aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Python/compile.c
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/tools/python3/src/Python/compile.c
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/tools/python3/src/Python/compile.c')
-rw-r--r--contrib/tools/python3/src/Python/compile.c6083
1 files changed, 6083 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Python/compile.c b/contrib/tools/python3/src/Python/compile.c
new file mode 100644
index 0000000000..f426050cce
--- /dev/null
+++ b/contrib/tools/python3/src/Python/compile.c
@@ -0,0 +1,6083 @@
+/*
+ * This file compiles an abstract syntax tree (AST) into Python bytecode.
+ *
+ * The primary entry point is PyAST_Compile(), which returns a
+ * PyCodeObject. The compiler makes several passes to build the code
+ * object:
+ * 1. Checks for future statements. See future.c
+ * 2. Builds a symbol table. See symtable.c.
+ * 3. Generate code for basic blocks. See compiler_mod() in this file.
+ * 4. Assemble the basic blocks into final code. See assemble() in
+ * this file.
+ * 5. Optimize the byte code (peephole optimizations). See peephole.c
+ *
+ * Note that compiler_mod() suggests module, but the module ast type
+ * (mod_ty) has cases for expressions and interactive statements.
+ *
+ * CAUTION: The VISIT_* macros abort the current function when they
+ * encounter a problem. So don't invoke them when there is memory
+ * which needs to be released. Code blocks are OK, as the compiler
+ * structure takes care of releasing those. Use the arena to manage
+ * objects.
+ */
+
+#include "Python.h"
+
+#include "Python-ast.h"
+#include "ast.h"
+#include "code.h"
+#include "symtable.h"
+#include "opcode.h"
+#include "wordcode_helpers.h"
+
+#define DEFAULT_BLOCK_SIZE 16
+#define DEFAULT_BLOCKS 8
+#define DEFAULT_CODE_SIZE 128
+#define DEFAULT_LNOTAB_SIZE 16
+
+#define COMP_GENEXP 0
+#define COMP_LISTCOMP 1
+#define COMP_SETCOMP 2
+#define COMP_DICTCOMP 3
+
+#define IS_TOP_LEVEL_AWAIT(c) ( \
+ (c->c_flags->cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT) \
+ && (c->u->u_ste->ste_type == ModuleBlock))
+
+struct instr {
+ unsigned i_jabs : 1;
+ unsigned i_jrel : 1;
+ unsigned char i_opcode;
+ int i_oparg;
+ struct basicblock_ *i_target; /* target block (if jump instruction) */
+ int i_lineno;
+};
+
+typedef struct basicblock_ {
+ /* Each basicblock in a compilation unit is linked via b_list in the
+ reverse order that the block are allocated. b_list points to the next
+ block, not to be confused with b_next, which is next by control flow. */
+ struct basicblock_ *b_list;
+ /* number of instructions used */
+ int b_iused;
+ /* length of instruction array (b_instr) */
+ int b_ialloc;
+ /* pointer to an array of instructions, initially NULL */
+ struct instr *b_instr;
+ /* If b_next is non-NULL, it is a pointer to the next
+ block reached by normal control flow. */
+ struct basicblock_ *b_next;
+ /* b_seen is used to perform a DFS of basicblocks. */
+ unsigned b_seen : 1;
+ /* b_return is true if a RETURN_VALUE opcode is inserted. */
+ unsigned b_return : 1;
+ /* depth of stack upon entry of block, computed by stackdepth() */
+ int b_startdepth;
+ /* instruction offset for block, computed by assemble_jump_offsets() */
+ int b_offset;
+} basicblock;
+
+/* fblockinfo tracks the current frame block.
+
+A frame block is used to handle loops, try/except, and try/finally.
+It's called a frame block to distinguish it from a basic block in the
+compiler IR.
+*/
+
+enum fblocktype { WHILE_LOOP, FOR_LOOP, TRY_EXCEPT, FINALLY_TRY, FINALLY_END,
+ WITH, ASYNC_WITH, HANDLER_CLEANUP, POP_VALUE, EXCEPTION_HANDLER };
+
+struct fblockinfo {
+ enum fblocktype fb_type;
+ basicblock *fb_block;
+ /* (optional) type-specific exit or cleanup block */
+ basicblock *fb_exit;
+ /* (optional) additional information required for unwinding */
+ void *fb_datum;
+};
+
+enum {
+ COMPILER_SCOPE_MODULE,
+ COMPILER_SCOPE_CLASS,
+ COMPILER_SCOPE_FUNCTION,
+ COMPILER_SCOPE_ASYNC_FUNCTION,
+ COMPILER_SCOPE_LAMBDA,
+ COMPILER_SCOPE_COMPREHENSION,
+};
+
+/* The following items change on entry and exit of code blocks.
+ They must be saved and restored when returning to a block.
+*/
+struct compiler_unit {
+ PySTEntryObject *u_ste;
+
+ PyObject *u_name;
+ PyObject *u_qualname; /* dot-separated qualified name (lazy) */
+ int u_scope_type;
+
+ /* The following fields are dicts that map objects to
+ the index of them in co_XXX. The index is used as
+ the argument for opcodes that refer to those collections.
+ */
+ PyObject *u_consts; /* all constants */
+ PyObject *u_names; /* all names */
+ PyObject *u_varnames; /* local variables */
+ PyObject *u_cellvars; /* cell variables */
+ PyObject *u_freevars; /* free variables */
+
+ PyObject *u_private; /* for private name mangling */
+
+ Py_ssize_t u_argcount; /* number of arguments for block */
+ Py_ssize_t u_posonlyargcount; /* number of positional only arguments for block */
+ Py_ssize_t u_kwonlyargcount; /* number of keyword only arguments for block */
+ /* Pointer to the most recently allocated block. By following b_list
+ members, you can reach all early allocated blocks. */
+ basicblock *u_blocks;
+ basicblock *u_curblock; /* pointer to current block */
+
+ int u_nfblocks;
+ struct fblockinfo u_fblock[CO_MAXBLOCKS];
+
+ int u_firstlineno; /* the first lineno of the block */
+ int u_lineno; /* the lineno for the current stmt */
+ int u_col_offset; /* the offset of the current stmt */
+};
+
+/* This struct captures the global state of a compilation.
+
+The u pointer points to the current compilation unit, while units
+for enclosing blocks are stored in c_stack. The u and c_stack are
+managed by compiler_enter_scope() and compiler_exit_scope().
+
+Note that we don't track recursion levels during compilation - the
+task of detecting and rejecting excessive levels of nesting is
+handled by the symbol analysis pass.
+
+*/
+
+struct compiler {
+ PyObject *c_filename;
+ struct symtable *c_st;
+ PyFutureFeatures *c_future; /* pointer to module's __future__ */
+ PyCompilerFlags *c_flags;
+
+ int c_optimize; /* optimization level */
+ int c_interactive; /* true if in interactive mode */
+ int c_nestlevel;
+ int c_do_not_emit_bytecode; /* The compiler won't emit any bytecode
+ if this value is different from zero.
+ This can be used to temporarily visit
+ nodes without emitting bytecode to
+ check only errors. */
+
+ PyObject *c_const_cache; /* Python dict holding all constants,
+ including names tuple */
+ struct compiler_unit *u; /* compiler state for current block */
+ PyObject *c_stack; /* Python list holding compiler_unit ptrs */
+ PyArena *c_arena; /* pointer to memory allocation arena */
+};
+
+static int compiler_enter_scope(struct compiler *, identifier, int, void *, int);
+static void compiler_free(struct compiler *);
+static basicblock *compiler_new_block(struct compiler *);
+static int compiler_next_instr(basicblock *);
+static int compiler_addop(struct compiler *, int);
+static int compiler_addop_i(struct compiler *, int, Py_ssize_t);
+static int compiler_addop_j(struct compiler *, int, basicblock *, int);
+static int compiler_error(struct compiler *, const char *);
+static int compiler_warn(struct compiler *, const char *, ...);
+static int compiler_nameop(struct compiler *, identifier, expr_context_ty);
+
+static PyCodeObject *compiler_mod(struct compiler *, mod_ty);
+static int compiler_visit_stmt(struct compiler *, stmt_ty);
+static int compiler_visit_keyword(struct compiler *, keyword_ty);
+static int compiler_visit_expr(struct compiler *, expr_ty);
+static int compiler_augassign(struct compiler *, stmt_ty);
+static int compiler_annassign(struct compiler *, stmt_ty);
+static int compiler_subscript(struct compiler *, expr_ty);
+static int compiler_slice(struct compiler *, expr_ty);
+
+static int inplace_binop(operator_ty);
+static int are_all_items_const(asdl_seq *, Py_ssize_t, Py_ssize_t);
+static int expr_constant(expr_ty);
+
+static int compiler_with(struct compiler *, stmt_ty, int);
+static int compiler_async_with(struct compiler *, stmt_ty, int);
+static int compiler_async_for(struct compiler *, stmt_ty);
+static int compiler_call_helper(struct compiler *c, int n,
+ asdl_seq *args,
+ asdl_seq *keywords);
+static int compiler_try_except(struct compiler *, stmt_ty);
+static int compiler_set_qualname(struct compiler *);
+
+static int compiler_sync_comprehension_generator(
+ struct compiler *c,
+ asdl_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type);
+
+static int compiler_async_comprehension_generator(
+ struct compiler *c,
+ asdl_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type);
+
+static PyCodeObject *assemble(struct compiler *, int addNone);
+static PyObject *__doc__, *__annotations__;
+
+#define CAPSULE_NAME "compile.c compiler unit"
+
+PyObject *
+_Py_Mangle(PyObject *privateobj, PyObject *ident)
+{
+ /* Name mangling: __private becomes _classname__private.
+ This is independent from how the name is used. */
+ PyObject *result;
+ size_t nlen, plen, ipriv;
+ Py_UCS4 maxchar;
+ if (privateobj == NULL || !PyUnicode_Check(privateobj) ||
+ PyUnicode_READ_CHAR(ident, 0) != '_' ||
+ PyUnicode_READ_CHAR(ident, 1) != '_') {
+ Py_INCREF(ident);
+ return ident;
+ }
+ nlen = PyUnicode_GET_LENGTH(ident);
+ plen = PyUnicode_GET_LENGTH(privateobj);
+ /* Don't mangle __id__ or names with dots.
+
+ The only time a name with a dot can occur is when
+ we are compiling an import statement that has a
+ package name.
+
+ TODO(jhylton): Decide whether we want to support
+ mangling of the module name, e.g. __M.X.
+ */
+ if ((PyUnicode_READ_CHAR(ident, nlen-1) == '_' &&
+ PyUnicode_READ_CHAR(ident, nlen-2) == '_') ||
+ PyUnicode_FindChar(ident, '.', 0, nlen, 1) != -1) {
+ Py_INCREF(ident);
+ return ident; /* Don't mangle __whatever__ */
+ }
+ /* Strip leading underscores from class name */
+ ipriv = 0;
+ while (PyUnicode_READ_CHAR(privateobj, ipriv) == '_')
+ ipriv++;
+ if (ipriv == plen) {
+ Py_INCREF(ident);
+ return ident; /* Don't mangle if class is just underscores */
+ }
+ plen -= ipriv;
+
+ if (plen + nlen >= PY_SSIZE_T_MAX - 1) {
+ PyErr_SetString(PyExc_OverflowError,
+ "private identifier too large to be mangled");
+ return NULL;
+ }
+
+ maxchar = PyUnicode_MAX_CHAR_VALUE(ident);
+ if (PyUnicode_MAX_CHAR_VALUE(privateobj) > maxchar)
+ maxchar = PyUnicode_MAX_CHAR_VALUE(privateobj);
+
+ result = PyUnicode_New(1 + nlen + plen, maxchar);
+ if (!result)
+ return 0;
+ /* ident = "_" + priv[ipriv:] + ident # i.e. 1+plen+nlen bytes */
+ PyUnicode_WRITE(PyUnicode_KIND(result), PyUnicode_DATA(result), 0, '_');
+ if (PyUnicode_CopyCharacters(result, 1, privateobj, ipriv, plen) < 0) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ if (PyUnicode_CopyCharacters(result, plen+1, ident, 0, nlen) < 0) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ assert(_PyUnicode_CheckConsistency(result, 1));
+ return result;
+}
+
+static int
+compiler_init(struct compiler *c)
+{
+ memset(c, 0, sizeof(struct compiler));
+
+ c->c_const_cache = PyDict_New();
+ if (!c->c_const_cache) {
+ return 0;
+ }
+
+ c->c_stack = PyList_New(0);
+ if (!c->c_stack) {
+ Py_CLEAR(c->c_const_cache);
+ return 0;
+ }
+
+ return 1;
+}
+
+PyCodeObject *
+PyAST_CompileObject(mod_ty mod, PyObject *filename, PyCompilerFlags *flags,
+ int optimize, PyArena *arena)
+{
+ struct compiler c;
+ PyCodeObject *co = NULL;
+ PyCompilerFlags local_flags = _PyCompilerFlags_INIT;
+ int merged;
+
+ if (!__doc__) {
+ __doc__ = PyUnicode_InternFromString("__doc__");
+ if (!__doc__)
+ return NULL;
+ }
+ if (!__annotations__) {
+ __annotations__ = PyUnicode_InternFromString("__annotations__");
+ if (!__annotations__)
+ return NULL;
+ }
+ if (!compiler_init(&c))
+ return NULL;
+ Py_INCREF(filename);
+ c.c_filename = filename;
+ c.c_arena = arena;
+ c.c_future = PyFuture_FromASTObject(mod, filename);
+ if (c.c_future == NULL)
+ goto finally;
+ if (!flags) {
+ flags = &local_flags;
+ }
+ merged = c.c_future->ff_features | flags->cf_flags;
+ c.c_future->ff_features = merged;
+ flags->cf_flags = merged;
+ c.c_flags = flags;
+ c.c_optimize = (optimize == -1) ? _Py_GetConfig()->optimization_level : optimize;
+ c.c_nestlevel = 0;
+ c.c_do_not_emit_bytecode = 0;
+
+ _PyASTOptimizeState state;
+ state.optimize = c.c_optimize;
+ state.ff_features = merged;
+
+ if (!_PyAST_Optimize(mod, arena, &state)) {
+ goto finally;
+ }
+
+ c.c_st = PySymtable_BuildObject(mod, filename, c.c_future);
+ if (c.c_st == NULL) {
+ if (!PyErr_Occurred())
+ PyErr_SetString(PyExc_SystemError, "no symtable");
+ goto finally;
+ }
+
+ co = compiler_mod(&c, mod);
+
+ finally:
+ compiler_free(&c);
+ assert(co || PyErr_Occurred());
+ return co;
+}
+
+PyCodeObject *
+PyAST_CompileEx(mod_ty mod, const char *filename_str, PyCompilerFlags *flags,
+ int optimize, PyArena *arena)
+{
+ PyObject *filename;
+ PyCodeObject *co;
+ filename = PyUnicode_DecodeFSDefault(filename_str);
+ if (filename == NULL)
+ return NULL;
+ co = PyAST_CompileObject(mod, filename, flags, optimize, arena);
+ Py_DECREF(filename);
+ return co;
+
+}
+
+PyCodeObject *
+PyNode_Compile(struct _node *n, const char *filename)
+{
+ PyCodeObject *co = NULL;
+ mod_ty mod;
+ PyArena *arena = PyArena_New();
+ if (!arena)
+ return NULL;
+ mod = PyAST_FromNode(n, NULL, filename, arena);
+ if (mod)
+ co = PyAST_Compile(mod, filename, NULL, arena);
+ PyArena_Free(arena);
+ return co;
+}
+
+static void
+compiler_free(struct compiler *c)
+{
+ if (c->c_st)
+ PySymtable_Free(c->c_st);
+ if (c->c_future)
+ PyObject_Free(c->c_future);
+ Py_XDECREF(c->c_filename);
+ Py_DECREF(c->c_const_cache);
+ Py_DECREF(c->c_stack);
+}
+
+static PyObject *
+list2dict(PyObject *list)
+{
+ Py_ssize_t i, n;
+ PyObject *v, *k;
+ PyObject *dict = PyDict_New();
+ if (!dict) return NULL;
+
+ n = PyList_Size(list);
+ for (i = 0; i < n; i++) {
+ v = PyLong_FromSsize_t(i);
+ if (!v) {
+ Py_DECREF(dict);
+ return NULL;
+ }
+ k = PyList_GET_ITEM(list, i);
+ if (PyDict_SetItem(dict, k, v) < 0) {
+ Py_DECREF(v);
+ Py_DECREF(dict);
+ return NULL;
+ }
+ Py_DECREF(v);
+ }
+ return dict;
+}
+
+/* Return new dict containing names from src that match scope(s).
+
+src is a symbol table dictionary. If the scope of a name matches
+either scope_type or flag is set, insert it into the new dict. The
+values are integers, starting at offset and increasing by one for
+each key.
+*/
+
+static PyObject *
+dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset)
+{
+ Py_ssize_t i = offset, scope, num_keys, key_i;
+ PyObject *k, *v, *dest = PyDict_New();
+ PyObject *sorted_keys;
+
+ assert(offset >= 0);
+ if (dest == NULL)
+ return NULL;
+
+ /* Sort the keys so that we have a deterministic order on the indexes
+ saved in the returned dictionary. These indexes are used as indexes
+ into the free and cell var storage. Therefore if they aren't
+ deterministic, then the generated bytecode is not deterministic.
+ */
+ sorted_keys = PyDict_Keys(src);
+ if (sorted_keys == NULL)
+ return NULL;
+ if (PyList_Sort(sorted_keys) != 0) {
+ Py_DECREF(sorted_keys);
+ return NULL;
+ }
+ num_keys = PyList_GET_SIZE(sorted_keys);
+
+ for (key_i = 0; key_i < num_keys; key_i++) {
+ /* XXX this should probably be a macro in symtable.h */
+ long vi;
+ k = PyList_GET_ITEM(sorted_keys, key_i);
+ v = PyDict_GetItem(src, k);
+ assert(PyLong_Check(v));
+ vi = PyLong_AS_LONG(v);
+ scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK;
+
+ if (scope == scope_type || vi & flag) {
+ PyObject *item = PyLong_FromSsize_t(i);
+ if (item == NULL) {
+ Py_DECREF(sorted_keys);
+ Py_DECREF(dest);
+ return NULL;
+ }
+ i++;
+ if (PyDict_SetItem(dest, k, item) < 0) {
+ Py_DECREF(sorted_keys);
+ Py_DECREF(item);
+ Py_DECREF(dest);
+ return NULL;
+ }
+ Py_DECREF(item);
+ }
+ }
+ Py_DECREF(sorted_keys);
+ return dest;
+}
+
+static void
+compiler_unit_check(struct compiler_unit *u)
+{
+ basicblock *block;
+ for (block = u->u_blocks; block != NULL; block = block->b_list) {
+ assert((uintptr_t)block != 0xcbcbcbcbU);
+ assert((uintptr_t)block != 0xfbfbfbfbU);
+ assert((uintptr_t)block != 0xdbdbdbdbU);
+ if (block->b_instr != NULL) {
+ assert(block->b_ialloc > 0);
+ assert(block->b_iused > 0);
+ assert(block->b_ialloc >= block->b_iused);
+ }
+ else {
+ assert (block->b_iused == 0);
+ assert (block->b_ialloc == 0);
+ }
+ }
+}
+
+static void
+compiler_unit_free(struct compiler_unit *u)
+{
+ basicblock *b, *next;
+
+ compiler_unit_check(u);
+ b = u->u_blocks;
+ while (b != NULL) {
+ if (b->b_instr)
+ PyObject_Free((void *)b->b_instr);
+ next = b->b_list;
+ PyObject_Free((void *)b);
+ b = next;
+ }
+ Py_CLEAR(u->u_ste);
+ Py_CLEAR(u->u_name);
+ Py_CLEAR(u->u_qualname);
+ Py_CLEAR(u->u_consts);
+ Py_CLEAR(u->u_names);
+ Py_CLEAR(u->u_varnames);
+ Py_CLEAR(u->u_freevars);
+ Py_CLEAR(u->u_cellvars);
+ Py_CLEAR(u->u_private);
+ PyObject_Free(u);
+}
+
+static int
+compiler_enter_scope(struct compiler *c, identifier name,
+ int scope_type, void *key, int lineno)
+{
+ struct compiler_unit *u;
+ basicblock *block;
+
+ u = (struct compiler_unit *)PyObject_Calloc(1, sizeof(
+ struct compiler_unit));
+ if (!u) {
+ PyErr_NoMemory();
+ return 0;
+ }
+ u->u_scope_type = scope_type;
+ u->u_argcount = 0;
+ u->u_posonlyargcount = 0;
+ u->u_kwonlyargcount = 0;
+ u->u_ste = PySymtable_Lookup(c->c_st, key);
+ if (!u->u_ste) {
+ compiler_unit_free(u);
+ return 0;
+ }
+ Py_INCREF(name);
+ u->u_name = name;
+ u->u_varnames = list2dict(u->u_ste->ste_varnames);
+ u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0);
+ if (!u->u_varnames || !u->u_cellvars) {
+ compiler_unit_free(u);
+ return 0;
+ }
+ if (u->u_ste->ste_needs_class_closure) {
+ /* Cook up an implicit __class__ cell. */
+ _Py_IDENTIFIER(__class__);
+ PyObject *name;
+ int res;
+ assert(u->u_scope_type == COMPILER_SCOPE_CLASS);
+ assert(PyDict_GET_SIZE(u->u_cellvars) == 0);
+ name = _PyUnicode_FromId(&PyId___class__);
+ if (!name) {
+ compiler_unit_free(u);
+ return 0;
+ }
+ res = PyDict_SetItem(u->u_cellvars, name, _PyLong_Zero);
+ if (res < 0) {
+ compiler_unit_free(u);
+ return 0;
+ }
+ }
+
+ u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS,
+ PyDict_GET_SIZE(u->u_cellvars));
+ if (!u->u_freevars) {
+ compiler_unit_free(u);
+ return 0;
+ }
+
+ u->u_blocks = NULL;
+ u->u_nfblocks = 0;
+ u->u_firstlineno = lineno;
+ u->u_lineno = 0;
+ u->u_col_offset = 0;
+ u->u_consts = PyDict_New();
+ if (!u->u_consts) {
+ compiler_unit_free(u);
+ return 0;
+ }
+ u->u_names = PyDict_New();
+ if (!u->u_names) {
+ compiler_unit_free(u);
+ return 0;
+ }
+
+ u->u_private = NULL;
+
+ /* Push the old compiler_unit on the stack. */
+ if (c->u) {
+ PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL);
+ if (!capsule || PyList_Append(c->c_stack, capsule) < 0) {
+ Py_XDECREF(capsule);
+ compiler_unit_free(u);
+ return 0;
+ }
+ Py_DECREF(capsule);
+ u->u_private = c->u->u_private;
+ Py_XINCREF(u->u_private);
+ }
+ c->u = u;
+
+ c->c_nestlevel++;
+
+ block = compiler_new_block(c);
+ if (block == NULL)
+ return 0;
+ c->u->u_curblock = block;
+
+ if (u->u_scope_type != COMPILER_SCOPE_MODULE) {
+ if (!compiler_set_qualname(c))
+ return 0;
+ }
+
+ return 1;
+}
+
+static void
+compiler_exit_scope(struct compiler *c)
+{
+ Py_ssize_t n;
+ PyObject *capsule;
+
+ c->c_nestlevel--;
+ compiler_unit_free(c->u);
+ /* Restore c->u to the parent unit. */
+ n = PyList_GET_SIZE(c->c_stack) - 1;
+ if (n >= 0) {
+ capsule = PyList_GET_ITEM(c->c_stack, n);
+ c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
+ assert(c->u);
+ /* we are deleting from a list so this really shouldn't fail */
+ if (PySequence_DelItem(c->c_stack, n) < 0)
+ Py_FatalError("compiler_exit_scope()");
+ compiler_unit_check(c->u);
+ }
+ else
+ c->u = NULL;
+
+}
+
+static int
+compiler_set_qualname(struct compiler *c)
+{
+ _Py_static_string(dot, ".");
+ _Py_static_string(dot_locals, ".<locals>");
+ Py_ssize_t stack_size;
+ struct compiler_unit *u = c->u;
+ PyObject *name, *base, *dot_str, *dot_locals_str;
+
+ base = NULL;
+ stack_size = PyList_GET_SIZE(c->c_stack);
+ assert(stack_size >= 1);
+ if (stack_size > 1) {
+ int scope, force_global = 0;
+ struct compiler_unit *parent;
+ PyObject *mangled, *capsule;
+
+ capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1);
+ parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
+ assert(parent);
+
+ if (u->u_scope_type == COMPILER_SCOPE_FUNCTION
+ || u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
+ || u->u_scope_type == COMPILER_SCOPE_CLASS) {
+ assert(u->u_name);
+ mangled = _Py_Mangle(parent->u_private, u->u_name);
+ if (!mangled)
+ return 0;
+ scope = PyST_GetScope(parent->u_ste, mangled);
+ Py_DECREF(mangled);
+ assert(scope != GLOBAL_IMPLICIT);
+ if (scope == GLOBAL_EXPLICIT)
+ force_global = 1;
+ }
+
+ if (!force_global) {
+ if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION
+ || parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
+ || parent->u_scope_type == COMPILER_SCOPE_LAMBDA) {
+ dot_locals_str = _PyUnicode_FromId(&dot_locals);
+ if (dot_locals_str == NULL)
+ return 0;
+ base = PyUnicode_Concat(parent->u_qualname, dot_locals_str);
+ if (base == NULL)
+ return 0;
+ }
+ else {
+ Py_INCREF(parent->u_qualname);
+ base = parent->u_qualname;
+ }
+ }
+ }
+
+ if (base != NULL) {
+ dot_str = _PyUnicode_FromId(&dot);
+ if (dot_str == NULL) {
+ Py_DECREF(base);
+ return 0;
+ }
+ name = PyUnicode_Concat(base, dot_str);
+ Py_DECREF(base);
+ if (name == NULL)
+ return 0;
+ PyUnicode_Append(&name, u->u_name);
+ if (name == NULL)
+ return 0;
+ }
+ else {
+ Py_INCREF(u->u_name);
+ name = u->u_name;
+ }
+ u->u_qualname = name;
+
+ return 1;
+}
+
+
+/* Allocate a new block and return a pointer to it.
+ Returns NULL on error.
+*/
+
+static basicblock *
+compiler_new_block(struct compiler *c)
+{
+ basicblock *b;
+ struct compiler_unit *u;
+
+ u = c->u;
+ b = (basicblock *)PyObject_Calloc(1, sizeof(basicblock));
+ if (b == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+ /* Extend the singly linked list of blocks with new block. */
+ b->b_list = u->u_blocks;
+ u->u_blocks = b;
+ return b;
+}
+
+static basicblock *
+compiler_next_block(struct compiler *c)
+{
+ basicblock *block = compiler_new_block(c);
+ if (block == NULL)
+ return NULL;
+ c->u->u_curblock->b_next = block;
+ c->u->u_curblock = block;
+ return block;
+}
+
+static basicblock *
+compiler_use_next_block(struct compiler *c, basicblock *block)
+{
+ assert(block != NULL);
+ c->u->u_curblock->b_next = block;
+ c->u->u_curblock = block;
+ return block;
+}
+
+/* Returns the offset of the next instruction in the current block's
+ b_instr array. Resizes the b_instr as necessary.
+ Returns -1 on failure.
+*/
+
+static int
+compiler_next_instr(basicblock *b)
+{
+ assert(b != NULL);
+ if (b->b_instr == NULL) {
+ b->b_instr = (struct instr *)PyObject_Calloc(
+ DEFAULT_BLOCK_SIZE, sizeof(struct instr));
+ if (b->b_instr == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ b->b_ialloc = DEFAULT_BLOCK_SIZE;
+ }
+ else if (b->b_iused == b->b_ialloc) {
+ struct instr *tmp;
+ size_t oldsize, newsize;
+ oldsize = b->b_ialloc * sizeof(struct instr);
+ newsize = oldsize << 1;
+
+ if (oldsize > (SIZE_MAX >> 1)) {
+ PyErr_NoMemory();
+ return -1;
+ }
+
+ if (newsize == 0) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ b->b_ialloc <<= 1;
+ tmp = (struct instr *)PyObject_Realloc(
+ (void *)b->b_instr, newsize);
+ if (tmp == NULL) {
+ PyErr_NoMemory();
+ return -1;
+ }
+ b->b_instr = tmp;
+ memset((char *)b->b_instr + oldsize, 0, newsize - oldsize);
+ }
+ return b->b_iused++;
+}
+
+/* Set the line number and column offset for the following instructions.
+
+ The line number is reset in the following cases:
+ - when entering a new scope
+ - on each statement
+ - on each expression and sub-expression
+ - before the "except" and "finally" clauses
+*/
+
+#define SET_LOC(c, x) \
+ (c)->u->u_lineno = (x)->lineno; \
+ (c)->u->u_col_offset = (x)->col_offset;
+
+/* Return the stack effect of opcode with argument oparg.
+
+ Some opcodes have different stack effect when jump to the target and
+ when not jump. The 'jump' parameter specifies the case:
+
+ * 0 -- when not jump
+ * 1 -- when jump
+ * -1 -- maximal
+ */
+/* XXX Make the stack effect of WITH_CLEANUP_START and
+ WITH_CLEANUP_FINISH deterministic. */
+static int
+stack_effect(int opcode, int oparg, int jump)
+{
+ switch (opcode) {
+ case NOP:
+ case EXTENDED_ARG:
+ return 0;
+
+ /* Stack manipulation */
+ case POP_TOP:
+ return -1;
+ case ROT_TWO:
+ case ROT_THREE:
+ case ROT_FOUR:
+ return 0;
+ case DUP_TOP:
+ return 1;
+ case DUP_TOP_TWO:
+ return 2;
+
+ /* Unary operators */
+ case UNARY_POSITIVE:
+ case UNARY_NEGATIVE:
+ case UNARY_NOT:
+ case UNARY_INVERT:
+ return 0;
+
+ case SET_ADD:
+ case LIST_APPEND:
+ return -1;
+ case MAP_ADD:
+ return -2;
+
+ /* Binary operators */
+ case BINARY_POWER:
+ case BINARY_MULTIPLY:
+ case BINARY_MATRIX_MULTIPLY:
+ case BINARY_MODULO:
+ case BINARY_ADD:
+ case BINARY_SUBTRACT:
+ case BINARY_SUBSCR:
+ case BINARY_FLOOR_DIVIDE:
+ case BINARY_TRUE_DIVIDE:
+ return -1;
+ case INPLACE_FLOOR_DIVIDE:
+ case INPLACE_TRUE_DIVIDE:
+ return -1;
+
+ case INPLACE_ADD:
+ case INPLACE_SUBTRACT:
+ case INPLACE_MULTIPLY:
+ case INPLACE_MATRIX_MULTIPLY:
+ case INPLACE_MODULO:
+ return -1;
+ case STORE_SUBSCR:
+ return -3;
+ case DELETE_SUBSCR:
+ return -2;
+
+ case BINARY_LSHIFT:
+ case BINARY_RSHIFT:
+ case BINARY_AND:
+ case BINARY_XOR:
+ case BINARY_OR:
+ return -1;
+ case INPLACE_POWER:
+ return -1;
+ case GET_ITER:
+ return 0;
+
+ case PRINT_EXPR:
+ return -1;
+ case LOAD_BUILD_CLASS:
+ return 1;
+ case INPLACE_LSHIFT:
+ case INPLACE_RSHIFT:
+ case INPLACE_AND:
+ case INPLACE_XOR:
+ case INPLACE_OR:
+ return -1;
+
+ case SETUP_WITH:
+ /* 1 in the normal flow.
+ * Restore the stack position and push 6 values before jumping to
+ * the handler if an exception be raised. */
+ return jump ? 6 : 1;
+ case RETURN_VALUE:
+ return -1;
+ case IMPORT_STAR:
+ return -1;
+ case SETUP_ANNOTATIONS:
+ return 0;
+ case YIELD_VALUE:
+ return 0;
+ case YIELD_FROM:
+ return -1;
+ case POP_BLOCK:
+ return 0;
+ case POP_EXCEPT:
+ return -3;
+
+ case STORE_NAME:
+ return -1;
+ case DELETE_NAME:
+ return 0;
+ case UNPACK_SEQUENCE:
+ return oparg-1;
+ case UNPACK_EX:
+ return (oparg&0xFF) + (oparg>>8);
+ case FOR_ITER:
+ /* -1 at end of iterator, 1 if continue iterating. */
+ return jump > 0 ? -1 : 1;
+
+ case STORE_ATTR:
+ return -2;
+ case DELETE_ATTR:
+ return -1;
+ case STORE_GLOBAL:
+ return -1;
+ case DELETE_GLOBAL:
+ return 0;
+ case LOAD_CONST:
+ return 1;
+ case LOAD_NAME:
+ return 1;
+ case BUILD_TUPLE:
+ case BUILD_LIST:
+ case BUILD_SET:
+ case BUILD_STRING:
+ return 1-oparg;
+ case BUILD_MAP:
+ return 1 - 2*oparg;
+ case BUILD_CONST_KEY_MAP:
+ return -oparg;
+ case LOAD_ATTR:
+ return 0;
+ case COMPARE_OP:
+ case IS_OP:
+ case CONTAINS_OP:
+ return -1;
+ case JUMP_IF_NOT_EXC_MATCH:
+ return -2;
+ case IMPORT_NAME:
+ return -1;
+ case IMPORT_FROM:
+ return 1;
+
+ /* Jumps */
+ case JUMP_FORWARD:
+ case JUMP_ABSOLUTE:
+ return 0;
+
+ case JUMP_IF_TRUE_OR_POP:
+ case JUMP_IF_FALSE_OR_POP:
+ return jump ? 0 : -1;
+
+ case POP_JUMP_IF_FALSE:
+ case POP_JUMP_IF_TRUE:
+ return -1;
+
+ case LOAD_GLOBAL:
+ return 1;
+
+ /* Exception handling */
+ case SETUP_FINALLY:
+ /* 0 in the normal flow.
+ * Restore the stack position and push 6 values before jumping to
+ * the handler if an exception be raised. */
+ return jump ? 6 : 0;
+ case RERAISE:
+ return -3;
+
+ case WITH_EXCEPT_START:
+ return 1;
+
+ case LOAD_FAST:
+ return 1;
+ case STORE_FAST:
+ return -1;
+ case DELETE_FAST:
+ return 0;
+
+ case RAISE_VARARGS:
+ return -oparg;
+
+ /* Functions and calls */
+ case CALL_FUNCTION:
+ return -oparg;
+ case CALL_METHOD:
+ return -oparg-1;
+ case CALL_FUNCTION_KW:
+ return -oparg-1;
+ case CALL_FUNCTION_EX:
+ return -1 - ((oparg & 0x01) != 0);
+ case MAKE_FUNCTION:
+ return -1 - ((oparg & 0x01) != 0) - ((oparg & 0x02) != 0) -
+ ((oparg & 0x04) != 0) - ((oparg & 0x08) != 0);
+ case BUILD_SLICE:
+ if (oparg == 3)
+ return -2;
+ else
+ return -1;
+
+ /* Closures */
+ case LOAD_CLOSURE:
+ return 1;
+ case LOAD_DEREF:
+ case LOAD_CLASSDEREF:
+ return 1;
+ case STORE_DEREF:
+ return -1;
+ case DELETE_DEREF:
+ return 0;
+
+ /* Iterators and generators */
+ case GET_AWAITABLE:
+ return 0;
+ case SETUP_ASYNC_WITH:
+ /* 0 in the normal flow.
+ * Restore the stack position to the position before the result
+ * of __aenter__ and push 6 values before jumping to the handler
+ * if an exception be raised. */
+ return jump ? -1 + 6 : 0;
+ case BEFORE_ASYNC_WITH:
+ return 1;
+ case GET_AITER:
+ return 0;
+ case GET_ANEXT:
+ return 1;
+ case GET_YIELD_FROM_ITER:
+ return 0;
+ case END_ASYNC_FOR:
+ return -7;
+ case FORMAT_VALUE:
+ /* If there's a fmt_spec on the stack, we go from 2->1,
+ else 1->1. */
+ return (oparg & FVS_MASK) == FVS_HAVE_SPEC ? -1 : 0;
+ case LOAD_METHOD:
+ return 1;
+ case LOAD_ASSERTION_ERROR:
+ return 1;
+ case LIST_TO_TUPLE:
+ return 0;
+ case LIST_EXTEND:
+ case SET_UPDATE:
+ case DICT_MERGE:
+ case DICT_UPDATE:
+ return -1;
+ default:
+ return PY_INVALID_STACK_EFFECT;
+ }
+ return PY_INVALID_STACK_EFFECT; /* not reachable */
+}
+
+int
+PyCompile_OpcodeStackEffectWithJump(int opcode, int oparg, int jump)
+{
+ return stack_effect(opcode, oparg, jump);
+}
+
+int
+PyCompile_OpcodeStackEffect(int opcode, int oparg)
+{
+ return stack_effect(opcode, oparg, -1);
+}
+
+/* Add an opcode with no argument.
+ Returns 0 on failure, 1 on success.
+*/
+
+static int
+compiler_addop(struct compiler *c, int opcode)
+{
+ basicblock *b;
+ struct instr *i;
+ int off;
+ assert(!HAS_ARG(opcode));
+ if (c->c_do_not_emit_bytecode) {
+ return 1;
+ }
+ off = compiler_next_instr(c->u->u_curblock);
+ if (off < 0)
+ return 0;
+ b = c->u->u_curblock;
+ i = &b->b_instr[off];
+ i->i_opcode = opcode;
+ i->i_oparg = 0;
+ if (opcode == RETURN_VALUE)
+ b->b_return = 1;
+ i->i_lineno = c->u->u_lineno;
+ return 1;
+}
+
+static Py_ssize_t
+compiler_add_o(PyObject *dict, PyObject *o)
+{
+ PyObject *v;
+ Py_ssize_t arg;
+
+ v = PyDict_GetItemWithError(dict, o);
+ if (!v) {
+ if (PyErr_Occurred()) {
+ return -1;
+ }
+ arg = PyDict_GET_SIZE(dict);
+ v = PyLong_FromSsize_t(arg);
+ if (!v) {
+ return -1;
+ }
+ if (PyDict_SetItem(dict, o, v) < 0) {
+ Py_DECREF(v);
+ return -1;
+ }
+ Py_DECREF(v);
+ }
+ else
+ arg = PyLong_AsLong(v);
+ return arg;
+}
+
+// Merge const *o* recursively and return constant key object.
+static PyObject*
+merge_consts_recursive(struct compiler *c, PyObject *o)
+{
+ // None and Ellipsis are singleton, and key is the singleton.
+ // No need to merge object and key.
+ if (o == Py_None || o == Py_Ellipsis) {
+ Py_INCREF(o);
+ return o;
+ }
+
+ PyObject *key = _PyCode_ConstantKey(o);
+ if (key == NULL) {
+ return NULL;
+ }
+
+ // t is borrowed reference
+ PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key);
+ if (t != key) {
+ // o is registered in c_const_cache. Just use it.
+ Py_XINCREF(t);
+ Py_DECREF(key);
+ return t;
+ }
+
+ // We registered o in c_const_cache.
+ // When o is a tuple or frozenset, we want to merge its
+ // items too.
+ if (PyTuple_CheckExact(o)) {
+ Py_ssize_t len = PyTuple_GET_SIZE(o);
+ for (Py_ssize_t i = 0; i < len; i++) {
+ PyObject *item = PyTuple_GET_ITEM(o, i);
+ PyObject *u = merge_consts_recursive(c, item);
+ if (u == NULL) {
+ Py_DECREF(key);
+ return NULL;
+ }
+
+ // See _PyCode_ConstantKey()
+ PyObject *v; // borrowed
+ if (PyTuple_CheckExact(u)) {
+ v = PyTuple_GET_ITEM(u, 1);
+ }
+ else {
+ v = u;
+ }
+ if (v != item) {
+ Py_INCREF(v);
+ PyTuple_SET_ITEM(o, i, v);
+ Py_DECREF(item);
+ }
+
+ Py_DECREF(u);
+ }
+ }
+ else if (PyFrozenSet_CheckExact(o)) {
+ // *key* is tuple. And its first item is frozenset of
+ // constant keys.
+ // See _PyCode_ConstantKey() for detail.
+ assert(PyTuple_CheckExact(key));
+ assert(PyTuple_GET_SIZE(key) == 2);
+
+ Py_ssize_t len = PySet_GET_SIZE(o);
+ if (len == 0) { // empty frozenset should not be re-created.
+ return key;
+ }
+ PyObject *tuple = PyTuple_New(len);
+ if (tuple == NULL) {
+ Py_DECREF(key);
+ return NULL;
+ }
+ Py_ssize_t i = 0, pos = 0;
+ PyObject *item;
+ Py_hash_t hash;
+ while (_PySet_NextEntry(o, &pos, &item, &hash)) {
+ PyObject *k = merge_consts_recursive(c, item);
+ if (k == NULL) {
+ Py_DECREF(tuple);
+ Py_DECREF(key);
+ return NULL;
+ }
+ PyObject *u;
+ if (PyTuple_CheckExact(k)) {
+ u = PyTuple_GET_ITEM(k, 1);
+ Py_INCREF(u);
+ Py_DECREF(k);
+ }
+ else {
+ u = k;
+ }
+ PyTuple_SET_ITEM(tuple, i, u); // Steals reference of u.
+ i++;
+ }
+
+ // Instead of rewriting o, we create new frozenset and embed in the
+ // key tuple. Caller should get merged frozenset from the key tuple.
+ PyObject *new = PyFrozenSet_New(tuple);
+ Py_DECREF(tuple);
+ if (new == NULL) {
+ Py_DECREF(key);
+ return NULL;
+ }
+ assert(PyTuple_GET_ITEM(key, 1) == o);
+ Py_DECREF(o);
+ PyTuple_SET_ITEM(key, 1, new);
+ }
+
+ return key;
+}
+
+static Py_ssize_t
+compiler_add_const(struct compiler *c, PyObject *o)
+{
+ if (c->c_do_not_emit_bytecode) {
+ return 0;
+ }
+
+ PyObject *key = merge_consts_recursive(c, o);
+ if (key == NULL) {
+ return -1;
+ }
+
+ Py_ssize_t arg = compiler_add_o(c->u->u_consts, key);
+ Py_DECREF(key);
+ return arg;
+}
+
+static int
+compiler_addop_load_const(struct compiler *c, PyObject *o)
+{
+ if (c->c_do_not_emit_bytecode) {
+ return 1;
+ }
+
+ Py_ssize_t arg = compiler_add_const(c, o);
+ if (arg < 0)
+ return 0;
+ return compiler_addop_i(c, LOAD_CONST, arg);
+}
+
+static int
+compiler_addop_o(struct compiler *c, int opcode, PyObject *dict,
+ PyObject *o)
+{
+ if (c->c_do_not_emit_bytecode) {
+ return 1;
+ }
+
+ Py_ssize_t arg = compiler_add_o(dict, o);
+ if (arg < 0)
+ return 0;
+ return compiler_addop_i(c, opcode, arg);
+}
+
+static int
+compiler_addop_name(struct compiler *c, int opcode, PyObject *dict,
+ PyObject *o)
+{
+ Py_ssize_t arg;
+
+ if (c->c_do_not_emit_bytecode) {
+ return 1;
+ }
+
+ PyObject *mangled = _Py_Mangle(c->u->u_private, o);
+ if (!mangled)
+ return 0;
+ arg = compiler_add_o(dict, mangled);
+ Py_DECREF(mangled);
+ if (arg < 0)
+ return 0;
+ return compiler_addop_i(c, opcode, arg);
+}
+
+/* Add an opcode with an integer argument.
+ Returns 0 on failure, 1 on success.
+*/
+
+static int
+compiler_addop_i(struct compiler *c, int opcode, Py_ssize_t oparg)
+{
+ struct instr *i;
+ int off;
+
+ if (c->c_do_not_emit_bytecode) {
+ return 1;
+ }
+
+ /* oparg value is unsigned, but a signed C int is usually used to store
+ it in the C code (like Python/ceval.c).
+
+ Limit to 32-bit signed C int (rather than INT_MAX) for portability.
+
+ The argument of a concrete bytecode instruction is limited to 8-bit.
+ EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */
+ assert(HAS_ARG(opcode));
+ assert(0 <= oparg && oparg <= 2147483647);
+
+ off = compiler_next_instr(c->u->u_curblock);
+ if (off < 0)
+ return 0;
+ i = &c->u->u_curblock->b_instr[off];
+ i->i_opcode = opcode;
+ i->i_oparg = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int);
+ i->i_lineno = c->u->u_lineno;
+ return 1;
+}
+
+static int
+compiler_addop_j(struct compiler *c, int opcode, basicblock *b, int absolute)
+{
+ struct instr *i;
+ int off;
+
+ if (c->c_do_not_emit_bytecode) {
+ return 1;
+ }
+
+ assert(HAS_ARG(opcode));
+ assert(b != NULL);
+ off = compiler_next_instr(c->u->u_curblock);
+ if (off < 0)
+ return 0;
+ i = &c->u->u_curblock->b_instr[off];
+ i->i_opcode = opcode;
+ i->i_target = b;
+ if (absolute)
+ i->i_jabs = 1;
+ else
+ i->i_jrel = 1;
+ i->i_lineno = c->u->u_lineno;
+ return 1;
+}
+
+/* NEXT_BLOCK() creates an implicit jump from the current block
+ to the new block.
+
+ The returns inside this macro make it impossible to decref objects
+ created in the local function. Local objects should use the arena.
+*/
+#define NEXT_BLOCK(C) { \
+ if (compiler_next_block((C)) == NULL) \
+ return 0; \
+}
+
+#define ADDOP(C, OP) { \
+ if (!compiler_addop((C), (OP))) \
+ return 0; \
+}
+
+#define ADDOP_IN_SCOPE(C, OP) { \
+ if (!compiler_addop((C), (OP))) { \
+ compiler_exit_scope(c); \
+ return 0; \
+ } \
+}
+
+#define ADDOP_LOAD_CONST(C, O) { \
+ if (!compiler_addop_load_const((C), (O))) \
+ return 0; \
+}
+
+/* Same as ADDOP_LOAD_CONST, but steals a reference. */
+#define ADDOP_LOAD_CONST_NEW(C, O) { \
+ PyObject *__new_const = (O); \
+ if (__new_const == NULL) { \
+ return 0; \
+ } \
+ if (!compiler_addop_load_const((C), __new_const)) { \
+ Py_DECREF(__new_const); \
+ return 0; \
+ } \
+ Py_DECREF(__new_const); \
+}
+
+#define ADDOP_O(C, OP, O, TYPE) { \
+ if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) \
+ return 0; \
+}
+
+/* Same as ADDOP_O, but steals a reference. */
+#define ADDOP_N(C, OP, O, TYPE) { \
+ if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) { \
+ Py_DECREF((O)); \
+ return 0; \
+ } \
+ Py_DECREF((O)); \
+}
+
+#define ADDOP_NAME(C, OP, O, TYPE) { \
+ if (!compiler_addop_name((C), (OP), (C)->u->u_ ## TYPE, (O))) \
+ return 0; \
+}
+
+#define ADDOP_I(C, OP, O) { \
+ if (!compiler_addop_i((C), (OP), (O))) \
+ return 0; \
+}
+
+#define ADDOP_JABS(C, OP, O) { \
+ if (!compiler_addop_j((C), (OP), (O), 1)) \
+ return 0; \
+}
+
+#define ADDOP_JREL(C, OP, O) { \
+ if (!compiler_addop_j((C), (OP), (O), 0)) \
+ return 0; \
+}
+
+
+#define ADDOP_COMPARE(C, CMP) { \
+ if (!compiler_addcompare((C), (cmpop_ty)(CMP))) \
+ return 0; \
+}
+
+/* VISIT and VISIT_SEQ takes an ASDL type as their second argument. They use
+ the ASDL name to synthesize the name of the C type and the visit function.
+*/
+
+#define VISIT(C, TYPE, V) {\
+ if (!compiler_visit_ ## TYPE((C), (V))) \
+ return 0; \
+}
+
+#define VISIT_IN_SCOPE(C, TYPE, V) {\
+ if (!compiler_visit_ ## TYPE((C), (V))) { \
+ compiler_exit_scope(c); \
+ return 0; \
+ } \
+}
+
+#define VISIT_SLICE(C, V, CTX) {\
+ if (!compiler_visit_slice((C), (V), (CTX))) \
+ return 0; \
+}
+
+#define VISIT_SEQ(C, TYPE, SEQ) { \
+ int _i; \
+ asdl_seq *seq = (SEQ); /* avoid variable capture */ \
+ for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
+ TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
+ if (!compiler_visit_ ## TYPE((C), elt)) \
+ return 0; \
+ } \
+}
+
+#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \
+ int _i; \
+ asdl_seq *seq = (SEQ); /* avoid variable capture */ \
+ for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
+ TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
+ if (!compiler_visit_ ## TYPE((C), elt)) { \
+ compiler_exit_scope(c); \
+ return 0; \
+ } \
+ } \
+}
+
+/* These macros allows to check only for errors and not emmit bytecode
+ * while visiting nodes.
+*/
+
+#define BEGIN_DO_NOT_EMIT_BYTECODE { \
+ c->c_do_not_emit_bytecode++;
+
+#define END_DO_NOT_EMIT_BYTECODE \
+ c->c_do_not_emit_bytecode--; \
+}
+
+/* Search if variable annotations are present statically in a block. */
+
+static int
+find_ann(asdl_seq *stmts)
+{
+ int i, j, res = 0;
+ stmt_ty st;
+
+ for (i = 0; i < asdl_seq_LEN(stmts); i++) {
+ st = (stmt_ty)asdl_seq_GET(stmts, i);
+ switch (st->kind) {
+ case AnnAssign_kind:
+ return 1;
+ case For_kind:
+ res = find_ann(st->v.For.body) ||
+ find_ann(st->v.For.orelse);
+ break;
+ case AsyncFor_kind:
+ res = find_ann(st->v.AsyncFor.body) ||
+ find_ann(st->v.AsyncFor.orelse);
+ break;
+ case While_kind:
+ res = find_ann(st->v.While.body) ||
+ find_ann(st->v.While.orelse);
+ break;
+ case If_kind:
+ res = find_ann(st->v.If.body) ||
+ find_ann(st->v.If.orelse);
+ break;
+ case With_kind:
+ res = find_ann(st->v.With.body);
+ break;
+ case AsyncWith_kind:
+ res = find_ann(st->v.AsyncWith.body);
+ break;
+ case Try_kind:
+ for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) {
+ excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
+ st->v.Try.handlers, j);
+ if (find_ann(handler->v.ExceptHandler.body)) {
+ return 1;
+ }
+ }
+ res = find_ann(st->v.Try.body) ||
+ find_ann(st->v.Try.finalbody) ||
+ find_ann(st->v.Try.orelse);
+ break;
+ default:
+ res = 0;
+ }
+ if (res) {
+ break;
+ }
+ }
+ return res;
+}
+
+/*
+ * Frame block handling functions
+ */
+
+static int
+compiler_push_fblock(struct compiler *c, enum fblocktype t, basicblock *b,
+ basicblock *exit, void *datum)
+{
+ struct fblockinfo *f;
+ if (c->u->u_nfblocks >= CO_MAXBLOCKS) {
+ return compiler_error(c, "too many statically nested blocks");
+ }
+ f = &c->u->u_fblock[c->u->u_nfblocks++];
+ f->fb_type = t;
+ f->fb_block = b;
+ f->fb_exit = exit;
+ f->fb_datum = datum;
+ return 1;
+}
+
+static void
+compiler_pop_fblock(struct compiler *c, enum fblocktype t, basicblock *b)
+{
+ struct compiler_unit *u = c->u;
+ assert(u->u_nfblocks > 0);
+ u->u_nfblocks--;
+ assert(u->u_fblock[u->u_nfblocks].fb_type == t);
+ assert(u->u_fblock[u->u_nfblocks].fb_block == b);
+}
+
+static int
+compiler_call_exit_with_nones(struct compiler *c) {
+ ADDOP_O(c, LOAD_CONST, Py_None, consts);
+ ADDOP(c, DUP_TOP);
+ ADDOP(c, DUP_TOP);
+ ADDOP_I(c, CALL_FUNCTION, 3);
+ return 1;
+}
+
+/* Unwind a frame block. If preserve_tos is true, the TOS before
+ * popping the blocks will be restored afterwards, unless another
+ * return, break or continue is found. In which case, the TOS will
+ * be popped.
+ */
+static int
+compiler_unwind_fblock(struct compiler *c, struct fblockinfo *info,
+ int preserve_tos)
+{
+ switch (info->fb_type) {
+ case WHILE_LOOP:
+ case EXCEPTION_HANDLER:
+ return 1;
+
+ case FOR_LOOP:
+ /* Pop the iterator */
+ if (preserve_tos) {
+ ADDOP(c, ROT_TWO);
+ }
+ ADDOP(c, POP_TOP);
+ return 1;
+
+ case TRY_EXCEPT:
+ ADDOP(c, POP_BLOCK);
+ return 1;
+
+ case FINALLY_TRY:
+ ADDOP(c, POP_BLOCK);
+ if (preserve_tos) {
+ if (!compiler_push_fblock(c, POP_VALUE, NULL, NULL, NULL)) {
+ return 0;
+ }
+ }
+ /* Emit the finally block, restoring the line number when done */
+ int saved_lineno = c->u->u_lineno;
+ VISIT_SEQ(c, stmt, info->fb_datum);
+ c->u->u_lineno = saved_lineno;
+ if (preserve_tos) {
+ compiler_pop_fblock(c, POP_VALUE, NULL);
+ }
+ return 1;
+
+ case FINALLY_END:
+ if (preserve_tos) {
+ ADDOP(c, ROT_FOUR);
+ }
+ ADDOP(c, POP_TOP);
+ ADDOP(c, POP_TOP);
+ ADDOP(c, POP_TOP);
+ if (preserve_tos) {
+ ADDOP(c, ROT_FOUR);
+ }
+ ADDOP(c, POP_EXCEPT);
+ return 1;
+
+ case WITH:
+ case ASYNC_WITH:
+ ADDOP(c, POP_BLOCK);
+ if (preserve_tos) {
+ ADDOP(c, ROT_TWO);
+ }
+ if(!compiler_call_exit_with_nones(c)) {
+ return 0;
+ }
+ if (info->fb_type == ASYNC_WITH) {
+ ADDOP(c, GET_AWAITABLE);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP(c, YIELD_FROM);
+ }
+ ADDOP(c, POP_TOP);
+ return 1;
+
+ case HANDLER_CLEANUP:
+ if (info->fb_datum) {
+ ADDOP(c, POP_BLOCK);
+ }
+ if (preserve_tos) {
+ ADDOP(c, ROT_FOUR);
+ }
+ ADDOP(c, POP_EXCEPT);
+ if (info->fb_datum) {
+ ADDOP_LOAD_CONST(c, Py_None);
+ compiler_nameop(c, info->fb_datum, Store);
+ compiler_nameop(c, info->fb_datum, Del);
+ }
+ return 1;
+
+ case POP_VALUE:
+ if (preserve_tos) {
+ ADDOP(c, ROT_TWO);
+ }
+ ADDOP(c, POP_TOP);
+ return 1;
+ }
+ Py_UNREACHABLE();
+}
+
+/** Unwind block stack. If loop is not NULL, then stop when the first loop is encountered. */
+static int
+compiler_unwind_fblock_stack(struct compiler *c, int preserve_tos, struct fblockinfo **loop) {
+ if (c->u->u_nfblocks == 0) {
+ return 1;
+ }
+ struct fblockinfo *top = &c->u->u_fblock[c->u->u_nfblocks-1];
+ if (loop != NULL && (top->fb_type == WHILE_LOOP || top->fb_type == FOR_LOOP)) {
+ *loop = top;
+ return 1;
+ }
+ struct fblockinfo copy = *top;
+ c->u->u_nfblocks--;
+ if (!compiler_unwind_fblock(c, &copy, preserve_tos)) {
+ return 0;
+ }
+ if (!compiler_unwind_fblock_stack(c, preserve_tos, loop)) {
+ return 0;
+ }
+ c->u->u_fblock[c->u->u_nfblocks] = copy;
+ c->u->u_nfblocks++;
+ return 1;
+}
+
+/* Compile a sequence of statements, checking for a docstring
+ and for annotations. */
+
+static int
+compiler_body(struct compiler *c, asdl_seq *stmts)
+{
+ int i = 0;
+ stmt_ty st;
+ PyObject *docstring;
+
+ /* Set current line number to the line number of first statement.
+ This way line number for SETUP_ANNOTATIONS will always
+ coincide with the line number of first "real" statement in module.
+ If body is empty, then lineno will be set later in assemble. */
+ if (c->u->u_scope_type == COMPILER_SCOPE_MODULE && asdl_seq_LEN(stmts)) {
+ st = (stmt_ty)asdl_seq_GET(stmts, 0);
+ SET_LOC(c, st);
+ }
+ /* Every annotated class and module should have __annotations__. */
+ if (find_ann(stmts)) {
+ ADDOP(c, SETUP_ANNOTATIONS);
+ }
+ if (!asdl_seq_LEN(stmts))
+ return 1;
+ /* if not -OO mode, set docstring */
+ if (c->c_optimize < 2) {
+ docstring = _PyAST_GetDocString(stmts);
+ if (docstring) {
+ i = 1;
+ st = (stmt_ty)asdl_seq_GET(stmts, 0);
+ assert(st->kind == Expr_kind);
+ VISIT(c, expr, st->v.Expr.value);
+ if (!compiler_nameop(c, __doc__, Store))
+ return 0;
+ }
+ }
+ for (; i < asdl_seq_LEN(stmts); i++)
+ VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));
+ return 1;
+}
+
+static PyCodeObject *
+compiler_mod(struct compiler *c, mod_ty mod)
+{
+ PyCodeObject *co;
+ int addNone = 1;
+ static PyObject *module;
+ if (!module) {
+ module = PyUnicode_InternFromString("<module>");
+ if (!module)
+ return NULL;
+ }
+ /* Use 0 for firstlineno initially, will fixup in assemble(). */
+ if (!compiler_enter_scope(c, module, COMPILER_SCOPE_MODULE, mod, 0))
+ return NULL;
+ switch (mod->kind) {
+ case Module_kind:
+ if (!compiler_body(c, mod->v.Module.body)) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+ break;
+ case Interactive_kind:
+ if (find_ann(mod->v.Interactive.body)) {
+ ADDOP(c, SETUP_ANNOTATIONS);
+ }
+ c->c_interactive = 1;
+ VISIT_SEQ_IN_SCOPE(c, stmt,
+ mod->v.Interactive.body);
+ break;
+ case Expression_kind:
+ VISIT_IN_SCOPE(c, expr, mod->v.Expression.body);
+ addNone = 0;
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "module kind %d should not be possible",
+ mod->kind);
+ return 0;
+ }
+ co = assemble(c, addNone);
+ compiler_exit_scope(c);
+ return co;
+}
+
+/* The test for LOCAL must come before the test for FREE in order to
+ handle classes where name is both local and free. The local var is
+ a method and the free var is a free var referenced within a method.
+*/
+
+static int
+get_ref_type(struct compiler *c, PyObject *name)
+{
+ int scope;
+ if (c->u->u_scope_type == COMPILER_SCOPE_CLASS &&
+ _PyUnicode_EqualToASCIIString(name, "__class__"))
+ return CELL;
+ scope = PyST_GetScope(c->u->u_ste, name);
+ if (scope == 0) {
+ _Py_FatalErrorFormat(__func__,
+ "unknown scope for %.100s in %.100s(%s)\n"
+ "symbols: %s\nlocals: %s\nglobals: %s",
+ PyUnicode_AsUTF8(name),
+ PyUnicode_AsUTF8(c->u->u_name),
+ PyUnicode_AsUTF8(PyObject_Repr(c->u->u_ste->ste_id)),
+ PyUnicode_AsUTF8(PyObject_Repr(c->u->u_ste->ste_symbols)),
+ PyUnicode_AsUTF8(PyObject_Repr(c->u->u_varnames)),
+ PyUnicode_AsUTF8(PyObject_Repr(c->u->u_names)));
+ }
+
+ return scope;
+}
+
+static int
+compiler_lookup_arg(PyObject *dict, PyObject *name)
+{
+ PyObject *v;
+ v = PyDict_GetItem(dict, name);
+ if (v == NULL)
+ return -1;
+ return PyLong_AS_LONG(v);
+}
+
+static int
+compiler_make_closure(struct compiler *c, PyCodeObject *co, Py_ssize_t flags, PyObject *qualname)
+{
+ Py_ssize_t i, free = PyCode_GetNumFree(co);
+ if (qualname == NULL)
+ qualname = co->co_name;
+
+ if (free) {
+ for (i = 0; i < free; ++i) {
+ /* Bypass com_addop_varname because it will generate
+ LOAD_DEREF but LOAD_CLOSURE is needed.
+ */
+ PyObject *name = PyTuple_GET_ITEM(co->co_freevars, i);
+ int arg, reftype;
+
+ /* Special case: If a class contains a method with a
+ free variable that has the same name as a method,
+ the name will be considered free *and* local in the
+ class. It should be handled by the closure, as
+ well as by the normal name lookup logic.
+ */
+ reftype = get_ref_type(c, name);
+ if (reftype == CELL)
+ arg = compiler_lookup_arg(c->u->u_cellvars, name);
+ else /* (reftype == FREE) */
+ arg = compiler_lookup_arg(c->u->u_freevars, name);
+ if (arg == -1) {
+ _Py_FatalErrorFormat(__func__,
+ "lookup %s in %s %d %d\n"
+ "freevars of %s: %s\n",
+ PyUnicode_AsUTF8(PyObject_Repr(name)),
+ PyUnicode_AsUTF8(c->u->u_name),
+ reftype, arg,
+ PyUnicode_AsUTF8(co->co_name),
+ PyUnicode_AsUTF8(PyObject_Repr(co->co_freevars)));
+ }
+ ADDOP_I(c, LOAD_CLOSURE, arg);
+ }
+ flags |= 0x08;
+ ADDOP_I(c, BUILD_TUPLE, free);
+ }
+ ADDOP_LOAD_CONST(c, (PyObject*)co);
+ ADDOP_LOAD_CONST(c, qualname);
+ ADDOP_I(c, MAKE_FUNCTION, flags);
+ return 1;
+}
+
+static int
+compiler_decorators(struct compiler *c, asdl_seq* decos)
+{
+ int i;
+
+ if (!decos)
+ return 1;
+
+ for (i = 0; i < asdl_seq_LEN(decos); i++) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i));
+ }
+ return 1;
+}
+
+static int
+compiler_visit_kwonlydefaults(struct compiler *c, asdl_seq *kwonlyargs,
+ asdl_seq *kw_defaults)
+{
+ /* Push a dict of keyword-only default values.
+
+ Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed.
+ */
+ int i;
+ PyObject *keys = NULL;
+
+ for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) {
+ arg_ty arg = asdl_seq_GET(kwonlyargs, i);
+ expr_ty default_ = asdl_seq_GET(kw_defaults, i);
+ if (default_) {
+ PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg);
+ if (!mangled) {
+ goto error;
+ }
+ if (keys == NULL) {
+ keys = PyList_New(1);
+ if (keys == NULL) {
+ Py_DECREF(mangled);
+ return 0;
+ }
+ PyList_SET_ITEM(keys, 0, mangled);
+ }
+ else {
+ int res = PyList_Append(keys, mangled);
+ Py_DECREF(mangled);
+ if (res == -1) {
+ goto error;
+ }
+ }
+ if (!compiler_visit_expr(c, default_)) {
+ goto error;
+ }
+ }
+ }
+ if (keys != NULL) {
+ Py_ssize_t default_count = PyList_GET_SIZE(keys);
+ PyObject *keys_tuple = PyList_AsTuple(keys);
+ Py_DECREF(keys);
+ ADDOP_LOAD_CONST_NEW(c, keys_tuple);
+ ADDOP_I(c, BUILD_CONST_KEY_MAP, default_count);
+ assert(default_count > 0);
+ return 1;
+ }
+ else {
+ return -1;
+ }
+
+error:
+ Py_XDECREF(keys);
+ return 0;
+}
+
+static int
+compiler_visit_annexpr(struct compiler *c, expr_ty annotation)
+{
+ ADDOP_LOAD_CONST_NEW(c, _PyAST_ExprAsUnicode(annotation));
+ return 1;
+}
+
+static int
+compiler_visit_argannotation(struct compiler *c, identifier id,
+ expr_ty annotation, PyObject *names)
+{
+ if (annotation) {
+ PyObject *mangled;
+ if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) {
+ VISIT(c, annexpr, annotation)
+ }
+ else {
+ VISIT(c, expr, annotation);
+ }
+ mangled = _Py_Mangle(c->u->u_private, id);
+ if (!mangled)
+ return 0;
+ if (PyList_Append(names, mangled) < 0) {
+ Py_DECREF(mangled);
+ return 0;
+ }
+ Py_DECREF(mangled);
+ }
+ return 1;
+}
+
+static int
+compiler_visit_argannotations(struct compiler *c, asdl_seq* args,
+ PyObject *names)
+{
+ int i;
+ for (i = 0; i < asdl_seq_LEN(args); i++) {
+ arg_ty arg = (arg_ty)asdl_seq_GET(args, i);
+ if (!compiler_visit_argannotation(
+ c,
+ arg->arg,
+ arg->annotation,
+ names))
+ return 0;
+ }
+ return 1;
+}
+
+static int
+compiler_visit_annotations(struct compiler *c, arguments_ty args,
+ expr_ty returns)
+{
+ /* Push arg annotation dict.
+ The expressions are evaluated out-of-order wrt the source code.
+
+ Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed.
+ */
+ static identifier return_str;
+ PyObject *names;
+ Py_ssize_t len;
+ names = PyList_New(0);
+ if (!names)
+ return 0;
+
+ if (!compiler_visit_argannotations(c, args->args, names))
+ goto error;
+ if (!compiler_visit_argannotations(c, args->posonlyargs, names))
+ goto error;
+ if (args->vararg && args->vararg->annotation &&
+ !compiler_visit_argannotation(c, args->vararg->arg,
+ args->vararg->annotation, names))
+ goto error;
+ if (!compiler_visit_argannotations(c, args->kwonlyargs, names))
+ goto error;
+ if (args->kwarg && args->kwarg->annotation &&
+ !compiler_visit_argannotation(c, args->kwarg->arg,
+ args->kwarg->annotation, names))
+ goto error;
+
+ if (!return_str) {
+ return_str = PyUnicode_InternFromString("return");
+ if (!return_str)
+ goto error;
+ }
+ if (!compiler_visit_argannotation(c, return_str, returns, names)) {
+ goto error;
+ }
+
+ len = PyList_GET_SIZE(names);
+ if (len) {
+ PyObject *keytuple = PyList_AsTuple(names);
+ Py_DECREF(names);
+ ADDOP_LOAD_CONST_NEW(c, keytuple);
+ ADDOP_I(c, BUILD_CONST_KEY_MAP, len);
+ return 1;
+ }
+ else {
+ Py_DECREF(names);
+ return -1;
+ }
+
+error:
+ Py_DECREF(names);
+ return 0;
+}
+
+static int
+compiler_visit_defaults(struct compiler *c, arguments_ty args)
+{
+ VISIT_SEQ(c, expr, args->defaults);
+ ADDOP_I(c, BUILD_TUPLE, asdl_seq_LEN(args->defaults));
+ return 1;
+}
+
+static Py_ssize_t
+compiler_default_arguments(struct compiler *c, arguments_ty args)
+{
+ Py_ssize_t funcflags = 0;
+ if (args->defaults && asdl_seq_LEN(args->defaults) > 0) {
+ if (!compiler_visit_defaults(c, args))
+ return -1;
+ funcflags |= 0x01;
+ }
+ if (args->kwonlyargs) {
+ int res = compiler_visit_kwonlydefaults(c, args->kwonlyargs,
+ args->kw_defaults);
+ if (res == 0) {
+ return -1;
+ }
+ else if (res > 0) {
+ funcflags |= 0x02;
+ }
+ }
+ return funcflags;
+}
+
+static int
+forbidden_name(struct compiler *c, identifier name, expr_context_ty ctx)
+{
+
+ if (ctx == Store && _PyUnicode_EqualToASCIIString(name, "__debug__")) {
+ compiler_error(c, "cannot assign to __debug__");
+ return 1;
+ }
+ return 0;
+}
+
+static int
+compiler_check_debug_one_arg(struct compiler *c, arg_ty arg)
+{
+ if (arg != NULL) {
+ if (forbidden_name(c, arg->arg, Store))
+ return 0;
+ }
+ return 1;
+}
+
+static int
+compiler_check_debug_args_seq(struct compiler *c, asdl_seq *args)
+{
+ if (args != NULL) {
+ for (Py_ssize_t i = 0, n = asdl_seq_LEN(args); i < n; i++) {
+ if (!compiler_check_debug_one_arg(c, asdl_seq_GET(args, i)))
+ return 0;
+ }
+ }
+ return 1;
+}
+
+static int
+compiler_check_debug_args(struct compiler *c, arguments_ty args)
+{
+ if (!compiler_check_debug_args_seq(c, args->posonlyargs))
+ return 0;
+ if (!compiler_check_debug_args_seq(c, args->args))
+ return 0;
+ if (!compiler_check_debug_one_arg(c, args->vararg))
+ return 0;
+ if (!compiler_check_debug_args_seq(c, args->kwonlyargs))
+ return 0;
+ if (!compiler_check_debug_one_arg(c, args->kwarg))
+ return 0;
+ return 1;
+}
+
+static int
+compiler_function(struct compiler *c, stmt_ty s, int is_async)
+{
+ PyCodeObject *co;
+ PyObject *qualname, *docstring = NULL;
+ arguments_ty args;
+ expr_ty returns;
+ identifier name;
+ asdl_seq* decos;
+ asdl_seq *body;
+ Py_ssize_t i, funcflags;
+ int annotations;
+ int scope_type;
+ int firstlineno;
+
+ if (is_async) {
+ assert(s->kind == AsyncFunctionDef_kind);
+
+ args = s->v.AsyncFunctionDef.args;
+ returns = s->v.AsyncFunctionDef.returns;
+ decos = s->v.AsyncFunctionDef.decorator_list;
+ name = s->v.AsyncFunctionDef.name;
+ body = s->v.AsyncFunctionDef.body;
+
+ scope_type = COMPILER_SCOPE_ASYNC_FUNCTION;
+ } else {
+ assert(s->kind == FunctionDef_kind);
+
+ args = s->v.FunctionDef.args;
+ returns = s->v.FunctionDef.returns;
+ decos = s->v.FunctionDef.decorator_list;
+ name = s->v.FunctionDef.name;
+ body = s->v.FunctionDef.body;
+
+ scope_type = COMPILER_SCOPE_FUNCTION;
+ }
+
+ if (!compiler_check_debug_args(c, args))
+ return 0;
+
+ if (!compiler_decorators(c, decos))
+ return 0;
+
+ firstlineno = s->lineno;
+ if (asdl_seq_LEN(decos)) {
+ firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
+ }
+
+ funcflags = compiler_default_arguments(c, args);
+ if (funcflags == -1) {
+ return 0;
+ }
+
+ annotations = compiler_visit_annotations(c, args, returns);
+ if (annotations == 0) {
+ return 0;
+ }
+ else if (annotations > 0) {
+ funcflags |= 0x04;
+ }
+
+ if (!compiler_enter_scope(c, name, scope_type, (void *)s, firstlineno)) {
+ return 0;
+ }
+
+ /* if not -OO mode, add docstring */
+ if (c->c_optimize < 2) {
+ docstring = _PyAST_GetDocString(body);
+ }
+ if (compiler_add_const(c, docstring ? docstring : Py_None) < 0) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+
+ c->u->u_argcount = asdl_seq_LEN(args->args);
+ c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
+ c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
+ VISIT_SEQ_IN_SCOPE(c, stmt, body);
+ co = assemble(c, 1);
+ qualname = c->u->u_qualname;
+ Py_INCREF(qualname);
+ compiler_exit_scope(c);
+ if (co == NULL) {
+ Py_XDECREF(qualname);
+ Py_XDECREF(co);
+ return 0;
+ }
+
+ compiler_make_closure(c, co, funcflags, qualname);
+ Py_DECREF(qualname);
+ Py_DECREF(co);
+
+ /* decorators */
+ for (i = 0; i < asdl_seq_LEN(decos); i++) {
+ ADDOP_I(c, CALL_FUNCTION, 1);
+ }
+
+ return compiler_nameop(c, name, Store);
+}
+
+static int
+compiler_class(struct compiler *c, stmt_ty s)
+{
+ PyCodeObject *co;
+ PyObject *str;
+ int i, firstlineno;
+ asdl_seq* decos = s->v.ClassDef.decorator_list;
+
+ if (!compiler_decorators(c, decos))
+ return 0;
+
+ firstlineno = s->lineno;
+ if (asdl_seq_LEN(decos)) {
+ firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
+ }
+
+ /* ultimately generate code for:
+ <name> = __build_class__(<func>, <name>, *<bases>, **<keywords>)
+ where:
+ <func> is a function/closure created from the class body;
+ it has a single argument (__locals__) where the dict
+ (or MutableSequence) representing the locals is passed
+ <name> is the class name
+ <bases> is the positional arguments and *varargs argument
+ <keywords> is the keyword arguments and **kwds argument
+ This borrows from compiler_call.
+ */
+
+ /* 1. compile the class body into a code object */
+ if (!compiler_enter_scope(c, s->v.ClassDef.name,
+ COMPILER_SCOPE_CLASS, (void *)s, firstlineno))
+ return 0;
+ /* this block represents what we do in the new scope */
+ {
+ /* use the class name for name mangling */
+ Py_INCREF(s->v.ClassDef.name);
+ Py_XSETREF(c->u->u_private, s->v.ClassDef.name);
+ /* load (global) __name__ ... */
+ str = PyUnicode_InternFromString("__name__");
+ if (!str || !compiler_nameop(c, str, Load)) {
+ Py_XDECREF(str);
+ compiler_exit_scope(c);
+ return 0;
+ }
+ Py_DECREF(str);
+ /* ... and store it as __module__ */
+ str = PyUnicode_InternFromString("__module__");
+ if (!str || !compiler_nameop(c, str, Store)) {
+ Py_XDECREF(str);
+ compiler_exit_scope(c);
+ return 0;
+ }
+ Py_DECREF(str);
+ assert(c->u->u_qualname);
+ ADDOP_LOAD_CONST(c, c->u->u_qualname);
+ str = PyUnicode_InternFromString("__qualname__");
+ if (!str || !compiler_nameop(c, str, Store)) {
+ Py_XDECREF(str);
+ compiler_exit_scope(c);
+ return 0;
+ }
+ Py_DECREF(str);
+ /* compile the body proper */
+ if (!compiler_body(c, s->v.ClassDef.body)) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+ /* Return __classcell__ if it is referenced, otherwise return None */
+ if (c->u->u_ste->ste_needs_class_closure) {
+ /* Store __classcell__ into class namespace & return it */
+ str = PyUnicode_InternFromString("__class__");
+ if (str == NULL) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+ i = compiler_lookup_arg(c->u->u_cellvars, str);
+ Py_DECREF(str);
+ if (i < 0) {
+ compiler_exit_scope(c);
+ return 0;
+ }
+ assert(i == 0);
+
+ ADDOP_I(c, LOAD_CLOSURE, i);
+ ADDOP(c, DUP_TOP);
+ str = PyUnicode_InternFromString("__classcell__");
+ if (!str || !compiler_nameop(c, str, Store)) {
+ Py_XDECREF(str);
+ compiler_exit_scope(c);
+ return 0;
+ }
+ Py_DECREF(str);
+ }
+ else {
+ /* No methods referenced __class__, so just return None */
+ assert(PyDict_GET_SIZE(c->u->u_cellvars) == 0);
+ ADDOP_LOAD_CONST(c, Py_None);
+ }
+ ADDOP_IN_SCOPE(c, RETURN_VALUE);
+ /* create the code object */
+ co = assemble(c, 1);
+ }
+ /* leave the new scope */
+ compiler_exit_scope(c);
+ if (co == NULL)
+ return 0;
+
+ /* 2. load the 'build_class' function */
+ ADDOP(c, LOAD_BUILD_CLASS);
+
+ /* 3. load a function (or closure) made from the code object */
+ compiler_make_closure(c, co, 0, NULL);
+ Py_DECREF(co);
+
+ /* 4. load class name */
+ ADDOP_LOAD_CONST(c, s->v.ClassDef.name);
+
+ /* 5. generate the rest of the code for the call */
+ if (!compiler_call_helper(c, 2,
+ s->v.ClassDef.bases,
+ s->v.ClassDef.keywords))
+ return 0;
+
+ /* 6. apply decorators */
+ for (i = 0; i < asdl_seq_LEN(decos); i++) {
+ ADDOP_I(c, CALL_FUNCTION, 1);
+ }
+
+ /* 7. store into <name> */
+ if (!compiler_nameop(c, s->v.ClassDef.name, Store))
+ return 0;
+ return 1;
+}
+
+/* Return 0 if the expression is a constant value except named singletons.
+ Return 1 otherwise. */
+static int
+check_is_arg(expr_ty e)
+{
+ if (e->kind != Constant_kind) {
+ return 1;
+ }
+ PyObject *value = e->v.Constant.value;
+ return (value == Py_None
+ || value == Py_False
+ || value == Py_True
+ || value == Py_Ellipsis);
+}
+
+/* Check operands of identity chacks ("is" and "is not").
+ Emit a warning if any operand is a constant except named singletons.
+ Return 0 on error.
+ */
+static int
+check_compare(struct compiler *c, expr_ty e)
+{
+ Py_ssize_t i, n;
+ int left = check_is_arg(e->v.Compare.left);
+ n = asdl_seq_LEN(e->v.Compare.ops);
+ for (i = 0; i < n; i++) {
+ cmpop_ty op = (cmpop_ty)asdl_seq_GET(e->v.Compare.ops, i);
+ int right = check_is_arg((expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
+ if (op == Is || op == IsNot) {
+ if (!right || !left) {
+ const char *msg = (op == Is)
+ ? "\"is\" with a literal. Did you mean \"==\"?"
+ : "\"is not\" with a literal. Did you mean \"!=\"?";
+ return compiler_warn(c, msg);
+ }
+ }
+ left = right;
+ }
+ return 1;
+}
+
+static int compiler_addcompare(struct compiler *c, cmpop_ty op)
+{
+ int cmp;
+ switch (op) {
+ case Eq:
+ cmp = Py_EQ;
+ break;
+ case NotEq:
+ cmp = Py_NE;
+ break;
+ case Lt:
+ cmp = Py_LT;
+ break;
+ case LtE:
+ cmp = Py_LE;
+ break;
+ case Gt:
+ cmp = Py_GT;
+ break;
+ case GtE:
+ cmp = Py_GE;
+ break;
+ case Is:
+ ADDOP_I(c, IS_OP, 0);
+ return 1;
+ case IsNot:
+ ADDOP_I(c, IS_OP, 1);
+ return 1;
+ case In:
+ ADDOP_I(c, CONTAINS_OP, 0);
+ return 1;
+ case NotIn:
+ ADDOP_I(c, CONTAINS_OP, 1);
+ return 1;
+ default:
+ Py_UNREACHABLE();
+ }
+ ADDOP_I(c, COMPARE_OP, cmp);
+ return 1;
+}
+
+
+
+static int
+compiler_jump_if(struct compiler *c, expr_ty e, basicblock *next, int cond)
+{
+ switch (e->kind) {
+ case UnaryOp_kind:
+ if (e->v.UnaryOp.op == Not)
+ return compiler_jump_if(c, e->v.UnaryOp.operand, next, !cond);
+ /* fallback to general implementation */
+ break;
+ case BoolOp_kind: {
+ asdl_seq *s = e->v.BoolOp.values;
+ Py_ssize_t i, n = asdl_seq_LEN(s) - 1;
+ assert(n >= 0);
+ int cond2 = e->v.BoolOp.op == Or;
+ basicblock *next2 = next;
+ if (!cond2 != !cond) {
+ next2 = compiler_new_block(c);
+ if (next2 == NULL)
+ return 0;
+ }
+ for (i = 0; i < n; ++i) {
+ if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, i), next2, cond2))
+ return 0;
+ }
+ if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, n), next, cond))
+ return 0;
+ if (next2 != next)
+ compiler_use_next_block(c, next2);
+ return 1;
+ }
+ case IfExp_kind: {
+ basicblock *end, *next2;
+ end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ next2 = compiler_new_block(c);
+ if (next2 == NULL)
+ return 0;
+ if (!compiler_jump_if(c, e->v.IfExp.test, next2, 0))
+ return 0;
+ if (!compiler_jump_if(c, e->v.IfExp.body, next, cond))
+ return 0;
+ ADDOP_JREL(c, JUMP_FORWARD, end);
+ compiler_use_next_block(c, next2);
+ if (!compiler_jump_if(c, e->v.IfExp.orelse, next, cond))
+ return 0;
+ compiler_use_next_block(c, end);
+ return 1;
+ }
+ case Compare_kind: {
+ Py_ssize_t i, n = asdl_seq_LEN(e->v.Compare.ops) - 1;
+ if (n > 0) {
+ if (!check_compare(c, e)) {
+ return 0;
+ }
+ basicblock *cleanup = compiler_new_block(c);
+ if (cleanup == NULL)
+ return 0;
+ VISIT(c, expr, e->v.Compare.left);
+ for (i = 0; i < n; i++) {
+ VISIT(c, expr,
+ (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
+ ADDOP(c, DUP_TOP);
+ ADDOP(c, ROT_THREE);
+ ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i));
+ ADDOP_JABS(c, POP_JUMP_IF_FALSE, cleanup);
+ NEXT_BLOCK(c);
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
+ ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n));
+ ADDOP_JABS(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
+ basicblock *end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ ADDOP_JREL(c, JUMP_FORWARD, end);
+ compiler_use_next_block(c, cleanup);
+ ADDOP(c, POP_TOP);
+ if (!cond) {
+ ADDOP_JREL(c, JUMP_FORWARD, next);
+ }
+ compiler_use_next_block(c, end);
+ return 1;
+ }
+ /* fallback to general implementation */
+ break;
+ }
+ default:
+ /* fallback to general implementation */
+ break;
+ }
+
+ /* general implementation */
+ VISIT(c, expr, e);
+ ADDOP_JABS(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
+ return 1;
+}
+
+static int
+compiler_ifexp(struct compiler *c, expr_ty e)
+{
+ basicblock *end, *next;
+
+ assert(e->kind == IfExp_kind);
+ end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ next = compiler_new_block(c);
+ if (next == NULL)
+ return 0;
+ if (!compiler_jump_if(c, e->v.IfExp.test, next, 0))
+ return 0;
+ VISIT(c, expr, e->v.IfExp.body);
+ ADDOP_JREL(c, JUMP_FORWARD, end);
+ compiler_use_next_block(c, next);
+ VISIT(c, expr, e->v.IfExp.orelse);
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+static int
+compiler_lambda(struct compiler *c, expr_ty e)
+{
+ PyCodeObject *co;
+ PyObject *qualname;
+ static identifier name;
+ Py_ssize_t funcflags;
+ arguments_ty args = e->v.Lambda.args;
+ assert(e->kind == Lambda_kind);
+
+ if (!compiler_check_debug_args(c, args))
+ return 0;
+
+ if (!name) {
+ name = PyUnicode_InternFromString("<lambda>");
+ if (!name)
+ return 0;
+ }
+
+ funcflags = compiler_default_arguments(c, args);
+ if (funcflags == -1) {
+ return 0;
+ }
+
+ if (!compiler_enter_scope(c, name, COMPILER_SCOPE_LAMBDA,
+ (void *)e, e->lineno))
+ return 0;
+
+ /* Make None the first constant, so the lambda can't have a
+ docstring. */
+ if (compiler_add_const(c, Py_None) < 0)
+ return 0;
+
+ c->u->u_argcount = asdl_seq_LEN(args->args);
+ c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
+ c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
+ VISIT_IN_SCOPE(c, expr, e->v.Lambda.body);
+ if (c->u->u_ste->ste_generator) {
+ co = assemble(c, 0);
+ }
+ else {
+ ADDOP_IN_SCOPE(c, RETURN_VALUE);
+ co = assemble(c, 1);
+ }
+ qualname = c->u->u_qualname;
+ Py_INCREF(qualname);
+ compiler_exit_scope(c);
+ if (co == NULL)
+ return 0;
+
+ compiler_make_closure(c, co, funcflags, qualname);
+ Py_DECREF(qualname);
+ Py_DECREF(co);
+
+ return 1;
+}
+
+static int
+compiler_if(struct compiler *c, stmt_ty s)
+{
+ basicblock *end, *next;
+ int constant;
+ assert(s->kind == If_kind);
+ end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+
+ constant = expr_constant(s->v.If.test);
+ /* constant = 0: "if 0"
+ * constant = 1: "if 1", "if 2", ...
+ * constant = -1: rest */
+ if (constant == 0) {
+ BEGIN_DO_NOT_EMIT_BYTECODE
+ VISIT_SEQ(c, stmt, s->v.If.body);
+ END_DO_NOT_EMIT_BYTECODE
+ if (s->v.If.orelse) {
+ VISIT_SEQ(c, stmt, s->v.If.orelse);
+ }
+ } else if (constant == 1) {
+ VISIT_SEQ(c, stmt, s->v.If.body);
+ if (s->v.If.orelse) {
+ BEGIN_DO_NOT_EMIT_BYTECODE
+ VISIT_SEQ(c, stmt, s->v.If.orelse);
+ END_DO_NOT_EMIT_BYTECODE
+ }
+ } else {
+ if (asdl_seq_LEN(s->v.If.orelse)) {
+ next = compiler_new_block(c);
+ if (next == NULL)
+ return 0;
+ }
+ else {
+ next = end;
+ }
+ if (!compiler_jump_if(c, s->v.If.test, next, 0)) {
+ return 0;
+ }
+ VISIT_SEQ(c, stmt, s->v.If.body);
+ if (asdl_seq_LEN(s->v.If.orelse)) {
+ ADDOP_JREL(c, JUMP_FORWARD, end);
+ compiler_use_next_block(c, next);
+ VISIT_SEQ(c, stmt, s->v.If.orelse);
+ }
+ }
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+static int
+compiler_for(struct compiler *c, stmt_ty s)
+{
+ basicblock *start, *cleanup, *end;
+
+ start = compiler_new_block(c);
+ cleanup = compiler_new_block(c);
+ end = compiler_new_block(c);
+ if (start == NULL || end == NULL || cleanup == NULL) {
+ return 0;
+ }
+ if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) {
+ return 0;
+ }
+ VISIT(c, expr, s->v.For.iter);
+ ADDOP(c, GET_ITER);
+ compiler_use_next_block(c, start);
+ ADDOP_JREL(c, FOR_ITER, cleanup);
+ VISIT(c, expr, s->v.For.target);
+ VISIT_SEQ(c, stmt, s->v.For.body);
+ ADDOP_JABS(c, JUMP_ABSOLUTE, start);
+ compiler_use_next_block(c, cleanup);
+
+ compiler_pop_fblock(c, FOR_LOOP, start);
+
+ VISIT_SEQ(c, stmt, s->v.For.orelse);
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+
+static int
+compiler_async_for(struct compiler *c, stmt_ty s)
+{
+ basicblock *start, *except, *end;
+ if (IS_TOP_LEVEL_AWAIT(c)){
+ c->u->u_ste->ste_coroutine = 1;
+ } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION) {
+ return compiler_error(c, "'async for' outside async function");
+ }
+
+ start = compiler_new_block(c);
+ except = compiler_new_block(c);
+ end = compiler_new_block(c);
+
+ if (start == NULL || except == NULL || end == NULL) {
+ return 0;
+ }
+ VISIT(c, expr, s->v.AsyncFor.iter);
+ ADDOP(c, GET_AITER);
+
+ compiler_use_next_block(c, start);
+ if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) {
+ return 0;
+ }
+ /* SETUP_FINALLY to guard the __anext__ call */
+ ADDOP_JREL(c, SETUP_FINALLY, except);
+ ADDOP(c, GET_ANEXT);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP(c, YIELD_FROM);
+ ADDOP(c, POP_BLOCK); /* for SETUP_FINALLY */
+
+ /* Success block for __anext__ */
+ VISIT(c, expr, s->v.AsyncFor.target);
+ VISIT_SEQ(c, stmt, s->v.AsyncFor.body);
+ ADDOP_JABS(c, JUMP_ABSOLUTE, start);
+
+ compiler_pop_fblock(c, FOR_LOOP, start);
+
+ /* Except block for __anext__ */
+ compiler_use_next_block(c, except);
+
+ /* We don't want to trace the END_ASYNC_FOR, so make sure
+ * that it has the same lineno as the following instruction. */
+ if (asdl_seq_LEN(s->v.For.orelse)) {
+ SET_LOC(c, (stmt_ty)asdl_seq_GET(s->v.For.orelse, 0));
+ }
+ ADDOP(c, END_ASYNC_FOR);
+
+ /* `else` block */
+ VISIT_SEQ(c, stmt, s->v.For.orelse);
+
+ compiler_use_next_block(c, end);
+
+ return 1;
+}
+
+static int
+compiler_while(struct compiler *c, stmt_ty s)
+{
+ basicblock *loop, *orelse, *end, *anchor = NULL;
+ int constant = expr_constant(s->v.While.test);
+
+ if (constant == 0) {
+ BEGIN_DO_NOT_EMIT_BYTECODE
+ // Push a dummy block so the VISIT_SEQ knows that we are
+ // inside a while loop so it can correctly evaluate syntax
+ // errors.
+ if (!compiler_push_fblock(c, WHILE_LOOP, NULL, NULL, NULL)) {
+ return 0;
+ }
+ VISIT_SEQ(c, stmt, s->v.While.body);
+ // Remove the dummy block now that is not needed.
+ compiler_pop_fblock(c, WHILE_LOOP, NULL);
+ END_DO_NOT_EMIT_BYTECODE
+ if (s->v.While.orelse) {
+ VISIT_SEQ(c, stmt, s->v.While.orelse);
+ }
+ return 1;
+ }
+ loop = compiler_new_block(c);
+ end = compiler_new_block(c);
+ if (constant == -1) {
+ anchor = compiler_new_block(c);
+ if (anchor == NULL)
+ return 0;
+ }
+ if (loop == NULL || end == NULL)
+ return 0;
+ if (s->v.While.orelse) {
+ orelse = compiler_new_block(c);
+ if (orelse == NULL)
+ return 0;
+ }
+ else
+ orelse = NULL;
+
+ compiler_use_next_block(c, loop);
+ if (!compiler_push_fblock(c, WHILE_LOOP, loop, end, NULL))
+ return 0;
+ if (constant == -1) {
+ if (!compiler_jump_if(c, s->v.While.test, anchor, 0))
+ return 0;
+ }
+ VISIT_SEQ(c, stmt, s->v.While.body);
+ ADDOP_JABS(c, JUMP_ABSOLUTE, loop);
+
+ /* XXX should the two POP instructions be in a separate block
+ if there is no else clause ?
+ */
+
+ if (constant == -1)
+ compiler_use_next_block(c, anchor);
+ compiler_pop_fblock(c, WHILE_LOOP, loop);
+
+ if (orelse != NULL) /* what if orelse is just pass? */
+ VISIT_SEQ(c, stmt, s->v.While.orelse);
+ compiler_use_next_block(c, end);
+
+ return 1;
+}
+
+static int
+compiler_return(struct compiler *c, stmt_ty s)
+{
+ int preserve_tos = ((s->v.Return.value != NULL) &&
+ (s->v.Return.value->kind != Constant_kind));
+ if (c->u->u_ste->ste_type != FunctionBlock)
+ return compiler_error(c, "'return' outside function");
+ if (s->v.Return.value != NULL &&
+ c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator)
+ {
+ return compiler_error(
+ c, "'return' with value in async generator");
+ }
+ if (preserve_tos) {
+ VISIT(c, expr, s->v.Return.value);
+ }
+ if (!compiler_unwind_fblock_stack(c, preserve_tos, NULL))
+ return 0;
+ if (s->v.Return.value == NULL) {
+ ADDOP_LOAD_CONST(c, Py_None);
+ }
+ else if (!preserve_tos) {
+ VISIT(c, expr, s->v.Return.value);
+ }
+ ADDOP(c, RETURN_VALUE);
+
+ return 1;
+}
+
+static int
+compiler_break(struct compiler *c)
+{
+ struct fblockinfo *loop = NULL;
+ if (!compiler_unwind_fblock_stack(c, 0, &loop)) {
+ return 0;
+ }
+ if (loop == NULL) {
+ return compiler_error(c, "'break' outside loop");
+ }
+ if (!compiler_unwind_fblock(c, loop, 0)) {
+ return 0;
+ }
+ ADDOP_JABS(c, JUMP_ABSOLUTE, loop->fb_exit);
+ return 1;
+}
+
+static int
+compiler_continue(struct compiler *c)
+{
+ struct fblockinfo *loop = NULL;
+ if (!compiler_unwind_fblock_stack(c, 0, &loop)) {
+ return 0;
+ }
+ if (loop == NULL) {
+ return compiler_error(c, "'continue' not properly in loop");
+ }
+ ADDOP_JABS(c, JUMP_ABSOLUTE, loop->fb_block);
+ return 1;
+}
+
+
+/* Code generated for "try: <body> finally: <finalbody>" is as follows:
+
+ SETUP_FINALLY L
+ <code for body>
+ POP_BLOCK
+ <code for finalbody>
+ JUMP E
+ L:
+ <code for finalbody>
+ E:
+
+ The special instructions use the block stack. Each block
+ stack entry contains the instruction that created it (here
+ SETUP_FINALLY), the level of the value stack at the time the
+ block stack entry was created, and a label (here L).
+
+ SETUP_FINALLY:
+ Pushes the current value stack level and the label
+ onto the block stack.
+ POP_BLOCK:
+ Pops en entry from the block stack.
+
+ The block stack is unwound when an exception is raised:
+ when a SETUP_FINALLY entry is found, the raised and the caught
+ exceptions are pushed onto the value stack (and the exception
+ condition is cleared), and the interpreter jumps to the label
+ gotten from the block stack.
+*/
+
+static int
+compiler_try_finally(struct compiler *c, stmt_ty s)
+{
+ basicblock *body, *end, *exit;
+
+ body = compiler_new_block(c);
+ end = compiler_new_block(c);
+ exit = compiler_new_block(c);
+ if (body == NULL || end == NULL || exit == NULL)
+ return 0;
+
+ /* `try` block */
+ ADDOP_JREL(c, SETUP_FINALLY, end);
+ compiler_use_next_block(c, body);
+ if (!compiler_push_fblock(c, FINALLY_TRY, body, end, s->v.Try.finalbody))
+ return 0;
+ if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) {
+ if (!compiler_try_except(c, s))
+ return 0;
+ }
+ else {
+ VISIT_SEQ(c, stmt, s->v.Try.body);
+ }
+ ADDOP(c, POP_BLOCK);
+ compiler_pop_fblock(c, FINALLY_TRY, body);
+ VISIT_SEQ(c, stmt, s->v.Try.finalbody);
+ ADDOP_JREL(c, JUMP_FORWARD, exit);
+ /* `finally` block */
+ compiler_use_next_block(c, end);
+ if (!compiler_push_fblock(c, FINALLY_END, end, NULL, NULL))
+ return 0;
+ VISIT_SEQ(c, stmt, s->v.Try.finalbody);
+ compiler_pop_fblock(c, FINALLY_END, end);
+ ADDOP(c, RERAISE);
+ compiler_use_next_block(c, exit);
+ return 1;
+}
+
+/*
+ Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...":
+ (The contents of the value stack is shown in [], with the top
+ at the right; 'tb' is trace-back info, 'val' the exception's
+ associated value, and 'exc' the exception.)
+
+ Value stack Label Instruction Argument
+ [] SETUP_FINALLY L1
+ [] <code for S>
+ [] POP_BLOCK
+ [] JUMP_FORWARD L0
+
+ [tb, val, exc] L1: DUP )
+ [tb, val, exc, exc] <evaluate E1> )
+ [tb, val, exc, exc, E1] JUMP_IF_NOT_EXC_MATCH L2 ) only if E1
+ [tb, val, exc] POP
+ [tb, val] <assign to V1> (or POP if no V1)
+ [tb] POP
+ [] <code for S1>
+ JUMP_FORWARD L0
+
+ [tb, val, exc] L2: DUP
+ .............................etc.......................
+
+ [tb, val, exc] Ln+1: RERAISE # re-raise exception
+
+ [] L0: <next statement>
+
+ Of course, parts are not generated if Vi or Ei is not present.
+*/
+static int
+compiler_try_except(struct compiler *c, stmt_ty s)
+{
+ basicblock *body, *orelse, *except, *end;
+ Py_ssize_t i, n;
+
+ body = compiler_new_block(c);
+ except = compiler_new_block(c);
+ orelse = compiler_new_block(c);
+ end = compiler_new_block(c);
+ if (body == NULL || except == NULL || orelse == NULL || end == NULL)
+ return 0;
+ ADDOP_JREL(c, SETUP_FINALLY, except);
+ compiler_use_next_block(c, body);
+ if (!compiler_push_fblock(c, TRY_EXCEPT, body, NULL, NULL))
+ return 0;
+ VISIT_SEQ(c, stmt, s->v.Try.body);
+ ADDOP(c, POP_BLOCK);
+ compiler_pop_fblock(c, TRY_EXCEPT, body);
+ ADDOP_JREL(c, JUMP_FORWARD, orelse);
+ n = asdl_seq_LEN(s->v.Try.handlers);
+ compiler_use_next_block(c, except);
+ /* Runtime will push a block here, so we need to account for that */
+ if (!compiler_push_fblock(c, EXCEPTION_HANDLER, NULL, NULL, NULL))
+ return 0;
+ for (i = 0; i < n; i++) {
+ excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
+ s->v.Try.handlers, i);
+ if (!handler->v.ExceptHandler.type && i < n-1)
+ return compiler_error(c, "default 'except:' must be last");
+ SET_LOC(c, handler);
+ except = compiler_new_block(c);
+ if (except == NULL)
+ return 0;
+ if (handler->v.ExceptHandler.type) {
+ ADDOP(c, DUP_TOP);
+ VISIT(c, expr, handler->v.ExceptHandler.type);
+ ADDOP_JABS(c, JUMP_IF_NOT_EXC_MATCH, except);
+ }
+ ADDOP(c, POP_TOP);
+ if (handler->v.ExceptHandler.name) {
+ basicblock *cleanup_end, *cleanup_body;
+
+ cleanup_end = compiler_new_block(c);
+ cleanup_body = compiler_new_block(c);
+ if (cleanup_end == NULL || cleanup_body == NULL) {
+ return 0;
+ }
+
+ compiler_nameop(c, handler->v.ExceptHandler.name, Store);
+ ADDOP(c, POP_TOP);
+
+ /*
+ try:
+ # body
+ except type as name:
+ try:
+ # body
+ finally:
+ name = None # in case body contains "del name"
+ del name
+ */
+
+ /* second try: */
+ ADDOP_JREL(c, SETUP_FINALLY, cleanup_end);
+ compiler_use_next_block(c, cleanup_body);
+ if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, handler->v.ExceptHandler.name))
+ return 0;
+
+ /* second # body */
+ VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
+ compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
+ ADDOP(c, POP_BLOCK);
+ ADDOP(c, POP_EXCEPT);
+ /* name = None; del name */
+ ADDOP_LOAD_CONST(c, Py_None);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Store);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Del);
+ ADDOP_JREL(c, JUMP_FORWARD, end);
+
+ /* except: */
+ compiler_use_next_block(c, cleanup_end);
+
+ /* name = None; del name */
+ ADDOP_LOAD_CONST(c, Py_None);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Store);
+ compiler_nameop(c, handler->v.ExceptHandler.name, Del);
+
+ ADDOP(c, RERAISE);
+ }
+ else {
+ basicblock *cleanup_body;
+
+ cleanup_body = compiler_new_block(c);
+ if (!cleanup_body)
+ return 0;
+
+ ADDOP(c, POP_TOP);
+ ADDOP(c, POP_TOP);
+ compiler_use_next_block(c, cleanup_body);
+ if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, NULL))
+ return 0;
+ VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
+ compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
+ ADDOP(c, POP_EXCEPT);
+ ADDOP_JREL(c, JUMP_FORWARD, end);
+ }
+ compiler_use_next_block(c, except);
+ }
+ compiler_pop_fblock(c, EXCEPTION_HANDLER, NULL);
+ ADDOP(c, RERAISE);
+ compiler_use_next_block(c, orelse);
+ VISIT_SEQ(c, stmt, s->v.Try.orelse);
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+static int
+compiler_try(struct compiler *c, stmt_ty s) {
+ if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody))
+ return compiler_try_finally(c, s);
+ else
+ return compiler_try_except(c, s);
+}
+
+
+static int
+compiler_import_as(struct compiler *c, identifier name, identifier asname)
+{
+ /* The IMPORT_NAME opcode was already generated. This function
+ merely needs to bind the result to a name.
+
+ If there is a dot in name, we need to split it and emit a
+ IMPORT_FROM for each name.
+ */
+ Py_ssize_t len = PyUnicode_GET_LENGTH(name);
+ Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0, len, 1);
+ if (dot == -2)
+ return 0;
+ if (dot != -1) {
+ /* Consume the base module name to get the first attribute */
+ while (1) {
+ Py_ssize_t pos = dot + 1;
+ PyObject *attr;
+ dot = PyUnicode_FindChar(name, '.', pos, len, 1);
+ if (dot == -2)
+ return 0;
+ attr = PyUnicode_Substring(name, pos, (dot != -1) ? dot : len);
+ if (!attr)
+ return 0;
+ ADDOP_N(c, IMPORT_FROM, attr, names);
+ if (dot == -1) {
+ break;
+ }
+ ADDOP(c, ROT_TWO);
+ ADDOP(c, POP_TOP);
+ }
+ if (!compiler_nameop(c, asname, Store)) {
+ return 0;
+ }
+ ADDOP(c, POP_TOP);
+ return 1;
+ }
+ return compiler_nameop(c, asname, Store);
+}
+
+static int
+compiler_import(struct compiler *c, stmt_ty s)
+{
+ /* The Import node stores a module name like a.b.c as a single
+ string. This is convenient for all cases except
+ import a.b.c as d
+ where we need to parse that string to extract the individual
+ module names.
+ XXX Perhaps change the representation to make this case simpler?
+ */
+ Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names);
+
+ for (i = 0; i < n; i++) {
+ alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i);
+ int r;
+
+ ADDOP_LOAD_CONST(c, _PyLong_Zero);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP_NAME(c, IMPORT_NAME, alias->name, names);
+
+ if (alias->asname) {
+ r = compiler_import_as(c, alias->name, alias->asname);
+ if (!r)
+ return r;
+ }
+ else {
+ identifier tmp = alias->name;
+ Py_ssize_t dot = PyUnicode_FindChar(
+ alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1);
+ if (dot != -1) {
+ tmp = PyUnicode_Substring(alias->name, 0, dot);
+ if (tmp == NULL)
+ return 0;
+ }
+ r = compiler_nameop(c, tmp, Store);
+ if (dot != -1) {
+ Py_DECREF(tmp);
+ }
+ if (!r)
+ return r;
+ }
+ }
+ return 1;
+}
+
+static int
+compiler_from_import(struct compiler *c, stmt_ty s)
+{
+ Py_ssize_t i, n = asdl_seq_LEN(s->v.ImportFrom.names);
+ PyObject *names;
+ static PyObject *empty_string;
+
+ if (!empty_string) {
+ empty_string = PyUnicode_FromString("");
+ if (!empty_string)
+ return 0;
+ }
+
+ ADDOP_LOAD_CONST_NEW(c, PyLong_FromLong(s->v.ImportFrom.level));
+
+ names = PyTuple_New(n);
+ if (!names)
+ return 0;
+
+ /* build up the names */
+ for (i = 0; i < n; i++) {
+ alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
+ Py_INCREF(alias->name);
+ PyTuple_SET_ITEM(names, i, alias->name);
+ }
+
+ if (s->lineno > c->c_future->ff_lineno && s->v.ImportFrom.module &&
+ _PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__")) {
+ Py_DECREF(names);
+ return compiler_error(c, "from __future__ imports must occur "
+ "at the beginning of the file");
+ }
+ ADDOP_LOAD_CONST_NEW(c, names);
+
+ if (s->v.ImportFrom.module) {
+ ADDOP_NAME(c, IMPORT_NAME, s->v.ImportFrom.module, names);
+ }
+ else {
+ ADDOP_NAME(c, IMPORT_NAME, empty_string, names);
+ }
+ for (i = 0; i < n; i++) {
+ alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
+ identifier store_name;
+
+ if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') {
+ assert(n == 1);
+ ADDOP(c, IMPORT_STAR);
+ return 1;
+ }
+
+ ADDOP_NAME(c, IMPORT_FROM, alias->name, names);
+ store_name = alias->name;
+ if (alias->asname)
+ store_name = alias->asname;
+
+ if (!compiler_nameop(c, store_name, Store)) {
+ return 0;
+ }
+ }
+ /* remove imported module */
+ ADDOP(c, POP_TOP);
+ return 1;
+}
+
+static int
+compiler_assert(struct compiler *c, stmt_ty s)
+{
+ basicblock *end;
+
+ if (c->c_optimize)
+ return 1;
+ if (s->v.Assert.test->kind == Tuple_kind &&
+ asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0)
+ {
+ if (!compiler_warn(c, "assertion is always true, "
+ "perhaps remove parentheses?"))
+ {
+ return 0;
+ }
+ }
+ end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ if (!compiler_jump_if(c, s->v.Assert.test, end, 1))
+ return 0;
+ ADDOP(c, LOAD_ASSERTION_ERROR);
+ if (s->v.Assert.msg) {
+ VISIT(c, expr, s->v.Assert.msg);
+ ADDOP_I(c, CALL_FUNCTION, 1);
+ }
+ ADDOP_I(c, RAISE_VARARGS, 1);
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+static int
+compiler_visit_stmt_expr(struct compiler *c, expr_ty value)
+{
+ if (c->c_interactive && c->c_nestlevel <= 1) {
+ VISIT(c, expr, value);
+ ADDOP(c, PRINT_EXPR);
+ return 1;
+ }
+
+ if (value->kind == Constant_kind) {
+ /* ignore constant statement */
+ return 1;
+ }
+
+ VISIT(c, expr, value);
+ ADDOP(c, POP_TOP);
+ return 1;
+}
+
+static int
+compiler_visit_stmt(struct compiler *c, stmt_ty s)
+{
+ Py_ssize_t i, n;
+
+ /* Always assign a lineno to the next instruction for a stmt. */
+ SET_LOC(c, s);
+
+ switch (s->kind) {
+ case FunctionDef_kind:
+ return compiler_function(c, s, 0);
+ case ClassDef_kind:
+ return compiler_class(c, s);
+ case Return_kind:
+ return compiler_return(c, s);
+ case Delete_kind:
+ VISIT_SEQ(c, expr, s->v.Delete.targets)
+ break;
+ case Assign_kind:
+ n = asdl_seq_LEN(s->v.Assign.targets);
+ VISIT(c, expr, s->v.Assign.value);
+ for (i = 0; i < n; i++) {
+ if (i < n - 1)
+ ADDOP(c, DUP_TOP);
+ VISIT(c, expr,
+ (expr_ty)asdl_seq_GET(s->v.Assign.targets, i));
+ }
+ break;
+ case AugAssign_kind:
+ return compiler_augassign(c, s);
+ case AnnAssign_kind:
+ return compiler_annassign(c, s);
+ case For_kind:
+ return compiler_for(c, s);
+ case While_kind:
+ return compiler_while(c, s);
+ case If_kind:
+ return compiler_if(c, s);
+ case Raise_kind:
+ n = 0;
+ if (s->v.Raise.exc) {
+ VISIT(c, expr, s->v.Raise.exc);
+ n++;
+ if (s->v.Raise.cause) {
+ VISIT(c, expr, s->v.Raise.cause);
+ n++;
+ }
+ }
+ ADDOP_I(c, RAISE_VARARGS, (int)n);
+ break;
+ case Try_kind:
+ return compiler_try(c, s);
+ case Assert_kind:
+ return compiler_assert(c, s);
+ case Import_kind:
+ return compiler_import(c, s);
+ case ImportFrom_kind:
+ return compiler_from_import(c, s);
+ case Global_kind:
+ case Nonlocal_kind:
+ break;
+ case Expr_kind:
+ return compiler_visit_stmt_expr(c, s->v.Expr.value);
+ case Pass_kind:
+ break;
+ case Break_kind:
+ return compiler_break(c);
+ case Continue_kind:
+ return compiler_continue(c);
+ case With_kind:
+ return compiler_with(c, s, 0);
+ case AsyncFunctionDef_kind:
+ return compiler_function(c, s, 1);
+ case AsyncWith_kind:
+ return compiler_async_with(c, s, 0);
+ case AsyncFor_kind:
+ return compiler_async_for(c, s);
+ }
+
+ return 1;
+}
+
+static int
+unaryop(unaryop_ty op)
+{
+ switch (op) {
+ case Invert:
+ return UNARY_INVERT;
+ case Not:
+ return UNARY_NOT;
+ case UAdd:
+ return UNARY_POSITIVE;
+ case USub:
+ return UNARY_NEGATIVE;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "unary op %d should not be possible", op);
+ return 0;
+ }
+}
+
+static int
+binop(operator_ty op)
+{
+ switch (op) {
+ case Add:
+ return BINARY_ADD;
+ case Sub:
+ return BINARY_SUBTRACT;
+ case Mult:
+ return BINARY_MULTIPLY;
+ case MatMult:
+ return BINARY_MATRIX_MULTIPLY;
+ case Div:
+ return BINARY_TRUE_DIVIDE;
+ case Mod:
+ return BINARY_MODULO;
+ case Pow:
+ return BINARY_POWER;
+ case LShift:
+ return BINARY_LSHIFT;
+ case RShift:
+ return BINARY_RSHIFT;
+ case BitOr:
+ return BINARY_OR;
+ case BitXor:
+ return BINARY_XOR;
+ case BitAnd:
+ return BINARY_AND;
+ case FloorDiv:
+ return BINARY_FLOOR_DIVIDE;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "binary op %d should not be possible", op);
+ return 0;
+ }
+}
+
+static int
+inplace_binop(operator_ty op)
+{
+ switch (op) {
+ case Add:
+ return INPLACE_ADD;
+ case Sub:
+ return INPLACE_SUBTRACT;
+ case Mult:
+ return INPLACE_MULTIPLY;
+ case MatMult:
+ return INPLACE_MATRIX_MULTIPLY;
+ case Div:
+ return INPLACE_TRUE_DIVIDE;
+ case Mod:
+ return INPLACE_MODULO;
+ case Pow:
+ return INPLACE_POWER;
+ case LShift:
+ return INPLACE_LSHIFT;
+ case RShift:
+ return INPLACE_RSHIFT;
+ case BitOr:
+ return INPLACE_OR;
+ case BitXor:
+ return INPLACE_XOR;
+ case BitAnd:
+ return INPLACE_AND;
+ case FloorDiv:
+ return INPLACE_FLOOR_DIVIDE;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "inplace binary op %d should not be possible", op);
+ return 0;
+ }
+}
+
+static int
+compiler_nameop(struct compiler *c, identifier name, expr_context_ty ctx)
+{
+ int op, scope;
+ Py_ssize_t arg;
+ enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype;
+
+ PyObject *dict = c->u->u_names;
+ PyObject *mangled;
+
+ assert(!_PyUnicode_EqualToASCIIString(name, "None") &&
+ !_PyUnicode_EqualToASCIIString(name, "True") &&
+ !_PyUnicode_EqualToASCIIString(name, "False"));
+
+ if (forbidden_name(c, name, ctx))
+ return 0;
+
+ mangled = _Py_Mangle(c->u->u_private, name);
+ if (!mangled)
+ return 0;
+
+ op = 0;
+ optype = OP_NAME;
+ scope = PyST_GetScope(c->u->u_ste, mangled);
+ switch (scope) {
+ case FREE:
+ dict = c->u->u_freevars;
+ optype = OP_DEREF;
+ break;
+ case CELL:
+ dict = c->u->u_cellvars;
+ optype = OP_DEREF;
+ break;
+ case LOCAL:
+ if (c->u->u_ste->ste_type == FunctionBlock)
+ optype = OP_FAST;
+ break;
+ case GLOBAL_IMPLICIT:
+ if (c->u->u_ste->ste_type == FunctionBlock)
+ optype = OP_GLOBAL;
+ break;
+ case GLOBAL_EXPLICIT:
+ optype = OP_GLOBAL;
+ break;
+ default:
+ /* scope can be 0 */
+ break;
+ }
+
+ /* XXX Leave assert here, but handle __doc__ and the like better */
+ assert(scope || PyUnicode_READ_CHAR(name, 0) == '_');
+
+ switch (optype) {
+ case OP_DEREF:
+ switch (ctx) {
+ case Load:
+ op = (c->u->u_ste->ste_type == ClassBlock) ? LOAD_CLASSDEREF : LOAD_DEREF;
+ break;
+ case Store: op = STORE_DEREF; break;
+ case Del: op = DELETE_DEREF; break;
+ }
+ break;
+ case OP_FAST:
+ switch (ctx) {
+ case Load: op = LOAD_FAST; break;
+ case Store: op = STORE_FAST; break;
+ case Del: op = DELETE_FAST; break;
+ }
+ ADDOP_N(c, op, mangled, varnames);
+ return 1;
+ case OP_GLOBAL:
+ switch (ctx) {
+ case Load: op = LOAD_GLOBAL; break;
+ case Store: op = STORE_GLOBAL; break;
+ case Del: op = DELETE_GLOBAL; break;
+ }
+ break;
+ case OP_NAME:
+ switch (ctx) {
+ case Load: op = LOAD_NAME; break;
+ case Store: op = STORE_NAME; break;
+ case Del: op = DELETE_NAME; break;
+ }
+ break;
+ }
+
+ assert(op);
+ arg = compiler_add_o(dict, mangled);
+ Py_DECREF(mangled);
+ if (arg < 0)
+ return 0;
+ return compiler_addop_i(c, op, arg);
+}
+
+static int
+compiler_boolop(struct compiler *c, expr_ty e)
+{
+ basicblock *end;
+ int jumpi;
+ Py_ssize_t i, n;
+ asdl_seq *s;
+
+ assert(e->kind == BoolOp_kind);
+ if (e->v.BoolOp.op == And)
+ jumpi = JUMP_IF_FALSE_OR_POP;
+ else
+ jumpi = JUMP_IF_TRUE_OR_POP;
+ end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ s = e->v.BoolOp.values;
+ n = asdl_seq_LEN(s) - 1;
+ assert(n >= 0);
+ for (i = 0; i < n; ++i) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i));
+ ADDOP_JABS(c, jumpi, end);
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n));
+ compiler_use_next_block(c, end);
+ return 1;
+}
+
+static int
+starunpack_helper(struct compiler *c, asdl_seq *elts, int pushed,
+ int build, int add, int extend, int tuple)
+{
+ Py_ssize_t n = asdl_seq_LEN(elts);
+ Py_ssize_t i, seen_star = 0;
+ if (n > 2 && are_all_items_const(elts, 0, n)) {
+ PyObject *folded = PyTuple_New(n);
+ if (folded == NULL) {
+ return 0;
+ }
+ PyObject *val;
+ for (i = 0; i < n; i++) {
+ val = ((expr_ty)asdl_seq_GET(elts, i))->v.Constant.value;
+ Py_INCREF(val);
+ PyTuple_SET_ITEM(folded, i, val);
+ }
+ if (tuple) {
+ ADDOP_LOAD_CONST_NEW(c, folded);
+ } else {
+ if (add == SET_ADD) {
+ Py_SETREF(folded, PyFrozenSet_New(folded));
+ if (folded == NULL) {
+ return 0;
+ }
+ }
+ ADDOP_I(c, build, pushed);
+ ADDOP_LOAD_CONST_NEW(c, folded);
+ ADDOP_I(c, extend, 1);
+ }
+ return 1;
+ }
+
+ for (i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ if (elt->kind == Starred_kind) {
+ seen_star = 1;
+ }
+ }
+ if (seen_star) {
+ seen_star = 0;
+ for (i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ if (elt->kind == Starred_kind) {
+ if (seen_star == 0) {
+ ADDOP_I(c, build, i+pushed);
+ seen_star = 1;
+ }
+ VISIT(c, expr, elt->v.Starred.value);
+ ADDOP_I(c, extend, 1);
+ }
+ else {
+ VISIT(c, expr, elt);
+ if (seen_star) {
+ ADDOP_I(c, add, 1);
+ }
+ }
+ }
+ assert(seen_star);
+ if (tuple) {
+ ADDOP(c, LIST_TO_TUPLE);
+ }
+ }
+ else {
+ for (i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ VISIT(c, expr, elt);
+ }
+ if (tuple) {
+ ADDOP_I(c, BUILD_TUPLE, n+pushed);
+ } else {
+ ADDOP_I(c, build, n+pushed);
+ }
+ }
+ return 1;
+}
+
+static int
+assignment_helper(struct compiler *c, asdl_seq *elts)
+{
+ Py_ssize_t n = asdl_seq_LEN(elts);
+ Py_ssize_t i;
+ int seen_star = 0;
+ for (i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ if (elt->kind == Starred_kind && !seen_star) {
+ if ((i >= (1 << 8)) ||
+ (n-i-1 >= (INT_MAX >> 8)))
+ return compiler_error(c,
+ "too many expressions in "
+ "star-unpacking assignment");
+ ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8)));
+ seen_star = 1;
+ }
+ else if (elt->kind == Starred_kind) {
+ return compiler_error(c,
+ "multiple starred expressions in assignment");
+ }
+ }
+ if (!seen_star) {
+ ADDOP_I(c, UNPACK_SEQUENCE, n);
+ }
+ for (i = 0; i < n; i++) {
+ expr_ty elt = asdl_seq_GET(elts, i);
+ VISIT(c, expr, elt->kind != Starred_kind ? elt : elt->v.Starred.value);
+ }
+ return 1;
+}
+
+static int
+compiler_list(struct compiler *c, expr_ty e)
+{
+ asdl_seq *elts = e->v.List.elts;
+ if (e->v.List.ctx == Store) {
+ return assignment_helper(c, elts);
+ }
+ else if (e->v.List.ctx == Load) {
+ return starunpack_helper(c, elts, 0, BUILD_LIST,
+ LIST_APPEND, LIST_EXTEND, 0);
+ }
+ else
+ VISIT_SEQ(c, expr, elts);
+ return 1;
+}
+
+static int
+compiler_tuple(struct compiler *c, expr_ty e)
+{
+ asdl_seq *elts = e->v.Tuple.elts;
+ if (e->v.Tuple.ctx == Store) {
+ return assignment_helper(c, elts);
+ }
+ else if (e->v.Tuple.ctx == Load) {
+ return starunpack_helper(c, elts, 0, BUILD_LIST,
+ LIST_APPEND, LIST_EXTEND, 1);
+ }
+ else
+ VISIT_SEQ(c, expr, elts);
+ return 1;
+}
+
+static int
+compiler_set(struct compiler *c, expr_ty e)
+{
+ return starunpack_helper(c, e->v.Set.elts, 0, BUILD_SET,
+ SET_ADD, SET_UPDATE, 0);
+}
+
+static int
+are_all_items_const(asdl_seq *seq, Py_ssize_t begin, Py_ssize_t end)
+{
+ Py_ssize_t i;
+ for (i = begin; i < end; i++) {
+ expr_ty key = (expr_ty)asdl_seq_GET(seq, i);
+ if (key == NULL || key->kind != Constant_kind)
+ return 0;
+ }
+ return 1;
+}
+
+static int
+compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end)
+{
+ Py_ssize_t i, n = end - begin;
+ PyObject *keys, *key;
+ if (n > 1 && are_all_items_const(e->v.Dict.keys, begin, end)) {
+ for (i = begin; i < end; i++) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
+ }
+ keys = PyTuple_New(n);
+ if (keys == NULL) {
+ return 0;
+ }
+ for (i = begin; i < end; i++) {
+ key = ((expr_ty)asdl_seq_GET(e->v.Dict.keys, i))->v.Constant.value;
+ Py_INCREF(key);
+ PyTuple_SET_ITEM(keys, i - begin, key);
+ }
+ ADDOP_LOAD_CONST_NEW(c, keys);
+ ADDOP_I(c, BUILD_CONST_KEY_MAP, n);
+ }
+ else {
+ for (i = begin; i < end; i++) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i));
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
+ }
+ ADDOP_I(c, BUILD_MAP, n);
+ }
+ return 1;
+}
+
+static int
+compiler_dict(struct compiler *c, expr_ty e)
+{
+ Py_ssize_t i, n, elements;
+ int have_dict;
+ int is_unpacking = 0;
+ n = asdl_seq_LEN(e->v.Dict.values);
+ have_dict = 0;
+ elements = 0;
+ for (i = 0; i < n; i++) {
+ is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL;
+ if (is_unpacking) {
+ if (elements) {
+ if (!compiler_subdict(c, e, i - elements, i)) {
+ return 0;
+ }
+ if (have_dict) {
+ ADDOP_I(c, DICT_UPDATE, 1);
+ }
+ have_dict = 1;
+ elements = 0;
+ }
+ if (have_dict == 0) {
+ ADDOP_I(c, BUILD_MAP, 0);
+ have_dict = 1;
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
+ ADDOP_I(c, DICT_UPDATE, 1);
+ }
+ else {
+ if (elements == 0xFFFF) {
+ if (!compiler_subdict(c, e, i - elements, i + 1)) {
+ return 0;
+ }
+ if (have_dict) {
+ ADDOP_I(c, DICT_UPDATE, 1);
+ }
+ have_dict = 1;
+ elements = 0;
+ }
+ else {
+ elements++;
+ }
+ }
+ }
+ if (elements) {
+ if (!compiler_subdict(c, e, n - elements, n)) {
+ return 0;
+ }
+ if (have_dict) {
+ ADDOP_I(c, DICT_UPDATE, 1);
+ }
+ have_dict = 1;
+ }
+ if (!have_dict) {
+ ADDOP_I(c, BUILD_MAP, 0);
+ }
+ return 1;
+}
+
+static int
+compiler_compare(struct compiler *c, expr_ty e)
+{
+ Py_ssize_t i, n;
+
+ if (!check_compare(c, e)) {
+ return 0;
+ }
+ VISIT(c, expr, e->v.Compare.left);
+ assert(asdl_seq_LEN(e->v.Compare.ops) > 0);
+ n = asdl_seq_LEN(e->v.Compare.ops) - 1;
+ if (n == 0) {
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0));
+ ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, 0));
+ }
+ else {
+ basicblock *cleanup = compiler_new_block(c);
+ if (cleanup == NULL)
+ return 0;
+ for (i = 0; i < n; i++) {
+ VISIT(c, expr,
+ (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
+ ADDOP(c, DUP_TOP);
+ ADDOP(c, ROT_THREE);
+ ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i));
+ ADDOP_JABS(c, JUMP_IF_FALSE_OR_POP, cleanup);
+ NEXT_BLOCK(c);
+ }
+ VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
+ ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n));
+ basicblock *end = compiler_new_block(c);
+ if (end == NULL)
+ return 0;
+ ADDOP_JREL(c, JUMP_FORWARD, end);
+ compiler_use_next_block(c, cleanup);
+ ADDOP(c, ROT_TWO);
+ ADDOP(c, POP_TOP);
+ compiler_use_next_block(c, end);
+ }
+ return 1;
+}
+
+static PyTypeObject *
+infer_type(expr_ty e)
+{
+ switch (e->kind) {
+ case Tuple_kind:
+ return &PyTuple_Type;
+ case List_kind:
+ case ListComp_kind:
+ return &PyList_Type;
+ case Dict_kind:
+ case DictComp_kind:
+ return &PyDict_Type;
+ case Set_kind:
+ case SetComp_kind:
+ return &PySet_Type;
+ case GeneratorExp_kind:
+ return &PyGen_Type;
+ case Lambda_kind:
+ return &PyFunction_Type;
+ case JoinedStr_kind:
+ case FormattedValue_kind:
+ return &PyUnicode_Type;
+ case Constant_kind:
+ return Py_TYPE(e->v.Constant.value);
+ default:
+ return NULL;
+ }
+}
+
+static int
+check_caller(struct compiler *c, expr_ty e)
+{
+ switch (e->kind) {
+ case Constant_kind:
+ case Tuple_kind:
+ case List_kind:
+ case ListComp_kind:
+ case Dict_kind:
+ case DictComp_kind:
+ case Set_kind:
+ case SetComp_kind:
+ case GeneratorExp_kind:
+ case JoinedStr_kind:
+ case FormattedValue_kind:
+ return compiler_warn(c, "'%.200s' object is not callable; "
+ "perhaps you missed a comma?",
+ infer_type(e)->tp_name);
+ default:
+ return 1;
+ }
+}
+
+static int
+check_subscripter(struct compiler *c, expr_ty e)
+{
+ PyObject *v;
+
+ switch (e->kind) {
+ case Constant_kind:
+ v = e->v.Constant.value;
+ if (!(v == Py_None || v == Py_Ellipsis ||
+ PyLong_Check(v) || PyFloat_Check(v) || PyComplex_Check(v) ||
+ PyAnySet_Check(v)))
+ {
+ return 1;
+ }
+ /* fall through */
+ case Set_kind:
+ case SetComp_kind:
+ case GeneratorExp_kind:
+ case Lambda_kind:
+ return compiler_warn(c, "'%.200s' object is not subscriptable; "
+ "perhaps you missed a comma?",
+ infer_type(e)->tp_name);
+ default:
+ return 1;
+ }
+}
+
+static int
+check_index(struct compiler *c, expr_ty e, expr_ty s)
+{
+ PyObject *v;
+
+ PyTypeObject *index_type = infer_type(s);
+ if (index_type == NULL
+ || PyType_FastSubclass(index_type, Py_TPFLAGS_LONG_SUBCLASS)
+ || index_type == &PySlice_Type) {
+ return 1;
+ }
+
+ switch (e->kind) {
+ case Constant_kind:
+ v = e->v.Constant.value;
+ if (!(PyUnicode_Check(v) || PyBytes_Check(v) || PyTuple_Check(v))) {
+ return 1;
+ }
+ /* fall through */
+ case Tuple_kind:
+ case List_kind:
+ case ListComp_kind:
+ case JoinedStr_kind:
+ case FormattedValue_kind:
+ return compiler_warn(c, "%.200s indices must be integers or slices, "
+ "not %.200s; "
+ "perhaps you missed a comma?",
+ infer_type(e)->tp_name,
+ index_type->tp_name);
+ default:
+ return 1;
+ }
+}
+
+// Return 1 if the method call was optimized, -1 if not, and 0 on error.
+static int
+maybe_optimize_method_call(struct compiler *c, expr_ty e)
+{
+ Py_ssize_t argsl, i;
+ expr_ty meth = e->v.Call.func;
+ asdl_seq *args = e->v.Call.args;
+
+ /* Check that the call node is an attribute access, and that
+ the call doesn't have keyword parameters. */
+ if (meth->kind != Attribute_kind || meth->v.Attribute.ctx != Load ||
+ asdl_seq_LEN(e->v.Call.keywords))
+ return -1;
+
+ /* Check that there are no *varargs types of arguments. */
+ argsl = asdl_seq_LEN(args);
+ for (i = 0; i < argsl; i++) {
+ expr_ty elt = asdl_seq_GET(args, i);
+ if (elt->kind == Starred_kind) {
+ return -1;
+ }
+ }
+
+ /* Alright, we can optimize the code. */
+ VISIT(c, expr, meth->v.Attribute.value);
+ ADDOP_NAME(c, LOAD_METHOD, meth->v.Attribute.attr, names);
+ VISIT_SEQ(c, expr, e->v.Call.args);
+ ADDOP_I(c, CALL_METHOD, asdl_seq_LEN(e->v.Call.args));
+ return 1;
+}
+
+static int
+validate_keywords(struct compiler *c, asdl_seq *keywords)
+{
+ Py_ssize_t nkeywords = asdl_seq_LEN(keywords);
+ for (Py_ssize_t i = 0; i < nkeywords; i++) {
+ keyword_ty key = ((keyword_ty)asdl_seq_GET(keywords, i));
+ if (key->arg == NULL) {
+ continue;
+ }
+ if (forbidden_name(c, key->arg, Store)) {
+ return -1;
+ }
+ for (Py_ssize_t j = i + 1; j < nkeywords; j++) {
+ keyword_ty other = ((keyword_ty)asdl_seq_GET(keywords, j));
+ if (other->arg && !PyUnicode_Compare(key->arg, other->arg)) {
+ PyObject *msg = PyUnicode_FromFormat("keyword argument repeated: %U", key->arg);
+ if (msg == NULL) {
+ return -1;
+ }
+ c->u->u_col_offset = other->col_offset;
+ compiler_error(c, PyUnicode_AsUTF8(msg));
+ Py_DECREF(msg);
+ return -1;
+ }
+ }
+ }
+ return 0;
+}
+
+static int
+compiler_call(struct compiler *c, expr_ty e)
+{
+ int ret = maybe_optimize_method_call(c, e);
+ if (ret >= 0) {
+ return ret;
+ }
+ if (!check_caller(c, e->v.Call.func)) {
+ return 0;
+ }
+ VISIT(c, expr, e->v.Call.func);
+ return compiler_call_helper(c, 0,
+ e->v.Call.args,
+ e->v.Call.keywords);
+}
+
+static int
+compiler_joined_str(struct compiler *c, expr_ty e)
+{
+ VISIT_SEQ(c, expr, e->v.JoinedStr.values);
+ if (asdl_seq_LEN(e->v.JoinedStr.values) != 1)
+ ADDOP_I(c, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values));
+ return 1;
+}
+
+/* Used to implement f-strings. Format a single value. */
+static int
+compiler_formatted_value(struct compiler *c, expr_ty e)
+{
+ /* Our oparg encodes 2 pieces of information: the conversion
+ character, and whether or not a format_spec was provided.
+
+ Convert the conversion char to 3 bits:
+ : 000 0x0 FVC_NONE The default if nothing specified.
+ !s : 001 0x1 FVC_STR
+ !r : 010 0x2 FVC_REPR
+ !a : 011 0x3 FVC_ASCII
+
+ next bit is whether or not we have a format spec:
+ yes : 100 0x4
+ no : 000 0x0
+ */
+
+ int conversion = e->v.FormattedValue.conversion;
+ int oparg;
+
+ /* The expression to be formatted. */
+ VISIT(c, expr, e->v.FormattedValue.value);
+
+ switch (conversion) {
+ case 's': oparg = FVC_STR; break;
+ case 'r': oparg = FVC_REPR; break;
+ case 'a': oparg = FVC_ASCII; break;
+ case -1: oparg = FVC_NONE; break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "Unrecognized conversion character %d", conversion);
+ return 0;
+ }
+ if (e->v.FormattedValue.format_spec) {
+ /* Evaluate the format spec, and update our opcode arg. */
+ VISIT(c, expr, e->v.FormattedValue.format_spec);
+ oparg |= FVS_HAVE_SPEC;
+ }
+
+ /* And push our opcode and oparg */
+ ADDOP_I(c, FORMAT_VALUE, oparg);
+
+ return 1;
+}
+
+static int
+compiler_subkwargs(struct compiler *c, asdl_seq *keywords, Py_ssize_t begin, Py_ssize_t end)
+{
+ Py_ssize_t i, n = end - begin;
+ keyword_ty kw;
+ PyObject *keys, *key;
+ assert(n > 0);
+ if (n > 1) {
+ for (i = begin; i < end; i++) {
+ kw = asdl_seq_GET(keywords, i);
+ VISIT(c, expr, kw->value);
+ }
+ keys = PyTuple_New(n);
+ if (keys == NULL) {
+ return 0;
+ }
+ for (i = begin; i < end; i++) {
+ key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg;
+ Py_INCREF(key);
+ PyTuple_SET_ITEM(keys, i - begin, key);
+ }
+ ADDOP_LOAD_CONST_NEW(c, keys);
+ ADDOP_I(c, BUILD_CONST_KEY_MAP, n);
+ }
+ else {
+ /* a for loop only executes once */
+ for (i = begin; i < end; i++) {
+ kw = asdl_seq_GET(keywords, i);
+ ADDOP_LOAD_CONST(c, kw->arg);
+ VISIT(c, expr, kw->value);
+ }
+ ADDOP_I(c, BUILD_MAP, n);
+ }
+ return 1;
+}
+
+/* shared code between compiler_call and compiler_class */
+static int
+compiler_call_helper(struct compiler *c,
+ int n, /* Args already pushed */
+ asdl_seq *args,
+ asdl_seq *keywords)
+{
+ Py_ssize_t i, nseen, nelts, nkwelts;
+
+ if (validate_keywords(c, keywords) == -1) {
+ return 0;
+ }
+
+ nelts = asdl_seq_LEN(args);
+ nkwelts = asdl_seq_LEN(keywords);
+
+ for (i = 0; i < nelts; i++) {
+ expr_ty elt = asdl_seq_GET(args, i);
+ if (elt->kind == Starred_kind) {
+ goto ex_call;
+ }
+ }
+ for (i = 0; i < nkwelts; i++) {
+ keyword_ty kw = asdl_seq_GET(keywords, i);
+ if (kw->arg == NULL) {
+ goto ex_call;
+ }
+ }
+
+ /* No * or ** args, so can use faster calling sequence */
+ for (i = 0; i < nelts; i++) {
+ expr_ty elt = asdl_seq_GET(args, i);
+ assert(elt->kind != Starred_kind);
+ VISIT(c, expr, elt);
+ }
+ if (nkwelts) {
+ PyObject *names;
+ VISIT_SEQ(c, keyword, keywords);
+ names = PyTuple_New(nkwelts);
+ if (names == NULL) {
+ return 0;
+ }
+ for (i = 0; i < nkwelts; i++) {
+ keyword_ty kw = asdl_seq_GET(keywords, i);
+ Py_INCREF(kw->arg);
+ PyTuple_SET_ITEM(names, i, kw->arg);
+ }
+ ADDOP_LOAD_CONST_NEW(c, names);
+ ADDOP_I(c, CALL_FUNCTION_KW, n + nelts + nkwelts);
+ return 1;
+ }
+ else {
+ ADDOP_I(c, CALL_FUNCTION, n + nelts);
+ return 1;
+ }
+
+ex_call:
+
+ /* Do positional arguments. */
+ if (n ==0 && nelts == 1 && ((expr_ty)asdl_seq_GET(args, 0))->kind == Starred_kind) {
+ VISIT(c, expr, ((expr_ty)asdl_seq_GET(args, 0))->v.Starred.value);
+ }
+ else if (starunpack_helper(c, args, n, BUILD_LIST,
+ LIST_APPEND, LIST_EXTEND, 1) == 0) {
+ return 0;
+ }
+ /* Then keyword arguments */
+ if (nkwelts) {
+ /* Has a new dict been pushed */
+ int have_dict = 0;
+
+ nseen = 0; /* the number of keyword arguments on the stack following */
+ for (i = 0; i < nkwelts; i++) {
+ keyword_ty kw = asdl_seq_GET(keywords, i);
+ if (kw->arg == NULL) {
+ /* A keyword argument unpacking. */
+ if (nseen) {
+ if (!compiler_subkwargs(c, keywords, i - nseen, i)) {
+ return 0;
+ }
+ if (have_dict) {
+ ADDOP_I(c, DICT_MERGE, 1);
+ }
+ have_dict = 1;
+ nseen = 0;
+ }
+ if (!have_dict) {
+ ADDOP_I(c, BUILD_MAP, 0);
+ have_dict = 1;
+ }
+ VISIT(c, expr, kw->value);
+ ADDOP_I(c, DICT_MERGE, 1);
+ }
+ else {
+ nseen++;
+ }
+ }
+ if (nseen) {
+ /* Pack up any trailing keyword arguments. */
+ if (!compiler_subkwargs(c, keywords, nkwelts - nseen, nkwelts)) {
+ return 0;
+ }
+ if (have_dict) {
+ ADDOP_I(c, DICT_MERGE, 1);
+ }
+ have_dict = 1;
+ }
+ assert(have_dict);
+ }
+ ADDOP_I(c, CALL_FUNCTION_EX, nkwelts > 0);
+ return 1;
+}
+
+
+/* List and set comprehensions and generator expressions work by creating a
+ nested function to perform the actual iteration. This means that the
+ iteration variables don't leak into the current scope.
+ The defined function is called immediately following its definition, with the
+ result of that call being the result of the expression.
+ The LC/SC version returns the populated container, while the GE version is
+ flagged in symtable.c as a generator, so it returns the generator object
+ when the function is called.
+
+ Possible cleanups:
+ - iterate over the generator sequence instead of using recursion
+*/
+
+
+static int
+compiler_comprehension_generator(struct compiler *c,
+ asdl_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type)
+{
+ comprehension_ty gen;
+ gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
+ if (gen->is_async) {
+ return compiler_async_comprehension_generator(
+ c, generators, gen_index, depth, elt, val, type);
+ } else {
+ return compiler_sync_comprehension_generator(
+ c, generators, gen_index, depth, elt, val, type);
+ }
+}
+
+static int
+compiler_sync_comprehension_generator(struct compiler *c,
+ asdl_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type)
+{
+ /* generate code for the iterator, then each of the ifs,
+ and then write to the element */
+
+ comprehension_ty gen;
+ basicblock *start, *anchor, *skip, *if_cleanup;
+ Py_ssize_t i, n;
+
+ start = compiler_new_block(c);
+ skip = compiler_new_block(c);
+ if_cleanup = compiler_new_block(c);
+ anchor = compiler_new_block(c);
+
+ if (start == NULL || skip == NULL || if_cleanup == NULL ||
+ anchor == NULL)
+ return 0;
+
+ gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
+
+ if (gen_index == 0) {
+ /* Receive outermost iter as an implicit argument */
+ c->u->u_argcount = 1;
+ ADDOP_I(c, LOAD_FAST, 0);
+ }
+ else {
+ /* Sub-iter - calculate on the fly */
+ /* Fast path for the temporary variable assignment idiom:
+ for y in [f(x)]
+ */
+ asdl_seq *elts;
+ switch (gen->iter->kind) {
+ case List_kind:
+ elts = gen->iter->v.List.elts;
+ break;
+ case Tuple_kind:
+ elts = gen->iter->v.Tuple.elts;
+ break;
+ default:
+ elts = NULL;
+ }
+ if (asdl_seq_LEN(elts) == 1) {
+ expr_ty elt = asdl_seq_GET(elts, 0);
+ if (elt->kind != Starred_kind) {
+ VISIT(c, expr, elt);
+ start = NULL;
+ }
+ }
+ if (start) {
+ VISIT(c, expr, gen->iter);
+ ADDOP(c, GET_ITER);
+ }
+ }
+ if (start) {
+ depth++;
+ compiler_use_next_block(c, start);
+ ADDOP_JREL(c, FOR_ITER, anchor);
+ NEXT_BLOCK(c);
+ }
+ VISIT(c, expr, gen->target);
+
+ /* XXX this needs to be cleaned up...a lot! */
+ n = asdl_seq_LEN(gen->ifs);
+ for (i = 0; i < n; i++) {
+ expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
+ if (!compiler_jump_if(c, e, if_cleanup, 0))
+ return 0;
+ NEXT_BLOCK(c);
+ }
+
+ if (++gen_index < asdl_seq_LEN(generators))
+ if (!compiler_comprehension_generator(c,
+ generators, gen_index, depth,
+ elt, val, type))
+ return 0;
+
+ /* only append after the last for generator */
+ if (gen_index >= asdl_seq_LEN(generators)) {
+ /* comprehension specific code */
+ switch (type) {
+ case COMP_GENEXP:
+ VISIT(c, expr, elt);
+ ADDOP(c, YIELD_VALUE);
+ ADDOP(c, POP_TOP);
+ break;
+ case COMP_LISTCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, LIST_APPEND, depth + 1);
+ break;
+ case COMP_SETCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, SET_ADD, depth + 1);
+ break;
+ case COMP_DICTCOMP:
+ /* With '{k: v}', k is evaluated before v, so we do
+ the same. */
+ VISIT(c, expr, elt);
+ VISIT(c, expr, val);
+ ADDOP_I(c, MAP_ADD, depth + 1);
+ break;
+ default:
+ return 0;
+ }
+
+ compiler_use_next_block(c, skip);
+ }
+ compiler_use_next_block(c, if_cleanup);
+ if (start) {
+ ADDOP_JABS(c, JUMP_ABSOLUTE, start);
+ compiler_use_next_block(c, anchor);
+ }
+
+ return 1;
+}
+
+static int
+compiler_async_comprehension_generator(struct compiler *c,
+ asdl_seq *generators, int gen_index,
+ int depth,
+ expr_ty elt, expr_ty val, int type)
+{
+ comprehension_ty gen;
+ basicblock *start, *if_cleanup, *except;
+ Py_ssize_t i, n;
+ start = compiler_new_block(c);
+ except = compiler_new_block(c);
+ if_cleanup = compiler_new_block(c);
+
+ if (start == NULL || if_cleanup == NULL || except == NULL) {
+ return 0;
+ }
+
+ gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
+
+ if (gen_index == 0) {
+ /* Receive outermost iter as an implicit argument */
+ c->u->u_argcount = 1;
+ ADDOP_I(c, LOAD_FAST, 0);
+ }
+ else {
+ /* Sub-iter - calculate on the fly */
+ VISIT(c, expr, gen->iter);
+ ADDOP(c, GET_AITER);
+ }
+
+ compiler_use_next_block(c, start);
+
+ ADDOP_JREL(c, SETUP_FINALLY, except);
+ ADDOP(c, GET_ANEXT);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP(c, YIELD_FROM);
+ ADDOP(c, POP_BLOCK);
+ VISIT(c, expr, gen->target);
+
+ n = asdl_seq_LEN(gen->ifs);
+ for (i = 0; i < n; i++) {
+ expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
+ if (!compiler_jump_if(c, e, if_cleanup, 0))
+ return 0;
+ NEXT_BLOCK(c);
+ }
+
+ depth++;
+ if (++gen_index < asdl_seq_LEN(generators))
+ if (!compiler_comprehension_generator(c,
+ generators, gen_index, depth,
+ elt, val, type))
+ return 0;
+
+ /* only append after the last for generator */
+ if (gen_index >= asdl_seq_LEN(generators)) {
+ /* comprehension specific code */
+ switch (type) {
+ case COMP_GENEXP:
+ VISIT(c, expr, elt);
+ ADDOP(c, YIELD_VALUE);
+ ADDOP(c, POP_TOP);
+ break;
+ case COMP_LISTCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, LIST_APPEND, depth + 1);
+ break;
+ case COMP_SETCOMP:
+ VISIT(c, expr, elt);
+ ADDOP_I(c, SET_ADD, depth + 1);
+ break;
+ case COMP_DICTCOMP:
+ /* With '{k: v}', k is evaluated before v, so we do
+ the same. */
+ VISIT(c, expr, elt);
+ VISIT(c, expr, val);
+ ADDOP_I(c, MAP_ADD, depth + 1);
+ break;
+ default:
+ return 0;
+ }
+ }
+ compiler_use_next_block(c, if_cleanup);
+ ADDOP_JABS(c, JUMP_ABSOLUTE, start);
+
+ compiler_use_next_block(c, except);
+ ADDOP(c, END_ASYNC_FOR);
+
+ return 1;
+}
+
+static int
+compiler_comprehension(struct compiler *c, expr_ty e, int type,
+ identifier name, asdl_seq *generators, expr_ty elt,
+ expr_ty val)
+{
+ PyCodeObject *co = NULL;
+ comprehension_ty outermost;
+ PyObject *qualname = NULL;
+ int is_async_generator = 0;
+ int top_level_await = IS_TOP_LEVEL_AWAIT(c);
+
+
+ int is_async_function = c->u->u_ste->ste_coroutine;
+
+ outermost = (comprehension_ty) asdl_seq_GET(generators, 0);
+ if (!compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION,
+ (void *)e, e->lineno))
+ {
+ goto error;
+ }
+
+ is_async_generator = c->u->u_ste->ste_coroutine;
+
+ if (is_async_generator && !is_async_function && type != COMP_GENEXP && !top_level_await) {
+ compiler_error(c, "asynchronous comprehension outside of "
+ "an asynchronous function");
+ goto error_in_scope;
+ }
+
+ if (type != COMP_GENEXP) {
+ int op;
+ switch (type) {
+ case COMP_LISTCOMP:
+ op = BUILD_LIST;
+ break;
+ case COMP_SETCOMP:
+ op = BUILD_SET;
+ break;
+ case COMP_DICTCOMP:
+ op = BUILD_MAP;
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "unknown comprehension type %d", type);
+ goto error_in_scope;
+ }
+
+ ADDOP_I(c, op, 0);
+ }
+
+ if (!compiler_comprehension_generator(c, generators, 0, 0, elt,
+ val, type))
+ goto error_in_scope;
+
+ if (type != COMP_GENEXP) {
+ ADDOP(c, RETURN_VALUE);
+ }
+
+ co = assemble(c, 1);
+ qualname = c->u->u_qualname;
+ Py_INCREF(qualname);
+ compiler_exit_scope(c);
+ if (top_level_await && is_async_generator){
+ c->u->u_ste->ste_coroutine = 1;
+ }
+ if (co == NULL)
+ goto error;
+
+ if (!compiler_make_closure(c, co, 0, qualname))
+ goto error;
+ Py_DECREF(qualname);
+ Py_DECREF(co);
+
+ VISIT(c, expr, outermost->iter);
+
+ if (outermost->is_async) {
+ ADDOP(c, GET_AITER);
+ } else {
+ ADDOP(c, GET_ITER);
+ }
+
+ ADDOP_I(c, CALL_FUNCTION, 1);
+
+ if (is_async_generator && type != COMP_GENEXP) {
+ ADDOP(c, GET_AWAITABLE);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP(c, YIELD_FROM);
+ }
+
+ return 1;
+error_in_scope:
+ compiler_exit_scope(c);
+error:
+ Py_XDECREF(qualname);
+ Py_XDECREF(co);
+ return 0;
+}
+
+static int
+compiler_genexp(struct compiler *c, expr_ty e)
+{
+ static identifier name;
+ if (!name) {
+ name = PyUnicode_InternFromString("<genexpr>");
+ if (!name)
+ return 0;
+ }
+ assert(e->kind == GeneratorExp_kind);
+ return compiler_comprehension(c, e, COMP_GENEXP, name,
+ e->v.GeneratorExp.generators,
+ e->v.GeneratorExp.elt, NULL);
+}
+
+static int
+compiler_listcomp(struct compiler *c, expr_ty e)
+{
+ static identifier name;
+ if (!name) {
+ name = PyUnicode_InternFromString("<listcomp>");
+ if (!name)
+ return 0;
+ }
+ assert(e->kind == ListComp_kind);
+ return compiler_comprehension(c, e, COMP_LISTCOMP, name,
+ e->v.ListComp.generators,
+ e->v.ListComp.elt, NULL);
+}
+
+static int
+compiler_setcomp(struct compiler *c, expr_ty e)
+{
+ static identifier name;
+ if (!name) {
+ name = PyUnicode_InternFromString("<setcomp>");
+ if (!name)
+ return 0;
+ }
+ assert(e->kind == SetComp_kind);
+ return compiler_comprehension(c, e, COMP_SETCOMP, name,
+ e->v.SetComp.generators,
+ e->v.SetComp.elt, NULL);
+}
+
+
+static int
+compiler_dictcomp(struct compiler *c, expr_ty e)
+{
+ static identifier name;
+ if (!name) {
+ name = PyUnicode_InternFromString("<dictcomp>");
+ if (!name)
+ return 0;
+ }
+ assert(e->kind == DictComp_kind);
+ return compiler_comprehension(c, e, COMP_DICTCOMP, name,
+ e->v.DictComp.generators,
+ e->v.DictComp.key, e->v.DictComp.value);
+}
+
+
+static int
+compiler_visit_keyword(struct compiler *c, keyword_ty k)
+{
+ VISIT(c, expr, k->value);
+ return 1;
+}
+
+/* Test whether expression is constant. For constants, report
+ whether they are true or false.
+
+ Return values: 1 for true, 0 for false, -1 for non-constant.
+ */
+
+static int
+expr_constant(expr_ty e)
+{
+ if (e->kind == Constant_kind) {
+ return PyObject_IsTrue(e->v.Constant.value);
+ }
+ return -1;
+}
+
+static int
+compiler_with_except_finish(struct compiler *c) {
+ basicblock *exit;
+ exit = compiler_new_block(c);
+ if (exit == NULL)
+ return 0;
+ ADDOP_JABS(c, POP_JUMP_IF_TRUE, exit);
+ ADDOP(c, RERAISE);
+ compiler_use_next_block(c, exit);
+ ADDOP(c, POP_TOP);
+ ADDOP(c, POP_TOP);
+ ADDOP(c, POP_TOP);
+ ADDOP(c, POP_EXCEPT);
+ ADDOP(c, POP_TOP);
+ return 1;
+}
+
+/*
+ Implements the async with statement.
+
+ The semantics outlined in that PEP are as follows:
+
+ async with EXPR as VAR:
+ BLOCK
+
+ It is implemented roughly as:
+
+ context = EXPR
+ exit = context.__aexit__ # not calling it
+ value = await context.__aenter__()
+ try:
+ VAR = value # if VAR present in the syntax
+ BLOCK
+ finally:
+ if an exception was raised:
+ exc = copy of (exception, instance, traceback)
+ else:
+ exc = (None, None, None)
+ if not (await exit(*exc)):
+ raise
+ */
+static int
+compiler_async_with(struct compiler *c, stmt_ty s, int pos)
+{
+ basicblock *block, *final, *exit;
+ withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos);
+
+ assert(s->kind == AsyncWith_kind);
+ if (IS_TOP_LEVEL_AWAIT(c)){
+ c->u->u_ste->ste_coroutine = 1;
+ } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION){
+ return compiler_error(c, "'async with' outside async function");
+ }
+
+ block = compiler_new_block(c);
+ final = compiler_new_block(c);
+ exit = compiler_new_block(c);
+ if (!block || !final || !exit)
+ return 0;
+
+ /* Evaluate EXPR */
+ VISIT(c, expr, item->context_expr);
+
+ ADDOP(c, BEFORE_ASYNC_WITH);
+ ADDOP(c, GET_AWAITABLE);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP(c, YIELD_FROM);
+
+ ADDOP_JREL(c, SETUP_ASYNC_WITH, final);
+
+ /* SETUP_ASYNC_WITH pushes a finally block. */
+ compiler_use_next_block(c, block);
+ if (!compiler_push_fblock(c, ASYNC_WITH, block, final, NULL)) {
+ return 0;
+ }
+
+ if (item->optional_vars) {
+ VISIT(c, expr, item->optional_vars);
+ }
+ else {
+ /* Discard result from context.__aenter__() */
+ ADDOP(c, POP_TOP);
+ }
+
+ pos++;
+ if (pos == asdl_seq_LEN(s->v.AsyncWith.items))
+ /* BLOCK code */
+ VISIT_SEQ(c, stmt, s->v.AsyncWith.body)
+ else if (!compiler_async_with(c, s, pos))
+ return 0;
+
+ compiler_pop_fblock(c, ASYNC_WITH, block);
+ ADDOP(c, POP_BLOCK);
+ /* End of body; start the cleanup */
+
+ /* For successful outcome:
+ * call __exit__(None, None, None)
+ */
+ if(!compiler_call_exit_with_nones(c))
+ return 0;
+ ADDOP(c, GET_AWAITABLE);
+ ADDOP_O(c, LOAD_CONST, Py_None, consts);
+ ADDOP(c, YIELD_FROM);
+
+ ADDOP(c, POP_TOP);
+
+ ADDOP_JABS(c, JUMP_ABSOLUTE, exit);
+
+ /* For exceptional outcome: */
+ compiler_use_next_block(c, final);
+
+ ADDOP(c, WITH_EXCEPT_START);
+ ADDOP(c, GET_AWAITABLE);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP(c, YIELD_FROM);
+ compiler_with_except_finish(c);
+
+compiler_use_next_block(c, exit);
+ return 1;
+}
+
+
+/*
+ Implements the with statement from PEP 343.
+ with EXPR as VAR:
+ BLOCK
+ is implemented as:
+ <code for EXPR>
+ SETUP_WITH E
+ <code to store to VAR> or POP_TOP
+ <code for BLOCK>
+ LOAD_CONST (None, None, None)
+ CALL_FUNCTION_EX 0
+ JUMP_FORWARD EXIT
+ E: WITH_EXCEPT_START (calls EXPR.__exit__)
+ POP_JUMP_IF_TRUE T:
+ RERAISE
+ T: POP_TOP * 3 (remove exception from stack)
+ POP_EXCEPT
+ POP_TOP
+ EXIT:
+ */
+
+static int
+compiler_with(struct compiler *c, stmt_ty s, int pos)
+{
+ basicblock *block, *final, *exit;
+ withitem_ty item = asdl_seq_GET(s->v.With.items, pos);
+
+ assert(s->kind == With_kind);
+
+ block = compiler_new_block(c);
+ final = compiler_new_block(c);
+ exit = compiler_new_block(c);
+ if (!block || !final || !exit)
+ return 0;
+
+ /* Evaluate EXPR */
+ VISIT(c, expr, item->context_expr);
+ /* Will push bound __exit__ */
+ ADDOP_JREL(c, SETUP_WITH, final);
+
+ /* SETUP_WITH pushes a finally block. */
+ compiler_use_next_block(c, block);
+ if (!compiler_push_fblock(c, WITH, block, final, NULL)) {
+ return 0;
+ }
+
+ if (item->optional_vars) {
+ VISIT(c, expr, item->optional_vars);
+ }
+ else {
+ /* Discard result from context.__enter__() */
+ ADDOP(c, POP_TOP);
+ }
+
+ pos++;
+ if (pos == asdl_seq_LEN(s->v.With.items))
+ /* BLOCK code */
+ VISIT_SEQ(c, stmt, s->v.With.body)
+ else if (!compiler_with(c, s, pos))
+ return 0;
+
+ ADDOP(c, POP_BLOCK);
+ compiler_pop_fblock(c, WITH, block);
+
+ /* End of body; start the cleanup. */
+
+ /* For successful outcome:
+ * call __exit__(None, None, None)
+ */
+ if (!compiler_call_exit_with_nones(c))
+ return 0;
+ ADDOP(c, POP_TOP);
+ ADDOP_JREL(c, JUMP_FORWARD, exit);
+
+ /* For exceptional outcome: */
+ compiler_use_next_block(c, final);
+
+ ADDOP(c, WITH_EXCEPT_START);
+ compiler_with_except_finish(c);
+
+ compiler_use_next_block(c, exit);
+ return 1;
+}
+
+static int
+compiler_visit_expr1(struct compiler *c, expr_ty e)
+{
+ switch (e->kind) {
+ case NamedExpr_kind:
+ VISIT(c, expr, e->v.NamedExpr.value);
+ ADDOP(c, DUP_TOP);
+ VISIT(c, expr, e->v.NamedExpr.target);
+ break;
+ case BoolOp_kind:
+ return compiler_boolop(c, e);
+ case BinOp_kind:
+ VISIT(c, expr, e->v.BinOp.left);
+ VISIT(c, expr, e->v.BinOp.right);
+ ADDOP(c, binop(e->v.BinOp.op));
+ break;
+ case UnaryOp_kind:
+ VISIT(c, expr, e->v.UnaryOp.operand);
+ ADDOP(c, unaryop(e->v.UnaryOp.op));
+ break;
+ case Lambda_kind:
+ return compiler_lambda(c, e);
+ case IfExp_kind:
+ return compiler_ifexp(c, e);
+ case Dict_kind:
+ return compiler_dict(c, e);
+ case Set_kind:
+ return compiler_set(c, e);
+ case GeneratorExp_kind:
+ return compiler_genexp(c, e);
+ case ListComp_kind:
+ return compiler_listcomp(c, e);
+ case SetComp_kind:
+ return compiler_setcomp(c, e);
+ case DictComp_kind:
+ return compiler_dictcomp(c, e);
+ case Yield_kind:
+ if (c->u->u_ste->ste_type != FunctionBlock)
+ return compiler_error(c, "'yield' outside function");
+ if (e->v.Yield.value) {
+ VISIT(c, expr, e->v.Yield.value);
+ }
+ else {
+ ADDOP_LOAD_CONST(c, Py_None);
+ }
+ ADDOP(c, YIELD_VALUE);
+ break;
+ case YieldFrom_kind:
+ if (c->u->u_ste->ste_type != FunctionBlock)
+ return compiler_error(c, "'yield' outside function");
+
+ if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION)
+ return compiler_error(c, "'yield from' inside async function");
+
+ VISIT(c, expr, e->v.YieldFrom.value);
+ ADDOP(c, GET_YIELD_FROM_ITER);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP(c, YIELD_FROM);
+ break;
+ case Await_kind:
+ if (!IS_TOP_LEVEL_AWAIT(c)){
+ if (c->u->u_ste->ste_type != FunctionBlock){
+ return compiler_error(c, "'await' outside function");
+ }
+
+ if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
+ c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION){
+ return compiler_error(c, "'await' outside async function");
+ }
+ }
+
+ VISIT(c, expr, e->v.Await.value);
+ ADDOP(c, GET_AWAITABLE);
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP(c, YIELD_FROM);
+ break;
+ case Compare_kind:
+ return compiler_compare(c, e);
+ case Call_kind:
+ return compiler_call(c, e);
+ case Constant_kind:
+ ADDOP_LOAD_CONST(c, e->v.Constant.value);
+ break;
+ case JoinedStr_kind:
+ return compiler_joined_str(c, e);
+ case FormattedValue_kind:
+ return compiler_formatted_value(c, e);
+ /* The following exprs can be assignment targets. */
+ case Attribute_kind:
+ VISIT(c, expr, e->v.Attribute.value);
+ switch (e->v.Attribute.ctx) {
+ case Load:
+ ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names);
+ break;
+ case Store:
+ if (forbidden_name(c, e->v.Attribute.attr, e->v.Attribute.ctx))
+ return 0;
+ ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names);
+ break;
+ case Del:
+ ADDOP_NAME(c, DELETE_ATTR, e->v.Attribute.attr, names);
+ break;
+ }
+ break;
+ case Subscript_kind:
+ return compiler_subscript(c, e);
+ case Starred_kind:
+ switch (e->v.Starred.ctx) {
+ case Store:
+ /* In all legitimate cases, the Starred node was already replaced
+ * by compiler_list/compiler_tuple. XXX: is that okay? */
+ return compiler_error(c,
+ "starred assignment target must be in a list or tuple");
+ default:
+ return compiler_error(c,
+ "can't use starred expression here");
+ }
+ break;
+ case Slice_kind:
+ return compiler_slice(c, e);
+ case Name_kind:
+ return compiler_nameop(c, e->v.Name.id, e->v.Name.ctx);
+ /* child nodes of List and Tuple will have expr_context set */
+ case List_kind:
+ return compiler_list(c, e);
+ case Tuple_kind:
+ return compiler_tuple(c, e);
+ }
+ return 1;
+}
+
+static int
+compiler_visit_expr(struct compiler *c, expr_ty e)
+{
+ int old_lineno = c->u->u_lineno;
+ int old_col_offset = c->u->u_col_offset;
+ SET_LOC(c, e);
+ int res = compiler_visit_expr1(c, e);
+ c->u->u_lineno = old_lineno;
+ c->u->u_col_offset = old_col_offset;
+ return res;
+}
+
+static int
+compiler_augassign(struct compiler *c, stmt_ty s)
+{
+ assert(s->kind == AugAssign_kind);
+ expr_ty e = s->v.AugAssign.target;
+
+ int old_lineno = c->u->u_lineno;
+ int old_col_offset = c->u->u_col_offset;
+ SET_LOC(c, e);
+
+ switch (e->kind) {
+ case Attribute_kind:
+ VISIT(c, expr, e->v.Attribute.value);
+ ADDOP(c, DUP_TOP);
+ ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names);
+ break;
+ case Subscript_kind:
+ VISIT(c, expr, e->v.Subscript.value);
+ VISIT(c, expr, e->v.Subscript.slice);
+ ADDOP(c, DUP_TOP_TWO);
+ ADDOP(c, BINARY_SUBSCR);
+ break;
+ case Name_kind:
+ if (!compiler_nameop(c, e->v.Name.id, Load))
+ return 0;
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "invalid node type (%d) for augmented assignment",
+ e->kind);
+ return 0;
+ }
+
+ c->u->u_lineno = old_lineno;
+ c->u->u_col_offset = old_col_offset;
+
+ VISIT(c, expr, s->v.AugAssign.value);
+ ADDOP(c, inplace_binop(s->v.AugAssign.op));
+
+ SET_LOC(c, e);
+
+ switch (e->kind) {
+ case Attribute_kind:
+ ADDOP(c, ROT_TWO);
+ ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names);
+ break;
+ case Subscript_kind:
+ ADDOP(c, ROT_THREE);
+ ADDOP(c, STORE_SUBSCR);
+ break;
+ case Name_kind:
+ return compiler_nameop(c, e->v.Name.id, Store);
+ default:
+ Py_UNREACHABLE();
+ }
+ return 1;
+}
+
+static int
+check_ann_expr(struct compiler *c, expr_ty e)
+{
+ VISIT(c, expr, e);
+ ADDOP(c, POP_TOP);
+ return 1;
+}
+
+static int
+check_annotation(struct compiler *c, stmt_ty s)
+{
+ /* Annotations are only evaluated in a module or class. */
+ if (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
+ c->u->u_scope_type == COMPILER_SCOPE_CLASS) {
+ return check_ann_expr(c, s->v.AnnAssign.annotation);
+ }
+ return 1;
+}
+
+static int
+check_ann_subscr(struct compiler *c, expr_ty e)
+{
+ /* We check that everything in a subscript is defined at runtime. */
+ switch (e->kind) {
+ case Slice_kind:
+ if (e->v.Slice.lower && !check_ann_expr(c, e->v.Slice.lower)) {
+ return 0;
+ }
+ if (e->v.Slice.upper && !check_ann_expr(c, e->v.Slice.upper)) {
+ return 0;
+ }
+ if (e->v.Slice.step && !check_ann_expr(c, e->v.Slice.step)) {
+ return 0;
+ }
+ return 1;
+ case Tuple_kind: {
+ /* extended slice */
+ asdl_seq *elts = e->v.Tuple.elts;
+ Py_ssize_t i, n = asdl_seq_LEN(elts);
+ for (i = 0; i < n; i++) {
+ if (!check_ann_subscr(c, asdl_seq_GET(elts, i))) {
+ return 0;
+ }
+ }
+ return 1;
+ }
+ default:
+ return check_ann_expr(c, e);
+ }
+}
+
+static int
+compiler_annassign(struct compiler *c, stmt_ty s)
+{
+ expr_ty targ = s->v.AnnAssign.target;
+ PyObject* mangled;
+
+ assert(s->kind == AnnAssign_kind);
+
+ /* We perform the actual assignment first. */
+ if (s->v.AnnAssign.value) {
+ VISIT(c, expr, s->v.AnnAssign.value);
+ VISIT(c, expr, targ);
+ }
+ switch (targ->kind) {
+ case Name_kind:
+ if (forbidden_name(c, targ->v.Name.id, Store))
+ return 0;
+ /* If we have a simple name in a module or class, store annotation. */
+ if (s->v.AnnAssign.simple &&
+ (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
+ c->u->u_scope_type == COMPILER_SCOPE_CLASS)) {
+ if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) {
+ VISIT(c, annexpr, s->v.AnnAssign.annotation)
+ }
+ else {
+ VISIT(c, expr, s->v.AnnAssign.annotation);
+ }
+ ADDOP_NAME(c, LOAD_NAME, __annotations__, names);
+ mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id);
+ ADDOP_LOAD_CONST_NEW(c, mangled);
+ ADDOP(c, STORE_SUBSCR);
+ }
+ break;
+ case Attribute_kind:
+ if (forbidden_name(c, targ->v.Attribute.attr, Store))
+ return 0;
+ if (!s->v.AnnAssign.value &&
+ !check_ann_expr(c, targ->v.Attribute.value)) {
+ return 0;
+ }
+ break;
+ case Subscript_kind:
+ if (!s->v.AnnAssign.value &&
+ (!check_ann_expr(c, targ->v.Subscript.value) ||
+ !check_ann_subscr(c, targ->v.Subscript.slice))) {
+ return 0;
+ }
+ break;
+ default:
+ PyErr_Format(PyExc_SystemError,
+ "invalid node type (%d) for annotated assignment",
+ targ->kind);
+ return 0;
+ }
+ /* Annotation is evaluated last. */
+ if (!s->v.AnnAssign.simple && !check_annotation(c, s)) {
+ return 0;
+ }
+ return 1;
+}
+
+/* Raises a SyntaxError and returns 0.
+ If something goes wrong, a different exception may be raised.
+*/
+
+static int
+compiler_error(struct compiler *c, const char *errstr)
+{
+ PyObject *loc;
+ PyObject *u = NULL, *v = NULL;
+
+ loc = PyErr_ProgramTextObject(c->c_filename, c->u->u_lineno);
+ if (!loc) {
+ Py_INCREF(Py_None);
+ loc = Py_None;
+ }
+ u = Py_BuildValue("(OiiO)", c->c_filename, c->u->u_lineno,
+ c->u->u_col_offset + 1, loc);
+ if (!u)
+ goto exit;
+ v = Py_BuildValue("(zO)", errstr, u);
+ if (!v)
+ goto exit;
+ PyErr_SetObject(PyExc_SyntaxError, v);
+ exit:
+ Py_DECREF(loc);
+ Py_XDECREF(u);
+ Py_XDECREF(v);
+ return 0;
+}
+
+/* Emits a SyntaxWarning and returns 1 on success.
+ If a SyntaxWarning raised as error, replaces it with a SyntaxError
+ and returns 0.
+*/
+static int
+compiler_warn(struct compiler *c, const char *format, ...)
+{
+ va_list vargs;
+#ifdef HAVE_STDARG_PROTOTYPES
+ va_start(vargs, format);
+#else
+ va_start(vargs);
+#endif
+ PyObject *msg = PyUnicode_FromFormatV(format, vargs);
+ va_end(vargs);
+ if (msg == NULL) {
+ return 0;
+ }
+ if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg, c->c_filename,
+ c->u->u_lineno, NULL, NULL) < 0)
+ {
+ if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) {
+ /* Replace the SyntaxWarning exception with a SyntaxError
+ to get a more accurate error report */
+ PyErr_Clear();
+ assert(PyUnicode_AsUTF8(msg) != NULL);
+ compiler_error(c, PyUnicode_AsUTF8(msg));
+ }
+ Py_DECREF(msg);
+ return 0;
+ }
+ Py_DECREF(msg);
+ return 1;
+}
+
+static int
+compiler_subscript(struct compiler *c, expr_ty e)
+{
+ expr_context_ty ctx = e->v.Subscript.ctx;
+ int op = 0;
+
+ if (ctx == Load) {
+ if (!check_subscripter(c, e->v.Subscript.value)) {
+ return 0;
+ }
+ if (!check_index(c, e->v.Subscript.value, e->v.Subscript.slice)) {
+ return 0;
+ }
+ }
+
+ switch (ctx) {
+ case Load: op = BINARY_SUBSCR; break;
+ case Store: op = STORE_SUBSCR; break;
+ case Del: op = DELETE_SUBSCR; break;
+ }
+ assert(op);
+ VISIT(c, expr, e->v.Subscript.value);
+ VISIT(c, expr, e->v.Subscript.slice);
+ ADDOP(c, op);
+ return 1;
+}
+
+static int
+compiler_slice(struct compiler *c, expr_ty s)
+{
+ int n = 2;
+ assert(s->kind == Slice_kind);
+
+ /* only handles the cases where BUILD_SLICE is emitted */
+ if (s->v.Slice.lower) {
+ VISIT(c, expr, s->v.Slice.lower);
+ }
+ else {
+ ADDOP_LOAD_CONST(c, Py_None);
+ }
+
+ if (s->v.Slice.upper) {
+ VISIT(c, expr, s->v.Slice.upper);
+ }
+ else {
+ ADDOP_LOAD_CONST(c, Py_None);
+ }
+
+ if (s->v.Slice.step) {
+ n++;
+ VISIT(c, expr, s->v.Slice.step);
+ }
+ ADDOP_I(c, BUILD_SLICE, n);
+ return 1;
+}
+
+/* End of the compiler section, beginning of the assembler section */
+
+/* do depth-first search of basic block graph, starting with block.
+ post records the block indices in post-order.
+
+ XXX must handle implicit jumps from one block to next
+*/
+
+struct assembler {
+ PyObject *a_bytecode; /* string containing bytecode */
+ int a_offset; /* offset into bytecode */
+ int a_nblocks; /* number of reachable blocks */
+ basicblock **a_postorder; /* list of blocks in dfs postorder */
+ PyObject *a_lnotab; /* string containing lnotab */
+ int a_lnotab_off; /* offset into lnotab */
+ int a_lineno; /* last lineno of emitted instruction */
+ int a_lineno_off; /* bytecode offset of last lineno */
+};
+
+static void
+dfs(struct compiler *c, basicblock *b, struct assembler *a, int end)
+{
+ int i, j;
+
+ /* Get rid of recursion for normal control flow.
+ Since the number of blocks is limited, unused space in a_postorder
+ (from a_nblocks to end) can be used as a stack for still not ordered
+ blocks. */
+ for (j = end; b && !b->b_seen; b = b->b_next) {
+ b->b_seen = 1;
+ assert(a->a_nblocks < j);
+ a->a_postorder[--j] = b;
+ }
+ while (j < end) {
+ b = a->a_postorder[j++];
+ for (i = 0; i < b->b_iused; i++) {
+ struct instr *instr = &b->b_instr[i];
+ if (instr->i_jrel || instr->i_jabs)
+ dfs(c, instr->i_target, a, j);
+ }
+ assert(a->a_nblocks < j);
+ a->a_postorder[a->a_nblocks++] = b;
+ }
+}
+
+Py_LOCAL_INLINE(void)
+stackdepth_push(basicblock ***sp, basicblock *b, int depth)
+{
+ assert(b->b_startdepth < 0 || b->b_startdepth == depth);
+ if (b->b_startdepth < depth && b->b_startdepth < 100) {
+ assert(b->b_startdepth < 0);
+ b->b_startdepth = depth;
+ *(*sp)++ = b;
+ }
+}
+
+/* Find the flow path that needs the largest stack. We assume that
+ * cycles in the flow graph have no net effect on the stack depth.
+ */
+static int
+stackdepth(struct compiler *c)
+{
+ basicblock *b, *entryblock = NULL;
+ basicblock **stack, **sp;
+ int nblocks = 0, maxdepth = 0;
+ for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ b->b_startdepth = INT_MIN;
+ entryblock = b;
+ nblocks++;
+ }
+ if (!entryblock)
+ return 0;
+ stack = (basicblock **)PyObject_Malloc(sizeof(basicblock *) * nblocks);
+ if (!stack) {
+ PyErr_NoMemory();
+ return -1;
+ }
+
+ sp = stack;
+ stackdepth_push(&sp, entryblock, 0);
+ while (sp != stack) {
+ b = *--sp;
+ int depth = b->b_startdepth;
+ assert(depth >= 0);
+ basicblock *next = b->b_next;
+ for (int i = 0; i < b->b_iused; i++) {
+ struct instr *instr = &b->b_instr[i];
+ int effect = stack_effect(instr->i_opcode, instr->i_oparg, 0);
+ if (effect == PY_INVALID_STACK_EFFECT) {
+ _Py_FatalErrorFormat(__func__,
+ "opcode = %d", instr->i_opcode);
+ }
+ int new_depth = depth + effect;
+ if (new_depth > maxdepth) {
+ maxdepth = new_depth;
+ }
+ assert(depth >= 0); /* invalid code or bug in stackdepth() */
+ if (instr->i_jrel || instr->i_jabs) {
+ effect = stack_effect(instr->i_opcode, instr->i_oparg, 1);
+ assert(effect != PY_INVALID_STACK_EFFECT);
+ int target_depth = depth + effect;
+ if (target_depth > maxdepth) {
+ maxdepth = target_depth;
+ }
+ assert(target_depth >= 0); /* invalid code or bug in stackdepth() */
+ stackdepth_push(&sp, instr->i_target, target_depth);
+ }
+ depth = new_depth;
+ if (instr->i_opcode == JUMP_ABSOLUTE ||
+ instr->i_opcode == JUMP_FORWARD ||
+ instr->i_opcode == RETURN_VALUE ||
+ instr->i_opcode == RAISE_VARARGS ||
+ instr->i_opcode == RERAISE)
+ {
+ /* remaining code is dead */
+ next = NULL;
+ break;
+ }
+ }
+ if (next != NULL) {
+ stackdepth_push(&sp, next, depth);
+ }
+ }
+ PyObject_Free(stack);
+ return maxdepth;
+}
+
+static int
+assemble_init(struct assembler *a, int nblocks, int firstlineno)
+{
+ memset(a, 0, sizeof(struct assembler));
+ a->a_lineno = firstlineno;
+ a->a_bytecode = PyBytes_FromStringAndSize(NULL, DEFAULT_CODE_SIZE);
+ if (!a->a_bytecode)
+ return 0;
+ a->a_lnotab = PyBytes_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE);
+ if (!a->a_lnotab)
+ return 0;
+ if ((size_t)nblocks > SIZE_MAX / sizeof(basicblock *)) {
+ PyErr_NoMemory();
+ return 0;
+ }
+ a->a_postorder = (basicblock **)PyObject_Malloc(
+ sizeof(basicblock *) * nblocks);
+ if (!a->a_postorder) {
+ PyErr_NoMemory();
+ return 0;
+ }
+ return 1;
+}
+
+static void
+assemble_free(struct assembler *a)
+{
+ Py_XDECREF(a->a_bytecode);
+ Py_XDECREF(a->a_lnotab);
+ if (a->a_postorder)
+ PyObject_Free(a->a_postorder);
+}
+
+static int
+blocksize(basicblock *b)
+{
+ int i;
+ int size = 0;
+
+ for (i = 0; i < b->b_iused; i++)
+ size += instrsize(b->b_instr[i].i_oparg);
+ return size;
+}
+
+/* Appends a pair to the end of the line number table, a_lnotab, representing
+ the instruction's bytecode offset and line number. See
+ Objects/lnotab_notes.txt for the description of the line number table. */
+
+static int
+assemble_lnotab(struct assembler *a, struct instr *i)
+{
+ int d_bytecode, d_lineno;
+ Py_ssize_t len;
+ unsigned char *lnotab;
+
+ d_lineno = i->i_lineno - a->a_lineno;
+ if (d_lineno == 0) {
+ return 1;
+ }
+
+ d_bytecode = (a->a_offset - a->a_lineno_off) * sizeof(_Py_CODEUNIT);
+ assert(d_bytecode >= 0);
+
+ if (d_bytecode > 255) {
+ int j, nbytes, ncodes = d_bytecode / 255;
+ nbytes = a->a_lnotab_off + 2 * ncodes;
+ len = PyBytes_GET_SIZE(a->a_lnotab);
+ if (nbytes >= len) {
+ if ((len <= INT_MAX / 2) && (len * 2 < nbytes))
+ len = nbytes;
+ else if (len <= INT_MAX / 2)
+ len *= 2;
+ else {
+ PyErr_NoMemory();
+ return 0;
+ }
+ if (_PyBytes_Resize(&a->a_lnotab, len) < 0)
+ return 0;
+ }
+ lnotab = (unsigned char *)
+ PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
+ for (j = 0; j < ncodes; j++) {
+ *lnotab++ = 255;
+ *lnotab++ = 0;
+ }
+ d_bytecode -= ncodes * 255;
+ a->a_lnotab_off += ncodes * 2;
+ }
+ assert(0 <= d_bytecode && d_bytecode <= 255);
+
+ if (d_lineno < -128 || 127 < d_lineno) {
+ int j, nbytes, ncodes, k;
+ if (d_lineno < 0) {
+ k = -128;
+ /* use division on positive numbers */
+ ncodes = (-d_lineno) / 128;
+ }
+ else {
+ k = 127;
+ ncodes = d_lineno / 127;
+ }
+ d_lineno -= ncodes * k;
+ assert(ncodes >= 1);
+ nbytes = a->a_lnotab_off + 2 * ncodes;
+ len = PyBytes_GET_SIZE(a->a_lnotab);
+ if (nbytes >= len) {
+ if ((len <= INT_MAX / 2) && len * 2 < nbytes)
+ len = nbytes;
+ else if (len <= INT_MAX / 2)
+ len *= 2;
+ else {
+ PyErr_NoMemory();
+ return 0;
+ }
+ if (_PyBytes_Resize(&a->a_lnotab, len) < 0)
+ return 0;
+ }
+ lnotab = (unsigned char *)
+ PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
+ *lnotab++ = d_bytecode;
+ *lnotab++ = k;
+ d_bytecode = 0;
+ for (j = 1; j < ncodes; j++) {
+ *lnotab++ = 0;
+ *lnotab++ = k;
+ }
+ a->a_lnotab_off += ncodes * 2;
+ }
+ assert(-128 <= d_lineno && d_lineno <= 127);
+
+ len = PyBytes_GET_SIZE(a->a_lnotab);
+ if (a->a_lnotab_off + 2 >= len) {
+ if (_PyBytes_Resize(&a->a_lnotab, len * 2) < 0)
+ return 0;
+ }
+ lnotab = (unsigned char *)
+ PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
+
+ a->a_lnotab_off += 2;
+ if (d_bytecode) {
+ *lnotab++ = d_bytecode;
+ *lnotab++ = d_lineno;
+ }
+ else { /* First line of a block; def stmt, etc. */
+ *lnotab++ = 0;
+ *lnotab++ = d_lineno;
+ }
+ a->a_lineno = i->i_lineno;
+ a->a_lineno_off = a->a_offset;
+ return 1;
+}
+
+/* assemble_emit()
+ Extend the bytecode with a new instruction.
+ Update lnotab if necessary.
+*/
+
+static int
+assemble_emit(struct assembler *a, struct instr *i)
+{
+ int size, arg = 0;
+ Py_ssize_t len = PyBytes_GET_SIZE(a->a_bytecode);
+ _Py_CODEUNIT *code;
+
+ arg = i->i_oparg;
+ size = instrsize(arg);
+ if (i->i_lineno && !assemble_lnotab(a, i))
+ return 0;
+ if (a->a_offset + size >= len / (int)sizeof(_Py_CODEUNIT)) {
+ if (len > PY_SSIZE_T_MAX / 2)
+ return 0;
+ if (_PyBytes_Resize(&a->a_bytecode, len * 2) < 0)
+ return 0;
+ }
+ code = (_Py_CODEUNIT *)PyBytes_AS_STRING(a->a_bytecode) + a->a_offset;
+ a->a_offset += size;
+ write_op_arg(code, i->i_opcode, arg, size);
+ return 1;
+}
+
+static void
+assemble_jump_offsets(struct assembler *a, struct compiler *c)
+{
+ basicblock *b;
+ int bsize, totsize, extended_arg_recompile;
+ int i;
+
+ /* Compute the size of each block and fixup jump args.
+ Replace block pointer with position in bytecode. */
+ do {
+ totsize = 0;
+ for (i = a->a_nblocks - 1; i >= 0; i--) {
+ b = a->a_postorder[i];
+ bsize = blocksize(b);
+ b->b_offset = totsize;
+ totsize += bsize;
+ }
+ extended_arg_recompile = 0;
+ for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ bsize = b->b_offset;
+ for (i = 0; i < b->b_iused; i++) {
+ struct instr *instr = &b->b_instr[i];
+ int isize = instrsize(instr->i_oparg);
+ /* Relative jumps are computed relative to
+ the instruction pointer after fetching
+ the jump instruction.
+ */
+ bsize += isize;
+ if (instr->i_jabs || instr->i_jrel) {
+ instr->i_oparg = instr->i_target->b_offset;
+ if (instr->i_jrel) {
+ instr->i_oparg -= bsize;
+ }
+ instr->i_oparg *= sizeof(_Py_CODEUNIT);
+ if (instrsize(instr->i_oparg) != isize) {
+ extended_arg_recompile = 1;
+ }
+ }
+ }
+ }
+
+ /* XXX: This is an awful hack that could hurt performance, but
+ on the bright side it should work until we come up
+ with a better solution.
+
+ The issue is that in the first loop blocksize() is called
+ which calls instrsize() which requires i_oparg be set
+ appropriately. There is a bootstrap problem because
+ i_oparg is calculated in the second loop above.
+
+ So we loop until we stop seeing new EXTENDED_ARGs.
+ The only EXTENDED_ARGs that could be popping up are
+ ones in jump instructions. So this should converge
+ fairly quickly.
+ */
+ } while (extended_arg_recompile);
+}
+
+static PyObject *
+dict_keys_inorder(PyObject *dict, Py_ssize_t offset)
+{
+ PyObject *tuple, *k, *v;
+ Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);
+
+ tuple = PyTuple_New(size);
+ if (tuple == NULL)
+ return NULL;
+ while (PyDict_Next(dict, &pos, &k, &v)) {
+ i = PyLong_AS_LONG(v);
+ Py_INCREF(k);
+ assert((i - offset) < size);
+ assert((i - offset) >= 0);
+ PyTuple_SET_ITEM(tuple, i - offset, k);
+ }
+ return tuple;
+}
+
+static PyObject *
+consts_dict_keys_inorder(PyObject *dict)
+{
+ PyObject *consts, *k, *v;
+ Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);
+
+ consts = PyList_New(size); /* PyCode_Optimize() requires a list */
+ if (consts == NULL)
+ return NULL;
+ while (PyDict_Next(dict, &pos, &k, &v)) {
+ i = PyLong_AS_LONG(v);
+ /* The keys of the dictionary can be tuples wrapping a contant.
+ * (see compiler_add_o and _PyCode_ConstantKey). In that case
+ * the object we want is always second. */
+ if (PyTuple_CheckExact(k)) {
+ k = PyTuple_GET_ITEM(k, 1);
+ }
+ Py_INCREF(k);
+ assert(i < size);
+ assert(i >= 0);
+ PyList_SET_ITEM(consts, i, k);
+ }
+ return consts;
+}
+
+static int
+compute_code_flags(struct compiler *c)
+{
+ PySTEntryObject *ste = c->u->u_ste;
+ int flags = 0;
+ if (ste->ste_type == FunctionBlock) {
+ flags |= CO_NEWLOCALS | CO_OPTIMIZED;
+ if (ste->ste_nested)
+ flags |= CO_NESTED;
+ if (ste->ste_generator && !ste->ste_coroutine)
+ flags |= CO_GENERATOR;
+ if (!ste->ste_generator && ste->ste_coroutine)
+ flags |= CO_COROUTINE;
+ if (ste->ste_generator && ste->ste_coroutine)
+ flags |= CO_ASYNC_GENERATOR;
+ if (ste->ste_varargs)
+ flags |= CO_VARARGS;
+ if (ste->ste_varkeywords)
+ flags |= CO_VARKEYWORDS;
+ }
+
+ /* (Only) inherit compilerflags in PyCF_MASK */
+ flags |= (c->c_flags->cf_flags & PyCF_MASK);
+
+ if ((IS_TOP_LEVEL_AWAIT(c)) &&
+ ste->ste_coroutine &&
+ !ste->ste_generator) {
+ flags |= CO_COROUTINE;
+ }
+
+ return flags;
+}
+
+// Merge *tuple* with constant cache.
+// Unlike merge_consts_recursive(), this function doesn't work recursively.
+static int
+merge_const_tuple(struct compiler *c, PyObject **tuple)
+{
+ assert(PyTuple_CheckExact(*tuple));
+
+ PyObject *key = _PyCode_ConstantKey(*tuple);
+ if (key == NULL) {
+ return 0;
+ }
+
+ // t is borrowed reference
+ PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key);
+ Py_DECREF(key);
+ if (t == NULL) {
+ return 0;
+ }
+ if (t == key) { // tuple is new constant.
+ return 1;
+ }
+
+ PyObject *u = PyTuple_GET_ITEM(t, 1);
+ Py_INCREF(u);
+ Py_DECREF(*tuple);
+ *tuple = u;
+ return 1;
+}
+
+static PyCodeObject *
+makecode(struct compiler *c, struct assembler *a)
+{
+ PyObject *tmp;
+ PyCodeObject *co = NULL;
+ PyObject *consts = NULL;
+ PyObject *names = NULL;
+ PyObject *varnames = NULL;
+ PyObject *name = NULL;
+ PyObject *freevars = NULL;
+ PyObject *cellvars = NULL;
+ PyObject *bytecode = NULL;
+ Py_ssize_t nlocals;
+ int nlocals_int;
+ int flags;
+ int posorkeywordargcount, posonlyargcount, kwonlyargcount, maxdepth;
+
+ consts = consts_dict_keys_inorder(c->u->u_consts);
+ names = dict_keys_inorder(c->u->u_names, 0);
+ varnames = dict_keys_inorder(c->u->u_varnames, 0);
+ if (!consts || !names || !varnames)
+ goto error;
+
+ cellvars = dict_keys_inorder(c->u->u_cellvars, 0);
+ if (!cellvars)
+ goto error;
+ freevars = dict_keys_inorder(c->u->u_freevars, PyTuple_GET_SIZE(cellvars));
+ if (!freevars)
+ goto error;
+
+ if (!merge_const_tuple(c, &names) ||
+ !merge_const_tuple(c, &varnames) ||
+ !merge_const_tuple(c, &cellvars) ||
+ !merge_const_tuple(c, &freevars))
+ {
+ goto error;
+ }
+
+ nlocals = PyDict_GET_SIZE(c->u->u_varnames);
+ assert(nlocals < INT_MAX);
+ nlocals_int = Py_SAFE_DOWNCAST(nlocals, Py_ssize_t, int);
+
+ flags = compute_code_flags(c);
+ if (flags < 0)
+ goto error;
+
+ bytecode = PyCode_Optimize(a->a_bytecode, consts, names, a->a_lnotab);
+ if (!bytecode)
+ goto error;
+
+ tmp = PyList_AsTuple(consts); /* PyCode_New requires a tuple */
+ if (!tmp)
+ goto error;
+ Py_DECREF(consts);
+ consts = tmp;
+ if (!merge_const_tuple(c, &consts)) {
+ goto error;
+ }
+
+ posonlyargcount = Py_SAFE_DOWNCAST(c->u->u_posonlyargcount, Py_ssize_t, int);
+ posorkeywordargcount = Py_SAFE_DOWNCAST(c->u->u_argcount, Py_ssize_t, int);
+ kwonlyargcount = Py_SAFE_DOWNCAST(c->u->u_kwonlyargcount, Py_ssize_t, int);
+ maxdepth = stackdepth(c);
+ if (maxdepth < 0) {
+ goto error;
+ }
+ co = PyCode_NewWithPosOnlyArgs(posonlyargcount+posorkeywordargcount,
+ posonlyargcount, kwonlyargcount, nlocals_int,
+ maxdepth, flags, bytecode, consts, names,
+ varnames, freevars, cellvars, c->c_filename,
+ c->u->u_name, c->u->u_firstlineno, a->a_lnotab);
+ error:
+ Py_XDECREF(consts);
+ Py_XDECREF(names);
+ Py_XDECREF(varnames);
+ Py_XDECREF(name);
+ Py_XDECREF(freevars);
+ Py_XDECREF(cellvars);
+ Py_XDECREF(bytecode);
+ return co;
+}
+
+
+/* For debugging purposes only */
+#if 0
+static void
+dump_instr(const struct instr *i)
+{
+ const char *jrel = i->i_jrel ? "jrel " : "";
+ const char *jabs = i->i_jabs ? "jabs " : "";
+ char arg[128];
+
+ *arg = '\0';
+ if (HAS_ARG(i->i_opcode)) {
+ sprintf(arg, "arg: %d ", i->i_oparg);
+ }
+ fprintf(stderr, "line: %d, opcode: %d %s%s%s\n",
+ i->i_lineno, i->i_opcode, arg, jabs, jrel);
+}
+
+static void
+dump_basicblock(const basicblock *b)
+{
+ const char *seen = b->b_seen ? "seen " : "";
+ const char *b_return = b->b_return ? "return " : "";
+ fprintf(stderr, "used: %d, depth: %d, offset: %d %s%s\n",
+ b->b_iused, b->b_startdepth, b->b_offset, seen, b_return);
+ if (b->b_instr) {
+ int i;
+ for (i = 0; i < b->b_iused; i++) {
+ fprintf(stderr, " [%02d] ", i);
+ dump_instr(b->b_instr + i);
+ }
+ }
+}
+#endif
+
+static PyCodeObject *
+assemble(struct compiler *c, int addNone)
+{
+ basicblock *b, *entryblock;
+ struct assembler a;
+ int i, j, nblocks;
+ PyCodeObject *co = NULL;
+
+ /* Make sure every block that falls off the end returns None.
+ XXX NEXT_BLOCK() isn't quite right, because if the last
+ block ends with a jump or return b_next shouldn't set.
+ */
+ if (!c->u->u_curblock->b_return) {
+ NEXT_BLOCK(c);
+ if (addNone)
+ ADDOP_LOAD_CONST(c, Py_None);
+ ADDOP(c, RETURN_VALUE);
+ }
+
+ nblocks = 0;
+ entryblock = NULL;
+ for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
+ nblocks++;
+ entryblock = b;
+ }
+
+ /* Set firstlineno if it wasn't explicitly set. */
+ if (!c->u->u_firstlineno) {
+ if (entryblock && entryblock->b_instr && entryblock->b_instr->i_lineno)
+ c->u->u_firstlineno = entryblock->b_instr->i_lineno;
+ else
+ c->u->u_firstlineno = 1;
+ }
+ if (!assemble_init(&a, nblocks, c->u->u_firstlineno))
+ goto error;
+ dfs(c, entryblock, &a, nblocks);
+
+ /* Can't modify the bytecode after computing jump offsets. */
+ assemble_jump_offsets(&a, c);
+
+ /* Emit code in reverse postorder from dfs. */
+ for (i = a.a_nblocks - 1; i >= 0; i--) {
+ b = a.a_postorder[i];
+ for (j = 0; j < b->b_iused; j++)
+ if (!assemble_emit(&a, &b->b_instr[j]))
+ goto error;
+ }
+
+ if (_PyBytes_Resize(&a.a_lnotab, a.a_lnotab_off) < 0)
+ goto error;
+ if (_PyBytes_Resize(&a.a_bytecode, a.a_offset * sizeof(_Py_CODEUNIT)) < 0)
+ goto error;
+
+ co = makecode(c, &a);
+ error:
+ assemble_free(&a);
+ return co;
+}
+
+#undef PyAST_Compile
+PyCodeObject *
+PyAST_Compile(mod_ty mod, const char *filename, PyCompilerFlags *flags,
+ PyArena *arena)
+{
+ return PyAST_CompileEx(mod, filename, flags, -1, arena);
+}