+ compiler_with_except_finish(c, cleanup);
+
+ compiler_use_next_block(c, exit);
+ return 1;
+}
+
+
+/*
+ Implements the with statement from PEP 343.
+ with EXPR as VAR:
+ BLOCK
+ is implemented as:
+ <code for EXPR>
+ SETUP_WITH E
+ <code to store to VAR> or POP_TOP
+ <code for BLOCK>
+ LOAD_CONST (None, None, None)
+ CALL_FUNCTION_EX 0
+ JUMP EXIT
+ E: WITH_EXCEPT_START (calls EXPR.__exit__)
+ POP_JUMP_IF_TRUE T:
+ RERAISE
+ T: POP_TOP (remove exception from stack)
+ POP_EXCEPT
+ POP_TOP
+ EXIT:
+ */
+
+static int
+compiler_with(struct compiler *c, stmt_ty s, int pos)
+{
+ basicblock *block, *final, *exit, *cleanup;
+ withitem_ty item = asdl_seq_GET(s->v.With.items, pos);
+
+ assert(s->kind == With_kind);
+
+ block = compiler_new_block(c);
+ final = compiler_new_block(c);
+ exit = compiler_new_block(c);
+ cleanup = compiler_new_block(c);
+ if (!block || !final || !exit || !cleanup)
+ return 0;
+
+ /* Evaluate EXPR */
+ VISIT(c, expr, item->context_expr);
+ /* Will push bound __exit__ */
+ ADDOP(c, BEFORE_WITH);
+ ADDOP_JUMP(c, SETUP_WITH, final);
+
+ /* SETUP_WITH pushes a finally block. */
+ compiler_use_next_block(c, block);
+ if (!compiler_push_fblock(c, WITH, block, final, s)) {
+ return 0;
+ }
+
+ if (item->optional_vars) {
+ VISIT(c, expr, item->optional_vars);
+ }
+ else {
+ /* Discard result from context.__enter__() */
+ ADDOP(c, POP_TOP);
+ }
+
+ pos++;
+ if (pos == asdl_seq_LEN(s->v.With.items))
+ /* BLOCK code */
+ VISIT_SEQ(c, stmt, s->v.With.body)
+ else if (!compiler_with(c, s, pos))
+ return 0;
+
+
+ /* Mark all following code as artificial */
+ UNSET_LOC(c);
+ ADDOP(c, POP_BLOCK);
+ compiler_pop_fblock(c, WITH, block);
+
+ /* End of body; start the cleanup. */
+
+ /* For successful outcome:
+ * call __exit__(None, None, None)
+ */
+ SET_LOC(c, s);
+ if (!compiler_call_exit_with_nones(c))
+ return 0;
+ ADDOP(c, POP_TOP);
+ ADDOP_JUMP(c, JUMP, exit);
+
+ /* For exceptional outcome: */
+ compiler_use_next_block(c, final);
+
+ ADDOP_JUMP(c, SETUP_CLEANUP, cleanup);
+ ADDOP(c, PUSH_EXC_INFO);
+ ADDOP(c, WITH_EXCEPT_START);
+ compiler_with_except_finish(c, cleanup);
+
+ compiler_use_next_block(c, exit);
+ return 1;
+}
+
+static int
+compiler_visit_expr1(struct compiler *c, expr_ty e)
+{
+ switch (e->kind) {
+ case NamedExpr_kind:
+ VISIT(c, expr, e->v.NamedExpr.value);
+ ADDOP_I(c, COPY, 1);
+ VISIT(c, expr, e->v.NamedExpr.target);
+ break;
+ case BoolOp_kind:
+ return compiler_boolop(c, e);
+ case BinOp_kind:
+ VISIT(c, expr, e->v.BinOp.left);
+ VISIT(c, expr, e->v.BinOp.right);
+ ADDOP_BINARY(c, e->v.BinOp.op);
+ break;
+ case UnaryOp_kind:
+ VISIT(c, expr, e->v.UnaryOp.operand);
+ ADDOP(c, unaryop(e->v.UnaryOp.op));
+ break;
+ case Lambda_kind:
+ return compiler_lambda(c, e);
+ case IfExp_kind:
+ return compiler_ifexp(c, e);
+ case Dict_kind:
+ return compiler_dict(c, e);
+ case Set_kind:
+ return compiler_set(c, e);
+ case GeneratorExp_kind:
+ return compiler_genexp(c, e);
+ case ListComp_kind:
+ return compiler_listcomp(c, e);
+ case SetComp_kind:
+ return compiler_setcomp(c, e);
+ case DictComp_kind:
+ return compiler_dictcomp(c, e);
+ case Yield_kind:
+ if (c->u->u_ste->ste_type != FunctionBlock)
+ return compiler_error(c, "'yield' outside function");
+ if (e->v.Yield.value) {
+ VISIT(c, expr, e->v.Yield.value);
+ }
+ else {
+ ADDOP_LOAD_CONST(c, Py_None);
+ }
+ ADDOP_YIELD(c);
+ break;
+ case YieldFrom_kind:
+ if (c->u->u_ste->ste_type != FunctionBlock)
+ return compiler_error(c, "'yield' outside function");
+
+ if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION)
+ return compiler_error(c, "'yield from' inside async function");
+
+ VISIT(c, expr, e->v.YieldFrom.value);
+ ADDOP(c, GET_YIELD_FROM_ITER);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADD_YIELD_FROM(c, 0);
+ break;
+ case Await_kind:
+ if (!IS_TOP_LEVEL_AWAIT(c)){
+ if (c->u->u_ste->ste_type != FunctionBlock){
+ return compiler_error(c, "'await' outside function");
+ }
+
+ if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
+ c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION){
+ return compiler_error(c, "'await' outside async function");
+ }
+ }
+
+ VISIT(c, expr, e->v.Await.value);
+ ADDOP_I(c, GET_AWAITABLE, 0);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADD_YIELD_FROM(c, 1);
+ break;
+ case Compare_kind:
+ return compiler_compare(c, e);
+ case Call_kind:
+ return compiler_call(c, e);
+ case Constant_kind:
+ ADDOP_LOAD_CONST(c, e->v.Constant.value);
+ break;
+ case JoinedStr_kind:
+ return compiler_joined_str(c, e);
+ case FormattedValue_kind:
+ return compiler_formatted_value(c, e);
+ /* The following exprs can be assignment targets. */
+ case Attribute_kind:
+ VISIT(c, expr, e->v.Attribute.value);
+ update_start_location_to_match_attr(c, e);
+ switch (e->v.Attribute.ctx) {
+ case Load:
+ {
+ ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names);
+ break;
+ }
+ case Store:
+ if (forbidden_name(c, e->v.Attribute.attr, e->v.Attribute.ctx)) {
+ return 0;
+ }
+ ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names);
+ break;
+ case Del:
+ ADDOP_NAME(c, DELETE_ATTR, e->v.Attribute.attr, names);
+ break;
+ }
+ break;
+ case Subscript_kind:
+ return compiler_subscript(c, e);
+ case Starred_kind:
+ switch (e->v.Starred.ctx) {
+ case Store:
+ /* In all legitimate cases, the Starred node was already replaced
+ * by compiler_list/compiler_tuple. XXX: is that okay? */
+ return compiler_error(c,
+ "starred assignment target must be in a list or tuple");
+ default:
+ return compiler_error(c,
+ "can't use starred expression here");
+ }
+ break;
+ case Slice_kind:
+ return compiler_slice(c, e);
+ case Name_kind:
+ return compiler_nameop(c, e->v.Name.id, e->v.Name.ctx);
+ /* child nodes of List and Tuple will have expr_context set */
+ case List_kind:
+ return compiler_list(c, e);
+ case Tuple_kind:
+ return compiler_tuple(c, e);
+ }
+ return 1;
+}
+
+static int
+compiler_visit_expr(struct compiler *c, expr_ty e)
+{
+ int old_lineno = c->u->u_lineno;
+ int old_end_lineno = c->u->u_end_lineno;
+ int old_col_offset = c->u->u_col_offset;
+ int old_end_col_offset = c->u->u_end_col_offset;
+ SET_LOC(c, e);
+ int res = compiler_visit_expr1(c, e);
+ c->u->u_lineno = old_lineno;
+ c->u->u_end_lineno = old_end_lineno;
+ c->u->u_col_offset = old_col_offset;
+ c->u->u_end_col_offset = old_end_col_offset;
+ return res;
+}
+
+static int
+compiler_augassign(struct compiler *c, stmt_ty s)
+{
+ assert(s->kind == AugAssign_kind);
+ expr_ty e = s->v.AugAssign.target;
+
+ int old_lineno = c->u->u_lineno;
+ int old_end_lineno = c->u->u_end_lineno;
+ int old_col_offset = c->u->u_col_offset;
+ int old_end_col_offset = c->u->u_end_col_offset;
+ SET_LOC(c, e);
+
+ switch (e->kind) {
+ case Attribute_kind:
+ VISIT(c, expr, e->v.Attribute.value);
+ ADDOP_I(c, COPY, 1);
+ update_start_location_to_match_attr(c, e);
+ ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names);
+ break;
+ case Subscript_kind:
+ VISIT(c, expr, e->v.Subscript.value);
+ VISIT(c, expr, e->v.Subscript.slice);
+ ADDOP_I(c, COPY, 2);
+ ADDOP_I(c, COPY, 2);
+ ADDOP(c, BINARY_SUBSCR);
+ break;
+ case Name_kind:
+ if (!compiler_nameop(c, e->v.Name.id, Load))
+ return 0;
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "invalid node type (%d) for augmented assignment",
+ e->kind);
+ return 0;
+ }
+
+ c->u->u_lineno = old_lineno;
+ c->u->u_end_lineno = old_end_lineno;
+ c->u->u_col_offset = old_col_offset;
+ c->u->u_end_col_offset = old_end_col_offset;
+
+ VISIT(c, expr, s->v.AugAssign.value);
+ ADDOP_INPLACE(c, s->v.AugAssign.op);
+
+ SET_LOC(c, e);
+
+ switch (e->kind) {
+ case Attribute_kind:
+ update_start_location_to_match_attr(c, e);
+ ADDOP_I(c, SWAP, 2);
+ ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names);
+ break;
+ case Subscript_kind:
+ ADDOP_I(c, SWAP, 3);
+ ADDOP_I(c, SWAP, 2);
+ ADDOP(c, STORE_SUBSCR);
+ break;
+ case Name_kind:
+ return compiler_nameop(c, e->v.Name.id, Store);
+ default:
+ Py_UNREACHABLE();
+ }
+ return 1;
+}
+
+static int
+check_ann_expr(struct compiler *c, expr_ty e)
+{
+ VISIT(c, expr, e);
+ ADDOP(c, POP_TOP);
+ return 1;
+}
+
+static int
+check_annotation(struct compiler *c, stmt_ty s)
+{
+ /* Annotations of complex targets does not produce anything
+ under annotations future */
+ if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) {
+ return 1;
+ }
+
+ /* Annotations are only evaluated in a module or class. */
+ if (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
+ c->u->u_scope_type == COMPILER_SCOPE_CLASS) {
+ return check_ann_expr(c, s->v.AnnAssign.annotation);
+ }
+ return 1;
+}
+
+static int
+check_ann_subscr(struct compiler *c, expr_ty e)
+{
+ /* We check that everything in a subscript is defined at runtime. */
+ switch (e->kind) {
+ case Slice_kind:
+ if (e->v.Slice.lower && !check_ann_expr(c, e->v.Slice.lower)) {
+ return 0;
+ }
+ if (e->v.Slice.upper && !check_ann_expr(c, e->v.Slice.upper)) {
+ return 0;
+ }
+ if (e->v.Slice.step && !check_ann_expr(c, e->v.Slice.step)) {
+ return 0;
+ }
+ return 1;
+ case Tuple_kind: {
+ /* extended slice */
+ asdl_expr_seq *elts = e->v.Tuple.elts;
+ Py_ssize_t i, n = asdl_seq_LEN(elts);
+ for (i = 0; i < n; i++) {
+ if (!check_ann_subscr(c, asdl_seq_GET(elts, i))) {
+ return 0;
+ }
+ }
+ return 1;
+ }
+ default:
+ return check_ann_expr(c, e);
+ }
+}
+
+static int
+compiler_annassign(struct compiler *c, stmt_ty s)
+{
+ expr_ty targ = s->v.AnnAssign.target;
+ PyObject* mangled;
+
+ assert(s->kind == AnnAssign_kind);
+
+ /* We perform the actual assignment first. */
+ if (s->v.AnnAssign.value) {
+ VISIT(c, expr, s->v.AnnAssign.value);
+ VISIT(c, expr, targ);
+ }
+ switch (targ->kind) {
+ case Name_kind:
+ if (forbidden_name(c, targ->v.Name.id, Store))
+ return 0;
+ /* If we have a simple name in a module or class, store annotation. */
+ if (s->v.AnnAssign.simple &&
+ (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
+ c->u->u_scope_type == COMPILER_SCOPE_CLASS)) {
+ if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) {
+ VISIT(c, annexpr, s->v.AnnAssign.annotation)
+ }
+ else {
+ VISIT(c, expr, s->v.AnnAssign.annotation);
+ }
+ ADDOP_NAME(c, LOAD_NAME, &_Py_ID(__annotations__), names);
+ mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id);
+ ADDOP_LOAD_CONST_NEW(c, mangled);
+ ADDOP(c, STORE_SUBSCR);
+ }
+ break;
+ case Attribute_kind:
+ if (forbidden_name(c, targ->v.Attribute.attr, Store))
+ return 0;
+ if (!s->v.AnnAssign.value &&
+ !check_ann_expr(c, targ->v.Attribute.value)) {
+ return 0;
+ }
+ break;
+ case Subscript_kind:
+ if (!s->v.AnnAssign.value &&
+ (!check_ann_expr(c, targ->v.Subscript.value) ||
+ !check_ann_subscr(c, targ->v.Subscript.slice))) {
+ return 0;
+ }
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "invalid node type (%d) for annotated assignment",
+ targ->kind);
+ return 0;
+ }
+ /* Annotation is evaluated last. */
+ if (!s->v.AnnAssign.simple && !check_annotation(c, s)) {
+ return 0;
+ }
+ return 1;
+}
+
+/* Raises a SyntaxError and returns 0.
+ If something goes wrong, a different exception may be raised.
+*/
+
+static int
+compiler_error(struct compiler *c, const char *format, ...)
+{
+ va_list vargs;
+#ifdef HAVE_STDARG_PROTOTYPES
+ va_start(vargs, format);
+#else
+ va_start(vargs);
+#endif
+ PyObject *msg = PyUnicode_FromFormatV(format, vargs);
+ va_end(vargs);
+ if (msg == NULL) {
+ return 0;
+ }
+ PyObject *loc = PyErr_ProgramTextObject(c->c_filename, c->u->u_lineno);
+ if (loc == NULL) {
+ Py_INCREF(Py_None);
+ loc = Py_None;
+ }
+ PyObject *args = Py_BuildValue("O(OiiOii)", msg, c->c_filename,
+ c->u->u_lineno, c->u->u_col_offset + 1, loc,
+ c->u->u_end_lineno, c->u->u_end_col_offset + 1);
+ Py_DECREF(msg);
+ if (args == NULL) {
+ goto exit;
+ }
+ PyErr_SetObject(PyExc_SyntaxError, args);
+ exit:
+ Py_DECREF(loc);
+ Py_XDECREF(args);
+ return 0;
+}
+
+/* Emits a SyntaxWarning and returns 1 on success.
+ If a SyntaxWarning raised as error, replaces it with a SyntaxError
+ and returns 0.
+*/
+static int
+compiler_warn(struct compiler *c, const char *format, ...)
+{
+ va_list vargs;
+#ifdef HAVE_STDARG_PROTOTYPES
+ va_start(vargs, format);
+#else
+ va_start(vargs);
+#endif
+ PyObject *msg = PyUnicode_FromFormatV(format, vargs);
+ va_end(vargs);
+ if (msg == NULL) {
+ return 0;
+ }
+ if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg, c->c_filename,
+ c->u->u_lineno, NULL, NULL) < 0)
+ {
+ if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) {
+ /* Replace the SyntaxWarning exception with a SyntaxError
+ to get a more accurate error report */
+ PyErr_Clear();
+ assert(PyUnicode_AsUTF8(msg) != NULL);
+ compiler_error(c, PyUnicode_AsUTF8(msg));
+ }
+ Py_DECREF(msg);
+ return 0;
+ }
+ Py_DECREF(msg);
+ return 1;
+}
+
+static int
+compiler_subscript(struct compiler *c, expr_ty e)
+{
+ expr_context_ty ctx = e->v.Subscript.ctx;
+ int op = 0;
+
+ if (ctx == Load) {
+ if (!check_subscripter(c, e->v.Subscript.value)) {
+ return 0;
+ }
+ if (!check_index(c, e->v.Subscript.value, e->v.Subscript.slice)) {
+ return 0;
+ }
+ }
+
+ switch (ctx) {
+ case Load: op = BINARY_SUBSCR; break;
+ case Store: op = STORE_SUBSCR; break;
+ case Del: op = DELETE_SUBSCR; break;
+ }
+ assert(op);
+ VISIT(c, expr, e->v.Subscript.value);
+ VISIT(c, expr, e->v.Subscript.slice);
+ ADDOP(c, op);
+ return 1;
+}
+
+static int
+compiler_slice(struct compiler *c, expr_ty s)
+{
+ int n = 2;
+ assert(s->kind == Slice_kind);
+
+ /* only handles the cases where BUILD_SLICE is emitted */
+ if (s->v.Slice.lower) {
+ VISIT(c, expr, s->v.Slice.lower);
+ }
+ else {
+ ADDOP_LOAD_CONST(c, Py_None);
+ }
+
+ if (s->v.Slice.upper) {
+ VISIT(c, expr, s->v.Slice.upper);
+ }
+ else {
+ ADDOP_LOAD_CONST(c, Py_None);
+ }
+
+ if (s->v.Slice.step) {
+ n++;
+ VISIT(c, expr, s->v.Slice.step);
+ }
+ ADDOP_I(c, BUILD_SLICE, n);
+ return 1;
+}
+
+
+// PEP 634: Structural Pattern Matching
+
+// To keep things simple, all compiler_pattern_* and pattern_helper_* routines
+// follow the convention of consuming TOS (the subject for the given pattern)
+// and calling jump_to_fail_pop on failure (no match).
+
+// When calling into these routines, it's important that pc->on_top be kept
+// updated to reflect the current number of items that we are using on the top
+// of the stack: they will be popped on failure, and any name captures will be
+// stored *underneath* them on success. This lets us defer all names stores
+// until the *entire* pattern matches.
+
+#define WILDCARD_CHECK(N) \
+ ((N)->kind == MatchAs_kind && !(N)->v.MatchAs.name)
+
+#define WILDCARD_STAR_CHECK(N) \
+ ((N)->kind == MatchStar_kind && !(N)->v.MatchStar.name)
+
+// Limit permitted subexpressions, even if the parser & AST validator let them through
+#define MATCH_VALUE_EXPR(N) \
+ ((N)->kind == Constant_kind || (N)->kind == Attribute_kind)
+
+// Allocate or resize pc->fail_pop to allow for n items to be popped on failure.
+static int
+ensure_fail_pop(struct compiler *c, pattern_context *pc, Py_ssize_t n)
+{
+ Py_ssize_t size = n + 1;
+ if (size <= pc->fail_pop_size) {
+ return 1;
+ }
+ Py_ssize_t needed = sizeof(basicblock*) * size;
+ basicblock **resized = PyObject_Realloc(pc->fail_pop, needed);
+ if (resized == NULL) {
+ PyErr_NoMemory();
+ return 0;
+ }
+ pc->fail_pop = resized;
+ while (pc->fail_pop_size < size) {
+ basicblock *new_block;
+ RETURN_IF_FALSE(new_block = compiler_new_block(c));
+ pc->fail_pop[pc->fail_pop_size++] = new_block;
+ }
+ return 1;
+}
+
+// Use op to jump to the correct fail_pop block.
+static int
+jump_to_fail_pop(struct compiler *c, pattern_context *pc, int op)
+{
+ // Pop any items on the top of the stack, plus any objects we were going to
+ // capture on success:
+ Py_ssize_t pops = pc->on_top + PyList_GET_SIZE(pc->stores);
+ RETURN_IF_FALSE(ensure_fail_pop(c, pc, pops));
+ ADDOP_JUMP(c, op, pc->fail_pop[pops]);
+ return 1;
+}
+
+// Build all of the fail_pop blocks and reset fail_pop.
+static int
+emit_and_reset_fail_pop(struct compiler *c, pattern_context *pc)
+{
+ if (!pc->fail_pop_size) {
+ assert(pc->fail_pop == NULL);
+ return 1;
+ }
+ while (--pc->fail_pop_size) {
+ compiler_use_next_block(c, pc->fail_pop[pc->fail_pop_size]);
+ if (!compiler_addop(c, POP_TOP)) {
+ pc->fail_pop_size = 0;
+ PyObject_Free(pc->fail_pop);
+ pc->fail_pop = NULL;
+ return 0;
+ }
+ }
+ compiler_use_next_block(c, pc->fail_pop[0]);
+ PyObject_Free(pc->fail_pop);
+ pc->fail_pop = NULL;
+ return 1;
+}
+
+static int
+compiler_error_duplicate_store(struct compiler *c, identifier n)
+{
+ return compiler_error(c, "multiple assignments to name %R in pattern", n);
+}
+
+// Duplicate the effect of 3.10's ROT_* instructions using SWAPs.
+static int
+pattern_helper_rotate(struct compiler *c, Py_ssize_t count)
+{
+ while (1 < count) {
+ ADDOP_I(c, SWAP, count--);
+ }
+ return 1;
+}
+
+static int
+pattern_helper_store_name(struct compiler *c, identifier n, pattern_context *pc)
+{
+ if (n == NULL) {
+ ADDOP(c, POP_TOP);
+ return 1;
+ }
+ if (forbidden_name(c, n, Store)) {
+ return 0;
+ }
+ // Can't assign to the same name twice:
+ int duplicate = PySequence_Contains(pc->stores, n);
+ if (duplicate < 0) {
+ return 0;
+ }
+ if (duplicate) {
+ return compiler_error_duplicate_store(c, n);
+ }
+ // Rotate this object underneath any items we need to preserve:
+ Py_ssize_t rotations = pc->on_top + PyList_GET_SIZE(pc->stores) + 1;
+ RETURN_IF_FALSE(pattern_helper_rotate(c, rotations));
+ return !PyList_Append(pc->stores, n);
+}
+
+
+static int
+pattern_unpack_helper(struct compiler *c, asdl_pattern_seq *elts)
+{
+ Py_ssize_t n = asdl_seq_LEN(elts);
+ int seen_star = 0;
+ for (Py_ssize_t i = 0; i < n; i++) {
+ pattern_ty elt = asdl_seq_GET(elts, i);
+ if (elt->kind == MatchStar_kind && !seen_star) {
+ if ((i >= (1 << 8)) ||
+ (n-i-1 >= (INT_MAX >> 8)))
+ return compiler_error(c,
+ "too many expressions in "
+ "star-unpacking sequence pattern");
+ ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8)));
+ seen_star = 1;
+ }
+ else if (elt->kind == MatchStar_kind) {
+ return compiler_error(c,
+ "multiple starred expressions in sequence pattern");
+ }
+ }
+ if (!seen_star) {
+ ADDOP_I(c, UNPACK_SEQUENCE, n);
+ }
+ return 1;
+}
+
+static int
+pattern_helper_sequence_unpack(struct compiler *c, asdl_pattern_seq *patterns,
+ Py_ssize_t star, pattern_context *pc)
+{
+ RETURN_IF_FALSE(pattern_unpack_helper(c, patterns));
+ Py_ssize_t size = asdl_seq_LEN(patterns);
+ // We've now got a bunch of new subjects on the stack. They need to remain
+ // there after each subpattern match:
+ pc->on_top += size;
+ for (Py_ssize_t i = 0; i < size; i++) {
+ // One less item to keep track of each time we loop through:
+ pc->on_top--;
+ pattern_ty pattern = asdl_seq_GET(patterns, i);
+ RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc));
+ }
+ return 1;
+}
+
+// Like pattern_helper_sequence_unpack, but uses BINARY_SUBSCR instead of
+// UNPACK_SEQUENCE / UNPACK_EX. This is more efficient for patterns with a
+// starred wildcard like [first, *_] / [first, *_, last] / [*_, last] / etc.
+static int
+pattern_helper_sequence_subscr(struct compiler *c, asdl_pattern_seq *patterns,
+ Py_ssize_t star, pattern_context *pc)
+{
+ // We need to keep the subject around for extracting elements:
+ pc->on_top++;
+ Py_ssize_t size = asdl_seq_LEN(patterns);
+ for (Py_ssize_t i = 0; i < size; i++) {
+ pattern_ty pattern = asdl_seq_GET(patterns, i);
+ if (WILDCARD_CHECK(pattern)) {
+ continue;
+ }
+ if (i == star) {
+ assert(WILDCARD_STAR_CHECK(pattern));
+ continue;
+ }
+ ADDOP_I(c, COPY, 1);
+ if (i < star) {
+ ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(i));
+ }
+ else {
+ // The subject may not support negative indexing! Compute a
+ // nonnegative index:
+ ADDOP(c, GET_LEN);
+ ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size - i));
+ ADDOP_BINARY(c, Sub);
+ }
+ ADDOP(c, BINARY_SUBSCR);
+ RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc));
+ }
+ // Pop the subject, we're done with it:
+ pc->on_top--;
+ ADDOP(c, POP_TOP);
+ return 1;
+}
+
+// Like compiler_pattern, but turn off checks for irrefutability.
+static int
+compiler_pattern_subpattern(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ int allow_irrefutable = pc->allow_irrefutable;
+ pc->allow_irrefutable = 1;
+ RETURN_IF_FALSE(compiler_pattern(c, p, pc));
+ pc->allow_irrefutable = allow_irrefutable;
+ return 1;
+}
+
+static int
+compiler_pattern_as(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchAs_kind);
+ if (p->v.MatchAs.pattern == NULL) {
+ // An irrefutable match:
+ if (!pc->allow_irrefutable) {
+ if (p->v.MatchAs.name) {
+ const char *e = "name capture %R makes remaining patterns unreachable";
+ return compiler_error(c, e, p->v.MatchAs.name);
+ }
+ const char *e = "wildcard makes remaining patterns unreachable";
+ return compiler_error(c, e);
+ }
+ return pattern_helper_store_name(c, p->v.MatchAs.name, pc);
+ }
+ // Need to make a copy for (possibly) storing later:
+ pc->on_top++;
+ ADDOP_I(c, COPY, 1);
+ RETURN_IF_FALSE(compiler_pattern(c, p->v.MatchAs.pattern, pc));
+ // Success! Store it:
+ pc->on_top--;
+ RETURN_IF_FALSE(pattern_helper_store_name(c, p->v.MatchAs.name, pc));
+ return 1;
+}
+
+static int
+compiler_pattern_star(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchStar_kind);
+ RETURN_IF_FALSE(pattern_helper_store_name(c, p->v.MatchStar.name, pc));
+ return 1;
+}
+
+static int
+validate_kwd_attrs(struct compiler *c, asdl_identifier_seq *attrs, asdl_pattern_seq* patterns)
+{
+ // Any errors will point to the pattern rather than the arg name as the
+ // parser is only supplying identifiers rather than Name or keyword nodes
+ Py_ssize_t nattrs = asdl_seq_LEN(attrs);
+ for (Py_ssize_t i = 0; i < nattrs; i++) {
+ identifier attr = ((identifier)asdl_seq_GET(attrs, i));
+ SET_LOC(c, ((pattern_ty) asdl_seq_GET(patterns, i)));
+ if (forbidden_name(c, attr, Store)) {
+ return -1;
+ }
+ for (Py_ssize_t j = i + 1; j < nattrs; j++) {
+ identifier other = ((identifier)asdl_seq_GET(attrs, j));
+ if (!PyUnicode_Compare(attr, other)) {
+ SET_LOC(c, ((pattern_ty) asdl_seq_GET(patterns, j)));
+ compiler_error(c, "attribute name repeated in class pattern: %U", attr);
+ return -1;
+ }
+ }
+ }
+ return 0;
+}
+
+static int
+compiler_pattern_class(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchClass_kind);
+ asdl_pattern_seq *patterns = p->v.MatchClass.patterns;
+ asdl_identifier_seq *kwd_attrs = p->v.MatchClass.kwd_attrs;
+ asdl_pattern_seq *kwd_patterns = p->v.MatchClass.kwd_patterns;
+ Py_ssize_t nargs = asdl_seq_LEN(patterns);
+ Py_ssize_t nattrs = asdl_seq_LEN(kwd_attrs);
+ Py_ssize_t nkwd_patterns = asdl_seq_LEN(kwd_patterns);
+ if (nattrs != nkwd_patterns) {
+ // AST validator shouldn't let this happen, but if it does,
+ // just fail, don't crash out of the interpreter
+ const char * e = "kwd_attrs (%d) / kwd_patterns (%d) length mismatch in class pattern";
+ return compiler_error(c, e, nattrs, nkwd_patterns);
+ }
+ if (INT_MAX < nargs || INT_MAX < nargs + nattrs - 1) {
+ const char *e = "too many sub-patterns in class pattern %R";
+ return compiler_error(c, e, p->v.MatchClass.cls);
+ }
+ if (nattrs) {
+ RETURN_IF_FALSE(!validate_kwd_attrs(c, kwd_attrs, kwd_patterns));
+ SET_LOC(c, p);
+ }
+ VISIT(c, expr, p->v.MatchClass.cls);
+ PyObject *attr_names;
+ RETURN_IF_FALSE(attr_names = PyTuple_New(nattrs));
+ Py_ssize_t i;
+ for (i = 0; i < nattrs; i++) {
+ PyObject *name = asdl_seq_GET(kwd_attrs, i);
+ Py_INCREF(name);
+ PyTuple_SET_ITEM(attr_names, i, name);
+ }
+ ADDOP_LOAD_CONST_NEW(c, attr_names);
+ ADDOP_I(c, MATCH_CLASS, nargs);
+ ADDOP_I(c, COPY, 1);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP_I(c, IS_OP, 1);
+ // TOS is now a tuple of (nargs + nattrs) attributes (or None):
+ pc->on_top++;
+ RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE));
+ ADDOP_I(c, UNPACK_SEQUENCE, nargs + nattrs);
+ pc->on_top += nargs + nattrs - 1;
+ for (i = 0; i < nargs + nattrs; i++) {
+ pc->on_top--;
+ pattern_ty pattern;
+ if (i < nargs) {
+ // Positional:
+ pattern = asdl_seq_GET(patterns, i);
+ }
+ else {
+ // Keyword:
+ pattern = asdl_seq_GET(kwd_patterns, i - nargs);
+ }
+ if (WILDCARD_CHECK(pattern)) {
+ ADDOP(c, POP_TOP);
+ continue;
+ }
+ RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc));
+ }
+ // Success! Pop the tuple of attributes:
+ return 1;
+}
+
+static int
+compiler_pattern_mapping(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchMapping_kind);
+ asdl_expr_seq *keys = p->v.MatchMapping.keys;
+ asdl_pattern_seq *patterns = p->v.MatchMapping.patterns;
+ Py_ssize_t size = asdl_seq_LEN(keys);
+ Py_ssize_t npatterns = asdl_seq_LEN(patterns);
+ if (size != npatterns) {
+ // AST validator shouldn't let this happen, but if it does,
+ // just fail, don't crash out of the interpreter
+ const char * e = "keys (%d) / patterns (%d) length mismatch in mapping pattern";
+ return compiler_error(c, e, size, npatterns);
+ }
+ // We have a double-star target if "rest" is set
+ PyObject *star_target = p->v.MatchMapping.rest;
+ // We need to keep the subject on top during the mapping and length checks:
+ pc->on_top++;
+ ADDOP(c, MATCH_MAPPING);
+ RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE));
+ if (!size && !star_target) {
+ // If the pattern is just "{}", we're done! Pop the subject:
+ pc->on_top--;
+ ADDOP(c, POP_TOP);
+ return 1;
+ }
+ if (size) {
+ // If the pattern has any keys in it, perform a length check:
+ ADDOP(c, GET_LEN);
+ ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size));
+ ADDOP_COMPARE(c, GtE);
+ RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE));
+ }
+ if (INT_MAX < size - 1) {
+ return compiler_error(c, "too many sub-patterns in mapping pattern");
+ }
+ // Collect all of the keys into a tuple for MATCH_KEYS and
+ // **rest. They can either be dotted names or literals:
+
+ // Maintaining a set of Constant_kind kind keys allows us to raise a
+ // SyntaxError in the case of duplicates.
+ PyObject *seen = PySet_New(NULL);
+ if (seen == NULL) {
+ return 0;
+ }
+
+ // NOTE: goto error on failure in the loop below to avoid leaking `seen`
+ for (Py_ssize_t i = 0; i < size; i++) {
+ expr_ty key = asdl_seq_GET(keys, i);
+ if (key == NULL) {
+ const char *e = "can't use NULL keys in MatchMapping "
+ "(set 'rest' parameter instead)";
+ SET_LOC(c, ((pattern_ty) asdl_seq_GET(patterns, i)));
+ compiler_error(c, e);
+ goto error;
+ }
+
+ if (key->kind == Constant_kind) {
+ int in_seen = PySet_Contains(seen, key->v.Constant.value);
+ if (in_seen < 0) {
+ goto error;
+ }
+ if (in_seen) {
+ const char *e = "mapping pattern checks duplicate key (%R)";
+ compiler_error(c, e, key->v.Constant.value);
+ goto error;
+ }
+ if (PySet_Add(seen, key->v.Constant.value)) {
+ goto error;
+ }
+ }
+
+ else if (key->kind != Attribute_kind) {
+ const char *e = "mapping pattern keys may only match literals and attribute lookups";
+ compiler_error(c, e);
+ goto error;
+ }
+ if (!compiler_visit_expr(c, key)) {
+ goto error;
+ }
+ }
+
+ // all keys have been checked; there are no duplicates
+ Py_DECREF(seen);
+
+ ADDOP_I(c, BUILD_TUPLE, size);
+ ADDOP(c, MATCH_KEYS);
+ // There's now a tuple of keys and a tuple of values on top of the subject:
+ pc->on_top += 2;
+ ADDOP_I(c, COPY, 1);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP_I(c, IS_OP, 1);
+ RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE));
+ // So far so good. Use that tuple of values on the stack to match
+ // sub-patterns against:
+ ADDOP_I(c, UNPACK_SEQUENCE, size);
+ pc->on_top += size - 1;
+ for (Py_ssize_t i = 0; i < size; i++) {
+ pc->on_top--;
+ pattern_ty pattern = asdl_seq_GET(patterns, i);
+ RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc));
+ }
+ // If we get this far, it's a match! Whatever happens next should consume
+ // the tuple of keys and the subject:
+ pc->on_top -= 2;
+ if (star_target) {
+ // If we have a starred name, bind a dict of remaining items to it (this may
+ // seem a bit inefficient, but keys is rarely big enough to actually impact
+ // runtime):
+ // rest = dict(TOS1)
+ // for key in TOS:
+ // del rest[key]
+ ADDOP_I(c, BUILD_MAP, 0); // [subject, keys, empty]
+ ADDOP_I(c, SWAP, 3); // [empty, keys, subject]
+ ADDOP_I(c, DICT_UPDATE, 2); // [copy, keys]
+ ADDOP_I(c, UNPACK_SEQUENCE, size); // [copy, keys...]
+ while (size) {
+ ADDOP_I(c, COPY, 1 + size--); // [copy, keys..., copy]
+ ADDOP_I(c, SWAP, 2); // [copy, keys..., copy, key]
+ ADDOP(c, DELETE_SUBSCR); // [copy, keys...]
+ }
+ RETURN_IF_FALSE(pattern_helper_store_name(c, star_target, pc));
+ }
+ else {
+ ADDOP(c, POP_TOP); // Tuple of keys.
+ ADDOP(c, POP_TOP); // Subject.
+ }
+ return 1;
+
+error:
+ Py_DECREF(seen);
+ return 0;
+}
+
+static int
+compiler_pattern_or(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchOr_kind);
+ basicblock *end;
+ RETURN_IF_FALSE(end = compiler_new_block(c));
+ Py_ssize_t size = asdl_seq_LEN(p->v.MatchOr.patterns);
+ assert(size > 1);
+ // We're going to be messing with pc. Keep the original info handy:
+ pattern_context old_pc = *pc;
+ Py_INCREF(pc->stores);
+ // control is the list of names bound by the first alternative. It is used
+ // for checking different name bindings in alternatives, and for correcting
+ // the order in which extracted elements are placed on the stack.
+ PyObject *control = NULL;
+ // NOTE: We can't use returning macros anymore! goto error on error.
+ for (Py_ssize_t i = 0; i < size; i++) {
+ pattern_ty alt = asdl_seq_GET(p->v.MatchOr.patterns, i);
+ SET_LOC(c, alt);
+ PyObject *pc_stores = PyList_New(0);
+ if (pc_stores == NULL) {
+ goto error;
+ }
+ Py_SETREF(pc->stores, pc_stores);
+ // An irrefutable sub-pattern must be last, if it is allowed at all:
+ pc->allow_irrefutable = (i == size - 1) && old_pc.allow_irrefutable;
+ pc->fail_pop = NULL;
+ pc->fail_pop_size = 0;
+ pc->on_top = 0;
+ if (!compiler_addop_i(c, COPY, 1) || !compiler_pattern(c, alt, pc)) {
+ goto error;
+ }
+ // Success!
+ Py_ssize_t nstores = PyList_GET_SIZE(pc->stores);
+ if (!i) {
+ // This is the first alternative, so save its stores as a "control"
+ // for the others (they can't bind a different set of names, and
+ // might need to be reordered):
+ assert(control == NULL);
+ control = pc->stores;
+ Py_INCREF(control);
+ }
+ else if (nstores != PyList_GET_SIZE(control)) {
+ goto diff;
+ }
+ else if (nstores) {
+ // There were captures. Check to see if we differ from control:
+ Py_ssize_t icontrol = nstores;
+ while (icontrol--) {
+ PyObject *name = PyList_GET_ITEM(control, icontrol);
+ Py_ssize_t istores = PySequence_Index(pc->stores, name);
+ if (istores < 0) {
+ PyErr_Clear();
+ goto diff;
+ }
+ if (icontrol != istores) {
+ // Reorder the names on the stack to match the order of the
+ // names in control. There's probably a better way of doing
+ // this; the current solution is potentially very
+ // inefficient when each alternative subpattern binds lots
+ // of names in different orders. It's fine for reasonable
+ // cases, though, and the peephole optimizer will ensure
+ // that the final code is as efficient as possible.
+ assert(istores < icontrol);
+ Py_ssize_t rotations = istores + 1;
+ // Perform the same rotation on pc->stores:
+ PyObject *rotated = PyList_GetSlice(pc->stores, 0,
+ rotations);
+ if (rotated == NULL ||
+ PyList_SetSlice(pc->stores, 0, rotations, NULL) ||
+ PyList_SetSlice(pc->stores, icontrol - istores,
+ icontrol - istores, rotated))
+ {
+ Py_XDECREF(rotated);
+ goto error;
+ }
+ Py_DECREF(rotated);
+ // That just did:
+ // rotated = pc_stores[:rotations]
+ // del pc_stores[:rotations]
+ // pc_stores[icontrol-istores:icontrol-istores] = rotated
+ // Do the same thing to the stack, using several
+ // rotations:
+ while (rotations--) {
+ if (!pattern_helper_rotate(c, icontrol + 1)){
+ goto error;
+ }
+ }
+ }
+ }
+ }
+ assert(control);
+ if (!compiler_addop_j(c, JUMP, end) ||
+ !emit_and_reset_fail_pop(c, pc))
+ {
+ goto error;
+ }
+ }
+ Py_DECREF(pc->stores);
+ *pc = old_pc;
+ Py_INCREF(pc->stores);
+ // Need to NULL this for the PyObject_Free call in the error block.
+ old_pc.fail_pop = NULL;
+ // No match. Pop the remaining copy of the subject and fail:
+ if (!compiler_addop(c, POP_TOP) || !jump_to_fail_pop(c, pc, JUMP)) {
+ goto error;
+ }
+ compiler_use_next_block(c, end);
+ Py_ssize_t nstores = PyList_GET_SIZE(control);
+ // There's a bunch of stuff on the stack between where the new stores
+ // are and where they need to be:
+ // - The other stores.
+ // - A copy of the subject.
+ // - Anything else that may be on top of the stack.
+ // - Any previous stores we've already stashed away on the stack.
+ Py_ssize_t nrots = nstores + 1 + pc->on_top + PyList_GET_SIZE(pc->stores);
+ for (Py_ssize_t i = 0; i < nstores; i++) {
+ // Rotate this capture to its proper place on the stack:
+ if (!pattern_helper_rotate(c, nrots)) {
+ goto error;
+ }
+ // Update the list of previous stores with this new name, checking for
+ // duplicates:
+ PyObject *name = PyList_GET_ITEM(control, i);
+ int dupe = PySequence_Contains(pc->stores, name);
+ if (dupe < 0) {
+ goto error;
+ }
+ if (dupe) {
+ compiler_error_duplicate_store(c, name);
+ goto error;
+ }
+ if (PyList_Append(pc->stores, name)) {
+ goto error;
+ }
+ }
+ Py_DECREF(old_pc.stores);
+ Py_DECREF(control);
+ // NOTE: Returning macros are safe again.
+ // Pop the copy of the subject:
+ ADDOP(c, POP_TOP);
+ return 1;
+diff:
+ compiler_error(c, "alternative patterns bind different names");
+error:
+ PyObject_Free(old_pc.fail_pop);
+ Py_DECREF(old_pc.stores);
+ Py_XDECREF(control);
+ return 0;
+}
+
+
+static int
+compiler_pattern_sequence(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchSequence_kind);
+ asdl_pattern_seq *patterns = p->v.MatchSequence.patterns;
+ Py_ssize_t size = asdl_seq_LEN(patterns);
+ Py_ssize_t star = -1;
+ int only_wildcard = 1;
+ int star_wildcard = 0;
+ // Find a starred name, if it exists. There may be at most one:
+ for (Py_ssize_t i = 0; i < size; i++) {
+ pattern_ty pattern = asdl_seq_GET(patterns, i);
+ if (pattern->kind == MatchStar_kind) {
+ if (star >= 0) {
+ const char *e = "multiple starred names in sequence pattern";
+ return compiler_error(c, e);
+ }
+ star_wildcard = WILDCARD_STAR_CHECK(pattern);
+ only_wildcard &= star_wildcard;
+ star = i;
+ continue;
+ }
+ only_wildcard &= WILDCARD_CHECK(pattern);
+ }
+ // We need to keep the subject on top during the sequence and length checks:
+ pc->on_top++;
+ ADDOP(c, MATCH_SEQUENCE);
+ RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE));
+ if (star < 0) {
+ // No star: len(subject) == size
+ ADDOP(c, GET_LEN);
+ ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size));
+ ADDOP_COMPARE(c, Eq);
+ RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE));
+ }
+ else if (size > 1) {
+ // Star: len(subject) >= size - 1
+ ADDOP(c, GET_LEN);
+ ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size - 1));
+ ADDOP_COMPARE(c, GtE);
+ RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE));
+ }
+ // Whatever comes next should consume the subject:
+ pc->on_top--;
+ if (only_wildcard) {
+ // Patterns like: [] / [_] / [_, _] / [*_] / [_, *_] / [_, _, *_] / etc.
+ ADDOP(c, POP_TOP);
+ }
+ else if (star_wildcard) {
+ RETURN_IF_FALSE(pattern_helper_sequence_subscr(c, patterns, star, pc));
+ }
+ else {
+ RETURN_IF_FALSE(pattern_helper_sequence_unpack(c, patterns, star, pc));
+ }
+ return 1;
+}
+
+static int
+compiler_pattern_value(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchValue_kind);
+ expr_ty value = p->v.MatchValue.value;
+ if (!MATCH_VALUE_EXPR(value)) {
+ const char *e = "patterns may only match literals and attribute lookups";
+ return compiler_error(c, e);
+ }
+ VISIT(c, expr, value);
+ ADDOP_COMPARE(c, Eq);
+ RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE));
+ return 1;
+}
+
+static int
+compiler_pattern_singleton(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ assert(p->kind == MatchSingleton_kind);
+ ADDOP_LOAD_CONST(c, p->v.MatchSingleton.value);
+ ADDOP_COMPARE(c, Is);
+ RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE));
+ return 1;
+}
+
+static int
+compiler_pattern(struct compiler *c, pattern_ty p, pattern_context *pc)
+{
+ SET_LOC(c, p);
+ switch (p->kind) {
+ case MatchValue_kind:
+ return compiler_pattern_value(c, p, pc);
+ case MatchSingleton_kind:
+ return compiler_pattern_singleton(c, p, pc);
+ case MatchSequence_kind:
+ return compiler_pattern_sequence(c, p, pc);
+ case MatchMapping_kind:
+ return compiler_pattern_mapping(c, p, pc);
+ case MatchClass_kind:
+ return compiler_pattern_class(c, p, pc);
+ case MatchStar_kind:
+ return compiler_pattern_star(c, p, pc);
+ case MatchAs_kind:
+ return compiler_pattern_as(c, p, pc);
+ case MatchOr_kind:
+ return compiler_pattern_or(c, p, pc);
+ }
+ // AST validator shouldn't let this happen, but if it does,
+ // just fail, don't crash out of the interpreter
+ const char *e = "invalid match pattern node in AST (kind=%d)";
+ return compiler_error(c, e, p->kind);
+}
+
+static int
+compiler_match_inner(struct compiler *c, stmt_ty s, pattern_context *pc)
+{
+ VISIT(c, expr, s->v.Match.subject);
+ basicblock *end;
+ RETURN_IF_FALSE(end = compiler_new_block(c));
+ Py_ssize_t cases = asdl_seq_LEN(s->v.Match.cases);
+ assert(cases > 0);
+ match_case_ty m = asdl_seq_GET(s->v.Match.cases, cases - 1);
+ int has_default = WILDCARD_CHECK(m->pattern) && 1 < cases;
+ for (Py_ssize_t i = 0; i < cases - has_default; i++) {
+ m = asdl_seq_GET(s->v.Match.cases, i);
+ SET_LOC(c, m->pattern);
+ // Only copy the subject if we're *not* on the last case:
+ if (i != cases - has_default - 1) {
+ ADDOP_I(c, COPY, 1);
+ }
+ RETURN_IF_FALSE(pc->stores = PyList_New(0));
+ // Irrefutable cases must be either guarded, last, or both:
+ pc->allow_irrefutable = m->guard != NULL || i == cases - 1;
+ pc->fail_pop = NULL;
+ pc->fail_pop_size = 0;
+ pc->on_top = 0;
+ // NOTE: Can't use returning macros here (they'll leak pc->stores)!
+ if (!compiler_pattern(c, m->pattern, pc)) {
+ Py_DECREF(pc->stores);
+ return 0;
+ }
+ assert(!pc->on_top);
+ // It's a match! Store all of the captured names (they're on the stack).
+ Py_ssize_t nstores = PyList_GET_SIZE(pc->stores);
+ for (Py_ssize_t n = 0; n < nstores; n++) {
+ PyObject *name = PyList_GET_ITEM(pc->stores, n);
+ if (!compiler_nameop(c, name, Store)) {
+ Py_DECREF(pc->stores);
+ return 0;
+ }
+ }
+ Py_DECREF(pc->stores);
+ // NOTE: Returning macros are safe again.
+ if (m->guard) {
+ RETURN_IF_FALSE(ensure_fail_pop(c, pc, 0));
+ RETURN_IF_FALSE(compiler_jump_if(c, m->guard, pc->fail_pop[0], 0));
+ }
+ // Success! Pop the subject off, we're done with it:
+ if (i != cases - has_default - 1) {
+ ADDOP(c, POP_TOP);
+ }
+ VISIT_SEQ(c, stmt, m->body);
+ UNSET_LOC(c);
+ ADDOP_JUMP(c, JUMP, end);
+ // If the pattern fails to match, we want the line number of the
+ // cleanup to be associated with the failed pattern, not the last line
+ // of the body
+ SET_LOC(c, m->pattern);
+ RETURN_IF_FALSE(emit_and_reset_fail_pop(c, pc));
+ }
+ if (has_default) {
+ // A trailing "case _" is common, and lets us save a bit of redundant
+ // pushing and popping in the loop above:
+ m = asdl_seq_GET(s->v.Match.cases, cases - 1);
+ SET_LOC(c, m->pattern);
+ if (cases == 1) {
+ // No matches. Done with the subject:
+ ADDOP(c, POP_TOP);
+ }
+ else {
+ // Show line coverage for default case (it doesn't create bytecode)
+ ADDOP(c, NOP);
+ }
+ if (m->guard) {
+ RETURN_IF_FALSE(compiler_jump_if(c, m->guard, end, 0));
+ }
+ VISIT_SEQ(c, stmt, m->body);
+ UNSET_LOC(c);
+ }
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+static int
+compiler_match(struct compiler *c, stmt_ty s)
+{
+ pattern_context pc;
+ pc.fail_pop = NULL;
+ int result = compiler_match_inner(c, s, &pc);
+ PyObject_Free(pc.fail_pop);
+ return result;
+}
+
+#undef WILDCARD_CHECK
+#undef WILDCARD_STAR_CHECK
+
+/* End of the compiler section, beginning of the assembler section */
+
+/* do depth-first search of basic block graph, starting with block.
+ post records the block indices in post-order.
+
+ XXX must handle implicit jumps from one block to next
+*/
+
+
+struct assembler {
+ PyObject *a_bytecode; /* bytes containing bytecode */
+ PyObject *a_except_table; /* bytes containing exception table */
+ basicblock *a_entry;
+ int a_offset; /* offset into bytecode */
+ int a_nblocks; /* number of reachable blocks */
+ int a_except_table_off; /* offset into exception table */
+ int a_prevlineno; /* lineno of last emitted line in line table */
+ int a_prev_end_lineno; /* end_lineno of last emitted line in line table */
+ int a_lineno; /* lineno of last emitted instruction */
+ int a_end_lineno; /* end_lineno of last emitted instruction */
+ int a_lineno_start; /* bytecode start offset of current lineno */
+ int a_end_lineno_start; /* bytecode start offset of current end_lineno */
+ /* Location Info */
+ PyObject* a_linetable; /* bytes containing location info */
+ int a_location_off; /* offset of last written location info frame */
+};
+
+Py_LOCAL_INLINE(void)
+stackdepth_push(basicblock ***sp, basicblock *b, int depth)
+{
+ assert(b->b_startdepth < 0 || b->b_startdepth == depth);
+ if (b->b_startdepth < depth && b->b_startdepth < 100) {
+ assert(b->b_startdepth < 0);
+ b->b_startdepth = depth;
+ *(*sp)++ = b;
+ }
+}
+
+/* Find the flow path that needs the largest stack. We assume that
+ * cycles in the flow graph have no net effect on the stack depth.
+ */
+static int
+stackdepth(struct compiler *c)
+{
+ basicblock *b, *entryblock = NULL;
+ basicblock **stack, **sp;
+ int nblocks = 0, maxdepth = 0;
+ for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ b->b_startdepth = INT_MIN;
+ entryblock = b;
+ nblocks++;
+ }
+ assert(entryblock!= NULL);
+ stack = (basicblock **)PyObject_Malloc(sizeof(basicblock *) * nblocks);
+ if (!stack) {
+ PyErr_NoMemory();
+ return -1;
+ }
+
+ sp = stack;
+ if (c->u->u_ste->ste_generator || c->u->u_ste->ste_coroutine) {
+ stackdepth_push(&sp, entryblock, 1);
+ } else {
+ stackdepth_push(&sp, entryblock, 0);
+ }
+ while (sp != stack) {
+ b = *--sp;
+ int depth = b->b_startdepth;
+ assert(depth >= 0);
+ basicblock *next = b->b_next;
+ for (int i = 0; i < b->b_iused; i++) {
+ struct instr *instr = &b->b_instr[i];
+ int effect = stack_effect(instr->i_opcode, instr->i_oparg, 0);
+ if (effect == PY_INVALID_STACK_EFFECT) {
+ PyErr_Format(PyExc_SystemError,
+ "compiler stack_effect(opcode=%d, arg=%i) failed",
+ instr->i_opcode, instr->i_oparg);
+ return -1;
+ }
+ int new_depth = depth + effect;
+ if (new_depth > maxdepth) {
+ maxdepth = new_depth;
+ }
+ assert(depth >= 0); /* invalid code or bug in stackdepth() */
+ if (is_jump(instr) || is_block_push(instr)) {
+ effect = stack_effect(instr->i_opcode, instr->i_oparg, 1);
+ assert(effect != PY_INVALID_STACK_EFFECT);
+ int target_depth = depth + effect;
+ if (target_depth > maxdepth) {
+ maxdepth = target_depth;
+ }
+ assert(target_depth >= 0); /* invalid code or bug in stackdepth() */
+ stackdepth_push(&sp, instr->i_target, target_depth);
+ }
+ depth = new_depth;
+ assert(!IS_ASSEMBLER_OPCODE(instr->i_opcode));
+ if (instr->i_opcode == JUMP_NO_INTERRUPT ||
+ instr->i_opcode == JUMP ||
+ instr->i_opcode == RETURN_VALUE ||
+ instr->i_opcode == RAISE_VARARGS ||
+ instr->i_opcode == RERAISE)
+ {
+ /* remaining code is dead */
+ next = NULL;
+ break;
+ }
+ }
+ if (next != NULL) {
+ assert(b->b_nofallthrough == 0);
+ stackdepth_push(&sp, next, depth);
+ }
+ }
+ PyObject_Free(stack);
+ return maxdepth;
+}
+
+static int
+assemble_init(struct assembler *a, int nblocks, int firstlineno)
+{
+ memset(a, 0, sizeof(struct assembler));
+ a->a_prevlineno = a->a_lineno = firstlineno;
+ a->a_prev_end_lineno = a->a_end_lineno = firstlineno;
+ a->a_linetable = NULL;
+ a->a_location_off = 0;
+ a->a_except_table = NULL;
+ a->a_bytecode = PyBytes_FromStringAndSize(NULL, DEFAULT_CODE_SIZE);
+ if (a->a_bytecode == NULL) {
+ goto error;
+ }
+ a->a_linetable = PyBytes_FromStringAndSize(NULL, DEFAULT_CNOTAB_SIZE);
+ if (a->a_linetable == NULL) {
+ goto error;
+ }
+ a->a_except_table = PyBytes_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE);
+ if (a->a_except_table == NULL) {
+ goto error;
+ }
+ if ((size_t)nblocks > SIZE_MAX / sizeof(basicblock *)) {
+ PyErr_NoMemory();
+ goto error;
+ }
+ return 1;
+error:
+ Py_XDECREF(a->a_bytecode);
+ Py_XDECREF(a->a_linetable);
+ Py_XDECREF(a->a_except_table);
+ return 0;
+}
+
+static void
+assemble_free(struct assembler *a)
+{
+ Py_XDECREF(a->a_bytecode);
+ Py_XDECREF(a->a_linetable);
+ Py_XDECREF(a->a_except_table);
+}
+
+static int
+blocksize(basicblock *b)
+{
+ int i;
+ int size = 0;
+
+ for (i = 0; i < b->b_iused; i++) {
+ size += instr_size(&b->b_instr[i]);
+ }
+ return size;
+}
+
+static basicblock *
+push_except_block(ExceptStack *stack, struct instr *setup) {
+ assert(is_block_push(setup));
+ int opcode = setup->i_opcode;
+ basicblock * target = setup->i_target;
+ if (opcode == SETUP_WITH || opcode == SETUP_CLEANUP) {
+ target->b_preserve_lasti = 1;
+ }
+ stack->handlers[++stack->depth] = target;
+ return target;
+}
+
+static basicblock *
+pop_except_block(ExceptStack *stack) {
+ assert(stack->depth > 0);
+ return stack->handlers[--stack->depth];
+}
+
+static basicblock *
+except_stack_top(ExceptStack *stack) {
+ return stack->handlers[stack->depth];
+}
+
+static ExceptStack *
+make_except_stack(void) {
+ ExceptStack *new = PyMem_Malloc(sizeof(ExceptStack));
+ if (new == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+ new->depth = 0;
+ new->handlers[0] = NULL;
+ return new;
+}
+
+static ExceptStack *
+copy_except_stack(ExceptStack *stack) {
+ ExceptStack *copy = PyMem_Malloc(sizeof(ExceptStack));
+ if (copy == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+ memcpy(copy, stack, sizeof(ExceptStack));
+ return copy;
+}
+
+static int
+label_exception_targets(basicblock *entry) {
+ int nblocks = 0;
+ for (basicblock *b = entry; b != NULL; b = b->b_next) {
+ b->b_visited = 0;
+ nblocks++;
+ }
+ basicblock **todo_stack = PyMem_Malloc(sizeof(basicblock *)*nblocks);
+ if (todo_stack == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ ExceptStack *except_stack = make_except_stack();
+ if (except_stack == NULL) {
+ PyMem_Free(todo_stack);
+ PyErr_NoMemory();
+ return -1;
+ }
+ except_stack->depth = 0;
+ todo_stack[0] = entry;
+ entry->b_visited = 1;
+ entry->b_exceptstack = except_stack;
+ basicblock **todo = &todo_stack[1];
+ basicblock *handler = NULL;
+ while (todo > todo_stack) {
+ todo--;
+ basicblock *b = todo[0];
+ assert(b->b_visited == 1);
+ except_stack = b->b_exceptstack;
+ assert(except_stack != NULL);
+ b->b_exceptstack = NULL;
+ handler = except_stack_top(except_stack);
+ for (int i = 0; i < b->b_iused; i++) {
+ struct instr *instr = &b->b_instr[i];
+ if (is_block_push(instr)) {
+ if (!instr->i_target->b_visited) {
+ ExceptStack *copy = copy_except_stack(except_stack);
+ if (copy == NULL) {
+ goto error;
+ }
+ instr->i_target->b_exceptstack = copy;
+ todo[0] = instr->i_target;
+ instr->i_target->b_visited = 1;
+ todo++;
+ }
+ handler = push_except_block(except_stack, instr);
+ }
+ else if (instr->i_opcode == POP_BLOCK) {
+ handler = pop_except_block(except_stack);
+ }
+ else if (is_jump(instr)) {
+ instr->i_except = handler;
+ assert(i == b->b_iused -1);
+ if (!instr->i_target->b_visited) {
+ if (b->b_nofallthrough == 0) {
+ ExceptStack *copy = copy_except_stack(except_stack);
+ if (copy == NULL) {
+ goto error;
+ }
+ instr->i_target->b_exceptstack = copy;
+ }
+ else {
+ instr->i_target->b_exceptstack = except_stack;
+ except_stack = NULL;
+ }
+ todo[0] = instr->i_target;
+ instr->i_target->b_visited = 1;
+ todo++;
+ }
+ }
+ else {
+ instr->i_except = handler;
+ }
+ }
+ if (b->b_nofallthrough == 0 && !b->b_next->b_visited) {
+ assert(except_stack != NULL);
+ b->b_next->b_exceptstack = except_stack;
+ todo[0] = b->b_next;
+ b->b_next->b_visited = 1;
+ todo++;
+ }
+ else if (except_stack != NULL) {
+ PyMem_Free(except_stack);
+ }
+ }
+#ifdef Py_DEBUG
+ for (basicblock *b = entry; b != NULL; b = b->b_next) {
+ assert(b->b_exceptstack == NULL);
+ }
+#endif
+ PyMem_Free(todo_stack);
+ return 0;
+error:
+ PyMem_Free(todo_stack);
+ PyMem_Free(except_stack);
+ return -1;
+}
+
+
+static void
+convert_exception_handlers_to_nops(basicblock *entry) {
+ for (basicblock *b = entry; b != NULL; b = b->b_next) {
+ for (int i = 0; i < b->b_iused; i++) {
+ struct instr *instr = &b->b_instr[i];
+ if (is_block_push(instr) || instr->i_opcode == POP_BLOCK) {
+ instr->i_opcode = NOP;
+ }
+ }
+ }
+}
+
+static inline void
+write_except_byte(struct assembler *a, int byte) {
+ unsigned char *p = (unsigned char *) PyBytes_AS_STRING(a->a_except_table);
+ p[a->a_except_table_off++] = byte;
+}
+
+#define CONTINUATION_BIT 64
+
+static void
+assemble_emit_exception_table_item(struct assembler *a, int value, int msb)
+{
+ assert ((msb | 128) == 128);
+ assert(value >= 0 && value < (1 << 30));
+ if (value >= 1 << 24) {
+ write_except_byte(a, (value >> 24) | CONTINUATION_BIT | msb);
+ msb = 0;
+ }
+ if (value >= 1 << 18) {
+ write_except_byte(a, ((value >> 18)&0x3f) | CONTINUATION_BIT | msb);
+ msb = 0;
+ }
+ if (value >= 1 << 12) {
+ write_except_byte(a, ((value >> 12)&0x3f) | CONTINUATION_BIT | msb);
+ msb = 0;
+ }
+ if (value >= 1 << 6) {
+ write_except_byte(a, ((value >> 6)&0x3f) | CONTINUATION_BIT | msb);
+ msb = 0;
+ }
+ write_except_byte(a, (value&0x3f) | msb);
+}
+
+/* See Objects/exception_handling_notes.txt for details of layout */
+#define MAX_SIZE_OF_ENTRY 20
+
+static int
+assemble_emit_exception_table_entry(struct assembler *a, int start, int end, basicblock *handler)
+{
+ Py_ssize_t len = PyBytes_GET_SIZE(a->a_except_table);
+ if (a->a_except_table_off + MAX_SIZE_OF_ENTRY >= len) {
+ if (_PyBytes_Resize(&a->a_except_table, len * 2) < 0)
+ return 0;
+ }
+ int size = end-start;
+ assert(end > start);
+ int target = handler->b_offset;
+ int depth = handler->b_startdepth - 1;
+ if (handler->b_preserve_lasti) {
+ depth -= 1;
+ }
+ assert(depth >= 0);
+ int depth_lasti = (depth<<1) | handler->b_preserve_lasti;
+ assemble_emit_exception_table_item(a, start, (1<<7));
+ assemble_emit_exception_table_item(a, size, 0);
+ assemble_emit_exception_table_item(a, target, 0);
+ assemble_emit_exception_table_item(a, depth_lasti, 0);
+ return 1;
+}
+
+static int
+assemble_exception_table(struct assembler *a)
+{
+ basicblock *b;
+ int ioffset = 0;
+ basicblock *handler = NULL;
+ int start = -1;
+ for (b = a->a_entry; b != NULL; b = b->b_next) {
+ ioffset = b->b_offset;
+ for (int i = 0; i < b->b_iused; i++) {
+ struct instr *instr = &b->b_instr[i];
+ if (instr->i_except != handler) {
+ if (handler != NULL) {
+ RETURN_IF_FALSE(assemble_emit_exception_table_entry(a, start, ioffset, handler));
+ }
+ start = ioffset;
+ handler = instr->i_except;
+ }
+ ioffset += instr_size(instr);
+ }
+ }
+ if (handler != NULL) {
+ RETURN_IF_FALSE(assemble_emit_exception_table_entry(a, start, ioffset, handler));
+ }
+ return 1;
+}
+
+/* Code location emitting code. See locations.md for a description of the format. */
+
+#define MSB 0x80
+
+static void
+write_location_byte(struct assembler* a, int val)
+{
+ PyBytes_AS_STRING(a->a_linetable)[a->a_location_off] = val&255;
+ a->a_location_off++;
+}
+
+
+static uint8_t *
+location_pointer(struct assembler* a)
+{
+ return (uint8_t *)PyBytes_AS_STRING(a->a_linetable) +
+ a->a_location_off;
+}
+
+static void
+write_location_first_byte(struct assembler* a, int code, int length)
+{
+ a->a_location_off += write_location_entry_start(
+ location_pointer(a), code, length);
+}
+
+static void
+write_location_varint(struct assembler* a, unsigned int val)
+{
+ uint8_t *ptr = location_pointer(a);
+ a->a_location_off += write_varint(ptr, val);
+}
+
+
+static void
+write_location_signed_varint(struct assembler* a, int val)
+{
+ uint8_t *ptr = location_pointer(a);
+ a->a_location_off += write_signed_varint(ptr, val);
+}
+
+static void
+write_location_info_short_form(struct assembler* a, int length, int column, int end_column)
+{
+ assert(length > 0 && length <= 8);
+ int column_low_bits = column & 7;
+ int column_group = column >> 3;
+ assert(column < 80);
+ assert(end_column >= column);
+ assert(end_column - column < 16);
+ write_location_first_byte(a, PY_CODE_LOCATION_INFO_SHORT0 + column_group, length);
+ write_location_byte(a, (column_low_bits << 4) | (end_column - column));
+}
+
+static void
+write_location_info_oneline_form(struct assembler* a, int length, int line_delta, int column, int end_column)
+{
+ assert(length > 0 && length <= 8);
+ assert(line_delta >= 0 && line_delta < 3);
+ assert(column < 128);
+ assert(end_column < 128);
+ write_location_first_byte(a, PY_CODE_LOCATION_INFO_ONE_LINE0 + line_delta, length);
+ write_location_byte(a, column);
+ write_location_byte(a, end_column);
+}
+
+static void
+write_location_info_long_form(struct assembler* a, struct instr* i, int length)
+{
+ assert(length > 0 && length <= 8);
+ write_location_first_byte(a, PY_CODE_LOCATION_INFO_LONG, length);
+ write_location_signed_varint(a, i->i_lineno - a->a_lineno);
+ assert(i->i_end_lineno >= i->i_lineno);
+ write_location_varint(a, i->i_end_lineno - i->i_lineno);
+ write_location_varint(a, i->i_col_offset+1);
+ write_location_varint(a, i->i_end_col_offset+1);
+}
+
+static void
+write_location_info_none(struct assembler* a, int length)
+{
+ write_location_first_byte(a, PY_CODE_LOCATION_INFO_NONE, length);
+}
+
+static void
+write_location_info_no_column(struct assembler* a, int length, int line_delta)
+{
+ write_location_first_byte(a, PY_CODE_LOCATION_INFO_NO_COLUMNS, length);
+ write_location_signed_varint(a, line_delta);
+}
+
+#define THEORETICAL_MAX_ENTRY_SIZE 25 /* 1 + 6 + 6 + 6 + 6 */
+
+static int
+write_location_info_entry(struct assembler* a, struct instr* i, int isize)
+{
+ Py_ssize_t len = PyBytes_GET_SIZE(a->a_linetable);
+ if (a->a_location_off + THEORETICAL_MAX_ENTRY_SIZE >= len) {
+ assert(len > THEORETICAL_MAX_ENTRY_SIZE);
+ if (_PyBytes_Resize(&a->a_linetable, len*2) < 0) {
+ return 0;
+ }
+ }
+ if (i->i_lineno < 0) {
+ write_location_info_none(a, isize);
+ return 1;
+ }
+ int line_delta = i->i_lineno - a->a_lineno;
+ int column = i->i_col_offset;
+ int end_column = i->i_end_col_offset;
+ assert(column >= -1);
+ assert(end_column >= -1);
+ if (column < 0 || end_column < 0) {
+ if (i->i_end_lineno == i->i_lineno || i->i_end_lineno == -1) {
+ write_location_info_no_column(a, isize, line_delta);
+ a->a_lineno = i->i_lineno;
+ return 1;
+ }
+ }
+ else if (i->i_end_lineno == i->i_lineno) {
+ if (line_delta == 0 && column < 80 && end_column - column < 16 && end_column >= column) {
+ write_location_info_short_form(a, isize, column, end_column);
+ return 1;
+ }
+ if (line_delta >= 0 && line_delta < 3 && column < 128 && end_column < 128) {
+ write_location_info_oneline_form(a, isize, line_delta, column, end_column);
+ a->a_lineno = i->i_lineno;
+ return 1;
+ }
+ }
+ write_location_info_long_form(a, i, isize);
+ a->a_lineno = i->i_lineno;
+ return 1;
+}
+
+static int
+assemble_emit_location(struct assembler* a, struct instr* i)
+{
+ int isize = instr_size(i);
+ while (isize > 8) {
+ if (!write_location_info_entry(a, i, 8)) {
+ return 0;
+ }
+ isize -= 8;
+ }
+ return write_location_info_entry(a, i, isize);
+}
+
+/* assemble_emit()
+ Extend the bytecode with a new instruction.
+ Update lnotab if necessary.
+*/
+
+static int
+assemble_emit(struct assembler *a, struct instr *i)
+{
+ Py_ssize_t len = PyBytes_GET_SIZE(a->a_bytecode);
+ _Py_CODEUNIT *code;
+
+ int size = instr_size(i);
+ if (a->a_offset + size >= len / (int)sizeof(_Py_CODEUNIT)) {
+ if (len > PY_SSIZE_T_MAX / 2)
+ return 0;
+ if (_PyBytes_Resize(&a->a_bytecode, len * 2) < 0)
+ return 0;
+ }
+ code = (_Py_CODEUNIT *)PyBytes_AS_STRING(a->a_bytecode) + a->a_offset;
+ a->a_offset += size;
+ write_instr(code, i, size);
+ return 1;
+}
+
+static void
+normalize_jumps(struct assembler *a)
+{
+ for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
+ b->b_visited = 0;
+ }
+ for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
+ b->b_visited = 1;
+ if (b->b_iused == 0) {
+ continue;
+ }
+ struct instr *last = &b->b_instr[b->b_iused-1];
+ assert(!IS_ASSEMBLER_OPCODE(last->i_opcode));
+ if (is_jump(last)) {
+ bool is_forward = last->i_target->b_visited == 0;
+ switch(last->i_opcode) {
+ case JUMP:
+ last->i_opcode = is_forward ? JUMP_FORWARD : JUMP_BACKWARD;
+ break;
+ case JUMP_NO_INTERRUPT:
+ last->i_opcode = is_forward ?
+ JUMP_FORWARD : JUMP_BACKWARD_NO_INTERRUPT;
+ break;
+ case POP_JUMP_IF_NOT_NONE:
+ last->i_opcode = is_forward ?
+ POP_JUMP_FORWARD_IF_NOT_NONE : POP_JUMP_BACKWARD_IF_NOT_NONE;
+ break;
+ case POP_JUMP_IF_NONE:
+ last->i_opcode = is_forward ?
+ POP_JUMP_FORWARD_IF_NONE : POP_JUMP_BACKWARD_IF_NONE;
+ break;
+ case POP_JUMP_IF_FALSE:
+ last->i_opcode = is_forward ?
+ POP_JUMP_FORWARD_IF_FALSE : POP_JUMP_BACKWARD_IF_FALSE;
+ break;
+ case POP_JUMP_IF_TRUE:
+ last->i_opcode = is_forward ?
+ POP_JUMP_FORWARD_IF_TRUE : POP_JUMP_BACKWARD_IF_TRUE;
+ break;
+ case JUMP_IF_TRUE_OR_POP:
+ case JUMP_IF_FALSE_OR_POP:
+ if (!is_forward) {
+ /* As far as we can tell, the compiler never emits
+ * these jumps with a backwards target. If/when this
+ * exception is raised, we have found a use case for
+ * a backwards version of this jump (or to replace
+ * it with the sequence (COPY 1, POP_JUMP_IF_T/F, POP)
+ */
+ PyErr_Format(PyExc_SystemError,
+ "unexpected %s jumping backwards",
+ last->i_opcode == JUMP_IF_TRUE_OR_POP ?
+ "JUMP_IF_TRUE_OR_POP" : "JUMP_IF_FALSE_OR_POP");
+ }
+ break;
+ }
+ }
+ }
+}
+
+static void
+assemble_jump_offsets(struct assembler *a, struct compiler *c)
+{
+ basicblock *b;
+ int bsize, totsize, extended_arg_recompile;
+ int i;
+
+ /* Compute the size of each block and fixup jump args.
+ Replace block pointer with position in bytecode. */
+ do {
+ totsize = 0;
+ for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
+ bsize = blocksize(b);
+ b->b_offset = totsize;
+ totsize += bsize;
+ }
+ extended_arg_recompile = 0;
+ for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ bsize = b->b_offset;
+ for (i = 0; i < b->b_iused; i++) {
+ struct instr *instr = &b->b_instr[i];
+ int isize = instr_size(instr);
+ /* Relative jumps are computed relative to
+ the instruction pointer after fetching
+ the jump instruction.
+ */
+ bsize += isize;
+ if (is_jump(instr)) {
+ instr->i_oparg = instr->i_target->b_offset;
+ if (is_relative_jump(instr)) {
+ if (instr->i_oparg < bsize) {
+ assert(IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode));
+ instr->i_oparg = bsize - instr->i_oparg;
+ }
+ else {
+ assert(!IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode));
+ instr->i_oparg -= bsize;
+ }
+ }
+ else {
+ assert(!IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode));
+ }
+ if (instr_size(instr) != isize) {
+ extended_arg_recompile = 1;
+ }
+ }
+ }
+ }
+
+ /* XXX: This is an awful hack that could hurt performance, but
+ on the bright side it should work until we come up
+ with a better solution.
+
+ The issue is that in the first loop blocksize() is called
+ which calls instr_size() which requires i_oparg be set
+ appropriately. There is a bootstrap problem because
+ i_oparg is calculated in the second loop above.
+
+ So we loop until we stop seeing new EXTENDED_ARGs.
+ The only EXTENDED_ARGs that could be popping up are
+ ones in jump instructions. So this should converge
+ fairly quickly.
+ */
+ } while (extended_arg_recompile);
+}
+
+static PyObject *
+dict_keys_inorder(PyObject *dict, Py_ssize_t offset)
+{
+ PyObject *tuple, *k, *v;
+ Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);
+
+ tuple = PyTuple_New(size);
+ if (tuple == NULL)
+ return NULL;
+ while (PyDict_Next(dict, &pos, &k, &v)) {
+ i = PyLong_AS_LONG(v);
+ Py_INCREF(k);
+ assert((i - offset) < size);
+ assert((i - offset) >= 0);
+ PyTuple_SET_ITEM(tuple, i - offset, k);
+ }
+ return tuple;
+}
+
+static PyObject *
+consts_dict_keys_inorder(PyObject *dict)
+{
+ PyObject *consts, *k, *v;
+ Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);
+
+ consts = PyList_New(size); /* PyCode_Optimize() requires a list */
+ if (consts == NULL)
+ return NULL;
+ while (PyDict_Next(dict, &pos, &k, &v)) {
+ i = PyLong_AS_LONG(v);
+ /* The keys of the dictionary can be tuples wrapping a constant.
+ * (see compiler_add_o and _PyCode_ConstantKey). In that case
+ * the object we want is always second. */
+ if (PyTuple_CheckExact(k)) {
+ k = PyTuple_GET_ITEM(k, 1);
+ }
+ Py_INCREF(k);
+ assert(i < size);
+ assert(i >= 0);
+ PyList_SET_ITEM(consts, i, k);
+ }
+ return consts;
+}
+
+static int
+compute_code_flags(struct compiler *c)
+{
+ PySTEntryObject *ste = c->u->u_ste;
+ int flags = 0;
+ if (ste->ste_type == FunctionBlock) {
+ flags |= CO_NEWLOCALS | CO_OPTIMIZED;
+ if (ste->ste_nested)
+ flags |= CO_NESTED;
+ if (ste->ste_generator && !ste->ste_coroutine)
+ flags |= CO_GENERATOR;
+ if (!ste->ste_generator && ste->ste_coroutine)
+ flags |= CO_COROUTINE;
+ if (ste->ste_generator && ste->ste_coroutine)
+ flags |= CO_ASYNC_GENERATOR;
+ if (ste->ste_varargs)
+ flags |= CO_VARARGS;
+ if (ste->ste_varkeywords)
+ flags |= CO_VARKEYWORDS;
+ }
+
+ /* (Only) inherit compilerflags in PyCF_MASK */
+ flags |= (c->c_flags->cf_flags & PyCF_MASK);
+
+ if ((IS_TOP_LEVEL_AWAIT(c)) &&
+ ste->ste_coroutine &&
+ !ste->ste_generator) {
+ flags |= CO_COROUTINE;
+ }
+
+ return flags;
+}
+
+// Merge *obj* with constant cache.
+// Unlike merge_consts_recursive(), this function doesn't work recursively.
+static int
+merge_const_one(struct compiler *c, PyObject **obj)
+{
+ PyObject *key = _PyCode_ConstantKey(*obj);
+ if (key == NULL) {
+ return 0;
+ }
+
+ // t is borrowed reference
+ PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key);
+ Py_DECREF(key);
+ if (t == NULL) {
+ return 0;
+ }
+ if (t == key) { // obj is new constant.
+ return 1;
+ }
+
+ if (PyTuple_CheckExact(t)) {
+ // t is still borrowed reference
+ t = PyTuple_GET_ITEM(t, 1);
+ }
+
+ Py_INCREF(t);
+ Py_DECREF(*obj);
+ *obj = t;
+ return 1;
+}
+
+// This is in codeobject.c.
+extern void _Py_set_localsplus_info(int, PyObject *, unsigned char,
+ PyObject *, PyObject *);
+
+static void
+compute_localsplus_info(struct compiler *c, int nlocalsplus,
+ PyObject *names, PyObject *kinds)
+{
+ PyObject *k, *v;
+ Py_ssize_t pos = 0;
+ while (PyDict_Next(c->u->u_varnames, &pos, &k, &v)) {
+ int offset = (int)PyLong_AS_LONG(v);
+ assert(offset >= 0);
+ assert(offset < nlocalsplus);
+ // For now we do not distinguish arg kinds.
+ _PyLocals_Kind kind = CO_FAST_LOCAL;
+ if (PyDict_GetItem(c->u->u_cellvars, k) != NULL) {
+ kind |= CO_FAST_CELL;
+ }
+ _Py_set_localsplus_info(offset, k, kind, names, kinds);
+ }
+ int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames);
+
+ // This counter mirrors the fix done in fix_cell_offsets().
+ int numdropped = 0;
+ pos = 0;
+ while (PyDict_Next(c->u->u_cellvars, &pos, &k, &v)) {
+ if (PyDict_GetItem(c->u->u_varnames, k) != NULL) {
+ // Skip cells that are already covered by locals.
+ numdropped += 1;
+ continue;
+ }
+ int offset = (int)PyLong_AS_LONG(v);
+ assert(offset >= 0);
+ offset += nlocals - numdropped;
+ assert(offset < nlocalsplus);
+ _Py_set_localsplus_info(offset, k, CO_FAST_CELL, names, kinds);
+ }
+
+ pos = 0;
+ while (PyDict_Next(c->u->u_freevars, &pos, &k, &v)) {
+ int offset = (int)PyLong_AS_LONG(v);
+ assert(offset >= 0);
+ offset += nlocals - numdropped;
+ assert(offset < nlocalsplus);
+ _Py_set_localsplus_info(offset, k, CO_FAST_FREE, names, kinds);
+ }
+}
+
+static PyCodeObject *
+makecode(struct compiler *c, struct assembler *a, PyObject *constslist,
+ int maxdepth, int nlocalsplus)
+{
+ PyCodeObject *co = NULL;
+ PyObject *names = NULL;
+ PyObject *consts = NULL;
+ PyObject *localsplusnames = NULL;
+ PyObject *localspluskinds = NULL;
+
+ names = dict_keys_inorder(c->u->u_names, 0);
+ if (!names) {
+ goto error;
+ }
+ if (!merge_const_one(c, &names)) {
+ goto error;
+ }
+
+ int flags = compute_code_flags(c);
+ if (flags < 0) {
+ goto error;
+ }
+
+ consts = PyList_AsTuple(constslist); /* PyCode_New requires a tuple */
+ if (consts == NULL) {
+ goto error;
+ }
+ if (!merge_const_one(c, &consts)) {
+ goto error;
+ }
+
+ assert(c->u->u_posonlyargcount < INT_MAX);
+ assert(c->u->u_argcount < INT_MAX);
+ assert(c->u->u_kwonlyargcount < INT_MAX);
+ int posonlyargcount = (int)c->u->u_posonlyargcount;
+ int posorkwargcount = (int)c->u->u_argcount;
+ assert(INT_MAX - posonlyargcount - posorkwargcount > 0);
+ int kwonlyargcount = (int)c->u->u_kwonlyargcount;
+
+ localsplusnames = PyTuple_New(nlocalsplus);
+ if (localsplusnames == NULL) {
+ goto error;
+ }
+ localspluskinds = PyBytes_FromStringAndSize(NULL, nlocalsplus);
+ if (localspluskinds == NULL) {
+ goto error;
+ }
+ compute_localsplus_info(c, nlocalsplus, localsplusnames, localspluskinds);
+
+ struct _PyCodeConstructor con = {
+ .filename = c->c_filename,
+ .name = c->u->u_name,
+ .qualname = c->u->u_qualname ? c->u->u_qualname : c->u->u_name,
+ .flags = flags,
+
+ .code = a->a_bytecode,
+ .firstlineno = c->u->u_firstlineno,
+ .linetable = a->a_linetable,
+
+ .consts = consts,
+ .names = names,
+
+ .localsplusnames = localsplusnames,
+ .localspluskinds = localspluskinds,
+
+ .argcount = posonlyargcount + posorkwargcount,
+ .posonlyargcount = posonlyargcount,
+ .kwonlyargcount = kwonlyargcount,
+
+ .stacksize = maxdepth,
+
+ .exceptiontable = a->a_except_table,
+ };
+
+ if (_PyCode_Validate(&con) < 0) {
+ goto error;
+ }
+
+ if (!merge_const_one(c, &localsplusnames)) {
+ goto error;
+ }
+ con.localsplusnames = localsplusnames;
+
+ co = _PyCode_New(&con);
+ if (co == NULL) {
+ goto error;
+ }
+
+ error:
+ Py_XDECREF(names);
+ Py_XDECREF(consts);
+ Py_XDECREF(localsplusnames);
+ Py_XDECREF(localspluskinds);
+ return co;
+}
+
+
+/* For debugging purposes only */
+#if 0
+static void
+dump_instr(struct instr *i)
+{
+ const char *jrel = (is_relative_jump(i)) ? "jrel " : "";
+ const char *jabs = (is_jump(i) && !is_relative_jump(i))? "jabs " : "";
+
+ char arg[128];
+
+ *arg = '\0';
+ if (HAS_ARG(i->i_opcode)) {
+ sprintf(arg, "arg: %d ", i->i_oparg);
+ }
+ fprintf(stderr, "line: %d, opcode: %d %s%s%s\n",
+ i->i_lineno, i->i_opcode, arg, jabs, jrel);
+}
+
+static void
+dump_basicblock(const basicblock *b)
+{
+ const char *b_return = b->b_return ? "return " : "";
+ fprintf(stderr, "used: %d, depth: %d, offset: %d %s\n",
+ b->b_iused, b->b_startdepth, b->b_offset, b_return);
+ if (b->b_instr) {
+ int i;
+ for (i = 0; i < b->b_iused; i++) {
+ fprintf(stderr, " [%02d] ", i);
+ dump_instr(b->b_instr + i);
+ }
+ }
+}
+#endif
+
+
+static int
+normalize_basic_block(basicblock *bb);
+
+static int
+optimize_cfg(struct compiler *c, struct assembler *a, PyObject *consts);
+
+static int
+trim_unused_consts(struct compiler *c, struct assembler *a, PyObject *consts);
+
+/* Duplicates exit BBs, so that line numbers can be propagated to them */
+static int
+duplicate_exits_without_lineno(struct compiler *c);
+
+static int
+extend_block(basicblock *bb);
+
+static int *
+build_cellfixedoffsets(struct compiler *c)
+{
+ int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames);
+ int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars);
+ int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars);
+
+ int noffsets = ncellvars + nfreevars;
+ int *fixed = PyMem_New(int, noffsets);
+ if (fixed == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+ for (int i = 0; i < noffsets; i++) {
+ fixed[i] = nlocals + i;
+ }
+
+ PyObject *varname, *cellindex;
+ Py_ssize_t pos = 0;
+ while (PyDict_Next(c->u->u_cellvars, &pos, &varname, &cellindex)) {
+ PyObject *varindex = PyDict_GetItem(c->u->u_varnames, varname);
+ if (varindex != NULL) {
+ assert(PyLong_AS_LONG(cellindex) < INT_MAX);
+ assert(PyLong_AS_LONG(varindex) < INT_MAX);
+ int oldindex = (int)PyLong_AS_LONG(cellindex);
+ int argoffset = (int)PyLong_AS_LONG(varindex);
+ fixed[oldindex] = argoffset;
+ }
+ }
+
+ return fixed;
+}
+
+static inline int
+insert_instruction(basicblock *block, int pos, struct instr *instr) {
+ if (compiler_next_instr(block) < 0) {
+ return -1;
+ }
+ for (int i = block->b_iused-1; i > pos; i--) {
+ block->b_instr[i] = block->b_instr[i-1];
+ }
+ block->b_instr[pos] = *instr;
+ return 0;
+}
+
+static int
+insert_prefix_instructions(struct compiler *c, basicblock *entryblock,
+ int *fixed, int nfreevars)
+{
+
+ int flags = compute_code_flags(c);
+ if (flags < 0) {
+ return -1;
+ }
+ assert(c->u->u_firstlineno > 0);
+
+ /* Add the generator prefix instructions. */
+ if (flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {
+ struct instr make_gen = {
+ .i_opcode = RETURN_GENERATOR,
+ .i_oparg = 0,
+ .i_lineno = c->u->u_firstlineno,
+ .i_col_offset = -1,
+ .i_end_lineno = c->u->u_firstlineno,
+ .i_end_col_offset = -1,
+ .i_target = NULL,
+ };
+ if (insert_instruction(entryblock, 0, &make_gen) < 0) {
+ return -1;
+ }
+ struct instr pop_top = {
+ .i_opcode = POP_TOP,
+ .i_oparg = 0,
+ .i_lineno = -1,
+ .i_col_offset = -1,
+ .i_end_lineno = -1,
+ .i_end_col_offset = -1,
+ .i_target = NULL,
+ };
+ if (insert_instruction(entryblock, 1, &pop_top) < 0) {
+ return -1;
+ }
+ }
+
+ /* Set up cells for any variable that escapes, to be put in a closure. */
+ const int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars);
+ if (ncellvars) {
+ // c->u->u_cellvars has the cells out of order so we sort them
+ // before adding the MAKE_CELL instructions. Note that we
+ // adjust for arg cells, which come first.
+ const int nvars = ncellvars + (int)PyDict_GET_SIZE(c->u->u_varnames);
+ int *sorted = PyMem_RawCalloc(nvars, sizeof(int));
+ if (sorted == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ for (int i = 0; i < ncellvars; i++) {
+ sorted[fixed[i]] = i + 1;
+ }
+ for (int i = 0, ncellsused = 0; ncellsused < ncellvars; i++) {
+ int oldindex = sorted[i] - 1;
+ if (oldindex == -1) {
+ continue;
+ }
+ struct instr make_cell = {
+ .i_opcode = MAKE_CELL,
+ // This will get fixed in offset_derefs().
+ .i_oparg = oldindex,
+ .i_lineno = -1,
+ .i_col_offset = -1,
+ .i_end_lineno = -1,
+ .i_end_col_offset = -1,
+ .i_target = NULL,
+ };
+ if (insert_instruction(entryblock, ncellsused, &make_cell) < 0) {
+ return -1;
+ }
+ ncellsused += 1;
+ }
+ PyMem_RawFree(sorted);
+ }
+
+ if (nfreevars) {
+ struct instr copy_frees = {
+ .i_opcode = COPY_FREE_VARS,
+ .i_oparg = nfreevars,
+ .i_lineno = -1,
+ .i_col_offset = -1,
+ .i_end_lineno = -1,
+ .i_end_col_offset = -1,
+ .i_target = NULL,
+ };
+ if (insert_instruction(entryblock, 0, &copy_frees) < 0) {
+ return -1;
+ }
+
+ }
+
+ return 0;
+}
+
+/* Make sure that all returns have a line number, even if early passes
+ * have failed to propagate a correct line number.
+ * The resulting line number may not be correct according to PEP 626,
+ * but should be "good enough", and no worse than in older versions. */
+static void
+guarantee_lineno_for_exits(struct assembler *a, int firstlineno) {
+ int lineno = firstlineno;
+ assert(lineno > 0);
+ for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
+ if (b->b_iused == 0) {
+ continue;
+ }
+ struct instr *last = &b->b_instr[b->b_iused-1];
+ if (last->i_lineno < 0) {
+ if (last->i_opcode == RETURN_VALUE) {
+ for (int i = 0; i < b->b_iused; i++) {
+ assert(b->b_instr[i].i_lineno < 0);
+
+ b->b_instr[i].i_lineno = lineno;
+ }
+ }
+ }
+ else {
+ lineno = last->i_lineno;
+ }
+ }
+}
+
+static int
+fix_cell_offsets(struct compiler *c, basicblock *entryblock, int *fixedmap)
+{
+ int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames);
+ int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars);
+ int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars);
+ int noffsets = ncellvars + nfreevars;
+
+ // First deal with duplicates (arg cells).
+ int numdropped = 0;
+ for (int i = 0; i < noffsets ; i++) {
+ if (fixedmap[i] == i + nlocals) {
+ fixedmap[i] -= numdropped;
+ }
+ else {
+ // It was a duplicate (cell/arg).
+ numdropped += 1;
+ }
+ }
+
+ // Then update offsets, either relative to locals or by cell2arg.
+ for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+ for (int i = 0; i < b->b_iused; i++) {
+ struct instr *inst = &b->b_instr[i];
+ // This is called before extended args are generated.
+ assert(inst->i_opcode != EXTENDED_ARG);
+ assert(inst->i_opcode != EXTENDED_ARG_QUICK);
+ int oldoffset = inst->i_oparg;
+ switch(inst->i_opcode) {
+ case MAKE_CELL:
+ case LOAD_CLOSURE:
+ case LOAD_DEREF:
+ case STORE_DEREF:
+ case DELETE_DEREF:
+ case LOAD_CLASSDEREF:
+ assert(oldoffset >= 0);
+ assert(oldoffset < noffsets);
+ assert(fixedmap[oldoffset] >= 0);
+ inst->i_oparg = fixedmap[oldoffset];
+ }
+ }
+ }
+
+ return numdropped;
+}
+
+static void
+propagate_line_numbers(struct assembler *a);
+
+static PyCodeObject *
+assemble(struct compiler *c, int addNone)
+{
+ basicblock *b, *entryblock;
+ struct assembler a;
+ int j, nblocks;
+ PyCodeObject *co = NULL;
+ PyObject *consts = NULL;
+ memset(&a, 0, sizeof(struct assembler));
+
+ /* Make sure every block that falls off the end returns None. */
+ if (!c->u->u_curblock->b_return) {
+ UNSET_LOC(c);
+ if (addNone)
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP(c, RETURN_VALUE);
+ }
+
+ for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ if (normalize_basic_block(b)) {
+ return NULL;
+ }
+ }
+
+ for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ if (extend_block(b)) {
+ return NULL;
+ }
+ }
+
+ nblocks = 0;
+ entryblock = NULL;
+ for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ nblocks++;
+ entryblock = b;
+ }
+ assert(entryblock != NULL);
+
+ assert(PyDict_GET_SIZE(c->u->u_varnames) < INT_MAX);
+ assert(PyDict_GET_SIZE(c->u->u_cellvars) < INT_MAX);
+ assert(PyDict_GET_SIZE(c->u->u_freevars) < INT_MAX);
+ int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames);
+ int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars);
+ int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars);
+ assert(INT_MAX - nlocals - ncellvars > 0);
+ assert(INT_MAX - nlocals - ncellvars - nfreevars > 0);
+ int nlocalsplus = nlocals + ncellvars + nfreevars;
+ int *cellfixedoffsets = build_cellfixedoffsets(c);
+ if (cellfixedoffsets == NULL) {
+ goto error;
+ }
+
+ /* Set firstlineno if it wasn't explicitly set. */
+ if (!c->u->u_firstlineno) {
+ if (entryblock->b_instr && entryblock->b_instr->i_lineno) {
+ c->u->u_firstlineno = entryblock->b_instr->i_lineno;
+ }
+ else {
+ c->u->u_firstlineno = 1;
+ }
+ }
+
+ // This must be called before fix_cell_offsets().
+ if (insert_prefix_instructions(c, entryblock, cellfixedoffsets, nfreevars)) {
+ goto error;
+ }
+
+ if (!assemble_init(&a, nblocks, c->u->u_firstlineno))
+ goto error;
+ a.a_entry = entryblock;
+ a.a_nblocks = nblocks;
+
+ int numdropped = fix_cell_offsets(c, entryblock, cellfixedoffsets);
+ PyMem_Free(cellfixedoffsets); // At this point we're done with it.
+ cellfixedoffsets = NULL;
+ if (numdropped < 0) {
+ goto error;
+ }
+ nlocalsplus -= numdropped;
+
+ consts = consts_dict_keys_inorder(c->u->u_consts);
+ if (consts == NULL) {
+ goto error;
+ }
+
+ if (optimize_cfg(c, &a, consts)) {
+ goto error;
+ }
+ if (duplicate_exits_without_lineno(c)) {
+ return NULL;
+ }
+ if (trim_unused_consts(c, &a, consts)) {
+ goto error;
+ }
+ propagate_line_numbers(&a);
+ guarantee_lineno_for_exits(&a, c->u->u_firstlineno);
+ int maxdepth = stackdepth(c);
+ if (maxdepth < 0) {
+ goto error;
+ }
+ /* TO DO -- For 3.12, make sure that `maxdepth <= MAX_ALLOWED_STACK_USE` */
+
+ if (label_exception_targets(entryblock)) {
+ goto error;
+ }
+ convert_exception_handlers_to_nops(entryblock);
+ for (basicblock *b = a.a_entry; b != NULL; b = b->b_next) {
+ clean_basic_block(b);
+ }
+
+ /* Order of basic blocks must have been determined by now */
+ normalize_jumps(&a);
+
+ /* Can't modify the bytecode after computing jump offsets. */
+ assemble_jump_offsets(&a, c);
+
+ /* Emit code. */
+ for(b = entryblock; b != NULL; b = b->b_next) {
+ for (j = 0; j < b->b_iused; j++)
+ if (!assemble_emit(&a, &b->b_instr[j]))
+ goto error;
+ }
+
+ /* Emit location info */
+ a.a_lineno = c->u->u_firstlineno;
+ for(b = entryblock; b != NULL; b = b->b_next) {
+ for (j = 0; j < b->b_iused; j++)
+ if (!assemble_emit_location(&a, &b->b_instr[j]))
+ goto error;
+ }
+
+ if (!assemble_exception_table(&a)) {
+ goto error;
+ }
+ if (_PyBytes_Resize(&a.a_except_table, a.a_except_table_off) < 0) {
+ goto error;
+ }
+ if (!merge_const_one(c, &a.a_except_table)) {
+ goto error;
+ }
+
+ if (_PyBytes_Resize(&a.a_linetable, a.a_location_off) < 0) {
+ goto error;
+ }
+ if (!merge_const_one(c, &a.a_linetable)) {
+ goto error;
+ }
+
+ if (_PyBytes_Resize(&a.a_bytecode, a.a_offset * sizeof(_Py_CODEUNIT)) < 0) {
+ goto error;
+ }
+ if (!merge_const_one(c, &a.a_bytecode)) {
+ goto error;
+ }
+
+ co = makecode(c, &a, consts, maxdepth, nlocalsplus);
+ error:
+ Py_XDECREF(consts);
+ assemble_free(&a);
+ if (cellfixedoffsets != NULL) {
+ PyMem_Free(cellfixedoffsets);
+ }
+ return co;
+}
+
+static PyObject*
+get_const_value(int opcode, int oparg, PyObject *co_consts)
+{
+ PyObject *constant = NULL;
+ assert(HAS_CONST(opcode));
+ if (opcode == LOAD_CONST) {
+ constant = PyList_GET_ITEM(co_consts, oparg);
+ }
+
+ if (constant == NULL) {
+ PyErr_SetString(PyExc_SystemError,
+ "Internal error: failed to get value of a constant");
+ return NULL;
+ }
+ Py_INCREF(constant);
+ return constant;
+}
+
+/* Replace LOAD_CONST c1, LOAD_CONST c2 ... LOAD_CONST cn, BUILD_TUPLE n
+ with LOAD_CONST (c1, c2, ... cn).
+ The consts table must still be in list form so that the
+ new constant (c1, c2, ... cn) can be appended.
+ Called with codestr pointing to the first LOAD_CONST.
+*/
+static int
+fold_tuple_on_constants(struct compiler *c,
+ struct instr *inst,
+ int n, PyObject *consts)
+{
+ /* Pre-conditions */
+ assert(PyList_CheckExact(consts));
+ assert(inst[n].i_opcode == BUILD_TUPLE);
+ assert(inst[n].i_oparg == n);
+
+ for (int i = 0; i < n; i++) {
+ if (!HAS_CONST(inst[i].i_opcode)) {
+ return 0;
+ }
+ }
+
+ /* Buildup new tuple of constants */
+ PyObject *newconst = PyTuple_New(n);
+ if (newconst == NULL) {
+ return -1;
+ }
+ for (int i = 0; i < n; i++) {
+ int op = inst[i].i_opcode;
+ int arg = inst[i].i_oparg;
+ PyObject *constant = get_const_value(op, arg, consts);
+ if (constant == NULL) {
+ return -1;
+ }
+ PyTuple_SET_ITEM(newconst, i, constant);
+ }
+ if (merge_const_one(c, &newconst) == 0) {
+ Py_DECREF(newconst);
+ return -1;
+ }
+
+ Py_ssize_t index;
+ for (index = 0; index < PyList_GET_SIZE(consts); index++) {
+ if (PyList_GET_ITEM(consts, index) == newconst) {
+ break;
+ }
+ }
+ if (index == PyList_GET_SIZE(consts)) {
+ if ((size_t)index >= (size_t)INT_MAX - 1) {
+ Py_DECREF(newconst);
+ PyErr_SetString(PyExc_OverflowError, "too many constants");
+ return -1;
+ }
+ if (PyList_Append(consts, newconst)) {
+ Py_DECREF(newconst);
+ return -1;
+ }
+ }
+ Py_DECREF(newconst);
+ for (int i = 0; i < n; i++) {
+ inst[i].i_opcode = NOP;
+ }
+ inst[n].i_opcode = LOAD_CONST;
+ inst[n].i_oparg = (int)index;
+ return 0;
+}
+
+#define VISITED (-1)
+
+// Replace an arbitrary run of SWAPs and NOPs with an optimal one that has the
+// same effect.
+static int
+swaptimize(basicblock *block, int *ix)
+{
+ // NOTE: "./python -m test test_patma" serves as a good, quick stress test
+ // for this function. Make sure to blow away cached *.pyc files first!
+ assert(*ix < block->b_iused);
+ struct instr *instructions = &block->b_instr[*ix];
+ // Find the length of the current sequence of SWAPs and NOPs, and record the
+ // maximum depth of the stack manipulations:
+ assert(instructions[0].i_opcode == SWAP);
+ int depth = instructions[0].i_oparg;
+ int len = 0;
+ int more = false;
+ int limit = block->b_iused - *ix;
+ while (++len < limit) {
+ int opcode = instructions[len].i_opcode;
+ if (opcode == SWAP) {
+ depth = Py_MAX(depth, instructions[len].i_oparg);
+ more = true;
+ }
+ else if (opcode != NOP) {
+ break;
+ }
+ }
+ // It's already optimal if there's only one SWAP:
+ if (!more) {
+ return 0;
+ }
+ // Create an array with elements {0, 1, 2, ..., depth - 1}:
+ int *stack = PyMem_Malloc(depth * sizeof(int));
+ if (stack == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ for (int i = 0; i < depth; i++) {
+ stack[i] = i;
+ }
+ // Simulate the combined effect of these instructions by "running" them on
+ // our "stack":
+ for (int i = 0; i < len; i++) {
+ if (instructions[i].i_opcode == SWAP) {
+ int oparg = instructions[i].i_oparg;
+ int top = stack[0];
+ // SWAPs are 1-indexed:
+ stack[0] = stack[oparg - 1];
+ stack[oparg - 1] = top;
+ }
+ }
+ // Now we can begin! Our approach here is based on a solution to a closely
+ // related problem (https://cs.stackexchange.com/a/13938). It's easiest to
+ // think of this algorithm as determining the steps needed to efficiently
+ // "un-shuffle" our stack. By performing the moves in *reverse* order,
+ // though, we can efficiently *shuffle* it! For this reason, we will be
+ // replacing instructions starting from the *end* of the run. Since the
+ // solution is optimal, we don't need to worry about running out of space:
+ int current = len - 1;
+ for (int i = 0; i < depth; i++) {
+ // Skip items that have already been visited, or just happen to be in
+ // the correct location:
+ if (stack[i] == VISITED || stack[i] == i) {
+ continue;
+ }
+ // Okay, we've found an item that hasn't been visited. It forms a cycle
+ // with other items; traversing the cycle and swapping each item with
+ // the next will put them all in the correct place. The weird
+ // loop-and-a-half is necessary to insert 0 into every cycle, since we
+ // can only swap from that position:
+ int j = i;
+ while (true) {
+ // Skip the actual swap if our item is zero, since swapping the top
+ // item with itself is pointless:
+ if (j) {
+ assert(0 <= current);
+ // SWAPs are 1-indexed:
+ instructions[current].i_opcode = SWAP;
+ instructions[current--].i_oparg = j + 1;
+ }
+ if (stack[j] == VISITED) {
+ // Completed the cycle:
+ assert(j == i);
+ break;
+ }
+ int next_j = stack[j];
+ stack[j] = VISITED;
+ j = next_j;
+ }
+ }
+ // NOP out any unused instructions:
+ while (0 <= current) {
+ instructions[current--].i_opcode = NOP;
+ }
+ PyMem_Free(stack);
+ *ix += len - 1;
+ return 0;
+}
+
+// This list is pretty small, since it's only okay to reorder opcodes that:
+// - can't affect control flow (like jumping or raising exceptions)
+// - can't invoke arbitrary code (besides finalizers)
+// - only touch the TOS (and pop it when finished)
+#define SWAPPABLE(opcode) \
+ ((opcode) == STORE_FAST || (opcode) == POP_TOP)
+
+#define STORES_TO(instr) \
+ (((instr).i_opcode == STORE_FAST) ? (instr).i_oparg : -1)
+
+static int
+next_swappable_instruction(basicblock *block, int i, int lineno)
+{
+ while (++i < block->b_iused) {
+ struct instr *instruction = &block->b_instr[i];
+ if (0 <= lineno && instruction->i_lineno != lineno) {
+ // Optimizing across this instruction could cause user-visible
+ // changes in the names bound between line tracing events!
+ return -1;
+ }
+ if (instruction->i_opcode == NOP) {
+ continue;
+ }
+ if (SWAPPABLE(instruction->i_opcode)) {
+ return i;
+ }
+ return -1;
+ }
+ return -1;
+}
+
+// Attempt to apply SWAPs statically by swapping *instructions* rather than
+// stack items. For example, we can replace SWAP(2), POP_TOP, STORE_FAST(42)
+// with the more efficient NOP, STORE_FAST(42), POP_TOP.
+static void
+apply_static_swaps(basicblock *block, int i)
+{
+ // SWAPs are to our left, and potential swaperands are to our right:
+ for (; 0 <= i; i--) {
+ assert(i < block->b_iused);
+ struct instr *swap = &block->b_instr[i];
+ if (swap->i_opcode != SWAP) {
+ if (swap->i_opcode == NOP || SWAPPABLE(swap->i_opcode)) {
+ // Nope, but we know how to handle these. Keep looking:
+ continue;
+ }
+ // We can't reason about what this instruction does. Bail:
+ return;
+ }
+ int j = next_swappable_instruction(block, i, -1);
+ if (j < 0) {
+ return;
+ }
+ int k = j;
+ int lineno = block->b_instr[j].i_lineno;
+ for (int count = swap->i_oparg - 1; 0 < count; count--) {
+ k = next_swappable_instruction(block, k, lineno);
+ if (k < 0) {
+ return;
+ }
+ }
+ // The reordering is not safe if the two instructions to be swapped
+ // store to the same location, or if any intervening instruction stores
+ // to the same location as either of them.
+ int store_j = STORES_TO(block->b_instr[j]);
+ int store_k = STORES_TO(block->b_instr[k]);
+ if (store_j >= 0 || store_k >= 0) {
+ if (store_j == store_k) {
+ return;
+ }
+ for (int idx = j + 1; idx < k; idx++) {
+ int store_idx = STORES_TO(block->b_instr[idx]);
+ if (store_idx >= 0 && (store_idx == store_j || store_idx == store_k)) {
+ return;
+ }
+ }
+ }
+
+ // Success!
+ swap->i_opcode = NOP;
+ struct instr temp = block->b_instr[j];
+ block->b_instr[j] = block->b_instr[k];
+ block->b_instr[k] = temp;
+ }
+}
+
+// Attempt to eliminate jumps to jumps by updating inst to jump to
+// target->i_target using the provided opcode. Return whether or not the
+// optimization was successful.
+static bool
+jump_thread(struct instr *inst, struct instr *target, int opcode)
+{
+ assert(!IS_VIRTUAL_OPCODE(opcode) || IS_VIRTUAL_JUMP_OPCODE(opcode));
+ assert(is_jump(inst));
+ assert(is_jump(target));
+ // bpo-45773: If inst->i_target == target->i_target, then nothing actually
+ // changes (and we fall into an infinite loop):
+ if (inst->i_lineno == target->i_lineno &&
+ inst->i_target != target->i_target)
+ {
+ inst->i_target = target->i_target;
+ inst->i_opcode = opcode;
+ return true;
+ }
+ return false;
+}
+
+/* Maximum size of basic block that should be copied in optimizer */
+#define MAX_COPY_SIZE 4
+
+/* Optimization */
+static int
+optimize_basic_block(struct compiler *c, basicblock *bb, PyObject *consts)
+{
+ assert(PyList_CheckExact(consts));
+ struct instr nop;
+ nop.i_opcode = NOP;
+ struct instr *target;
+ for (int i = 0; i < bb->b_iused; i++) {
+ struct instr *inst = &bb->b_instr[i];
+ int oparg = inst->i_oparg;
+ int nextop = i+1 < bb->b_iused ? bb->b_instr[i+1].i_opcode : 0;
+ if (is_jump(inst) || is_block_push(inst)) {
+ /* Skip over empty basic blocks. */
+ while (inst->i_target->b_iused == 0) {
+ inst->i_target = inst->i_target->b_next;
+ }
+ target = &inst->i_target->b_instr[0];
+ assert(!IS_ASSEMBLER_OPCODE(target->i_opcode));
+ }
+ else {
+ target = &nop;
+ }
+ assert(!IS_ASSEMBLER_OPCODE(inst->i_opcode));
+ switch (inst->i_opcode) {
+ /* Remove LOAD_CONST const; conditional jump */
+ case LOAD_CONST:
+ {
+ PyObject* cnt;
+ int is_true;
+ int jump_if_true;
+ switch(nextop) {
+ case POP_JUMP_IF_FALSE:
+ case POP_JUMP_IF_TRUE:
+ cnt = get_const_value(inst->i_opcode, oparg, consts);
+ if (cnt == NULL) {
+ goto error;
+ }
+ is_true = PyObject_IsTrue(cnt);
+ Py_DECREF(cnt);
+ if (is_true == -1) {
+ goto error;
+ }
+ inst->i_opcode = NOP;
+ jump_if_true = nextop == POP_JUMP_IF_TRUE;
+ if (is_true == jump_if_true) {
+ bb->b_instr[i+1].i_opcode = JUMP;
+ bb->b_nofallthrough = 1;
+ }
+ else {
+ bb->b_instr[i+1].i_opcode = NOP;
+ }
+ break;
+ case JUMP_IF_FALSE_OR_POP:
+ case JUMP_IF_TRUE_OR_POP:
+ cnt = get_const_value(inst->i_opcode, oparg, consts);
+ if (cnt == NULL) {
+ goto error;
+ }
+ is_true = PyObject_IsTrue(cnt);
+ Py_DECREF(cnt);
+ if (is_true == -1) {
+ goto error;
+ }
+ jump_if_true = nextop == JUMP_IF_TRUE_OR_POP;
+ if (is_true == jump_if_true) {
+ bb->b_instr[i+1].i_opcode = JUMP;
+ bb->b_nofallthrough = 1;
+ }
+ else {
+ inst->i_opcode = NOP;
+ bb->b_instr[i+1].i_opcode = NOP;
+ }
+ break;
+ case IS_OP:
+ cnt = get_const_value(inst->i_opcode, oparg, consts);
+ if (cnt == NULL) {
+ goto error;
+ }
+ int jump_op = i+2 < bb->b_iused ? bb->b_instr[i+2].i_opcode : 0;
+ if (Py_IsNone(cnt) && (jump_op == POP_JUMP_IF_FALSE || jump_op == POP_JUMP_IF_TRUE)) {
+ unsigned char nextarg = bb->b_instr[i+1].i_oparg;
+ inst->i_opcode = NOP;
+ bb->b_instr[i+1].i_opcode = NOP;
+ bb->b_instr[i+2].i_opcode = nextarg ^ (jump_op == POP_JUMP_IF_FALSE) ?
+ POP_JUMP_IF_NOT_NONE : POP_JUMP_IF_NONE;
+ }
+ Py_DECREF(cnt);
+ break;
+ }
+ break;
+ }
+
+ /* Try to fold tuples of constants.
+ Skip over BUILD_TUPLE(1) UNPACK_SEQUENCE(1).
+ Replace BUILD_TUPLE(2) UNPACK_SEQUENCE(2) with SWAP(2).
+ Replace BUILD_TUPLE(3) UNPACK_SEQUENCE(3) with SWAP(3). */
+ case BUILD_TUPLE:
+ if (nextop == UNPACK_SEQUENCE && oparg == bb->b_instr[i+1].i_oparg) {
+ switch(oparg) {
+ case 1:
+ inst->i_opcode = NOP;
+ bb->b_instr[i+1].i_opcode = NOP;
+ continue;
+ case 2:
+ case 3:
+ inst->i_opcode = NOP;
+ bb->b_instr[i+1].i_opcode = SWAP;
+ continue;
+ }
+ }
+ if (i >= oparg) {
+ if (fold_tuple_on_constants(c, inst-oparg, oparg, consts)) {
+ goto error;
+ }
+ }
+ break;
+
+ /* Simplify conditional jump to conditional jump where the
+ result of the first test implies the success of a similar
+ test or the failure of the opposite test.
+ Arises in code like:
+ "a and b or c"
+ "(a and b) and c"
+ "(a or b) or c"
+ "(a or b) and c"
+ x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_FALSE_OR_POP z
+ --> x:JUMP_IF_FALSE_OR_POP z
+ x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_TRUE_OR_POP z
+ --> x:POP_JUMP_IF_FALSE y+1
+ where y+1 is the instruction following the second test.
+ */
+ case JUMP_IF_FALSE_OR_POP:
+ switch (target->i_opcode) {
+ case POP_JUMP_IF_FALSE:
+ i -= jump_thread(inst, target, POP_JUMP_IF_FALSE);
+ break;
+ case JUMP:
+ case JUMP_IF_FALSE_OR_POP:
+ i -= jump_thread(inst, target, JUMP_IF_FALSE_OR_POP);
+ break;
+ case JUMP_IF_TRUE_OR_POP:
+ case POP_JUMP_IF_TRUE:
+ if (inst->i_lineno == target->i_lineno) {
+ // We don't need to bother checking for loops here,
+ // since a block's b_next cannot point to itself:
+ assert(inst->i_target != inst->i_target->b_next);
+ inst->i_opcode = POP_JUMP_IF_FALSE;
+ inst->i_target = inst->i_target->b_next;
+ --i;
+ }
+ break;
+ }
+ break;
+ case JUMP_IF_TRUE_OR_POP:
+ switch (target->i_opcode) {
+ case POP_JUMP_IF_TRUE:
+ i -= jump_thread(inst, target, POP_JUMP_IF_TRUE);
+ break;
+ case JUMP:
+ case JUMP_IF_TRUE_OR_POP:
+ i -= jump_thread(inst, target, JUMP_IF_TRUE_OR_POP);
+ break;
+ case JUMP_IF_FALSE_OR_POP:
+ case POP_JUMP_IF_FALSE:
+ if (inst->i_lineno == target->i_lineno) {
+ // We don't need to bother checking for loops here,
+ // since a block's b_next cannot point to itself:
+ assert(inst->i_target != inst->i_target->b_next);
+ inst->i_opcode = POP_JUMP_IF_TRUE;
+ inst->i_target = inst->i_target->b_next;
+ --i;
+ }
+ break;
+ }
+ break;
+ case POP_JUMP_IF_NOT_NONE:
+ case POP_JUMP_IF_NONE:
+ switch (target->i_opcode) {
+ case JUMP:
+ i -= jump_thread(inst, target, inst->i_opcode);
+ }
+ break;
+ case POP_JUMP_IF_FALSE:
+ switch (target->i_opcode) {
+ case JUMP:
+ i -= jump_thread(inst, target, POP_JUMP_IF_FALSE);
+ }
+ break;
+ case POP_JUMP_IF_TRUE:
+ switch (target->i_opcode) {
+ case JUMP:
+ i -= jump_thread(inst, target, POP_JUMP_IF_TRUE);
+ }
+ break;
+ case JUMP:
+ switch (target->i_opcode) {
+ case JUMP:
+ i -= jump_thread(inst, target, JUMP);
+ }
+ break;
+ case FOR_ITER:
+ if (target->i_opcode == JUMP) {
+ /* This will not work now because the jump (at target) could
+ * be forward or backward and FOR_ITER only jumps forward. We
+ * can re-enable this if ever we implement a backward version
+ * of FOR_ITER.
+ */
+ /*
+ i -= jump_thread(inst, target, FOR_ITER);
+ */
+ }
+ break;
+ case SWAP:
+ if (oparg == 1) {
+ inst->i_opcode = NOP;
+ break;
+ }
+ if (swaptimize(bb, &i)) {
+ goto error;
+ }
+ apply_static_swaps(bb, i);
+ break;
+ case KW_NAMES:
+ break;
+ case PUSH_NULL:
+ if (nextop == LOAD_GLOBAL && (inst[1].i_opcode & 1) == 0) {
+ inst->i_opcode = NOP;
+ inst->i_oparg = 0;
+ inst[1].i_oparg |= 1;
+ }
+ break;
+ default:
+ /* All HAS_CONST opcodes should be handled with LOAD_CONST */
+ assert (!HAS_CONST(inst->i_opcode));
+ }
+ }
+ return 0;
+error:
+ return -1;
+}
+
+static bool
+basicblock_has_lineno(const basicblock *bb) {
+ for (int i = 0; i < bb->b_iused; i++) {
+ if (bb->b_instr[i].i_lineno > 0) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/* If this block ends with an unconditional jump to an exit block,
+ * then remove the jump and extend this block with the target.
+ */
+static int
+extend_block(basicblock *bb) {
+ if (bb->b_iused == 0) {
+ return 0;
+ }
+ struct instr *last = &bb->b_instr[bb->b_iused-1];
+ if (last->i_opcode != JUMP &&
+ last->i_opcode != JUMP_FORWARD &&
+ last->i_opcode != JUMP_BACKWARD) {
+ return 0;
+ }
+ if (last->i_target->b_exit && last->i_target->b_iused <= MAX_COPY_SIZE) {
+ basicblock *to_copy = last->i_target;
+ if (basicblock_has_lineno(to_copy)) {
+ /* copy only blocks without line number (like implicit 'return None's) */
+ return 0;
+ }
+ last->i_opcode = NOP;
+ for (int i = 0; i < to_copy->b_iused; i++) {
+ int index = compiler_next_instr(bb);
+ if (index < 0) {
+ return -1;
+ }
+ bb->b_instr[index] = to_copy->b_instr[i];
+ }
+ bb->b_exit = 1;
+ }
+ return 0;
+}
+
+static void
+clean_basic_block(basicblock *bb) {
+ /* Remove NOPs when legal to do so. */
+ int dest = 0;
+ int prev_lineno = -1;
+ for (int src = 0; src < bb->b_iused; src++) {
+ int lineno = bb->b_instr[src].i_lineno;
+ if (bb->b_instr[src].i_opcode == NOP) {
+ /* Eliminate no-op if it doesn't have a line number */
+ if (lineno < 0) {
+ continue;
+ }
+ /* or, if the previous instruction had the same line number. */
+ if (prev_lineno == lineno) {
+ continue;
+ }
+ /* or, if the next instruction has same line number or no line number */
+ if (src < bb->b_iused - 1) {
+ int next_lineno = bb->b_instr[src+1].i_lineno;
+ if (next_lineno == lineno) {
+ continue;
+ }
+ if (next_lineno < 0) {
+ COPY_INSTR_LOC(bb->b_instr[src], bb->b_instr[src+1]);
+ continue;
+ }
+ }
+ else {
+ basicblock* next = bb->b_next;
+ while (next && next->b_iused == 0) {
+ next = next->b_next;
+ }
+ /* or if last instruction in BB and next BB has same line number */
+ if (next) {
+ if (lineno == next->b_instr[0].i_lineno) {
+ continue;
+ }
+ }
+ }
+
+ }
+ if (dest != src) {
+ bb->b_instr[dest] = bb->b_instr[src];
+ }
+ dest++;
+ prev_lineno = lineno;
+ }
+ assert(dest <= bb->b_iused);
+ bb->b_iused = dest;
+}
+
+static int
+normalize_basic_block(basicblock *bb) {
+ /* Mark blocks as exit and/or nofallthrough.
+ Raise SystemError if CFG is malformed. */
+ for (int i = 0; i < bb->b_iused; i++) {
+ assert(!IS_ASSEMBLER_OPCODE(bb->b_instr[i].i_opcode));
+ switch(bb->b_instr[i].i_opcode) {
+ case RETURN_VALUE:
+ case RAISE_VARARGS:
+ case RERAISE:
+ bb->b_exit = 1;
+ bb->b_nofallthrough = 1;
+ break;
+ case JUMP:
+ case JUMP_NO_INTERRUPT:
+ bb->b_nofallthrough = 1;
+ /* fall through */
+ case POP_JUMP_IF_NOT_NONE:
+ case POP_JUMP_IF_NONE:
+ case POP_JUMP_IF_FALSE:
+ case POP_JUMP_IF_TRUE:
+ case JUMP_IF_FALSE_OR_POP:
+ case JUMP_IF_TRUE_OR_POP:
+ case FOR_ITER:
+ if (i != bb->b_iused-1) {
+ PyErr_SetString(PyExc_SystemError, "malformed control flow graph.");
+ return -1;
+ }
+ /* Skip over empty basic blocks. */
+ while (bb->b_instr[i].i_target->b_iused == 0) {
+ bb->b_instr[i].i_target = bb->b_instr[i].i_target->b_next;
+ }
+
+ }
+ }
+ return 0;
+}
+
+static int
+mark_reachable(struct assembler *a) {
+ basicblock **stack, **sp;
+ sp = stack = (basicblock **)PyObject_Malloc(sizeof(basicblock *) * a->a_nblocks);
+ if (stack == NULL) {
+ return -1;
+ }
+ a->a_entry->b_predecessors = 1;
+ *sp++ = a->a_entry;
+ while (sp > stack) {
+ basicblock *b = *(--sp);
+ if (b->b_next && !b->b_nofallthrough) {
+ if (b->b_next->b_predecessors == 0) {
+ *sp++ = b->b_next;
+ }
+ b->b_next->b_predecessors++;
+ }
+ for (int i = 0; i < b->b_iused; i++) {
+ basicblock *target;
+ struct instr *instr = &b->b_instr[i];
+ if (is_jump(instr) || is_block_push(instr)) {
+ target = instr->i_target;
+ if (target->b_predecessors == 0) {
+ *sp++ = target;
+ }
+ target->b_predecessors++;
+ }
+ }
+ }
+ PyObject_Free(stack);
+ return 0;
+}
+
+static void
+eliminate_empty_basic_blocks(basicblock *entry) {
+ /* Eliminate empty blocks */
+ for (basicblock *b = entry; b != NULL; b = b->b_next) {
+ basicblock *next = b->b_next;
+ if (next) {
+ while (next->b_iused == 0 && next->b_next) {
+ next = next->b_next;
+ }
+ b->b_next = next;
+ }
+ }
+ for (basicblock *b = entry; b != NULL; b = b->b_next) {
+ if (b->b_iused == 0) {
+ continue;
+ }
+ if (is_jump(&b->b_instr[b->b_iused-1])) {
+ basicblock *target = b->b_instr[b->b_iused-1].i_target;
+ while (target->b_iused == 0) {
+ target = target->b_next;
+ }
+ b->b_instr[b->b_iused-1].i_target = target;
+ }
+ }
+}
+
+
+/* If an instruction has no line number, but it's predecessor in the BB does,
+ * then copy the line number. If a successor block has no line number, and only
+ * one predecessor, then inherit the line number.
+ * This ensures that all exit blocks (with one predecessor) receive a line number.
+ * Also reduces the size of the line number table,
+ * but has no impact on the generated line number events.
+ */
+static void
+propagate_line_numbers(struct assembler *a) {
+ for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
+ if (b->b_iused == 0) {
+ continue;
+ }
+
+ // Not a real instruction, only to store positions
+ // from previous instructions and propagate them.
+ struct instr prev_instr = {
+ .i_lineno = -1,
+ .i_col_offset = -1,
+ .i_end_lineno = -1,
+ .i_end_col_offset = -1,
+ };
+ for (int i = 0; i < b->b_iused; i++) {
+ if (b->b_instr[i].i_lineno < 0) {
+ COPY_INSTR_LOC(prev_instr, b->b_instr[i]);
+ }
+ else {
+ COPY_INSTR_LOC(b->b_instr[i], prev_instr);
+ }
+ }
+ if (!b->b_nofallthrough && b->b_next->b_predecessors == 1) {
+ assert(b->b_next->b_iused);
+ if (b->b_next->b_instr[0].i_lineno < 0) {
+ COPY_INSTR_LOC(prev_instr, b->b_next->b_instr[0]);
+ }
+ }
+ if (is_jump(&b->b_instr[b->b_iused-1])) {
+ basicblock *target = b->b_instr[b->b_iused-1].i_target;
+ if (target->b_predecessors == 1) {
+ if (target->b_instr[0].i_lineno < 0) {
+ COPY_INSTR_LOC(prev_instr, target->b_instr[0]);
+ }
+ }
+ }
+ }
+}
+
+/* Perform optimizations on a control flow graph.
+ The consts object should still be in list form to allow new constants
+ to be appended.
+
+ All transformations keep the code size the same or smaller.
+ For those that reduce size, the gaps are initially filled with
+ NOPs. Later those NOPs are removed.
+*/
+
+static int
+optimize_cfg(struct compiler *c, struct assembler *a, PyObject *consts)
+{
+ for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
+ if (optimize_basic_block(c, b, consts)) {
+ return -1;
+ }
+ clean_basic_block(b);
+ assert(b->b_predecessors == 0);
+ }
+ for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ if (extend_block(b)) {
+ return -1;
+ }
+ }
+ if (mark_reachable(a)) {
+ return -1;
+ }
+ /* Delete unreachable instructions */
+ for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
+ if (b->b_predecessors == 0) {
+ b->b_iused = 0;
+ b->b_nofallthrough = 0;
+ }
+ }
+ eliminate_empty_basic_blocks(a->a_entry);
+ for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
+ clean_basic_block(b);
+ }
+ /* Delete jump instructions made redundant by previous step. If a non-empty
+ block ends with a jump instruction, check if the next non-empty block
+ reached through normal flow control is the target of that jump. If it
+ is, then the jump instruction is redundant and can be deleted.
+ */
+ int maybe_empty_blocks = 0;
+ for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
+ if (b->b_iused > 0) {
+ struct instr *b_last_instr = &b->b_instr[b->b_iused - 1];
+ assert(!IS_ASSEMBLER_OPCODE(b_last_instr->i_opcode));
+ if (b_last_instr->i_opcode == JUMP ||
+ b_last_instr->i_opcode == JUMP_NO_INTERRUPT) {
+ if (b_last_instr->i_target == b->b_next) {
+ assert(b->b_next->b_iused);
+ b->b_nofallthrough = 0;
+ b_last_instr->i_opcode = NOP;
+ maybe_empty_blocks = 1;
+ }
+ }
+ }
+ }
+ if (maybe_empty_blocks) {
+ eliminate_empty_basic_blocks(a->a_entry);
+ }
+ return 0;
+}
+
+// Remove trailing unused constants.
+static int
+trim_unused_consts(struct compiler *c, struct assembler *a, PyObject *consts)
+{
+ assert(PyList_CheckExact(consts));
+
+ // The first constant may be docstring; keep it always.
+ int max_const_index = 0;
+ for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
+ for (int i = 0; i < b->b_iused; i++) {
+ if ((b->b_instr[i].i_opcode == LOAD_CONST ||
+ b->b_instr[i].i_opcode == KW_NAMES) &&
+ b->b_instr[i].i_oparg > max_const_index) {
+ max_const_index = b->b_instr[i].i_oparg;
+ }
+ }
+ }
+ if (max_const_index+1 < PyList_GET_SIZE(consts)) {
+ //fprintf(stderr, "removing trailing consts: max=%d, size=%d\n",
+ // max_const_index, (int)PyList_GET_SIZE(consts));
+ if (PyList_SetSlice(consts, max_const_index+1,
+ PyList_GET_SIZE(consts), NULL) < 0) {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+static inline int
+is_exit_without_lineno(basicblock *b) {
+ if (!b->b_exit) {
+ return 0;
+ }
+ for (int i = 0; i < b->b_iused; i++) {
+ if (b->b_instr[i].i_lineno >= 0) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/* PEP 626 mandates that the f_lineno of a frame is correct
+ * after a frame terminates. It would be prohibitively expensive
+ * to continuously update the f_lineno field at runtime,
+ * so we make sure that all exiting instruction (raises and returns)
+ * have a valid line number, allowing us to compute f_lineno lazily.
+ * We can do this by duplicating the exit blocks without line number
+ * so that none have more than one predecessor. We can then safely
+ * copy the line number from the sole predecessor block.
+ */
+static int
+duplicate_exits_without_lineno(struct compiler *c)
+{
+ /* Copy all exit blocks without line number that are targets of a jump.
+ */
+ for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ if (b->b_iused > 0 && is_jump(&b->b_instr[b->b_iused-1])) {
+ basicblock *target = b->b_instr[b->b_iused-1].i_target;
+ if (is_exit_without_lineno(target) && target->b_predecessors > 1) {
+ basicblock *new_target = compiler_copy_block(c, target);
+ if (new_target == NULL) {
+ return -1;
+ }
+ COPY_INSTR_LOC(b->b_instr[b->b_iused-1], new_target->b_instr[0]);
+ b->b_instr[b->b_iused-1].i_target = new_target;
+ target->b_predecessors--;
+ new_target->b_predecessors = 1;
+ new_target->b_next = target->b_next;
+ target->b_next = new_target;
+ }
+ }
+ }
+ /* Eliminate empty blocks */
+ for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ while (b->b_next && b->b_next->b_iused == 0) {
+ b->b_next = b->b_next->b_next;
+ }
+ }
+ /* Any remaining reachable exit blocks without line number can only be reached by
+ * fall through, and thus can only have a single predecessor */
+ for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ if (!b->b_nofallthrough && b->b_next && b->b_iused > 0) {
+ if (is_exit_without_lineno(b->b_next)) {
+ assert(b->b_next->b_iused > 0);
+ COPY_INSTR_LOC(b->b_instr[b->b_iused-1], b->b_next->b_instr[0]);
+ }
+ }
+ }
+ return 0;
+}
+
+
+/* Retained for API compatibility.
+ * Optimization is now done in optimize_cfg */
+
+PyObject *
+PyCode_Optimize(PyObject *code, PyObject* Py_UNUSED(consts),
+ PyObject *Py_UNUSED(names), PyObject *Py_UNUSED(lnotab_obj))
+{
+ Py_INCREF(code);
+ return code;
+}