diff options
author | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:24:06 +0300 |
---|---|---|
committer | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:41:34 +0300 |
commit | e0e3e1717e3d33762ce61950504f9637a6e669ed (patch) | |
tree | bca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python3/src/Python/compile.c | |
parent | 38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff) | |
download | ydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz |
add ydb deps
Diffstat (limited to 'contrib/tools/python3/src/Python/compile.c')
-rw-r--r-- | contrib/tools/python3/src/Python/compile.c | 9456 |
1 files changed, 9456 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Python/compile.c b/contrib/tools/python3/src/Python/compile.c new file mode 100644 index 0000000000..558df3fca6 --- /dev/null +++ b/contrib/tools/python3/src/Python/compile.c @@ -0,0 +1,9456 @@ +/* + * This file compiles an abstract syntax tree (AST) into Python bytecode. + * + * The primary entry point is _PyAST_Compile(), which returns a + * PyCodeObject. The compiler makes several passes to build the code + * object: + * 1. Checks for future statements. See future.c + * 2. Builds a symbol table. See symtable.c. + * 3. Generate code for basic blocks. See compiler_mod() in this file. + * 4. Assemble the basic blocks into final code. See assemble() in + * this file. + * 5. Optimize the byte code (peephole optimizations). + * + * Note that compiler_mod() suggests module, but the module ast type + * (mod_ty) has cases for expressions and interactive statements. + * + * CAUTION: The VISIT_* macros abort the current function when they + * encounter a problem. So don't invoke them when there is memory + * which needs to be released. Code blocks are OK, as the compiler + * structure takes care of releasing those. Use the arena to manage + * objects. + */ + +#include <stdbool.h> + +// Need _PyOpcode_RelativeJump of pycore_opcode.h +#define NEED_OPCODE_TABLES + +#include "Python.h" +#include "pycore_ast.h" // _PyAST_GetDocString() +#include "pycore_code.h" // _PyCode_New() +#include "pycore_compile.h" // _PyFuture_FromAST() +#include "pycore_long.h" // _PyLong_GetZero() +#include "pycore_opcode.h" // _PyOpcode_Caches +#include "pycore_pymem.h" // _PyMem_IsPtrFreed() +#include "pycore_symtable.h" // PySTEntryObject + + +#define DEFAULT_BLOCK_SIZE 16 +#define DEFAULT_CODE_SIZE 128 +#define DEFAULT_LNOTAB_SIZE 16 +#define DEFAULT_CNOTAB_SIZE 32 + +#define COMP_GENEXP 0 +#define COMP_LISTCOMP 1 +#define COMP_SETCOMP 2 +#define COMP_DICTCOMP 3 + +/* A soft limit for stack use, to avoid excessive + * memory use for large constants, etc. + * + * The value 30 is plucked out of thin air. + * Code that could use more stack than this is + * rare, so the exact value is unimportant. + */ +#define STACK_USE_GUIDELINE 30 + +/* If we exceed this limit, it should + * be considered a compiler bug. + * Currently it should be impossible + * to exceed STACK_USE_GUIDELINE * 100, + * as 100 is the maximum parse depth. + * For performance reasons we will + * want to reduce this to a + * few hundred in the future. + * + * NOTE: Whatever MAX_ALLOWED_STACK_USE is + * set to, it should never restrict what Python + * we can write, just how we compile it. + */ +#define MAX_ALLOWED_STACK_USE (STACK_USE_GUIDELINE * 100) + + +/* Pseudo-instructions used in the compiler, + * but turned into NOPs or other instructions + * by the assembler. */ +#define SETUP_FINALLY -1 +#define SETUP_CLEANUP -2 +#define SETUP_WITH -3 +#define POP_BLOCK -4 +#define JUMP -5 +#define JUMP_NO_INTERRUPT -6 +#define POP_JUMP_IF_FALSE -7 +#define POP_JUMP_IF_TRUE -8 +#define POP_JUMP_IF_NONE -9 +#define POP_JUMP_IF_NOT_NONE -10 + +#define MIN_VIRTUAL_OPCODE -10 +#define MAX_ALLOWED_OPCODE 254 + +#define IS_WITHIN_OPCODE_RANGE(opcode) \ + ((opcode) >= MIN_VIRTUAL_OPCODE && (opcode) <= MAX_ALLOWED_OPCODE) + +#define IS_VIRTUAL_OPCODE(opcode) ((opcode) < 0) + +#define IS_VIRTUAL_JUMP_OPCODE(opcode) \ + ((opcode) == JUMP || \ + (opcode) == JUMP_NO_INTERRUPT || \ + (opcode) == POP_JUMP_IF_NONE || \ + (opcode) == POP_JUMP_IF_NOT_NONE || \ + (opcode) == POP_JUMP_IF_FALSE || \ + (opcode) == POP_JUMP_IF_TRUE) + +/* opcodes which are not emitted in codegen stage, only by the assembler */ +#define IS_ASSEMBLER_OPCODE(opcode) \ + ((opcode) == JUMP_FORWARD || \ + (opcode) == JUMP_BACKWARD || \ + (opcode) == JUMP_BACKWARD_NO_INTERRUPT || \ + (opcode) == POP_JUMP_FORWARD_IF_NONE || \ + (opcode) == POP_JUMP_BACKWARD_IF_NONE || \ + (opcode) == POP_JUMP_FORWARD_IF_NOT_NONE || \ + (opcode) == POP_JUMP_BACKWARD_IF_NOT_NONE || \ + (opcode) == POP_JUMP_FORWARD_IF_TRUE || \ + (opcode) == POP_JUMP_BACKWARD_IF_TRUE || \ + (opcode) == POP_JUMP_FORWARD_IF_FALSE || \ + (opcode) == POP_JUMP_BACKWARD_IF_FALSE) + + +#define IS_BACKWARDS_JUMP_OPCODE(opcode) \ + ((opcode) == JUMP_BACKWARD || \ + (opcode) == JUMP_BACKWARD_NO_INTERRUPT || \ + (opcode) == POP_JUMP_BACKWARD_IF_NONE || \ + (opcode) == POP_JUMP_BACKWARD_IF_NOT_NONE || \ + (opcode) == POP_JUMP_BACKWARD_IF_TRUE || \ + (opcode) == POP_JUMP_BACKWARD_IF_FALSE) + + +#define IS_TOP_LEVEL_AWAIT(c) ( \ + (c->c_flags->cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT) \ + && (c->u->u_ste->ste_type == ModuleBlock)) + +struct instr { + int i_opcode; + int i_oparg; + /* target block (if jump instruction) */ + struct basicblock_ *i_target; + /* target block when exception is raised, should not be set by front-end. */ + struct basicblock_ *i_except; + int i_lineno; + int i_end_lineno; + int i_col_offset; + int i_end_col_offset; +}; + +typedef struct excepthandler { + struct instr *setup; + int offset; +} ExceptHandler; + +typedef struct exceptstack { + struct basicblock_ *handlers[CO_MAXBLOCKS+1]; + int depth; +} ExceptStack; + +#define LOG_BITS_PER_INT 5 +#define MASK_LOW_LOG_BITS 31 + +static inline int +is_bit_set_in_table(const uint32_t *table, int bitindex) { + /* Is the relevant bit set in the relevant word? */ + /* 256 bits fit into 8 32-bits words. + * Word is indexed by (bitindex>>ln(size of int in bits)). + * Bit within word is the low bits of bitindex. + */ + if (bitindex >= 0 && bitindex < 256) { + uint32_t word = table[bitindex >> LOG_BITS_PER_INT]; + return (word >> (bitindex & MASK_LOW_LOG_BITS)) & 1; + } + else { + return 0; + } +} + +static inline int +is_relative_jump(struct instr *i) +{ + return is_bit_set_in_table(_PyOpcode_RelativeJump, i->i_opcode); +} + +static inline int +is_block_push(struct instr *instr) +{ + int opcode = instr->i_opcode; + return opcode == SETUP_FINALLY || opcode == SETUP_WITH || opcode == SETUP_CLEANUP; +} + +static inline int +is_jump(struct instr *i) +{ + return IS_VIRTUAL_JUMP_OPCODE(i->i_opcode) || + is_bit_set_in_table(_PyOpcode_Jump, i->i_opcode); +} + +static int +instr_size(struct instr *instruction) +{ + int opcode = instruction->i_opcode; + assert(!IS_VIRTUAL_OPCODE(opcode)); + int oparg = HAS_ARG(opcode) ? instruction->i_oparg : 0; + int extended_args = (0xFFFFFF < oparg) + (0xFFFF < oparg) + (0xFF < oparg); + int caches = _PyOpcode_Caches[opcode]; + return extended_args + 1 + caches; +} + +static void +write_instr(_Py_CODEUNIT *codestr, struct instr *instruction, int ilen) +{ + int opcode = instruction->i_opcode; + assert(!IS_VIRTUAL_OPCODE(opcode)); + int oparg = HAS_ARG(opcode) ? instruction->i_oparg : 0; + int caches = _PyOpcode_Caches[opcode]; + switch (ilen - caches) { + case 4: + *codestr++ = _Py_MAKECODEUNIT(EXTENDED_ARG, (oparg >> 24) & 0xFF); + /* fall through */ + case 3: + *codestr++ = _Py_MAKECODEUNIT(EXTENDED_ARG, (oparg >> 16) & 0xFF); + /* fall through */ + case 2: + *codestr++ = _Py_MAKECODEUNIT(EXTENDED_ARG, (oparg >> 8) & 0xFF); + /* fall through */ + case 1: + *codestr++ = _Py_MAKECODEUNIT(opcode, oparg & 0xFF); + break; + default: + Py_UNREACHABLE(); + } + while (caches--) { + *codestr++ = _Py_MAKECODEUNIT(CACHE, 0); + } +} + +typedef struct basicblock_ { + /* Each basicblock in a compilation unit is linked via b_list in the + reverse order that the block are allocated. b_list points to the next + block, not to be confused with b_next, which is next by control flow. */ + struct basicblock_ *b_list; + /* Exception stack at start of block, used by assembler to create the exception handling table */ + ExceptStack *b_exceptstack; + /* pointer to an array of instructions, initially NULL */ + struct instr *b_instr; + /* If b_next is non-NULL, it is a pointer to the next + block reached by normal control flow. */ + struct basicblock_ *b_next; + /* number of instructions used */ + int b_iused; + /* length of instruction array (b_instr) */ + int b_ialloc; + /* Number of predecssors that a block has. */ + int b_predecessors; + /* depth of stack upon entry of block, computed by stackdepth() */ + int b_startdepth; + /* instruction offset for block, computed by assemble_jump_offsets() */ + int b_offset; + /* Basic block has no fall through (it ends with a return, raise or jump) */ + unsigned b_nofallthrough : 1; + /* Basic block is an exception handler that preserves lasti */ + unsigned b_preserve_lasti : 1; + /* Used by compiler passes to mark whether they have visited a basic block. */ + unsigned b_visited : 1; + /* Basic block exits scope (it ends with a return or raise) */ + unsigned b_exit : 1; + /* b_return is true if a RETURN_VALUE opcode is inserted. */ + unsigned b_return : 1; +} basicblock; + +/* fblockinfo tracks the current frame block. + +A frame block is used to handle loops, try/except, and try/finally. +It's called a frame block to distinguish it from a basic block in the +compiler IR. +*/ + +enum fblocktype { WHILE_LOOP, FOR_LOOP, TRY_EXCEPT, FINALLY_TRY, FINALLY_END, + WITH, ASYNC_WITH, HANDLER_CLEANUP, POP_VALUE, EXCEPTION_HANDLER, + EXCEPTION_GROUP_HANDLER, ASYNC_COMPREHENSION_GENERATOR }; + +struct fblockinfo { + enum fblocktype fb_type; + basicblock *fb_block; + /* (optional) type-specific exit or cleanup block */ + basicblock *fb_exit; + /* (optional) additional information required for unwinding */ + void *fb_datum; +}; + +enum { + COMPILER_SCOPE_MODULE, + COMPILER_SCOPE_CLASS, + COMPILER_SCOPE_FUNCTION, + COMPILER_SCOPE_ASYNC_FUNCTION, + COMPILER_SCOPE_LAMBDA, + COMPILER_SCOPE_COMPREHENSION, +}; + +/* The following items change on entry and exit of code blocks. + They must be saved and restored when returning to a block. +*/ +struct compiler_unit { + PySTEntryObject *u_ste; + + PyObject *u_name; + PyObject *u_qualname; /* dot-separated qualified name (lazy) */ + int u_scope_type; + + /* The following fields are dicts that map objects to + the index of them in co_XXX. The index is used as + the argument for opcodes that refer to those collections. + */ + PyObject *u_consts; /* all constants */ + PyObject *u_names; /* all names */ + PyObject *u_varnames; /* local variables */ + PyObject *u_cellvars; /* cell variables */ + PyObject *u_freevars; /* free variables */ + + PyObject *u_private; /* for private name mangling */ + + Py_ssize_t u_argcount; /* number of arguments for block */ + Py_ssize_t u_posonlyargcount; /* number of positional only arguments for block */ + Py_ssize_t u_kwonlyargcount; /* number of keyword only arguments for block */ + /* Pointer to the most recently allocated block. By following b_list + members, you can reach all early allocated blocks. */ + basicblock *u_blocks; + basicblock *u_curblock; /* pointer to current block */ + + int u_nfblocks; + struct fblockinfo u_fblock[CO_MAXBLOCKS]; + + int u_firstlineno; /* the first lineno of the block */ + int u_lineno; /* the lineno for the current stmt */ + int u_col_offset; /* the offset of the current stmt */ + int u_end_lineno; /* the end line of the current stmt */ + int u_end_col_offset; /* the end offset of the current stmt */ + + /* true if we need to create an implicit basicblock before the next instr */ + int u_need_new_implicit_block; +}; + +/* This struct captures the global state of a compilation. + +The u pointer points to the current compilation unit, while units +for enclosing blocks are stored in c_stack. The u and c_stack are +managed by compiler_enter_scope() and compiler_exit_scope(). + +Note that we don't track recursion levels during compilation - the +task of detecting and rejecting excessive levels of nesting is +handled by the symbol analysis pass. + +*/ + +struct compiler { + PyObject *c_filename; + struct symtable *c_st; + PyFutureFeatures *c_future; /* pointer to module's __future__ */ + PyCompilerFlags *c_flags; + + int c_optimize; /* optimization level */ + int c_interactive; /* true if in interactive mode */ + int c_nestlevel; + PyObject *c_const_cache; /* Python dict holding all constants, + including names tuple */ + struct compiler_unit *u; /* compiler state for current block */ + PyObject *c_stack; /* Python list holding compiler_unit ptrs */ + PyArena *c_arena; /* pointer to memory allocation arena */ +}; + +typedef struct { + // A list of strings corresponding to name captures. It is used to track: + // - Repeated name assignments in the same pattern. + // - Different name assignments in alternatives. + // - The order of name assignments in alternatives. + PyObject *stores; + // If 0, any name captures against our subject will raise. + int allow_irrefutable; + // An array of blocks to jump to on failure. Jumping to fail_pop[i] will pop + // i items off of the stack. The end result looks like this (with each block + // falling through to the next): + // fail_pop[4]: POP_TOP + // fail_pop[3]: POP_TOP + // fail_pop[2]: POP_TOP + // fail_pop[1]: POP_TOP + // fail_pop[0]: NOP + basicblock **fail_pop; + // The current length of fail_pop. + Py_ssize_t fail_pop_size; + // The number of items on top of the stack that need to *stay* on top of the + // stack. Variable captures go beneath these. All of them will be popped on + // failure. + Py_ssize_t on_top; +} pattern_context; + +static int compiler_enter_scope(struct compiler *, identifier, int, void *, int); +static void compiler_free(struct compiler *); +static basicblock *compiler_new_block(struct compiler *); +static int compiler_next_instr(basicblock *); +static int compiler_addop(struct compiler *, int); +static int compiler_addop_i(struct compiler *, int, Py_ssize_t); +static int compiler_addop_j(struct compiler *, int, basicblock *); +static int compiler_addop_j_noline(struct compiler *, int, basicblock *); +static int compiler_error(struct compiler *, const char *, ...); +static int compiler_warn(struct compiler *, const char *, ...); +static int compiler_nameop(struct compiler *, identifier, expr_context_ty); + +static PyCodeObject *compiler_mod(struct compiler *, mod_ty); +static int compiler_visit_stmt(struct compiler *, stmt_ty); +static int compiler_visit_keyword(struct compiler *, keyword_ty); +static int compiler_visit_expr(struct compiler *, expr_ty); +static int compiler_augassign(struct compiler *, stmt_ty); +static int compiler_annassign(struct compiler *, stmt_ty); +static int compiler_subscript(struct compiler *, expr_ty); +static int compiler_slice(struct compiler *, expr_ty); + +static int are_all_items_const(asdl_expr_seq *, Py_ssize_t, Py_ssize_t); + + +static int compiler_with(struct compiler *, stmt_ty, int); +static int compiler_async_with(struct compiler *, stmt_ty, int); +static int compiler_async_for(struct compiler *, stmt_ty); +static int validate_keywords(struct compiler *c, asdl_keyword_seq *keywords); +static int compiler_call_simple_kw_helper(struct compiler *c, + asdl_keyword_seq *keywords, + Py_ssize_t nkwelts); +static int compiler_call_helper(struct compiler *c, int n, + asdl_expr_seq *args, + asdl_keyword_seq *keywords); +static int compiler_try_except(struct compiler *, stmt_ty); +static int compiler_try_star_except(struct compiler *, stmt_ty); +static int compiler_set_qualname(struct compiler *); + +static int compiler_sync_comprehension_generator( + struct compiler *c, + asdl_comprehension_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type); + +static int compiler_async_comprehension_generator( + struct compiler *c, + asdl_comprehension_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type); + +static int compiler_pattern(struct compiler *, pattern_ty, pattern_context *); +static int compiler_match(struct compiler *, stmt_ty); +static int compiler_pattern_subpattern(struct compiler *, pattern_ty, + pattern_context *); + +static void clean_basic_block(basicblock *bb); + +static PyCodeObject *assemble(struct compiler *, int addNone); + +#define CAPSULE_NAME "compile.c compiler unit" + +PyObject * +_Py_Mangle(PyObject *privateobj, PyObject *ident) +{ + /* Name mangling: __private becomes _classname__private. + This is independent from how the name is used. */ + PyObject *result; + size_t nlen, plen, ipriv; + Py_UCS4 maxchar; + if (privateobj == NULL || !PyUnicode_Check(privateobj) || + PyUnicode_READ_CHAR(ident, 0) != '_' || + PyUnicode_READ_CHAR(ident, 1) != '_') { + Py_INCREF(ident); + return ident; + } + nlen = PyUnicode_GET_LENGTH(ident); + plen = PyUnicode_GET_LENGTH(privateobj); + /* Don't mangle __id__ or names with dots. + + The only time a name with a dot can occur is when + we are compiling an import statement that has a + package name. + + TODO(jhylton): Decide whether we want to support + mangling of the module name, e.g. __M.X. + */ + if ((PyUnicode_READ_CHAR(ident, nlen-1) == '_' && + PyUnicode_READ_CHAR(ident, nlen-2) == '_') || + PyUnicode_FindChar(ident, '.', 0, nlen, 1) != -1) { + Py_INCREF(ident); + return ident; /* Don't mangle __whatever__ */ + } + /* Strip leading underscores from class name */ + ipriv = 0; + while (PyUnicode_READ_CHAR(privateobj, ipriv) == '_') + ipriv++; + if (ipriv == plen) { + Py_INCREF(ident); + return ident; /* Don't mangle if class is just underscores */ + } + plen -= ipriv; + + if (plen + nlen >= PY_SSIZE_T_MAX - 1) { + PyErr_SetString(PyExc_OverflowError, + "private identifier too large to be mangled"); + return NULL; + } + + maxchar = PyUnicode_MAX_CHAR_VALUE(ident); + if (PyUnicode_MAX_CHAR_VALUE(privateobj) > maxchar) + maxchar = PyUnicode_MAX_CHAR_VALUE(privateobj); + + result = PyUnicode_New(1 + nlen + plen, maxchar); + if (!result) + return 0; + /* ident = "_" + priv[ipriv:] + ident # i.e. 1+plen+nlen bytes */ + PyUnicode_WRITE(PyUnicode_KIND(result), PyUnicode_DATA(result), 0, '_'); + if (PyUnicode_CopyCharacters(result, 1, privateobj, ipriv, plen) < 0) { + Py_DECREF(result); + return NULL; + } + if (PyUnicode_CopyCharacters(result, plen+1, ident, 0, nlen) < 0) { + Py_DECREF(result); + return NULL; + } + assert(_PyUnicode_CheckConsistency(result, 1)); + return result; +} + +static int +compiler_init(struct compiler *c) +{ + memset(c, 0, sizeof(struct compiler)); + + c->c_const_cache = PyDict_New(); + if (!c->c_const_cache) { + return 0; + } + + c->c_stack = PyList_New(0); + if (!c->c_stack) { + Py_CLEAR(c->c_const_cache); + return 0; + } + + return 1; +} + +PyCodeObject * +_PyAST_Compile(mod_ty mod, PyObject *filename, PyCompilerFlags *flags, + int optimize, PyArena *arena) +{ + struct compiler c; + PyCodeObject *co = NULL; + PyCompilerFlags local_flags = _PyCompilerFlags_INIT; + int merged; + if (!compiler_init(&c)) + return NULL; + Py_INCREF(filename); + c.c_filename = filename; + c.c_arena = arena; + c.c_future = _PyFuture_FromAST(mod, filename); + if (c.c_future == NULL) + goto finally; + if (!flags) { + flags = &local_flags; + } + merged = c.c_future->ff_features | flags->cf_flags; + c.c_future->ff_features = merged; + flags->cf_flags = merged; + c.c_flags = flags; + c.c_optimize = (optimize == -1) ? _Py_GetConfig()->optimization_level : optimize; + c.c_nestlevel = 0; + + _PyASTOptimizeState state; + state.optimize = c.c_optimize; + state.ff_features = merged; + + if (!_PyAST_Optimize(mod, arena, &state)) { + goto finally; + } + + c.c_st = _PySymtable_Build(mod, filename, c.c_future); + if (c.c_st == NULL) { + if (!PyErr_Occurred()) + PyErr_SetString(PyExc_SystemError, "no symtable"); + goto finally; + } + + co = compiler_mod(&c, mod); + + finally: + compiler_free(&c); + assert(co || PyErr_Occurred()); + return co; +} + +static void +compiler_free(struct compiler *c) +{ + if (c->c_st) + _PySymtable_Free(c->c_st); + if (c->c_future) + PyObject_Free(c->c_future); + Py_XDECREF(c->c_filename); + Py_DECREF(c->c_const_cache); + Py_DECREF(c->c_stack); +} + +static PyObject * +list2dict(PyObject *list) +{ + Py_ssize_t i, n; + PyObject *v, *k; + PyObject *dict = PyDict_New(); + if (!dict) return NULL; + + n = PyList_Size(list); + for (i = 0; i < n; i++) { + v = PyLong_FromSsize_t(i); + if (!v) { + Py_DECREF(dict); + return NULL; + } + k = PyList_GET_ITEM(list, i); + if (PyDict_SetItem(dict, k, v) < 0) { + Py_DECREF(v); + Py_DECREF(dict); + return NULL; + } + Py_DECREF(v); + } + return dict; +} + +/* Return new dict containing names from src that match scope(s). + +src is a symbol table dictionary. If the scope of a name matches +either scope_type or flag is set, insert it into the new dict. The +values are integers, starting at offset and increasing by one for +each key. +*/ + +static PyObject * +dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset) +{ + Py_ssize_t i = offset, scope, num_keys, key_i; + PyObject *k, *v, *dest = PyDict_New(); + PyObject *sorted_keys; + + assert(offset >= 0); + if (dest == NULL) + return NULL; + + /* Sort the keys so that we have a deterministic order on the indexes + saved in the returned dictionary. These indexes are used as indexes + into the free and cell var storage. Therefore if they aren't + deterministic, then the generated bytecode is not deterministic. + */ + sorted_keys = PyDict_Keys(src); + if (sorted_keys == NULL) + return NULL; + if (PyList_Sort(sorted_keys) != 0) { + Py_DECREF(sorted_keys); + return NULL; + } + num_keys = PyList_GET_SIZE(sorted_keys); + + for (key_i = 0; key_i < num_keys; key_i++) { + /* XXX this should probably be a macro in symtable.h */ + long vi; + k = PyList_GET_ITEM(sorted_keys, key_i); + v = PyDict_GetItemWithError(src, k); + assert(v && PyLong_Check(v)); + vi = PyLong_AS_LONG(v); + scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK; + + if (scope == scope_type || vi & flag) { + PyObject *item = PyLong_FromSsize_t(i); + if (item == NULL) { + Py_DECREF(sorted_keys); + Py_DECREF(dest); + return NULL; + } + i++; + if (PyDict_SetItem(dest, k, item) < 0) { + Py_DECREF(sorted_keys); + Py_DECREF(item); + Py_DECREF(dest); + return NULL; + } + Py_DECREF(item); + } + } + Py_DECREF(sorted_keys); + return dest; +} + +static void +compiler_unit_check(struct compiler_unit *u) +{ + basicblock *block; + for (block = u->u_blocks; block != NULL; block = block->b_list) { + assert(!_PyMem_IsPtrFreed(block)); + if (block->b_instr != NULL) { + assert(block->b_ialloc > 0); + assert(block->b_iused >= 0); + assert(block->b_ialloc >= block->b_iused); + } + else { + assert (block->b_iused == 0); + assert (block->b_ialloc == 0); + } + } +} + +static void +compiler_unit_free(struct compiler_unit *u) +{ + basicblock *b, *next; + + compiler_unit_check(u); + b = u->u_blocks; + while (b != NULL) { + if (b->b_instr) + PyObject_Free((void *)b->b_instr); + next = b->b_list; + PyObject_Free((void *)b); + b = next; + } + Py_CLEAR(u->u_ste); + Py_CLEAR(u->u_name); + Py_CLEAR(u->u_qualname); + Py_CLEAR(u->u_consts); + Py_CLEAR(u->u_names); + Py_CLEAR(u->u_varnames); + Py_CLEAR(u->u_freevars); + Py_CLEAR(u->u_cellvars); + Py_CLEAR(u->u_private); + PyObject_Free(u); +} + +static int +compiler_set_qualname(struct compiler *c) +{ + Py_ssize_t stack_size; + struct compiler_unit *u = c->u; + PyObject *name, *base; + + base = NULL; + stack_size = PyList_GET_SIZE(c->c_stack); + assert(stack_size >= 1); + if (stack_size > 1) { + int scope, force_global = 0; + struct compiler_unit *parent; + PyObject *mangled, *capsule; + + capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1); + parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME); + assert(parent); + + if (u->u_scope_type == COMPILER_SCOPE_FUNCTION + || u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION + || u->u_scope_type == COMPILER_SCOPE_CLASS) { + assert(u->u_name); + mangled = _Py_Mangle(parent->u_private, u->u_name); + if (!mangled) + return 0; + scope = _PyST_GetScope(parent->u_ste, mangled); + Py_DECREF(mangled); + assert(scope != GLOBAL_IMPLICIT); + if (scope == GLOBAL_EXPLICIT) + force_global = 1; + } + + if (!force_global) { + if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION + || parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION + || parent->u_scope_type == COMPILER_SCOPE_LAMBDA) + { + _Py_DECLARE_STR(dot_locals, ".<locals>"); + base = PyUnicode_Concat(parent->u_qualname, + &_Py_STR(dot_locals)); + if (base == NULL) + return 0; + } + else { + Py_INCREF(parent->u_qualname); + base = parent->u_qualname; + } + } + } + + if (base != NULL) { + _Py_DECLARE_STR(dot, "."); + name = PyUnicode_Concat(base, &_Py_STR(dot)); + Py_DECREF(base); + if (name == NULL) + return 0; + PyUnicode_Append(&name, u->u_name); + if (name == NULL) + return 0; + } + else { + Py_INCREF(u->u_name); + name = u->u_name; + } + u->u_qualname = name; + + return 1; +} + + +/* Allocate a new block and return a pointer to it. + Returns NULL on error. +*/ + +static basicblock * +compiler_new_block(struct compiler *c) +{ + basicblock *b; + struct compiler_unit *u; + + u = c->u; + b = (basicblock *)PyObject_Calloc(1, sizeof(basicblock)); + if (b == NULL) { + PyErr_NoMemory(); + return NULL; + } + /* Extend the singly linked list of blocks with new block. */ + b->b_list = u->u_blocks; + u->u_blocks = b; + return b; +} + +static basicblock * +compiler_use_next_block(struct compiler *c, basicblock *block) +{ + assert(block != NULL); + c->u->u_curblock->b_next = block; + c->u->u_curblock = block; + c->u->u_need_new_implicit_block = 0; + return block; +} + +static basicblock * +compiler_copy_block(struct compiler *c, basicblock *block) +{ + /* Cannot copy a block if it has a fallthrough, since + * a block can only have one fallthrough predecessor. + */ + assert(block->b_nofallthrough); + basicblock *result = compiler_new_block(c); + if (result == NULL) { + return NULL; + } + for (int i = 0; i < block->b_iused; i++) { + int n = compiler_next_instr(result); + if (n < 0) { + return NULL; + } + result->b_instr[n] = block->b_instr[i]; + } + result->b_exit = block->b_exit; + result->b_nofallthrough = 1; + return result; +} + +/* Returns the offset of the next instruction in the current block's + b_instr array. Resizes the b_instr as necessary. + Returns -1 on failure. +*/ + +static int +compiler_next_instr(basicblock *b) +{ + assert(b != NULL); + if (b->b_instr == NULL) { + b->b_instr = (struct instr *)PyObject_Calloc( + DEFAULT_BLOCK_SIZE, sizeof(struct instr)); + if (b->b_instr == NULL) { + PyErr_NoMemory(); + return -1; + } + b->b_ialloc = DEFAULT_BLOCK_SIZE; + } + else if (b->b_iused == b->b_ialloc) { + struct instr *tmp; + size_t oldsize, newsize; + oldsize = b->b_ialloc * sizeof(struct instr); + newsize = oldsize << 1; + + if (oldsize > (SIZE_MAX >> 1)) { + PyErr_NoMemory(); + return -1; + } + + if (newsize == 0) { + PyErr_NoMemory(); + return -1; + } + b->b_ialloc <<= 1; + tmp = (struct instr *)PyObject_Realloc( + (void *)b->b_instr, newsize); + if (tmp == NULL) { + PyErr_NoMemory(); + return -1; + } + b->b_instr = tmp; + memset((char *)b->b_instr + oldsize, 0, newsize - oldsize); + } + return b->b_iused++; +} + +/* Set the line number and column offset for the following instructions. + + The line number is reset in the following cases: + - when entering a new scope + - on each statement + - on each expression and sub-expression + - before the "except" and "finally" clauses +*/ + +#define SET_LOC(c, x) \ + (c)->u->u_lineno = (x)->lineno; \ + (c)->u->u_col_offset = (x)->col_offset; \ + (c)->u->u_end_lineno = (x)->end_lineno; \ + (c)->u->u_end_col_offset = (x)->end_col_offset; + +// Artificial instructions +#define UNSET_LOC(c) \ + (c)->u->u_lineno = -1; \ + (c)->u->u_col_offset = -1; \ + (c)->u->u_end_lineno = -1; \ + (c)->u->u_end_col_offset = -1; + +#define COPY_INSTR_LOC(old, new) \ + (new).i_lineno = (old).i_lineno; \ + (new).i_col_offset = (old).i_col_offset; \ + (new).i_end_lineno = (old).i_end_lineno; \ + (new).i_end_col_offset = (old).i_end_col_offset; + +/* Return the stack effect of opcode with argument oparg. + + Some opcodes have different stack effect when jump to the target and + when not jump. The 'jump' parameter specifies the case: + + * 0 -- when not jump + * 1 -- when jump + * -1 -- maximal + */ +static int +stack_effect(int opcode, int oparg, int jump) +{ + switch (opcode) { + case NOP: + case EXTENDED_ARG: + case RESUME: + case CACHE: + return 0; + + /* Stack manipulation */ + case POP_TOP: + return -1; + case SWAP: + return 0; + + /* Unary operators */ + case UNARY_POSITIVE: + case UNARY_NEGATIVE: + case UNARY_NOT: + case UNARY_INVERT: + return 0; + + case SET_ADD: + case LIST_APPEND: + return -1; + case MAP_ADD: + return -2; + + case BINARY_SUBSCR: + return -1; + case STORE_SUBSCR: + return -3; + case DELETE_SUBSCR: + return -2; + + case GET_ITER: + return 0; + + case PRINT_EXPR: + return -1; + case LOAD_BUILD_CLASS: + return 1; + + case RETURN_VALUE: + return -1; + case IMPORT_STAR: + return -1; + case SETUP_ANNOTATIONS: + return 0; + case ASYNC_GEN_WRAP: + case YIELD_VALUE: + return 0; + case POP_BLOCK: + return 0; + case POP_EXCEPT: + return -1; + + case STORE_NAME: + return -1; + case DELETE_NAME: + return 0; + case UNPACK_SEQUENCE: + return oparg-1; + case UNPACK_EX: + return (oparg&0xFF) + (oparg>>8); + case FOR_ITER: + /* -1 at end of iterator, 1 if continue iterating. */ + return jump > 0 ? -1 : 1; + case SEND: + return jump > 0 ? -1 : 0; + case STORE_ATTR: + return -2; + case DELETE_ATTR: + return -1; + case STORE_GLOBAL: + return -1; + case DELETE_GLOBAL: + return 0; + case LOAD_CONST: + return 1; + case LOAD_NAME: + return 1; + case BUILD_TUPLE: + case BUILD_LIST: + case BUILD_SET: + case BUILD_STRING: + return 1-oparg; + case BUILD_MAP: + return 1 - 2*oparg; + case BUILD_CONST_KEY_MAP: + return -oparg; + case LOAD_ATTR: + return 0; + case COMPARE_OP: + case IS_OP: + case CONTAINS_OP: + return -1; + case CHECK_EXC_MATCH: + return 0; + case CHECK_EG_MATCH: + return 0; + case IMPORT_NAME: + return -1; + case IMPORT_FROM: + return 1; + + /* Jumps */ + case JUMP_FORWARD: + case JUMP_BACKWARD: + case JUMP: + case JUMP_BACKWARD_NO_INTERRUPT: + case JUMP_NO_INTERRUPT: + return 0; + + case JUMP_IF_TRUE_OR_POP: + case JUMP_IF_FALSE_OR_POP: + return jump ? 0 : -1; + + case POP_JUMP_BACKWARD_IF_NONE: + case POP_JUMP_FORWARD_IF_NONE: + case POP_JUMP_IF_NONE: + case POP_JUMP_BACKWARD_IF_NOT_NONE: + case POP_JUMP_FORWARD_IF_NOT_NONE: + case POP_JUMP_IF_NOT_NONE: + case POP_JUMP_FORWARD_IF_FALSE: + case POP_JUMP_BACKWARD_IF_FALSE: + case POP_JUMP_IF_FALSE: + case POP_JUMP_FORWARD_IF_TRUE: + case POP_JUMP_BACKWARD_IF_TRUE: + case POP_JUMP_IF_TRUE: + return -1; + + case LOAD_GLOBAL: + return (oparg & 1) + 1; + + /* Exception handling pseudo-instructions */ + case SETUP_FINALLY: + /* 0 in the normal flow. + * Restore the stack position and push 1 value before jumping to + * the handler if an exception be raised. */ + return jump ? 1 : 0; + case SETUP_CLEANUP: + /* As SETUP_FINALLY, but pushes lasti as well */ + return jump ? 2 : 0; + case SETUP_WITH: + /* 0 in the normal flow. + * Restore the stack position to the position before the result + * of __(a)enter__ and push 2 values before jumping to the handler + * if an exception be raised. */ + return jump ? 1 : 0; + + case PREP_RERAISE_STAR: + return -1; + case RERAISE: + return -1; + case PUSH_EXC_INFO: + return 1; + + case WITH_EXCEPT_START: + return 1; + + case LOAD_FAST: + return 1; + case STORE_FAST: + return -1; + case DELETE_FAST: + return 0; + + case RETURN_GENERATOR: + return 0; + + case RAISE_VARARGS: + return -oparg; + + /* Functions and calls */ + case PRECALL: + return -oparg; + case KW_NAMES: + return 0; + case CALL: + return -1; + + case CALL_FUNCTION_EX: + return -2 - ((oparg & 0x01) != 0); + case MAKE_FUNCTION: + return 0 - ((oparg & 0x01) != 0) - ((oparg & 0x02) != 0) - + ((oparg & 0x04) != 0) - ((oparg & 0x08) != 0); + case BUILD_SLICE: + if (oparg == 3) + return -2; + else + return -1; + + /* Closures */ + case MAKE_CELL: + case COPY_FREE_VARS: + return 0; + case LOAD_CLOSURE: + return 1; + case LOAD_DEREF: + case LOAD_CLASSDEREF: + return 1; + case STORE_DEREF: + return -1; + case DELETE_DEREF: + return 0; + + /* Iterators and generators */ + case GET_AWAITABLE: + return 0; + + case BEFORE_ASYNC_WITH: + case BEFORE_WITH: + return 1; + case GET_AITER: + return 0; + case GET_ANEXT: + return 1; + case GET_YIELD_FROM_ITER: + return 0; + case END_ASYNC_FOR: + return -2; + case FORMAT_VALUE: + /* If there's a fmt_spec on the stack, we go from 2->1, + else 1->1. */ + return (oparg & FVS_MASK) == FVS_HAVE_SPEC ? -1 : 0; + case LOAD_METHOD: + return 1; + case LOAD_ASSERTION_ERROR: + return 1; + case LIST_TO_TUPLE: + return 0; + case LIST_EXTEND: + case SET_UPDATE: + case DICT_MERGE: + case DICT_UPDATE: + return -1; + case MATCH_CLASS: + return -2; + case GET_LEN: + case MATCH_MAPPING: + case MATCH_SEQUENCE: + case MATCH_KEYS: + return 1; + case COPY: + case PUSH_NULL: + return 1; + case BINARY_OP: + return -1; + default: + return PY_INVALID_STACK_EFFECT; + } + return PY_INVALID_STACK_EFFECT; /* not reachable */ +} + +int +PyCompile_OpcodeStackEffectWithJump(int opcode, int oparg, int jump) +{ + return stack_effect(opcode, oparg, jump); +} + +int +PyCompile_OpcodeStackEffect(int opcode, int oparg) +{ + return stack_effect(opcode, oparg, -1); +} + +static int is_end_of_basic_block(struct instr *instr) +{ + int opcode = instr->i_opcode; + + return is_jump(instr) || + opcode == RETURN_VALUE || + opcode == RAISE_VARARGS || + opcode == RERAISE; +} + +static int +compiler_use_new_implicit_block_if_needed(struct compiler *c) +{ + if (c->u->u_need_new_implicit_block) { + basicblock *b = compiler_new_block(c); + if (b == NULL) { + return -1; + } + compiler_use_next_block(c, b); + } + return 0; +} + +static void +compiler_check_if_end_of_block(struct compiler *c, struct instr *instr) +{ + if (is_end_of_basic_block(instr)) { + c->u->u_need_new_implicit_block = 1; + } +} + +/* Add an opcode with no argument. + Returns 0 on failure, 1 on success. +*/ + +static int +compiler_addop_line(struct compiler *c, int opcode, int line, + int end_line, int col_offset, int end_col_offset) +{ + assert(IS_WITHIN_OPCODE_RANGE(opcode)); + assert(!IS_ASSEMBLER_OPCODE(opcode)); + assert(!HAS_ARG(opcode) || IS_ARTIFICIAL(opcode)); + + if (compiler_use_new_implicit_block_if_needed(c) < 0) { + return -1; + } + + basicblock *b = c->u->u_curblock; + int off = compiler_next_instr(b); + if (off < 0) { + return 0; + } + struct instr *i = &b->b_instr[off]; + i->i_opcode = opcode; + i->i_oparg = 0; + if (opcode == RETURN_VALUE) { + b->b_return = 1; + } + i->i_lineno = line; + i->i_end_lineno = end_line; + i->i_col_offset = col_offset; + i->i_end_col_offset = end_col_offset; + + compiler_check_if_end_of_block(c, i); + return 1; +} + +static int +compiler_addop(struct compiler *c, int opcode) +{ + return compiler_addop_line(c, opcode, c->u->u_lineno, c->u->u_end_lineno, + c->u->u_col_offset, c->u->u_end_col_offset); +} + +static int +compiler_addop_noline(struct compiler *c, int opcode) +{ + return compiler_addop_line(c, opcode, -1, 0, 0, 0); +} + + +static Py_ssize_t +compiler_add_o(PyObject *dict, PyObject *o) +{ + PyObject *v; + Py_ssize_t arg; + + v = PyDict_GetItemWithError(dict, o); + if (!v) { + if (PyErr_Occurred()) { + return -1; + } + arg = PyDict_GET_SIZE(dict); + v = PyLong_FromSsize_t(arg); + if (!v) { + return -1; + } + if (PyDict_SetItem(dict, o, v) < 0) { + Py_DECREF(v); + return -1; + } + Py_DECREF(v); + } + else + arg = PyLong_AsLong(v); + return arg; +} + +// Merge const *o* recursively and return constant key object. +static PyObject* +merge_consts_recursive(struct compiler *c, PyObject *o) +{ + // None and Ellipsis are singleton, and key is the singleton. + // No need to merge object and key. + if (o == Py_None || o == Py_Ellipsis) { + Py_INCREF(o); + return o; + } + + PyObject *key = _PyCode_ConstantKey(o); + if (key == NULL) { + return NULL; + } + + // t is borrowed reference + PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key); + if (t != key) { + // o is registered in c_const_cache. Just use it. + Py_XINCREF(t); + Py_DECREF(key); + return t; + } + + // We registered o in c_const_cache. + // When o is a tuple or frozenset, we want to merge its + // items too. + if (PyTuple_CheckExact(o)) { + Py_ssize_t len = PyTuple_GET_SIZE(o); + for (Py_ssize_t i = 0; i < len; i++) { + PyObject *item = PyTuple_GET_ITEM(o, i); + PyObject *u = merge_consts_recursive(c, item); + if (u == NULL) { + Py_DECREF(key); + return NULL; + } + + // See _PyCode_ConstantKey() + PyObject *v; // borrowed + if (PyTuple_CheckExact(u)) { + v = PyTuple_GET_ITEM(u, 1); + } + else { + v = u; + } + if (v != item) { + Py_INCREF(v); + PyTuple_SET_ITEM(o, i, v); + Py_DECREF(item); + } + + Py_DECREF(u); + } + } + else if (PyFrozenSet_CheckExact(o)) { + // *key* is tuple. And its first item is frozenset of + // constant keys. + // See _PyCode_ConstantKey() for detail. + assert(PyTuple_CheckExact(key)); + assert(PyTuple_GET_SIZE(key) == 2); + + Py_ssize_t len = PySet_GET_SIZE(o); + if (len == 0) { // empty frozenset should not be re-created. + return key; + } + PyObject *tuple = PyTuple_New(len); + if (tuple == NULL) { + Py_DECREF(key); + return NULL; + } + Py_ssize_t i = 0, pos = 0; + PyObject *item; + Py_hash_t hash; + while (_PySet_NextEntry(o, &pos, &item, &hash)) { + PyObject *k = merge_consts_recursive(c, item); + if (k == NULL) { + Py_DECREF(tuple); + Py_DECREF(key); + return NULL; + } + PyObject *u; + if (PyTuple_CheckExact(k)) { + u = PyTuple_GET_ITEM(k, 1); + Py_INCREF(u); + Py_DECREF(k); + } + else { + u = k; + } + PyTuple_SET_ITEM(tuple, i, u); // Steals reference of u. + i++; + } + + // Instead of rewriting o, we create new frozenset and embed in the + // key tuple. Caller should get merged frozenset from the key tuple. + PyObject *new = PyFrozenSet_New(tuple); + Py_DECREF(tuple); + if (new == NULL) { + Py_DECREF(key); + return NULL; + } + assert(PyTuple_GET_ITEM(key, 1) == o); + Py_DECREF(o); + PyTuple_SET_ITEM(key, 1, new); + } + + return key; +} + +static Py_ssize_t +compiler_add_const(struct compiler *c, PyObject *o) +{ + PyObject *key = merge_consts_recursive(c, o); + if (key == NULL) { + return -1; + } + + Py_ssize_t arg = compiler_add_o(c->u->u_consts, key); + Py_DECREF(key); + return arg; +} + +static int +compiler_addop_load_const(struct compiler *c, PyObject *o) +{ + Py_ssize_t arg = compiler_add_const(c, o); + if (arg < 0) + return 0; + return compiler_addop_i(c, LOAD_CONST, arg); +} + +static int +compiler_addop_o(struct compiler *c, int opcode, PyObject *dict, + PyObject *o) +{ + Py_ssize_t arg = compiler_add_o(dict, o); + if (arg < 0) + return 0; + return compiler_addop_i(c, opcode, arg); +} + +static int +compiler_addop_name(struct compiler *c, int opcode, PyObject *dict, + PyObject *o) +{ + Py_ssize_t arg; + + PyObject *mangled = _Py_Mangle(c->u->u_private, o); + if (!mangled) + return 0; + arg = compiler_add_o(dict, mangled); + Py_DECREF(mangled); + if (arg < 0) + return 0; + return compiler_addop_i(c, opcode, arg); +} + +/* Add an opcode with an integer argument. + Returns 0 on failure, 1 on success. +*/ + +static int +compiler_addop_i_line(struct compiler *c, int opcode, Py_ssize_t oparg, + int lineno, int end_lineno, + int col_offset, int end_col_offset) +{ + /* oparg value is unsigned, but a signed C int is usually used to store + it in the C code (like Python/ceval.c). + + Limit to 32-bit signed C int (rather than INT_MAX) for portability. + + The argument of a concrete bytecode instruction is limited to 8-bit. + EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */ + + assert(IS_WITHIN_OPCODE_RANGE(opcode)); + assert(!IS_ASSEMBLER_OPCODE(opcode)); + assert(HAS_ARG(opcode)); + assert(0 <= oparg && oparg <= 2147483647); + + if (compiler_use_new_implicit_block_if_needed(c) < 0) { + return -1; + } + + basicblock *b = c->u->u_curblock; + int off = compiler_next_instr(b); + if (off < 0) { + return 0; + } + struct instr *i = &b->b_instr[off]; + i->i_opcode = opcode; + i->i_oparg = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int); + i->i_lineno = lineno; + i->i_end_lineno = end_lineno; + i->i_col_offset = col_offset; + i->i_end_col_offset = end_col_offset; + + compiler_check_if_end_of_block(c, i); + return 1; +} + +static int +compiler_addop_i(struct compiler *c, int opcode, Py_ssize_t oparg) +{ + return compiler_addop_i_line(c, opcode, oparg, + c->u->u_lineno, c->u->u_end_lineno, + c->u->u_col_offset, c->u->u_end_col_offset); +} + +static int +compiler_addop_i_noline(struct compiler *c, int opcode, Py_ssize_t oparg) +{ + return compiler_addop_i_line(c, opcode, oparg, -1, 0, 0, 0); +} + +static int add_jump_to_block(struct compiler *c, int opcode, + int lineno, int end_lineno, + int col_offset, int end_col_offset, + basicblock *target) +{ + assert(IS_WITHIN_OPCODE_RANGE(opcode)); + assert(!IS_ASSEMBLER_OPCODE(opcode)); + assert(HAS_ARG(opcode) || IS_VIRTUAL_OPCODE(opcode)); + assert(target != NULL); + + if (compiler_use_new_implicit_block_if_needed(c) < 0) { + return -1; + } + + basicblock *b = c->u->u_curblock; + int off = compiler_next_instr(b); + struct instr *i = &b->b_instr[off]; + if (off < 0) { + return 0; + } + i->i_opcode = opcode; + i->i_target = target; + i->i_lineno = lineno; + i->i_end_lineno = end_lineno; + i->i_col_offset = col_offset; + i->i_end_col_offset = end_col_offset; + + compiler_check_if_end_of_block(c, i); + return 1; +} + +static int +compiler_addop_j(struct compiler *c, int opcode, basicblock *b) +{ + return add_jump_to_block(c, opcode, c->u->u_lineno, + c->u->u_end_lineno, c->u->u_col_offset, + c->u->u_end_col_offset, b); +} + +static int +compiler_addop_j_noline(struct compiler *c, int opcode, basicblock *b) +{ + return add_jump_to_block(c, opcode, -1, 0, 0, 0, b); +} + +#define ADDOP(C, OP) { \ + if (!compiler_addop((C), (OP))) \ + return 0; \ +} + +#define ADDOP_NOLINE(C, OP) { \ + if (!compiler_addop_noline((C), (OP))) \ + return 0; \ +} + +#define ADDOP_IN_SCOPE(C, OP) { \ + if (!compiler_addop((C), (OP))) { \ + compiler_exit_scope(c); \ + return 0; \ + } \ +} + +#define ADDOP_LOAD_CONST(C, O) { \ + if (!compiler_addop_load_const((C), (O))) \ + return 0; \ +} + +/* Same as ADDOP_LOAD_CONST, but steals a reference. */ +#define ADDOP_LOAD_CONST_NEW(C, O) { \ + PyObject *__new_const = (O); \ + if (__new_const == NULL) { \ + return 0; \ + } \ + if (!compiler_addop_load_const((C), __new_const)) { \ + Py_DECREF(__new_const); \ + return 0; \ + } \ + Py_DECREF(__new_const); \ +} + +#define ADDOP_N(C, OP, O, TYPE) { \ + assert(!HAS_CONST(OP)); /* use ADDOP_LOAD_CONST_NEW */ \ + if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) { \ + Py_DECREF((O)); \ + return 0; \ + } \ + Py_DECREF((O)); \ +} + +#define ADDOP_NAME(C, OP, O, TYPE) { \ + if (!compiler_addop_name((C), (OP), (C)->u->u_ ## TYPE, (O))) \ + return 0; \ +} + +#define ADDOP_I(C, OP, O) { \ + if (!compiler_addop_i((C), (OP), (O))) \ + return 0; \ +} + +#define ADDOP_I_NOLINE(C, OP, O) { \ + if (!compiler_addop_i_noline((C), (OP), (O))) \ + return 0; \ +} + +#define ADDOP_JUMP(C, OP, O) { \ + if (!compiler_addop_j((C), (OP), (O))) \ + return 0; \ +} + +/* Add a jump with no line number. + * Used for artificial jumps that have no corresponding + * token in the source code. */ +#define ADDOP_JUMP_NOLINE(C, OP, O) { \ + if (!compiler_addop_j_noline((C), (OP), (O))) \ + return 0; \ +} + +#define ADDOP_COMPARE(C, CMP) { \ + if (!compiler_addcompare((C), (cmpop_ty)(CMP))) \ + return 0; \ +} + +#define ADDOP_BINARY(C, BINOP) \ + RETURN_IF_FALSE(addop_binary((C), (BINOP), false)) + +#define ADDOP_INPLACE(C, BINOP) \ + RETURN_IF_FALSE(addop_binary((C), (BINOP), true)) + +/* VISIT and VISIT_SEQ takes an ASDL type as their second argument. They use + the ASDL name to synthesize the name of the C type and the visit function. +*/ + +#define ADD_YIELD_FROM(C, await) \ + RETURN_IF_FALSE(compiler_add_yield_from((C), (await))) + +#define POP_EXCEPT_AND_RERAISE(C) \ + RETURN_IF_FALSE(compiler_pop_except_and_reraise((C))) + +#define ADDOP_YIELD(C) \ + RETURN_IF_FALSE(addop_yield(C)) + +#define VISIT(C, TYPE, V) {\ + if (!compiler_visit_ ## TYPE((C), (V))) \ + return 0; \ +} + +#define VISIT_IN_SCOPE(C, TYPE, V) {\ + if (!compiler_visit_ ## TYPE((C), (V))) { \ + compiler_exit_scope(c); \ + return 0; \ + } \ +} + +#define VISIT_SEQ(C, TYPE, SEQ) { \ + int _i; \ + asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \ + for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \ + TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \ + if (!compiler_visit_ ## TYPE((C), elt)) \ + return 0; \ + } \ +} + +#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \ + int _i; \ + asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \ + for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \ + TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \ + if (!compiler_visit_ ## TYPE((C), elt)) { \ + compiler_exit_scope(c); \ + return 0; \ + } \ + } \ +} + +#define RETURN_IF_FALSE(X) \ + if (!(X)) { \ + return 0; \ + } + +static int +compiler_enter_scope(struct compiler *c, identifier name, + int scope_type, void *key, int lineno) +{ + struct compiler_unit *u; + basicblock *block; + + u = (struct compiler_unit *)PyObject_Calloc(1, sizeof( + struct compiler_unit)); + if (!u) { + PyErr_NoMemory(); + return 0; + } + u->u_scope_type = scope_type; + u->u_argcount = 0; + u->u_posonlyargcount = 0; + u->u_kwonlyargcount = 0; + u->u_ste = PySymtable_Lookup(c->c_st, key); + if (!u->u_ste) { + compiler_unit_free(u); + return 0; + } + Py_INCREF(name); + u->u_name = name; + u->u_varnames = list2dict(u->u_ste->ste_varnames); + if (!u->u_varnames) { + compiler_unit_free(u); + return 0; + } + u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0); + if (!u->u_cellvars) { + compiler_unit_free(u); + return 0; + } + if (u->u_ste->ste_needs_class_closure) { + /* Cook up an implicit __class__ cell. */ + int res; + assert(u->u_scope_type == COMPILER_SCOPE_CLASS); + assert(PyDict_GET_SIZE(u->u_cellvars) == 0); + res = PyDict_SetItem(u->u_cellvars, &_Py_ID(__class__), + _PyLong_GetZero()); + if (res < 0) { + compiler_unit_free(u); + return 0; + } + } + + u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS, + PyDict_GET_SIZE(u->u_cellvars)); + if (!u->u_freevars) { + compiler_unit_free(u); + return 0; + } + + u->u_blocks = NULL; + u->u_nfblocks = 0; + u->u_firstlineno = lineno; + u->u_lineno = lineno; + u->u_col_offset = 0; + u->u_end_lineno = lineno; + u->u_end_col_offset = 0; + u->u_consts = PyDict_New(); + if (!u->u_consts) { + compiler_unit_free(u); + return 0; + } + u->u_names = PyDict_New(); + if (!u->u_names) { + compiler_unit_free(u); + return 0; + } + + u->u_private = NULL; + + /* Push the old compiler_unit on the stack. */ + if (c->u) { + PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL); + if (!capsule || PyList_Append(c->c_stack, capsule) < 0) { + Py_XDECREF(capsule); + compiler_unit_free(u); + return 0; + } + Py_DECREF(capsule); + u->u_private = c->u->u_private; + Py_XINCREF(u->u_private); + } + c->u = u; + + c->c_nestlevel++; + + block = compiler_new_block(c); + if (block == NULL) + return 0; + c->u->u_curblock = block; + + if (u->u_scope_type == COMPILER_SCOPE_MODULE) { + c->u->u_lineno = 0; + } + else { + if (!compiler_set_qualname(c)) + return 0; + } + ADDOP_I(c, RESUME, 0); + + if (u->u_scope_type == COMPILER_SCOPE_MODULE) { + c->u->u_lineno = -1; + } + return 1; +} + +static void +compiler_exit_scope(struct compiler *c) +{ + // Don't call PySequence_DelItem() with an exception raised + PyObject *exc_type, *exc_val, *exc_tb; + PyErr_Fetch(&exc_type, &exc_val, &exc_tb); + + c->c_nestlevel--; + compiler_unit_free(c->u); + /* Restore c->u to the parent unit. */ + Py_ssize_t n = PyList_GET_SIZE(c->c_stack) - 1; + if (n >= 0) { + PyObject *capsule = PyList_GET_ITEM(c->c_stack, n); + c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME); + assert(c->u); + /* we are deleting from a list so this really shouldn't fail */ + if (PySequence_DelItem(c->c_stack, n) < 0) { + _PyErr_WriteUnraisableMsg("on removing the last compiler " + "stack item", NULL); + } + compiler_unit_check(c->u); + } + else { + c->u = NULL; + } + + PyErr_Restore(exc_type, exc_val, exc_tb); +} + +/* Search if variable annotations are present statically in a block. */ + +static int +find_ann(asdl_stmt_seq *stmts) +{ + int i, j, res = 0; + stmt_ty st; + + for (i = 0; i < asdl_seq_LEN(stmts); i++) { + st = (stmt_ty)asdl_seq_GET(stmts, i); + switch (st->kind) { + case AnnAssign_kind: + return 1; + case For_kind: + res = find_ann(st->v.For.body) || + find_ann(st->v.For.orelse); + break; + case AsyncFor_kind: + res = find_ann(st->v.AsyncFor.body) || + find_ann(st->v.AsyncFor.orelse); + break; + case While_kind: + res = find_ann(st->v.While.body) || + find_ann(st->v.While.orelse); + break; + case If_kind: + res = find_ann(st->v.If.body) || + find_ann(st->v.If.orelse); + break; + case With_kind: + res = find_ann(st->v.With.body); + break; + case AsyncWith_kind: + res = find_ann(st->v.AsyncWith.body); + break; + case Try_kind: + for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) { + excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( + st->v.Try.handlers, j); + if (find_ann(handler->v.ExceptHandler.body)) { + return 1; + } + } + res = find_ann(st->v.Try.body) || + find_ann(st->v.Try.finalbody) || + find_ann(st->v.Try.orelse); + break; + case TryStar_kind: + for (j = 0; j < asdl_seq_LEN(st->v.TryStar.handlers); j++) { + excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( + st->v.TryStar.handlers, j); + if (find_ann(handler->v.ExceptHandler.body)) { + return 1; + } + } + res = find_ann(st->v.TryStar.body) || + find_ann(st->v.TryStar.finalbody) || + find_ann(st->v.TryStar.orelse); + break; + case Match_kind: + for (j = 0; j < asdl_seq_LEN(st->v.Match.cases); j++) { + match_case_ty match_case = (match_case_ty)asdl_seq_GET( + st->v.Match.cases, j); + if (find_ann(match_case->body)) { + return true; + } + } + break; + default: + res = 0; + } + if (res) { + break; + } + } + return res; +} + +/* + * Frame block handling functions + */ + +static int +compiler_push_fblock(struct compiler *c, enum fblocktype t, basicblock *b, + basicblock *exit, void *datum) +{ + struct fblockinfo *f; + if (c->u->u_nfblocks >= CO_MAXBLOCKS) { + return compiler_error(c, "too many statically nested blocks"); + } + f = &c->u->u_fblock[c->u->u_nfblocks++]; + f->fb_type = t; + f->fb_block = b; + f->fb_exit = exit; + f->fb_datum = datum; + return 1; +} + +static void +compiler_pop_fblock(struct compiler *c, enum fblocktype t, basicblock *b) +{ + struct compiler_unit *u = c->u; + assert(u->u_nfblocks > 0); + u->u_nfblocks--; + assert(u->u_fblock[u->u_nfblocks].fb_type == t); + assert(u->u_fblock[u->u_nfblocks].fb_block == b); +} + +static int +compiler_call_exit_with_nones(struct compiler *c) { + ADDOP_LOAD_CONST(c, Py_None); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP_I(c, PRECALL, 2); + ADDOP_I(c, CALL, 2); + return 1; +} + +static int +compiler_add_yield_from(struct compiler *c, int await) +{ + basicblock *start, *resume, *exit; + start = compiler_new_block(c); + resume = compiler_new_block(c); + exit = compiler_new_block(c); + if (start == NULL || resume == NULL || exit == NULL) { + return 0; + } + compiler_use_next_block(c, start); + ADDOP_JUMP(c, SEND, exit); + compiler_use_next_block(c, resume); + ADDOP(c, YIELD_VALUE); + ADDOP_I(c, RESUME, await ? 3 : 2); + ADDOP_JUMP(c, JUMP_NO_INTERRUPT, start); + compiler_use_next_block(c, exit); + return 1; +} + +static int +compiler_pop_except_and_reraise(struct compiler *c) +{ + /* Stack contents + * [exc_info, lasti, exc] COPY 3 + * [exc_info, lasti, exc, exc_info] POP_EXCEPT + * [exc_info, lasti, exc] RERAISE 1 + * (exception_unwind clears the stack) + */ + + ADDOP_I(c, COPY, 3); + ADDOP(c, POP_EXCEPT); + ADDOP_I(c, RERAISE, 1); + return 1; +} + +/* Unwind a frame block. If preserve_tos is true, the TOS before + * popping the blocks will be restored afterwards, unless another + * return, break or continue is found. In which case, the TOS will + * be popped. + */ +static int +compiler_unwind_fblock(struct compiler *c, struct fblockinfo *info, + int preserve_tos) +{ + switch (info->fb_type) { + case WHILE_LOOP: + case EXCEPTION_HANDLER: + case EXCEPTION_GROUP_HANDLER: + case ASYNC_COMPREHENSION_GENERATOR: + return 1; + + case FOR_LOOP: + /* Pop the iterator */ + if (preserve_tos) { + ADDOP_I(c, SWAP, 2); + } + ADDOP(c, POP_TOP); + return 1; + + case TRY_EXCEPT: + ADDOP(c, POP_BLOCK); + return 1; + + case FINALLY_TRY: + /* This POP_BLOCK gets the line number of the unwinding statement */ + ADDOP(c, POP_BLOCK); + if (preserve_tos) { + if (!compiler_push_fblock(c, POP_VALUE, NULL, NULL, NULL)) { + return 0; + } + } + /* Emit the finally block */ + VISIT_SEQ(c, stmt, info->fb_datum); + if (preserve_tos) { + compiler_pop_fblock(c, POP_VALUE, NULL); + } + /* The finally block should appear to execute after the + * statement causing the unwinding, so make the unwinding + * instruction artificial */ + UNSET_LOC(c); + return 1; + + case FINALLY_END: + if (preserve_tos) { + ADDOP_I(c, SWAP, 2); + } + ADDOP(c, POP_TOP); /* exc_value */ + if (preserve_tos) { + ADDOP_I(c, SWAP, 2); + } + ADDOP(c, POP_BLOCK); + ADDOP(c, POP_EXCEPT); + return 1; + + case WITH: + case ASYNC_WITH: + SET_LOC(c, (stmt_ty)info->fb_datum); + ADDOP(c, POP_BLOCK); + if (preserve_tos) { + ADDOP_I(c, SWAP, 2); + } + if(!compiler_call_exit_with_nones(c)) { + return 0; + } + if (info->fb_type == ASYNC_WITH) { + ADDOP_I(c, GET_AWAITABLE, 2); + ADDOP_LOAD_CONST(c, Py_None); + ADD_YIELD_FROM(c, 1); + } + ADDOP(c, POP_TOP); + /* The exit block should appear to execute after the + * statement causing the unwinding, so make the unwinding + * instruction artificial */ + UNSET_LOC(c); + return 1; + + case HANDLER_CLEANUP: + if (info->fb_datum) { + ADDOP(c, POP_BLOCK); + } + if (preserve_tos) { + ADDOP_I(c, SWAP, 2); + } + ADDOP(c, POP_BLOCK); + ADDOP(c, POP_EXCEPT); + if (info->fb_datum) { + ADDOP_LOAD_CONST(c, Py_None); + compiler_nameop(c, info->fb_datum, Store); + compiler_nameop(c, info->fb_datum, Del); + } + return 1; + + case POP_VALUE: + if (preserve_tos) { + ADDOP_I(c, SWAP, 2); + } + ADDOP(c, POP_TOP); + return 1; + } + Py_UNREACHABLE(); +} + +/** Unwind block stack. If loop is not NULL, then stop when the first loop is encountered. */ +static int +compiler_unwind_fblock_stack(struct compiler *c, int preserve_tos, struct fblockinfo **loop) { + if (c->u->u_nfblocks == 0) { + return 1; + } + struct fblockinfo *top = &c->u->u_fblock[c->u->u_nfblocks-1]; + if (top->fb_type == EXCEPTION_GROUP_HANDLER) { + return compiler_error( + c, "'break', 'continue' and 'return' cannot appear in an except* block"); + } + if (loop != NULL && (top->fb_type == WHILE_LOOP || top->fb_type == FOR_LOOP)) { + *loop = top; + return 1; + } + struct fblockinfo copy = *top; + c->u->u_nfblocks--; + if (!compiler_unwind_fblock(c, ©, preserve_tos)) { + return 0; + } + if (!compiler_unwind_fblock_stack(c, preserve_tos, loop)) { + return 0; + } + c->u->u_fblock[c->u->u_nfblocks] = copy; + c->u->u_nfblocks++; + return 1; +} + +/* Compile a sequence of statements, checking for a docstring + and for annotations. */ + +static int +compiler_body(struct compiler *c, asdl_stmt_seq *stmts) +{ + int i = 0; + stmt_ty st; + PyObject *docstring; + + /* Set current line number to the line number of first statement. + This way line number for SETUP_ANNOTATIONS will always + coincide with the line number of first "real" statement in module. + If body is empty, then lineno will be set later in assemble. */ + if (c->u->u_scope_type == COMPILER_SCOPE_MODULE && asdl_seq_LEN(stmts)) { + st = (stmt_ty)asdl_seq_GET(stmts, 0); + SET_LOC(c, st); + } + /* Every annotated class and module should have __annotations__. */ + if (find_ann(stmts)) { + ADDOP(c, SETUP_ANNOTATIONS); + } + if (!asdl_seq_LEN(stmts)) + return 1; + /* if not -OO mode, set docstring */ + if (c->c_optimize < 2) { + docstring = _PyAST_GetDocString(stmts); + if (docstring) { + i = 1; + st = (stmt_ty)asdl_seq_GET(stmts, 0); + assert(st->kind == Expr_kind); + VISIT(c, expr, st->v.Expr.value); + UNSET_LOC(c); + if (!compiler_nameop(c, &_Py_ID(__doc__), Store)) + return 0; + } + } + for (; i < asdl_seq_LEN(stmts); i++) + VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i)); + return 1; +} + +static PyCodeObject * +compiler_mod(struct compiler *c, mod_ty mod) +{ + PyCodeObject *co; + int addNone = 1; + _Py_DECLARE_STR(anon_module, "<module>"); + if (!compiler_enter_scope(c, &_Py_STR(anon_module), COMPILER_SCOPE_MODULE, + mod, 1)) { + return NULL; + } + c->u->u_lineno = 1; + switch (mod->kind) { + case Module_kind: + if (!compiler_body(c, mod->v.Module.body)) { + compiler_exit_scope(c); + return 0; + } + break; + case Interactive_kind: + if (find_ann(mod->v.Interactive.body)) { + ADDOP(c, SETUP_ANNOTATIONS); + } + c->c_interactive = 1; + VISIT_SEQ_IN_SCOPE(c, stmt, mod->v.Interactive.body); + break; + case Expression_kind: + VISIT_IN_SCOPE(c, expr, mod->v.Expression.body); + addNone = 0; + break; + default: + PyErr_Format(PyExc_SystemError, + "module kind %d should not be possible", + mod->kind); + return 0; + } + co = assemble(c, addNone); + compiler_exit_scope(c); + return co; +} + +/* The test for LOCAL must come before the test for FREE in order to + handle classes where name is both local and free. The local var is + a method and the free var is a free var referenced within a method. +*/ + +static int +get_ref_type(struct compiler *c, PyObject *name) +{ + int scope; + if (c->u->u_scope_type == COMPILER_SCOPE_CLASS && + _PyUnicode_EqualToASCIIString(name, "__class__")) + return CELL; + scope = _PyST_GetScope(c->u->u_ste, name); + if (scope == 0) { + PyErr_Format(PyExc_SystemError, + "_PyST_GetScope(name=%R) failed: " + "unknown scope in unit %S (%R); " + "symbols: %R; locals: %R; globals: %R", + name, + c->u->u_name, c->u->u_ste->ste_id, + c->u->u_ste->ste_symbols, c->u->u_varnames, c->u->u_names); + return -1; + } + return scope; +} + +static int +compiler_lookup_arg(PyObject *dict, PyObject *name) +{ + PyObject *v; + v = PyDict_GetItemWithError(dict, name); + if (v == NULL) + return -1; + return PyLong_AS_LONG(v); +} + +static int +compiler_make_closure(struct compiler *c, PyCodeObject *co, Py_ssize_t flags, + PyObject *qualname) +{ + if (qualname == NULL) + qualname = co->co_name; + + if (co->co_nfreevars) { + int i = co->co_nlocals + co->co_nplaincellvars; + for (; i < co->co_nlocalsplus; ++i) { + /* Bypass com_addop_varname because it will generate + LOAD_DEREF but LOAD_CLOSURE is needed. + */ + PyObject *name = PyTuple_GET_ITEM(co->co_localsplusnames, i); + + /* Special case: If a class contains a method with a + free variable that has the same name as a method, + the name will be considered free *and* local in the + class. It should be handled by the closure, as + well as by the normal name lookup logic. + */ + int reftype = get_ref_type(c, name); + if (reftype == -1) { + return 0; + } + int arg; + if (reftype == CELL) { + arg = compiler_lookup_arg(c->u->u_cellvars, name); + } + else { + arg = compiler_lookup_arg(c->u->u_freevars, name); + } + if (arg == -1) { + PyObject *freevars = _PyCode_GetFreevars(co); + if (freevars == NULL) { + PyErr_Clear(); + } + PyErr_Format(PyExc_SystemError, + "compiler_lookup_arg(name=%R) with reftype=%d failed in %S; " + "freevars of code %S: %R", + name, + reftype, + c->u->u_name, + co->co_name, + freevars); + Py_DECREF(freevars); + return 0; + } + ADDOP_I(c, LOAD_CLOSURE, arg); + } + flags |= 0x08; + ADDOP_I(c, BUILD_TUPLE, co->co_nfreevars); + } + ADDOP_LOAD_CONST(c, (PyObject*)co); + ADDOP_I(c, MAKE_FUNCTION, flags); + return 1; +} + +static int +compiler_decorators(struct compiler *c, asdl_expr_seq* decos) +{ + int i; + + if (!decos) + return 1; + + for (i = 0; i < asdl_seq_LEN(decos); i++) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i)); + } + return 1; +} + +static int +compiler_apply_decorators(struct compiler *c, asdl_expr_seq* decos) +{ + if (!decos) + return 1; + + int old_lineno = c->u->u_lineno; + int old_end_lineno = c->u->u_end_lineno; + int old_col_offset = c->u->u_col_offset; + int old_end_col_offset = c->u->u_end_col_offset; + for (Py_ssize_t i = asdl_seq_LEN(decos) - 1; i > -1; i--) { + SET_LOC(c, (expr_ty)asdl_seq_GET(decos, i)); + ADDOP_I(c, PRECALL, 0); + ADDOP_I(c, CALL, 0); + } + c->u->u_lineno = old_lineno; + c->u->u_end_lineno = old_end_lineno; + c->u->u_col_offset = old_col_offset; + c->u->u_end_col_offset = old_end_col_offset; + return 1; +} + +static int +compiler_visit_kwonlydefaults(struct compiler *c, asdl_arg_seq *kwonlyargs, + asdl_expr_seq *kw_defaults) +{ + /* Push a dict of keyword-only default values. + + Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed. + */ + int i; + PyObject *keys = NULL; + + for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) { + arg_ty arg = asdl_seq_GET(kwonlyargs, i); + expr_ty default_ = asdl_seq_GET(kw_defaults, i); + if (default_) { + PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg); + if (!mangled) { + goto error; + } + if (keys == NULL) { + keys = PyList_New(1); + if (keys == NULL) { + Py_DECREF(mangled); + return 0; + } + PyList_SET_ITEM(keys, 0, mangled); + } + else { + int res = PyList_Append(keys, mangled); + Py_DECREF(mangled); + if (res == -1) { + goto error; + } + } + if (!compiler_visit_expr(c, default_)) { + goto error; + } + } + } + if (keys != NULL) { + Py_ssize_t default_count = PyList_GET_SIZE(keys); + PyObject *keys_tuple = PyList_AsTuple(keys); + Py_DECREF(keys); + ADDOP_LOAD_CONST_NEW(c, keys_tuple); + ADDOP_I(c, BUILD_CONST_KEY_MAP, default_count); + assert(default_count > 0); + return 1; + } + else { + return -1; + } + +error: + Py_XDECREF(keys); + return 0; +} + +static int +compiler_visit_annexpr(struct compiler *c, expr_ty annotation) +{ + ADDOP_LOAD_CONST_NEW(c, _PyAST_ExprAsUnicode(annotation)); + return 1; +} + +static int +compiler_visit_argannotation(struct compiler *c, identifier id, + expr_ty annotation, Py_ssize_t *annotations_len) +{ + if (!annotation) { + return 1; + } + + PyObject *mangled = _Py_Mangle(c->u->u_private, id); + if (!mangled) { + return 0; + } + ADDOP_LOAD_CONST(c, mangled); + Py_DECREF(mangled); + + if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) { + VISIT(c, annexpr, annotation); + } + else { + if (annotation->kind == Starred_kind) { + // *args: *Ts (where Ts is a TypeVarTuple). + // Do [annotation_value] = [*Ts]. + // (Note that in theory we could end up here even for an argument + // other than *args, but in practice the grammar doesn't allow it.) + VISIT(c, expr, annotation->v.Starred.value); + ADDOP_I(c, UNPACK_SEQUENCE, (Py_ssize_t) 1); + } + else { + VISIT(c, expr, annotation); + } + } + *annotations_len += 2; + return 1; +} + +static int +compiler_visit_argannotations(struct compiler *c, asdl_arg_seq* args, + Py_ssize_t *annotations_len) +{ + int i; + for (i = 0; i < asdl_seq_LEN(args); i++) { + arg_ty arg = (arg_ty)asdl_seq_GET(args, i); + if (!compiler_visit_argannotation( + c, + arg->arg, + arg->annotation, + annotations_len)) + return 0; + } + return 1; +} + +static int +compiler_visit_annotations(struct compiler *c, arguments_ty args, + expr_ty returns) +{ + /* Push arg annotation names and values. + The expressions are evaluated out-of-order wrt the source code. + + Return 0 on error, -1 if no annotations pushed, 1 if a annotations is pushed. + */ + Py_ssize_t annotations_len = 0; + + if (!compiler_visit_argannotations(c, args->args, &annotations_len)) + return 0; + if (!compiler_visit_argannotations(c, args->posonlyargs, &annotations_len)) + return 0; + if (args->vararg && args->vararg->annotation && + !compiler_visit_argannotation(c, args->vararg->arg, + args->vararg->annotation, &annotations_len)) + return 0; + if (!compiler_visit_argannotations(c, args->kwonlyargs, &annotations_len)) + return 0; + if (args->kwarg && args->kwarg->annotation && + !compiler_visit_argannotation(c, args->kwarg->arg, + args->kwarg->annotation, &annotations_len)) + return 0; + + if (!compiler_visit_argannotation(c, &_Py_ID(return), returns, + &annotations_len)) { + return 0; + } + + if (annotations_len) { + ADDOP_I(c, BUILD_TUPLE, annotations_len); + return 1; + } + + return -1; +} + +static int +compiler_visit_defaults(struct compiler *c, arguments_ty args) +{ + VISIT_SEQ(c, expr, args->defaults); + ADDOP_I(c, BUILD_TUPLE, asdl_seq_LEN(args->defaults)); + return 1; +} + +static Py_ssize_t +compiler_default_arguments(struct compiler *c, arguments_ty args) +{ + Py_ssize_t funcflags = 0; + if (args->defaults && asdl_seq_LEN(args->defaults) > 0) { + if (!compiler_visit_defaults(c, args)) + return -1; + funcflags |= 0x01; + } + if (args->kwonlyargs) { + int res = compiler_visit_kwonlydefaults(c, args->kwonlyargs, + args->kw_defaults); + if (res == 0) { + return -1; + } + else if (res > 0) { + funcflags |= 0x02; + } + } + return funcflags; +} + +static int +forbidden_name(struct compiler *c, identifier name, expr_context_ty ctx) +{ + + if (ctx == Store && _PyUnicode_EqualToASCIIString(name, "__debug__")) { + compiler_error(c, "cannot assign to __debug__"); + return 1; + } + if (ctx == Del && _PyUnicode_EqualToASCIIString(name, "__debug__")) { + compiler_error(c, "cannot delete __debug__"); + return 1; + } + return 0; +} + +static int +compiler_check_debug_one_arg(struct compiler *c, arg_ty arg) +{ + if (arg != NULL) { + if (forbidden_name(c, arg->arg, Store)) + return 0; + } + return 1; +} + +static int +compiler_check_debug_args_seq(struct compiler *c, asdl_arg_seq *args) +{ + if (args != NULL) { + for (Py_ssize_t i = 0, n = asdl_seq_LEN(args); i < n; i++) { + if (!compiler_check_debug_one_arg(c, asdl_seq_GET(args, i))) + return 0; + } + } + return 1; +} + +static int +compiler_check_debug_args(struct compiler *c, arguments_ty args) +{ + if (!compiler_check_debug_args_seq(c, args->posonlyargs)) + return 0; + if (!compiler_check_debug_args_seq(c, args->args)) + return 0; + if (!compiler_check_debug_one_arg(c, args->vararg)) + return 0; + if (!compiler_check_debug_args_seq(c, args->kwonlyargs)) + return 0; + if (!compiler_check_debug_one_arg(c, args->kwarg)) + return 0; + return 1; +} + +static int +compiler_function(struct compiler *c, stmt_ty s, int is_async) +{ + PyCodeObject *co; + PyObject *qualname, *docstring = NULL; + arguments_ty args; + expr_ty returns; + identifier name; + asdl_expr_seq* decos; + asdl_stmt_seq *body; + Py_ssize_t i, funcflags; + int annotations; + int scope_type; + int firstlineno; + + if (is_async) { + assert(s->kind == AsyncFunctionDef_kind); + + args = s->v.AsyncFunctionDef.args; + returns = s->v.AsyncFunctionDef.returns; + decos = s->v.AsyncFunctionDef.decorator_list; + name = s->v.AsyncFunctionDef.name; + body = s->v.AsyncFunctionDef.body; + + scope_type = COMPILER_SCOPE_ASYNC_FUNCTION; + } else { + assert(s->kind == FunctionDef_kind); + + args = s->v.FunctionDef.args; + returns = s->v.FunctionDef.returns; + decos = s->v.FunctionDef.decorator_list; + name = s->v.FunctionDef.name; + body = s->v.FunctionDef.body; + + scope_type = COMPILER_SCOPE_FUNCTION; + } + + if (!compiler_check_debug_args(c, args)) + return 0; + + if (!compiler_decorators(c, decos)) + return 0; + + firstlineno = s->lineno; + if (asdl_seq_LEN(decos)) { + firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno; + } + + funcflags = compiler_default_arguments(c, args); + if (funcflags == -1) { + return 0; + } + + annotations = compiler_visit_annotations(c, args, returns); + if (annotations == 0) { + return 0; + } + else if (annotations > 0) { + funcflags |= 0x04; + } + + if (!compiler_enter_scope(c, name, scope_type, (void *)s, firstlineno)) { + return 0; + } + + /* if not -OO mode, add docstring */ + if (c->c_optimize < 2) { + docstring = _PyAST_GetDocString(body); + } + if (compiler_add_const(c, docstring ? docstring : Py_None) < 0) { + compiler_exit_scope(c); + return 0; + } + + c->u->u_argcount = asdl_seq_LEN(args->args); + c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs); + c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs); + for (i = docstring ? 1 : 0; i < asdl_seq_LEN(body); i++) { + VISIT_IN_SCOPE(c, stmt, (stmt_ty)asdl_seq_GET(body, i)); + } + co = assemble(c, 1); + qualname = c->u->u_qualname; + Py_INCREF(qualname); + compiler_exit_scope(c); + if (co == NULL) { + Py_XDECREF(qualname); + Py_XDECREF(co); + return 0; + } + + if (!compiler_make_closure(c, co, funcflags, qualname)) { + Py_DECREF(qualname); + Py_DECREF(co); + return 0; + } + Py_DECREF(qualname); + Py_DECREF(co); + + if (!compiler_apply_decorators(c, decos)) + return 0; + return compiler_nameop(c, name, Store); +} + +static int +compiler_class(struct compiler *c, stmt_ty s) +{ + PyCodeObject *co; + int i, firstlineno; + asdl_expr_seq *decos = s->v.ClassDef.decorator_list; + + if (!compiler_decorators(c, decos)) + return 0; + + firstlineno = s->lineno; + if (asdl_seq_LEN(decos)) { + firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno; + } + + /* ultimately generate code for: + <name> = __build_class__(<func>, <name>, *<bases>, **<keywords>) + where: + <func> is a zero arg function/closure created from the class body. + It mutates its locals to build the class namespace. + <name> is the class name + <bases> is the positional arguments and *varargs argument + <keywords> is the keyword arguments and **kwds argument + This borrows from compiler_call. + */ + + /* 1. compile the class body into a code object */ + if (!compiler_enter_scope(c, s->v.ClassDef.name, + COMPILER_SCOPE_CLASS, (void *)s, firstlineno)) { + return 0; + } + /* this block represents what we do in the new scope */ + { + /* use the class name for name mangling */ + Py_INCREF(s->v.ClassDef.name); + Py_XSETREF(c->u->u_private, s->v.ClassDef.name); + /* load (global) __name__ ... */ + if (!compiler_nameop(c, &_Py_ID(__name__), Load)) { + compiler_exit_scope(c); + return 0; + } + /* ... and store it as __module__ */ + if (!compiler_nameop(c, &_Py_ID(__module__), Store)) { + compiler_exit_scope(c); + return 0; + } + assert(c->u->u_qualname); + ADDOP_LOAD_CONST(c, c->u->u_qualname); + if (!compiler_nameop(c, &_Py_ID(__qualname__), Store)) { + compiler_exit_scope(c); + return 0; + } + /* compile the body proper */ + if (!compiler_body(c, s->v.ClassDef.body)) { + compiler_exit_scope(c); + return 0; + } + /* The following code is artificial */ + UNSET_LOC(c); + /* Return __classcell__ if it is referenced, otherwise return None */ + if (c->u->u_ste->ste_needs_class_closure) { + /* Store __classcell__ into class namespace & return it */ + i = compiler_lookup_arg(c->u->u_cellvars, &_Py_ID(__class__)); + if (i < 0) { + compiler_exit_scope(c); + return 0; + } + assert(i == 0); + + ADDOP_I(c, LOAD_CLOSURE, i); + ADDOP_I(c, COPY, 1); + if (!compiler_nameop(c, &_Py_ID(__classcell__), Store)) { + compiler_exit_scope(c); + return 0; + } + } + else { + /* No methods referenced __class__, so just return None */ + assert(PyDict_GET_SIZE(c->u->u_cellvars) == 0); + ADDOP_LOAD_CONST(c, Py_None); + } + ADDOP_IN_SCOPE(c, RETURN_VALUE); + /* create the code object */ + co = assemble(c, 1); + } + /* leave the new scope */ + compiler_exit_scope(c); + if (co == NULL) + return 0; + + /* 2. load the 'build_class' function */ + ADDOP(c, PUSH_NULL); + ADDOP(c, LOAD_BUILD_CLASS); + + /* 3. load a function (or closure) made from the code object */ + if (!compiler_make_closure(c, co, 0, NULL)) { + Py_DECREF(co); + return 0; + } + Py_DECREF(co); + + /* 4. load class name */ + ADDOP_LOAD_CONST(c, s->v.ClassDef.name); + + /* 5. generate the rest of the code for the call */ + if (!compiler_call_helper(c, 2, s->v.ClassDef.bases, s->v.ClassDef.keywords)) + return 0; + /* 6. apply decorators */ + if (!compiler_apply_decorators(c, decos)) + return 0; + + /* 7. store into <name> */ + if (!compiler_nameop(c, s->v.ClassDef.name, Store)) + return 0; + return 1; +} + +/* Return 0 if the expression is a constant value except named singletons. + Return 1 otherwise. */ +static int +check_is_arg(expr_ty e) +{ + if (e->kind != Constant_kind) { + return 1; + } + PyObject *value = e->v.Constant.value; + return (value == Py_None + || value == Py_False + || value == Py_True + || value == Py_Ellipsis); +} + +/* Check operands of identity chacks ("is" and "is not"). + Emit a warning if any operand is a constant except named singletons. + Return 0 on error. + */ +static int +check_compare(struct compiler *c, expr_ty e) +{ + Py_ssize_t i, n; + int left = check_is_arg(e->v.Compare.left); + n = asdl_seq_LEN(e->v.Compare.ops); + for (i = 0; i < n; i++) { + cmpop_ty op = (cmpop_ty)asdl_seq_GET(e->v.Compare.ops, i); + int right = check_is_arg((expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); + if (op == Is || op == IsNot) { + if (!right || !left) { + const char *msg = (op == Is) + ? "\"is\" with a literal. Did you mean \"==\"?" + : "\"is not\" with a literal. Did you mean \"!=\"?"; + return compiler_warn(c, msg); + } + } + left = right; + } + return 1; +} + +static int compiler_addcompare(struct compiler *c, cmpop_ty op) +{ + int cmp; + switch (op) { + case Eq: + cmp = Py_EQ; + break; + case NotEq: + cmp = Py_NE; + break; + case Lt: + cmp = Py_LT; + break; + case LtE: + cmp = Py_LE; + break; + case Gt: + cmp = Py_GT; + break; + case GtE: + cmp = Py_GE; + break; + case Is: + ADDOP_I(c, IS_OP, 0); + return 1; + case IsNot: + ADDOP_I(c, IS_OP, 1); + return 1; + case In: + ADDOP_I(c, CONTAINS_OP, 0); + return 1; + case NotIn: + ADDOP_I(c, CONTAINS_OP, 1); + return 1; + default: + Py_UNREACHABLE(); + } + ADDOP_I(c, COMPARE_OP, cmp); + return 1; +} + + + +static int +compiler_jump_if(struct compiler *c, expr_ty e, basicblock *next, int cond) +{ + switch (e->kind) { + case UnaryOp_kind: + if (e->v.UnaryOp.op == Not) + return compiler_jump_if(c, e->v.UnaryOp.operand, next, !cond); + /* fallback to general implementation */ + break; + case BoolOp_kind: { + asdl_expr_seq *s = e->v.BoolOp.values; + Py_ssize_t i, n = asdl_seq_LEN(s) - 1; + assert(n >= 0); + int cond2 = e->v.BoolOp.op == Or; + basicblock *next2 = next; + if (!cond2 != !cond) { + next2 = compiler_new_block(c); + if (next2 == NULL) + return 0; + } + for (i = 0; i < n; ++i) { + if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, i), next2, cond2)) + return 0; + } + if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, n), next, cond)) + return 0; + if (next2 != next) + compiler_use_next_block(c, next2); + return 1; + } + case IfExp_kind: { + basicblock *end, *next2; + end = compiler_new_block(c); + if (end == NULL) + return 0; + next2 = compiler_new_block(c); + if (next2 == NULL) + return 0; + if (!compiler_jump_if(c, e->v.IfExp.test, next2, 0)) + return 0; + if (!compiler_jump_if(c, e->v.IfExp.body, next, cond)) + return 0; + ADDOP_JUMP_NOLINE(c, JUMP, end); + compiler_use_next_block(c, next2); + if (!compiler_jump_if(c, e->v.IfExp.orelse, next, cond)) + return 0; + compiler_use_next_block(c, end); + return 1; + } + case Compare_kind: { + SET_LOC(c, e); + Py_ssize_t i, n = asdl_seq_LEN(e->v.Compare.ops) - 1; + if (n > 0) { + if (!check_compare(c, e)) { + return 0; + } + basicblock *cleanup = compiler_new_block(c); + if (cleanup == NULL) + return 0; + VISIT(c, expr, e->v.Compare.left); + for (i = 0; i < n; i++) { + VISIT(c, expr, + (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); + ADDOP_I(c, SWAP, 2); + ADDOP_I(c, COPY, 2); + ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i)); + ADDOP_JUMP(c, POP_JUMP_IF_FALSE, cleanup); + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n)); + ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n)); + ADDOP_JUMP(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next); + basicblock *end = compiler_new_block(c); + if (end == NULL) + return 0; + ADDOP_JUMP_NOLINE(c, JUMP, end); + compiler_use_next_block(c, cleanup); + ADDOP(c, POP_TOP); + if (!cond) { + ADDOP_JUMP_NOLINE(c, JUMP, next); + } + compiler_use_next_block(c, end); + return 1; + } + /* fallback to general implementation */ + break; + } + default: + /* fallback to general implementation */ + break; + } + + /* general implementation */ + VISIT(c, expr, e); + ADDOP_JUMP(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next); + return 1; +} + +static int +compiler_ifexp(struct compiler *c, expr_ty e) +{ + basicblock *end, *next; + + assert(e->kind == IfExp_kind); + end = compiler_new_block(c); + if (end == NULL) + return 0; + next = compiler_new_block(c); + if (next == NULL) + return 0; + if (!compiler_jump_if(c, e->v.IfExp.test, next, 0)) + return 0; + VISIT(c, expr, e->v.IfExp.body); + ADDOP_JUMP_NOLINE(c, JUMP, end); + compiler_use_next_block(c, next); + VISIT(c, expr, e->v.IfExp.orelse); + compiler_use_next_block(c, end); + return 1; +} + +static int +compiler_lambda(struct compiler *c, expr_ty e) +{ + PyCodeObject *co; + PyObject *qualname; + Py_ssize_t funcflags; + arguments_ty args = e->v.Lambda.args; + assert(e->kind == Lambda_kind); + + if (!compiler_check_debug_args(c, args)) + return 0; + + funcflags = compiler_default_arguments(c, args); + if (funcflags == -1) { + return 0; + } + + _Py_DECLARE_STR(anon_lambda, "<lambda>"); + if (!compiler_enter_scope(c, &_Py_STR(anon_lambda), COMPILER_SCOPE_LAMBDA, + (void *)e, e->lineno)) { + return 0; + } + /* Make None the first constant, so the lambda can't have a + docstring. */ + if (compiler_add_const(c, Py_None) < 0) + return 0; + + c->u->u_argcount = asdl_seq_LEN(args->args); + c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs); + c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs); + VISIT_IN_SCOPE(c, expr, e->v.Lambda.body); + if (c->u->u_ste->ste_generator) { + co = assemble(c, 0); + } + else { + ADDOP_IN_SCOPE(c, RETURN_VALUE); + co = assemble(c, 1); + } + qualname = c->u->u_qualname; + Py_INCREF(qualname); + compiler_exit_scope(c); + if (co == NULL) { + Py_DECREF(qualname); + return 0; + } + + if (!compiler_make_closure(c, co, funcflags, qualname)) { + Py_DECREF(qualname); + Py_DECREF(co); + return 0; + } + Py_DECREF(qualname); + Py_DECREF(co); + + return 1; +} + +static int +compiler_if(struct compiler *c, stmt_ty s) +{ + basicblock *end, *next; + assert(s->kind == If_kind); + end = compiler_new_block(c); + if (end == NULL) { + return 0; + } + if (asdl_seq_LEN(s->v.If.orelse)) { + next = compiler_new_block(c); + if (next == NULL) { + return 0; + } + } + else { + next = end; + } + if (!compiler_jump_if(c, s->v.If.test, next, 0)) { + return 0; + } + VISIT_SEQ(c, stmt, s->v.If.body); + if (asdl_seq_LEN(s->v.If.orelse)) { + ADDOP_JUMP_NOLINE(c, JUMP, end); + compiler_use_next_block(c, next); + VISIT_SEQ(c, stmt, s->v.If.orelse); + } + compiler_use_next_block(c, end); + return 1; +} + +static int +compiler_for(struct compiler *c, stmt_ty s) +{ + basicblock *start, *body, *cleanup, *end; + + start = compiler_new_block(c); + body = compiler_new_block(c); + cleanup = compiler_new_block(c); + end = compiler_new_block(c); + if (start == NULL || body == NULL || end == NULL || cleanup == NULL) { + return 0; + } + if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) { + return 0; + } + VISIT(c, expr, s->v.For.iter); + ADDOP(c, GET_ITER); + compiler_use_next_block(c, start); + ADDOP_JUMP(c, FOR_ITER, cleanup); + compiler_use_next_block(c, body); + VISIT(c, expr, s->v.For.target); + VISIT_SEQ(c, stmt, s->v.For.body); + /* Mark jump as artificial */ + UNSET_LOC(c); + ADDOP_JUMP(c, JUMP, start); + compiler_use_next_block(c, cleanup); + + compiler_pop_fblock(c, FOR_LOOP, start); + + VISIT_SEQ(c, stmt, s->v.For.orelse); + compiler_use_next_block(c, end); + return 1; +} + + +static int +compiler_async_for(struct compiler *c, stmt_ty s) +{ + basicblock *start, *except, *end; + if (IS_TOP_LEVEL_AWAIT(c)){ + c->u->u_ste->ste_coroutine = 1; + } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION) { + return compiler_error(c, "'async for' outside async function"); + } + + start = compiler_new_block(c); + except = compiler_new_block(c); + end = compiler_new_block(c); + + if (start == NULL || except == NULL || end == NULL) { + return 0; + } + VISIT(c, expr, s->v.AsyncFor.iter); + ADDOP(c, GET_AITER); + + compiler_use_next_block(c, start); + if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) { + return 0; + } + /* SETUP_FINALLY to guard the __anext__ call */ + ADDOP_JUMP(c, SETUP_FINALLY, except); + ADDOP(c, GET_ANEXT); + ADDOP_LOAD_CONST(c, Py_None); + ADD_YIELD_FROM(c, 1); + ADDOP(c, POP_BLOCK); /* for SETUP_FINALLY */ + + /* Success block for __anext__ */ + VISIT(c, expr, s->v.AsyncFor.target); + VISIT_SEQ(c, stmt, s->v.AsyncFor.body); + /* Mark jump as artificial */ + UNSET_LOC(c); + ADDOP_JUMP(c, JUMP, start); + + compiler_pop_fblock(c, FOR_LOOP, start); + + /* Except block for __anext__ */ + compiler_use_next_block(c, except); + + /* Use same line number as the iterator, + * as the END_ASYNC_FOR succeeds the `for`, not the body. */ + SET_LOC(c, s->v.AsyncFor.iter); + ADDOP(c, END_ASYNC_FOR); + + /* `else` block */ + VISIT_SEQ(c, stmt, s->v.For.orelse); + + compiler_use_next_block(c, end); + + return 1; +} + +static int +compiler_while(struct compiler *c, stmt_ty s) +{ + basicblock *loop, *body, *end, *anchor = NULL; + loop = compiler_new_block(c); + body = compiler_new_block(c); + anchor = compiler_new_block(c); + end = compiler_new_block(c); + if (loop == NULL || body == NULL || anchor == NULL || end == NULL) { + return 0; + } + compiler_use_next_block(c, loop); + if (!compiler_push_fblock(c, WHILE_LOOP, loop, end, NULL)) { + return 0; + } + if (!compiler_jump_if(c, s->v.While.test, anchor, 0)) { + return 0; + } + + compiler_use_next_block(c, body); + VISIT_SEQ(c, stmt, s->v.While.body); + SET_LOC(c, s); + if (!compiler_jump_if(c, s->v.While.test, body, 1)) { + return 0; + } + + compiler_pop_fblock(c, WHILE_LOOP, loop); + + compiler_use_next_block(c, anchor); + if (s->v.While.orelse) { + VISIT_SEQ(c, stmt, s->v.While.orelse); + } + compiler_use_next_block(c, end); + + return 1; +} + +static int +compiler_return(struct compiler *c, stmt_ty s) +{ + int preserve_tos = ((s->v.Return.value != NULL) && + (s->v.Return.value->kind != Constant_kind)); + if (c->u->u_ste->ste_type != FunctionBlock) + return compiler_error(c, "'return' outside function"); + if (s->v.Return.value != NULL && + c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator) + { + return compiler_error( + c, "'return' with value in async generator"); + } + if (preserve_tos) { + VISIT(c, expr, s->v.Return.value); + } else { + /* Emit instruction with line number for return value */ + if (s->v.Return.value != NULL) { + SET_LOC(c, s->v.Return.value); + ADDOP(c, NOP); + } + } + if (s->v.Return.value == NULL || s->v.Return.value->lineno != s->lineno) { + SET_LOC(c, s); + ADDOP(c, NOP); + } + + if (!compiler_unwind_fblock_stack(c, preserve_tos, NULL)) + return 0; + if (s->v.Return.value == NULL) { + ADDOP_LOAD_CONST(c, Py_None); + } + else if (!preserve_tos) { + ADDOP_LOAD_CONST(c, s->v.Return.value->v.Constant.value); + } + ADDOP(c, RETURN_VALUE); + + return 1; +} + +static int +compiler_break(struct compiler *c) +{ + struct fblockinfo *loop = NULL; + int u_lineno = c->u->u_lineno; + int u_col_offset = c->u->u_col_offset; + int u_end_lineno = c->u->u_end_lineno; + int u_end_col_offset = c->u->u_end_col_offset; + /* Emit instruction with line number */ + ADDOP(c, NOP); + if (!compiler_unwind_fblock_stack(c, 0, &loop)) { + return 0; + } + if (loop == NULL) { + c->u->u_lineno = u_lineno; + c->u->u_col_offset = u_col_offset; + c->u->u_end_lineno = u_end_lineno; + c->u->u_end_col_offset = u_end_col_offset; + return compiler_error(c, "'break' outside loop"); + } + if (!compiler_unwind_fblock(c, loop, 0)) { + return 0; + } + ADDOP_JUMP(c, JUMP, loop->fb_exit); + return 1; +} + +static int +compiler_continue(struct compiler *c) +{ + struct fblockinfo *loop = NULL; + int u_lineno = c->u->u_lineno; + int u_col_offset = c->u->u_col_offset; + int u_end_lineno = c->u->u_end_lineno; + int u_end_col_offset = c->u->u_end_col_offset; + /* Emit instruction with line number */ + ADDOP(c, NOP); + if (!compiler_unwind_fblock_stack(c, 0, &loop)) { + return 0; + } + if (loop == NULL) { + c->u->u_lineno = u_lineno; + c->u->u_col_offset = u_col_offset; + c->u->u_end_lineno = u_end_lineno; + c->u->u_end_col_offset = u_end_col_offset; + return compiler_error(c, "'continue' not properly in loop"); + } + ADDOP_JUMP(c, JUMP, loop->fb_block); + return 1; +} + + +/* Code generated for "try: <body> finally: <finalbody>" is as follows: + + SETUP_FINALLY L + <code for body> + POP_BLOCK + <code for finalbody> + JUMP E + L: + <code for finalbody> + E: + + The special instructions use the block stack. Each block + stack entry contains the instruction that created it (here + SETUP_FINALLY), the level of the value stack at the time the + block stack entry was created, and a label (here L). + + SETUP_FINALLY: + Pushes the current value stack level and the label + onto the block stack. + POP_BLOCK: + Pops en entry from the block stack. + + The block stack is unwound when an exception is raised: + when a SETUP_FINALLY entry is found, the raised and the caught + exceptions are pushed onto the value stack (and the exception + condition is cleared), and the interpreter jumps to the label + gotten from the block stack. +*/ + +static int +compiler_try_finally(struct compiler *c, stmt_ty s) +{ + basicblock *body, *end, *exit, *cleanup; + + body = compiler_new_block(c); + end = compiler_new_block(c); + exit = compiler_new_block(c); + cleanup = compiler_new_block(c); + if (body == NULL || end == NULL || exit == NULL || cleanup == NULL) { + return 0; + } + /* `try` block */ + ADDOP_JUMP(c, SETUP_FINALLY, end); + compiler_use_next_block(c, body); + if (!compiler_push_fblock(c, FINALLY_TRY, body, end, s->v.Try.finalbody)) + return 0; + if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) { + if (!compiler_try_except(c, s)) + return 0; + } + else { + VISIT_SEQ(c, stmt, s->v.Try.body); + } + ADDOP_NOLINE(c, POP_BLOCK); + compiler_pop_fblock(c, FINALLY_TRY, body); + VISIT_SEQ(c, stmt, s->v.Try.finalbody); + ADDOP_JUMP_NOLINE(c, JUMP, exit); + /* `finally` block */ + compiler_use_next_block(c, end); + + UNSET_LOC(c); + ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); + ADDOP(c, PUSH_EXC_INFO); + if (!compiler_push_fblock(c, FINALLY_END, end, NULL, NULL)) + return 0; + VISIT_SEQ(c, stmt, s->v.Try.finalbody); + compiler_pop_fblock(c, FINALLY_END, end); + ADDOP_I(c, RERAISE, 0); + compiler_use_next_block(c, cleanup); + POP_EXCEPT_AND_RERAISE(c); + compiler_use_next_block(c, exit); + return 1; +} + +static int +compiler_try_star_finally(struct compiler *c, stmt_ty s) +{ + basicblock *body = compiler_new_block(c); + if (body == NULL) { + return 0; + } + basicblock *end = compiler_new_block(c); + if (!end) { + return 0; + } + basicblock *exit = compiler_new_block(c); + if (!exit) { + return 0; + } + basicblock *cleanup = compiler_new_block(c); + if (!cleanup) { + return 0; + } + /* `try` block */ + ADDOP_JUMP(c, SETUP_FINALLY, end); + compiler_use_next_block(c, body); + if (!compiler_push_fblock(c, FINALLY_TRY, body, end, s->v.TryStar.finalbody)) { + return 0; + } + if (s->v.TryStar.handlers && asdl_seq_LEN(s->v.TryStar.handlers)) { + if (!compiler_try_star_except(c, s)) { + return 0; + } + } + else { + VISIT_SEQ(c, stmt, s->v.TryStar.body); + } + ADDOP_NOLINE(c, POP_BLOCK); + compiler_pop_fblock(c, FINALLY_TRY, body); + VISIT_SEQ(c, stmt, s->v.TryStar.finalbody); + ADDOP_JUMP_NOLINE(c, JUMP, exit); + /* `finally` block */ + compiler_use_next_block(c, end); + + UNSET_LOC(c); + ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); + ADDOP(c, PUSH_EXC_INFO); + if (!compiler_push_fblock(c, FINALLY_END, end, NULL, NULL)) { + return 0; + } + VISIT_SEQ(c, stmt, s->v.TryStar.finalbody); + compiler_pop_fblock(c, FINALLY_END, end); + ADDOP_I(c, RERAISE, 0); + compiler_use_next_block(c, cleanup); + POP_EXCEPT_AND_RERAISE(c); + compiler_use_next_block(c, exit); + return 1; +} + + +/* + Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...": + (The contents of the value stack is shown in [], with the top + at the right; 'tb' is trace-back info, 'val' the exception's + associated value, and 'exc' the exception.) + + Value stack Label Instruction Argument + [] SETUP_FINALLY L1 + [] <code for S> + [] POP_BLOCK + [] JUMP L0 + + [exc] L1: <evaluate E1> ) + [exc, E1] CHECK_EXC_MATCH ) + [exc, bool] POP_JUMP_IF_FALSE L2 ) only if E1 + [exc] <assign to V1> (or POP if no V1) + [] <code for S1> + JUMP L0 + + [exc] L2: <evaluate E2> + .............................etc....................... + + [exc] Ln+1: RERAISE # re-raise exception + + [] L0: <next statement> + + Of course, parts are not generated if Vi or Ei is not present. +*/ +static int +compiler_try_except(struct compiler *c, stmt_ty s) +{ + basicblock *body, *except, *end, *cleanup; + Py_ssize_t i, n; + + body = compiler_new_block(c); + except = compiler_new_block(c); + end = compiler_new_block(c); + cleanup = compiler_new_block(c); + if (body == NULL || except == NULL || end == NULL || cleanup == NULL) + return 0; + ADDOP_JUMP(c, SETUP_FINALLY, except); + compiler_use_next_block(c, body); + if (!compiler_push_fblock(c, TRY_EXCEPT, body, NULL, NULL)) + return 0; + VISIT_SEQ(c, stmt, s->v.Try.body); + compiler_pop_fblock(c, TRY_EXCEPT, body); + ADDOP_NOLINE(c, POP_BLOCK); + if (s->v.Try.orelse && asdl_seq_LEN(s->v.Try.orelse)) { + VISIT_SEQ(c, stmt, s->v.Try.orelse); + } + ADDOP_JUMP_NOLINE(c, JUMP, end); + n = asdl_seq_LEN(s->v.Try.handlers); + compiler_use_next_block(c, except); + + UNSET_LOC(c); + ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); + ADDOP(c, PUSH_EXC_INFO); + /* Runtime will push a block here, so we need to account for that */ + if (!compiler_push_fblock(c, EXCEPTION_HANDLER, NULL, NULL, NULL)) + return 0; + for (i = 0; i < n; i++) { + excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( + s->v.Try.handlers, i); + SET_LOC(c, handler); + if (!handler->v.ExceptHandler.type && i < n-1) { + return compiler_error(c, "default 'except:' must be last"); + } + except = compiler_new_block(c); + if (except == NULL) + return 0; + if (handler->v.ExceptHandler.type) { + VISIT(c, expr, handler->v.ExceptHandler.type); + ADDOP(c, CHECK_EXC_MATCH); + ADDOP_JUMP(c, POP_JUMP_IF_FALSE, except); + } + if (handler->v.ExceptHandler.name) { + basicblock *cleanup_end, *cleanup_body; + + cleanup_end = compiler_new_block(c); + cleanup_body = compiler_new_block(c); + if (cleanup_end == NULL || cleanup_body == NULL) { + return 0; + } + + compiler_nameop(c, handler->v.ExceptHandler.name, Store); + + /* + try: + # body + except type as name: + try: + # body + finally: + name = None # in case body contains "del name" + del name + */ + + /* second try: */ + ADDOP_JUMP(c, SETUP_CLEANUP, cleanup_end); + compiler_use_next_block(c, cleanup_body); + if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, handler->v.ExceptHandler.name)) + return 0; + + /* second # body */ + VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body); + compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body); + /* name = None; del name; # Mark as artificial */ + UNSET_LOC(c); + ADDOP(c, POP_BLOCK); + ADDOP(c, POP_BLOCK); + ADDOP(c, POP_EXCEPT); + ADDOP_LOAD_CONST(c, Py_None); + compiler_nameop(c, handler->v.ExceptHandler.name, Store); + compiler_nameop(c, handler->v.ExceptHandler.name, Del); + ADDOP_JUMP(c, JUMP, end); + + /* except: */ + compiler_use_next_block(c, cleanup_end); + + /* name = None; del name; # Mark as artificial */ + UNSET_LOC(c); + + ADDOP_LOAD_CONST(c, Py_None); + compiler_nameop(c, handler->v.ExceptHandler.name, Store); + compiler_nameop(c, handler->v.ExceptHandler.name, Del); + + ADDOP_I(c, RERAISE, 1); + } + else { + basicblock *cleanup_body; + + cleanup_body = compiler_new_block(c); + if (!cleanup_body) + return 0; + + ADDOP(c, POP_TOP); /* exc_value */ + compiler_use_next_block(c, cleanup_body); + if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, NULL)) + return 0; + VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body); + compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body); + UNSET_LOC(c); + ADDOP(c, POP_BLOCK); + ADDOP(c, POP_EXCEPT); + ADDOP_JUMP(c, JUMP, end); + } + compiler_use_next_block(c, except); + } + /* Mark as artificial */ + UNSET_LOC(c); + compiler_pop_fblock(c, EXCEPTION_HANDLER, NULL); + ADDOP_I(c, RERAISE, 0); + compiler_use_next_block(c, cleanup); + POP_EXCEPT_AND_RERAISE(c); + compiler_use_next_block(c, end); + return 1; +} + +/* + Code generated for "try: S except* E1 as V1: S1 except* E2 as V2: S2 ...": + (The contents of the value stack is shown in [], with the top + at the right; 'tb' is trace-back info, 'val' the exception instance, + and 'typ' the exception's type.) + + Value stack Label Instruction Argument + [] SETUP_FINALLY L1 + [] <code for S> + [] POP_BLOCK + [] JUMP L0 + + [exc] L1: COPY 1 ) save copy of the original exception + [orig, exc] BUILD_LIST ) list for raised/reraised excs ("result") + [orig, exc, res] SWAP 2 + + [orig, res, exc] <evaluate E1> + [orig, res, exc, E1] CHECK_EG_MATCH + [orig, res, rest/exc, match?] COPY 1 + [orig, res, rest/exc, match?, match?] POP_JUMP_IF_NONE C1 + + [orig, res, rest, match] <assign to V1> (or POP if no V1) + + [orig, res, rest] SETUP_FINALLY R1 + [orig, res, rest] <code for S1> + [orig, res, rest] JUMP L2 + + [orig, res, rest, i, v] R1: LIST_APPEND 3 ) exc raised in except* body - add to res + [orig, res, rest, i] POP + [orig, res, rest] JUMP LE2 + + [orig, res, rest] L2: NOP ) for lineno + [orig, res, rest] JUMP LE2 + + [orig, res, rest/exc, None] C1: POP + + [orig, res, rest] LE2: <evaluate E2> + .............................etc....................... + + [orig, res, rest] Ln+1: LIST_APPEND 1 ) add unhandled exc to res (could be None) + + [orig, res] PREP_RERAISE_STAR + [exc] COPY 1 + [exc, exc] POP_JUMP_IF_NOT_NONE RER + [exc] POP_TOP + [] JUMP L0 + + [exc] RER: SWAP 2 + [exc, prev_exc_info] POP_EXCEPT + [exc] RERAISE 0 + + [] L0: <next statement> +*/ +static int +compiler_try_star_except(struct compiler *c, stmt_ty s) +{ + basicblock *body = compiler_new_block(c); + if (body == NULL) { + return 0; + } + basicblock *except = compiler_new_block(c); + if (except == NULL) { + return 0; + } + basicblock *orelse = compiler_new_block(c); + if (orelse == NULL) { + return 0; + } + basicblock *end = compiler_new_block(c); + if (end == NULL) { + return 0; + } + basicblock *cleanup = compiler_new_block(c); + if (cleanup == NULL) { + return 0; + } + basicblock *reraise_star = compiler_new_block(c); + if (reraise_star == NULL) { + return 0; + } + + ADDOP_JUMP(c, SETUP_FINALLY, except); + compiler_use_next_block(c, body); + if (!compiler_push_fblock(c, TRY_EXCEPT, body, NULL, NULL)) { + return 0; + } + VISIT_SEQ(c, stmt, s->v.TryStar.body); + compiler_pop_fblock(c, TRY_EXCEPT, body); + ADDOP_NOLINE(c, POP_BLOCK); + ADDOP_JUMP_NOLINE(c, JUMP, orelse); + Py_ssize_t n = asdl_seq_LEN(s->v.TryStar.handlers); + compiler_use_next_block(c, except); + + UNSET_LOC(c); + ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); + ADDOP(c, PUSH_EXC_INFO); + /* Runtime will push a block here, so we need to account for that */ + if (!compiler_push_fblock(c, EXCEPTION_GROUP_HANDLER, + NULL, NULL, "except handler")) { + return 0; + } + for (Py_ssize_t i = 0; i < n; i++) { + excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( + s->v.TryStar.handlers, i); + SET_LOC(c, handler); + except = compiler_new_block(c); + if (except == NULL) { + return 0; + } + basicblock *except_with_error = compiler_new_block(c); + if (except_with_error == NULL) { + return 0; + } + basicblock *no_match = compiler_new_block(c); + if (no_match == NULL) { + return 0; + } + if (i == 0) { + /* Push the original EG into the stack */ + /* + [exc] COPY 1 + [orig, exc] + */ + ADDOP_I(c, COPY, 1); + + /* create empty list for exceptions raised/reraise in the except* blocks */ + /* + [orig, exc] BUILD_LIST + [orig, exc, []] SWAP 2 + [orig, [], exc] + */ + ADDOP_I(c, BUILD_LIST, 0); + ADDOP_I(c, SWAP, 2); + } + if (handler->v.ExceptHandler.type) { + VISIT(c, expr, handler->v.ExceptHandler.type); + ADDOP(c, CHECK_EG_MATCH); + ADDOP_I(c, COPY, 1); + ADDOP_JUMP(c, POP_JUMP_IF_NONE, no_match); + } + + basicblock *cleanup_end = compiler_new_block(c); + if (cleanup_end == NULL) { + return 0; + } + basicblock *cleanup_body = compiler_new_block(c); + if (cleanup_body == NULL) { + return 0; + } + + if (handler->v.ExceptHandler.name) { + compiler_nameop(c, handler->v.ExceptHandler.name, Store); + } + else { + ADDOP(c, POP_TOP); // match + } + + /* + try: + # body + except type as name: + try: + # body + finally: + name = None # in case body contains "del name" + del name + */ + /* second try: */ + ADDOP_JUMP(c, SETUP_CLEANUP, cleanup_end); + compiler_use_next_block(c, cleanup_body); + if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, handler->v.ExceptHandler.name)) + return 0; + + /* second # body */ + VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body); + compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body); + /* name = None; del name; # Mark as artificial */ + UNSET_LOC(c); + ADDOP(c, POP_BLOCK); + if (handler->v.ExceptHandler.name) { + ADDOP_LOAD_CONST(c, Py_None); + compiler_nameop(c, handler->v.ExceptHandler.name, Store); + compiler_nameop(c, handler->v.ExceptHandler.name, Del); + } + ADDOP_JUMP(c, JUMP, except); + + /* except: */ + compiler_use_next_block(c, cleanup_end); + + /* name = None; del name; # Mark as artificial */ + UNSET_LOC(c); + + if (handler->v.ExceptHandler.name) { + ADDOP_LOAD_CONST(c, Py_None); + compiler_nameop(c, handler->v.ExceptHandler.name, Store); + compiler_nameop(c, handler->v.ExceptHandler.name, Del); + } + + /* add exception raised to the res list */ + ADDOP_I(c, LIST_APPEND, 3); // exc + ADDOP(c, POP_TOP); // lasti + + ADDOP_JUMP(c, JUMP, except_with_error); + compiler_use_next_block(c, except); + ADDOP(c, NOP); // to hold a propagated location info + ADDOP_JUMP(c, JUMP, except_with_error); + compiler_use_next_block(c, no_match); + ADDOP(c, POP_TOP); // match (None) + + compiler_use_next_block(c, except_with_error); + + if (i == n - 1) { + /* Add exc to the list (if not None it's the unhandled part of the EG) */ + ADDOP_I(c, LIST_APPEND, 1); + ADDOP_JUMP(c, JUMP, reraise_star); + } + } + /* Mark as artificial */ + UNSET_LOC(c); + compiler_pop_fblock(c, EXCEPTION_GROUP_HANDLER, NULL); + basicblock *reraise = compiler_new_block(c); + if (!reraise) { + return 0; + } + + compiler_use_next_block(c, reraise_star); + ADDOP(c, PREP_RERAISE_STAR); + ADDOP_I(c, COPY, 1); + ADDOP_JUMP(c, POP_JUMP_IF_NOT_NONE, reraise); + + /* Nothing to reraise */ + ADDOP(c, POP_TOP); + ADDOP(c, POP_BLOCK); + ADDOP(c, POP_EXCEPT); + ADDOP_JUMP(c, JUMP, end); + compiler_use_next_block(c, reraise); + ADDOP(c, POP_BLOCK); + ADDOP_I(c, SWAP, 2); + ADDOP(c, POP_EXCEPT); + ADDOP_I(c, RERAISE, 0); + compiler_use_next_block(c, cleanup); + POP_EXCEPT_AND_RERAISE(c); + compiler_use_next_block(c, orelse); + VISIT_SEQ(c, stmt, s->v.TryStar.orelse); + compiler_use_next_block(c, end); + return 1; +} + +static int +compiler_try(struct compiler *c, stmt_ty s) { + if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody)) + return compiler_try_finally(c, s); + else + return compiler_try_except(c, s); +} + +static int +compiler_try_star(struct compiler *c, stmt_ty s) +{ + if (s->v.TryStar.finalbody && asdl_seq_LEN(s->v.TryStar.finalbody)) { + return compiler_try_star_finally(c, s); + } + else { + return compiler_try_star_except(c, s); + } +} + +static int +compiler_import_as(struct compiler *c, identifier name, identifier asname) +{ + /* The IMPORT_NAME opcode was already generated. This function + merely needs to bind the result to a name. + + If there is a dot in name, we need to split it and emit a + IMPORT_FROM for each name. + */ + Py_ssize_t len = PyUnicode_GET_LENGTH(name); + Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0, len, 1); + if (dot == -2) + return 0; + if (dot != -1) { + /* Consume the base module name to get the first attribute */ + while (1) { + Py_ssize_t pos = dot + 1; + PyObject *attr; + dot = PyUnicode_FindChar(name, '.', pos, len, 1); + if (dot == -2) + return 0; + attr = PyUnicode_Substring(name, pos, (dot != -1) ? dot : len); + if (!attr) + return 0; + ADDOP_N(c, IMPORT_FROM, attr, names); + if (dot == -1) { + break; + } + ADDOP_I(c, SWAP, 2); + ADDOP(c, POP_TOP); + } + if (!compiler_nameop(c, asname, Store)) { + return 0; + } + ADDOP(c, POP_TOP); + return 1; + } + return compiler_nameop(c, asname, Store); +} + +static int +compiler_import(struct compiler *c, stmt_ty s) +{ + /* The Import node stores a module name like a.b.c as a single + string. This is convenient for all cases except + import a.b.c as d + where we need to parse that string to extract the individual + module names. + XXX Perhaps change the representation to make this case simpler? + */ + Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names); + + PyObject *zero = _PyLong_GetZero(); // borrowed reference + for (i = 0; i < n; i++) { + alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i); + int r; + + ADDOP_LOAD_CONST(c, zero); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP_NAME(c, IMPORT_NAME, alias->name, names); + + if (alias->asname) { + r = compiler_import_as(c, alias->name, alias->asname); + if (!r) + return r; + } + else { + identifier tmp = alias->name; + Py_ssize_t dot = PyUnicode_FindChar( + alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1); + if (dot != -1) { + tmp = PyUnicode_Substring(alias->name, 0, dot); + if (tmp == NULL) + return 0; + } + r = compiler_nameop(c, tmp, Store); + if (dot != -1) { + Py_DECREF(tmp); + } + if (!r) + return r; + } + } + return 1; +} + +static int +compiler_from_import(struct compiler *c, stmt_ty s) +{ + Py_ssize_t i, n = asdl_seq_LEN(s->v.ImportFrom.names); + PyObject *names; + + ADDOP_LOAD_CONST_NEW(c, PyLong_FromLong(s->v.ImportFrom.level)); + + names = PyTuple_New(n); + if (!names) + return 0; + + /* build up the names */ + for (i = 0; i < n; i++) { + alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i); + Py_INCREF(alias->name); + PyTuple_SET_ITEM(names, i, alias->name); + } + + if (s->lineno > c->c_future->ff_lineno && s->v.ImportFrom.module && + _PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__")) { + Py_DECREF(names); + return compiler_error(c, "from __future__ imports must occur " + "at the beginning of the file"); + } + ADDOP_LOAD_CONST_NEW(c, names); + + if (s->v.ImportFrom.module) { + ADDOP_NAME(c, IMPORT_NAME, s->v.ImportFrom.module, names); + } + else { + _Py_DECLARE_STR(empty, ""); + ADDOP_NAME(c, IMPORT_NAME, &_Py_STR(empty), names); + } + for (i = 0; i < n; i++) { + alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i); + identifier store_name; + + if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') { + assert(n == 1); + ADDOP(c, IMPORT_STAR); + return 1; + } + + ADDOP_NAME(c, IMPORT_FROM, alias->name, names); + store_name = alias->name; + if (alias->asname) + store_name = alias->asname; + + if (!compiler_nameop(c, store_name, Store)) { + return 0; + } + } + /* remove imported module */ + ADDOP(c, POP_TOP); + return 1; +} + +static int +compiler_assert(struct compiler *c, stmt_ty s) +{ + basicblock *end; + + /* Always emit a warning if the test is a non-zero length tuple */ + if ((s->v.Assert.test->kind == Tuple_kind && + asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) || + (s->v.Assert.test->kind == Constant_kind && + PyTuple_Check(s->v.Assert.test->v.Constant.value) && + PyTuple_Size(s->v.Assert.test->v.Constant.value) > 0)) + { + if (!compiler_warn(c, "assertion is always true, " + "perhaps remove parentheses?")) + { + return 0; + } + } + if (c->c_optimize) + return 1; + end = compiler_new_block(c); + if (end == NULL) + return 0; + if (!compiler_jump_if(c, s->v.Assert.test, end, 1)) + return 0; + ADDOP(c, LOAD_ASSERTION_ERROR); + if (s->v.Assert.msg) { + VISIT(c, expr, s->v.Assert.msg); + ADDOP_I(c, PRECALL, 0); + ADDOP_I(c, CALL, 0); + } + ADDOP_I(c, RAISE_VARARGS, 1); + compiler_use_next_block(c, end); + return 1; +} + +static int +compiler_visit_stmt_expr(struct compiler *c, expr_ty value) +{ + if (c->c_interactive && c->c_nestlevel <= 1) { + VISIT(c, expr, value); + ADDOP(c, PRINT_EXPR); + return 1; + } + + if (value->kind == Constant_kind) { + /* ignore constant statement */ + ADDOP(c, NOP); + return 1; + } + + VISIT(c, expr, value); + /* Mark POP_TOP as artificial */ + UNSET_LOC(c); + ADDOP(c, POP_TOP); + return 1; +} + +static int +compiler_visit_stmt(struct compiler *c, stmt_ty s) +{ + Py_ssize_t i, n; + + /* Always assign a lineno to the next instruction for a stmt. */ + SET_LOC(c, s); + + switch (s->kind) { + case FunctionDef_kind: + return compiler_function(c, s, 0); + case ClassDef_kind: + return compiler_class(c, s); + case Return_kind: + return compiler_return(c, s); + case Delete_kind: + VISIT_SEQ(c, expr, s->v.Delete.targets) + break; + case Assign_kind: + n = asdl_seq_LEN(s->v.Assign.targets); + VISIT(c, expr, s->v.Assign.value); + for (i = 0; i < n; i++) { + if (i < n - 1) { + ADDOP_I(c, COPY, 1); + } + VISIT(c, expr, + (expr_ty)asdl_seq_GET(s->v.Assign.targets, i)); + } + break; + case AugAssign_kind: + return compiler_augassign(c, s); + case AnnAssign_kind: + return compiler_annassign(c, s); + case For_kind: + return compiler_for(c, s); + case While_kind: + return compiler_while(c, s); + case If_kind: + return compiler_if(c, s); + case Match_kind: + return compiler_match(c, s); + case Raise_kind: + n = 0; + if (s->v.Raise.exc) { + VISIT(c, expr, s->v.Raise.exc); + n++; + if (s->v.Raise.cause) { + VISIT(c, expr, s->v.Raise.cause); + n++; + } + } + ADDOP_I(c, RAISE_VARARGS, (int)n); + break; + case Try_kind: + return compiler_try(c, s); + case TryStar_kind: + return compiler_try_star(c, s); + case Assert_kind: + return compiler_assert(c, s); + case Import_kind: + return compiler_import(c, s); + case ImportFrom_kind: + return compiler_from_import(c, s); + case Global_kind: + case Nonlocal_kind: + break; + case Expr_kind: + return compiler_visit_stmt_expr(c, s->v.Expr.value); + case Pass_kind: + ADDOP(c, NOP); + break; + case Break_kind: + return compiler_break(c); + case Continue_kind: + return compiler_continue(c); + case With_kind: + return compiler_with(c, s, 0); + case AsyncFunctionDef_kind: + return compiler_function(c, s, 1); + case AsyncWith_kind: + return compiler_async_with(c, s, 0); + case AsyncFor_kind: + return compiler_async_for(c, s); + } + + return 1; +} + +static int +unaryop(unaryop_ty op) +{ + switch (op) { + case Invert: + return UNARY_INVERT; + case Not: + return UNARY_NOT; + case UAdd: + return UNARY_POSITIVE; + case USub: + return UNARY_NEGATIVE; + default: + PyErr_Format(PyExc_SystemError, + "unary op %d should not be possible", op); + return 0; + } +} + +static int +addop_binary(struct compiler *c, operator_ty binop, bool inplace) +{ + int oparg; + switch (binop) { + case Add: + oparg = inplace ? NB_INPLACE_ADD : NB_ADD; + break; + case Sub: + oparg = inplace ? NB_INPLACE_SUBTRACT : NB_SUBTRACT; + break; + case Mult: + oparg = inplace ? NB_INPLACE_MULTIPLY : NB_MULTIPLY; + break; + case MatMult: + oparg = inplace ? NB_INPLACE_MATRIX_MULTIPLY : NB_MATRIX_MULTIPLY; + break; + case Div: + oparg = inplace ? NB_INPLACE_TRUE_DIVIDE : NB_TRUE_DIVIDE; + break; + case Mod: + oparg = inplace ? NB_INPLACE_REMAINDER : NB_REMAINDER; + break; + case Pow: + oparg = inplace ? NB_INPLACE_POWER : NB_POWER; + break; + case LShift: + oparg = inplace ? NB_INPLACE_LSHIFT : NB_LSHIFT; + break; + case RShift: + oparg = inplace ? NB_INPLACE_RSHIFT : NB_RSHIFT; + break; + case BitOr: + oparg = inplace ? NB_INPLACE_OR : NB_OR; + break; + case BitXor: + oparg = inplace ? NB_INPLACE_XOR : NB_XOR; + break; + case BitAnd: + oparg = inplace ? NB_INPLACE_AND : NB_AND; + break; + case FloorDiv: + oparg = inplace ? NB_INPLACE_FLOOR_DIVIDE : NB_FLOOR_DIVIDE; + break; + default: + PyErr_Format(PyExc_SystemError, "%s op %d should not be possible", + inplace ? "inplace" : "binary", binop); + return 0; + } + ADDOP_I(c, BINARY_OP, oparg); + return 1; +} + + +static int +addop_yield(struct compiler *c) { + if (c->u->u_ste->ste_generator && c->u->u_ste->ste_coroutine) { + ADDOP(c, ASYNC_GEN_WRAP); + } + ADDOP(c, YIELD_VALUE); + ADDOP_I(c, RESUME, 1); + return 1; +} + +static int +compiler_nameop(struct compiler *c, identifier name, expr_context_ty ctx) +{ + int op, scope; + Py_ssize_t arg; + enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype; + + PyObject *dict = c->u->u_names; + PyObject *mangled; + + assert(!_PyUnicode_EqualToASCIIString(name, "None") && + !_PyUnicode_EqualToASCIIString(name, "True") && + !_PyUnicode_EqualToASCIIString(name, "False")); + + if (forbidden_name(c, name, ctx)) + return 0; + + mangled = _Py_Mangle(c->u->u_private, name); + if (!mangled) + return 0; + + op = 0; + optype = OP_NAME; + scope = _PyST_GetScope(c->u->u_ste, mangled); + switch (scope) { + case FREE: + dict = c->u->u_freevars; + optype = OP_DEREF; + break; + case CELL: + dict = c->u->u_cellvars; + optype = OP_DEREF; + break; + case LOCAL: + if (c->u->u_ste->ste_type == FunctionBlock) + optype = OP_FAST; + break; + case GLOBAL_IMPLICIT: + if (c->u->u_ste->ste_type == FunctionBlock) + optype = OP_GLOBAL; + break; + case GLOBAL_EXPLICIT: + optype = OP_GLOBAL; + break; + default: + /* scope can be 0 */ + break; + } + + /* XXX Leave assert here, but handle __doc__ and the like better */ + assert(scope || PyUnicode_READ_CHAR(name, 0) == '_'); + + switch (optype) { + case OP_DEREF: + switch (ctx) { + case Load: + op = (c->u->u_ste->ste_type == ClassBlock) ? LOAD_CLASSDEREF : LOAD_DEREF; + break; + case Store: op = STORE_DEREF; break; + case Del: op = DELETE_DEREF; break; + } + break; + case OP_FAST: + switch (ctx) { + case Load: op = LOAD_FAST; break; + case Store: op = STORE_FAST; break; + case Del: op = DELETE_FAST; break; + } + ADDOP_N(c, op, mangled, varnames); + return 1; + case OP_GLOBAL: + switch (ctx) { + case Load: op = LOAD_GLOBAL; break; + case Store: op = STORE_GLOBAL; break; + case Del: op = DELETE_GLOBAL; break; + } + break; + case OP_NAME: + switch (ctx) { + case Load: op = LOAD_NAME; break; + case Store: op = STORE_NAME; break; + case Del: op = DELETE_NAME; break; + } + break; + } + + assert(op); + arg = compiler_add_o(dict, mangled); + Py_DECREF(mangled); + if (arg < 0) { + return 0; + } + if (op == LOAD_GLOBAL) { + arg <<= 1; + } + return compiler_addop_i(c, op, arg); +} + +static int +compiler_boolop(struct compiler *c, expr_ty e) +{ + basicblock *end; + int jumpi; + Py_ssize_t i, n; + asdl_expr_seq *s; + + assert(e->kind == BoolOp_kind); + if (e->v.BoolOp.op == And) + jumpi = JUMP_IF_FALSE_OR_POP; + else + jumpi = JUMP_IF_TRUE_OR_POP; + end = compiler_new_block(c); + if (end == NULL) + return 0; + s = e->v.BoolOp.values; + n = asdl_seq_LEN(s) - 1; + assert(n >= 0); + for (i = 0; i < n; ++i) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i)); + ADDOP_JUMP(c, jumpi, end); + basicblock *next = compiler_new_block(c); + if (next == NULL) { + return 0; + } + compiler_use_next_block(c, next); + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n)); + compiler_use_next_block(c, end); + return 1; +} + +static int +starunpack_helper(struct compiler *c, asdl_expr_seq *elts, int pushed, + int build, int add, int extend, int tuple) +{ + Py_ssize_t n = asdl_seq_LEN(elts); + if (n > 2 && are_all_items_const(elts, 0, n)) { + PyObject *folded = PyTuple_New(n); + if (folded == NULL) { + return 0; + } + PyObject *val; + for (Py_ssize_t i = 0; i < n; i++) { + val = ((expr_ty)asdl_seq_GET(elts, i))->v.Constant.value; + Py_INCREF(val); + PyTuple_SET_ITEM(folded, i, val); + } + if (tuple && !pushed) { + ADDOP_LOAD_CONST_NEW(c, folded); + } else { + if (add == SET_ADD) { + Py_SETREF(folded, PyFrozenSet_New(folded)); + if (folded == NULL) { + return 0; + } + } + ADDOP_I(c, build, pushed); + ADDOP_LOAD_CONST_NEW(c, folded); + ADDOP_I(c, extend, 1); + if (tuple) { + ADDOP(c, LIST_TO_TUPLE); + } + } + return 1; + } + + int big = n+pushed > STACK_USE_GUIDELINE; + int seen_star = 0; + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + if (elt->kind == Starred_kind) { + seen_star = 1; + } + } + if (!seen_star && !big) { + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + VISIT(c, expr, elt); + } + if (tuple) { + ADDOP_I(c, BUILD_TUPLE, n+pushed); + } else { + ADDOP_I(c, build, n+pushed); + } + return 1; + } + int sequence_built = 0; + if (big) { + ADDOP_I(c, build, pushed); + sequence_built = 1; + } + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + if (elt->kind == Starred_kind) { + if (sequence_built == 0) { + ADDOP_I(c, build, i+pushed); + sequence_built = 1; + } + VISIT(c, expr, elt->v.Starred.value); + ADDOP_I(c, extend, 1); + } + else { + VISIT(c, expr, elt); + if (sequence_built) { + ADDOP_I(c, add, 1); + } + } + } + assert(sequence_built); + if (tuple) { + ADDOP(c, LIST_TO_TUPLE); + } + return 1; +} + +static int +unpack_helper(struct compiler *c, asdl_expr_seq *elts) +{ + Py_ssize_t n = asdl_seq_LEN(elts); + int seen_star = 0; + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + if (elt->kind == Starred_kind && !seen_star) { + if ((i >= (1 << 8)) || + (n-i-1 >= (INT_MAX >> 8))) + return compiler_error(c, + "too many expressions in " + "star-unpacking assignment"); + ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8))); + seen_star = 1; + } + else if (elt->kind == Starred_kind) { + return compiler_error(c, + "multiple starred expressions in assignment"); + } + } + if (!seen_star) { + ADDOP_I(c, UNPACK_SEQUENCE, n); + } + return 1; +} + +static int +assignment_helper(struct compiler *c, asdl_expr_seq *elts) +{ + Py_ssize_t n = asdl_seq_LEN(elts); + RETURN_IF_FALSE(unpack_helper(c, elts)); + for (Py_ssize_t i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + VISIT(c, expr, elt->kind != Starred_kind ? elt : elt->v.Starred.value); + } + return 1; +} + +static int +compiler_list(struct compiler *c, expr_ty e) +{ + asdl_expr_seq *elts = e->v.List.elts; + if (e->v.List.ctx == Store) { + return assignment_helper(c, elts); + } + else if (e->v.List.ctx == Load) { + return starunpack_helper(c, elts, 0, BUILD_LIST, + LIST_APPEND, LIST_EXTEND, 0); + } + else + VISIT_SEQ(c, expr, elts); + return 1; +} + +static int +compiler_tuple(struct compiler *c, expr_ty e) +{ + asdl_expr_seq *elts = e->v.Tuple.elts; + if (e->v.Tuple.ctx == Store) { + return assignment_helper(c, elts); + } + else if (e->v.Tuple.ctx == Load) { + return starunpack_helper(c, elts, 0, BUILD_LIST, + LIST_APPEND, LIST_EXTEND, 1); + } + else + VISIT_SEQ(c, expr, elts); + return 1; +} + +static int +compiler_set(struct compiler *c, expr_ty e) +{ + return starunpack_helper(c, e->v.Set.elts, 0, BUILD_SET, + SET_ADD, SET_UPDATE, 0); +} + +static int +are_all_items_const(asdl_expr_seq *seq, Py_ssize_t begin, Py_ssize_t end) +{ + Py_ssize_t i; + for (i = begin; i < end; i++) { + expr_ty key = (expr_ty)asdl_seq_GET(seq, i); + if (key == NULL || key->kind != Constant_kind) + return 0; + } + return 1; +} + +static int +compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end) +{ + Py_ssize_t i, n = end - begin; + PyObject *keys, *key; + int big = n*2 > STACK_USE_GUIDELINE; + if (n > 1 && !big && are_all_items_const(e->v.Dict.keys, begin, end)) { + for (i = begin; i < end; i++) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); + } + keys = PyTuple_New(n); + if (keys == NULL) { + return 0; + } + for (i = begin; i < end; i++) { + key = ((expr_ty)asdl_seq_GET(e->v.Dict.keys, i))->v.Constant.value; + Py_INCREF(key); + PyTuple_SET_ITEM(keys, i - begin, key); + } + ADDOP_LOAD_CONST_NEW(c, keys); + ADDOP_I(c, BUILD_CONST_KEY_MAP, n); + return 1; + } + if (big) { + ADDOP_I(c, BUILD_MAP, 0); + } + for (i = begin; i < end; i++) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i)); + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); + if (big) { + ADDOP_I(c, MAP_ADD, 1); + } + } + if (!big) { + ADDOP_I(c, BUILD_MAP, n); + } + return 1; +} + +static int +compiler_dict(struct compiler *c, expr_ty e) +{ + Py_ssize_t i, n, elements; + int have_dict; + int is_unpacking = 0; + n = asdl_seq_LEN(e->v.Dict.values); + have_dict = 0; + elements = 0; + for (i = 0; i < n; i++) { + is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL; + if (is_unpacking) { + if (elements) { + if (!compiler_subdict(c, e, i - elements, i)) { + return 0; + } + if (have_dict) { + ADDOP_I(c, DICT_UPDATE, 1); + } + have_dict = 1; + elements = 0; + } + if (have_dict == 0) { + ADDOP_I(c, BUILD_MAP, 0); + have_dict = 1; + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); + ADDOP_I(c, DICT_UPDATE, 1); + } + else { + if (elements*2 > STACK_USE_GUIDELINE) { + if (!compiler_subdict(c, e, i - elements, i + 1)) { + return 0; + } + if (have_dict) { + ADDOP_I(c, DICT_UPDATE, 1); + } + have_dict = 1; + elements = 0; + } + else { + elements++; + } + } + } + if (elements) { + if (!compiler_subdict(c, e, n - elements, n)) { + return 0; + } + if (have_dict) { + ADDOP_I(c, DICT_UPDATE, 1); + } + have_dict = 1; + } + if (!have_dict) { + ADDOP_I(c, BUILD_MAP, 0); + } + return 1; +} + +static int +compiler_compare(struct compiler *c, expr_ty e) +{ + Py_ssize_t i, n; + + if (!check_compare(c, e)) { + return 0; + } + VISIT(c, expr, e->v.Compare.left); + assert(asdl_seq_LEN(e->v.Compare.ops) > 0); + n = asdl_seq_LEN(e->v.Compare.ops) - 1; + if (n == 0) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0)); + ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, 0)); + } + else { + basicblock *cleanup = compiler_new_block(c); + if (cleanup == NULL) + return 0; + for (i = 0; i < n; i++) { + VISIT(c, expr, + (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); + ADDOP_I(c, SWAP, 2); + ADDOP_I(c, COPY, 2); + ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i)); + ADDOP_JUMP(c, JUMP_IF_FALSE_OR_POP, cleanup); + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n)); + ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n)); + basicblock *end = compiler_new_block(c); + if (end == NULL) + return 0; + ADDOP_JUMP_NOLINE(c, JUMP, end); + compiler_use_next_block(c, cleanup); + ADDOP_I(c, SWAP, 2); + ADDOP(c, POP_TOP); + compiler_use_next_block(c, end); + } + return 1; +} + +static PyTypeObject * +infer_type(expr_ty e) +{ + switch (e->kind) { + case Tuple_kind: + return &PyTuple_Type; + case List_kind: + case ListComp_kind: + return &PyList_Type; + case Dict_kind: + case DictComp_kind: + return &PyDict_Type; + case Set_kind: + case SetComp_kind: + return &PySet_Type; + case GeneratorExp_kind: + return &PyGen_Type; + case Lambda_kind: + return &PyFunction_Type; + case JoinedStr_kind: + case FormattedValue_kind: + return &PyUnicode_Type; + case Constant_kind: + return Py_TYPE(e->v.Constant.value); + default: + return NULL; + } +} + +static int +check_caller(struct compiler *c, expr_ty e) +{ + switch (e->kind) { + case Constant_kind: + case Tuple_kind: + case List_kind: + case ListComp_kind: + case Dict_kind: + case DictComp_kind: + case Set_kind: + case SetComp_kind: + case GeneratorExp_kind: + case JoinedStr_kind: + case FormattedValue_kind: + return compiler_warn(c, "'%.200s' object is not callable; " + "perhaps you missed a comma?", + infer_type(e)->tp_name); + default: + return 1; + } +} + +static int +check_subscripter(struct compiler *c, expr_ty e) +{ + PyObject *v; + + switch (e->kind) { + case Constant_kind: + v = e->v.Constant.value; + if (!(v == Py_None || v == Py_Ellipsis || + PyLong_Check(v) || PyFloat_Check(v) || PyComplex_Check(v) || + PyAnySet_Check(v))) + { + return 1; + } + /* fall through */ + case Set_kind: + case SetComp_kind: + case GeneratorExp_kind: + case Lambda_kind: + return compiler_warn(c, "'%.200s' object is not subscriptable; " + "perhaps you missed a comma?", + infer_type(e)->tp_name); + default: + return 1; + } +} + +static int +check_index(struct compiler *c, expr_ty e, expr_ty s) +{ + PyObject *v; + + PyTypeObject *index_type = infer_type(s); + if (index_type == NULL + || PyType_FastSubclass(index_type, Py_TPFLAGS_LONG_SUBCLASS) + || index_type == &PySlice_Type) { + return 1; + } + + switch (e->kind) { + case Constant_kind: + v = e->v.Constant.value; + if (!(PyUnicode_Check(v) || PyBytes_Check(v) || PyTuple_Check(v))) { + return 1; + } + /* fall through */ + case Tuple_kind: + case List_kind: + case ListComp_kind: + case JoinedStr_kind: + case FormattedValue_kind: + return compiler_warn(c, "%.200s indices must be integers or slices, " + "not %.200s; " + "perhaps you missed a comma?", + infer_type(e)->tp_name, + index_type->tp_name); + default: + return 1; + } +} + +static int +is_import_originated(struct compiler *c, expr_ty e) +{ + /* Check whether the global scope has an import named + e, if it is a Name object. For not traversing all the + scope stack every time this function is called, it will + only check the global scope to determine whether something + is imported or not. */ + + if (e->kind != Name_kind) { + return 0; + } + + long flags = _PyST_GetSymbol(c->c_st->st_top, e->v.Name.id); + return flags & DEF_IMPORT; +} + +// If an attribute access spans multiple lines, update the current start +// location to point to the attribute name. +static void +update_start_location_to_match_attr(struct compiler *c, expr_ty attr) +{ + assert(attr->kind == Attribute_kind); + if (c->u->u_lineno != attr->end_lineno) { + c->u->u_lineno = attr->end_lineno; + int len = (int)PyUnicode_GET_LENGTH(attr->v.Attribute.attr); + if (len <= attr->end_col_offset) { + c->u->u_col_offset = attr->end_col_offset - len; + } + else { + // GH-94694: Somebody's compiling weird ASTs. Just drop the columns: + c->u->u_col_offset = -1; + c->u->u_end_col_offset = -1; + } + // Make sure the end position still follows the start position, even for + // weird ASTs: + c->u->u_end_lineno = Py_MAX(c->u->u_lineno, c->u->u_end_lineno); + if (c->u->u_lineno == c->u->u_end_lineno) { + c->u->u_end_col_offset = Py_MAX(c->u->u_col_offset, + c->u->u_end_col_offset); + } + } +} + +// Return 1 if the method call was optimized, -1 if not, and 0 on error. +static int +maybe_optimize_method_call(struct compiler *c, expr_ty e) +{ + Py_ssize_t argsl, i, kwdsl; + expr_ty meth = e->v.Call.func; + asdl_expr_seq *args = e->v.Call.args; + asdl_keyword_seq *kwds = e->v.Call.keywords; + + /* Check that the call node is an attribute access */ + if (meth->kind != Attribute_kind || meth->v.Attribute.ctx != Load) { + return -1; + } + + /* Check that the base object is not something that is imported */ + if (is_import_originated(c, meth->v.Attribute.value)) { + return -1; + } + + /* Check that there aren't too many arguments */ + argsl = asdl_seq_LEN(args); + kwdsl = asdl_seq_LEN(kwds); + if (argsl + kwdsl + (kwdsl != 0) >= STACK_USE_GUIDELINE) { + return -1; + } + /* Check that there are no *varargs types of arguments. */ + for (i = 0; i < argsl; i++) { + expr_ty elt = asdl_seq_GET(args, i); + if (elt->kind == Starred_kind) { + return -1; + } + } + + for (i = 0; i < kwdsl; i++) { + keyword_ty kw = asdl_seq_GET(kwds, i); + if (kw->arg == NULL) { + return -1; + } + } + /* Alright, we can optimize the code. */ + VISIT(c, expr, meth->v.Attribute.value); + SET_LOC(c, meth); + update_start_location_to_match_attr(c, meth); + ADDOP_NAME(c, LOAD_METHOD, meth->v.Attribute.attr, names); + VISIT_SEQ(c, expr, e->v.Call.args); + + if (kwdsl) { + VISIT_SEQ(c, keyword, kwds); + if (!compiler_call_simple_kw_helper(c, kwds, kwdsl)) { + return 0; + }; + } + SET_LOC(c, e); + update_start_location_to_match_attr(c, meth); + ADDOP_I(c, PRECALL, argsl + kwdsl); + ADDOP_I(c, CALL, argsl + kwdsl); + return 1; +} + +static int +validate_keywords(struct compiler *c, asdl_keyword_seq *keywords) +{ + Py_ssize_t nkeywords = asdl_seq_LEN(keywords); + for (Py_ssize_t i = 0; i < nkeywords; i++) { + keyword_ty key = ((keyword_ty)asdl_seq_GET(keywords, i)); + if (key->arg == NULL) { + continue; + } + if (forbidden_name(c, key->arg, Store)) { + return -1; + } + for (Py_ssize_t j = i + 1; j < nkeywords; j++) { + keyword_ty other = ((keyword_ty)asdl_seq_GET(keywords, j)); + if (other->arg && !PyUnicode_Compare(key->arg, other->arg)) { + SET_LOC(c, other); + compiler_error(c, "keyword argument repeated: %U", key->arg); + return -1; + } + } + } + return 0; +} + +static int +compiler_call(struct compiler *c, expr_ty e) +{ + if (validate_keywords(c, e->v.Call.keywords) == -1) { + return 0; + } + int ret = maybe_optimize_method_call(c, e); + if (ret >= 0) { + return ret; + } + if (!check_caller(c, e->v.Call.func)) { + return 0; + } + SET_LOC(c, e->v.Call.func); + ADDOP(c, PUSH_NULL); + SET_LOC(c, e); + VISIT(c, expr, e->v.Call.func); + return compiler_call_helper(c, 0, + e->v.Call.args, + e->v.Call.keywords); +} + +static int +compiler_joined_str(struct compiler *c, expr_ty e) +{ + + Py_ssize_t value_count = asdl_seq_LEN(e->v.JoinedStr.values); + if (value_count > STACK_USE_GUIDELINE) { + _Py_DECLARE_STR(empty, ""); + ADDOP_LOAD_CONST_NEW(c, Py_NewRef(&_Py_STR(empty))); + ADDOP_NAME(c, LOAD_METHOD, &_Py_ID(join), names); + ADDOP_I(c, BUILD_LIST, 0); + for (Py_ssize_t i = 0; i < asdl_seq_LEN(e->v.JoinedStr.values); i++) { + VISIT(c, expr, asdl_seq_GET(e->v.JoinedStr.values, i)); + ADDOP_I(c, LIST_APPEND, 1); + } + ADDOP_I(c, PRECALL, 1); + ADDOP_I(c, CALL, 1); + } + else { + VISIT_SEQ(c, expr, e->v.JoinedStr.values); + if (asdl_seq_LEN(e->v.JoinedStr.values) != 1) { + ADDOP_I(c, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values)); + } + } + return 1; +} + +/* Used to implement f-strings. Format a single value. */ +static int +compiler_formatted_value(struct compiler *c, expr_ty e) +{ + /* Our oparg encodes 2 pieces of information: the conversion + character, and whether or not a format_spec was provided. + + Convert the conversion char to 3 bits: + : 000 0x0 FVC_NONE The default if nothing specified. + !s : 001 0x1 FVC_STR + !r : 010 0x2 FVC_REPR + !a : 011 0x3 FVC_ASCII + + next bit is whether or not we have a format spec: + yes : 100 0x4 + no : 000 0x0 + */ + + int conversion = e->v.FormattedValue.conversion; + int oparg; + + /* The expression to be formatted. */ + VISIT(c, expr, e->v.FormattedValue.value); + + switch (conversion) { + case 's': oparg = FVC_STR; break; + case 'r': oparg = FVC_REPR; break; + case 'a': oparg = FVC_ASCII; break; + case -1: oparg = FVC_NONE; break; + default: + PyErr_Format(PyExc_SystemError, + "Unrecognized conversion character %d", conversion); + return 0; + } + if (e->v.FormattedValue.format_spec) { + /* Evaluate the format spec, and update our opcode arg. */ + VISIT(c, expr, e->v.FormattedValue.format_spec); + oparg |= FVS_HAVE_SPEC; + } + + /* And push our opcode and oparg */ + ADDOP_I(c, FORMAT_VALUE, oparg); + + return 1; +} + +static int +compiler_subkwargs(struct compiler *c, asdl_keyword_seq *keywords, Py_ssize_t begin, Py_ssize_t end) +{ + Py_ssize_t i, n = end - begin; + keyword_ty kw; + PyObject *keys, *key; + assert(n > 0); + int big = n*2 > STACK_USE_GUIDELINE; + if (n > 1 && !big) { + for (i = begin; i < end; i++) { + kw = asdl_seq_GET(keywords, i); + VISIT(c, expr, kw->value); + } + keys = PyTuple_New(n); + if (keys == NULL) { + return 0; + } + for (i = begin; i < end; i++) { + key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg; + Py_INCREF(key); + PyTuple_SET_ITEM(keys, i - begin, key); + } + ADDOP_LOAD_CONST_NEW(c, keys); + ADDOP_I(c, BUILD_CONST_KEY_MAP, n); + return 1; + } + if (big) { + ADDOP_I_NOLINE(c, BUILD_MAP, 0); + } + for (i = begin; i < end; i++) { + kw = asdl_seq_GET(keywords, i); + ADDOP_LOAD_CONST(c, kw->arg); + VISIT(c, expr, kw->value); + if (big) { + ADDOP_I_NOLINE(c, MAP_ADD, 1); + } + } + if (!big) { + ADDOP_I(c, BUILD_MAP, n); + } + return 1; +} + +/* Used by compiler_call_helper and maybe_optimize_method_call to emit + * KW_NAMES before CALL. + * Returns 1 on success, 0 on error. + */ +static int +compiler_call_simple_kw_helper(struct compiler *c, + asdl_keyword_seq *keywords, + Py_ssize_t nkwelts) +{ + PyObject *names; + names = PyTuple_New(nkwelts); + if (names == NULL) { + return 0; + } + for (int i = 0; i < nkwelts; i++) { + keyword_ty kw = asdl_seq_GET(keywords, i); + Py_INCREF(kw->arg); + PyTuple_SET_ITEM(names, i, kw->arg); + } + Py_ssize_t arg = compiler_add_const(c, names); + if (arg < 0) { + return 0; + } + Py_DECREF(names); + ADDOP_I(c, KW_NAMES, arg); + return 1; +} + + +/* shared code between compiler_call and compiler_class */ +static int +compiler_call_helper(struct compiler *c, + int n, /* Args already pushed */ + asdl_expr_seq *args, + asdl_keyword_seq *keywords) +{ + Py_ssize_t i, nseen, nelts, nkwelts; + + if (validate_keywords(c, keywords) == -1) { + return 0; + } + + nelts = asdl_seq_LEN(args); + nkwelts = asdl_seq_LEN(keywords); + + if (nelts + nkwelts*2 > STACK_USE_GUIDELINE) { + goto ex_call; + } + for (i = 0; i < nelts; i++) { + expr_ty elt = asdl_seq_GET(args, i); + if (elt->kind == Starred_kind) { + goto ex_call; + } + } + for (i = 0; i < nkwelts; i++) { + keyword_ty kw = asdl_seq_GET(keywords, i); + if (kw->arg == NULL) { + goto ex_call; + } + } + + /* No * or ** args, so can use faster calling sequence */ + for (i = 0; i < nelts; i++) { + expr_ty elt = asdl_seq_GET(args, i); + assert(elt->kind != Starred_kind); + VISIT(c, expr, elt); + } + if (nkwelts) { + VISIT_SEQ(c, keyword, keywords); + if (!compiler_call_simple_kw_helper(c, keywords, nkwelts)) { + return 0; + }; + } + ADDOP_I(c, PRECALL, n + nelts + nkwelts); + ADDOP_I(c, CALL, n + nelts + nkwelts); + return 1; + +ex_call: + + /* Do positional arguments. */ + if (n ==0 && nelts == 1 && ((expr_ty)asdl_seq_GET(args, 0))->kind == Starred_kind) { + VISIT(c, expr, ((expr_ty)asdl_seq_GET(args, 0))->v.Starred.value); + } + else if (starunpack_helper(c, args, n, BUILD_LIST, + LIST_APPEND, LIST_EXTEND, 1) == 0) { + return 0; + } + /* Then keyword arguments */ + if (nkwelts) { + /* Has a new dict been pushed */ + int have_dict = 0; + + nseen = 0; /* the number of keyword arguments on the stack following */ + for (i = 0; i < nkwelts; i++) { + keyword_ty kw = asdl_seq_GET(keywords, i); + if (kw->arg == NULL) { + /* A keyword argument unpacking. */ + if (nseen) { + if (!compiler_subkwargs(c, keywords, i - nseen, i)) { + return 0; + } + if (have_dict) { + ADDOP_I(c, DICT_MERGE, 1); + } + have_dict = 1; + nseen = 0; + } + if (!have_dict) { + ADDOP_I(c, BUILD_MAP, 0); + have_dict = 1; + } + VISIT(c, expr, kw->value); + ADDOP_I(c, DICT_MERGE, 1); + } + else { + nseen++; + } + } + if (nseen) { + /* Pack up any trailing keyword arguments. */ + if (!compiler_subkwargs(c, keywords, nkwelts - nseen, nkwelts)) { + return 0; + } + if (have_dict) { + ADDOP_I(c, DICT_MERGE, 1); + } + have_dict = 1; + } + assert(have_dict); + } + ADDOP_I(c, CALL_FUNCTION_EX, nkwelts > 0); + return 1; +} + + +/* List and set comprehensions and generator expressions work by creating a + nested function to perform the actual iteration. This means that the + iteration variables don't leak into the current scope. + The defined function is called immediately following its definition, with the + result of that call being the result of the expression. + The LC/SC version returns the populated container, while the GE version is + flagged in symtable.c as a generator, so it returns the generator object + when the function is called. + + Possible cleanups: + - iterate over the generator sequence instead of using recursion +*/ + + +static int +compiler_comprehension_generator(struct compiler *c, + asdl_comprehension_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type) +{ + comprehension_ty gen; + gen = (comprehension_ty)asdl_seq_GET(generators, gen_index); + if (gen->is_async) { + return compiler_async_comprehension_generator( + c, generators, gen_index, depth, elt, val, type); + } else { + return compiler_sync_comprehension_generator( + c, generators, gen_index, depth, elt, val, type); + } +} + +static int +compiler_sync_comprehension_generator(struct compiler *c, + asdl_comprehension_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type) +{ + /* generate code for the iterator, then each of the ifs, + and then write to the element */ + + comprehension_ty gen; + basicblock *start, *anchor, *if_cleanup; + Py_ssize_t i, n; + + start = compiler_new_block(c); + if_cleanup = compiler_new_block(c); + anchor = compiler_new_block(c); + + if (start == NULL || if_cleanup == NULL || anchor == NULL) { + return 0; + } + + gen = (comprehension_ty)asdl_seq_GET(generators, gen_index); + + if (gen_index == 0) { + /* Receive outermost iter as an implicit argument */ + c->u->u_argcount = 1; + ADDOP_I(c, LOAD_FAST, 0); + } + else { + /* Sub-iter - calculate on the fly */ + /* Fast path for the temporary variable assignment idiom: + for y in [f(x)] + */ + asdl_expr_seq *elts; + switch (gen->iter->kind) { + case List_kind: + elts = gen->iter->v.List.elts; + break; + case Tuple_kind: + elts = gen->iter->v.Tuple.elts; + break; + default: + elts = NULL; + } + if (asdl_seq_LEN(elts) == 1) { + expr_ty elt = asdl_seq_GET(elts, 0); + if (elt->kind != Starred_kind) { + VISIT(c, expr, elt); + start = NULL; + } + } + if (start) { + VISIT(c, expr, gen->iter); + ADDOP(c, GET_ITER); + } + } + if (start) { + depth++; + compiler_use_next_block(c, start); + ADDOP_JUMP(c, FOR_ITER, anchor); + } + VISIT(c, expr, gen->target); + + /* XXX this needs to be cleaned up...a lot! */ + n = asdl_seq_LEN(gen->ifs); + for (i = 0; i < n; i++) { + expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i); + if (!compiler_jump_if(c, e, if_cleanup, 0)) + return 0; + } + + if (++gen_index < asdl_seq_LEN(generators)) + if (!compiler_comprehension_generator(c, + generators, gen_index, depth, + elt, val, type)) + return 0; + + /* only append after the last for generator */ + if (gen_index >= asdl_seq_LEN(generators)) { + /* comprehension specific code */ + switch (type) { + case COMP_GENEXP: + VISIT(c, expr, elt); + ADDOP_YIELD(c); + ADDOP(c, POP_TOP); + break; + case COMP_LISTCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, LIST_APPEND, depth + 1); + break; + case COMP_SETCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, SET_ADD, depth + 1); + break; + case COMP_DICTCOMP: + /* With '{k: v}', k is evaluated before v, so we do + the same. */ + VISIT(c, expr, elt); + VISIT(c, expr, val); + ADDOP_I(c, MAP_ADD, depth + 1); + break; + default: + return 0; + } + } + compiler_use_next_block(c, if_cleanup); + if (start) { + ADDOP_JUMP(c, JUMP, start); + compiler_use_next_block(c, anchor); + } + + return 1; +} + +static int +compiler_async_comprehension_generator(struct compiler *c, + asdl_comprehension_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type) +{ + comprehension_ty gen; + basicblock *start, *if_cleanup, *except; + Py_ssize_t i, n; + start = compiler_new_block(c); + except = compiler_new_block(c); + if_cleanup = compiler_new_block(c); + + if (start == NULL || if_cleanup == NULL || except == NULL) { + return 0; + } + + gen = (comprehension_ty)asdl_seq_GET(generators, gen_index); + + if (gen_index == 0) { + /* Receive outermost iter as an implicit argument */ + c->u->u_argcount = 1; + ADDOP_I(c, LOAD_FAST, 0); + } + else { + /* Sub-iter - calculate on the fly */ + VISIT(c, expr, gen->iter); + ADDOP(c, GET_AITER); + } + + compiler_use_next_block(c, start); + /* Runtime will push a block here, so we need to account for that */ + if (!compiler_push_fblock(c, ASYNC_COMPREHENSION_GENERATOR, start, + NULL, NULL)) { + return 0; + } + + ADDOP_JUMP(c, SETUP_FINALLY, except); + ADDOP(c, GET_ANEXT); + ADDOP_LOAD_CONST(c, Py_None); + ADD_YIELD_FROM(c, 1); + ADDOP(c, POP_BLOCK); + VISIT(c, expr, gen->target); + + n = asdl_seq_LEN(gen->ifs); + for (i = 0; i < n; i++) { + expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i); + if (!compiler_jump_if(c, e, if_cleanup, 0)) + return 0; + } + + depth++; + if (++gen_index < asdl_seq_LEN(generators)) + if (!compiler_comprehension_generator(c, + generators, gen_index, depth, + elt, val, type)) + return 0; + + /* only append after the last for generator */ + if (gen_index >= asdl_seq_LEN(generators)) { + /* comprehension specific code */ + switch (type) { + case COMP_GENEXP: + VISIT(c, expr, elt); + ADDOP_YIELD(c); + ADDOP(c, POP_TOP); + break; + case COMP_LISTCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, LIST_APPEND, depth + 1); + break; + case COMP_SETCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, SET_ADD, depth + 1); + break; + case COMP_DICTCOMP: + /* With '{k: v}', k is evaluated before v, so we do + the same. */ + VISIT(c, expr, elt); + VISIT(c, expr, val); + ADDOP_I(c, MAP_ADD, depth + 1); + break; + default: + return 0; + } + } + compiler_use_next_block(c, if_cleanup); + ADDOP_JUMP(c, JUMP, start); + + compiler_pop_fblock(c, ASYNC_COMPREHENSION_GENERATOR, start); + + compiler_use_next_block(c, except); + //UNSET_LOC(c); + + ADDOP(c, END_ASYNC_FOR); + + return 1; +} + +static int +compiler_comprehension(struct compiler *c, expr_ty e, int type, + identifier name, asdl_comprehension_seq *generators, expr_ty elt, + expr_ty val) +{ + PyCodeObject *co = NULL; + comprehension_ty outermost; + PyObject *qualname = NULL; + int scope_type = c->u->u_scope_type; + int is_async_generator = 0; + int is_top_level_await = IS_TOP_LEVEL_AWAIT(c); + + outermost = (comprehension_ty) asdl_seq_GET(generators, 0); + if (!compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION, + (void *)e, e->lineno)) + { + goto error; + } + SET_LOC(c, e); + + is_async_generator = c->u->u_ste->ste_coroutine; + + if (is_async_generator && type != COMP_GENEXP && + scope_type != COMPILER_SCOPE_ASYNC_FUNCTION && + scope_type != COMPILER_SCOPE_COMPREHENSION && + !is_top_level_await) + { + compiler_error(c, "asynchronous comprehension outside of " + "an asynchronous function"); + goto error_in_scope; + } + + if (type != COMP_GENEXP) { + int op; + switch (type) { + case COMP_LISTCOMP: + op = BUILD_LIST; + break; + case COMP_SETCOMP: + op = BUILD_SET; + break; + case COMP_DICTCOMP: + op = BUILD_MAP; + break; + default: + PyErr_Format(PyExc_SystemError, + "unknown comprehension type %d", type); + goto error_in_scope; + } + + ADDOP_I(c, op, 0); + } + + if (!compiler_comprehension_generator(c, generators, 0, 0, elt, + val, type)) + goto error_in_scope; + + if (type != COMP_GENEXP) { + ADDOP(c, RETURN_VALUE); + } + + co = assemble(c, 1); + qualname = c->u->u_qualname; + Py_INCREF(qualname); + compiler_exit_scope(c); + if (is_top_level_await && is_async_generator){ + c->u->u_ste->ste_coroutine = 1; + } + if (co == NULL) + goto error; + + if (!compiler_make_closure(c, co, 0, qualname)) { + goto error; + } + Py_DECREF(qualname); + Py_DECREF(co); + + VISIT(c, expr, outermost->iter); + + if (outermost->is_async) { + ADDOP(c, GET_AITER); + } else { + ADDOP(c, GET_ITER); + } + + ADDOP_I(c, PRECALL, 0); + ADDOP_I(c, CALL, 0); + + if (is_async_generator && type != COMP_GENEXP) { + ADDOP_I(c, GET_AWAITABLE, 0); + ADDOP_LOAD_CONST(c, Py_None); + ADD_YIELD_FROM(c, 1); + } + + return 1; +error_in_scope: + compiler_exit_scope(c); +error: + Py_XDECREF(qualname); + Py_XDECREF(co); + return 0; +} + +static int +compiler_genexp(struct compiler *c, expr_ty e) +{ + assert(e->kind == GeneratorExp_kind); + _Py_DECLARE_STR(anon_genexpr, "<genexpr>"); + return compiler_comprehension(c, e, COMP_GENEXP, &_Py_STR(anon_genexpr), + e->v.GeneratorExp.generators, + e->v.GeneratorExp.elt, NULL); +} + +static int +compiler_listcomp(struct compiler *c, expr_ty e) +{ + assert(e->kind == ListComp_kind); + _Py_DECLARE_STR(anon_listcomp, "<listcomp>"); + return compiler_comprehension(c, e, COMP_LISTCOMP, &_Py_STR(anon_listcomp), + e->v.ListComp.generators, + e->v.ListComp.elt, NULL); +} + +static int +compiler_setcomp(struct compiler *c, expr_ty e) +{ + assert(e->kind == SetComp_kind); + _Py_DECLARE_STR(anon_setcomp, "<setcomp>"); + return compiler_comprehension(c, e, COMP_SETCOMP, &_Py_STR(anon_setcomp), + e->v.SetComp.generators, + e->v.SetComp.elt, NULL); +} + + +static int +compiler_dictcomp(struct compiler *c, expr_ty e) +{ + assert(e->kind == DictComp_kind); + _Py_DECLARE_STR(anon_dictcomp, "<dictcomp>"); + return compiler_comprehension(c, e, COMP_DICTCOMP, &_Py_STR(anon_dictcomp), + e->v.DictComp.generators, + e->v.DictComp.key, e->v.DictComp.value); +} + + +static int +compiler_visit_keyword(struct compiler *c, keyword_ty k) +{ + VISIT(c, expr, k->value); + return 1; +} + + +static int +compiler_with_except_finish(struct compiler *c, basicblock * cleanup) { + UNSET_LOC(c); + basicblock *exit; + exit = compiler_new_block(c); + if (exit == NULL) + return 0; + ADDOP_JUMP(c, POP_JUMP_IF_TRUE, exit); + ADDOP_I(c, RERAISE, 2); + compiler_use_next_block(c, cleanup); + POP_EXCEPT_AND_RERAISE(c); + compiler_use_next_block(c, exit); + ADDOP(c, POP_TOP); /* exc_value */ + ADDOP(c, POP_BLOCK); + ADDOP(c, POP_EXCEPT); + ADDOP(c, POP_TOP); + ADDOP(c, POP_TOP); + return 1; +} + +/* + Implements the async with statement. + + The semantics outlined in that PEP are as follows: + + async with EXPR as VAR: + BLOCK + + It is implemented roughly as: + + context = EXPR + exit = context.__aexit__ # not calling it + value = await context.__aenter__() + try: + VAR = value # if VAR present in the syntax + BLOCK + finally: + if an exception was raised: + exc = copy of (exception, instance, traceback) + else: + exc = (None, None, None) + if not (await exit(*exc)): + raise + */ +static int +compiler_async_with(struct compiler *c, stmt_ty s, int pos) +{ + basicblock *block, *final, *exit, *cleanup; + withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos); + + assert(s->kind == AsyncWith_kind); + if (IS_TOP_LEVEL_AWAIT(c)){ + c->u->u_ste->ste_coroutine = 1; + } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION){ + return compiler_error(c, "'async with' outside async function"); + } + + block = compiler_new_block(c); + final = compiler_new_block(c); + exit = compiler_new_block(c); + cleanup = compiler_new_block(c); + if (!block || !final || !exit || !cleanup) + return 0; + + /* Evaluate EXPR */ + VISIT(c, expr, item->context_expr); + + ADDOP(c, BEFORE_ASYNC_WITH); + ADDOP_I(c, GET_AWAITABLE, 1); + ADDOP_LOAD_CONST(c, Py_None); + ADD_YIELD_FROM(c, 1); + + ADDOP_JUMP(c, SETUP_WITH, final); + + /* SETUP_WITH pushes a finally block. */ + compiler_use_next_block(c, block); + if (!compiler_push_fblock(c, ASYNC_WITH, block, final, s)) { + return 0; + } + + if (item->optional_vars) { + VISIT(c, expr, item->optional_vars); + } + else { + /* Discard result from context.__aenter__() */ + ADDOP(c, POP_TOP); + } + + pos++; + if (pos == asdl_seq_LEN(s->v.AsyncWith.items)) + /* BLOCK code */ + VISIT_SEQ(c, stmt, s->v.AsyncWith.body) + else if (!compiler_async_with(c, s, pos)) + return 0; + + compiler_pop_fblock(c, ASYNC_WITH, block); + ADDOP(c, POP_BLOCK); + /* End of body; start the cleanup */ + + /* For successful outcome: + * call __exit__(None, None, None) + */ + SET_LOC(c, s); + if(!compiler_call_exit_with_nones(c)) + return 0; + ADDOP_I(c, GET_AWAITABLE, 2); + ADDOP_LOAD_CONST(c, Py_None); + ADD_YIELD_FROM(c, 1); + + ADDOP(c, POP_TOP); + + ADDOP_JUMP(c, JUMP, exit); + + /* For exceptional outcome: */ + compiler_use_next_block(c, final); + + ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); + ADDOP(c, PUSH_EXC_INFO); + ADDOP(c, WITH_EXCEPT_START); + ADDOP_I(c, GET_AWAITABLE, 2); + ADDOP_LOAD_CONST(c, Py_None); + ADD_YIELD_FROM(c, 1); + compiler_with_except_finish(c, cleanup); + + compiler_use_next_block(c, exit); + return 1; +} + + +/* + Implements the with statement from PEP 343. + with EXPR as VAR: + BLOCK + is implemented as: + <code for EXPR> + SETUP_WITH E + <code to store to VAR> or POP_TOP + <code for BLOCK> + LOAD_CONST (None, None, None) + CALL_FUNCTION_EX 0 + JUMP EXIT + E: WITH_EXCEPT_START (calls EXPR.__exit__) + POP_JUMP_IF_TRUE T: + RERAISE + T: POP_TOP (remove exception from stack) + POP_EXCEPT + POP_TOP + EXIT: + */ + +static int +compiler_with(struct compiler *c, stmt_ty s, int pos) +{ + basicblock *block, *final, *exit, *cleanup; + withitem_ty item = asdl_seq_GET(s->v.With.items, pos); + + assert(s->kind == With_kind); + + block = compiler_new_block(c); + final = compiler_new_block(c); + exit = compiler_new_block(c); + cleanup = compiler_new_block(c); + if (!block || !final || !exit || !cleanup) + return 0; + + /* Evaluate EXPR */ + VISIT(c, expr, item->context_expr); + /* Will push bound __exit__ */ + ADDOP(c, BEFORE_WITH); + ADDOP_JUMP(c, SETUP_WITH, final); + + /* SETUP_WITH pushes a finally block. */ + compiler_use_next_block(c, block); + if (!compiler_push_fblock(c, WITH, block, final, s)) { + return 0; + } + + if (item->optional_vars) { + VISIT(c, expr, item->optional_vars); + } + else { + /* Discard result from context.__enter__() */ + ADDOP(c, POP_TOP); + } + + pos++; + if (pos == asdl_seq_LEN(s->v.With.items)) + /* BLOCK code */ + VISIT_SEQ(c, stmt, s->v.With.body) + else if (!compiler_with(c, s, pos)) + return 0; + + + /* Mark all following code as artificial */ + UNSET_LOC(c); + ADDOP(c, POP_BLOCK); + compiler_pop_fblock(c, WITH, block); + + /* End of body; start the cleanup. */ + + /* For successful outcome: + * call __exit__(None, None, None) + */ + SET_LOC(c, s); + if (!compiler_call_exit_with_nones(c)) + return 0; + ADDOP(c, POP_TOP); + ADDOP_JUMP(c, JUMP, exit); + + /* For exceptional outcome: */ + compiler_use_next_block(c, final); + + ADDOP_JUMP(c, SETUP_CLEANUP, cleanup); + ADDOP(c, PUSH_EXC_INFO); + ADDOP(c, WITH_EXCEPT_START); + compiler_with_except_finish(c, cleanup); + + compiler_use_next_block(c, exit); + return 1; +} + +static int +compiler_visit_expr1(struct compiler *c, expr_ty e) +{ + switch (e->kind) { + case NamedExpr_kind: + VISIT(c, expr, e->v.NamedExpr.value); + ADDOP_I(c, COPY, 1); + VISIT(c, expr, e->v.NamedExpr.target); + break; + case BoolOp_kind: + return compiler_boolop(c, e); + case BinOp_kind: + VISIT(c, expr, e->v.BinOp.left); + VISIT(c, expr, e->v.BinOp.right); + ADDOP_BINARY(c, e->v.BinOp.op); + break; + case UnaryOp_kind: + VISIT(c, expr, e->v.UnaryOp.operand); + ADDOP(c, unaryop(e->v.UnaryOp.op)); + break; + case Lambda_kind: + return compiler_lambda(c, e); + case IfExp_kind: + return compiler_ifexp(c, e); + case Dict_kind: + return compiler_dict(c, e); + case Set_kind: + return compiler_set(c, e); + case GeneratorExp_kind: + return compiler_genexp(c, e); + case ListComp_kind: + return compiler_listcomp(c, e); + case SetComp_kind: + return compiler_setcomp(c, e); + case DictComp_kind: + return compiler_dictcomp(c, e); + case Yield_kind: + if (c->u->u_ste->ste_type != FunctionBlock) + return compiler_error(c, "'yield' outside function"); + if (e->v.Yield.value) { + VISIT(c, expr, e->v.Yield.value); + } + else { + ADDOP_LOAD_CONST(c, Py_None); + } + ADDOP_YIELD(c); + break; + case YieldFrom_kind: + if (c->u->u_ste->ste_type != FunctionBlock) + return compiler_error(c, "'yield' outside function"); + + if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION) + return compiler_error(c, "'yield from' inside async function"); + + VISIT(c, expr, e->v.YieldFrom.value); + ADDOP(c, GET_YIELD_FROM_ITER); + ADDOP_LOAD_CONST(c, Py_None); + ADD_YIELD_FROM(c, 0); + break; + case Await_kind: + if (!IS_TOP_LEVEL_AWAIT(c)){ + if (c->u->u_ste->ste_type != FunctionBlock){ + return compiler_error(c, "'await' outside function"); + } + + if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION && + c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION){ + return compiler_error(c, "'await' outside async function"); + } + } + + VISIT(c, expr, e->v.Await.value); + ADDOP_I(c, GET_AWAITABLE, 0); + ADDOP_LOAD_CONST(c, Py_None); + ADD_YIELD_FROM(c, 1); + break; + case Compare_kind: + return compiler_compare(c, e); + case Call_kind: + return compiler_call(c, e); + case Constant_kind: + ADDOP_LOAD_CONST(c, e->v.Constant.value); + break; + case JoinedStr_kind: + return compiler_joined_str(c, e); + case FormattedValue_kind: + return compiler_formatted_value(c, e); + /* The following exprs can be assignment targets. */ + case Attribute_kind: + VISIT(c, expr, e->v.Attribute.value); + update_start_location_to_match_attr(c, e); + switch (e->v.Attribute.ctx) { + case Load: + { + ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names); + break; + } + case Store: + if (forbidden_name(c, e->v.Attribute.attr, e->v.Attribute.ctx)) { + return 0; + } + ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names); + break; + case Del: + ADDOP_NAME(c, DELETE_ATTR, e->v.Attribute.attr, names); + break; + } + break; + case Subscript_kind: + return compiler_subscript(c, e); + case Starred_kind: + switch (e->v.Starred.ctx) { + case Store: + /* In all legitimate cases, the Starred node was already replaced + * by compiler_list/compiler_tuple. XXX: is that okay? */ + return compiler_error(c, + "starred assignment target must be in a list or tuple"); + default: + return compiler_error(c, + "can't use starred expression here"); + } + break; + case Slice_kind: + return compiler_slice(c, e); + case Name_kind: + return compiler_nameop(c, e->v.Name.id, e->v.Name.ctx); + /* child nodes of List and Tuple will have expr_context set */ + case List_kind: + return compiler_list(c, e); + case Tuple_kind: + return compiler_tuple(c, e); + } + return 1; +} + +static int +compiler_visit_expr(struct compiler *c, expr_ty e) +{ + int old_lineno = c->u->u_lineno; + int old_end_lineno = c->u->u_end_lineno; + int old_col_offset = c->u->u_col_offset; + int old_end_col_offset = c->u->u_end_col_offset; + SET_LOC(c, e); + int res = compiler_visit_expr1(c, e); + c->u->u_lineno = old_lineno; + c->u->u_end_lineno = old_end_lineno; + c->u->u_col_offset = old_col_offset; + c->u->u_end_col_offset = old_end_col_offset; + return res; +} + +static int +compiler_augassign(struct compiler *c, stmt_ty s) +{ + assert(s->kind == AugAssign_kind); + expr_ty e = s->v.AugAssign.target; + + int old_lineno = c->u->u_lineno; + int old_end_lineno = c->u->u_end_lineno; + int old_col_offset = c->u->u_col_offset; + int old_end_col_offset = c->u->u_end_col_offset; + SET_LOC(c, e); + + switch (e->kind) { + case Attribute_kind: + VISIT(c, expr, e->v.Attribute.value); + ADDOP_I(c, COPY, 1); + update_start_location_to_match_attr(c, e); + ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names); + break; + case Subscript_kind: + VISIT(c, expr, e->v.Subscript.value); + VISIT(c, expr, e->v.Subscript.slice); + ADDOP_I(c, COPY, 2); + ADDOP_I(c, COPY, 2); + ADDOP(c, BINARY_SUBSCR); + break; + case Name_kind: + if (!compiler_nameop(c, e->v.Name.id, Load)) + return 0; + break; + default: + PyErr_Format(PyExc_SystemError, + "invalid node type (%d) for augmented assignment", + e->kind); + return 0; + } + + c->u->u_lineno = old_lineno; + c->u->u_end_lineno = old_end_lineno; + c->u->u_col_offset = old_col_offset; + c->u->u_end_col_offset = old_end_col_offset; + + VISIT(c, expr, s->v.AugAssign.value); + ADDOP_INPLACE(c, s->v.AugAssign.op); + + SET_LOC(c, e); + + switch (e->kind) { + case Attribute_kind: + update_start_location_to_match_attr(c, e); + ADDOP_I(c, SWAP, 2); + ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names); + break; + case Subscript_kind: + ADDOP_I(c, SWAP, 3); + ADDOP_I(c, SWAP, 2); + ADDOP(c, STORE_SUBSCR); + break; + case Name_kind: + return compiler_nameop(c, e->v.Name.id, Store); + default: + Py_UNREACHABLE(); + } + return 1; +} + +static int +check_ann_expr(struct compiler *c, expr_ty e) +{ + VISIT(c, expr, e); + ADDOP(c, POP_TOP); + return 1; +} + +static int +check_annotation(struct compiler *c, stmt_ty s) +{ + /* Annotations of complex targets does not produce anything + under annotations future */ + if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) { + return 1; + } + + /* Annotations are only evaluated in a module or class. */ + if (c->u->u_scope_type == COMPILER_SCOPE_MODULE || + c->u->u_scope_type == COMPILER_SCOPE_CLASS) { + return check_ann_expr(c, s->v.AnnAssign.annotation); + } + return 1; +} + +static int +check_ann_subscr(struct compiler *c, expr_ty e) +{ + /* We check that everything in a subscript is defined at runtime. */ + switch (e->kind) { + case Slice_kind: + if (e->v.Slice.lower && !check_ann_expr(c, e->v.Slice.lower)) { + return 0; + } + if (e->v.Slice.upper && !check_ann_expr(c, e->v.Slice.upper)) { + return 0; + } + if (e->v.Slice.step && !check_ann_expr(c, e->v.Slice.step)) { + return 0; + } + return 1; + case Tuple_kind: { + /* extended slice */ + asdl_expr_seq *elts = e->v.Tuple.elts; + Py_ssize_t i, n = asdl_seq_LEN(elts); + for (i = 0; i < n; i++) { + if (!check_ann_subscr(c, asdl_seq_GET(elts, i))) { + return 0; + } + } + return 1; + } + default: + return check_ann_expr(c, e); + } +} + +static int +compiler_annassign(struct compiler *c, stmt_ty s) +{ + expr_ty targ = s->v.AnnAssign.target; + PyObject* mangled; + + assert(s->kind == AnnAssign_kind); + + /* We perform the actual assignment first. */ + if (s->v.AnnAssign.value) { + VISIT(c, expr, s->v.AnnAssign.value); + VISIT(c, expr, targ); + } + switch (targ->kind) { + case Name_kind: + if (forbidden_name(c, targ->v.Name.id, Store)) + return 0; + /* If we have a simple name in a module or class, store annotation. */ + if (s->v.AnnAssign.simple && + (c->u->u_scope_type == COMPILER_SCOPE_MODULE || + c->u->u_scope_type == COMPILER_SCOPE_CLASS)) { + if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) { + VISIT(c, annexpr, s->v.AnnAssign.annotation) + } + else { + VISIT(c, expr, s->v.AnnAssign.annotation); + } + ADDOP_NAME(c, LOAD_NAME, &_Py_ID(__annotations__), names); + mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id); + ADDOP_LOAD_CONST_NEW(c, mangled); + ADDOP(c, STORE_SUBSCR); + } + break; + case Attribute_kind: + if (forbidden_name(c, targ->v.Attribute.attr, Store)) + return 0; + if (!s->v.AnnAssign.value && + !check_ann_expr(c, targ->v.Attribute.value)) { + return 0; + } + break; + case Subscript_kind: + if (!s->v.AnnAssign.value && + (!check_ann_expr(c, targ->v.Subscript.value) || + !check_ann_subscr(c, targ->v.Subscript.slice))) { + return 0; + } + break; + default: + PyErr_Format(PyExc_SystemError, + "invalid node type (%d) for annotated assignment", + targ->kind); + return 0; + } + /* Annotation is evaluated last. */ + if (!s->v.AnnAssign.simple && !check_annotation(c, s)) { + return 0; + } + return 1; +} + +/* Raises a SyntaxError and returns 0. + If something goes wrong, a different exception may be raised. +*/ + +static int +compiler_error(struct compiler *c, const char *format, ...) +{ + va_list vargs; +#ifdef HAVE_STDARG_PROTOTYPES + va_start(vargs, format); +#else + va_start(vargs); +#endif + PyObject *msg = PyUnicode_FromFormatV(format, vargs); + va_end(vargs); + if (msg == NULL) { + return 0; + } + PyObject *loc = PyErr_ProgramTextObject(c->c_filename, c->u->u_lineno); + if (loc == NULL) { + Py_INCREF(Py_None); + loc = Py_None; + } + PyObject *args = Py_BuildValue("O(OiiOii)", msg, c->c_filename, + c->u->u_lineno, c->u->u_col_offset + 1, loc, + c->u->u_end_lineno, c->u->u_end_col_offset + 1); + Py_DECREF(msg); + if (args == NULL) { + goto exit; + } + PyErr_SetObject(PyExc_SyntaxError, args); + exit: + Py_DECREF(loc); + Py_XDECREF(args); + return 0; +} + +/* Emits a SyntaxWarning and returns 1 on success. + If a SyntaxWarning raised as error, replaces it with a SyntaxError + and returns 0. +*/ +static int +compiler_warn(struct compiler *c, const char *format, ...) +{ + va_list vargs; +#ifdef HAVE_STDARG_PROTOTYPES + va_start(vargs, format); +#else + va_start(vargs); +#endif + PyObject *msg = PyUnicode_FromFormatV(format, vargs); + va_end(vargs); + if (msg == NULL) { + return 0; + } + if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg, c->c_filename, + c->u->u_lineno, NULL, NULL) < 0) + { + if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) { + /* Replace the SyntaxWarning exception with a SyntaxError + to get a more accurate error report */ + PyErr_Clear(); + assert(PyUnicode_AsUTF8(msg) != NULL); + compiler_error(c, PyUnicode_AsUTF8(msg)); + } + Py_DECREF(msg); + return 0; + } + Py_DECREF(msg); + return 1; +} + +static int +compiler_subscript(struct compiler *c, expr_ty e) +{ + expr_context_ty ctx = e->v.Subscript.ctx; + int op = 0; + + if (ctx == Load) { + if (!check_subscripter(c, e->v.Subscript.value)) { + return 0; + } + if (!check_index(c, e->v.Subscript.value, e->v.Subscript.slice)) { + return 0; + } + } + + switch (ctx) { + case Load: op = BINARY_SUBSCR; break; + case Store: op = STORE_SUBSCR; break; + case Del: op = DELETE_SUBSCR; break; + } + assert(op); + VISIT(c, expr, e->v.Subscript.value); + VISIT(c, expr, e->v.Subscript.slice); + ADDOP(c, op); + return 1; +} + +static int +compiler_slice(struct compiler *c, expr_ty s) +{ + int n = 2; + assert(s->kind == Slice_kind); + + /* only handles the cases where BUILD_SLICE is emitted */ + if (s->v.Slice.lower) { + VISIT(c, expr, s->v.Slice.lower); + } + else { + ADDOP_LOAD_CONST(c, Py_None); + } + + if (s->v.Slice.upper) { + VISIT(c, expr, s->v.Slice.upper); + } + else { + ADDOP_LOAD_CONST(c, Py_None); + } + + if (s->v.Slice.step) { + n++; + VISIT(c, expr, s->v.Slice.step); + } + ADDOP_I(c, BUILD_SLICE, n); + return 1; +} + + +// PEP 634: Structural Pattern Matching + +// To keep things simple, all compiler_pattern_* and pattern_helper_* routines +// follow the convention of consuming TOS (the subject for the given pattern) +// and calling jump_to_fail_pop on failure (no match). + +// When calling into these routines, it's important that pc->on_top be kept +// updated to reflect the current number of items that we are using on the top +// of the stack: they will be popped on failure, and any name captures will be +// stored *underneath* them on success. This lets us defer all names stores +// until the *entire* pattern matches. + +#define WILDCARD_CHECK(N) \ + ((N)->kind == MatchAs_kind && !(N)->v.MatchAs.name) + +#define WILDCARD_STAR_CHECK(N) \ + ((N)->kind == MatchStar_kind && !(N)->v.MatchStar.name) + +// Limit permitted subexpressions, even if the parser & AST validator let them through +#define MATCH_VALUE_EXPR(N) \ + ((N)->kind == Constant_kind || (N)->kind == Attribute_kind) + +// Allocate or resize pc->fail_pop to allow for n items to be popped on failure. +static int +ensure_fail_pop(struct compiler *c, pattern_context *pc, Py_ssize_t n) +{ + Py_ssize_t size = n + 1; + if (size <= pc->fail_pop_size) { + return 1; + } + Py_ssize_t needed = sizeof(basicblock*) * size; + basicblock **resized = PyObject_Realloc(pc->fail_pop, needed); + if (resized == NULL) { + PyErr_NoMemory(); + return 0; + } + pc->fail_pop = resized; + while (pc->fail_pop_size < size) { + basicblock *new_block; + RETURN_IF_FALSE(new_block = compiler_new_block(c)); + pc->fail_pop[pc->fail_pop_size++] = new_block; + } + return 1; +} + +// Use op to jump to the correct fail_pop block. +static int +jump_to_fail_pop(struct compiler *c, pattern_context *pc, int op) +{ + // Pop any items on the top of the stack, plus any objects we were going to + // capture on success: + Py_ssize_t pops = pc->on_top + PyList_GET_SIZE(pc->stores); + RETURN_IF_FALSE(ensure_fail_pop(c, pc, pops)); + ADDOP_JUMP(c, op, pc->fail_pop[pops]); + return 1; +} + +// Build all of the fail_pop blocks and reset fail_pop. +static int +emit_and_reset_fail_pop(struct compiler *c, pattern_context *pc) +{ + if (!pc->fail_pop_size) { + assert(pc->fail_pop == NULL); + return 1; + } + while (--pc->fail_pop_size) { + compiler_use_next_block(c, pc->fail_pop[pc->fail_pop_size]); + if (!compiler_addop(c, POP_TOP)) { + pc->fail_pop_size = 0; + PyObject_Free(pc->fail_pop); + pc->fail_pop = NULL; + return 0; + } + } + compiler_use_next_block(c, pc->fail_pop[0]); + PyObject_Free(pc->fail_pop); + pc->fail_pop = NULL; + return 1; +} + +static int +compiler_error_duplicate_store(struct compiler *c, identifier n) +{ + return compiler_error(c, "multiple assignments to name %R in pattern", n); +} + +// Duplicate the effect of 3.10's ROT_* instructions using SWAPs. +static int +pattern_helper_rotate(struct compiler *c, Py_ssize_t count) +{ + while (1 < count) { + ADDOP_I(c, SWAP, count--); + } + return 1; +} + +static int +pattern_helper_store_name(struct compiler *c, identifier n, pattern_context *pc) +{ + if (n == NULL) { + ADDOP(c, POP_TOP); + return 1; + } + if (forbidden_name(c, n, Store)) { + return 0; + } + // Can't assign to the same name twice: + int duplicate = PySequence_Contains(pc->stores, n); + if (duplicate < 0) { + return 0; + } + if (duplicate) { + return compiler_error_duplicate_store(c, n); + } + // Rotate this object underneath any items we need to preserve: + Py_ssize_t rotations = pc->on_top + PyList_GET_SIZE(pc->stores) + 1; + RETURN_IF_FALSE(pattern_helper_rotate(c, rotations)); + return !PyList_Append(pc->stores, n); +} + + +static int +pattern_unpack_helper(struct compiler *c, asdl_pattern_seq *elts) +{ + Py_ssize_t n = asdl_seq_LEN(elts); + int seen_star = 0; + for (Py_ssize_t i = 0; i < n; i++) { + pattern_ty elt = asdl_seq_GET(elts, i); + if (elt->kind == MatchStar_kind && !seen_star) { + if ((i >= (1 << 8)) || + (n-i-1 >= (INT_MAX >> 8))) + return compiler_error(c, + "too many expressions in " + "star-unpacking sequence pattern"); + ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8))); + seen_star = 1; + } + else if (elt->kind == MatchStar_kind) { + return compiler_error(c, + "multiple starred expressions in sequence pattern"); + } + } + if (!seen_star) { + ADDOP_I(c, UNPACK_SEQUENCE, n); + } + return 1; +} + +static int +pattern_helper_sequence_unpack(struct compiler *c, asdl_pattern_seq *patterns, + Py_ssize_t star, pattern_context *pc) +{ + RETURN_IF_FALSE(pattern_unpack_helper(c, patterns)); + Py_ssize_t size = asdl_seq_LEN(patterns); + // We've now got a bunch of new subjects on the stack. They need to remain + // there after each subpattern match: + pc->on_top += size; + for (Py_ssize_t i = 0; i < size; i++) { + // One less item to keep track of each time we loop through: + pc->on_top--; + pattern_ty pattern = asdl_seq_GET(patterns, i); + RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc)); + } + return 1; +} + +// Like pattern_helper_sequence_unpack, but uses BINARY_SUBSCR instead of +// UNPACK_SEQUENCE / UNPACK_EX. This is more efficient for patterns with a +// starred wildcard like [first, *_] / [first, *_, last] / [*_, last] / etc. +static int +pattern_helper_sequence_subscr(struct compiler *c, asdl_pattern_seq *patterns, + Py_ssize_t star, pattern_context *pc) +{ + // We need to keep the subject around for extracting elements: + pc->on_top++; + Py_ssize_t size = asdl_seq_LEN(patterns); + for (Py_ssize_t i = 0; i < size; i++) { + pattern_ty pattern = asdl_seq_GET(patterns, i); + if (WILDCARD_CHECK(pattern)) { + continue; + } + if (i == star) { + assert(WILDCARD_STAR_CHECK(pattern)); + continue; + } + ADDOP_I(c, COPY, 1); + if (i < star) { + ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(i)); + } + else { + // The subject may not support negative indexing! Compute a + // nonnegative index: + ADDOP(c, GET_LEN); + ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size - i)); + ADDOP_BINARY(c, Sub); + } + ADDOP(c, BINARY_SUBSCR); + RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc)); + } + // Pop the subject, we're done with it: + pc->on_top--; + ADDOP(c, POP_TOP); + return 1; +} + +// Like compiler_pattern, but turn off checks for irrefutability. +static int +compiler_pattern_subpattern(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + int allow_irrefutable = pc->allow_irrefutable; + pc->allow_irrefutable = 1; + RETURN_IF_FALSE(compiler_pattern(c, p, pc)); + pc->allow_irrefutable = allow_irrefutable; + return 1; +} + +static int +compiler_pattern_as(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchAs_kind); + if (p->v.MatchAs.pattern == NULL) { + // An irrefutable match: + if (!pc->allow_irrefutable) { + if (p->v.MatchAs.name) { + const char *e = "name capture %R makes remaining patterns unreachable"; + return compiler_error(c, e, p->v.MatchAs.name); + } + const char *e = "wildcard makes remaining patterns unreachable"; + return compiler_error(c, e); + } + return pattern_helper_store_name(c, p->v.MatchAs.name, pc); + } + // Need to make a copy for (possibly) storing later: + pc->on_top++; + ADDOP_I(c, COPY, 1); + RETURN_IF_FALSE(compiler_pattern(c, p->v.MatchAs.pattern, pc)); + // Success! Store it: + pc->on_top--; + RETURN_IF_FALSE(pattern_helper_store_name(c, p->v.MatchAs.name, pc)); + return 1; +} + +static int +compiler_pattern_star(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchStar_kind); + RETURN_IF_FALSE(pattern_helper_store_name(c, p->v.MatchStar.name, pc)); + return 1; +} + +static int +validate_kwd_attrs(struct compiler *c, asdl_identifier_seq *attrs, asdl_pattern_seq* patterns) +{ + // Any errors will point to the pattern rather than the arg name as the + // parser is only supplying identifiers rather than Name or keyword nodes + Py_ssize_t nattrs = asdl_seq_LEN(attrs); + for (Py_ssize_t i = 0; i < nattrs; i++) { + identifier attr = ((identifier)asdl_seq_GET(attrs, i)); + SET_LOC(c, ((pattern_ty) asdl_seq_GET(patterns, i))); + if (forbidden_name(c, attr, Store)) { + return -1; + } + for (Py_ssize_t j = i + 1; j < nattrs; j++) { + identifier other = ((identifier)asdl_seq_GET(attrs, j)); + if (!PyUnicode_Compare(attr, other)) { + SET_LOC(c, ((pattern_ty) asdl_seq_GET(patterns, j))); + compiler_error(c, "attribute name repeated in class pattern: %U", attr); + return -1; + } + } + } + return 0; +} + +static int +compiler_pattern_class(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchClass_kind); + asdl_pattern_seq *patterns = p->v.MatchClass.patterns; + asdl_identifier_seq *kwd_attrs = p->v.MatchClass.kwd_attrs; + asdl_pattern_seq *kwd_patterns = p->v.MatchClass.kwd_patterns; + Py_ssize_t nargs = asdl_seq_LEN(patterns); + Py_ssize_t nattrs = asdl_seq_LEN(kwd_attrs); + Py_ssize_t nkwd_patterns = asdl_seq_LEN(kwd_patterns); + if (nattrs != nkwd_patterns) { + // AST validator shouldn't let this happen, but if it does, + // just fail, don't crash out of the interpreter + const char * e = "kwd_attrs (%d) / kwd_patterns (%d) length mismatch in class pattern"; + return compiler_error(c, e, nattrs, nkwd_patterns); + } + if (INT_MAX < nargs || INT_MAX < nargs + nattrs - 1) { + const char *e = "too many sub-patterns in class pattern %R"; + return compiler_error(c, e, p->v.MatchClass.cls); + } + if (nattrs) { + RETURN_IF_FALSE(!validate_kwd_attrs(c, kwd_attrs, kwd_patterns)); + SET_LOC(c, p); + } + VISIT(c, expr, p->v.MatchClass.cls); + PyObject *attr_names; + RETURN_IF_FALSE(attr_names = PyTuple_New(nattrs)); + Py_ssize_t i; + for (i = 0; i < nattrs; i++) { + PyObject *name = asdl_seq_GET(kwd_attrs, i); + Py_INCREF(name); + PyTuple_SET_ITEM(attr_names, i, name); + } + ADDOP_LOAD_CONST_NEW(c, attr_names); + ADDOP_I(c, MATCH_CLASS, nargs); + ADDOP_I(c, COPY, 1); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP_I(c, IS_OP, 1); + // TOS is now a tuple of (nargs + nattrs) attributes (or None): + pc->on_top++; + RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); + ADDOP_I(c, UNPACK_SEQUENCE, nargs + nattrs); + pc->on_top += nargs + nattrs - 1; + for (i = 0; i < nargs + nattrs; i++) { + pc->on_top--; + pattern_ty pattern; + if (i < nargs) { + // Positional: + pattern = asdl_seq_GET(patterns, i); + } + else { + // Keyword: + pattern = asdl_seq_GET(kwd_patterns, i - nargs); + } + if (WILDCARD_CHECK(pattern)) { + ADDOP(c, POP_TOP); + continue; + } + RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc)); + } + // Success! Pop the tuple of attributes: + return 1; +} + +static int +compiler_pattern_mapping(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchMapping_kind); + asdl_expr_seq *keys = p->v.MatchMapping.keys; + asdl_pattern_seq *patterns = p->v.MatchMapping.patterns; + Py_ssize_t size = asdl_seq_LEN(keys); + Py_ssize_t npatterns = asdl_seq_LEN(patterns); + if (size != npatterns) { + // AST validator shouldn't let this happen, but if it does, + // just fail, don't crash out of the interpreter + const char * e = "keys (%d) / patterns (%d) length mismatch in mapping pattern"; + return compiler_error(c, e, size, npatterns); + } + // We have a double-star target if "rest" is set + PyObject *star_target = p->v.MatchMapping.rest; + // We need to keep the subject on top during the mapping and length checks: + pc->on_top++; + ADDOP(c, MATCH_MAPPING); + RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); + if (!size && !star_target) { + // If the pattern is just "{}", we're done! Pop the subject: + pc->on_top--; + ADDOP(c, POP_TOP); + return 1; + } + if (size) { + // If the pattern has any keys in it, perform a length check: + ADDOP(c, GET_LEN); + ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size)); + ADDOP_COMPARE(c, GtE); + RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); + } + if (INT_MAX < size - 1) { + return compiler_error(c, "too many sub-patterns in mapping pattern"); + } + // Collect all of the keys into a tuple for MATCH_KEYS and + // **rest. They can either be dotted names or literals: + + // Maintaining a set of Constant_kind kind keys allows us to raise a + // SyntaxError in the case of duplicates. + PyObject *seen = PySet_New(NULL); + if (seen == NULL) { + return 0; + } + + // NOTE: goto error on failure in the loop below to avoid leaking `seen` + for (Py_ssize_t i = 0; i < size; i++) { + expr_ty key = asdl_seq_GET(keys, i); + if (key == NULL) { + const char *e = "can't use NULL keys in MatchMapping " + "(set 'rest' parameter instead)"; + SET_LOC(c, ((pattern_ty) asdl_seq_GET(patterns, i))); + compiler_error(c, e); + goto error; + } + + if (key->kind == Constant_kind) { + int in_seen = PySet_Contains(seen, key->v.Constant.value); + if (in_seen < 0) { + goto error; + } + if (in_seen) { + const char *e = "mapping pattern checks duplicate key (%R)"; + compiler_error(c, e, key->v.Constant.value); + goto error; + } + if (PySet_Add(seen, key->v.Constant.value)) { + goto error; + } + } + + else if (key->kind != Attribute_kind) { + const char *e = "mapping pattern keys may only match literals and attribute lookups"; + compiler_error(c, e); + goto error; + } + if (!compiler_visit_expr(c, key)) { + goto error; + } + } + + // all keys have been checked; there are no duplicates + Py_DECREF(seen); + + ADDOP_I(c, BUILD_TUPLE, size); + ADDOP(c, MATCH_KEYS); + // There's now a tuple of keys and a tuple of values on top of the subject: + pc->on_top += 2; + ADDOP_I(c, COPY, 1); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP_I(c, IS_OP, 1); + RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); + // So far so good. Use that tuple of values on the stack to match + // sub-patterns against: + ADDOP_I(c, UNPACK_SEQUENCE, size); + pc->on_top += size - 1; + for (Py_ssize_t i = 0; i < size; i++) { + pc->on_top--; + pattern_ty pattern = asdl_seq_GET(patterns, i); + RETURN_IF_FALSE(compiler_pattern_subpattern(c, pattern, pc)); + } + // If we get this far, it's a match! Whatever happens next should consume + // the tuple of keys and the subject: + pc->on_top -= 2; + if (star_target) { + // If we have a starred name, bind a dict of remaining items to it (this may + // seem a bit inefficient, but keys is rarely big enough to actually impact + // runtime): + // rest = dict(TOS1) + // for key in TOS: + // del rest[key] + ADDOP_I(c, BUILD_MAP, 0); // [subject, keys, empty] + ADDOP_I(c, SWAP, 3); // [empty, keys, subject] + ADDOP_I(c, DICT_UPDATE, 2); // [copy, keys] + ADDOP_I(c, UNPACK_SEQUENCE, size); // [copy, keys...] + while (size) { + ADDOP_I(c, COPY, 1 + size--); // [copy, keys..., copy] + ADDOP_I(c, SWAP, 2); // [copy, keys..., copy, key] + ADDOP(c, DELETE_SUBSCR); // [copy, keys...] + } + RETURN_IF_FALSE(pattern_helper_store_name(c, star_target, pc)); + } + else { + ADDOP(c, POP_TOP); // Tuple of keys. + ADDOP(c, POP_TOP); // Subject. + } + return 1; + +error: + Py_DECREF(seen); + return 0; +} + +static int +compiler_pattern_or(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchOr_kind); + basicblock *end; + RETURN_IF_FALSE(end = compiler_new_block(c)); + Py_ssize_t size = asdl_seq_LEN(p->v.MatchOr.patterns); + assert(size > 1); + // We're going to be messing with pc. Keep the original info handy: + pattern_context old_pc = *pc; + Py_INCREF(pc->stores); + // control is the list of names bound by the first alternative. It is used + // for checking different name bindings in alternatives, and for correcting + // the order in which extracted elements are placed on the stack. + PyObject *control = NULL; + // NOTE: We can't use returning macros anymore! goto error on error. + for (Py_ssize_t i = 0; i < size; i++) { + pattern_ty alt = asdl_seq_GET(p->v.MatchOr.patterns, i); + SET_LOC(c, alt); + PyObject *pc_stores = PyList_New(0); + if (pc_stores == NULL) { + goto error; + } + Py_SETREF(pc->stores, pc_stores); + // An irrefutable sub-pattern must be last, if it is allowed at all: + pc->allow_irrefutable = (i == size - 1) && old_pc.allow_irrefutable; + pc->fail_pop = NULL; + pc->fail_pop_size = 0; + pc->on_top = 0; + if (!compiler_addop_i(c, COPY, 1) || !compiler_pattern(c, alt, pc)) { + goto error; + } + // Success! + Py_ssize_t nstores = PyList_GET_SIZE(pc->stores); + if (!i) { + // This is the first alternative, so save its stores as a "control" + // for the others (they can't bind a different set of names, and + // might need to be reordered): + assert(control == NULL); + control = pc->stores; + Py_INCREF(control); + } + else if (nstores != PyList_GET_SIZE(control)) { + goto diff; + } + else if (nstores) { + // There were captures. Check to see if we differ from control: + Py_ssize_t icontrol = nstores; + while (icontrol--) { + PyObject *name = PyList_GET_ITEM(control, icontrol); + Py_ssize_t istores = PySequence_Index(pc->stores, name); + if (istores < 0) { + PyErr_Clear(); + goto diff; + } + if (icontrol != istores) { + // Reorder the names on the stack to match the order of the + // names in control. There's probably a better way of doing + // this; the current solution is potentially very + // inefficient when each alternative subpattern binds lots + // of names in different orders. It's fine for reasonable + // cases, though, and the peephole optimizer will ensure + // that the final code is as efficient as possible. + assert(istores < icontrol); + Py_ssize_t rotations = istores + 1; + // Perform the same rotation on pc->stores: + PyObject *rotated = PyList_GetSlice(pc->stores, 0, + rotations); + if (rotated == NULL || + PyList_SetSlice(pc->stores, 0, rotations, NULL) || + PyList_SetSlice(pc->stores, icontrol - istores, + icontrol - istores, rotated)) + { + Py_XDECREF(rotated); + goto error; + } + Py_DECREF(rotated); + // That just did: + // rotated = pc_stores[:rotations] + // del pc_stores[:rotations] + // pc_stores[icontrol-istores:icontrol-istores] = rotated + // Do the same thing to the stack, using several + // rotations: + while (rotations--) { + if (!pattern_helper_rotate(c, icontrol + 1)){ + goto error; + } + } + } + } + } + assert(control); + if (!compiler_addop_j(c, JUMP, end) || + !emit_and_reset_fail_pop(c, pc)) + { + goto error; + } + } + Py_DECREF(pc->stores); + *pc = old_pc; + Py_INCREF(pc->stores); + // Need to NULL this for the PyObject_Free call in the error block. + old_pc.fail_pop = NULL; + // No match. Pop the remaining copy of the subject and fail: + if (!compiler_addop(c, POP_TOP) || !jump_to_fail_pop(c, pc, JUMP)) { + goto error; + } + compiler_use_next_block(c, end); + Py_ssize_t nstores = PyList_GET_SIZE(control); + // There's a bunch of stuff on the stack between where the new stores + // are and where they need to be: + // - The other stores. + // - A copy of the subject. + // - Anything else that may be on top of the stack. + // - Any previous stores we've already stashed away on the stack. + Py_ssize_t nrots = nstores + 1 + pc->on_top + PyList_GET_SIZE(pc->stores); + for (Py_ssize_t i = 0; i < nstores; i++) { + // Rotate this capture to its proper place on the stack: + if (!pattern_helper_rotate(c, nrots)) { + goto error; + } + // Update the list of previous stores with this new name, checking for + // duplicates: + PyObject *name = PyList_GET_ITEM(control, i); + int dupe = PySequence_Contains(pc->stores, name); + if (dupe < 0) { + goto error; + } + if (dupe) { + compiler_error_duplicate_store(c, name); + goto error; + } + if (PyList_Append(pc->stores, name)) { + goto error; + } + } + Py_DECREF(old_pc.stores); + Py_DECREF(control); + // NOTE: Returning macros are safe again. + // Pop the copy of the subject: + ADDOP(c, POP_TOP); + return 1; +diff: + compiler_error(c, "alternative patterns bind different names"); +error: + PyObject_Free(old_pc.fail_pop); + Py_DECREF(old_pc.stores); + Py_XDECREF(control); + return 0; +} + + +static int +compiler_pattern_sequence(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchSequence_kind); + asdl_pattern_seq *patterns = p->v.MatchSequence.patterns; + Py_ssize_t size = asdl_seq_LEN(patterns); + Py_ssize_t star = -1; + int only_wildcard = 1; + int star_wildcard = 0; + // Find a starred name, if it exists. There may be at most one: + for (Py_ssize_t i = 0; i < size; i++) { + pattern_ty pattern = asdl_seq_GET(patterns, i); + if (pattern->kind == MatchStar_kind) { + if (star >= 0) { + const char *e = "multiple starred names in sequence pattern"; + return compiler_error(c, e); + } + star_wildcard = WILDCARD_STAR_CHECK(pattern); + only_wildcard &= star_wildcard; + star = i; + continue; + } + only_wildcard &= WILDCARD_CHECK(pattern); + } + // We need to keep the subject on top during the sequence and length checks: + pc->on_top++; + ADDOP(c, MATCH_SEQUENCE); + RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); + if (star < 0) { + // No star: len(subject) == size + ADDOP(c, GET_LEN); + ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size)); + ADDOP_COMPARE(c, Eq); + RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); + } + else if (size > 1) { + // Star: len(subject) >= size - 1 + ADDOP(c, GET_LEN); + ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size - 1)); + ADDOP_COMPARE(c, GtE); + RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); + } + // Whatever comes next should consume the subject: + pc->on_top--; + if (only_wildcard) { + // Patterns like: [] / [_] / [_, _] / [*_] / [_, *_] / [_, _, *_] / etc. + ADDOP(c, POP_TOP); + } + else if (star_wildcard) { + RETURN_IF_FALSE(pattern_helper_sequence_subscr(c, patterns, star, pc)); + } + else { + RETURN_IF_FALSE(pattern_helper_sequence_unpack(c, patterns, star, pc)); + } + return 1; +} + +static int +compiler_pattern_value(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchValue_kind); + expr_ty value = p->v.MatchValue.value; + if (!MATCH_VALUE_EXPR(value)) { + const char *e = "patterns may only match literals and attribute lookups"; + return compiler_error(c, e); + } + VISIT(c, expr, value); + ADDOP_COMPARE(c, Eq); + RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); + return 1; +} + +static int +compiler_pattern_singleton(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + assert(p->kind == MatchSingleton_kind); + ADDOP_LOAD_CONST(c, p->v.MatchSingleton.value); + ADDOP_COMPARE(c, Is); + RETURN_IF_FALSE(jump_to_fail_pop(c, pc, POP_JUMP_IF_FALSE)); + return 1; +} + +static int +compiler_pattern(struct compiler *c, pattern_ty p, pattern_context *pc) +{ + SET_LOC(c, p); + switch (p->kind) { + case MatchValue_kind: + return compiler_pattern_value(c, p, pc); + case MatchSingleton_kind: + return compiler_pattern_singleton(c, p, pc); + case MatchSequence_kind: + return compiler_pattern_sequence(c, p, pc); + case MatchMapping_kind: + return compiler_pattern_mapping(c, p, pc); + case MatchClass_kind: + return compiler_pattern_class(c, p, pc); + case MatchStar_kind: + return compiler_pattern_star(c, p, pc); + case MatchAs_kind: + return compiler_pattern_as(c, p, pc); + case MatchOr_kind: + return compiler_pattern_or(c, p, pc); + } + // AST validator shouldn't let this happen, but if it does, + // just fail, don't crash out of the interpreter + const char *e = "invalid match pattern node in AST (kind=%d)"; + return compiler_error(c, e, p->kind); +} + +static int +compiler_match_inner(struct compiler *c, stmt_ty s, pattern_context *pc) +{ + VISIT(c, expr, s->v.Match.subject); + basicblock *end; + RETURN_IF_FALSE(end = compiler_new_block(c)); + Py_ssize_t cases = asdl_seq_LEN(s->v.Match.cases); + assert(cases > 0); + match_case_ty m = asdl_seq_GET(s->v.Match.cases, cases - 1); + int has_default = WILDCARD_CHECK(m->pattern) && 1 < cases; + for (Py_ssize_t i = 0; i < cases - has_default; i++) { + m = asdl_seq_GET(s->v.Match.cases, i); + SET_LOC(c, m->pattern); + // Only copy the subject if we're *not* on the last case: + if (i != cases - has_default - 1) { + ADDOP_I(c, COPY, 1); + } + RETURN_IF_FALSE(pc->stores = PyList_New(0)); + // Irrefutable cases must be either guarded, last, or both: + pc->allow_irrefutable = m->guard != NULL || i == cases - 1; + pc->fail_pop = NULL; + pc->fail_pop_size = 0; + pc->on_top = 0; + // NOTE: Can't use returning macros here (they'll leak pc->stores)! + if (!compiler_pattern(c, m->pattern, pc)) { + Py_DECREF(pc->stores); + return 0; + } + assert(!pc->on_top); + // It's a match! Store all of the captured names (they're on the stack). + Py_ssize_t nstores = PyList_GET_SIZE(pc->stores); + for (Py_ssize_t n = 0; n < nstores; n++) { + PyObject *name = PyList_GET_ITEM(pc->stores, n); + if (!compiler_nameop(c, name, Store)) { + Py_DECREF(pc->stores); + return 0; + } + } + Py_DECREF(pc->stores); + // NOTE: Returning macros are safe again. + if (m->guard) { + RETURN_IF_FALSE(ensure_fail_pop(c, pc, 0)); + RETURN_IF_FALSE(compiler_jump_if(c, m->guard, pc->fail_pop[0], 0)); + } + // Success! Pop the subject off, we're done with it: + if (i != cases - has_default - 1) { + ADDOP(c, POP_TOP); + } + VISIT_SEQ(c, stmt, m->body); + UNSET_LOC(c); + ADDOP_JUMP(c, JUMP, end); + // If the pattern fails to match, we want the line number of the + // cleanup to be associated with the failed pattern, not the last line + // of the body + SET_LOC(c, m->pattern); + RETURN_IF_FALSE(emit_and_reset_fail_pop(c, pc)); + } + if (has_default) { + // A trailing "case _" is common, and lets us save a bit of redundant + // pushing and popping in the loop above: + m = asdl_seq_GET(s->v.Match.cases, cases - 1); + SET_LOC(c, m->pattern); + if (cases == 1) { + // No matches. Done with the subject: + ADDOP(c, POP_TOP); + } + else { + // Show line coverage for default case (it doesn't create bytecode) + ADDOP(c, NOP); + } + if (m->guard) { + RETURN_IF_FALSE(compiler_jump_if(c, m->guard, end, 0)); + } + VISIT_SEQ(c, stmt, m->body); + UNSET_LOC(c); + } + compiler_use_next_block(c, end); + return 1; +} + +static int +compiler_match(struct compiler *c, stmt_ty s) +{ + pattern_context pc; + pc.fail_pop = NULL; + int result = compiler_match_inner(c, s, &pc); + PyObject_Free(pc.fail_pop); + return result; +} + +#undef WILDCARD_CHECK +#undef WILDCARD_STAR_CHECK + +/* End of the compiler section, beginning of the assembler section */ + +/* do depth-first search of basic block graph, starting with block. + post records the block indices in post-order. + + XXX must handle implicit jumps from one block to next +*/ + + +struct assembler { + PyObject *a_bytecode; /* bytes containing bytecode */ + PyObject *a_except_table; /* bytes containing exception table */ + basicblock *a_entry; + int a_offset; /* offset into bytecode */ + int a_nblocks; /* number of reachable blocks */ + int a_except_table_off; /* offset into exception table */ + int a_prevlineno; /* lineno of last emitted line in line table */ + int a_prev_end_lineno; /* end_lineno of last emitted line in line table */ + int a_lineno; /* lineno of last emitted instruction */ + int a_end_lineno; /* end_lineno of last emitted instruction */ + int a_lineno_start; /* bytecode start offset of current lineno */ + int a_end_lineno_start; /* bytecode start offset of current end_lineno */ + /* Location Info */ + PyObject* a_linetable; /* bytes containing location info */ + int a_location_off; /* offset of last written location info frame */ +}; + +Py_LOCAL_INLINE(void) +stackdepth_push(basicblock ***sp, basicblock *b, int depth) +{ + assert(b->b_startdepth < 0 || b->b_startdepth == depth); + if (b->b_startdepth < depth && b->b_startdepth < 100) { + assert(b->b_startdepth < 0); + b->b_startdepth = depth; + *(*sp)++ = b; + } +} + +/* Find the flow path that needs the largest stack. We assume that + * cycles in the flow graph have no net effect on the stack depth. + */ +static int +stackdepth(struct compiler *c) +{ + basicblock *b, *entryblock = NULL; + basicblock **stack, **sp; + int nblocks = 0, maxdepth = 0; + for (b = c->u->u_blocks; b != NULL; b = b->b_list) { + b->b_startdepth = INT_MIN; + entryblock = b; + nblocks++; + } + assert(entryblock!= NULL); + stack = (basicblock **)PyObject_Malloc(sizeof(basicblock *) * nblocks); + if (!stack) { + PyErr_NoMemory(); + return -1; + } + + sp = stack; + if (c->u->u_ste->ste_generator || c->u->u_ste->ste_coroutine) { + stackdepth_push(&sp, entryblock, 1); + } else { + stackdepth_push(&sp, entryblock, 0); + } + while (sp != stack) { + b = *--sp; + int depth = b->b_startdepth; + assert(depth >= 0); + basicblock *next = b->b_next; + for (int i = 0; i < b->b_iused; i++) { + struct instr *instr = &b->b_instr[i]; + int effect = stack_effect(instr->i_opcode, instr->i_oparg, 0); + if (effect == PY_INVALID_STACK_EFFECT) { + PyErr_Format(PyExc_SystemError, + "compiler stack_effect(opcode=%d, arg=%i) failed", + instr->i_opcode, instr->i_oparg); + return -1; + } + int new_depth = depth + effect; + if (new_depth > maxdepth) { + maxdepth = new_depth; + } + assert(depth >= 0); /* invalid code or bug in stackdepth() */ + if (is_jump(instr) || is_block_push(instr)) { + effect = stack_effect(instr->i_opcode, instr->i_oparg, 1); + assert(effect != PY_INVALID_STACK_EFFECT); + int target_depth = depth + effect; + if (target_depth > maxdepth) { + maxdepth = target_depth; + } + assert(target_depth >= 0); /* invalid code or bug in stackdepth() */ + stackdepth_push(&sp, instr->i_target, target_depth); + } + depth = new_depth; + assert(!IS_ASSEMBLER_OPCODE(instr->i_opcode)); + if (instr->i_opcode == JUMP_NO_INTERRUPT || + instr->i_opcode == JUMP || + instr->i_opcode == RETURN_VALUE || + instr->i_opcode == RAISE_VARARGS || + instr->i_opcode == RERAISE) + { + /* remaining code is dead */ + next = NULL; + break; + } + } + if (next != NULL) { + assert(b->b_nofallthrough == 0); + stackdepth_push(&sp, next, depth); + } + } + PyObject_Free(stack); + return maxdepth; +} + +static int +assemble_init(struct assembler *a, int nblocks, int firstlineno) +{ + memset(a, 0, sizeof(struct assembler)); + a->a_prevlineno = a->a_lineno = firstlineno; + a->a_prev_end_lineno = a->a_end_lineno = firstlineno; + a->a_linetable = NULL; + a->a_location_off = 0; + a->a_except_table = NULL; + a->a_bytecode = PyBytes_FromStringAndSize(NULL, DEFAULT_CODE_SIZE); + if (a->a_bytecode == NULL) { + goto error; + } + a->a_linetable = PyBytes_FromStringAndSize(NULL, DEFAULT_CNOTAB_SIZE); + if (a->a_linetable == NULL) { + goto error; + } + a->a_except_table = PyBytes_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE); + if (a->a_except_table == NULL) { + goto error; + } + if ((size_t)nblocks > SIZE_MAX / sizeof(basicblock *)) { + PyErr_NoMemory(); + goto error; + } + return 1; +error: + Py_XDECREF(a->a_bytecode); + Py_XDECREF(a->a_linetable); + Py_XDECREF(a->a_except_table); + return 0; +} + +static void +assemble_free(struct assembler *a) +{ + Py_XDECREF(a->a_bytecode); + Py_XDECREF(a->a_linetable); + Py_XDECREF(a->a_except_table); +} + +static int +blocksize(basicblock *b) +{ + int i; + int size = 0; + + for (i = 0; i < b->b_iused; i++) { + size += instr_size(&b->b_instr[i]); + } + return size; +} + +static basicblock * +push_except_block(ExceptStack *stack, struct instr *setup) { + assert(is_block_push(setup)); + int opcode = setup->i_opcode; + basicblock * target = setup->i_target; + if (opcode == SETUP_WITH || opcode == SETUP_CLEANUP) { + target->b_preserve_lasti = 1; + } + stack->handlers[++stack->depth] = target; + return target; +} + +static basicblock * +pop_except_block(ExceptStack *stack) { + assert(stack->depth > 0); + return stack->handlers[--stack->depth]; +} + +static basicblock * +except_stack_top(ExceptStack *stack) { + return stack->handlers[stack->depth]; +} + +static ExceptStack * +make_except_stack(void) { + ExceptStack *new = PyMem_Malloc(sizeof(ExceptStack)); + if (new == NULL) { + PyErr_NoMemory(); + return NULL; + } + new->depth = 0; + new->handlers[0] = NULL; + return new; +} + +static ExceptStack * +copy_except_stack(ExceptStack *stack) { + ExceptStack *copy = PyMem_Malloc(sizeof(ExceptStack)); + if (copy == NULL) { + PyErr_NoMemory(); + return NULL; + } + memcpy(copy, stack, sizeof(ExceptStack)); + return copy; +} + +static int +label_exception_targets(basicblock *entry) { + int nblocks = 0; + for (basicblock *b = entry; b != NULL; b = b->b_next) { + b->b_visited = 0; + nblocks++; + } + basicblock **todo_stack = PyMem_Malloc(sizeof(basicblock *)*nblocks); + if (todo_stack == NULL) { + PyErr_NoMemory(); + return -1; + } + ExceptStack *except_stack = make_except_stack(); + if (except_stack == NULL) { + PyMem_Free(todo_stack); + PyErr_NoMemory(); + return -1; + } + except_stack->depth = 0; + todo_stack[0] = entry; + entry->b_visited = 1; + entry->b_exceptstack = except_stack; + basicblock **todo = &todo_stack[1]; + basicblock *handler = NULL; + while (todo > todo_stack) { + todo--; + basicblock *b = todo[0]; + assert(b->b_visited == 1); + except_stack = b->b_exceptstack; + assert(except_stack != NULL); + b->b_exceptstack = NULL; + handler = except_stack_top(except_stack); + for (int i = 0; i < b->b_iused; i++) { + struct instr *instr = &b->b_instr[i]; + if (is_block_push(instr)) { + if (!instr->i_target->b_visited) { + ExceptStack *copy = copy_except_stack(except_stack); + if (copy == NULL) { + goto error; + } + instr->i_target->b_exceptstack = copy; + todo[0] = instr->i_target; + instr->i_target->b_visited = 1; + todo++; + } + handler = push_except_block(except_stack, instr); + } + else if (instr->i_opcode == POP_BLOCK) { + handler = pop_except_block(except_stack); + } + else if (is_jump(instr)) { + instr->i_except = handler; + assert(i == b->b_iused -1); + if (!instr->i_target->b_visited) { + if (b->b_nofallthrough == 0) { + ExceptStack *copy = copy_except_stack(except_stack); + if (copy == NULL) { + goto error; + } + instr->i_target->b_exceptstack = copy; + } + else { + instr->i_target->b_exceptstack = except_stack; + except_stack = NULL; + } + todo[0] = instr->i_target; + instr->i_target->b_visited = 1; + todo++; + } + } + else { + instr->i_except = handler; + } + } + if (b->b_nofallthrough == 0 && !b->b_next->b_visited) { + assert(except_stack != NULL); + b->b_next->b_exceptstack = except_stack; + todo[0] = b->b_next; + b->b_next->b_visited = 1; + todo++; + } + else if (except_stack != NULL) { + PyMem_Free(except_stack); + } + } +#ifdef Py_DEBUG + for (basicblock *b = entry; b != NULL; b = b->b_next) { + assert(b->b_exceptstack == NULL); + } +#endif + PyMem_Free(todo_stack); + return 0; +error: + PyMem_Free(todo_stack); + PyMem_Free(except_stack); + return -1; +} + + +static void +convert_exception_handlers_to_nops(basicblock *entry) { + for (basicblock *b = entry; b != NULL; b = b->b_next) { + for (int i = 0; i < b->b_iused; i++) { + struct instr *instr = &b->b_instr[i]; + if (is_block_push(instr) || instr->i_opcode == POP_BLOCK) { + instr->i_opcode = NOP; + } + } + } +} + +static inline void +write_except_byte(struct assembler *a, int byte) { + unsigned char *p = (unsigned char *) PyBytes_AS_STRING(a->a_except_table); + p[a->a_except_table_off++] = byte; +} + +#define CONTINUATION_BIT 64 + +static void +assemble_emit_exception_table_item(struct assembler *a, int value, int msb) +{ + assert ((msb | 128) == 128); + assert(value >= 0 && value < (1 << 30)); + if (value >= 1 << 24) { + write_except_byte(a, (value >> 24) | CONTINUATION_BIT | msb); + msb = 0; + } + if (value >= 1 << 18) { + write_except_byte(a, ((value >> 18)&0x3f) | CONTINUATION_BIT | msb); + msb = 0; + } + if (value >= 1 << 12) { + write_except_byte(a, ((value >> 12)&0x3f) | CONTINUATION_BIT | msb); + msb = 0; + } + if (value >= 1 << 6) { + write_except_byte(a, ((value >> 6)&0x3f) | CONTINUATION_BIT | msb); + msb = 0; + } + write_except_byte(a, (value&0x3f) | msb); +} + +/* See Objects/exception_handling_notes.txt for details of layout */ +#define MAX_SIZE_OF_ENTRY 20 + +static int +assemble_emit_exception_table_entry(struct assembler *a, int start, int end, basicblock *handler) +{ + Py_ssize_t len = PyBytes_GET_SIZE(a->a_except_table); + if (a->a_except_table_off + MAX_SIZE_OF_ENTRY >= len) { + if (_PyBytes_Resize(&a->a_except_table, len * 2) < 0) + return 0; + } + int size = end-start; + assert(end > start); + int target = handler->b_offset; + int depth = handler->b_startdepth - 1; + if (handler->b_preserve_lasti) { + depth -= 1; + } + assert(depth >= 0); + int depth_lasti = (depth<<1) | handler->b_preserve_lasti; + assemble_emit_exception_table_item(a, start, (1<<7)); + assemble_emit_exception_table_item(a, size, 0); + assemble_emit_exception_table_item(a, target, 0); + assemble_emit_exception_table_item(a, depth_lasti, 0); + return 1; +} + +static int +assemble_exception_table(struct assembler *a) +{ + basicblock *b; + int ioffset = 0; + basicblock *handler = NULL; + int start = -1; + for (b = a->a_entry; b != NULL; b = b->b_next) { + ioffset = b->b_offset; + for (int i = 0; i < b->b_iused; i++) { + struct instr *instr = &b->b_instr[i]; + if (instr->i_except != handler) { + if (handler != NULL) { + RETURN_IF_FALSE(assemble_emit_exception_table_entry(a, start, ioffset, handler)); + } + start = ioffset; + handler = instr->i_except; + } + ioffset += instr_size(instr); + } + } + if (handler != NULL) { + RETURN_IF_FALSE(assemble_emit_exception_table_entry(a, start, ioffset, handler)); + } + return 1; +} + +/* Code location emitting code. See locations.md for a description of the format. */ + +#define MSB 0x80 + +static void +write_location_byte(struct assembler* a, int val) +{ + PyBytes_AS_STRING(a->a_linetable)[a->a_location_off] = val&255; + a->a_location_off++; +} + + +static uint8_t * +location_pointer(struct assembler* a) +{ + return (uint8_t *)PyBytes_AS_STRING(a->a_linetable) + + a->a_location_off; +} + +static void +write_location_first_byte(struct assembler* a, int code, int length) +{ + a->a_location_off += write_location_entry_start( + location_pointer(a), code, length); +} + +static void +write_location_varint(struct assembler* a, unsigned int val) +{ + uint8_t *ptr = location_pointer(a); + a->a_location_off += write_varint(ptr, val); +} + + +static void +write_location_signed_varint(struct assembler* a, int val) +{ + uint8_t *ptr = location_pointer(a); + a->a_location_off += write_signed_varint(ptr, val); +} + +static void +write_location_info_short_form(struct assembler* a, int length, int column, int end_column) +{ + assert(length > 0 && length <= 8); + int column_low_bits = column & 7; + int column_group = column >> 3; + assert(column < 80); + assert(end_column >= column); + assert(end_column - column < 16); + write_location_first_byte(a, PY_CODE_LOCATION_INFO_SHORT0 + column_group, length); + write_location_byte(a, (column_low_bits << 4) | (end_column - column)); +} + +static void +write_location_info_oneline_form(struct assembler* a, int length, int line_delta, int column, int end_column) +{ + assert(length > 0 && length <= 8); + assert(line_delta >= 0 && line_delta < 3); + assert(column < 128); + assert(end_column < 128); + write_location_first_byte(a, PY_CODE_LOCATION_INFO_ONE_LINE0 + line_delta, length); + write_location_byte(a, column); + write_location_byte(a, end_column); +} + +static void +write_location_info_long_form(struct assembler* a, struct instr* i, int length) +{ + assert(length > 0 && length <= 8); + write_location_first_byte(a, PY_CODE_LOCATION_INFO_LONG, length); + write_location_signed_varint(a, i->i_lineno - a->a_lineno); + assert(i->i_end_lineno >= i->i_lineno); + write_location_varint(a, i->i_end_lineno - i->i_lineno); + write_location_varint(a, i->i_col_offset+1); + write_location_varint(a, i->i_end_col_offset+1); +} + +static void +write_location_info_none(struct assembler* a, int length) +{ + write_location_first_byte(a, PY_CODE_LOCATION_INFO_NONE, length); +} + +static void +write_location_info_no_column(struct assembler* a, int length, int line_delta) +{ + write_location_first_byte(a, PY_CODE_LOCATION_INFO_NO_COLUMNS, length); + write_location_signed_varint(a, line_delta); +} + +#define THEORETICAL_MAX_ENTRY_SIZE 25 /* 1 + 6 + 6 + 6 + 6 */ + +static int +write_location_info_entry(struct assembler* a, struct instr* i, int isize) +{ + Py_ssize_t len = PyBytes_GET_SIZE(a->a_linetable); + if (a->a_location_off + THEORETICAL_MAX_ENTRY_SIZE >= len) { + assert(len > THEORETICAL_MAX_ENTRY_SIZE); + if (_PyBytes_Resize(&a->a_linetable, len*2) < 0) { + return 0; + } + } + if (i->i_lineno < 0) { + write_location_info_none(a, isize); + return 1; + } + int line_delta = i->i_lineno - a->a_lineno; + int column = i->i_col_offset; + int end_column = i->i_end_col_offset; + assert(column >= -1); + assert(end_column >= -1); + if (column < 0 || end_column < 0) { + if (i->i_end_lineno == i->i_lineno || i->i_end_lineno == -1) { + write_location_info_no_column(a, isize, line_delta); + a->a_lineno = i->i_lineno; + return 1; + } + } + else if (i->i_end_lineno == i->i_lineno) { + if (line_delta == 0 && column < 80 && end_column - column < 16 && end_column >= column) { + write_location_info_short_form(a, isize, column, end_column); + return 1; + } + if (line_delta >= 0 && line_delta < 3 && column < 128 && end_column < 128) { + write_location_info_oneline_form(a, isize, line_delta, column, end_column); + a->a_lineno = i->i_lineno; + return 1; + } + } + write_location_info_long_form(a, i, isize); + a->a_lineno = i->i_lineno; + return 1; +} + +static int +assemble_emit_location(struct assembler* a, struct instr* i) +{ + int isize = instr_size(i); + while (isize > 8) { + if (!write_location_info_entry(a, i, 8)) { + return 0; + } + isize -= 8; + } + return write_location_info_entry(a, i, isize); +} + +/* assemble_emit() + Extend the bytecode with a new instruction. + Update lnotab if necessary. +*/ + +static int +assemble_emit(struct assembler *a, struct instr *i) +{ + Py_ssize_t len = PyBytes_GET_SIZE(a->a_bytecode); + _Py_CODEUNIT *code; + + int size = instr_size(i); + if (a->a_offset + size >= len / (int)sizeof(_Py_CODEUNIT)) { + if (len > PY_SSIZE_T_MAX / 2) + return 0; + if (_PyBytes_Resize(&a->a_bytecode, len * 2) < 0) + return 0; + } + code = (_Py_CODEUNIT *)PyBytes_AS_STRING(a->a_bytecode) + a->a_offset; + a->a_offset += size; + write_instr(code, i, size); + return 1; +} + +static void +normalize_jumps(struct assembler *a) +{ + for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { + b->b_visited = 0; + } + for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { + b->b_visited = 1; + if (b->b_iused == 0) { + continue; + } + struct instr *last = &b->b_instr[b->b_iused-1]; + assert(!IS_ASSEMBLER_OPCODE(last->i_opcode)); + if (is_jump(last)) { + bool is_forward = last->i_target->b_visited == 0; + switch(last->i_opcode) { + case JUMP: + last->i_opcode = is_forward ? JUMP_FORWARD : JUMP_BACKWARD; + break; + case JUMP_NO_INTERRUPT: + last->i_opcode = is_forward ? + JUMP_FORWARD : JUMP_BACKWARD_NO_INTERRUPT; + break; + case POP_JUMP_IF_NOT_NONE: + last->i_opcode = is_forward ? + POP_JUMP_FORWARD_IF_NOT_NONE : POP_JUMP_BACKWARD_IF_NOT_NONE; + break; + case POP_JUMP_IF_NONE: + last->i_opcode = is_forward ? + POP_JUMP_FORWARD_IF_NONE : POP_JUMP_BACKWARD_IF_NONE; + break; + case POP_JUMP_IF_FALSE: + last->i_opcode = is_forward ? + POP_JUMP_FORWARD_IF_FALSE : POP_JUMP_BACKWARD_IF_FALSE; + break; + case POP_JUMP_IF_TRUE: + last->i_opcode = is_forward ? + POP_JUMP_FORWARD_IF_TRUE : POP_JUMP_BACKWARD_IF_TRUE; + break; + case JUMP_IF_TRUE_OR_POP: + case JUMP_IF_FALSE_OR_POP: + if (!is_forward) { + /* As far as we can tell, the compiler never emits + * these jumps with a backwards target. If/when this + * exception is raised, we have found a use case for + * a backwards version of this jump (or to replace + * it with the sequence (COPY 1, POP_JUMP_IF_T/F, POP) + */ + PyErr_Format(PyExc_SystemError, + "unexpected %s jumping backwards", + last->i_opcode == JUMP_IF_TRUE_OR_POP ? + "JUMP_IF_TRUE_OR_POP" : "JUMP_IF_FALSE_OR_POP"); + } + break; + } + } + } +} + +static void +assemble_jump_offsets(struct assembler *a, struct compiler *c) +{ + basicblock *b; + int bsize, totsize, extended_arg_recompile; + int i; + + /* Compute the size of each block and fixup jump args. + Replace block pointer with position in bytecode. */ + do { + totsize = 0; + for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { + bsize = blocksize(b); + b->b_offset = totsize; + totsize += bsize; + } + extended_arg_recompile = 0; + for (b = c->u->u_blocks; b != NULL; b = b->b_list) { + bsize = b->b_offset; + for (i = 0; i < b->b_iused; i++) { + struct instr *instr = &b->b_instr[i]; + int isize = instr_size(instr); + /* Relative jumps are computed relative to + the instruction pointer after fetching + the jump instruction. + */ + bsize += isize; + if (is_jump(instr)) { + instr->i_oparg = instr->i_target->b_offset; + if (is_relative_jump(instr)) { + if (instr->i_oparg < bsize) { + assert(IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode)); + instr->i_oparg = bsize - instr->i_oparg; + } + else { + assert(!IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode)); + instr->i_oparg -= bsize; + } + } + else { + assert(!IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode)); + } + if (instr_size(instr) != isize) { + extended_arg_recompile = 1; + } + } + } + } + + /* XXX: This is an awful hack that could hurt performance, but + on the bright side it should work until we come up + with a better solution. + + The issue is that in the first loop blocksize() is called + which calls instr_size() which requires i_oparg be set + appropriately. There is a bootstrap problem because + i_oparg is calculated in the second loop above. + + So we loop until we stop seeing new EXTENDED_ARGs. + The only EXTENDED_ARGs that could be popping up are + ones in jump instructions. So this should converge + fairly quickly. + */ + } while (extended_arg_recompile); +} + +static PyObject * +dict_keys_inorder(PyObject *dict, Py_ssize_t offset) +{ + PyObject *tuple, *k, *v; + Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict); + + tuple = PyTuple_New(size); + if (tuple == NULL) + return NULL; + while (PyDict_Next(dict, &pos, &k, &v)) { + i = PyLong_AS_LONG(v); + Py_INCREF(k); + assert((i - offset) < size); + assert((i - offset) >= 0); + PyTuple_SET_ITEM(tuple, i - offset, k); + } + return tuple; +} + +static PyObject * +consts_dict_keys_inorder(PyObject *dict) +{ + PyObject *consts, *k, *v; + Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict); + + consts = PyList_New(size); /* PyCode_Optimize() requires a list */ + if (consts == NULL) + return NULL; + while (PyDict_Next(dict, &pos, &k, &v)) { + i = PyLong_AS_LONG(v); + /* The keys of the dictionary can be tuples wrapping a constant. + * (see compiler_add_o and _PyCode_ConstantKey). In that case + * the object we want is always second. */ + if (PyTuple_CheckExact(k)) { + k = PyTuple_GET_ITEM(k, 1); + } + Py_INCREF(k); + assert(i < size); + assert(i >= 0); + PyList_SET_ITEM(consts, i, k); + } + return consts; +} + +static int +compute_code_flags(struct compiler *c) +{ + PySTEntryObject *ste = c->u->u_ste; + int flags = 0; + if (ste->ste_type == FunctionBlock) { + flags |= CO_NEWLOCALS | CO_OPTIMIZED; + if (ste->ste_nested) + flags |= CO_NESTED; + if (ste->ste_generator && !ste->ste_coroutine) + flags |= CO_GENERATOR; + if (!ste->ste_generator && ste->ste_coroutine) + flags |= CO_COROUTINE; + if (ste->ste_generator && ste->ste_coroutine) + flags |= CO_ASYNC_GENERATOR; + if (ste->ste_varargs) + flags |= CO_VARARGS; + if (ste->ste_varkeywords) + flags |= CO_VARKEYWORDS; + } + + /* (Only) inherit compilerflags in PyCF_MASK */ + flags |= (c->c_flags->cf_flags & PyCF_MASK); + + if ((IS_TOP_LEVEL_AWAIT(c)) && + ste->ste_coroutine && + !ste->ste_generator) { + flags |= CO_COROUTINE; + } + + return flags; +} + +// Merge *obj* with constant cache. +// Unlike merge_consts_recursive(), this function doesn't work recursively. +static int +merge_const_one(struct compiler *c, PyObject **obj) +{ + PyObject *key = _PyCode_ConstantKey(*obj); + if (key == NULL) { + return 0; + } + + // t is borrowed reference + PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key); + Py_DECREF(key); + if (t == NULL) { + return 0; + } + if (t == key) { // obj is new constant. + return 1; + } + + if (PyTuple_CheckExact(t)) { + // t is still borrowed reference + t = PyTuple_GET_ITEM(t, 1); + } + + Py_INCREF(t); + Py_DECREF(*obj); + *obj = t; + return 1; +} + +// This is in codeobject.c. +extern void _Py_set_localsplus_info(int, PyObject *, unsigned char, + PyObject *, PyObject *); + +static void +compute_localsplus_info(struct compiler *c, int nlocalsplus, + PyObject *names, PyObject *kinds) +{ + PyObject *k, *v; + Py_ssize_t pos = 0; + while (PyDict_Next(c->u->u_varnames, &pos, &k, &v)) { + int offset = (int)PyLong_AS_LONG(v); + assert(offset >= 0); + assert(offset < nlocalsplus); + // For now we do not distinguish arg kinds. + _PyLocals_Kind kind = CO_FAST_LOCAL; + if (PyDict_GetItem(c->u->u_cellvars, k) != NULL) { + kind |= CO_FAST_CELL; + } + _Py_set_localsplus_info(offset, k, kind, names, kinds); + } + int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames); + + // This counter mirrors the fix done in fix_cell_offsets(). + int numdropped = 0; + pos = 0; + while (PyDict_Next(c->u->u_cellvars, &pos, &k, &v)) { + if (PyDict_GetItem(c->u->u_varnames, k) != NULL) { + // Skip cells that are already covered by locals. + numdropped += 1; + continue; + } + int offset = (int)PyLong_AS_LONG(v); + assert(offset >= 0); + offset += nlocals - numdropped; + assert(offset < nlocalsplus); + _Py_set_localsplus_info(offset, k, CO_FAST_CELL, names, kinds); + } + + pos = 0; + while (PyDict_Next(c->u->u_freevars, &pos, &k, &v)) { + int offset = (int)PyLong_AS_LONG(v); + assert(offset >= 0); + offset += nlocals - numdropped; + assert(offset < nlocalsplus); + _Py_set_localsplus_info(offset, k, CO_FAST_FREE, names, kinds); + } +} + +static PyCodeObject * +makecode(struct compiler *c, struct assembler *a, PyObject *constslist, + int maxdepth, int nlocalsplus) +{ + PyCodeObject *co = NULL; + PyObject *names = NULL; + PyObject *consts = NULL; + PyObject *localsplusnames = NULL; + PyObject *localspluskinds = NULL; + + names = dict_keys_inorder(c->u->u_names, 0); + if (!names) { + goto error; + } + if (!merge_const_one(c, &names)) { + goto error; + } + + int flags = compute_code_flags(c); + if (flags < 0) { + goto error; + } + + consts = PyList_AsTuple(constslist); /* PyCode_New requires a tuple */ + if (consts == NULL) { + goto error; + } + if (!merge_const_one(c, &consts)) { + goto error; + } + + assert(c->u->u_posonlyargcount < INT_MAX); + assert(c->u->u_argcount < INT_MAX); + assert(c->u->u_kwonlyargcount < INT_MAX); + int posonlyargcount = (int)c->u->u_posonlyargcount; + int posorkwargcount = (int)c->u->u_argcount; + assert(INT_MAX - posonlyargcount - posorkwargcount > 0); + int kwonlyargcount = (int)c->u->u_kwonlyargcount; + + localsplusnames = PyTuple_New(nlocalsplus); + if (localsplusnames == NULL) { + goto error; + } + localspluskinds = PyBytes_FromStringAndSize(NULL, nlocalsplus); + if (localspluskinds == NULL) { + goto error; + } + compute_localsplus_info(c, nlocalsplus, localsplusnames, localspluskinds); + + struct _PyCodeConstructor con = { + .filename = c->c_filename, + .name = c->u->u_name, + .qualname = c->u->u_qualname ? c->u->u_qualname : c->u->u_name, + .flags = flags, + + .code = a->a_bytecode, + .firstlineno = c->u->u_firstlineno, + .linetable = a->a_linetable, + + .consts = consts, + .names = names, + + .localsplusnames = localsplusnames, + .localspluskinds = localspluskinds, + + .argcount = posonlyargcount + posorkwargcount, + .posonlyargcount = posonlyargcount, + .kwonlyargcount = kwonlyargcount, + + .stacksize = maxdepth, + + .exceptiontable = a->a_except_table, + }; + + if (_PyCode_Validate(&con) < 0) { + goto error; + } + + if (!merge_const_one(c, &localsplusnames)) { + goto error; + } + con.localsplusnames = localsplusnames; + + co = _PyCode_New(&con); + if (co == NULL) { + goto error; + } + + error: + Py_XDECREF(names); + Py_XDECREF(consts); + Py_XDECREF(localsplusnames); + Py_XDECREF(localspluskinds); + return co; +} + + +/* For debugging purposes only */ +#if 0 +static void +dump_instr(struct instr *i) +{ + const char *jrel = (is_relative_jump(i)) ? "jrel " : ""; + const char *jabs = (is_jump(i) && !is_relative_jump(i))? "jabs " : ""; + + char arg[128]; + + *arg = '\0'; + if (HAS_ARG(i->i_opcode)) { + sprintf(arg, "arg: %d ", i->i_oparg); + } + fprintf(stderr, "line: %d, opcode: %d %s%s%s\n", + i->i_lineno, i->i_opcode, arg, jabs, jrel); +} + +static void +dump_basicblock(const basicblock *b) +{ + const char *b_return = b->b_return ? "return " : ""; + fprintf(stderr, "used: %d, depth: %d, offset: %d %s\n", + b->b_iused, b->b_startdepth, b->b_offset, b_return); + if (b->b_instr) { + int i; + for (i = 0; i < b->b_iused; i++) { + fprintf(stderr, " [%02d] ", i); + dump_instr(b->b_instr + i); + } + } +} +#endif + + +static int +normalize_basic_block(basicblock *bb); + +static int +optimize_cfg(struct compiler *c, struct assembler *a, PyObject *consts); + +static int +trim_unused_consts(struct compiler *c, struct assembler *a, PyObject *consts); + +/* Duplicates exit BBs, so that line numbers can be propagated to them */ +static int +duplicate_exits_without_lineno(struct compiler *c); + +static int +extend_block(basicblock *bb); + +static int * +build_cellfixedoffsets(struct compiler *c) +{ + int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames); + int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars); + int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars); + + int noffsets = ncellvars + nfreevars; + int *fixed = PyMem_New(int, noffsets); + if (fixed == NULL) { + PyErr_NoMemory(); + return NULL; + } + for (int i = 0; i < noffsets; i++) { + fixed[i] = nlocals + i; + } + + PyObject *varname, *cellindex; + Py_ssize_t pos = 0; + while (PyDict_Next(c->u->u_cellvars, &pos, &varname, &cellindex)) { + PyObject *varindex = PyDict_GetItem(c->u->u_varnames, varname); + if (varindex != NULL) { + assert(PyLong_AS_LONG(cellindex) < INT_MAX); + assert(PyLong_AS_LONG(varindex) < INT_MAX); + int oldindex = (int)PyLong_AS_LONG(cellindex); + int argoffset = (int)PyLong_AS_LONG(varindex); + fixed[oldindex] = argoffset; + } + } + + return fixed; +} + +static inline int +insert_instruction(basicblock *block, int pos, struct instr *instr) { + if (compiler_next_instr(block) < 0) { + return -1; + } + for (int i = block->b_iused-1; i > pos; i--) { + block->b_instr[i] = block->b_instr[i-1]; + } + block->b_instr[pos] = *instr; + return 0; +} + +static int +insert_prefix_instructions(struct compiler *c, basicblock *entryblock, + int *fixed, int nfreevars) +{ + + int flags = compute_code_flags(c); + if (flags < 0) { + return -1; + } + assert(c->u->u_firstlineno > 0); + + /* Add the generator prefix instructions. */ + if (flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) { + struct instr make_gen = { + .i_opcode = RETURN_GENERATOR, + .i_oparg = 0, + .i_lineno = c->u->u_firstlineno, + .i_col_offset = -1, + .i_end_lineno = c->u->u_firstlineno, + .i_end_col_offset = -1, + .i_target = NULL, + }; + if (insert_instruction(entryblock, 0, &make_gen) < 0) { + return -1; + } + struct instr pop_top = { + .i_opcode = POP_TOP, + .i_oparg = 0, + .i_lineno = -1, + .i_col_offset = -1, + .i_end_lineno = -1, + .i_end_col_offset = -1, + .i_target = NULL, + }; + if (insert_instruction(entryblock, 1, &pop_top) < 0) { + return -1; + } + } + + /* Set up cells for any variable that escapes, to be put in a closure. */ + const int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars); + if (ncellvars) { + // c->u->u_cellvars has the cells out of order so we sort them + // before adding the MAKE_CELL instructions. Note that we + // adjust for arg cells, which come first. + const int nvars = ncellvars + (int)PyDict_GET_SIZE(c->u->u_varnames); + int *sorted = PyMem_RawCalloc(nvars, sizeof(int)); + if (sorted == NULL) { + PyErr_NoMemory(); + return -1; + } + for (int i = 0; i < ncellvars; i++) { + sorted[fixed[i]] = i + 1; + } + for (int i = 0, ncellsused = 0; ncellsused < ncellvars; i++) { + int oldindex = sorted[i] - 1; + if (oldindex == -1) { + continue; + } + struct instr make_cell = { + .i_opcode = MAKE_CELL, + // This will get fixed in offset_derefs(). + .i_oparg = oldindex, + .i_lineno = -1, + .i_col_offset = -1, + .i_end_lineno = -1, + .i_end_col_offset = -1, + .i_target = NULL, + }; + if (insert_instruction(entryblock, ncellsused, &make_cell) < 0) { + return -1; + } + ncellsused += 1; + } + PyMem_RawFree(sorted); + } + + if (nfreevars) { + struct instr copy_frees = { + .i_opcode = COPY_FREE_VARS, + .i_oparg = nfreevars, + .i_lineno = -1, + .i_col_offset = -1, + .i_end_lineno = -1, + .i_end_col_offset = -1, + .i_target = NULL, + }; + if (insert_instruction(entryblock, 0, ©_frees) < 0) { + return -1; + } + + } + + return 0; +} + +/* Make sure that all returns have a line number, even if early passes + * have failed to propagate a correct line number. + * The resulting line number may not be correct according to PEP 626, + * but should be "good enough", and no worse than in older versions. */ +static void +guarantee_lineno_for_exits(struct assembler *a, int firstlineno) { + int lineno = firstlineno; + assert(lineno > 0); + for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { + if (b->b_iused == 0) { + continue; + } + struct instr *last = &b->b_instr[b->b_iused-1]; + if (last->i_lineno < 0) { + if (last->i_opcode == RETURN_VALUE) { + for (int i = 0; i < b->b_iused; i++) { + assert(b->b_instr[i].i_lineno < 0); + + b->b_instr[i].i_lineno = lineno; + } + } + } + else { + lineno = last->i_lineno; + } + } +} + +static int +fix_cell_offsets(struct compiler *c, basicblock *entryblock, int *fixedmap) +{ + int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames); + int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars); + int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars); + int noffsets = ncellvars + nfreevars; + + // First deal with duplicates (arg cells). + int numdropped = 0; + for (int i = 0; i < noffsets ; i++) { + if (fixedmap[i] == i + nlocals) { + fixedmap[i] -= numdropped; + } + else { + // It was a duplicate (cell/arg). + numdropped += 1; + } + } + + // Then update offsets, either relative to locals or by cell2arg. + for (basicblock *b = entryblock; b != NULL; b = b->b_next) { + for (int i = 0; i < b->b_iused; i++) { + struct instr *inst = &b->b_instr[i]; + // This is called before extended args are generated. + assert(inst->i_opcode != EXTENDED_ARG); + assert(inst->i_opcode != EXTENDED_ARG_QUICK); + int oldoffset = inst->i_oparg; + switch(inst->i_opcode) { + case MAKE_CELL: + case LOAD_CLOSURE: + case LOAD_DEREF: + case STORE_DEREF: + case DELETE_DEREF: + case LOAD_CLASSDEREF: + assert(oldoffset >= 0); + assert(oldoffset < noffsets); + assert(fixedmap[oldoffset] >= 0); + inst->i_oparg = fixedmap[oldoffset]; + } + } + } + + return numdropped; +} + +static void +propagate_line_numbers(struct assembler *a); + +static PyCodeObject * +assemble(struct compiler *c, int addNone) +{ + basicblock *b, *entryblock; + struct assembler a; + int j, nblocks; + PyCodeObject *co = NULL; + PyObject *consts = NULL; + memset(&a, 0, sizeof(struct assembler)); + + /* Make sure every block that falls off the end returns None. */ + if (!c->u->u_curblock->b_return) { + UNSET_LOC(c); + if (addNone) + ADDOP_LOAD_CONST(c, Py_None); + ADDOP(c, RETURN_VALUE); + } + + for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { + if (normalize_basic_block(b)) { + return NULL; + } + } + + for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { + if (extend_block(b)) { + return NULL; + } + } + + nblocks = 0; + entryblock = NULL; + for (b = c->u->u_blocks; b != NULL; b = b->b_list) { + nblocks++; + entryblock = b; + } + assert(entryblock != NULL); + + assert(PyDict_GET_SIZE(c->u->u_varnames) < INT_MAX); + assert(PyDict_GET_SIZE(c->u->u_cellvars) < INT_MAX); + assert(PyDict_GET_SIZE(c->u->u_freevars) < INT_MAX); + int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames); + int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars); + int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars); + assert(INT_MAX - nlocals - ncellvars > 0); + assert(INT_MAX - nlocals - ncellvars - nfreevars > 0); + int nlocalsplus = nlocals + ncellvars + nfreevars; + int *cellfixedoffsets = build_cellfixedoffsets(c); + if (cellfixedoffsets == NULL) { + goto error; + } + + /* Set firstlineno if it wasn't explicitly set. */ + if (!c->u->u_firstlineno) { + if (entryblock->b_instr && entryblock->b_instr->i_lineno) { + c->u->u_firstlineno = entryblock->b_instr->i_lineno; + } + else { + c->u->u_firstlineno = 1; + } + } + + // This must be called before fix_cell_offsets(). + if (insert_prefix_instructions(c, entryblock, cellfixedoffsets, nfreevars)) { + goto error; + } + + if (!assemble_init(&a, nblocks, c->u->u_firstlineno)) + goto error; + a.a_entry = entryblock; + a.a_nblocks = nblocks; + + int numdropped = fix_cell_offsets(c, entryblock, cellfixedoffsets); + PyMem_Free(cellfixedoffsets); // At this point we're done with it. + cellfixedoffsets = NULL; + if (numdropped < 0) { + goto error; + } + nlocalsplus -= numdropped; + + consts = consts_dict_keys_inorder(c->u->u_consts); + if (consts == NULL) { + goto error; + } + + if (optimize_cfg(c, &a, consts)) { + goto error; + } + if (duplicate_exits_without_lineno(c)) { + return NULL; + } + if (trim_unused_consts(c, &a, consts)) { + goto error; + } + propagate_line_numbers(&a); + guarantee_lineno_for_exits(&a, c->u->u_firstlineno); + int maxdepth = stackdepth(c); + if (maxdepth < 0) { + goto error; + } + /* TO DO -- For 3.12, make sure that `maxdepth <= MAX_ALLOWED_STACK_USE` */ + + if (label_exception_targets(entryblock)) { + goto error; + } + convert_exception_handlers_to_nops(entryblock); + for (basicblock *b = a.a_entry; b != NULL; b = b->b_next) { + clean_basic_block(b); + } + + /* Order of basic blocks must have been determined by now */ + normalize_jumps(&a); + + /* Can't modify the bytecode after computing jump offsets. */ + assemble_jump_offsets(&a, c); + + /* Emit code. */ + for(b = entryblock; b != NULL; b = b->b_next) { + for (j = 0; j < b->b_iused; j++) + if (!assemble_emit(&a, &b->b_instr[j])) + goto error; + } + + /* Emit location info */ + a.a_lineno = c->u->u_firstlineno; + for(b = entryblock; b != NULL; b = b->b_next) { + for (j = 0; j < b->b_iused; j++) + if (!assemble_emit_location(&a, &b->b_instr[j])) + goto error; + } + + if (!assemble_exception_table(&a)) { + goto error; + } + if (_PyBytes_Resize(&a.a_except_table, a.a_except_table_off) < 0) { + goto error; + } + if (!merge_const_one(c, &a.a_except_table)) { + goto error; + } + + if (_PyBytes_Resize(&a.a_linetable, a.a_location_off) < 0) { + goto error; + } + if (!merge_const_one(c, &a.a_linetable)) { + goto error; + } + + if (_PyBytes_Resize(&a.a_bytecode, a.a_offset * sizeof(_Py_CODEUNIT)) < 0) { + goto error; + } + if (!merge_const_one(c, &a.a_bytecode)) { + goto error; + } + + co = makecode(c, &a, consts, maxdepth, nlocalsplus); + error: + Py_XDECREF(consts); + assemble_free(&a); + if (cellfixedoffsets != NULL) { + PyMem_Free(cellfixedoffsets); + } + return co; +} + +static PyObject* +get_const_value(int opcode, int oparg, PyObject *co_consts) +{ + PyObject *constant = NULL; + assert(HAS_CONST(opcode)); + if (opcode == LOAD_CONST) { + constant = PyList_GET_ITEM(co_consts, oparg); + } + + if (constant == NULL) { + PyErr_SetString(PyExc_SystemError, + "Internal error: failed to get value of a constant"); + return NULL; + } + Py_INCREF(constant); + return constant; +} + +/* Replace LOAD_CONST c1, LOAD_CONST c2 ... LOAD_CONST cn, BUILD_TUPLE n + with LOAD_CONST (c1, c2, ... cn). + The consts table must still be in list form so that the + new constant (c1, c2, ... cn) can be appended. + Called with codestr pointing to the first LOAD_CONST. +*/ +static int +fold_tuple_on_constants(struct compiler *c, + struct instr *inst, + int n, PyObject *consts) +{ + /* Pre-conditions */ + assert(PyList_CheckExact(consts)); + assert(inst[n].i_opcode == BUILD_TUPLE); + assert(inst[n].i_oparg == n); + + for (int i = 0; i < n; i++) { + if (!HAS_CONST(inst[i].i_opcode)) { + return 0; + } + } + + /* Buildup new tuple of constants */ + PyObject *newconst = PyTuple_New(n); + if (newconst == NULL) { + return -1; + } + for (int i = 0; i < n; i++) { + int op = inst[i].i_opcode; + int arg = inst[i].i_oparg; + PyObject *constant = get_const_value(op, arg, consts); + if (constant == NULL) { + return -1; + } + PyTuple_SET_ITEM(newconst, i, constant); + } + if (merge_const_one(c, &newconst) == 0) { + Py_DECREF(newconst); + return -1; + } + + Py_ssize_t index; + for (index = 0; index < PyList_GET_SIZE(consts); index++) { + if (PyList_GET_ITEM(consts, index) == newconst) { + break; + } + } + if (index == PyList_GET_SIZE(consts)) { + if ((size_t)index >= (size_t)INT_MAX - 1) { + Py_DECREF(newconst); + PyErr_SetString(PyExc_OverflowError, "too many constants"); + return -1; + } + if (PyList_Append(consts, newconst)) { + Py_DECREF(newconst); + return -1; + } + } + Py_DECREF(newconst); + for (int i = 0; i < n; i++) { + inst[i].i_opcode = NOP; + } + inst[n].i_opcode = LOAD_CONST; + inst[n].i_oparg = (int)index; + return 0; +} + +#define VISITED (-1) + +// Replace an arbitrary run of SWAPs and NOPs with an optimal one that has the +// same effect. +static int +swaptimize(basicblock *block, int *ix) +{ + // NOTE: "./python -m test test_patma" serves as a good, quick stress test + // for this function. Make sure to blow away cached *.pyc files first! + assert(*ix < block->b_iused); + struct instr *instructions = &block->b_instr[*ix]; + // Find the length of the current sequence of SWAPs and NOPs, and record the + // maximum depth of the stack manipulations: + assert(instructions[0].i_opcode == SWAP); + int depth = instructions[0].i_oparg; + int len = 0; + int more = false; + int limit = block->b_iused - *ix; + while (++len < limit) { + int opcode = instructions[len].i_opcode; + if (opcode == SWAP) { + depth = Py_MAX(depth, instructions[len].i_oparg); + more = true; + } + else if (opcode != NOP) { + break; + } + } + // It's already optimal if there's only one SWAP: + if (!more) { + return 0; + } + // Create an array with elements {0, 1, 2, ..., depth - 1}: + int *stack = PyMem_Malloc(depth * sizeof(int)); + if (stack == NULL) { + PyErr_NoMemory(); + return -1; + } + for (int i = 0; i < depth; i++) { + stack[i] = i; + } + // Simulate the combined effect of these instructions by "running" them on + // our "stack": + for (int i = 0; i < len; i++) { + if (instructions[i].i_opcode == SWAP) { + int oparg = instructions[i].i_oparg; + int top = stack[0]; + // SWAPs are 1-indexed: + stack[0] = stack[oparg - 1]; + stack[oparg - 1] = top; + } + } + // Now we can begin! Our approach here is based on a solution to a closely + // related problem (https://cs.stackexchange.com/a/13938). It's easiest to + // think of this algorithm as determining the steps needed to efficiently + // "un-shuffle" our stack. By performing the moves in *reverse* order, + // though, we can efficiently *shuffle* it! For this reason, we will be + // replacing instructions starting from the *end* of the run. Since the + // solution is optimal, we don't need to worry about running out of space: + int current = len - 1; + for (int i = 0; i < depth; i++) { + // Skip items that have already been visited, or just happen to be in + // the correct location: + if (stack[i] == VISITED || stack[i] == i) { + continue; + } + // Okay, we've found an item that hasn't been visited. It forms a cycle + // with other items; traversing the cycle and swapping each item with + // the next will put them all in the correct place. The weird + // loop-and-a-half is necessary to insert 0 into every cycle, since we + // can only swap from that position: + int j = i; + while (true) { + // Skip the actual swap if our item is zero, since swapping the top + // item with itself is pointless: + if (j) { + assert(0 <= current); + // SWAPs are 1-indexed: + instructions[current].i_opcode = SWAP; + instructions[current--].i_oparg = j + 1; + } + if (stack[j] == VISITED) { + // Completed the cycle: + assert(j == i); + break; + } + int next_j = stack[j]; + stack[j] = VISITED; + j = next_j; + } + } + // NOP out any unused instructions: + while (0 <= current) { + instructions[current--].i_opcode = NOP; + } + PyMem_Free(stack); + *ix += len - 1; + return 0; +} + +// This list is pretty small, since it's only okay to reorder opcodes that: +// - can't affect control flow (like jumping or raising exceptions) +// - can't invoke arbitrary code (besides finalizers) +// - only touch the TOS (and pop it when finished) +#define SWAPPABLE(opcode) \ + ((opcode) == STORE_FAST || (opcode) == POP_TOP) + +#define STORES_TO(instr) \ + (((instr).i_opcode == STORE_FAST) ? (instr).i_oparg : -1) + +static int +next_swappable_instruction(basicblock *block, int i, int lineno) +{ + while (++i < block->b_iused) { + struct instr *instruction = &block->b_instr[i]; + if (0 <= lineno && instruction->i_lineno != lineno) { + // Optimizing across this instruction could cause user-visible + // changes in the names bound between line tracing events! + return -1; + } + if (instruction->i_opcode == NOP) { + continue; + } + if (SWAPPABLE(instruction->i_opcode)) { + return i; + } + return -1; + } + return -1; +} + +// Attempt to apply SWAPs statically by swapping *instructions* rather than +// stack items. For example, we can replace SWAP(2), POP_TOP, STORE_FAST(42) +// with the more efficient NOP, STORE_FAST(42), POP_TOP. +static void +apply_static_swaps(basicblock *block, int i) +{ + // SWAPs are to our left, and potential swaperands are to our right: + for (; 0 <= i; i--) { + assert(i < block->b_iused); + struct instr *swap = &block->b_instr[i]; + if (swap->i_opcode != SWAP) { + if (swap->i_opcode == NOP || SWAPPABLE(swap->i_opcode)) { + // Nope, but we know how to handle these. Keep looking: + continue; + } + // We can't reason about what this instruction does. Bail: + return; + } + int j = next_swappable_instruction(block, i, -1); + if (j < 0) { + return; + } + int k = j; + int lineno = block->b_instr[j].i_lineno; + for (int count = swap->i_oparg - 1; 0 < count; count--) { + k = next_swappable_instruction(block, k, lineno); + if (k < 0) { + return; + } + } + // The reordering is not safe if the two instructions to be swapped + // store to the same location, or if any intervening instruction stores + // to the same location as either of them. + int store_j = STORES_TO(block->b_instr[j]); + int store_k = STORES_TO(block->b_instr[k]); + if (store_j >= 0 || store_k >= 0) { + if (store_j == store_k) { + return; + } + for (int idx = j + 1; idx < k; idx++) { + int store_idx = STORES_TO(block->b_instr[idx]); + if (store_idx >= 0 && (store_idx == store_j || store_idx == store_k)) { + return; + } + } + } + + // Success! + swap->i_opcode = NOP; + struct instr temp = block->b_instr[j]; + block->b_instr[j] = block->b_instr[k]; + block->b_instr[k] = temp; + } +} + +// Attempt to eliminate jumps to jumps by updating inst to jump to +// target->i_target using the provided opcode. Return whether or not the +// optimization was successful. +static bool +jump_thread(struct instr *inst, struct instr *target, int opcode) +{ + assert(!IS_VIRTUAL_OPCODE(opcode) || IS_VIRTUAL_JUMP_OPCODE(opcode)); + assert(is_jump(inst)); + assert(is_jump(target)); + // bpo-45773: If inst->i_target == target->i_target, then nothing actually + // changes (and we fall into an infinite loop): + if (inst->i_lineno == target->i_lineno && + inst->i_target != target->i_target) + { + inst->i_target = target->i_target; + inst->i_opcode = opcode; + return true; + } + return false; +} + +/* Maximum size of basic block that should be copied in optimizer */ +#define MAX_COPY_SIZE 4 + +/* Optimization */ +static int +optimize_basic_block(struct compiler *c, basicblock *bb, PyObject *consts) +{ + assert(PyList_CheckExact(consts)); + struct instr nop; + nop.i_opcode = NOP; + struct instr *target; + for (int i = 0; i < bb->b_iused; i++) { + struct instr *inst = &bb->b_instr[i]; + int oparg = inst->i_oparg; + int nextop = i+1 < bb->b_iused ? bb->b_instr[i+1].i_opcode : 0; + if (is_jump(inst) || is_block_push(inst)) { + /* Skip over empty basic blocks. */ + while (inst->i_target->b_iused == 0) { + inst->i_target = inst->i_target->b_next; + } + target = &inst->i_target->b_instr[0]; + assert(!IS_ASSEMBLER_OPCODE(target->i_opcode)); + } + else { + target = &nop; + } + assert(!IS_ASSEMBLER_OPCODE(inst->i_opcode)); + switch (inst->i_opcode) { + /* Remove LOAD_CONST const; conditional jump */ + case LOAD_CONST: + { + PyObject* cnt; + int is_true; + int jump_if_true; + switch(nextop) { + case POP_JUMP_IF_FALSE: + case POP_JUMP_IF_TRUE: + cnt = get_const_value(inst->i_opcode, oparg, consts); + if (cnt == NULL) { + goto error; + } + is_true = PyObject_IsTrue(cnt); + Py_DECREF(cnt); + if (is_true == -1) { + goto error; + } + inst->i_opcode = NOP; + jump_if_true = nextop == POP_JUMP_IF_TRUE; + if (is_true == jump_if_true) { + bb->b_instr[i+1].i_opcode = JUMP; + bb->b_nofallthrough = 1; + } + else { + bb->b_instr[i+1].i_opcode = NOP; + } + break; + case JUMP_IF_FALSE_OR_POP: + case JUMP_IF_TRUE_OR_POP: + cnt = get_const_value(inst->i_opcode, oparg, consts); + if (cnt == NULL) { + goto error; + } + is_true = PyObject_IsTrue(cnt); + Py_DECREF(cnt); + if (is_true == -1) { + goto error; + } + jump_if_true = nextop == JUMP_IF_TRUE_OR_POP; + if (is_true == jump_if_true) { + bb->b_instr[i+1].i_opcode = JUMP; + bb->b_nofallthrough = 1; + } + else { + inst->i_opcode = NOP; + bb->b_instr[i+1].i_opcode = NOP; + } + break; + case IS_OP: + cnt = get_const_value(inst->i_opcode, oparg, consts); + if (cnt == NULL) { + goto error; + } + int jump_op = i+2 < bb->b_iused ? bb->b_instr[i+2].i_opcode : 0; + if (Py_IsNone(cnt) && (jump_op == POP_JUMP_IF_FALSE || jump_op == POP_JUMP_IF_TRUE)) { + unsigned char nextarg = bb->b_instr[i+1].i_oparg; + inst->i_opcode = NOP; + bb->b_instr[i+1].i_opcode = NOP; + bb->b_instr[i+2].i_opcode = nextarg ^ (jump_op == POP_JUMP_IF_FALSE) ? + POP_JUMP_IF_NOT_NONE : POP_JUMP_IF_NONE; + } + Py_DECREF(cnt); + break; + } + break; + } + + /* Try to fold tuples of constants. + Skip over BUILD_TUPLE(1) UNPACK_SEQUENCE(1). + Replace BUILD_TUPLE(2) UNPACK_SEQUENCE(2) with SWAP(2). + Replace BUILD_TUPLE(3) UNPACK_SEQUENCE(3) with SWAP(3). */ + case BUILD_TUPLE: + if (nextop == UNPACK_SEQUENCE && oparg == bb->b_instr[i+1].i_oparg) { + switch(oparg) { + case 1: + inst->i_opcode = NOP; + bb->b_instr[i+1].i_opcode = NOP; + continue; + case 2: + case 3: + inst->i_opcode = NOP; + bb->b_instr[i+1].i_opcode = SWAP; + continue; + } + } + if (i >= oparg) { + if (fold_tuple_on_constants(c, inst-oparg, oparg, consts)) { + goto error; + } + } + break; + + /* Simplify conditional jump to conditional jump where the + result of the first test implies the success of a similar + test or the failure of the opposite test. + Arises in code like: + "a and b or c" + "(a and b) and c" + "(a or b) or c" + "(a or b) and c" + x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_FALSE_OR_POP z + --> x:JUMP_IF_FALSE_OR_POP z + x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_TRUE_OR_POP z + --> x:POP_JUMP_IF_FALSE y+1 + where y+1 is the instruction following the second test. + */ + case JUMP_IF_FALSE_OR_POP: + switch (target->i_opcode) { + case POP_JUMP_IF_FALSE: + i -= jump_thread(inst, target, POP_JUMP_IF_FALSE); + break; + case JUMP: + case JUMP_IF_FALSE_OR_POP: + i -= jump_thread(inst, target, JUMP_IF_FALSE_OR_POP); + break; + case JUMP_IF_TRUE_OR_POP: + case POP_JUMP_IF_TRUE: + if (inst->i_lineno == target->i_lineno) { + // We don't need to bother checking for loops here, + // since a block's b_next cannot point to itself: + assert(inst->i_target != inst->i_target->b_next); + inst->i_opcode = POP_JUMP_IF_FALSE; + inst->i_target = inst->i_target->b_next; + --i; + } + break; + } + break; + case JUMP_IF_TRUE_OR_POP: + switch (target->i_opcode) { + case POP_JUMP_IF_TRUE: + i -= jump_thread(inst, target, POP_JUMP_IF_TRUE); + break; + case JUMP: + case JUMP_IF_TRUE_OR_POP: + i -= jump_thread(inst, target, JUMP_IF_TRUE_OR_POP); + break; + case JUMP_IF_FALSE_OR_POP: + case POP_JUMP_IF_FALSE: + if (inst->i_lineno == target->i_lineno) { + // We don't need to bother checking for loops here, + // since a block's b_next cannot point to itself: + assert(inst->i_target != inst->i_target->b_next); + inst->i_opcode = POP_JUMP_IF_TRUE; + inst->i_target = inst->i_target->b_next; + --i; + } + break; + } + break; + case POP_JUMP_IF_NOT_NONE: + case POP_JUMP_IF_NONE: + switch (target->i_opcode) { + case JUMP: + i -= jump_thread(inst, target, inst->i_opcode); + } + break; + case POP_JUMP_IF_FALSE: + switch (target->i_opcode) { + case JUMP: + i -= jump_thread(inst, target, POP_JUMP_IF_FALSE); + } + break; + case POP_JUMP_IF_TRUE: + switch (target->i_opcode) { + case JUMP: + i -= jump_thread(inst, target, POP_JUMP_IF_TRUE); + } + break; + case JUMP: + switch (target->i_opcode) { + case JUMP: + i -= jump_thread(inst, target, JUMP); + } + break; + case FOR_ITER: + if (target->i_opcode == JUMP) { + /* This will not work now because the jump (at target) could + * be forward or backward and FOR_ITER only jumps forward. We + * can re-enable this if ever we implement a backward version + * of FOR_ITER. + */ + /* + i -= jump_thread(inst, target, FOR_ITER); + */ + } + break; + case SWAP: + if (oparg == 1) { + inst->i_opcode = NOP; + break; + } + if (swaptimize(bb, &i)) { + goto error; + } + apply_static_swaps(bb, i); + break; + case KW_NAMES: + break; + case PUSH_NULL: + if (nextop == LOAD_GLOBAL && (inst[1].i_opcode & 1) == 0) { + inst->i_opcode = NOP; + inst->i_oparg = 0; + inst[1].i_oparg |= 1; + } + break; + default: + /* All HAS_CONST opcodes should be handled with LOAD_CONST */ + assert (!HAS_CONST(inst->i_opcode)); + } + } + return 0; +error: + return -1; +} + +static bool +basicblock_has_lineno(const basicblock *bb) { + for (int i = 0; i < bb->b_iused; i++) { + if (bb->b_instr[i].i_lineno > 0) { + return true; + } + } + return false; +} + +/* If this block ends with an unconditional jump to an exit block, + * then remove the jump and extend this block with the target. + */ +static int +extend_block(basicblock *bb) { + if (bb->b_iused == 0) { + return 0; + } + struct instr *last = &bb->b_instr[bb->b_iused-1]; + if (last->i_opcode != JUMP && + last->i_opcode != JUMP_FORWARD && + last->i_opcode != JUMP_BACKWARD) { + return 0; + } + if (last->i_target->b_exit && last->i_target->b_iused <= MAX_COPY_SIZE) { + basicblock *to_copy = last->i_target; + if (basicblock_has_lineno(to_copy)) { + /* copy only blocks without line number (like implicit 'return None's) */ + return 0; + } + last->i_opcode = NOP; + for (int i = 0; i < to_copy->b_iused; i++) { + int index = compiler_next_instr(bb); + if (index < 0) { + return -1; + } + bb->b_instr[index] = to_copy->b_instr[i]; + } + bb->b_exit = 1; + } + return 0; +} + +static void +clean_basic_block(basicblock *bb) { + /* Remove NOPs when legal to do so. */ + int dest = 0; + int prev_lineno = -1; + for (int src = 0; src < bb->b_iused; src++) { + int lineno = bb->b_instr[src].i_lineno; + if (bb->b_instr[src].i_opcode == NOP) { + /* Eliminate no-op if it doesn't have a line number */ + if (lineno < 0) { + continue; + } + /* or, if the previous instruction had the same line number. */ + if (prev_lineno == lineno) { + continue; + } + /* or, if the next instruction has same line number or no line number */ + if (src < bb->b_iused - 1) { + int next_lineno = bb->b_instr[src+1].i_lineno; + if (next_lineno == lineno) { + continue; + } + if (next_lineno < 0) { + COPY_INSTR_LOC(bb->b_instr[src], bb->b_instr[src+1]); + continue; + } + } + else { + basicblock* next = bb->b_next; + while (next && next->b_iused == 0) { + next = next->b_next; + } + /* or if last instruction in BB and next BB has same line number */ + if (next) { + if (lineno == next->b_instr[0].i_lineno) { + continue; + } + } + } + + } + if (dest != src) { + bb->b_instr[dest] = bb->b_instr[src]; + } + dest++; + prev_lineno = lineno; + } + assert(dest <= bb->b_iused); + bb->b_iused = dest; +} + +static int +normalize_basic_block(basicblock *bb) { + /* Mark blocks as exit and/or nofallthrough. + Raise SystemError if CFG is malformed. */ + for (int i = 0; i < bb->b_iused; i++) { + assert(!IS_ASSEMBLER_OPCODE(bb->b_instr[i].i_opcode)); + switch(bb->b_instr[i].i_opcode) { + case RETURN_VALUE: + case RAISE_VARARGS: + case RERAISE: + bb->b_exit = 1; + bb->b_nofallthrough = 1; + break; + case JUMP: + case JUMP_NO_INTERRUPT: + bb->b_nofallthrough = 1; + /* fall through */ + case POP_JUMP_IF_NOT_NONE: + case POP_JUMP_IF_NONE: + case POP_JUMP_IF_FALSE: + case POP_JUMP_IF_TRUE: + case JUMP_IF_FALSE_OR_POP: + case JUMP_IF_TRUE_OR_POP: + case FOR_ITER: + if (i != bb->b_iused-1) { + PyErr_SetString(PyExc_SystemError, "malformed control flow graph."); + return -1; + } + /* Skip over empty basic blocks. */ + while (bb->b_instr[i].i_target->b_iused == 0) { + bb->b_instr[i].i_target = bb->b_instr[i].i_target->b_next; + } + + } + } + return 0; +} + +static int +mark_reachable(struct assembler *a) { + basicblock **stack, **sp; + sp = stack = (basicblock **)PyObject_Malloc(sizeof(basicblock *) * a->a_nblocks); + if (stack == NULL) { + return -1; + } + a->a_entry->b_predecessors = 1; + *sp++ = a->a_entry; + while (sp > stack) { + basicblock *b = *(--sp); + if (b->b_next && !b->b_nofallthrough) { + if (b->b_next->b_predecessors == 0) { + *sp++ = b->b_next; + } + b->b_next->b_predecessors++; + } + for (int i = 0; i < b->b_iused; i++) { + basicblock *target; + struct instr *instr = &b->b_instr[i]; + if (is_jump(instr) || is_block_push(instr)) { + target = instr->i_target; + if (target->b_predecessors == 0) { + *sp++ = target; + } + target->b_predecessors++; + } + } + } + PyObject_Free(stack); + return 0; +} + +static void +eliminate_empty_basic_blocks(basicblock *entry) { + /* Eliminate empty blocks */ + for (basicblock *b = entry; b != NULL; b = b->b_next) { + basicblock *next = b->b_next; + if (next) { + while (next->b_iused == 0 && next->b_next) { + next = next->b_next; + } + b->b_next = next; + } + } + for (basicblock *b = entry; b != NULL; b = b->b_next) { + if (b->b_iused == 0) { + continue; + } + if (is_jump(&b->b_instr[b->b_iused-1])) { + basicblock *target = b->b_instr[b->b_iused-1].i_target; + while (target->b_iused == 0) { + target = target->b_next; + } + b->b_instr[b->b_iused-1].i_target = target; + } + } +} + + +/* If an instruction has no line number, but it's predecessor in the BB does, + * then copy the line number. If a successor block has no line number, and only + * one predecessor, then inherit the line number. + * This ensures that all exit blocks (with one predecessor) receive a line number. + * Also reduces the size of the line number table, + * but has no impact on the generated line number events. + */ +static void +propagate_line_numbers(struct assembler *a) { + for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { + if (b->b_iused == 0) { + continue; + } + + // Not a real instruction, only to store positions + // from previous instructions and propagate them. + struct instr prev_instr = { + .i_lineno = -1, + .i_col_offset = -1, + .i_end_lineno = -1, + .i_end_col_offset = -1, + }; + for (int i = 0; i < b->b_iused; i++) { + if (b->b_instr[i].i_lineno < 0) { + COPY_INSTR_LOC(prev_instr, b->b_instr[i]); + } + else { + COPY_INSTR_LOC(b->b_instr[i], prev_instr); + } + } + if (!b->b_nofallthrough && b->b_next->b_predecessors == 1) { + assert(b->b_next->b_iused); + if (b->b_next->b_instr[0].i_lineno < 0) { + COPY_INSTR_LOC(prev_instr, b->b_next->b_instr[0]); + } + } + if (is_jump(&b->b_instr[b->b_iused-1])) { + basicblock *target = b->b_instr[b->b_iused-1].i_target; + if (target->b_predecessors == 1) { + if (target->b_instr[0].i_lineno < 0) { + COPY_INSTR_LOC(prev_instr, target->b_instr[0]); + } + } + } + } +} + +/* Perform optimizations on a control flow graph. + The consts object should still be in list form to allow new constants + to be appended. + + All transformations keep the code size the same or smaller. + For those that reduce size, the gaps are initially filled with + NOPs. Later those NOPs are removed. +*/ + +static int +optimize_cfg(struct compiler *c, struct assembler *a, PyObject *consts) +{ + for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { + if (optimize_basic_block(c, b, consts)) { + return -1; + } + clean_basic_block(b); + assert(b->b_predecessors == 0); + } + for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { + if (extend_block(b)) { + return -1; + } + } + if (mark_reachable(a)) { + return -1; + } + /* Delete unreachable instructions */ + for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { + if (b->b_predecessors == 0) { + b->b_iused = 0; + b->b_nofallthrough = 0; + } + } + eliminate_empty_basic_blocks(a->a_entry); + for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { + clean_basic_block(b); + } + /* Delete jump instructions made redundant by previous step. If a non-empty + block ends with a jump instruction, check if the next non-empty block + reached through normal flow control is the target of that jump. If it + is, then the jump instruction is redundant and can be deleted. + */ + int maybe_empty_blocks = 0; + for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { + if (b->b_iused > 0) { + struct instr *b_last_instr = &b->b_instr[b->b_iused - 1]; + assert(!IS_ASSEMBLER_OPCODE(b_last_instr->i_opcode)); + if (b_last_instr->i_opcode == JUMP || + b_last_instr->i_opcode == JUMP_NO_INTERRUPT) { + if (b_last_instr->i_target == b->b_next) { + assert(b->b_next->b_iused); + b->b_nofallthrough = 0; + b_last_instr->i_opcode = NOP; + maybe_empty_blocks = 1; + } + } + } + } + if (maybe_empty_blocks) { + eliminate_empty_basic_blocks(a->a_entry); + } + return 0; +} + +// Remove trailing unused constants. +static int +trim_unused_consts(struct compiler *c, struct assembler *a, PyObject *consts) +{ + assert(PyList_CheckExact(consts)); + + // The first constant may be docstring; keep it always. + int max_const_index = 0; + for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) { + for (int i = 0; i < b->b_iused; i++) { + if ((b->b_instr[i].i_opcode == LOAD_CONST || + b->b_instr[i].i_opcode == KW_NAMES) && + b->b_instr[i].i_oparg > max_const_index) { + max_const_index = b->b_instr[i].i_oparg; + } + } + } + if (max_const_index+1 < PyList_GET_SIZE(consts)) { + //fprintf(stderr, "removing trailing consts: max=%d, size=%d\n", + // max_const_index, (int)PyList_GET_SIZE(consts)); + if (PyList_SetSlice(consts, max_const_index+1, + PyList_GET_SIZE(consts), NULL) < 0) { + return 1; + } + } + return 0; +} + +static inline int +is_exit_without_lineno(basicblock *b) { + if (!b->b_exit) { + return 0; + } + for (int i = 0; i < b->b_iused; i++) { + if (b->b_instr[i].i_lineno >= 0) { + return 0; + } + } + return 1; +} + +/* PEP 626 mandates that the f_lineno of a frame is correct + * after a frame terminates. It would be prohibitively expensive + * to continuously update the f_lineno field at runtime, + * so we make sure that all exiting instruction (raises and returns) + * have a valid line number, allowing us to compute f_lineno lazily. + * We can do this by duplicating the exit blocks without line number + * so that none have more than one predecessor. We can then safely + * copy the line number from the sole predecessor block. + */ +static int +duplicate_exits_without_lineno(struct compiler *c) +{ + /* Copy all exit blocks without line number that are targets of a jump. + */ + for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { + if (b->b_iused > 0 && is_jump(&b->b_instr[b->b_iused-1])) { + basicblock *target = b->b_instr[b->b_iused-1].i_target; + if (is_exit_without_lineno(target) && target->b_predecessors > 1) { + basicblock *new_target = compiler_copy_block(c, target); + if (new_target == NULL) { + return -1; + } + COPY_INSTR_LOC(b->b_instr[b->b_iused-1], new_target->b_instr[0]); + b->b_instr[b->b_iused-1].i_target = new_target; + target->b_predecessors--; + new_target->b_predecessors = 1; + new_target->b_next = target->b_next; + target->b_next = new_target; + } + } + } + /* Eliminate empty blocks */ + for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { + while (b->b_next && b->b_next->b_iused == 0) { + b->b_next = b->b_next->b_next; + } + } + /* Any remaining reachable exit blocks without line number can only be reached by + * fall through, and thus can only have a single predecessor */ + for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) { + if (!b->b_nofallthrough && b->b_next && b->b_iused > 0) { + if (is_exit_without_lineno(b->b_next)) { + assert(b->b_next->b_iused > 0); + COPY_INSTR_LOC(b->b_instr[b->b_iused-1], b->b_next->b_instr[0]); + } + } + } + return 0; +} + + +/* Retained for API compatibility. + * Optimization is now done in optimize_cfg */ + +PyObject * +PyCode_Optimize(PyObject *code, PyObject* Py_UNUSED(consts), + PyObject *Py_UNUSED(names), PyObject *Py_UNUSED(lnotab_obj)) +{ + Py_INCREF(code); + return code; +} |