diff options
author | Devtools Arcadia <arcadia-devtools@yandex-team.ru> | 2022-02-07 18:08:42 +0300 |
---|---|---|
committer | Devtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net> | 2022-02-07 18:08:42 +0300 |
commit | 1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch) | |
tree | e26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/tools/python3/src/Python/compile.c | |
download | ydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz |
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/tools/python3/src/Python/compile.c')
-rw-r--r-- | contrib/tools/python3/src/Python/compile.c | 6083 |
1 files changed, 6083 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Python/compile.c b/contrib/tools/python3/src/Python/compile.c new file mode 100644 index 0000000000..f426050cce --- /dev/null +++ b/contrib/tools/python3/src/Python/compile.c @@ -0,0 +1,6083 @@ +/* + * This file compiles an abstract syntax tree (AST) into Python bytecode. + * + * The primary entry point is PyAST_Compile(), which returns a + * PyCodeObject. The compiler makes several passes to build the code + * object: + * 1. Checks for future statements. See future.c + * 2. Builds a symbol table. See symtable.c. + * 3. Generate code for basic blocks. See compiler_mod() in this file. + * 4. Assemble the basic blocks into final code. See assemble() in + * this file. + * 5. Optimize the byte code (peephole optimizations). See peephole.c + * + * Note that compiler_mod() suggests module, but the module ast type + * (mod_ty) has cases for expressions and interactive statements. + * + * CAUTION: The VISIT_* macros abort the current function when they + * encounter a problem. So don't invoke them when there is memory + * which needs to be released. Code blocks are OK, as the compiler + * structure takes care of releasing those. Use the arena to manage + * objects. + */ + +#include "Python.h" + +#include "Python-ast.h" +#include "ast.h" +#include "code.h" +#include "symtable.h" +#include "opcode.h" +#include "wordcode_helpers.h" + +#define DEFAULT_BLOCK_SIZE 16 +#define DEFAULT_BLOCKS 8 +#define DEFAULT_CODE_SIZE 128 +#define DEFAULT_LNOTAB_SIZE 16 + +#define COMP_GENEXP 0 +#define COMP_LISTCOMP 1 +#define COMP_SETCOMP 2 +#define COMP_DICTCOMP 3 + +#define IS_TOP_LEVEL_AWAIT(c) ( \ + (c->c_flags->cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT) \ + && (c->u->u_ste->ste_type == ModuleBlock)) + +struct instr { + unsigned i_jabs : 1; + unsigned i_jrel : 1; + unsigned char i_opcode; + int i_oparg; + struct basicblock_ *i_target; /* target block (if jump instruction) */ + int i_lineno; +}; + +typedef struct basicblock_ { + /* Each basicblock in a compilation unit is linked via b_list in the + reverse order that the block are allocated. b_list points to the next + block, not to be confused with b_next, which is next by control flow. */ + struct basicblock_ *b_list; + /* number of instructions used */ + int b_iused; + /* length of instruction array (b_instr) */ + int b_ialloc; + /* pointer to an array of instructions, initially NULL */ + struct instr *b_instr; + /* If b_next is non-NULL, it is a pointer to the next + block reached by normal control flow. */ + struct basicblock_ *b_next; + /* b_seen is used to perform a DFS of basicblocks. */ + unsigned b_seen : 1; + /* b_return is true if a RETURN_VALUE opcode is inserted. */ + unsigned b_return : 1; + /* depth of stack upon entry of block, computed by stackdepth() */ + int b_startdepth; + /* instruction offset for block, computed by assemble_jump_offsets() */ + int b_offset; +} basicblock; + +/* fblockinfo tracks the current frame block. + +A frame block is used to handle loops, try/except, and try/finally. +It's called a frame block to distinguish it from a basic block in the +compiler IR. +*/ + +enum fblocktype { WHILE_LOOP, FOR_LOOP, TRY_EXCEPT, FINALLY_TRY, FINALLY_END, + WITH, ASYNC_WITH, HANDLER_CLEANUP, POP_VALUE, EXCEPTION_HANDLER }; + +struct fblockinfo { + enum fblocktype fb_type; + basicblock *fb_block; + /* (optional) type-specific exit or cleanup block */ + basicblock *fb_exit; + /* (optional) additional information required for unwinding */ + void *fb_datum; +}; + +enum { + COMPILER_SCOPE_MODULE, + COMPILER_SCOPE_CLASS, + COMPILER_SCOPE_FUNCTION, + COMPILER_SCOPE_ASYNC_FUNCTION, + COMPILER_SCOPE_LAMBDA, + COMPILER_SCOPE_COMPREHENSION, +}; + +/* The following items change on entry and exit of code blocks. + They must be saved and restored when returning to a block. +*/ +struct compiler_unit { + PySTEntryObject *u_ste; + + PyObject *u_name; + PyObject *u_qualname; /* dot-separated qualified name (lazy) */ + int u_scope_type; + + /* The following fields are dicts that map objects to + the index of them in co_XXX. The index is used as + the argument for opcodes that refer to those collections. + */ + PyObject *u_consts; /* all constants */ + PyObject *u_names; /* all names */ + PyObject *u_varnames; /* local variables */ + PyObject *u_cellvars; /* cell variables */ + PyObject *u_freevars; /* free variables */ + + PyObject *u_private; /* for private name mangling */ + + Py_ssize_t u_argcount; /* number of arguments for block */ + Py_ssize_t u_posonlyargcount; /* number of positional only arguments for block */ + Py_ssize_t u_kwonlyargcount; /* number of keyword only arguments for block */ + /* Pointer to the most recently allocated block. By following b_list + members, you can reach all early allocated blocks. */ + basicblock *u_blocks; + basicblock *u_curblock; /* pointer to current block */ + + int u_nfblocks; + struct fblockinfo u_fblock[CO_MAXBLOCKS]; + + int u_firstlineno; /* the first lineno of the block */ + int u_lineno; /* the lineno for the current stmt */ + int u_col_offset; /* the offset of the current stmt */ +}; + +/* This struct captures the global state of a compilation. + +The u pointer points to the current compilation unit, while units +for enclosing blocks are stored in c_stack. The u and c_stack are +managed by compiler_enter_scope() and compiler_exit_scope(). + +Note that we don't track recursion levels during compilation - the +task of detecting and rejecting excessive levels of nesting is +handled by the symbol analysis pass. + +*/ + +struct compiler { + PyObject *c_filename; + struct symtable *c_st; + PyFutureFeatures *c_future; /* pointer to module's __future__ */ + PyCompilerFlags *c_flags; + + int c_optimize; /* optimization level */ + int c_interactive; /* true if in interactive mode */ + int c_nestlevel; + int c_do_not_emit_bytecode; /* The compiler won't emit any bytecode + if this value is different from zero. + This can be used to temporarily visit + nodes without emitting bytecode to + check only errors. */ + + PyObject *c_const_cache; /* Python dict holding all constants, + including names tuple */ + struct compiler_unit *u; /* compiler state for current block */ + PyObject *c_stack; /* Python list holding compiler_unit ptrs */ + PyArena *c_arena; /* pointer to memory allocation arena */ +}; + +static int compiler_enter_scope(struct compiler *, identifier, int, void *, int); +static void compiler_free(struct compiler *); +static basicblock *compiler_new_block(struct compiler *); +static int compiler_next_instr(basicblock *); +static int compiler_addop(struct compiler *, int); +static int compiler_addop_i(struct compiler *, int, Py_ssize_t); +static int compiler_addop_j(struct compiler *, int, basicblock *, int); +static int compiler_error(struct compiler *, const char *); +static int compiler_warn(struct compiler *, const char *, ...); +static int compiler_nameop(struct compiler *, identifier, expr_context_ty); + +static PyCodeObject *compiler_mod(struct compiler *, mod_ty); +static int compiler_visit_stmt(struct compiler *, stmt_ty); +static int compiler_visit_keyword(struct compiler *, keyword_ty); +static int compiler_visit_expr(struct compiler *, expr_ty); +static int compiler_augassign(struct compiler *, stmt_ty); +static int compiler_annassign(struct compiler *, stmt_ty); +static int compiler_subscript(struct compiler *, expr_ty); +static int compiler_slice(struct compiler *, expr_ty); + +static int inplace_binop(operator_ty); +static int are_all_items_const(asdl_seq *, Py_ssize_t, Py_ssize_t); +static int expr_constant(expr_ty); + +static int compiler_with(struct compiler *, stmt_ty, int); +static int compiler_async_with(struct compiler *, stmt_ty, int); +static int compiler_async_for(struct compiler *, stmt_ty); +static int compiler_call_helper(struct compiler *c, int n, + asdl_seq *args, + asdl_seq *keywords); +static int compiler_try_except(struct compiler *, stmt_ty); +static int compiler_set_qualname(struct compiler *); + +static int compiler_sync_comprehension_generator( + struct compiler *c, + asdl_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type); + +static int compiler_async_comprehension_generator( + struct compiler *c, + asdl_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type); + +static PyCodeObject *assemble(struct compiler *, int addNone); +static PyObject *__doc__, *__annotations__; + +#define CAPSULE_NAME "compile.c compiler unit" + +PyObject * +_Py_Mangle(PyObject *privateobj, PyObject *ident) +{ + /* Name mangling: __private becomes _classname__private. + This is independent from how the name is used. */ + PyObject *result; + size_t nlen, plen, ipriv; + Py_UCS4 maxchar; + if (privateobj == NULL || !PyUnicode_Check(privateobj) || + PyUnicode_READ_CHAR(ident, 0) != '_' || + PyUnicode_READ_CHAR(ident, 1) != '_') { + Py_INCREF(ident); + return ident; + } + nlen = PyUnicode_GET_LENGTH(ident); + plen = PyUnicode_GET_LENGTH(privateobj); + /* Don't mangle __id__ or names with dots. + + The only time a name with a dot can occur is when + we are compiling an import statement that has a + package name. + + TODO(jhylton): Decide whether we want to support + mangling of the module name, e.g. __M.X. + */ + if ((PyUnicode_READ_CHAR(ident, nlen-1) == '_' && + PyUnicode_READ_CHAR(ident, nlen-2) == '_') || + PyUnicode_FindChar(ident, '.', 0, nlen, 1) != -1) { + Py_INCREF(ident); + return ident; /* Don't mangle __whatever__ */ + } + /* Strip leading underscores from class name */ + ipriv = 0; + while (PyUnicode_READ_CHAR(privateobj, ipriv) == '_') + ipriv++; + if (ipriv == plen) { + Py_INCREF(ident); + return ident; /* Don't mangle if class is just underscores */ + } + plen -= ipriv; + + if (plen + nlen >= PY_SSIZE_T_MAX - 1) { + PyErr_SetString(PyExc_OverflowError, + "private identifier too large to be mangled"); + return NULL; + } + + maxchar = PyUnicode_MAX_CHAR_VALUE(ident); + if (PyUnicode_MAX_CHAR_VALUE(privateobj) > maxchar) + maxchar = PyUnicode_MAX_CHAR_VALUE(privateobj); + + result = PyUnicode_New(1 + nlen + plen, maxchar); + if (!result) + return 0; + /* ident = "_" + priv[ipriv:] + ident # i.e. 1+plen+nlen bytes */ + PyUnicode_WRITE(PyUnicode_KIND(result), PyUnicode_DATA(result), 0, '_'); + if (PyUnicode_CopyCharacters(result, 1, privateobj, ipriv, plen) < 0) { + Py_DECREF(result); + return NULL; + } + if (PyUnicode_CopyCharacters(result, plen+1, ident, 0, nlen) < 0) { + Py_DECREF(result); + return NULL; + } + assert(_PyUnicode_CheckConsistency(result, 1)); + return result; +} + +static int +compiler_init(struct compiler *c) +{ + memset(c, 0, sizeof(struct compiler)); + + c->c_const_cache = PyDict_New(); + if (!c->c_const_cache) { + return 0; + } + + c->c_stack = PyList_New(0); + if (!c->c_stack) { + Py_CLEAR(c->c_const_cache); + return 0; + } + + return 1; +} + +PyCodeObject * +PyAST_CompileObject(mod_ty mod, PyObject *filename, PyCompilerFlags *flags, + int optimize, PyArena *arena) +{ + struct compiler c; + PyCodeObject *co = NULL; + PyCompilerFlags local_flags = _PyCompilerFlags_INIT; + int merged; + + if (!__doc__) { + __doc__ = PyUnicode_InternFromString("__doc__"); + if (!__doc__) + return NULL; + } + if (!__annotations__) { + __annotations__ = PyUnicode_InternFromString("__annotations__"); + if (!__annotations__) + return NULL; + } + if (!compiler_init(&c)) + return NULL; + Py_INCREF(filename); + c.c_filename = filename; + c.c_arena = arena; + c.c_future = PyFuture_FromASTObject(mod, filename); + if (c.c_future == NULL) + goto finally; + if (!flags) { + flags = &local_flags; + } + merged = c.c_future->ff_features | flags->cf_flags; + c.c_future->ff_features = merged; + flags->cf_flags = merged; + c.c_flags = flags; + c.c_optimize = (optimize == -1) ? _Py_GetConfig()->optimization_level : optimize; + c.c_nestlevel = 0; + c.c_do_not_emit_bytecode = 0; + + _PyASTOptimizeState state; + state.optimize = c.c_optimize; + state.ff_features = merged; + + if (!_PyAST_Optimize(mod, arena, &state)) { + goto finally; + } + + c.c_st = PySymtable_BuildObject(mod, filename, c.c_future); + if (c.c_st == NULL) { + if (!PyErr_Occurred()) + PyErr_SetString(PyExc_SystemError, "no symtable"); + goto finally; + } + + co = compiler_mod(&c, mod); + + finally: + compiler_free(&c); + assert(co || PyErr_Occurred()); + return co; +} + +PyCodeObject * +PyAST_CompileEx(mod_ty mod, const char *filename_str, PyCompilerFlags *flags, + int optimize, PyArena *arena) +{ + PyObject *filename; + PyCodeObject *co; + filename = PyUnicode_DecodeFSDefault(filename_str); + if (filename == NULL) + return NULL; + co = PyAST_CompileObject(mod, filename, flags, optimize, arena); + Py_DECREF(filename); + return co; + +} + +PyCodeObject * +PyNode_Compile(struct _node *n, const char *filename) +{ + PyCodeObject *co = NULL; + mod_ty mod; + PyArena *arena = PyArena_New(); + if (!arena) + return NULL; + mod = PyAST_FromNode(n, NULL, filename, arena); + if (mod) + co = PyAST_Compile(mod, filename, NULL, arena); + PyArena_Free(arena); + return co; +} + +static void +compiler_free(struct compiler *c) +{ + if (c->c_st) + PySymtable_Free(c->c_st); + if (c->c_future) + PyObject_Free(c->c_future); + Py_XDECREF(c->c_filename); + Py_DECREF(c->c_const_cache); + Py_DECREF(c->c_stack); +} + +static PyObject * +list2dict(PyObject *list) +{ + Py_ssize_t i, n; + PyObject *v, *k; + PyObject *dict = PyDict_New(); + if (!dict) return NULL; + + n = PyList_Size(list); + for (i = 0; i < n; i++) { + v = PyLong_FromSsize_t(i); + if (!v) { + Py_DECREF(dict); + return NULL; + } + k = PyList_GET_ITEM(list, i); + if (PyDict_SetItem(dict, k, v) < 0) { + Py_DECREF(v); + Py_DECREF(dict); + return NULL; + } + Py_DECREF(v); + } + return dict; +} + +/* Return new dict containing names from src that match scope(s). + +src is a symbol table dictionary. If the scope of a name matches +either scope_type or flag is set, insert it into the new dict. The +values are integers, starting at offset and increasing by one for +each key. +*/ + +static PyObject * +dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset) +{ + Py_ssize_t i = offset, scope, num_keys, key_i; + PyObject *k, *v, *dest = PyDict_New(); + PyObject *sorted_keys; + + assert(offset >= 0); + if (dest == NULL) + return NULL; + + /* Sort the keys so that we have a deterministic order on the indexes + saved in the returned dictionary. These indexes are used as indexes + into the free and cell var storage. Therefore if they aren't + deterministic, then the generated bytecode is not deterministic. + */ + sorted_keys = PyDict_Keys(src); + if (sorted_keys == NULL) + return NULL; + if (PyList_Sort(sorted_keys) != 0) { + Py_DECREF(sorted_keys); + return NULL; + } + num_keys = PyList_GET_SIZE(sorted_keys); + + for (key_i = 0; key_i < num_keys; key_i++) { + /* XXX this should probably be a macro in symtable.h */ + long vi; + k = PyList_GET_ITEM(sorted_keys, key_i); + v = PyDict_GetItem(src, k); + assert(PyLong_Check(v)); + vi = PyLong_AS_LONG(v); + scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK; + + if (scope == scope_type || vi & flag) { + PyObject *item = PyLong_FromSsize_t(i); + if (item == NULL) { + Py_DECREF(sorted_keys); + Py_DECREF(dest); + return NULL; + } + i++; + if (PyDict_SetItem(dest, k, item) < 0) { + Py_DECREF(sorted_keys); + Py_DECREF(item); + Py_DECREF(dest); + return NULL; + } + Py_DECREF(item); + } + } + Py_DECREF(sorted_keys); + return dest; +} + +static void +compiler_unit_check(struct compiler_unit *u) +{ + basicblock *block; + for (block = u->u_blocks; block != NULL; block = block->b_list) { + assert((uintptr_t)block != 0xcbcbcbcbU); + assert((uintptr_t)block != 0xfbfbfbfbU); + assert((uintptr_t)block != 0xdbdbdbdbU); + if (block->b_instr != NULL) { + assert(block->b_ialloc > 0); + assert(block->b_iused > 0); + assert(block->b_ialloc >= block->b_iused); + } + else { + assert (block->b_iused == 0); + assert (block->b_ialloc == 0); + } + } +} + +static void +compiler_unit_free(struct compiler_unit *u) +{ + basicblock *b, *next; + + compiler_unit_check(u); + b = u->u_blocks; + while (b != NULL) { + if (b->b_instr) + PyObject_Free((void *)b->b_instr); + next = b->b_list; + PyObject_Free((void *)b); + b = next; + } + Py_CLEAR(u->u_ste); + Py_CLEAR(u->u_name); + Py_CLEAR(u->u_qualname); + Py_CLEAR(u->u_consts); + Py_CLEAR(u->u_names); + Py_CLEAR(u->u_varnames); + Py_CLEAR(u->u_freevars); + Py_CLEAR(u->u_cellvars); + Py_CLEAR(u->u_private); + PyObject_Free(u); +} + +static int +compiler_enter_scope(struct compiler *c, identifier name, + int scope_type, void *key, int lineno) +{ + struct compiler_unit *u; + basicblock *block; + + u = (struct compiler_unit *)PyObject_Calloc(1, sizeof( + struct compiler_unit)); + if (!u) { + PyErr_NoMemory(); + return 0; + } + u->u_scope_type = scope_type; + u->u_argcount = 0; + u->u_posonlyargcount = 0; + u->u_kwonlyargcount = 0; + u->u_ste = PySymtable_Lookup(c->c_st, key); + if (!u->u_ste) { + compiler_unit_free(u); + return 0; + } + Py_INCREF(name); + u->u_name = name; + u->u_varnames = list2dict(u->u_ste->ste_varnames); + u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0); + if (!u->u_varnames || !u->u_cellvars) { + compiler_unit_free(u); + return 0; + } + if (u->u_ste->ste_needs_class_closure) { + /* Cook up an implicit __class__ cell. */ + _Py_IDENTIFIER(__class__); + PyObject *name; + int res; + assert(u->u_scope_type == COMPILER_SCOPE_CLASS); + assert(PyDict_GET_SIZE(u->u_cellvars) == 0); + name = _PyUnicode_FromId(&PyId___class__); + if (!name) { + compiler_unit_free(u); + return 0; + } + res = PyDict_SetItem(u->u_cellvars, name, _PyLong_Zero); + if (res < 0) { + compiler_unit_free(u); + return 0; + } + } + + u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS, + PyDict_GET_SIZE(u->u_cellvars)); + if (!u->u_freevars) { + compiler_unit_free(u); + return 0; + } + + u->u_blocks = NULL; + u->u_nfblocks = 0; + u->u_firstlineno = lineno; + u->u_lineno = 0; + u->u_col_offset = 0; + u->u_consts = PyDict_New(); + if (!u->u_consts) { + compiler_unit_free(u); + return 0; + } + u->u_names = PyDict_New(); + if (!u->u_names) { + compiler_unit_free(u); + return 0; + } + + u->u_private = NULL; + + /* Push the old compiler_unit on the stack. */ + if (c->u) { + PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL); + if (!capsule || PyList_Append(c->c_stack, capsule) < 0) { + Py_XDECREF(capsule); + compiler_unit_free(u); + return 0; + } + Py_DECREF(capsule); + u->u_private = c->u->u_private; + Py_XINCREF(u->u_private); + } + c->u = u; + + c->c_nestlevel++; + + block = compiler_new_block(c); + if (block == NULL) + return 0; + c->u->u_curblock = block; + + if (u->u_scope_type != COMPILER_SCOPE_MODULE) { + if (!compiler_set_qualname(c)) + return 0; + } + + return 1; +} + +static void +compiler_exit_scope(struct compiler *c) +{ + Py_ssize_t n; + PyObject *capsule; + + c->c_nestlevel--; + compiler_unit_free(c->u); + /* Restore c->u to the parent unit. */ + n = PyList_GET_SIZE(c->c_stack) - 1; + if (n >= 0) { + capsule = PyList_GET_ITEM(c->c_stack, n); + c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME); + assert(c->u); + /* we are deleting from a list so this really shouldn't fail */ + if (PySequence_DelItem(c->c_stack, n) < 0) + Py_FatalError("compiler_exit_scope()"); + compiler_unit_check(c->u); + } + else + c->u = NULL; + +} + +static int +compiler_set_qualname(struct compiler *c) +{ + _Py_static_string(dot, "."); + _Py_static_string(dot_locals, ".<locals>"); + Py_ssize_t stack_size; + struct compiler_unit *u = c->u; + PyObject *name, *base, *dot_str, *dot_locals_str; + + base = NULL; + stack_size = PyList_GET_SIZE(c->c_stack); + assert(stack_size >= 1); + if (stack_size > 1) { + int scope, force_global = 0; + struct compiler_unit *parent; + PyObject *mangled, *capsule; + + capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1); + parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME); + assert(parent); + + if (u->u_scope_type == COMPILER_SCOPE_FUNCTION + || u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION + || u->u_scope_type == COMPILER_SCOPE_CLASS) { + assert(u->u_name); + mangled = _Py_Mangle(parent->u_private, u->u_name); + if (!mangled) + return 0; + scope = PyST_GetScope(parent->u_ste, mangled); + Py_DECREF(mangled); + assert(scope != GLOBAL_IMPLICIT); + if (scope == GLOBAL_EXPLICIT) + force_global = 1; + } + + if (!force_global) { + if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION + || parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION + || parent->u_scope_type == COMPILER_SCOPE_LAMBDA) { + dot_locals_str = _PyUnicode_FromId(&dot_locals); + if (dot_locals_str == NULL) + return 0; + base = PyUnicode_Concat(parent->u_qualname, dot_locals_str); + if (base == NULL) + return 0; + } + else { + Py_INCREF(parent->u_qualname); + base = parent->u_qualname; + } + } + } + + if (base != NULL) { + dot_str = _PyUnicode_FromId(&dot); + if (dot_str == NULL) { + Py_DECREF(base); + return 0; + } + name = PyUnicode_Concat(base, dot_str); + Py_DECREF(base); + if (name == NULL) + return 0; + PyUnicode_Append(&name, u->u_name); + if (name == NULL) + return 0; + } + else { + Py_INCREF(u->u_name); + name = u->u_name; + } + u->u_qualname = name; + + return 1; +} + + +/* Allocate a new block and return a pointer to it. + Returns NULL on error. +*/ + +static basicblock * +compiler_new_block(struct compiler *c) +{ + basicblock *b; + struct compiler_unit *u; + + u = c->u; + b = (basicblock *)PyObject_Calloc(1, sizeof(basicblock)); + if (b == NULL) { + PyErr_NoMemory(); + return NULL; + } + /* Extend the singly linked list of blocks with new block. */ + b->b_list = u->u_blocks; + u->u_blocks = b; + return b; +} + +static basicblock * +compiler_next_block(struct compiler *c) +{ + basicblock *block = compiler_new_block(c); + if (block == NULL) + return NULL; + c->u->u_curblock->b_next = block; + c->u->u_curblock = block; + return block; +} + +static basicblock * +compiler_use_next_block(struct compiler *c, basicblock *block) +{ + assert(block != NULL); + c->u->u_curblock->b_next = block; + c->u->u_curblock = block; + return block; +} + +/* Returns the offset of the next instruction in the current block's + b_instr array. Resizes the b_instr as necessary. + Returns -1 on failure. +*/ + +static int +compiler_next_instr(basicblock *b) +{ + assert(b != NULL); + if (b->b_instr == NULL) { + b->b_instr = (struct instr *)PyObject_Calloc( + DEFAULT_BLOCK_SIZE, sizeof(struct instr)); + if (b->b_instr == NULL) { + PyErr_NoMemory(); + return -1; + } + b->b_ialloc = DEFAULT_BLOCK_SIZE; + } + else if (b->b_iused == b->b_ialloc) { + struct instr *tmp; + size_t oldsize, newsize; + oldsize = b->b_ialloc * sizeof(struct instr); + newsize = oldsize << 1; + + if (oldsize > (SIZE_MAX >> 1)) { + PyErr_NoMemory(); + return -1; + } + + if (newsize == 0) { + PyErr_NoMemory(); + return -1; + } + b->b_ialloc <<= 1; + tmp = (struct instr *)PyObject_Realloc( + (void *)b->b_instr, newsize); + if (tmp == NULL) { + PyErr_NoMemory(); + return -1; + } + b->b_instr = tmp; + memset((char *)b->b_instr + oldsize, 0, newsize - oldsize); + } + return b->b_iused++; +} + +/* Set the line number and column offset for the following instructions. + + The line number is reset in the following cases: + - when entering a new scope + - on each statement + - on each expression and sub-expression + - before the "except" and "finally" clauses +*/ + +#define SET_LOC(c, x) \ + (c)->u->u_lineno = (x)->lineno; \ + (c)->u->u_col_offset = (x)->col_offset; + +/* Return the stack effect of opcode with argument oparg. + + Some opcodes have different stack effect when jump to the target and + when not jump. The 'jump' parameter specifies the case: + + * 0 -- when not jump + * 1 -- when jump + * -1 -- maximal + */ +/* XXX Make the stack effect of WITH_CLEANUP_START and + WITH_CLEANUP_FINISH deterministic. */ +static int +stack_effect(int opcode, int oparg, int jump) +{ + switch (opcode) { + case NOP: + case EXTENDED_ARG: + return 0; + + /* Stack manipulation */ + case POP_TOP: + return -1; + case ROT_TWO: + case ROT_THREE: + case ROT_FOUR: + return 0; + case DUP_TOP: + return 1; + case DUP_TOP_TWO: + return 2; + + /* Unary operators */ + case UNARY_POSITIVE: + case UNARY_NEGATIVE: + case UNARY_NOT: + case UNARY_INVERT: + return 0; + + case SET_ADD: + case LIST_APPEND: + return -1; + case MAP_ADD: + return -2; + + /* Binary operators */ + case BINARY_POWER: + case BINARY_MULTIPLY: + case BINARY_MATRIX_MULTIPLY: + case BINARY_MODULO: + case BINARY_ADD: + case BINARY_SUBTRACT: + case BINARY_SUBSCR: + case BINARY_FLOOR_DIVIDE: + case BINARY_TRUE_DIVIDE: + return -1; + case INPLACE_FLOOR_DIVIDE: + case INPLACE_TRUE_DIVIDE: + return -1; + + case INPLACE_ADD: + case INPLACE_SUBTRACT: + case INPLACE_MULTIPLY: + case INPLACE_MATRIX_MULTIPLY: + case INPLACE_MODULO: + return -1; + case STORE_SUBSCR: + return -3; + case DELETE_SUBSCR: + return -2; + + case BINARY_LSHIFT: + case BINARY_RSHIFT: + case BINARY_AND: + case BINARY_XOR: + case BINARY_OR: + return -1; + case INPLACE_POWER: + return -1; + case GET_ITER: + return 0; + + case PRINT_EXPR: + return -1; + case LOAD_BUILD_CLASS: + return 1; + case INPLACE_LSHIFT: + case INPLACE_RSHIFT: + case INPLACE_AND: + case INPLACE_XOR: + case INPLACE_OR: + return -1; + + case SETUP_WITH: + /* 1 in the normal flow. + * Restore the stack position and push 6 values before jumping to + * the handler if an exception be raised. */ + return jump ? 6 : 1; + case RETURN_VALUE: + return -1; + case IMPORT_STAR: + return -1; + case SETUP_ANNOTATIONS: + return 0; + case YIELD_VALUE: + return 0; + case YIELD_FROM: + return -1; + case POP_BLOCK: + return 0; + case POP_EXCEPT: + return -3; + + case STORE_NAME: + return -1; + case DELETE_NAME: + return 0; + case UNPACK_SEQUENCE: + return oparg-1; + case UNPACK_EX: + return (oparg&0xFF) + (oparg>>8); + case FOR_ITER: + /* -1 at end of iterator, 1 if continue iterating. */ + return jump > 0 ? -1 : 1; + + case STORE_ATTR: + return -2; + case DELETE_ATTR: + return -1; + case STORE_GLOBAL: + return -1; + case DELETE_GLOBAL: + return 0; + case LOAD_CONST: + return 1; + case LOAD_NAME: + return 1; + case BUILD_TUPLE: + case BUILD_LIST: + case BUILD_SET: + case BUILD_STRING: + return 1-oparg; + case BUILD_MAP: + return 1 - 2*oparg; + case BUILD_CONST_KEY_MAP: + return -oparg; + case LOAD_ATTR: + return 0; + case COMPARE_OP: + case IS_OP: + case CONTAINS_OP: + return -1; + case JUMP_IF_NOT_EXC_MATCH: + return -2; + case IMPORT_NAME: + return -1; + case IMPORT_FROM: + return 1; + + /* Jumps */ + case JUMP_FORWARD: + case JUMP_ABSOLUTE: + return 0; + + case JUMP_IF_TRUE_OR_POP: + case JUMP_IF_FALSE_OR_POP: + return jump ? 0 : -1; + + case POP_JUMP_IF_FALSE: + case POP_JUMP_IF_TRUE: + return -1; + + case LOAD_GLOBAL: + return 1; + + /* Exception handling */ + case SETUP_FINALLY: + /* 0 in the normal flow. + * Restore the stack position and push 6 values before jumping to + * the handler if an exception be raised. */ + return jump ? 6 : 0; + case RERAISE: + return -3; + + case WITH_EXCEPT_START: + return 1; + + case LOAD_FAST: + return 1; + case STORE_FAST: + return -1; + case DELETE_FAST: + return 0; + + case RAISE_VARARGS: + return -oparg; + + /* Functions and calls */ + case CALL_FUNCTION: + return -oparg; + case CALL_METHOD: + return -oparg-1; + case CALL_FUNCTION_KW: + return -oparg-1; + case CALL_FUNCTION_EX: + return -1 - ((oparg & 0x01) != 0); + case MAKE_FUNCTION: + return -1 - ((oparg & 0x01) != 0) - ((oparg & 0x02) != 0) - + ((oparg & 0x04) != 0) - ((oparg & 0x08) != 0); + case BUILD_SLICE: + if (oparg == 3) + return -2; + else + return -1; + + /* Closures */ + case LOAD_CLOSURE: + return 1; + case LOAD_DEREF: + case LOAD_CLASSDEREF: + return 1; + case STORE_DEREF: + return -1; + case DELETE_DEREF: + return 0; + + /* Iterators and generators */ + case GET_AWAITABLE: + return 0; + case SETUP_ASYNC_WITH: + /* 0 in the normal flow. + * Restore the stack position to the position before the result + * of __aenter__ and push 6 values before jumping to the handler + * if an exception be raised. */ + return jump ? -1 + 6 : 0; + case BEFORE_ASYNC_WITH: + return 1; + case GET_AITER: + return 0; + case GET_ANEXT: + return 1; + case GET_YIELD_FROM_ITER: + return 0; + case END_ASYNC_FOR: + return -7; + case FORMAT_VALUE: + /* If there's a fmt_spec on the stack, we go from 2->1, + else 1->1. */ + return (oparg & FVS_MASK) == FVS_HAVE_SPEC ? -1 : 0; + case LOAD_METHOD: + return 1; + case LOAD_ASSERTION_ERROR: + return 1; + case LIST_TO_TUPLE: + return 0; + case LIST_EXTEND: + case SET_UPDATE: + case DICT_MERGE: + case DICT_UPDATE: + return -1; + default: + return PY_INVALID_STACK_EFFECT; + } + return PY_INVALID_STACK_EFFECT; /* not reachable */ +} + +int +PyCompile_OpcodeStackEffectWithJump(int opcode, int oparg, int jump) +{ + return stack_effect(opcode, oparg, jump); +} + +int +PyCompile_OpcodeStackEffect(int opcode, int oparg) +{ + return stack_effect(opcode, oparg, -1); +} + +/* Add an opcode with no argument. + Returns 0 on failure, 1 on success. +*/ + +static int +compiler_addop(struct compiler *c, int opcode) +{ + basicblock *b; + struct instr *i; + int off; + assert(!HAS_ARG(opcode)); + if (c->c_do_not_emit_bytecode) { + return 1; + } + off = compiler_next_instr(c->u->u_curblock); + if (off < 0) + return 0; + b = c->u->u_curblock; + i = &b->b_instr[off]; + i->i_opcode = opcode; + i->i_oparg = 0; + if (opcode == RETURN_VALUE) + b->b_return = 1; + i->i_lineno = c->u->u_lineno; + return 1; +} + +static Py_ssize_t +compiler_add_o(PyObject *dict, PyObject *o) +{ + PyObject *v; + Py_ssize_t arg; + + v = PyDict_GetItemWithError(dict, o); + if (!v) { + if (PyErr_Occurred()) { + return -1; + } + arg = PyDict_GET_SIZE(dict); + v = PyLong_FromSsize_t(arg); + if (!v) { + return -1; + } + if (PyDict_SetItem(dict, o, v) < 0) { + Py_DECREF(v); + return -1; + } + Py_DECREF(v); + } + else + arg = PyLong_AsLong(v); + return arg; +} + +// Merge const *o* recursively and return constant key object. +static PyObject* +merge_consts_recursive(struct compiler *c, PyObject *o) +{ + // None and Ellipsis are singleton, and key is the singleton. + // No need to merge object and key. + if (o == Py_None || o == Py_Ellipsis) { + Py_INCREF(o); + return o; + } + + PyObject *key = _PyCode_ConstantKey(o); + if (key == NULL) { + return NULL; + } + + // t is borrowed reference + PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key); + if (t != key) { + // o is registered in c_const_cache. Just use it. + Py_XINCREF(t); + Py_DECREF(key); + return t; + } + + // We registered o in c_const_cache. + // When o is a tuple or frozenset, we want to merge its + // items too. + if (PyTuple_CheckExact(o)) { + Py_ssize_t len = PyTuple_GET_SIZE(o); + for (Py_ssize_t i = 0; i < len; i++) { + PyObject *item = PyTuple_GET_ITEM(o, i); + PyObject *u = merge_consts_recursive(c, item); + if (u == NULL) { + Py_DECREF(key); + return NULL; + } + + // See _PyCode_ConstantKey() + PyObject *v; // borrowed + if (PyTuple_CheckExact(u)) { + v = PyTuple_GET_ITEM(u, 1); + } + else { + v = u; + } + if (v != item) { + Py_INCREF(v); + PyTuple_SET_ITEM(o, i, v); + Py_DECREF(item); + } + + Py_DECREF(u); + } + } + else if (PyFrozenSet_CheckExact(o)) { + // *key* is tuple. And its first item is frozenset of + // constant keys. + // See _PyCode_ConstantKey() for detail. + assert(PyTuple_CheckExact(key)); + assert(PyTuple_GET_SIZE(key) == 2); + + Py_ssize_t len = PySet_GET_SIZE(o); + if (len == 0) { // empty frozenset should not be re-created. + return key; + } + PyObject *tuple = PyTuple_New(len); + if (tuple == NULL) { + Py_DECREF(key); + return NULL; + } + Py_ssize_t i = 0, pos = 0; + PyObject *item; + Py_hash_t hash; + while (_PySet_NextEntry(o, &pos, &item, &hash)) { + PyObject *k = merge_consts_recursive(c, item); + if (k == NULL) { + Py_DECREF(tuple); + Py_DECREF(key); + return NULL; + } + PyObject *u; + if (PyTuple_CheckExact(k)) { + u = PyTuple_GET_ITEM(k, 1); + Py_INCREF(u); + Py_DECREF(k); + } + else { + u = k; + } + PyTuple_SET_ITEM(tuple, i, u); // Steals reference of u. + i++; + } + + // Instead of rewriting o, we create new frozenset and embed in the + // key tuple. Caller should get merged frozenset from the key tuple. + PyObject *new = PyFrozenSet_New(tuple); + Py_DECREF(tuple); + if (new == NULL) { + Py_DECREF(key); + return NULL; + } + assert(PyTuple_GET_ITEM(key, 1) == o); + Py_DECREF(o); + PyTuple_SET_ITEM(key, 1, new); + } + + return key; +} + +static Py_ssize_t +compiler_add_const(struct compiler *c, PyObject *o) +{ + if (c->c_do_not_emit_bytecode) { + return 0; + } + + PyObject *key = merge_consts_recursive(c, o); + if (key == NULL) { + return -1; + } + + Py_ssize_t arg = compiler_add_o(c->u->u_consts, key); + Py_DECREF(key); + return arg; +} + +static int +compiler_addop_load_const(struct compiler *c, PyObject *o) +{ + if (c->c_do_not_emit_bytecode) { + return 1; + } + + Py_ssize_t arg = compiler_add_const(c, o); + if (arg < 0) + return 0; + return compiler_addop_i(c, LOAD_CONST, arg); +} + +static int +compiler_addop_o(struct compiler *c, int opcode, PyObject *dict, + PyObject *o) +{ + if (c->c_do_not_emit_bytecode) { + return 1; + } + + Py_ssize_t arg = compiler_add_o(dict, o); + if (arg < 0) + return 0; + return compiler_addop_i(c, opcode, arg); +} + +static int +compiler_addop_name(struct compiler *c, int opcode, PyObject *dict, + PyObject *o) +{ + Py_ssize_t arg; + + if (c->c_do_not_emit_bytecode) { + return 1; + } + + PyObject *mangled = _Py_Mangle(c->u->u_private, o); + if (!mangled) + return 0; + arg = compiler_add_o(dict, mangled); + Py_DECREF(mangled); + if (arg < 0) + return 0; + return compiler_addop_i(c, opcode, arg); +} + +/* Add an opcode with an integer argument. + Returns 0 on failure, 1 on success. +*/ + +static int +compiler_addop_i(struct compiler *c, int opcode, Py_ssize_t oparg) +{ + struct instr *i; + int off; + + if (c->c_do_not_emit_bytecode) { + return 1; + } + + /* oparg value is unsigned, but a signed C int is usually used to store + it in the C code (like Python/ceval.c). + + Limit to 32-bit signed C int (rather than INT_MAX) for portability. + + The argument of a concrete bytecode instruction is limited to 8-bit. + EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */ + assert(HAS_ARG(opcode)); + assert(0 <= oparg && oparg <= 2147483647); + + off = compiler_next_instr(c->u->u_curblock); + if (off < 0) + return 0; + i = &c->u->u_curblock->b_instr[off]; + i->i_opcode = opcode; + i->i_oparg = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int); + i->i_lineno = c->u->u_lineno; + return 1; +} + +static int +compiler_addop_j(struct compiler *c, int opcode, basicblock *b, int absolute) +{ + struct instr *i; + int off; + + if (c->c_do_not_emit_bytecode) { + return 1; + } + + assert(HAS_ARG(opcode)); + assert(b != NULL); + off = compiler_next_instr(c->u->u_curblock); + if (off < 0) + return 0; + i = &c->u->u_curblock->b_instr[off]; + i->i_opcode = opcode; + i->i_target = b; + if (absolute) + i->i_jabs = 1; + else + i->i_jrel = 1; + i->i_lineno = c->u->u_lineno; + return 1; +} + +/* NEXT_BLOCK() creates an implicit jump from the current block + to the new block. + + The returns inside this macro make it impossible to decref objects + created in the local function. Local objects should use the arena. +*/ +#define NEXT_BLOCK(C) { \ + if (compiler_next_block((C)) == NULL) \ + return 0; \ +} + +#define ADDOP(C, OP) { \ + if (!compiler_addop((C), (OP))) \ + return 0; \ +} + +#define ADDOP_IN_SCOPE(C, OP) { \ + if (!compiler_addop((C), (OP))) { \ + compiler_exit_scope(c); \ + return 0; \ + } \ +} + +#define ADDOP_LOAD_CONST(C, O) { \ + if (!compiler_addop_load_const((C), (O))) \ + return 0; \ +} + +/* Same as ADDOP_LOAD_CONST, but steals a reference. */ +#define ADDOP_LOAD_CONST_NEW(C, O) { \ + PyObject *__new_const = (O); \ + if (__new_const == NULL) { \ + return 0; \ + } \ + if (!compiler_addop_load_const((C), __new_const)) { \ + Py_DECREF(__new_const); \ + return 0; \ + } \ + Py_DECREF(__new_const); \ +} + +#define ADDOP_O(C, OP, O, TYPE) { \ + if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) \ + return 0; \ +} + +/* Same as ADDOP_O, but steals a reference. */ +#define ADDOP_N(C, OP, O, TYPE) { \ + if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) { \ + Py_DECREF((O)); \ + return 0; \ + } \ + Py_DECREF((O)); \ +} + +#define ADDOP_NAME(C, OP, O, TYPE) { \ + if (!compiler_addop_name((C), (OP), (C)->u->u_ ## TYPE, (O))) \ + return 0; \ +} + +#define ADDOP_I(C, OP, O) { \ + if (!compiler_addop_i((C), (OP), (O))) \ + return 0; \ +} + +#define ADDOP_JABS(C, OP, O) { \ + if (!compiler_addop_j((C), (OP), (O), 1)) \ + return 0; \ +} + +#define ADDOP_JREL(C, OP, O) { \ + if (!compiler_addop_j((C), (OP), (O), 0)) \ + return 0; \ +} + + +#define ADDOP_COMPARE(C, CMP) { \ + if (!compiler_addcompare((C), (cmpop_ty)(CMP))) \ + return 0; \ +} + +/* VISIT and VISIT_SEQ takes an ASDL type as their second argument. They use + the ASDL name to synthesize the name of the C type and the visit function. +*/ + +#define VISIT(C, TYPE, V) {\ + if (!compiler_visit_ ## TYPE((C), (V))) \ + return 0; \ +} + +#define VISIT_IN_SCOPE(C, TYPE, V) {\ + if (!compiler_visit_ ## TYPE((C), (V))) { \ + compiler_exit_scope(c); \ + return 0; \ + } \ +} + +#define VISIT_SLICE(C, V, CTX) {\ + if (!compiler_visit_slice((C), (V), (CTX))) \ + return 0; \ +} + +#define VISIT_SEQ(C, TYPE, SEQ) { \ + int _i; \ + asdl_seq *seq = (SEQ); /* avoid variable capture */ \ + for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \ + TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \ + if (!compiler_visit_ ## TYPE((C), elt)) \ + return 0; \ + } \ +} + +#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \ + int _i; \ + asdl_seq *seq = (SEQ); /* avoid variable capture */ \ + for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \ + TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \ + if (!compiler_visit_ ## TYPE((C), elt)) { \ + compiler_exit_scope(c); \ + return 0; \ + } \ + } \ +} + +/* These macros allows to check only for errors and not emmit bytecode + * while visiting nodes. +*/ + +#define BEGIN_DO_NOT_EMIT_BYTECODE { \ + c->c_do_not_emit_bytecode++; + +#define END_DO_NOT_EMIT_BYTECODE \ + c->c_do_not_emit_bytecode--; \ +} + +/* Search if variable annotations are present statically in a block. */ + +static int +find_ann(asdl_seq *stmts) +{ + int i, j, res = 0; + stmt_ty st; + + for (i = 0; i < asdl_seq_LEN(stmts); i++) { + st = (stmt_ty)asdl_seq_GET(stmts, i); + switch (st->kind) { + case AnnAssign_kind: + return 1; + case For_kind: + res = find_ann(st->v.For.body) || + find_ann(st->v.For.orelse); + break; + case AsyncFor_kind: + res = find_ann(st->v.AsyncFor.body) || + find_ann(st->v.AsyncFor.orelse); + break; + case While_kind: + res = find_ann(st->v.While.body) || + find_ann(st->v.While.orelse); + break; + case If_kind: + res = find_ann(st->v.If.body) || + find_ann(st->v.If.orelse); + break; + case With_kind: + res = find_ann(st->v.With.body); + break; + case AsyncWith_kind: + res = find_ann(st->v.AsyncWith.body); + break; + case Try_kind: + for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) { + excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( + st->v.Try.handlers, j); + if (find_ann(handler->v.ExceptHandler.body)) { + return 1; + } + } + res = find_ann(st->v.Try.body) || + find_ann(st->v.Try.finalbody) || + find_ann(st->v.Try.orelse); + break; + default: + res = 0; + } + if (res) { + break; + } + } + return res; +} + +/* + * Frame block handling functions + */ + +static int +compiler_push_fblock(struct compiler *c, enum fblocktype t, basicblock *b, + basicblock *exit, void *datum) +{ + struct fblockinfo *f; + if (c->u->u_nfblocks >= CO_MAXBLOCKS) { + return compiler_error(c, "too many statically nested blocks"); + } + f = &c->u->u_fblock[c->u->u_nfblocks++]; + f->fb_type = t; + f->fb_block = b; + f->fb_exit = exit; + f->fb_datum = datum; + return 1; +} + +static void +compiler_pop_fblock(struct compiler *c, enum fblocktype t, basicblock *b) +{ + struct compiler_unit *u = c->u; + assert(u->u_nfblocks > 0); + u->u_nfblocks--; + assert(u->u_fblock[u->u_nfblocks].fb_type == t); + assert(u->u_fblock[u->u_nfblocks].fb_block == b); +} + +static int +compiler_call_exit_with_nones(struct compiler *c) { + ADDOP_O(c, LOAD_CONST, Py_None, consts); + ADDOP(c, DUP_TOP); + ADDOP(c, DUP_TOP); + ADDOP_I(c, CALL_FUNCTION, 3); + return 1; +} + +/* Unwind a frame block. If preserve_tos is true, the TOS before + * popping the blocks will be restored afterwards, unless another + * return, break or continue is found. In which case, the TOS will + * be popped. + */ +static int +compiler_unwind_fblock(struct compiler *c, struct fblockinfo *info, + int preserve_tos) +{ + switch (info->fb_type) { + case WHILE_LOOP: + case EXCEPTION_HANDLER: + return 1; + + case FOR_LOOP: + /* Pop the iterator */ + if (preserve_tos) { + ADDOP(c, ROT_TWO); + } + ADDOP(c, POP_TOP); + return 1; + + case TRY_EXCEPT: + ADDOP(c, POP_BLOCK); + return 1; + + case FINALLY_TRY: + ADDOP(c, POP_BLOCK); + if (preserve_tos) { + if (!compiler_push_fblock(c, POP_VALUE, NULL, NULL, NULL)) { + return 0; + } + } + /* Emit the finally block, restoring the line number when done */ + int saved_lineno = c->u->u_lineno; + VISIT_SEQ(c, stmt, info->fb_datum); + c->u->u_lineno = saved_lineno; + if (preserve_tos) { + compiler_pop_fblock(c, POP_VALUE, NULL); + } + return 1; + + case FINALLY_END: + if (preserve_tos) { + ADDOP(c, ROT_FOUR); + } + ADDOP(c, POP_TOP); + ADDOP(c, POP_TOP); + ADDOP(c, POP_TOP); + if (preserve_tos) { + ADDOP(c, ROT_FOUR); + } + ADDOP(c, POP_EXCEPT); + return 1; + + case WITH: + case ASYNC_WITH: + ADDOP(c, POP_BLOCK); + if (preserve_tos) { + ADDOP(c, ROT_TWO); + } + if(!compiler_call_exit_with_nones(c)) { + return 0; + } + if (info->fb_type == ASYNC_WITH) { + ADDOP(c, GET_AWAITABLE); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP(c, YIELD_FROM); + } + ADDOP(c, POP_TOP); + return 1; + + case HANDLER_CLEANUP: + if (info->fb_datum) { + ADDOP(c, POP_BLOCK); + } + if (preserve_tos) { + ADDOP(c, ROT_FOUR); + } + ADDOP(c, POP_EXCEPT); + if (info->fb_datum) { + ADDOP_LOAD_CONST(c, Py_None); + compiler_nameop(c, info->fb_datum, Store); + compiler_nameop(c, info->fb_datum, Del); + } + return 1; + + case POP_VALUE: + if (preserve_tos) { + ADDOP(c, ROT_TWO); + } + ADDOP(c, POP_TOP); + return 1; + } + Py_UNREACHABLE(); +} + +/** Unwind block stack. If loop is not NULL, then stop when the first loop is encountered. */ +static int +compiler_unwind_fblock_stack(struct compiler *c, int preserve_tos, struct fblockinfo **loop) { + if (c->u->u_nfblocks == 0) { + return 1; + } + struct fblockinfo *top = &c->u->u_fblock[c->u->u_nfblocks-1]; + if (loop != NULL && (top->fb_type == WHILE_LOOP || top->fb_type == FOR_LOOP)) { + *loop = top; + return 1; + } + struct fblockinfo copy = *top; + c->u->u_nfblocks--; + if (!compiler_unwind_fblock(c, ©, preserve_tos)) { + return 0; + } + if (!compiler_unwind_fblock_stack(c, preserve_tos, loop)) { + return 0; + } + c->u->u_fblock[c->u->u_nfblocks] = copy; + c->u->u_nfblocks++; + return 1; +} + +/* Compile a sequence of statements, checking for a docstring + and for annotations. */ + +static int +compiler_body(struct compiler *c, asdl_seq *stmts) +{ + int i = 0; + stmt_ty st; + PyObject *docstring; + + /* Set current line number to the line number of first statement. + This way line number for SETUP_ANNOTATIONS will always + coincide with the line number of first "real" statement in module. + If body is empty, then lineno will be set later in assemble. */ + if (c->u->u_scope_type == COMPILER_SCOPE_MODULE && asdl_seq_LEN(stmts)) { + st = (stmt_ty)asdl_seq_GET(stmts, 0); + SET_LOC(c, st); + } + /* Every annotated class and module should have __annotations__. */ + if (find_ann(stmts)) { + ADDOP(c, SETUP_ANNOTATIONS); + } + if (!asdl_seq_LEN(stmts)) + return 1; + /* if not -OO mode, set docstring */ + if (c->c_optimize < 2) { + docstring = _PyAST_GetDocString(stmts); + if (docstring) { + i = 1; + st = (stmt_ty)asdl_seq_GET(stmts, 0); + assert(st->kind == Expr_kind); + VISIT(c, expr, st->v.Expr.value); + if (!compiler_nameop(c, __doc__, Store)) + return 0; + } + } + for (; i < asdl_seq_LEN(stmts); i++) + VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i)); + return 1; +} + +static PyCodeObject * +compiler_mod(struct compiler *c, mod_ty mod) +{ + PyCodeObject *co; + int addNone = 1; + static PyObject *module; + if (!module) { + module = PyUnicode_InternFromString("<module>"); + if (!module) + return NULL; + } + /* Use 0 for firstlineno initially, will fixup in assemble(). */ + if (!compiler_enter_scope(c, module, COMPILER_SCOPE_MODULE, mod, 0)) + return NULL; + switch (mod->kind) { + case Module_kind: + if (!compiler_body(c, mod->v.Module.body)) { + compiler_exit_scope(c); + return 0; + } + break; + case Interactive_kind: + if (find_ann(mod->v.Interactive.body)) { + ADDOP(c, SETUP_ANNOTATIONS); + } + c->c_interactive = 1; + VISIT_SEQ_IN_SCOPE(c, stmt, + mod->v.Interactive.body); + break; + case Expression_kind: + VISIT_IN_SCOPE(c, expr, mod->v.Expression.body); + addNone = 0; + break; + default: + PyErr_Format(PyExc_SystemError, + "module kind %d should not be possible", + mod->kind); + return 0; + } + co = assemble(c, addNone); + compiler_exit_scope(c); + return co; +} + +/* The test for LOCAL must come before the test for FREE in order to + handle classes where name is both local and free. The local var is + a method and the free var is a free var referenced within a method. +*/ + +static int +get_ref_type(struct compiler *c, PyObject *name) +{ + int scope; + if (c->u->u_scope_type == COMPILER_SCOPE_CLASS && + _PyUnicode_EqualToASCIIString(name, "__class__")) + return CELL; + scope = PyST_GetScope(c->u->u_ste, name); + if (scope == 0) { + _Py_FatalErrorFormat(__func__, + "unknown scope for %.100s in %.100s(%s)\n" + "symbols: %s\nlocals: %s\nglobals: %s", + PyUnicode_AsUTF8(name), + PyUnicode_AsUTF8(c->u->u_name), + PyUnicode_AsUTF8(PyObject_Repr(c->u->u_ste->ste_id)), + PyUnicode_AsUTF8(PyObject_Repr(c->u->u_ste->ste_symbols)), + PyUnicode_AsUTF8(PyObject_Repr(c->u->u_varnames)), + PyUnicode_AsUTF8(PyObject_Repr(c->u->u_names))); + } + + return scope; +} + +static int +compiler_lookup_arg(PyObject *dict, PyObject *name) +{ + PyObject *v; + v = PyDict_GetItem(dict, name); + if (v == NULL) + return -1; + return PyLong_AS_LONG(v); +} + +static int +compiler_make_closure(struct compiler *c, PyCodeObject *co, Py_ssize_t flags, PyObject *qualname) +{ + Py_ssize_t i, free = PyCode_GetNumFree(co); + if (qualname == NULL) + qualname = co->co_name; + + if (free) { + for (i = 0; i < free; ++i) { + /* Bypass com_addop_varname because it will generate + LOAD_DEREF but LOAD_CLOSURE is needed. + */ + PyObject *name = PyTuple_GET_ITEM(co->co_freevars, i); + int arg, reftype; + + /* Special case: If a class contains a method with a + free variable that has the same name as a method, + the name will be considered free *and* local in the + class. It should be handled by the closure, as + well as by the normal name lookup logic. + */ + reftype = get_ref_type(c, name); + if (reftype == CELL) + arg = compiler_lookup_arg(c->u->u_cellvars, name); + else /* (reftype == FREE) */ + arg = compiler_lookup_arg(c->u->u_freevars, name); + if (arg == -1) { + _Py_FatalErrorFormat(__func__, + "lookup %s in %s %d %d\n" + "freevars of %s: %s\n", + PyUnicode_AsUTF8(PyObject_Repr(name)), + PyUnicode_AsUTF8(c->u->u_name), + reftype, arg, + PyUnicode_AsUTF8(co->co_name), + PyUnicode_AsUTF8(PyObject_Repr(co->co_freevars))); + } + ADDOP_I(c, LOAD_CLOSURE, arg); + } + flags |= 0x08; + ADDOP_I(c, BUILD_TUPLE, free); + } + ADDOP_LOAD_CONST(c, (PyObject*)co); + ADDOP_LOAD_CONST(c, qualname); + ADDOP_I(c, MAKE_FUNCTION, flags); + return 1; +} + +static int +compiler_decorators(struct compiler *c, asdl_seq* decos) +{ + int i; + + if (!decos) + return 1; + + for (i = 0; i < asdl_seq_LEN(decos); i++) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i)); + } + return 1; +} + +static int +compiler_visit_kwonlydefaults(struct compiler *c, asdl_seq *kwonlyargs, + asdl_seq *kw_defaults) +{ + /* Push a dict of keyword-only default values. + + Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed. + */ + int i; + PyObject *keys = NULL; + + for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) { + arg_ty arg = asdl_seq_GET(kwonlyargs, i); + expr_ty default_ = asdl_seq_GET(kw_defaults, i); + if (default_) { + PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg); + if (!mangled) { + goto error; + } + if (keys == NULL) { + keys = PyList_New(1); + if (keys == NULL) { + Py_DECREF(mangled); + return 0; + } + PyList_SET_ITEM(keys, 0, mangled); + } + else { + int res = PyList_Append(keys, mangled); + Py_DECREF(mangled); + if (res == -1) { + goto error; + } + } + if (!compiler_visit_expr(c, default_)) { + goto error; + } + } + } + if (keys != NULL) { + Py_ssize_t default_count = PyList_GET_SIZE(keys); + PyObject *keys_tuple = PyList_AsTuple(keys); + Py_DECREF(keys); + ADDOP_LOAD_CONST_NEW(c, keys_tuple); + ADDOP_I(c, BUILD_CONST_KEY_MAP, default_count); + assert(default_count > 0); + return 1; + } + else { + return -1; + } + +error: + Py_XDECREF(keys); + return 0; +} + +static int +compiler_visit_annexpr(struct compiler *c, expr_ty annotation) +{ + ADDOP_LOAD_CONST_NEW(c, _PyAST_ExprAsUnicode(annotation)); + return 1; +} + +static int +compiler_visit_argannotation(struct compiler *c, identifier id, + expr_ty annotation, PyObject *names) +{ + if (annotation) { + PyObject *mangled; + if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) { + VISIT(c, annexpr, annotation) + } + else { + VISIT(c, expr, annotation); + } + mangled = _Py_Mangle(c->u->u_private, id); + if (!mangled) + return 0; + if (PyList_Append(names, mangled) < 0) { + Py_DECREF(mangled); + return 0; + } + Py_DECREF(mangled); + } + return 1; +} + +static int +compiler_visit_argannotations(struct compiler *c, asdl_seq* args, + PyObject *names) +{ + int i; + for (i = 0; i < asdl_seq_LEN(args); i++) { + arg_ty arg = (arg_ty)asdl_seq_GET(args, i); + if (!compiler_visit_argannotation( + c, + arg->arg, + arg->annotation, + names)) + return 0; + } + return 1; +} + +static int +compiler_visit_annotations(struct compiler *c, arguments_ty args, + expr_ty returns) +{ + /* Push arg annotation dict. + The expressions are evaluated out-of-order wrt the source code. + + Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed. + */ + static identifier return_str; + PyObject *names; + Py_ssize_t len; + names = PyList_New(0); + if (!names) + return 0; + + if (!compiler_visit_argannotations(c, args->args, names)) + goto error; + if (!compiler_visit_argannotations(c, args->posonlyargs, names)) + goto error; + if (args->vararg && args->vararg->annotation && + !compiler_visit_argannotation(c, args->vararg->arg, + args->vararg->annotation, names)) + goto error; + if (!compiler_visit_argannotations(c, args->kwonlyargs, names)) + goto error; + if (args->kwarg && args->kwarg->annotation && + !compiler_visit_argannotation(c, args->kwarg->arg, + args->kwarg->annotation, names)) + goto error; + + if (!return_str) { + return_str = PyUnicode_InternFromString("return"); + if (!return_str) + goto error; + } + if (!compiler_visit_argannotation(c, return_str, returns, names)) { + goto error; + } + + len = PyList_GET_SIZE(names); + if (len) { + PyObject *keytuple = PyList_AsTuple(names); + Py_DECREF(names); + ADDOP_LOAD_CONST_NEW(c, keytuple); + ADDOP_I(c, BUILD_CONST_KEY_MAP, len); + return 1; + } + else { + Py_DECREF(names); + return -1; + } + +error: + Py_DECREF(names); + return 0; +} + +static int +compiler_visit_defaults(struct compiler *c, arguments_ty args) +{ + VISIT_SEQ(c, expr, args->defaults); + ADDOP_I(c, BUILD_TUPLE, asdl_seq_LEN(args->defaults)); + return 1; +} + +static Py_ssize_t +compiler_default_arguments(struct compiler *c, arguments_ty args) +{ + Py_ssize_t funcflags = 0; + if (args->defaults && asdl_seq_LEN(args->defaults) > 0) { + if (!compiler_visit_defaults(c, args)) + return -1; + funcflags |= 0x01; + } + if (args->kwonlyargs) { + int res = compiler_visit_kwonlydefaults(c, args->kwonlyargs, + args->kw_defaults); + if (res == 0) { + return -1; + } + else if (res > 0) { + funcflags |= 0x02; + } + } + return funcflags; +} + +static int +forbidden_name(struct compiler *c, identifier name, expr_context_ty ctx) +{ + + if (ctx == Store && _PyUnicode_EqualToASCIIString(name, "__debug__")) { + compiler_error(c, "cannot assign to __debug__"); + return 1; + } + return 0; +} + +static int +compiler_check_debug_one_arg(struct compiler *c, arg_ty arg) +{ + if (arg != NULL) { + if (forbidden_name(c, arg->arg, Store)) + return 0; + } + return 1; +} + +static int +compiler_check_debug_args_seq(struct compiler *c, asdl_seq *args) +{ + if (args != NULL) { + for (Py_ssize_t i = 0, n = asdl_seq_LEN(args); i < n; i++) { + if (!compiler_check_debug_one_arg(c, asdl_seq_GET(args, i))) + return 0; + } + } + return 1; +} + +static int +compiler_check_debug_args(struct compiler *c, arguments_ty args) +{ + if (!compiler_check_debug_args_seq(c, args->posonlyargs)) + return 0; + if (!compiler_check_debug_args_seq(c, args->args)) + return 0; + if (!compiler_check_debug_one_arg(c, args->vararg)) + return 0; + if (!compiler_check_debug_args_seq(c, args->kwonlyargs)) + return 0; + if (!compiler_check_debug_one_arg(c, args->kwarg)) + return 0; + return 1; +} + +static int +compiler_function(struct compiler *c, stmt_ty s, int is_async) +{ + PyCodeObject *co; + PyObject *qualname, *docstring = NULL; + arguments_ty args; + expr_ty returns; + identifier name; + asdl_seq* decos; + asdl_seq *body; + Py_ssize_t i, funcflags; + int annotations; + int scope_type; + int firstlineno; + + if (is_async) { + assert(s->kind == AsyncFunctionDef_kind); + + args = s->v.AsyncFunctionDef.args; + returns = s->v.AsyncFunctionDef.returns; + decos = s->v.AsyncFunctionDef.decorator_list; + name = s->v.AsyncFunctionDef.name; + body = s->v.AsyncFunctionDef.body; + + scope_type = COMPILER_SCOPE_ASYNC_FUNCTION; + } else { + assert(s->kind == FunctionDef_kind); + + args = s->v.FunctionDef.args; + returns = s->v.FunctionDef.returns; + decos = s->v.FunctionDef.decorator_list; + name = s->v.FunctionDef.name; + body = s->v.FunctionDef.body; + + scope_type = COMPILER_SCOPE_FUNCTION; + } + + if (!compiler_check_debug_args(c, args)) + return 0; + + if (!compiler_decorators(c, decos)) + return 0; + + firstlineno = s->lineno; + if (asdl_seq_LEN(decos)) { + firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno; + } + + funcflags = compiler_default_arguments(c, args); + if (funcflags == -1) { + return 0; + } + + annotations = compiler_visit_annotations(c, args, returns); + if (annotations == 0) { + return 0; + } + else if (annotations > 0) { + funcflags |= 0x04; + } + + if (!compiler_enter_scope(c, name, scope_type, (void *)s, firstlineno)) { + return 0; + } + + /* if not -OO mode, add docstring */ + if (c->c_optimize < 2) { + docstring = _PyAST_GetDocString(body); + } + if (compiler_add_const(c, docstring ? docstring : Py_None) < 0) { + compiler_exit_scope(c); + return 0; + } + + c->u->u_argcount = asdl_seq_LEN(args->args); + c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs); + c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs); + VISIT_SEQ_IN_SCOPE(c, stmt, body); + co = assemble(c, 1); + qualname = c->u->u_qualname; + Py_INCREF(qualname); + compiler_exit_scope(c); + if (co == NULL) { + Py_XDECREF(qualname); + Py_XDECREF(co); + return 0; + } + + compiler_make_closure(c, co, funcflags, qualname); + Py_DECREF(qualname); + Py_DECREF(co); + + /* decorators */ + for (i = 0; i < asdl_seq_LEN(decos); i++) { + ADDOP_I(c, CALL_FUNCTION, 1); + } + + return compiler_nameop(c, name, Store); +} + +static int +compiler_class(struct compiler *c, stmt_ty s) +{ + PyCodeObject *co; + PyObject *str; + int i, firstlineno; + asdl_seq* decos = s->v.ClassDef.decorator_list; + + if (!compiler_decorators(c, decos)) + return 0; + + firstlineno = s->lineno; + if (asdl_seq_LEN(decos)) { + firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno; + } + + /* ultimately generate code for: + <name> = __build_class__(<func>, <name>, *<bases>, **<keywords>) + where: + <func> is a function/closure created from the class body; + it has a single argument (__locals__) where the dict + (or MutableSequence) representing the locals is passed + <name> is the class name + <bases> is the positional arguments and *varargs argument + <keywords> is the keyword arguments and **kwds argument + This borrows from compiler_call. + */ + + /* 1. compile the class body into a code object */ + if (!compiler_enter_scope(c, s->v.ClassDef.name, + COMPILER_SCOPE_CLASS, (void *)s, firstlineno)) + return 0; + /* this block represents what we do in the new scope */ + { + /* use the class name for name mangling */ + Py_INCREF(s->v.ClassDef.name); + Py_XSETREF(c->u->u_private, s->v.ClassDef.name); + /* load (global) __name__ ... */ + str = PyUnicode_InternFromString("__name__"); + if (!str || !compiler_nameop(c, str, Load)) { + Py_XDECREF(str); + compiler_exit_scope(c); + return 0; + } + Py_DECREF(str); + /* ... and store it as __module__ */ + str = PyUnicode_InternFromString("__module__"); + if (!str || !compiler_nameop(c, str, Store)) { + Py_XDECREF(str); + compiler_exit_scope(c); + return 0; + } + Py_DECREF(str); + assert(c->u->u_qualname); + ADDOP_LOAD_CONST(c, c->u->u_qualname); + str = PyUnicode_InternFromString("__qualname__"); + if (!str || !compiler_nameop(c, str, Store)) { + Py_XDECREF(str); + compiler_exit_scope(c); + return 0; + } + Py_DECREF(str); + /* compile the body proper */ + if (!compiler_body(c, s->v.ClassDef.body)) { + compiler_exit_scope(c); + return 0; + } + /* Return __classcell__ if it is referenced, otherwise return None */ + if (c->u->u_ste->ste_needs_class_closure) { + /* Store __classcell__ into class namespace & return it */ + str = PyUnicode_InternFromString("__class__"); + if (str == NULL) { + compiler_exit_scope(c); + return 0; + } + i = compiler_lookup_arg(c->u->u_cellvars, str); + Py_DECREF(str); + if (i < 0) { + compiler_exit_scope(c); + return 0; + } + assert(i == 0); + + ADDOP_I(c, LOAD_CLOSURE, i); + ADDOP(c, DUP_TOP); + str = PyUnicode_InternFromString("__classcell__"); + if (!str || !compiler_nameop(c, str, Store)) { + Py_XDECREF(str); + compiler_exit_scope(c); + return 0; + } + Py_DECREF(str); + } + else { + /* No methods referenced __class__, so just return None */ + assert(PyDict_GET_SIZE(c->u->u_cellvars) == 0); + ADDOP_LOAD_CONST(c, Py_None); + } + ADDOP_IN_SCOPE(c, RETURN_VALUE); + /* create the code object */ + co = assemble(c, 1); + } + /* leave the new scope */ + compiler_exit_scope(c); + if (co == NULL) + return 0; + + /* 2. load the 'build_class' function */ + ADDOP(c, LOAD_BUILD_CLASS); + + /* 3. load a function (or closure) made from the code object */ + compiler_make_closure(c, co, 0, NULL); + Py_DECREF(co); + + /* 4. load class name */ + ADDOP_LOAD_CONST(c, s->v.ClassDef.name); + + /* 5. generate the rest of the code for the call */ + if (!compiler_call_helper(c, 2, + s->v.ClassDef.bases, + s->v.ClassDef.keywords)) + return 0; + + /* 6. apply decorators */ + for (i = 0; i < asdl_seq_LEN(decos); i++) { + ADDOP_I(c, CALL_FUNCTION, 1); + } + + /* 7. store into <name> */ + if (!compiler_nameop(c, s->v.ClassDef.name, Store)) + return 0; + return 1; +} + +/* Return 0 if the expression is a constant value except named singletons. + Return 1 otherwise. */ +static int +check_is_arg(expr_ty e) +{ + if (e->kind != Constant_kind) { + return 1; + } + PyObject *value = e->v.Constant.value; + return (value == Py_None + || value == Py_False + || value == Py_True + || value == Py_Ellipsis); +} + +/* Check operands of identity chacks ("is" and "is not"). + Emit a warning if any operand is a constant except named singletons. + Return 0 on error. + */ +static int +check_compare(struct compiler *c, expr_ty e) +{ + Py_ssize_t i, n; + int left = check_is_arg(e->v.Compare.left); + n = asdl_seq_LEN(e->v.Compare.ops); + for (i = 0; i < n; i++) { + cmpop_ty op = (cmpop_ty)asdl_seq_GET(e->v.Compare.ops, i); + int right = check_is_arg((expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); + if (op == Is || op == IsNot) { + if (!right || !left) { + const char *msg = (op == Is) + ? "\"is\" with a literal. Did you mean \"==\"?" + : "\"is not\" with a literal. Did you mean \"!=\"?"; + return compiler_warn(c, msg); + } + } + left = right; + } + return 1; +} + +static int compiler_addcompare(struct compiler *c, cmpop_ty op) +{ + int cmp; + switch (op) { + case Eq: + cmp = Py_EQ; + break; + case NotEq: + cmp = Py_NE; + break; + case Lt: + cmp = Py_LT; + break; + case LtE: + cmp = Py_LE; + break; + case Gt: + cmp = Py_GT; + break; + case GtE: + cmp = Py_GE; + break; + case Is: + ADDOP_I(c, IS_OP, 0); + return 1; + case IsNot: + ADDOP_I(c, IS_OP, 1); + return 1; + case In: + ADDOP_I(c, CONTAINS_OP, 0); + return 1; + case NotIn: + ADDOP_I(c, CONTAINS_OP, 1); + return 1; + default: + Py_UNREACHABLE(); + } + ADDOP_I(c, COMPARE_OP, cmp); + return 1; +} + + + +static int +compiler_jump_if(struct compiler *c, expr_ty e, basicblock *next, int cond) +{ + switch (e->kind) { + case UnaryOp_kind: + if (e->v.UnaryOp.op == Not) + return compiler_jump_if(c, e->v.UnaryOp.operand, next, !cond); + /* fallback to general implementation */ + break; + case BoolOp_kind: { + asdl_seq *s = e->v.BoolOp.values; + Py_ssize_t i, n = asdl_seq_LEN(s) - 1; + assert(n >= 0); + int cond2 = e->v.BoolOp.op == Or; + basicblock *next2 = next; + if (!cond2 != !cond) { + next2 = compiler_new_block(c); + if (next2 == NULL) + return 0; + } + for (i = 0; i < n; ++i) { + if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, i), next2, cond2)) + return 0; + } + if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, n), next, cond)) + return 0; + if (next2 != next) + compiler_use_next_block(c, next2); + return 1; + } + case IfExp_kind: { + basicblock *end, *next2; + end = compiler_new_block(c); + if (end == NULL) + return 0; + next2 = compiler_new_block(c); + if (next2 == NULL) + return 0; + if (!compiler_jump_if(c, e->v.IfExp.test, next2, 0)) + return 0; + if (!compiler_jump_if(c, e->v.IfExp.body, next, cond)) + return 0; + ADDOP_JREL(c, JUMP_FORWARD, end); + compiler_use_next_block(c, next2); + if (!compiler_jump_if(c, e->v.IfExp.orelse, next, cond)) + return 0; + compiler_use_next_block(c, end); + return 1; + } + case Compare_kind: { + Py_ssize_t i, n = asdl_seq_LEN(e->v.Compare.ops) - 1; + if (n > 0) { + if (!check_compare(c, e)) { + return 0; + } + basicblock *cleanup = compiler_new_block(c); + if (cleanup == NULL) + return 0; + VISIT(c, expr, e->v.Compare.left); + for (i = 0; i < n; i++) { + VISIT(c, expr, + (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); + ADDOP(c, DUP_TOP); + ADDOP(c, ROT_THREE); + ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i)); + ADDOP_JABS(c, POP_JUMP_IF_FALSE, cleanup); + NEXT_BLOCK(c); + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n)); + ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n)); + ADDOP_JABS(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next); + basicblock *end = compiler_new_block(c); + if (end == NULL) + return 0; + ADDOP_JREL(c, JUMP_FORWARD, end); + compiler_use_next_block(c, cleanup); + ADDOP(c, POP_TOP); + if (!cond) { + ADDOP_JREL(c, JUMP_FORWARD, next); + } + compiler_use_next_block(c, end); + return 1; + } + /* fallback to general implementation */ + break; + } + default: + /* fallback to general implementation */ + break; + } + + /* general implementation */ + VISIT(c, expr, e); + ADDOP_JABS(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next); + return 1; +} + +static int +compiler_ifexp(struct compiler *c, expr_ty e) +{ + basicblock *end, *next; + + assert(e->kind == IfExp_kind); + end = compiler_new_block(c); + if (end == NULL) + return 0; + next = compiler_new_block(c); + if (next == NULL) + return 0; + if (!compiler_jump_if(c, e->v.IfExp.test, next, 0)) + return 0; + VISIT(c, expr, e->v.IfExp.body); + ADDOP_JREL(c, JUMP_FORWARD, end); + compiler_use_next_block(c, next); + VISIT(c, expr, e->v.IfExp.orelse); + compiler_use_next_block(c, end); + return 1; +} + +static int +compiler_lambda(struct compiler *c, expr_ty e) +{ + PyCodeObject *co; + PyObject *qualname; + static identifier name; + Py_ssize_t funcflags; + arguments_ty args = e->v.Lambda.args; + assert(e->kind == Lambda_kind); + + if (!compiler_check_debug_args(c, args)) + return 0; + + if (!name) { + name = PyUnicode_InternFromString("<lambda>"); + if (!name) + return 0; + } + + funcflags = compiler_default_arguments(c, args); + if (funcflags == -1) { + return 0; + } + + if (!compiler_enter_scope(c, name, COMPILER_SCOPE_LAMBDA, + (void *)e, e->lineno)) + return 0; + + /* Make None the first constant, so the lambda can't have a + docstring. */ + if (compiler_add_const(c, Py_None) < 0) + return 0; + + c->u->u_argcount = asdl_seq_LEN(args->args); + c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs); + c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs); + VISIT_IN_SCOPE(c, expr, e->v.Lambda.body); + if (c->u->u_ste->ste_generator) { + co = assemble(c, 0); + } + else { + ADDOP_IN_SCOPE(c, RETURN_VALUE); + co = assemble(c, 1); + } + qualname = c->u->u_qualname; + Py_INCREF(qualname); + compiler_exit_scope(c); + if (co == NULL) + return 0; + + compiler_make_closure(c, co, funcflags, qualname); + Py_DECREF(qualname); + Py_DECREF(co); + + return 1; +} + +static int +compiler_if(struct compiler *c, stmt_ty s) +{ + basicblock *end, *next; + int constant; + assert(s->kind == If_kind); + end = compiler_new_block(c); + if (end == NULL) + return 0; + + constant = expr_constant(s->v.If.test); + /* constant = 0: "if 0" + * constant = 1: "if 1", "if 2", ... + * constant = -1: rest */ + if (constant == 0) { + BEGIN_DO_NOT_EMIT_BYTECODE + VISIT_SEQ(c, stmt, s->v.If.body); + END_DO_NOT_EMIT_BYTECODE + if (s->v.If.orelse) { + VISIT_SEQ(c, stmt, s->v.If.orelse); + } + } else if (constant == 1) { + VISIT_SEQ(c, stmt, s->v.If.body); + if (s->v.If.orelse) { + BEGIN_DO_NOT_EMIT_BYTECODE + VISIT_SEQ(c, stmt, s->v.If.orelse); + END_DO_NOT_EMIT_BYTECODE + } + } else { + if (asdl_seq_LEN(s->v.If.orelse)) { + next = compiler_new_block(c); + if (next == NULL) + return 0; + } + else { + next = end; + } + if (!compiler_jump_if(c, s->v.If.test, next, 0)) { + return 0; + } + VISIT_SEQ(c, stmt, s->v.If.body); + if (asdl_seq_LEN(s->v.If.orelse)) { + ADDOP_JREL(c, JUMP_FORWARD, end); + compiler_use_next_block(c, next); + VISIT_SEQ(c, stmt, s->v.If.orelse); + } + } + compiler_use_next_block(c, end); + return 1; +} + +static int +compiler_for(struct compiler *c, stmt_ty s) +{ + basicblock *start, *cleanup, *end; + + start = compiler_new_block(c); + cleanup = compiler_new_block(c); + end = compiler_new_block(c); + if (start == NULL || end == NULL || cleanup == NULL) { + return 0; + } + if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) { + return 0; + } + VISIT(c, expr, s->v.For.iter); + ADDOP(c, GET_ITER); + compiler_use_next_block(c, start); + ADDOP_JREL(c, FOR_ITER, cleanup); + VISIT(c, expr, s->v.For.target); + VISIT_SEQ(c, stmt, s->v.For.body); + ADDOP_JABS(c, JUMP_ABSOLUTE, start); + compiler_use_next_block(c, cleanup); + + compiler_pop_fblock(c, FOR_LOOP, start); + + VISIT_SEQ(c, stmt, s->v.For.orelse); + compiler_use_next_block(c, end); + return 1; +} + + +static int +compiler_async_for(struct compiler *c, stmt_ty s) +{ + basicblock *start, *except, *end; + if (IS_TOP_LEVEL_AWAIT(c)){ + c->u->u_ste->ste_coroutine = 1; + } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION) { + return compiler_error(c, "'async for' outside async function"); + } + + start = compiler_new_block(c); + except = compiler_new_block(c); + end = compiler_new_block(c); + + if (start == NULL || except == NULL || end == NULL) { + return 0; + } + VISIT(c, expr, s->v.AsyncFor.iter); + ADDOP(c, GET_AITER); + + compiler_use_next_block(c, start); + if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) { + return 0; + } + /* SETUP_FINALLY to guard the __anext__ call */ + ADDOP_JREL(c, SETUP_FINALLY, except); + ADDOP(c, GET_ANEXT); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP(c, YIELD_FROM); + ADDOP(c, POP_BLOCK); /* for SETUP_FINALLY */ + + /* Success block for __anext__ */ + VISIT(c, expr, s->v.AsyncFor.target); + VISIT_SEQ(c, stmt, s->v.AsyncFor.body); + ADDOP_JABS(c, JUMP_ABSOLUTE, start); + + compiler_pop_fblock(c, FOR_LOOP, start); + + /* Except block for __anext__ */ + compiler_use_next_block(c, except); + + /* We don't want to trace the END_ASYNC_FOR, so make sure + * that it has the same lineno as the following instruction. */ + if (asdl_seq_LEN(s->v.For.orelse)) { + SET_LOC(c, (stmt_ty)asdl_seq_GET(s->v.For.orelse, 0)); + } + ADDOP(c, END_ASYNC_FOR); + + /* `else` block */ + VISIT_SEQ(c, stmt, s->v.For.orelse); + + compiler_use_next_block(c, end); + + return 1; +} + +static int +compiler_while(struct compiler *c, stmt_ty s) +{ + basicblock *loop, *orelse, *end, *anchor = NULL; + int constant = expr_constant(s->v.While.test); + + if (constant == 0) { + BEGIN_DO_NOT_EMIT_BYTECODE + // Push a dummy block so the VISIT_SEQ knows that we are + // inside a while loop so it can correctly evaluate syntax + // errors. + if (!compiler_push_fblock(c, WHILE_LOOP, NULL, NULL, NULL)) { + return 0; + } + VISIT_SEQ(c, stmt, s->v.While.body); + // Remove the dummy block now that is not needed. + compiler_pop_fblock(c, WHILE_LOOP, NULL); + END_DO_NOT_EMIT_BYTECODE + if (s->v.While.orelse) { + VISIT_SEQ(c, stmt, s->v.While.orelse); + } + return 1; + } + loop = compiler_new_block(c); + end = compiler_new_block(c); + if (constant == -1) { + anchor = compiler_new_block(c); + if (anchor == NULL) + return 0; + } + if (loop == NULL || end == NULL) + return 0; + if (s->v.While.orelse) { + orelse = compiler_new_block(c); + if (orelse == NULL) + return 0; + } + else + orelse = NULL; + + compiler_use_next_block(c, loop); + if (!compiler_push_fblock(c, WHILE_LOOP, loop, end, NULL)) + return 0; + if (constant == -1) { + if (!compiler_jump_if(c, s->v.While.test, anchor, 0)) + return 0; + } + VISIT_SEQ(c, stmt, s->v.While.body); + ADDOP_JABS(c, JUMP_ABSOLUTE, loop); + + /* XXX should the two POP instructions be in a separate block + if there is no else clause ? + */ + + if (constant == -1) + compiler_use_next_block(c, anchor); + compiler_pop_fblock(c, WHILE_LOOP, loop); + + if (orelse != NULL) /* what if orelse is just pass? */ + VISIT_SEQ(c, stmt, s->v.While.orelse); + compiler_use_next_block(c, end); + + return 1; +} + +static int +compiler_return(struct compiler *c, stmt_ty s) +{ + int preserve_tos = ((s->v.Return.value != NULL) && + (s->v.Return.value->kind != Constant_kind)); + if (c->u->u_ste->ste_type != FunctionBlock) + return compiler_error(c, "'return' outside function"); + if (s->v.Return.value != NULL && + c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator) + { + return compiler_error( + c, "'return' with value in async generator"); + } + if (preserve_tos) { + VISIT(c, expr, s->v.Return.value); + } + if (!compiler_unwind_fblock_stack(c, preserve_tos, NULL)) + return 0; + if (s->v.Return.value == NULL) { + ADDOP_LOAD_CONST(c, Py_None); + } + else if (!preserve_tos) { + VISIT(c, expr, s->v.Return.value); + } + ADDOP(c, RETURN_VALUE); + + return 1; +} + +static int +compiler_break(struct compiler *c) +{ + struct fblockinfo *loop = NULL; + if (!compiler_unwind_fblock_stack(c, 0, &loop)) { + return 0; + } + if (loop == NULL) { + return compiler_error(c, "'break' outside loop"); + } + if (!compiler_unwind_fblock(c, loop, 0)) { + return 0; + } + ADDOP_JABS(c, JUMP_ABSOLUTE, loop->fb_exit); + return 1; +} + +static int +compiler_continue(struct compiler *c) +{ + struct fblockinfo *loop = NULL; + if (!compiler_unwind_fblock_stack(c, 0, &loop)) { + return 0; + } + if (loop == NULL) { + return compiler_error(c, "'continue' not properly in loop"); + } + ADDOP_JABS(c, JUMP_ABSOLUTE, loop->fb_block); + return 1; +} + + +/* Code generated for "try: <body> finally: <finalbody>" is as follows: + + SETUP_FINALLY L + <code for body> + POP_BLOCK + <code for finalbody> + JUMP E + L: + <code for finalbody> + E: + + The special instructions use the block stack. Each block + stack entry contains the instruction that created it (here + SETUP_FINALLY), the level of the value stack at the time the + block stack entry was created, and a label (here L). + + SETUP_FINALLY: + Pushes the current value stack level and the label + onto the block stack. + POP_BLOCK: + Pops en entry from the block stack. + + The block stack is unwound when an exception is raised: + when a SETUP_FINALLY entry is found, the raised and the caught + exceptions are pushed onto the value stack (and the exception + condition is cleared), and the interpreter jumps to the label + gotten from the block stack. +*/ + +static int +compiler_try_finally(struct compiler *c, stmt_ty s) +{ + basicblock *body, *end, *exit; + + body = compiler_new_block(c); + end = compiler_new_block(c); + exit = compiler_new_block(c); + if (body == NULL || end == NULL || exit == NULL) + return 0; + + /* `try` block */ + ADDOP_JREL(c, SETUP_FINALLY, end); + compiler_use_next_block(c, body); + if (!compiler_push_fblock(c, FINALLY_TRY, body, end, s->v.Try.finalbody)) + return 0; + if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) { + if (!compiler_try_except(c, s)) + return 0; + } + else { + VISIT_SEQ(c, stmt, s->v.Try.body); + } + ADDOP(c, POP_BLOCK); + compiler_pop_fblock(c, FINALLY_TRY, body); + VISIT_SEQ(c, stmt, s->v.Try.finalbody); + ADDOP_JREL(c, JUMP_FORWARD, exit); + /* `finally` block */ + compiler_use_next_block(c, end); + if (!compiler_push_fblock(c, FINALLY_END, end, NULL, NULL)) + return 0; + VISIT_SEQ(c, stmt, s->v.Try.finalbody); + compiler_pop_fblock(c, FINALLY_END, end); + ADDOP(c, RERAISE); + compiler_use_next_block(c, exit); + return 1; +} + +/* + Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...": + (The contents of the value stack is shown in [], with the top + at the right; 'tb' is trace-back info, 'val' the exception's + associated value, and 'exc' the exception.) + + Value stack Label Instruction Argument + [] SETUP_FINALLY L1 + [] <code for S> + [] POP_BLOCK + [] JUMP_FORWARD L0 + + [tb, val, exc] L1: DUP ) + [tb, val, exc, exc] <evaluate E1> ) + [tb, val, exc, exc, E1] JUMP_IF_NOT_EXC_MATCH L2 ) only if E1 + [tb, val, exc] POP + [tb, val] <assign to V1> (or POP if no V1) + [tb] POP + [] <code for S1> + JUMP_FORWARD L0 + + [tb, val, exc] L2: DUP + .............................etc....................... + + [tb, val, exc] Ln+1: RERAISE # re-raise exception + + [] L0: <next statement> + + Of course, parts are not generated if Vi or Ei is not present. +*/ +static int +compiler_try_except(struct compiler *c, stmt_ty s) +{ + basicblock *body, *orelse, *except, *end; + Py_ssize_t i, n; + + body = compiler_new_block(c); + except = compiler_new_block(c); + orelse = compiler_new_block(c); + end = compiler_new_block(c); + if (body == NULL || except == NULL || orelse == NULL || end == NULL) + return 0; + ADDOP_JREL(c, SETUP_FINALLY, except); + compiler_use_next_block(c, body); + if (!compiler_push_fblock(c, TRY_EXCEPT, body, NULL, NULL)) + return 0; + VISIT_SEQ(c, stmt, s->v.Try.body); + ADDOP(c, POP_BLOCK); + compiler_pop_fblock(c, TRY_EXCEPT, body); + ADDOP_JREL(c, JUMP_FORWARD, orelse); + n = asdl_seq_LEN(s->v.Try.handlers); + compiler_use_next_block(c, except); + /* Runtime will push a block here, so we need to account for that */ + if (!compiler_push_fblock(c, EXCEPTION_HANDLER, NULL, NULL, NULL)) + return 0; + for (i = 0; i < n; i++) { + excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET( + s->v.Try.handlers, i); + if (!handler->v.ExceptHandler.type && i < n-1) + return compiler_error(c, "default 'except:' must be last"); + SET_LOC(c, handler); + except = compiler_new_block(c); + if (except == NULL) + return 0; + if (handler->v.ExceptHandler.type) { + ADDOP(c, DUP_TOP); + VISIT(c, expr, handler->v.ExceptHandler.type); + ADDOP_JABS(c, JUMP_IF_NOT_EXC_MATCH, except); + } + ADDOP(c, POP_TOP); + if (handler->v.ExceptHandler.name) { + basicblock *cleanup_end, *cleanup_body; + + cleanup_end = compiler_new_block(c); + cleanup_body = compiler_new_block(c); + if (cleanup_end == NULL || cleanup_body == NULL) { + return 0; + } + + compiler_nameop(c, handler->v.ExceptHandler.name, Store); + ADDOP(c, POP_TOP); + + /* + try: + # body + except type as name: + try: + # body + finally: + name = None # in case body contains "del name" + del name + */ + + /* second try: */ + ADDOP_JREL(c, SETUP_FINALLY, cleanup_end); + compiler_use_next_block(c, cleanup_body); + if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, handler->v.ExceptHandler.name)) + return 0; + + /* second # body */ + VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body); + compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body); + ADDOP(c, POP_BLOCK); + ADDOP(c, POP_EXCEPT); + /* name = None; del name */ + ADDOP_LOAD_CONST(c, Py_None); + compiler_nameop(c, handler->v.ExceptHandler.name, Store); + compiler_nameop(c, handler->v.ExceptHandler.name, Del); + ADDOP_JREL(c, JUMP_FORWARD, end); + + /* except: */ + compiler_use_next_block(c, cleanup_end); + + /* name = None; del name */ + ADDOP_LOAD_CONST(c, Py_None); + compiler_nameop(c, handler->v.ExceptHandler.name, Store); + compiler_nameop(c, handler->v.ExceptHandler.name, Del); + + ADDOP(c, RERAISE); + } + else { + basicblock *cleanup_body; + + cleanup_body = compiler_new_block(c); + if (!cleanup_body) + return 0; + + ADDOP(c, POP_TOP); + ADDOP(c, POP_TOP); + compiler_use_next_block(c, cleanup_body); + if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, NULL)) + return 0; + VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body); + compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body); + ADDOP(c, POP_EXCEPT); + ADDOP_JREL(c, JUMP_FORWARD, end); + } + compiler_use_next_block(c, except); + } + compiler_pop_fblock(c, EXCEPTION_HANDLER, NULL); + ADDOP(c, RERAISE); + compiler_use_next_block(c, orelse); + VISIT_SEQ(c, stmt, s->v.Try.orelse); + compiler_use_next_block(c, end); + return 1; +} + +static int +compiler_try(struct compiler *c, stmt_ty s) { + if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody)) + return compiler_try_finally(c, s); + else + return compiler_try_except(c, s); +} + + +static int +compiler_import_as(struct compiler *c, identifier name, identifier asname) +{ + /* The IMPORT_NAME opcode was already generated. This function + merely needs to bind the result to a name. + + If there is a dot in name, we need to split it and emit a + IMPORT_FROM for each name. + */ + Py_ssize_t len = PyUnicode_GET_LENGTH(name); + Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0, len, 1); + if (dot == -2) + return 0; + if (dot != -1) { + /* Consume the base module name to get the first attribute */ + while (1) { + Py_ssize_t pos = dot + 1; + PyObject *attr; + dot = PyUnicode_FindChar(name, '.', pos, len, 1); + if (dot == -2) + return 0; + attr = PyUnicode_Substring(name, pos, (dot != -1) ? dot : len); + if (!attr) + return 0; + ADDOP_N(c, IMPORT_FROM, attr, names); + if (dot == -1) { + break; + } + ADDOP(c, ROT_TWO); + ADDOP(c, POP_TOP); + } + if (!compiler_nameop(c, asname, Store)) { + return 0; + } + ADDOP(c, POP_TOP); + return 1; + } + return compiler_nameop(c, asname, Store); +} + +static int +compiler_import(struct compiler *c, stmt_ty s) +{ + /* The Import node stores a module name like a.b.c as a single + string. This is convenient for all cases except + import a.b.c as d + where we need to parse that string to extract the individual + module names. + XXX Perhaps change the representation to make this case simpler? + */ + Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names); + + for (i = 0; i < n; i++) { + alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i); + int r; + + ADDOP_LOAD_CONST(c, _PyLong_Zero); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP_NAME(c, IMPORT_NAME, alias->name, names); + + if (alias->asname) { + r = compiler_import_as(c, alias->name, alias->asname); + if (!r) + return r; + } + else { + identifier tmp = alias->name; + Py_ssize_t dot = PyUnicode_FindChar( + alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1); + if (dot != -1) { + tmp = PyUnicode_Substring(alias->name, 0, dot); + if (tmp == NULL) + return 0; + } + r = compiler_nameop(c, tmp, Store); + if (dot != -1) { + Py_DECREF(tmp); + } + if (!r) + return r; + } + } + return 1; +} + +static int +compiler_from_import(struct compiler *c, stmt_ty s) +{ + Py_ssize_t i, n = asdl_seq_LEN(s->v.ImportFrom.names); + PyObject *names; + static PyObject *empty_string; + + if (!empty_string) { + empty_string = PyUnicode_FromString(""); + if (!empty_string) + return 0; + } + + ADDOP_LOAD_CONST_NEW(c, PyLong_FromLong(s->v.ImportFrom.level)); + + names = PyTuple_New(n); + if (!names) + return 0; + + /* build up the names */ + for (i = 0; i < n; i++) { + alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i); + Py_INCREF(alias->name); + PyTuple_SET_ITEM(names, i, alias->name); + } + + if (s->lineno > c->c_future->ff_lineno && s->v.ImportFrom.module && + _PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__")) { + Py_DECREF(names); + return compiler_error(c, "from __future__ imports must occur " + "at the beginning of the file"); + } + ADDOP_LOAD_CONST_NEW(c, names); + + if (s->v.ImportFrom.module) { + ADDOP_NAME(c, IMPORT_NAME, s->v.ImportFrom.module, names); + } + else { + ADDOP_NAME(c, IMPORT_NAME, empty_string, names); + } + for (i = 0; i < n; i++) { + alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i); + identifier store_name; + + if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') { + assert(n == 1); + ADDOP(c, IMPORT_STAR); + return 1; + } + + ADDOP_NAME(c, IMPORT_FROM, alias->name, names); + store_name = alias->name; + if (alias->asname) + store_name = alias->asname; + + if (!compiler_nameop(c, store_name, Store)) { + return 0; + } + } + /* remove imported module */ + ADDOP(c, POP_TOP); + return 1; +} + +static int +compiler_assert(struct compiler *c, stmt_ty s) +{ + basicblock *end; + + if (c->c_optimize) + return 1; + if (s->v.Assert.test->kind == Tuple_kind && + asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) + { + if (!compiler_warn(c, "assertion is always true, " + "perhaps remove parentheses?")) + { + return 0; + } + } + end = compiler_new_block(c); + if (end == NULL) + return 0; + if (!compiler_jump_if(c, s->v.Assert.test, end, 1)) + return 0; + ADDOP(c, LOAD_ASSERTION_ERROR); + if (s->v.Assert.msg) { + VISIT(c, expr, s->v.Assert.msg); + ADDOP_I(c, CALL_FUNCTION, 1); + } + ADDOP_I(c, RAISE_VARARGS, 1); + compiler_use_next_block(c, end); + return 1; +} + +static int +compiler_visit_stmt_expr(struct compiler *c, expr_ty value) +{ + if (c->c_interactive && c->c_nestlevel <= 1) { + VISIT(c, expr, value); + ADDOP(c, PRINT_EXPR); + return 1; + } + + if (value->kind == Constant_kind) { + /* ignore constant statement */ + return 1; + } + + VISIT(c, expr, value); + ADDOP(c, POP_TOP); + return 1; +} + +static int +compiler_visit_stmt(struct compiler *c, stmt_ty s) +{ + Py_ssize_t i, n; + + /* Always assign a lineno to the next instruction for a stmt. */ + SET_LOC(c, s); + + switch (s->kind) { + case FunctionDef_kind: + return compiler_function(c, s, 0); + case ClassDef_kind: + return compiler_class(c, s); + case Return_kind: + return compiler_return(c, s); + case Delete_kind: + VISIT_SEQ(c, expr, s->v.Delete.targets) + break; + case Assign_kind: + n = asdl_seq_LEN(s->v.Assign.targets); + VISIT(c, expr, s->v.Assign.value); + for (i = 0; i < n; i++) { + if (i < n - 1) + ADDOP(c, DUP_TOP); + VISIT(c, expr, + (expr_ty)asdl_seq_GET(s->v.Assign.targets, i)); + } + break; + case AugAssign_kind: + return compiler_augassign(c, s); + case AnnAssign_kind: + return compiler_annassign(c, s); + case For_kind: + return compiler_for(c, s); + case While_kind: + return compiler_while(c, s); + case If_kind: + return compiler_if(c, s); + case Raise_kind: + n = 0; + if (s->v.Raise.exc) { + VISIT(c, expr, s->v.Raise.exc); + n++; + if (s->v.Raise.cause) { + VISIT(c, expr, s->v.Raise.cause); + n++; + } + } + ADDOP_I(c, RAISE_VARARGS, (int)n); + break; + case Try_kind: + return compiler_try(c, s); + case Assert_kind: + return compiler_assert(c, s); + case Import_kind: + return compiler_import(c, s); + case ImportFrom_kind: + return compiler_from_import(c, s); + case Global_kind: + case Nonlocal_kind: + break; + case Expr_kind: + return compiler_visit_stmt_expr(c, s->v.Expr.value); + case Pass_kind: + break; + case Break_kind: + return compiler_break(c); + case Continue_kind: + return compiler_continue(c); + case With_kind: + return compiler_with(c, s, 0); + case AsyncFunctionDef_kind: + return compiler_function(c, s, 1); + case AsyncWith_kind: + return compiler_async_with(c, s, 0); + case AsyncFor_kind: + return compiler_async_for(c, s); + } + + return 1; +} + +static int +unaryop(unaryop_ty op) +{ + switch (op) { + case Invert: + return UNARY_INVERT; + case Not: + return UNARY_NOT; + case UAdd: + return UNARY_POSITIVE; + case USub: + return UNARY_NEGATIVE; + default: + PyErr_Format(PyExc_SystemError, + "unary op %d should not be possible", op); + return 0; + } +} + +static int +binop(operator_ty op) +{ + switch (op) { + case Add: + return BINARY_ADD; + case Sub: + return BINARY_SUBTRACT; + case Mult: + return BINARY_MULTIPLY; + case MatMult: + return BINARY_MATRIX_MULTIPLY; + case Div: + return BINARY_TRUE_DIVIDE; + case Mod: + return BINARY_MODULO; + case Pow: + return BINARY_POWER; + case LShift: + return BINARY_LSHIFT; + case RShift: + return BINARY_RSHIFT; + case BitOr: + return BINARY_OR; + case BitXor: + return BINARY_XOR; + case BitAnd: + return BINARY_AND; + case FloorDiv: + return BINARY_FLOOR_DIVIDE; + default: + PyErr_Format(PyExc_SystemError, + "binary op %d should not be possible", op); + return 0; + } +} + +static int +inplace_binop(operator_ty op) +{ + switch (op) { + case Add: + return INPLACE_ADD; + case Sub: + return INPLACE_SUBTRACT; + case Mult: + return INPLACE_MULTIPLY; + case MatMult: + return INPLACE_MATRIX_MULTIPLY; + case Div: + return INPLACE_TRUE_DIVIDE; + case Mod: + return INPLACE_MODULO; + case Pow: + return INPLACE_POWER; + case LShift: + return INPLACE_LSHIFT; + case RShift: + return INPLACE_RSHIFT; + case BitOr: + return INPLACE_OR; + case BitXor: + return INPLACE_XOR; + case BitAnd: + return INPLACE_AND; + case FloorDiv: + return INPLACE_FLOOR_DIVIDE; + default: + PyErr_Format(PyExc_SystemError, + "inplace binary op %d should not be possible", op); + return 0; + } +} + +static int +compiler_nameop(struct compiler *c, identifier name, expr_context_ty ctx) +{ + int op, scope; + Py_ssize_t arg; + enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype; + + PyObject *dict = c->u->u_names; + PyObject *mangled; + + assert(!_PyUnicode_EqualToASCIIString(name, "None") && + !_PyUnicode_EqualToASCIIString(name, "True") && + !_PyUnicode_EqualToASCIIString(name, "False")); + + if (forbidden_name(c, name, ctx)) + return 0; + + mangled = _Py_Mangle(c->u->u_private, name); + if (!mangled) + return 0; + + op = 0; + optype = OP_NAME; + scope = PyST_GetScope(c->u->u_ste, mangled); + switch (scope) { + case FREE: + dict = c->u->u_freevars; + optype = OP_DEREF; + break; + case CELL: + dict = c->u->u_cellvars; + optype = OP_DEREF; + break; + case LOCAL: + if (c->u->u_ste->ste_type == FunctionBlock) + optype = OP_FAST; + break; + case GLOBAL_IMPLICIT: + if (c->u->u_ste->ste_type == FunctionBlock) + optype = OP_GLOBAL; + break; + case GLOBAL_EXPLICIT: + optype = OP_GLOBAL; + break; + default: + /* scope can be 0 */ + break; + } + + /* XXX Leave assert here, but handle __doc__ and the like better */ + assert(scope || PyUnicode_READ_CHAR(name, 0) == '_'); + + switch (optype) { + case OP_DEREF: + switch (ctx) { + case Load: + op = (c->u->u_ste->ste_type == ClassBlock) ? LOAD_CLASSDEREF : LOAD_DEREF; + break; + case Store: op = STORE_DEREF; break; + case Del: op = DELETE_DEREF; break; + } + break; + case OP_FAST: + switch (ctx) { + case Load: op = LOAD_FAST; break; + case Store: op = STORE_FAST; break; + case Del: op = DELETE_FAST; break; + } + ADDOP_N(c, op, mangled, varnames); + return 1; + case OP_GLOBAL: + switch (ctx) { + case Load: op = LOAD_GLOBAL; break; + case Store: op = STORE_GLOBAL; break; + case Del: op = DELETE_GLOBAL; break; + } + break; + case OP_NAME: + switch (ctx) { + case Load: op = LOAD_NAME; break; + case Store: op = STORE_NAME; break; + case Del: op = DELETE_NAME; break; + } + break; + } + + assert(op); + arg = compiler_add_o(dict, mangled); + Py_DECREF(mangled); + if (arg < 0) + return 0; + return compiler_addop_i(c, op, arg); +} + +static int +compiler_boolop(struct compiler *c, expr_ty e) +{ + basicblock *end; + int jumpi; + Py_ssize_t i, n; + asdl_seq *s; + + assert(e->kind == BoolOp_kind); + if (e->v.BoolOp.op == And) + jumpi = JUMP_IF_FALSE_OR_POP; + else + jumpi = JUMP_IF_TRUE_OR_POP; + end = compiler_new_block(c); + if (end == NULL) + return 0; + s = e->v.BoolOp.values; + n = asdl_seq_LEN(s) - 1; + assert(n >= 0); + for (i = 0; i < n; ++i) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i)); + ADDOP_JABS(c, jumpi, end); + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n)); + compiler_use_next_block(c, end); + return 1; +} + +static int +starunpack_helper(struct compiler *c, asdl_seq *elts, int pushed, + int build, int add, int extend, int tuple) +{ + Py_ssize_t n = asdl_seq_LEN(elts); + Py_ssize_t i, seen_star = 0; + if (n > 2 && are_all_items_const(elts, 0, n)) { + PyObject *folded = PyTuple_New(n); + if (folded == NULL) { + return 0; + } + PyObject *val; + for (i = 0; i < n; i++) { + val = ((expr_ty)asdl_seq_GET(elts, i))->v.Constant.value; + Py_INCREF(val); + PyTuple_SET_ITEM(folded, i, val); + } + if (tuple) { + ADDOP_LOAD_CONST_NEW(c, folded); + } else { + if (add == SET_ADD) { + Py_SETREF(folded, PyFrozenSet_New(folded)); + if (folded == NULL) { + return 0; + } + } + ADDOP_I(c, build, pushed); + ADDOP_LOAD_CONST_NEW(c, folded); + ADDOP_I(c, extend, 1); + } + return 1; + } + + for (i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + if (elt->kind == Starred_kind) { + seen_star = 1; + } + } + if (seen_star) { + seen_star = 0; + for (i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + if (elt->kind == Starred_kind) { + if (seen_star == 0) { + ADDOP_I(c, build, i+pushed); + seen_star = 1; + } + VISIT(c, expr, elt->v.Starred.value); + ADDOP_I(c, extend, 1); + } + else { + VISIT(c, expr, elt); + if (seen_star) { + ADDOP_I(c, add, 1); + } + } + } + assert(seen_star); + if (tuple) { + ADDOP(c, LIST_TO_TUPLE); + } + } + else { + for (i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + VISIT(c, expr, elt); + } + if (tuple) { + ADDOP_I(c, BUILD_TUPLE, n+pushed); + } else { + ADDOP_I(c, build, n+pushed); + } + } + return 1; +} + +static int +assignment_helper(struct compiler *c, asdl_seq *elts) +{ + Py_ssize_t n = asdl_seq_LEN(elts); + Py_ssize_t i; + int seen_star = 0; + for (i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + if (elt->kind == Starred_kind && !seen_star) { + if ((i >= (1 << 8)) || + (n-i-1 >= (INT_MAX >> 8))) + return compiler_error(c, + "too many expressions in " + "star-unpacking assignment"); + ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8))); + seen_star = 1; + } + else if (elt->kind == Starred_kind) { + return compiler_error(c, + "multiple starred expressions in assignment"); + } + } + if (!seen_star) { + ADDOP_I(c, UNPACK_SEQUENCE, n); + } + for (i = 0; i < n; i++) { + expr_ty elt = asdl_seq_GET(elts, i); + VISIT(c, expr, elt->kind != Starred_kind ? elt : elt->v.Starred.value); + } + return 1; +} + +static int +compiler_list(struct compiler *c, expr_ty e) +{ + asdl_seq *elts = e->v.List.elts; + if (e->v.List.ctx == Store) { + return assignment_helper(c, elts); + } + else if (e->v.List.ctx == Load) { + return starunpack_helper(c, elts, 0, BUILD_LIST, + LIST_APPEND, LIST_EXTEND, 0); + } + else + VISIT_SEQ(c, expr, elts); + return 1; +} + +static int +compiler_tuple(struct compiler *c, expr_ty e) +{ + asdl_seq *elts = e->v.Tuple.elts; + if (e->v.Tuple.ctx == Store) { + return assignment_helper(c, elts); + } + else if (e->v.Tuple.ctx == Load) { + return starunpack_helper(c, elts, 0, BUILD_LIST, + LIST_APPEND, LIST_EXTEND, 1); + } + else + VISIT_SEQ(c, expr, elts); + return 1; +} + +static int +compiler_set(struct compiler *c, expr_ty e) +{ + return starunpack_helper(c, e->v.Set.elts, 0, BUILD_SET, + SET_ADD, SET_UPDATE, 0); +} + +static int +are_all_items_const(asdl_seq *seq, Py_ssize_t begin, Py_ssize_t end) +{ + Py_ssize_t i; + for (i = begin; i < end; i++) { + expr_ty key = (expr_ty)asdl_seq_GET(seq, i); + if (key == NULL || key->kind != Constant_kind) + return 0; + } + return 1; +} + +static int +compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end) +{ + Py_ssize_t i, n = end - begin; + PyObject *keys, *key; + if (n > 1 && are_all_items_const(e->v.Dict.keys, begin, end)) { + for (i = begin; i < end; i++) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); + } + keys = PyTuple_New(n); + if (keys == NULL) { + return 0; + } + for (i = begin; i < end; i++) { + key = ((expr_ty)asdl_seq_GET(e->v.Dict.keys, i))->v.Constant.value; + Py_INCREF(key); + PyTuple_SET_ITEM(keys, i - begin, key); + } + ADDOP_LOAD_CONST_NEW(c, keys); + ADDOP_I(c, BUILD_CONST_KEY_MAP, n); + } + else { + for (i = begin; i < end; i++) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i)); + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); + } + ADDOP_I(c, BUILD_MAP, n); + } + return 1; +} + +static int +compiler_dict(struct compiler *c, expr_ty e) +{ + Py_ssize_t i, n, elements; + int have_dict; + int is_unpacking = 0; + n = asdl_seq_LEN(e->v.Dict.values); + have_dict = 0; + elements = 0; + for (i = 0; i < n; i++) { + is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL; + if (is_unpacking) { + if (elements) { + if (!compiler_subdict(c, e, i - elements, i)) { + return 0; + } + if (have_dict) { + ADDOP_I(c, DICT_UPDATE, 1); + } + have_dict = 1; + elements = 0; + } + if (have_dict == 0) { + ADDOP_I(c, BUILD_MAP, 0); + have_dict = 1; + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i)); + ADDOP_I(c, DICT_UPDATE, 1); + } + else { + if (elements == 0xFFFF) { + if (!compiler_subdict(c, e, i - elements, i + 1)) { + return 0; + } + if (have_dict) { + ADDOP_I(c, DICT_UPDATE, 1); + } + have_dict = 1; + elements = 0; + } + else { + elements++; + } + } + } + if (elements) { + if (!compiler_subdict(c, e, n - elements, n)) { + return 0; + } + if (have_dict) { + ADDOP_I(c, DICT_UPDATE, 1); + } + have_dict = 1; + } + if (!have_dict) { + ADDOP_I(c, BUILD_MAP, 0); + } + return 1; +} + +static int +compiler_compare(struct compiler *c, expr_ty e) +{ + Py_ssize_t i, n; + + if (!check_compare(c, e)) { + return 0; + } + VISIT(c, expr, e->v.Compare.left); + assert(asdl_seq_LEN(e->v.Compare.ops) > 0); + n = asdl_seq_LEN(e->v.Compare.ops) - 1; + if (n == 0) { + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0)); + ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, 0)); + } + else { + basicblock *cleanup = compiler_new_block(c); + if (cleanup == NULL) + return 0; + for (i = 0; i < n; i++) { + VISIT(c, expr, + (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i)); + ADDOP(c, DUP_TOP); + ADDOP(c, ROT_THREE); + ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i)); + ADDOP_JABS(c, JUMP_IF_FALSE_OR_POP, cleanup); + NEXT_BLOCK(c); + } + VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n)); + ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n)); + basicblock *end = compiler_new_block(c); + if (end == NULL) + return 0; + ADDOP_JREL(c, JUMP_FORWARD, end); + compiler_use_next_block(c, cleanup); + ADDOP(c, ROT_TWO); + ADDOP(c, POP_TOP); + compiler_use_next_block(c, end); + } + return 1; +} + +static PyTypeObject * +infer_type(expr_ty e) +{ + switch (e->kind) { + case Tuple_kind: + return &PyTuple_Type; + case List_kind: + case ListComp_kind: + return &PyList_Type; + case Dict_kind: + case DictComp_kind: + return &PyDict_Type; + case Set_kind: + case SetComp_kind: + return &PySet_Type; + case GeneratorExp_kind: + return &PyGen_Type; + case Lambda_kind: + return &PyFunction_Type; + case JoinedStr_kind: + case FormattedValue_kind: + return &PyUnicode_Type; + case Constant_kind: + return Py_TYPE(e->v.Constant.value); + default: + return NULL; + } +} + +static int +check_caller(struct compiler *c, expr_ty e) +{ + switch (e->kind) { + case Constant_kind: + case Tuple_kind: + case List_kind: + case ListComp_kind: + case Dict_kind: + case DictComp_kind: + case Set_kind: + case SetComp_kind: + case GeneratorExp_kind: + case JoinedStr_kind: + case FormattedValue_kind: + return compiler_warn(c, "'%.200s' object is not callable; " + "perhaps you missed a comma?", + infer_type(e)->tp_name); + default: + return 1; + } +} + +static int +check_subscripter(struct compiler *c, expr_ty e) +{ + PyObject *v; + + switch (e->kind) { + case Constant_kind: + v = e->v.Constant.value; + if (!(v == Py_None || v == Py_Ellipsis || + PyLong_Check(v) || PyFloat_Check(v) || PyComplex_Check(v) || + PyAnySet_Check(v))) + { + return 1; + } + /* fall through */ + case Set_kind: + case SetComp_kind: + case GeneratorExp_kind: + case Lambda_kind: + return compiler_warn(c, "'%.200s' object is not subscriptable; " + "perhaps you missed a comma?", + infer_type(e)->tp_name); + default: + return 1; + } +} + +static int +check_index(struct compiler *c, expr_ty e, expr_ty s) +{ + PyObject *v; + + PyTypeObject *index_type = infer_type(s); + if (index_type == NULL + || PyType_FastSubclass(index_type, Py_TPFLAGS_LONG_SUBCLASS) + || index_type == &PySlice_Type) { + return 1; + } + + switch (e->kind) { + case Constant_kind: + v = e->v.Constant.value; + if (!(PyUnicode_Check(v) || PyBytes_Check(v) || PyTuple_Check(v))) { + return 1; + } + /* fall through */ + case Tuple_kind: + case List_kind: + case ListComp_kind: + case JoinedStr_kind: + case FormattedValue_kind: + return compiler_warn(c, "%.200s indices must be integers or slices, " + "not %.200s; " + "perhaps you missed a comma?", + infer_type(e)->tp_name, + index_type->tp_name); + default: + return 1; + } +} + +// Return 1 if the method call was optimized, -1 if not, and 0 on error. +static int +maybe_optimize_method_call(struct compiler *c, expr_ty e) +{ + Py_ssize_t argsl, i; + expr_ty meth = e->v.Call.func; + asdl_seq *args = e->v.Call.args; + + /* Check that the call node is an attribute access, and that + the call doesn't have keyword parameters. */ + if (meth->kind != Attribute_kind || meth->v.Attribute.ctx != Load || + asdl_seq_LEN(e->v.Call.keywords)) + return -1; + + /* Check that there are no *varargs types of arguments. */ + argsl = asdl_seq_LEN(args); + for (i = 0; i < argsl; i++) { + expr_ty elt = asdl_seq_GET(args, i); + if (elt->kind == Starred_kind) { + return -1; + } + } + + /* Alright, we can optimize the code. */ + VISIT(c, expr, meth->v.Attribute.value); + ADDOP_NAME(c, LOAD_METHOD, meth->v.Attribute.attr, names); + VISIT_SEQ(c, expr, e->v.Call.args); + ADDOP_I(c, CALL_METHOD, asdl_seq_LEN(e->v.Call.args)); + return 1; +} + +static int +validate_keywords(struct compiler *c, asdl_seq *keywords) +{ + Py_ssize_t nkeywords = asdl_seq_LEN(keywords); + for (Py_ssize_t i = 0; i < nkeywords; i++) { + keyword_ty key = ((keyword_ty)asdl_seq_GET(keywords, i)); + if (key->arg == NULL) { + continue; + } + if (forbidden_name(c, key->arg, Store)) { + return -1; + } + for (Py_ssize_t j = i + 1; j < nkeywords; j++) { + keyword_ty other = ((keyword_ty)asdl_seq_GET(keywords, j)); + if (other->arg && !PyUnicode_Compare(key->arg, other->arg)) { + PyObject *msg = PyUnicode_FromFormat("keyword argument repeated: %U", key->arg); + if (msg == NULL) { + return -1; + } + c->u->u_col_offset = other->col_offset; + compiler_error(c, PyUnicode_AsUTF8(msg)); + Py_DECREF(msg); + return -1; + } + } + } + return 0; +} + +static int +compiler_call(struct compiler *c, expr_ty e) +{ + int ret = maybe_optimize_method_call(c, e); + if (ret >= 0) { + return ret; + } + if (!check_caller(c, e->v.Call.func)) { + return 0; + } + VISIT(c, expr, e->v.Call.func); + return compiler_call_helper(c, 0, + e->v.Call.args, + e->v.Call.keywords); +} + +static int +compiler_joined_str(struct compiler *c, expr_ty e) +{ + VISIT_SEQ(c, expr, e->v.JoinedStr.values); + if (asdl_seq_LEN(e->v.JoinedStr.values) != 1) + ADDOP_I(c, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values)); + return 1; +} + +/* Used to implement f-strings. Format a single value. */ +static int +compiler_formatted_value(struct compiler *c, expr_ty e) +{ + /* Our oparg encodes 2 pieces of information: the conversion + character, and whether or not a format_spec was provided. + + Convert the conversion char to 3 bits: + : 000 0x0 FVC_NONE The default if nothing specified. + !s : 001 0x1 FVC_STR + !r : 010 0x2 FVC_REPR + !a : 011 0x3 FVC_ASCII + + next bit is whether or not we have a format spec: + yes : 100 0x4 + no : 000 0x0 + */ + + int conversion = e->v.FormattedValue.conversion; + int oparg; + + /* The expression to be formatted. */ + VISIT(c, expr, e->v.FormattedValue.value); + + switch (conversion) { + case 's': oparg = FVC_STR; break; + case 'r': oparg = FVC_REPR; break; + case 'a': oparg = FVC_ASCII; break; + case -1: oparg = FVC_NONE; break; + default: + PyErr_Format(PyExc_SystemError, + "Unrecognized conversion character %d", conversion); + return 0; + } + if (e->v.FormattedValue.format_spec) { + /* Evaluate the format spec, and update our opcode arg. */ + VISIT(c, expr, e->v.FormattedValue.format_spec); + oparg |= FVS_HAVE_SPEC; + } + + /* And push our opcode and oparg */ + ADDOP_I(c, FORMAT_VALUE, oparg); + + return 1; +} + +static int +compiler_subkwargs(struct compiler *c, asdl_seq *keywords, Py_ssize_t begin, Py_ssize_t end) +{ + Py_ssize_t i, n = end - begin; + keyword_ty kw; + PyObject *keys, *key; + assert(n > 0); + if (n > 1) { + for (i = begin; i < end; i++) { + kw = asdl_seq_GET(keywords, i); + VISIT(c, expr, kw->value); + } + keys = PyTuple_New(n); + if (keys == NULL) { + return 0; + } + for (i = begin; i < end; i++) { + key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg; + Py_INCREF(key); + PyTuple_SET_ITEM(keys, i - begin, key); + } + ADDOP_LOAD_CONST_NEW(c, keys); + ADDOP_I(c, BUILD_CONST_KEY_MAP, n); + } + else { + /* a for loop only executes once */ + for (i = begin; i < end; i++) { + kw = asdl_seq_GET(keywords, i); + ADDOP_LOAD_CONST(c, kw->arg); + VISIT(c, expr, kw->value); + } + ADDOP_I(c, BUILD_MAP, n); + } + return 1; +} + +/* shared code between compiler_call and compiler_class */ +static int +compiler_call_helper(struct compiler *c, + int n, /* Args already pushed */ + asdl_seq *args, + asdl_seq *keywords) +{ + Py_ssize_t i, nseen, nelts, nkwelts; + + if (validate_keywords(c, keywords) == -1) { + return 0; + } + + nelts = asdl_seq_LEN(args); + nkwelts = asdl_seq_LEN(keywords); + + for (i = 0; i < nelts; i++) { + expr_ty elt = asdl_seq_GET(args, i); + if (elt->kind == Starred_kind) { + goto ex_call; + } + } + for (i = 0; i < nkwelts; i++) { + keyword_ty kw = asdl_seq_GET(keywords, i); + if (kw->arg == NULL) { + goto ex_call; + } + } + + /* No * or ** args, so can use faster calling sequence */ + for (i = 0; i < nelts; i++) { + expr_ty elt = asdl_seq_GET(args, i); + assert(elt->kind != Starred_kind); + VISIT(c, expr, elt); + } + if (nkwelts) { + PyObject *names; + VISIT_SEQ(c, keyword, keywords); + names = PyTuple_New(nkwelts); + if (names == NULL) { + return 0; + } + for (i = 0; i < nkwelts; i++) { + keyword_ty kw = asdl_seq_GET(keywords, i); + Py_INCREF(kw->arg); + PyTuple_SET_ITEM(names, i, kw->arg); + } + ADDOP_LOAD_CONST_NEW(c, names); + ADDOP_I(c, CALL_FUNCTION_KW, n + nelts + nkwelts); + return 1; + } + else { + ADDOP_I(c, CALL_FUNCTION, n + nelts); + return 1; + } + +ex_call: + + /* Do positional arguments. */ + if (n ==0 && nelts == 1 && ((expr_ty)asdl_seq_GET(args, 0))->kind == Starred_kind) { + VISIT(c, expr, ((expr_ty)asdl_seq_GET(args, 0))->v.Starred.value); + } + else if (starunpack_helper(c, args, n, BUILD_LIST, + LIST_APPEND, LIST_EXTEND, 1) == 0) { + return 0; + } + /* Then keyword arguments */ + if (nkwelts) { + /* Has a new dict been pushed */ + int have_dict = 0; + + nseen = 0; /* the number of keyword arguments on the stack following */ + for (i = 0; i < nkwelts; i++) { + keyword_ty kw = asdl_seq_GET(keywords, i); + if (kw->arg == NULL) { + /* A keyword argument unpacking. */ + if (nseen) { + if (!compiler_subkwargs(c, keywords, i - nseen, i)) { + return 0; + } + if (have_dict) { + ADDOP_I(c, DICT_MERGE, 1); + } + have_dict = 1; + nseen = 0; + } + if (!have_dict) { + ADDOP_I(c, BUILD_MAP, 0); + have_dict = 1; + } + VISIT(c, expr, kw->value); + ADDOP_I(c, DICT_MERGE, 1); + } + else { + nseen++; + } + } + if (nseen) { + /* Pack up any trailing keyword arguments. */ + if (!compiler_subkwargs(c, keywords, nkwelts - nseen, nkwelts)) { + return 0; + } + if (have_dict) { + ADDOP_I(c, DICT_MERGE, 1); + } + have_dict = 1; + } + assert(have_dict); + } + ADDOP_I(c, CALL_FUNCTION_EX, nkwelts > 0); + return 1; +} + + +/* List and set comprehensions and generator expressions work by creating a + nested function to perform the actual iteration. This means that the + iteration variables don't leak into the current scope. + The defined function is called immediately following its definition, with the + result of that call being the result of the expression. + The LC/SC version returns the populated container, while the GE version is + flagged in symtable.c as a generator, so it returns the generator object + when the function is called. + + Possible cleanups: + - iterate over the generator sequence instead of using recursion +*/ + + +static int +compiler_comprehension_generator(struct compiler *c, + asdl_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type) +{ + comprehension_ty gen; + gen = (comprehension_ty)asdl_seq_GET(generators, gen_index); + if (gen->is_async) { + return compiler_async_comprehension_generator( + c, generators, gen_index, depth, elt, val, type); + } else { + return compiler_sync_comprehension_generator( + c, generators, gen_index, depth, elt, val, type); + } +} + +static int +compiler_sync_comprehension_generator(struct compiler *c, + asdl_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type) +{ + /* generate code for the iterator, then each of the ifs, + and then write to the element */ + + comprehension_ty gen; + basicblock *start, *anchor, *skip, *if_cleanup; + Py_ssize_t i, n; + + start = compiler_new_block(c); + skip = compiler_new_block(c); + if_cleanup = compiler_new_block(c); + anchor = compiler_new_block(c); + + if (start == NULL || skip == NULL || if_cleanup == NULL || + anchor == NULL) + return 0; + + gen = (comprehension_ty)asdl_seq_GET(generators, gen_index); + + if (gen_index == 0) { + /* Receive outermost iter as an implicit argument */ + c->u->u_argcount = 1; + ADDOP_I(c, LOAD_FAST, 0); + } + else { + /* Sub-iter - calculate on the fly */ + /* Fast path for the temporary variable assignment idiom: + for y in [f(x)] + */ + asdl_seq *elts; + switch (gen->iter->kind) { + case List_kind: + elts = gen->iter->v.List.elts; + break; + case Tuple_kind: + elts = gen->iter->v.Tuple.elts; + break; + default: + elts = NULL; + } + if (asdl_seq_LEN(elts) == 1) { + expr_ty elt = asdl_seq_GET(elts, 0); + if (elt->kind != Starred_kind) { + VISIT(c, expr, elt); + start = NULL; + } + } + if (start) { + VISIT(c, expr, gen->iter); + ADDOP(c, GET_ITER); + } + } + if (start) { + depth++; + compiler_use_next_block(c, start); + ADDOP_JREL(c, FOR_ITER, anchor); + NEXT_BLOCK(c); + } + VISIT(c, expr, gen->target); + + /* XXX this needs to be cleaned up...a lot! */ + n = asdl_seq_LEN(gen->ifs); + for (i = 0; i < n; i++) { + expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i); + if (!compiler_jump_if(c, e, if_cleanup, 0)) + return 0; + NEXT_BLOCK(c); + } + + if (++gen_index < asdl_seq_LEN(generators)) + if (!compiler_comprehension_generator(c, + generators, gen_index, depth, + elt, val, type)) + return 0; + + /* only append after the last for generator */ + if (gen_index >= asdl_seq_LEN(generators)) { + /* comprehension specific code */ + switch (type) { + case COMP_GENEXP: + VISIT(c, expr, elt); + ADDOP(c, YIELD_VALUE); + ADDOP(c, POP_TOP); + break; + case COMP_LISTCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, LIST_APPEND, depth + 1); + break; + case COMP_SETCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, SET_ADD, depth + 1); + break; + case COMP_DICTCOMP: + /* With '{k: v}', k is evaluated before v, so we do + the same. */ + VISIT(c, expr, elt); + VISIT(c, expr, val); + ADDOP_I(c, MAP_ADD, depth + 1); + break; + default: + return 0; + } + + compiler_use_next_block(c, skip); + } + compiler_use_next_block(c, if_cleanup); + if (start) { + ADDOP_JABS(c, JUMP_ABSOLUTE, start); + compiler_use_next_block(c, anchor); + } + + return 1; +} + +static int +compiler_async_comprehension_generator(struct compiler *c, + asdl_seq *generators, int gen_index, + int depth, + expr_ty elt, expr_ty val, int type) +{ + comprehension_ty gen; + basicblock *start, *if_cleanup, *except; + Py_ssize_t i, n; + start = compiler_new_block(c); + except = compiler_new_block(c); + if_cleanup = compiler_new_block(c); + + if (start == NULL || if_cleanup == NULL || except == NULL) { + return 0; + } + + gen = (comprehension_ty)asdl_seq_GET(generators, gen_index); + + if (gen_index == 0) { + /* Receive outermost iter as an implicit argument */ + c->u->u_argcount = 1; + ADDOP_I(c, LOAD_FAST, 0); + } + else { + /* Sub-iter - calculate on the fly */ + VISIT(c, expr, gen->iter); + ADDOP(c, GET_AITER); + } + + compiler_use_next_block(c, start); + + ADDOP_JREL(c, SETUP_FINALLY, except); + ADDOP(c, GET_ANEXT); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP(c, YIELD_FROM); + ADDOP(c, POP_BLOCK); + VISIT(c, expr, gen->target); + + n = asdl_seq_LEN(gen->ifs); + for (i = 0; i < n; i++) { + expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i); + if (!compiler_jump_if(c, e, if_cleanup, 0)) + return 0; + NEXT_BLOCK(c); + } + + depth++; + if (++gen_index < asdl_seq_LEN(generators)) + if (!compiler_comprehension_generator(c, + generators, gen_index, depth, + elt, val, type)) + return 0; + + /* only append after the last for generator */ + if (gen_index >= asdl_seq_LEN(generators)) { + /* comprehension specific code */ + switch (type) { + case COMP_GENEXP: + VISIT(c, expr, elt); + ADDOP(c, YIELD_VALUE); + ADDOP(c, POP_TOP); + break; + case COMP_LISTCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, LIST_APPEND, depth + 1); + break; + case COMP_SETCOMP: + VISIT(c, expr, elt); + ADDOP_I(c, SET_ADD, depth + 1); + break; + case COMP_DICTCOMP: + /* With '{k: v}', k is evaluated before v, so we do + the same. */ + VISIT(c, expr, elt); + VISIT(c, expr, val); + ADDOP_I(c, MAP_ADD, depth + 1); + break; + default: + return 0; + } + } + compiler_use_next_block(c, if_cleanup); + ADDOP_JABS(c, JUMP_ABSOLUTE, start); + + compiler_use_next_block(c, except); + ADDOP(c, END_ASYNC_FOR); + + return 1; +} + +static int +compiler_comprehension(struct compiler *c, expr_ty e, int type, + identifier name, asdl_seq *generators, expr_ty elt, + expr_ty val) +{ + PyCodeObject *co = NULL; + comprehension_ty outermost; + PyObject *qualname = NULL; + int is_async_generator = 0; + int top_level_await = IS_TOP_LEVEL_AWAIT(c); + + + int is_async_function = c->u->u_ste->ste_coroutine; + + outermost = (comprehension_ty) asdl_seq_GET(generators, 0); + if (!compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION, + (void *)e, e->lineno)) + { + goto error; + } + + is_async_generator = c->u->u_ste->ste_coroutine; + + if (is_async_generator && !is_async_function && type != COMP_GENEXP && !top_level_await) { + compiler_error(c, "asynchronous comprehension outside of " + "an asynchronous function"); + goto error_in_scope; + } + + if (type != COMP_GENEXP) { + int op; + switch (type) { + case COMP_LISTCOMP: + op = BUILD_LIST; + break; + case COMP_SETCOMP: + op = BUILD_SET; + break; + case COMP_DICTCOMP: + op = BUILD_MAP; + break; + default: + PyErr_Format(PyExc_SystemError, + "unknown comprehension type %d", type); + goto error_in_scope; + } + + ADDOP_I(c, op, 0); + } + + if (!compiler_comprehension_generator(c, generators, 0, 0, elt, + val, type)) + goto error_in_scope; + + if (type != COMP_GENEXP) { + ADDOP(c, RETURN_VALUE); + } + + co = assemble(c, 1); + qualname = c->u->u_qualname; + Py_INCREF(qualname); + compiler_exit_scope(c); + if (top_level_await && is_async_generator){ + c->u->u_ste->ste_coroutine = 1; + } + if (co == NULL) + goto error; + + if (!compiler_make_closure(c, co, 0, qualname)) + goto error; + Py_DECREF(qualname); + Py_DECREF(co); + + VISIT(c, expr, outermost->iter); + + if (outermost->is_async) { + ADDOP(c, GET_AITER); + } else { + ADDOP(c, GET_ITER); + } + + ADDOP_I(c, CALL_FUNCTION, 1); + + if (is_async_generator && type != COMP_GENEXP) { + ADDOP(c, GET_AWAITABLE); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP(c, YIELD_FROM); + } + + return 1; +error_in_scope: + compiler_exit_scope(c); +error: + Py_XDECREF(qualname); + Py_XDECREF(co); + return 0; +} + +static int +compiler_genexp(struct compiler *c, expr_ty e) +{ + static identifier name; + if (!name) { + name = PyUnicode_InternFromString("<genexpr>"); + if (!name) + return 0; + } + assert(e->kind == GeneratorExp_kind); + return compiler_comprehension(c, e, COMP_GENEXP, name, + e->v.GeneratorExp.generators, + e->v.GeneratorExp.elt, NULL); +} + +static int +compiler_listcomp(struct compiler *c, expr_ty e) +{ + static identifier name; + if (!name) { + name = PyUnicode_InternFromString("<listcomp>"); + if (!name) + return 0; + } + assert(e->kind == ListComp_kind); + return compiler_comprehension(c, e, COMP_LISTCOMP, name, + e->v.ListComp.generators, + e->v.ListComp.elt, NULL); +} + +static int +compiler_setcomp(struct compiler *c, expr_ty e) +{ + static identifier name; + if (!name) { + name = PyUnicode_InternFromString("<setcomp>"); + if (!name) + return 0; + } + assert(e->kind == SetComp_kind); + return compiler_comprehension(c, e, COMP_SETCOMP, name, + e->v.SetComp.generators, + e->v.SetComp.elt, NULL); +} + + +static int +compiler_dictcomp(struct compiler *c, expr_ty e) +{ + static identifier name; + if (!name) { + name = PyUnicode_InternFromString("<dictcomp>"); + if (!name) + return 0; + } + assert(e->kind == DictComp_kind); + return compiler_comprehension(c, e, COMP_DICTCOMP, name, + e->v.DictComp.generators, + e->v.DictComp.key, e->v.DictComp.value); +} + + +static int +compiler_visit_keyword(struct compiler *c, keyword_ty k) +{ + VISIT(c, expr, k->value); + return 1; +} + +/* Test whether expression is constant. For constants, report + whether they are true or false. + + Return values: 1 for true, 0 for false, -1 for non-constant. + */ + +static int +expr_constant(expr_ty e) +{ + if (e->kind == Constant_kind) { + return PyObject_IsTrue(e->v.Constant.value); + } + return -1; +} + +static int +compiler_with_except_finish(struct compiler *c) { + basicblock *exit; + exit = compiler_new_block(c); + if (exit == NULL) + return 0; + ADDOP_JABS(c, POP_JUMP_IF_TRUE, exit); + ADDOP(c, RERAISE); + compiler_use_next_block(c, exit); + ADDOP(c, POP_TOP); + ADDOP(c, POP_TOP); + ADDOP(c, POP_TOP); + ADDOP(c, POP_EXCEPT); + ADDOP(c, POP_TOP); + return 1; +} + +/* + Implements the async with statement. + + The semantics outlined in that PEP are as follows: + + async with EXPR as VAR: + BLOCK + + It is implemented roughly as: + + context = EXPR + exit = context.__aexit__ # not calling it + value = await context.__aenter__() + try: + VAR = value # if VAR present in the syntax + BLOCK + finally: + if an exception was raised: + exc = copy of (exception, instance, traceback) + else: + exc = (None, None, None) + if not (await exit(*exc)): + raise + */ +static int +compiler_async_with(struct compiler *c, stmt_ty s, int pos) +{ + basicblock *block, *final, *exit; + withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos); + + assert(s->kind == AsyncWith_kind); + if (IS_TOP_LEVEL_AWAIT(c)){ + c->u->u_ste->ste_coroutine = 1; + } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION){ + return compiler_error(c, "'async with' outside async function"); + } + + block = compiler_new_block(c); + final = compiler_new_block(c); + exit = compiler_new_block(c); + if (!block || !final || !exit) + return 0; + + /* Evaluate EXPR */ + VISIT(c, expr, item->context_expr); + + ADDOP(c, BEFORE_ASYNC_WITH); + ADDOP(c, GET_AWAITABLE); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP(c, YIELD_FROM); + + ADDOP_JREL(c, SETUP_ASYNC_WITH, final); + + /* SETUP_ASYNC_WITH pushes a finally block. */ + compiler_use_next_block(c, block); + if (!compiler_push_fblock(c, ASYNC_WITH, block, final, NULL)) { + return 0; + } + + if (item->optional_vars) { + VISIT(c, expr, item->optional_vars); + } + else { + /* Discard result from context.__aenter__() */ + ADDOP(c, POP_TOP); + } + + pos++; + if (pos == asdl_seq_LEN(s->v.AsyncWith.items)) + /* BLOCK code */ + VISIT_SEQ(c, stmt, s->v.AsyncWith.body) + else if (!compiler_async_with(c, s, pos)) + return 0; + + compiler_pop_fblock(c, ASYNC_WITH, block); + ADDOP(c, POP_BLOCK); + /* End of body; start the cleanup */ + + /* For successful outcome: + * call __exit__(None, None, None) + */ + if(!compiler_call_exit_with_nones(c)) + return 0; + ADDOP(c, GET_AWAITABLE); + ADDOP_O(c, LOAD_CONST, Py_None, consts); + ADDOP(c, YIELD_FROM); + + ADDOP(c, POP_TOP); + + ADDOP_JABS(c, JUMP_ABSOLUTE, exit); + + /* For exceptional outcome: */ + compiler_use_next_block(c, final); + + ADDOP(c, WITH_EXCEPT_START); + ADDOP(c, GET_AWAITABLE); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP(c, YIELD_FROM); + compiler_with_except_finish(c); + +compiler_use_next_block(c, exit); + return 1; +} + + +/* + Implements the with statement from PEP 343. + with EXPR as VAR: + BLOCK + is implemented as: + <code for EXPR> + SETUP_WITH E + <code to store to VAR> or POP_TOP + <code for BLOCK> + LOAD_CONST (None, None, None) + CALL_FUNCTION_EX 0 + JUMP_FORWARD EXIT + E: WITH_EXCEPT_START (calls EXPR.__exit__) + POP_JUMP_IF_TRUE T: + RERAISE + T: POP_TOP * 3 (remove exception from stack) + POP_EXCEPT + POP_TOP + EXIT: + */ + +static int +compiler_with(struct compiler *c, stmt_ty s, int pos) +{ + basicblock *block, *final, *exit; + withitem_ty item = asdl_seq_GET(s->v.With.items, pos); + + assert(s->kind == With_kind); + + block = compiler_new_block(c); + final = compiler_new_block(c); + exit = compiler_new_block(c); + if (!block || !final || !exit) + return 0; + + /* Evaluate EXPR */ + VISIT(c, expr, item->context_expr); + /* Will push bound __exit__ */ + ADDOP_JREL(c, SETUP_WITH, final); + + /* SETUP_WITH pushes a finally block. */ + compiler_use_next_block(c, block); + if (!compiler_push_fblock(c, WITH, block, final, NULL)) { + return 0; + } + + if (item->optional_vars) { + VISIT(c, expr, item->optional_vars); + } + else { + /* Discard result from context.__enter__() */ + ADDOP(c, POP_TOP); + } + + pos++; + if (pos == asdl_seq_LEN(s->v.With.items)) + /* BLOCK code */ + VISIT_SEQ(c, stmt, s->v.With.body) + else if (!compiler_with(c, s, pos)) + return 0; + + ADDOP(c, POP_BLOCK); + compiler_pop_fblock(c, WITH, block); + + /* End of body; start the cleanup. */ + + /* For successful outcome: + * call __exit__(None, None, None) + */ + if (!compiler_call_exit_with_nones(c)) + return 0; + ADDOP(c, POP_TOP); + ADDOP_JREL(c, JUMP_FORWARD, exit); + + /* For exceptional outcome: */ + compiler_use_next_block(c, final); + + ADDOP(c, WITH_EXCEPT_START); + compiler_with_except_finish(c); + + compiler_use_next_block(c, exit); + return 1; +} + +static int +compiler_visit_expr1(struct compiler *c, expr_ty e) +{ + switch (e->kind) { + case NamedExpr_kind: + VISIT(c, expr, e->v.NamedExpr.value); + ADDOP(c, DUP_TOP); + VISIT(c, expr, e->v.NamedExpr.target); + break; + case BoolOp_kind: + return compiler_boolop(c, e); + case BinOp_kind: + VISIT(c, expr, e->v.BinOp.left); + VISIT(c, expr, e->v.BinOp.right); + ADDOP(c, binop(e->v.BinOp.op)); + break; + case UnaryOp_kind: + VISIT(c, expr, e->v.UnaryOp.operand); + ADDOP(c, unaryop(e->v.UnaryOp.op)); + break; + case Lambda_kind: + return compiler_lambda(c, e); + case IfExp_kind: + return compiler_ifexp(c, e); + case Dict_kind: + return compiler_dict(c, e); + case Set_kind: + return compiler_set(c, e); + case GeneratorExp_kind: + return compiler_genexp(c, e); + case ListComp_kind: + return compiler_listcomp(c, e); + case SetComp_kind: + return compiler_setcomp(c, e); + case DictComp_kind: + return compiler_dictcomp(c, e); + case Yield_kind: + if (c->u->u_ste->ste_type != FunctionBlock) + return compiler_error(c, "'yield' outside function"); + if (e->v.Yield.value) { + VISIT(c, expr, e->v.Yield.value); + } + else { + ADDOP_LOAD_CONST(c, Py_None); + } + ADDOP(c, YIELD_VALUE); + break; + case YieldFrom_kind: + if (c->u->u_ste->ste_type != FunctionBlock) + return compiler_error(c, "'yield' outside function"); + + if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION) + return compiler_error(c, "'yield from' inside async function"); + + VISIT(c, expr, e->v.YieldFrom.value); + ADDOP(c, GET_YIELD_FROM_ITER); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP(c, YIELD_FROM); + break; + case Await_kind: + if (!IS_TOP_LEVEL_AWAIT(c)){ + if (c->u->u_ste->ste_type != FunctionBlock){ + return compiler_error(c, "'await' outside function"); + } + + if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION && + c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION){ + return compiler_error(c, "'await' outside async function"); + } + } + + VISIT(c, expr, e->v.Await.value); + ADDOP(c, GET_AWAITABLE); + ADDOP_LOAD_CONST(c, Py_None); + ADDOP(c, YIELD_FROM); + break; + case Compare_kind: + return compiler_compare(c, e); + case Call_kind: + return compiler_call(c, e); + case Constant_kind: + ADDOP_LOAD_CONST(c, e->v.Constant.value); + break; + case JoinedStr_kind: + return compiler_joined_str(c, e); + case FormattedValue_kind: + return compiler_formatted_value(c, e); + /* The following exprs can be assignment targets. */ + case Attribute_kind: + VISIT(c, expr, e->v.Attribute.value); + switch (e->v.Attribute.ctx) { + case Load: + ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names); + break; + case Store: + if (forbidden_name(c, e->v.Attribute.attr, e->v.Attribute.ctx)) + return 0; + ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names); + break; + case Del: + ADDOP_NAME(c, DELETE_ATTR, e->v.Attribute.attr, names); + break; + } + break; + case Subscript_kind: + return compiler_subscript(c, e); + case Starred_kind: + switch (e->v.Starred.ctx) { + case Store: + /* In all legitimate cases, the Starred node was already replaced + * by compiler_list/compiler_tuple. XXX: is that okay? */ + return compiler_error(c, + "starred assignment target must be in a list or tuple"); + default: + return compiler_error(c, + "can't use starred expression here"); + } + break; + case Slice_kind: + return compiler_slice(c, e); + case Name_kind: + return compiler_nameop(c, e->v.Name.id, e->v.Name.ctx); + /* child nodes of List and Tuple will have expr_context set */ + case List_kind: + return compiler_list(c, e); + case Tuple_kind: + return compiler_tuple(c, e); + } + return 1; +} + +static int +compiler_visit_expr(struct compiler *c, expr_ty e) +{ + int old_lineno = c->u->u_lineno; + int old_col_offset = c->u->u_col_offset; + SET_LOC(c, e); + int res = compiler_visit_expr1(c, e); + c->u->u_lineno = old_lineno; + c->u->u_col_offset = old_col_offset; + return res; +} + +static int +compiler_augassign(struct compiler *c, stmt_ty s) +{ + assert(s->kind == AugAssign_kind); + expr_ty e = s->v.AugAssign.target; + + int old_lineno = c->u->u_lineno; + int old_col_offset = c->u->u_col_offset; + SET_LOC(c, e); + + switch (e->kind) { + case Attribute_kind: + VISIT(c, expr, e->v.Attribute.value); + ADDOP(c, DUP_TOP); + ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names); + break; + case Subscript_kind: + VISIT(c, expr, e->v.Subscript.value); + VISIT(c, expr, e->v.Subscript.slice); + ADDOP(c, DUP_TOP_TWO); + ADDOP(c, BINARY_SUBSCR); + break; + case Name_kind: + if (!compiler_nameop(c, e->v.Name.id, Load)) + return 0; + break; + default: + PyErr_Format(PyExc_SystemError, + "invalid node type (%d) for augmented assignment", + e->kind); + return 0; + } + + c->u->u_lineno = old_lineno; + c->u->u_col_offset = old_col_offset; + + VISIT(c, expr, s->v.AugAssign.value); + ADDOP(c, inplace_binop(s->v.AugAssign.op)); + + SET_LOC(c, e); + + switch (e->kind) { + case Attribute_kind: + ADDOP(c, ROT_TWO); + ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names); + break; + case Subscript_kind: + ADDOP(c, ROT_THREE); + ADDOP(c, STORE_SUBSCR); + break; + case Name_kind: + return compiler_nameop(c, e->v.Name.id, Store); + default: + Py_UNREACHABLE(); + } + return 1; +} + +static int +check_ann_expr(struct compiler *c, expr_ty e) +{ + VISIT(c, expr, e); + ADDOP(c, POP_TOP); + return 1; +} + +static int +check_annotation(struct compiler *c, stmt_ty s) +{ + /* Annotations are only evaluated in a module or class. */ + if (c->u->u_scope_type == COMPILER_SCOPE_MODULE || + c->u->u_scope_type == COMPILER_SCOPE_CLASS) { + return check_ann_expr(c, s->v.AnnAssign.annotation); + } + return 1; +} + +static int +check_ann_subscr(struct compiler *c, expr_ty e) +{ + /* We check that everything in a subscript is defined at runtime. */ + switch (e->kind) { + case Slice_kind: + if (e->v.Slice.lower && !check_ann_expr(c, e->v.Slice.lower)) { + return 0; + } + if (e->v.Slice.upper && !check_ann_expr(c, e->v.Slice.upper)) { + return 0; + } + if (e->v.Slice.step && !check_ann_expr(c, e->v.Slice.step)) { + return 0; + } + return 1; + case Tuple_kind: { + /* extended slice */ + asdl_seq *elts = e->v.Tuple.elts; + Py_ssize_t i, n = asdl_seq_LEN(elts); + for (i = 0; i < n; i++) { + if (!check_ann_subscr(c, asdl_seq_GET(elts, i))) { + return 0; + } + } + return 1; + } + default: + return check_ann_expr(c, e); + } +} + +static int +compiler_annassign(struct compiler *c, stmt_ty s) +{ + expr_ty targ = s->v.AnnAssign.target; + PyObject* mangled; + + assert(s->kind == AnnAssign_kind); + + /* We perform the actual assignment first. */ + if (s->v.AnnAssign.value) { + VISIT(c, expr, s->v.AnnAssign.value); + VISIT(c, expr, targ); + } + switch (targ->kind) { + case Name_kind: + if (forbidden_name(c, targ->v.Name.id, Store)) + return 0; + /* If we have a simple name in a module or class, store annotation. */ + if (s->v.AnnAssign.simple && + (c->u->u_scope_type == COMPILER_SCOPE_MODULE || + c->u->u_scope_type == COMPILER_SCOPE_CLASS)) { + if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) { + VISIT(c, annexpr, s->v.AnnAssign.annotation) + } + else { + VISIT(c, expr, s->v.AnnAssign.annotation); + } + ADDOP_NAME(c, LOAD_NAME, __annotations__, names); + mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id); + ADDOP_LOAD_CONST_NEW(c, mangled); + ADDOP(c, STORE_SUBSCR); + } + break; + case Attribute_kind: + if (forbidden_name(c, targ->v.Attribute.attr, Store)) + return 0; + if (!s->v.AnnAssign.value && + !check_ann_expr(c, targ->v.Attribute.value)) { + return 0; + } + break; + case Subscript_kind: + if (!s->v.AnnAssign.value && + (!check_ann_expr(c, targ->v.Subscript.value) || + !check_ann_subscr(c, targ->v.Subscript.slice))) { + return 0; + } + break; + default: + PyErr_Format(PyExc_SystemError, + "invalid node type (%d) for annotated assignment", + targ->kind); + return 0; + } + /* Annotation is evaluated last. */ + if (!s->v.AnnAssign.simple && !check_annotation(c, s)) { + return 0; + } + return 1; +} + +/* Raises a SyntaxError and returns 0. + If something goes wrong, a different exception may be raised. +*/ + +static int +compiler_error(struct compiler *c, const char *errstr) +{ + PyObject *loc; + PyObject *u = NULL, *v = NULL; + + loc = PyErr_ProgramTextObject(c->c_filename, c->u->u_lineno); + if (!loc) { + Py_INCREF(Py_None); + loc = Py_None; + } + u = Py_BuildValue("(OiiO)", c->c_filename, c->u->u_lineno, + c->u->u_col_offset + 1, loc); + if (!u) + goto exit; + v = Py_BuildValue("(zO)", errstr, u); + if (!v) + goto exit; + PyErr_SetObject(PyExc_SyntaxError, v); + exit: + Py_DECREF(loc); + Py_XDECREF(u); + Py_XDECREF(v); + return 0; +} + +/* Emits a SyntaxWarning and returns 1 on success. + If a SyntaxWarning raised as error, replaces it with a SyntaxError + and returns 0. +*/ +static int +compiler_warn(struct compiler *c, const char *format, ...) +{ + va_list vargs; +#ifdef HAVE_STDARG_PROTOTYPES + va_start(vargs, format); +#else + va_start(vargs); +#endif + PyObject *msg = PyUnicode_FromFormatV(format, vargs); + va_end(vargs); + if (msg == NULL) { + return 0; + } + if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg, c->c_filename, + c->u->u_lineno, NULL, NULL) < 0) + { + if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) { + /* Replace the SyntaxWarning exception with a SyntaxError + to get a more accurate error report */ + PyErr_Clear(); + assert(PyUnicode_AsUTF8(msg) != NULL); + compiler_error(c, PyUnicode_AsUTF8(msg)); + } + Py_DECREF(msg); + return 0; + } + Py_DECREF(msg); + return 1; +} + +static int +compiler_subscript(struct compiler *c, expr_ty e) +{ + expr_context_ty ctx = e->v.Subscript.ctx; + int op = 0; + + if (ctx == Load) { + if (!check_subscripter(c, e->v.Subscript.value)) { + return 0; + } + if (!check_index(c, e->v.Subscript.value, e->v.Subscript.slice)) { + return 0; + } + } + + switch (ctx) { + case Load: op = BINARY_SUBSCR; break; + case Store: op = STORE_SUBSCR; break; + case Del: op = DELETE_SUBSCR; break; + } + assert(op); + VISIT(c, expr, e->v.Subscript.value); + VISIT(c, expr, e->v.Subscript.slice); + ADDOP(c, op); + return 1; +} + +static int +compiler_slice(struct compiler *c, expr_ty s) +{ + int n = 2; + assert(s->kind == Slice_kind); + + /* only handles the cases where BUILD_SLICE is emitted */ + if (s->v.Slice.lower) { + VISIT(c, expr, s->v.Slice.lower); + } + else { + ADDOP_LOAD_CONST(c, Py_None); + } + + if (s->v.Slice.upper) { + VISIT(c, expr, s->v.Slice.upper); + } + else { + ADDOP_LOAD_CONST(c, Py_None); + } + + if (s->v.Slice.step) { + n++; + VISIT(c, expr, s->v.Slice.step); + } + ADDOP_I(c, BUILD_SLICE, n); + return 1; +} + +/* End of the compiler section, beginning of the assembler section */ + +/* do depth-first search of basic block graph, starting with block. + post records the block indices in post-order. + + XXX must handle implicit jumps from one block to next +*/ + +struct assembler { + PyObject *a_bytecode; /* string containing bytecode */ + int a_offset; /* offset into bytecode */ + int a_nblocks; /* number of reachable blocks */ + basicblock **a_postorder; /* list of blocks in dfs postorder */ + PyObject *a_lnotab; /* string containing lnotab */ + int a_lnotab_off; /* offset into lnotab */ + int a_lineno; /* last lineno of emitted instruction */ + int a_lineno_off; /* bytecode offset of last lineno */ +}; + +static void +dfs(struct compiler *c, basicblock *b, struct assembler *a, int end) +{ + int i, j; + + /* Get rid of recursion for normal control flow. + Since the number of blocks is limited, unused space in a_postorder + (from a_nblocks to end) can be used as a stack for still not ordered + blocks. */ + for (j = end; b && !b->b_seen; b = b->b_next) { + b->b_seen = 1; + assert(a->a_nblocks < j); + a->a_postorder[--j] = b; + } + while (j < end) { + b = a->a_postorder[j++]; + for (i = 0; i < b->b_iused; i++) { + struct instr *instr = &b->b_instr[i]; + if (instr->i_jrel || instr->i_jabs) + dfs(c, instr->i_target, a, j); + } + assert(a->a_nblocks < j); + a->a_postorder[a->a_nblocks++] = b; + } +} + +Py_LOCAL_INLINE(void) +stackdepth_push(basicblock ***sp, basicblock *b, int depth) +{ + assert(b->b_startdepth < 0 || b->b_startdepth == depth); + if (b->b_startdepth < depth && b->b_startdepth < 100) { + assert(b->b_startdepth < 0); + b->b_startdepth = depth; + *(*sp)++ = b; + } +} + +/* Find the flow path that needs the largest stack. We assume that + * cycles in the flow graph have no net effect on the stack depth. + */ +static int +stackdepth(struct compiler *c) +{ + basicblock *b, *entryblock = NULL; + basicblock **stack, **sp; + int nblocks = 0, maxdepth = 0; + for (b = c->u->u_blocks; b != NULL; b = b->b_list) { + b->b_startdepth = INT_MIN; + entryblock = b; + nblocks++; + } + if (!entryblock) + return 0; + stack = (basicblock **)PyObject_Malloc(sizeof(basicblock *) * nblocks); + if (!stack) { + PyErr_NoMemory(); + return -1; + } + + sp = stack; + stackdepth_push(&sp, entryblock, 0); + while (sp != stack) { + b = *--sp; + int depth = b->b_startdepth; + assert(depth >= 0); + basicblock *next = b->b_next; + for (int i = 0; i < b->b_iused; i++) { + struct instr *instr = &b->b_instr[i]; + int effect = stack_effect(instr->i_opcode, instr->i_oparg, 0); + if (effect == PY_INVALID_STACK_EFFECT) { + _Py_FatalErrorFormat(__func__, + "opcode = %d", instr->i_opcode); + } + int new_depth = depth + effect; + if (new_depth > maxdepth) { + maxdepth = new_depth; + } + assert(depth >= 0); /* invalid code or bug in stackdepth() */ + if (instr->i_jrel || instr->i_jabs) { + effect = stack_effect(instr->i_opcode, instr->i_oparg, 1); + assert(effect != PY_INVALID_STACK_EFFECT); + int target_depth = depth + effect; + if (target_depth > maxdepth) { + maxdepth = target_depth; + } + assert(target_depth >= 0); /* invalid code or bug in stackdepth() */ + stackdepth_push(&sp, instr->i_target, target_depth); + } + depth = new_depth; + if (instr->i_opcode == JUMP_ABSOLUTE || + instr->i_opcode == JUMP_FORWARD || + instr->i_opcode == RETURN_VALUE || + instr->i_opcode == RAISE_VARARGS || + instr->i_opcode == RERAISE) + { + /* remaining code is dead */ + next = NULL; + break; + } + } + if (next != NULL) { + stackdepth_push(&sp, next, depth); + } + } + PyObject_Free(stack); + return maxdepth; +} + +static int +assemble_init(struct assembler *a, int nblocks, int firstlineno) +{ + memset(a, 0, sizeof(struct assembler)); + a->a_lineno = firstlineno; + a->a_bytecode = PyBytes_FromStringAndSize(NULL, DEFAULT_CODE_SIZE); + if (!a->a_bytecode) + return 0; + a->a_lnotab = PyBytes_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE); + if (!a->a_lnotab) + return 0; + if ((size_t)nblocks > SIZE_MAX / sizeof(basicblock *)) { + PyErr_NoMemory(); + return 0; + } + a->a_postorder = (basicblock **)PyObject_Malloc( + sizeof(basicblock *) * nblocks); + if (!a->a_postorder) { + PyErr_NoMemory(); + return 0; + } + return 1; +} + +static void +assemble_free(struct assembler *a) +{ + Py_XDECREF(a->a_bytecode); + Py_XDECREF(a->a_lnotab); + if (a->a_postorder) + PyObject_Free(a->a_postorder); +} + +static int +blocksize(basicblock *b) +{ + int i; + int size = 0; + + for (i = 0; i < b->b_iused; i++) + size += instrsize(b->b_instr[i].i_oparg); + return size; +} + +/* Appends a pair to the end of the line number table, a_lnotab, representing + the instruction's bytecode offset and line number. See + Objects/lnotab_notes.txt for the description of the line number table. */ + +static int +assemble_lnotab(struct assembler *a, struct instr *i) +{ + int d_bytecode, d_lineno; + Py_ssize_t len; + unsigned char *lnotab; + + d_lineno = i->i_lineno - a->a_lineno; + if (d_lineno == 0) { + return 1; + } + + d_bytecode = (a->a_offset - a->a_lineno_off) * sizeof(_Py_CODEUNIT); + assert(d_bytecode >= 0); + + if (d_bytecode > 255) { + int j, nbytes, ncodes = d_bytecode / 255; + nbytes = a->a_lnotab_off + 2 * ncodes; + len = PyBytes_GET_SIZE(a->a_lnotab); + if (nbytes >= len) { + if ((len <= INT_MAX / 2) && (len * 2 < nbytes)) + len = nbytes; + else if (len <= INT_MAX / 2) + len *= 2; + else { + PyErr_NoMemory(); + return 0; + } + if (_PyBytes_Resize(&a->a_lnotab, len) < 0) + return 0; + } + lnotab = (unsigned char *) + PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off; + for (j = 0; j < ncodes; j++) { + *lnotab++ = 255; + *lnotab++ = 0; + } + d_bytecode -= ncodes * 255; + a->a_lnotab_off += ncodes * 2; + } + assert(0 <= d_bytecode && d_bytecode <= 255); + + if (d_lineno < -128 || 127 < d_lineno) { + int j, nbytes, ncodes, k; + if (d_lineno < 0) { + k = -128; + /* use division on positive numbers */ + ncodes = (-d_lineno) / 128; + } + else { + k = 127; + ncodes = d_lineno / 127; + } + d_lineno -= ncodes * k; + assert(ncodes >= 1); + nbytes = a->a_lnotab_off + 2 * ncodes; + len = PyBytes_GET_SIZE(a->a_lnotab); + if (nbytes >= len) { + if ((len <= INT_MAX / 2) && len * 2 < nbytes) + len = nbytes; + else if (len <= INT_MAX / 2) + len *= 2; + else { + PyErr_NoMemory(); + return 0; + } + if (_PyBytes_Resize(&a->a_lnotab, len) < 0) + return 0; + } + lnotab = (unsigned char *) + PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off; + *lnotab++ = d_bytecode; + *lnotab++ = k; + d_bytecode = 0; + for (j = 1; j < ncodes; j++) { + *lnotab++ = 0; + *lnotab++ = k; + } + a->a_lnotab_off += ncodes * 2; + } + assert(-128 <= d_lineno && d_lineno <= 127); + + len = PyBytes_GET_SIZE(a->a_lnotab); + if (a->a_lnotab_off + 2 >= len) { + if (_PyBytes_Resize(&a->a_lnotab, len * 2) < 0) + return 0; + } + lnotab = (unsigned char *) + PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off; + + a->a_lnotab_off += 2; + if (d_bytecode) { + *lnotab++ = d_bytecode; + *lnotab++ = d_lineno; + } + else { /* First line of a block; def stmt, etc. */ + *lnotab++ = 0; + *lnotab++ = d_lineno; + } + a->a_lineno = i->i_lineno; + a->a_lineno_off = a->a_offset; + return 1; +} + +/* assemble_emit() + Extend the bytecode with a new instruction. + Update lnotab if necessary. +*/ + +static int +assemble_emit(struct assembler *a, struct instr *i) +{ + int size, arg = 0; + Py_ssize_t len = PyBytes_GET_SIZE(a->a_bytecode); + _Py_CODEUNIT *code; + + arg = i->i_oparg; + size = instrsize(arg); + if (i->i_lineno && !assemble_lnotab(a, i)) + return 0; + if (a->a_offset + size >= len / (int)sizeof(_Py_CODEUNIT)) { + if (len > PY_SSIZE_T_MAX / 2) + return 0; + if (_PyBytes_Resize(&a->a_bytecode, len * 2) < 0) + return 0; + } + code = (_Py_CODEUNIT *)PyBytes_AS_STRING(a->a_bytecode) + a->a_offset; + a->a_offset += size; + write_op_arg(code, i->i_opcode, arg, size); + return 1; +} + +static void +assemble_jump_offsets(struct assembler *a, struct compiler *c) +{ + basicblock *b; + int bsize, totsize, extended_arg_recompile; + int i; + + /* Compute the size of each block and fixup jump args. + Replace block pointer with position in bytecode. */ + do { + totsize = 0; + for (i = a->a_nblocks - 1; i >= 0; i--) { + b = a->a_postorder[i]; + bsize = blocksize(b); + b->b_offset = totsize; + totsize += bsize; + } + extended_arg_recompile = 0; + for (b = c->u->u_blocks; b != NULL; b = b->b_list) { + bsize = b->b_offset; + for (i = 0; i < b->b_iused; i++) { + struct instr *instr = &b->b_instr[i]; + int isize = instrsize(instr->i_oparg); + /* Relative jumps are computed relative to + the instruction pointer after fetching + the jump instruction. + */ + bsize += isize; + if (instr->i_jabs || instr->i_jrel) { + instr->i_oparg = instr->i_target->b_offset; + if (instr->i_jrel) { + instr->i_oparg -= bsize; + } + instr->i_oparg *= sizeof(_Py_CODEUNIT); + if (instrsize(instr->i_oparg) != isize) { + extended_arg_recompile = 1; + } + } + } + } + + /* XXX: This is an awful hack that could hurt performance, but + on the bright side it should work until we come up + with a better solution. + + The issue is that in the first loop blocksize() is called + which calls instrsize() which requires i_oparg be set + appropriately. There is a bootstrap problem because + i_oparg is calculated in the second loop above. + + So we loop until we stop seeing new EXTENDED_ARGs. + The only EXTENDED_ARGs that could be popping up are + ones in jump instructions. So this should converge + fairly quickly. + */ + } while (extended_arg_recompile); +} + +static PyObject * +dict_keys_inorder(PyObject *dict, Py_ssize_t offset) +{ + PyObject *tuple, *k, *v; + Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict); + + tuple = PyTuple_New(size); + if (tuple == NULL) + return NULL; + while (PyDict_Next(dict, &pos, &k, &v)) { + i = PyLong_AS_LONG(v); + Py_INCREF(k); + assert((i - offset) < size); + assert((i - offset) >= 0); + PyTuple_SET_ITEM(tuple, i - offset, k); + } + return tuple; +} + +static PyObject * +consts_dict_keys_inorder(PyObject *dict) +{ + PyObject *consts, *k, *v; + Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict); + + consts = PyList_New(size); /* PyCode_Optimize() requires a list */ + if (consts == NULL) + return NULL; + while (PyDict_Next(dict, &pos, &k, &v)) { + i = PyLong_AS_LONG(v); + /* The keys of the dictionary can be tuples wrapping a contant. + * (see compiler_add_o and _PyCode_ConstantKey). In that case + * the object we want is always second. */ + if (PyTuple_CheckExact(k)) { + k = PyTuple_GET_ITEM(k, 1); + } + Py_INCREF(k); + assert(i < size); + assert(i >= 0); + PyList_SET_ITEM(consts, i, k); + } + return consts; +} + +static int +compute_code_flags(struct compiler *c) +{ + PySTEntryObject *ste = c->u->u_ste; + int flags = 0; + if (ste->ste_type == FunctionBlock) { + flags |= CO_NEWLOCALS | CO_OPTIMIZED; + if (ste->ste_nested) + flags |= CO_NESTED; + if (ste->ste_generator && !ste->ste_coroutine) + flags |= CO_GENERATOR; + if (!ste->ste_generator && ste->ste_coroutine) + flags |= CO_COROUTINE; + if (ste->ste_generator && ste->ste_coroutine) + flags |= CO_ASYNC_GENERATOR; + if (ste->ste_varargs) + flags |= CO_VARARGS; + if (ste->ste_varkeywords) + flags |= CO_VARKEYWORDS; + } + + /* (Only) inherit compilerflags in PyCF_MASK */ + flags |= (c->c_flags->cf_flags & PyCF_MASK); + + if ((IS_TOP_LEVEL_AWAIT(c)) && + ste->ste_coroutine && + !ste->ste_generator) { + flags |= CO_COROUTINE; + } + + return flags; +} + +// Merge *tuple* with constant cache. +// Unlike merge_consts_recursive(), this function doesn't work recursively. +static int +merge_const_tuple(struct compiler *c, PyObject **tuple) +{ + assert(PyTuple_CheckExact(*tuple)); + + PyObject *key = _PyCode_ConstantKey(*tuple); + if (key == NULL) { + return 0; + } + + // t is borrowed reference + PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key); + Py_DECREF(key); + if (t == NULL) { + return 0; + } + if (t == key) { // tuple is new constant. + return 1; + } + + PyObject *u = PyTuple_GET_ITEM(t, 1); + Py_INCREF(u); + Py_DECREF(*tuple); + *tuple = u; + return 1; +} + +static PyCodeObject * +makecode(struct compiler *c, struct assembler *a) +{ + PyObject *tmp; + PyCodeObject *co = NULL; + PyObject *consts = NULL; + PyObject *names = NULL; + PyObject *varnames = NULL; + PyObject *name = NULL; + PyObject *freevars = NULL; + PyObject *cellvars = NULL; + PyObject *bytecode = NULL; + Py_ssize_t nlocals; + int nlocals_int; + int flags; + int posorkeywordargcount, posonlyargcount, kwonlyargcount, maxdepth; + + consts = consts_dict_keys_inorder(c->u->u_consts); + names = dict_keys_inorder(c->u->u_names, 0); + varnames = dict_keys_inorder(c->u->u_varnames, 0); + if (!consts || !names || !varnames) + goto error; + + cellvars = dict_keys_inorder(c->u->u_cellvars, 0); + if (!cellvars) + goto error; + freevars = dict_keys_inorder(c->u->u_freevars, PyTuple_GET_SIZE(cellvars)); + if (!freevars) + goto error; + + if (!merge_const_tuple(c, &names) || + !merge_const_tuple(c, &varnames) || + !merge_const_tuple(c, &cellvars) || + !merge_const_tuple(c, &freevars)) + { + goto error; + } + + nlocals = PyDict_GET_SIZE(c->u->u_varnames); + assert(nlocals < INT_MAX); + nlocals_int = Py_SAFE_DOWNCAST(nlocals, Py_ssize_t, int); + + flags = compute_code_flags(c); + if (flags < 0) + goto error; + + bytecode = PyCode_Optimize(a->a_bytecode, consts, names, a->a_lnotab); + if (!bytecode) + goto error; + + tmp = PyList_AsTuple(consts); /* PyCode_New requires a tuple */ + if (!tmp) + goto error; + Py_DECREF(consts); + consts = tmp; + if (!merge_const_tuple(c, &consts)) { + goto error; + } + + posonlyargcount = Py_SAFE_DOWNCAST(c->u->u_posonlyargcount, Py_ssize_t, int); + posorkeywordargcount = Py_SAFE_DOWNCAST(c->u->u_argcount, Py_ssize_t, int); + kwonlyargcount = Py_SAFE_DOWNCAST(c->u->u_kwonlyargcount, Py_ssize_t, int); + maxdepth = stackdepth(c); + if (maxdepth < 0) { + goto error; + } + co = PyCode_NewWithPosOnlyArgs(posonlyargcount+posorkeywordargcount, + posonlyargcount, kwonlyargcount, nlocals_int, + maxdepth, flags, bytecode, consts, names, + varnames, freevars, cellvars, c->c_filename, + c->u->u_name, c->u->u_firstlineno, a->a_lnotab); + error: + Py_XDECREF(consts); + Py_XDECREF(names); + Py_XDECREF(varnames); + Py_XDECREF(name); + Py_XDECREF(freevars); + Py_XDECREF(cellvars); + Py_XDECREF(bytecode); + return co; +} + + +/* For debugging purposes only */ +#if 0 +static void +dump_instr(const struct instr *i) +{ + const char *jrel = i->i_jrel ? "jrel " : ""; + const char *jabs = i->i_jabs ? "jabs " : ""; + char arg[128]; + + *arg = '\0'; + if (HAS_ARG(i->i_opcode)) { + sprintf(arg, "arg: %d ", i->i_oparg); + } + fprintf(stderr, "line: %d, opcode: %d %s%s%s\n", + i->i_lineno, i->i_opcode, arg, jabs, jrel); +} + +static void +dump_basicblock(const basicblock *b) +{ + const char *seen = b->b_seen ? "seen " : ""; + const char *b_return = b->b_return ? "return " : ""; + fprintf(stderr, "used: %d, depth: %d, offset: %d %s%s\n", + b->b_iused, b->b_startdepth, b->b_offset, seen, b_return); + if (b->b_instr) { + int i; + for (i = 0; i < b->b_iused; i++) { + fprintf(stderr, " [%02d] ", i); + dump_instr(b->b_instr + i); + } + } +} +#endif + +static PyCodeObject * +assemble(struct compiler *c, int addNone) +{ + basicblock *b, *entryblock; + struct assembler a; + int i, j, nblocks; + PyCodeObject *co = NULL; + + /* Make sure every block that falls off the end returns None. + XXX NEXT_BLOCK() isn't quite right, because if the last + block ends with a jump or return b_next shouldn't set. + */ + if (!c->u->u_curblock->b_return) { + NEXT_BLOCK(c); + if (addNone) + ADDOP_LOAD_CONST(c, Py_None); + ADDOP(c, RETURN_VALUE); + } + + nblocks = 0; + entryblock = NULL; + for (b = c->u->u_blocks; b != NULL; b = b->b_list) { + nblocks++; + entryblock = b; + } + + /* Set firstlineno if it wasn't explicitly set. */ + if (!c->u->u_firstlineno) { + if (entryblock && entryblock->b_instr && entryblock->b_instr->i_lineno) + c->u->u_firstlineno = entryblock->b_instr->i_lineno; + else + c->u->u_firstlineno = 1; + } + if (!assemble_init(&a, nblocks, c->u->u_firstlineno)) + goto error; + dfs(c, entryblock, &a, nblocks); + + /* Can't modify the bytecode after computing jump offsets. */ + assemble_jump_offsets(&a, c); + + /* Emit code in reverse postorder from dfs. */ + for (i = a.a_nblocks - 1; i >= 0; i--) { + b = a.a_postorder[i]; + for (j = 0; j < b->b_iused; j++) + if (!assemble_emit(&a, &b->b_instr[j])) + goto error; + } + + if (_PyBytes_Resize(&a.a_lnotab, a.a_lnotab_off) < 0) + goto error; + if (_PyBytes_Resize(&a.a_bytecode, a.a_offset * sizeof(_Py_CODEUNIT)) < 0) + goto error; + + co = makecode(c, &a); + error: + assemble_free(&a); + return co; +} + +#undef PyAST_Compile +PyCodeObject * +PyAST_Compile(mod_ty mod, const char *filename, PyCompilerFlags *flags, + PyArena *arena) +{ + return PyAST_CompileEx(mod, filename, flags, -1, arena); +} |