diff options
author | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:24:06 +0300 |
---|---|---|
committer | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:41:34 +0300 |
commit | e0e3e1717e3d33762ce61950504f9637a6e669ed (patch) | |
tree | bca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python3/src/Objects/obmalloc.c | |
parent | 38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff) | |
download | ydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz |
add ydb deps
Diffstat (limited to 'contrib/tools/python3/src/Objects/obmalloc.c')
-rw-r--r-- | contrib/tools/python3/src/Objects/obmalloc.c | 3117 |
1 files changed, 3117 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Objects/obmalloc.c b/contrib/tools/python3/src/Objects/obmalloc.c new file mode 100644 index 0000000000..b9529e418d --- /dev/null +++ b/contrib/tools/python3/src/Objects/obmalloc.c @@ -0,0 +1,3117 @@ +#include "Python.h" +#include "pycore_pymem.h" // _PyTraceMalloc_Config +#include "pycore_code.h" // stats + +#include <stdbool.h> +#include <stdlib.h> // malloc() + + +/* Defined in tracemalloc.c */ +extern void _PyMem_DumpTraceback(int fd, const void *ptr); + + +/* Python's malloc wrappers (see pymem.h) */ + +#undef uint +#define uint unsigned int /* assuming >= 16 bits */ + +/* Forward declaration */ +static void* _PyMem_DebugRawMalloc(void *ctx, size_t size); +static void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize); +static void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size); +static void _PyMem_DebugRawFree(void *ctx, void *ptr); + +static void* _PyMem_DebugMalloc(void *ctx, size_t size); +static void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize); +static void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size); +static void _PyMem_DebugFree(void *ctx, void *p); + +static void _PyObject_DebugDumpAddress(const void *p); +static void _PyMem_DebugCheckAddress(const char *func, char api_id, const void *p); + +static void _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain); + +#if defined(__has_feature) /* Clang */ +# if __has_feature(address_sanitizer) /* is ASAN enabled? */ +# define _Py_NO_SANITIZE_ADDRESS \ + __attribute__((no_sanitize("address"))) +# endif +# if __has_feature(thread_sanitizer) /* is TSAN enabled? */ +# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread)) +# endif +# if __has_feature(memory_sanitizer) /* is MSAN enabled? */ +# define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory)) +# endif +#elif defined(__GNUC__) +# if defined(__SANITIZE_ADDRESS__) /* GCC 4.8+, is ASAN enabled? */ +# define _Py_NO_SANITIZE_ADDRESS \ + __attribute__((no_sanitize_address)) +# endif + // TSAN is supported since GCC 5.1, but __SANITIZE_THREAD__ macro + // is provided only since GCC 7. +# if __GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1) +# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread)) +# endif +#endif + +#ifndef _Py_NO_SANITIZE_ADDRESS +# define _Py_NO_SANITIZE_ADDRESS +#endif +#ifndef _Py_NO_SANITIZE_THREAD +# define _Py_NO_SANITIZE_THREAD +#endif +#ifndef _Py_NO_SANITIZE_MEMORY +# define _Py_NO_SANITIZE_MEMORY +#endif + +#ifdef WITH_PYMALLOC + +#ifdef MS_WINDOWS +# include <windows.h> +#elif defined(HAVE_MMAP) +# include <sys/mman.h> +# ifdef MAP_ANONYMOUS +# define ARENAS_USE_MMAP +# endif +#endif + +/* Forward declaration */ +static void* _PyObject_Malloc(void *ctx, size_t size); +static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize); +static void _PyObject_Free(void *ctx, void *p); +static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size); +#endif + + +/* bpo-35053: Declare tracemalloc configuration here rather than + Modules/_tracemalloc.c because _tracemalloc can be compiled as dynamic + library, whereas _Py_NewReference() requires it. */ +struct _PyTraceMalloc_Config _Py_tracemalloc_config = _PyTraceMalloc_Config_INIT; + + +static void * +_PyMem_RawMalloc(void *ctx, size_t size) +{ + /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL + for malloc(0), which would be treated as an error. Some platforms would + return a pointer with no memory behind it, which would break pymalloc. + To solve these problems, allocate an extra byte. */ + if (size == 0) + size = 1; + return malloc(size); +} + +static void * +_PyMem_RawCalloc(void *ctx, size_t nelem, size_t elsize) +{ + /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL + for calloc(0, 0), which would be treated as an error. Some platforms + would return a pointer with no memory behind it, which would break + pymalloc. To solve these problems, allocate an extra byte. */ + if (nelem == 0 || elsize == 0) { + nelem = 1; + elsize = 1; + } + return calloc(nelem, elsize); +} + +static void * +_PyMem_RawRealloc(void *ctx, void *ptr, size_t size) +{ + if (size == 0) + size = 1; + return realloc(ptr, size); +} + +static void +_PyMem_RawFree(void *ctx, void *ptr) +{ + free(ptr); +} + + +#ifdef MS_WINDOWS +static void * +_PyObject_ArenaVirtualAlloc(void *ctx, size_t size) +{ + return VirtualAlloc(NULL, size, + MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); +} + +static void +_PyObject_ArenaVirtualFree(void *ctx, void *ptr, size_t size) +{ + VirtualFree(ptr, 0, MEM_RELEASE); +} + +#elif defined(ARENAS_USE_MMAP) +static void * +_PyObject_ArenaMmap(void *ctx, size_t size) +{ + void *ptr; + ptr = mmap(NULL, size, PROT_READ|PROT_WRITE, + MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); + if (ptr == MAP_FAILED) + return NULL; + assert(ptr != NULL); + return ptr; +} + +static void +_PyObject_ArenaMunmap(void *ctx, void *ptr, size_t size) +{ + munmap(ptr, size); +} + +#else +static void * +_PyObject_ArenaMalloc(void *ctx, size_t size) +{ + return malloc(size); +} + +static void +_PyObject_ArenaFree(void *ctx, void *ptr, size_t size) +{ + free(ptr); +} +#endif + +#define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree} +#ifdef WITH_PYMALLOC +# define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free} +#endif + +#define PYRAW_ALLOC MALLOC_ALLOC +#ifdef WITH_PYMALLOC +# define PYOBJ_ALLOC PYMALLOC_ALLOC +#else +# define PYOBJ_ALLOC MALLOC_ALLOC +#endif +#define PYMEM_ALLOC PYOBJ_ALLOC + +typedef struct { + /* We tag each block with an API ID in order to tag API violations */ + char api_id; + PyMemAllocatorEx alloc; +} debug_alloc_api_t; +static struct { + debug_alloc_api_t raw; + debug_alloc_api_t mem; + debug_alloc_api_t obj; +} _PyMem_Debug = { + {'r', PYRAW_ALLOC}, + {'m', PYMEM_ALLOC}, + {'o', PYOBJ_ALLOC} + }; + +#define PYDBGRAW_ALLOC \ + {&_PyMem_Debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree} +#define PYDBGMEM_ALLOC \ + {&_PyMem_Debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} +#define PYDBGOBJ_ALLOC \ + {&_PyMem_Debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} + +#ifdef Py_DEBUG +static PyMemAllocatorEx _PyMem_Raw = PYDBGRAW_ALLOC; +static PyMemAllocatorEx _PyMem = PYDBGMEM_ALLOC; +static PyMemAllocatorEx _PyObject = PYDBGOBJ_ALLOC; +#else +static PyMemAllocatorEx _PyMem_Raw = PYRAW_ALLOC; +static PyMemAllocatorEx _PyMem = PYMEM_ALLOC; +static PyMemAllocatorEx _PyObject = PYOBJ_ALLOC; +#endif + + +static int +pymem_set_default_allocator(PyMemAllocatorDomain domain, int debug, + PyMemAllocatorEx *old_alloc) +{ + if (old_alloc != NULL) { + PyMem_GetAllocator(domain, old_alloc); + } + + + PyMemAllocatorEx new_alloc; + switch(domain) + { + case PYMEM_DOMAIN_RAW: + new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC; + break; + case PYMEM_DOMAIN_MEM: + new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC; + break; + case PYMEM_DOMAIN_OBJ: + new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC; + break; + default: + /* unknown domain */ + return -1; + } + PyMem_SetAllocator(domain, &new_alloc); + if (debug) { + _PyMem_SetupDebugHooksDomain(domain); + } + return 0; +} + + +int +_PyMem_SetDefaultAllocator(PyMemAllocatorDomain domain, + PyMemAllocatorEx *old_alloc) +{ +#ifdef Py_DEBUG + const int debug = 1; +#else + const int debug = 0; +#endif + return pymem_set_default_allocator(domain, debug, old_alloc); +} + + +int +_PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator) +{ + if (name == NULL || *name == '\0') { + /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line + nameions): use default memory allocators */ + *allocator = PYMEM_ALLOCATOR_DEFAULT; + } + else if (strcmp(name, "default") == 0) { + *allocator = PYMEM_ALLOCATOR_DEFAULT; + } + else if (strcmp(name, "debug") == 0) { + *allocator = PYMEM_ALLOCATOR_DEBUG; + } +#ifdef WITH_PYMALLOC + else if (strcmp(name, "pymalloc") == 0) { + *allocator = PYMEM_ALLOCATOR_PYMALLOC; + } + else if (strcmp(name, "pymalloc_debug") == 0) { + *allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG; + } +#endif + else if (strcmp(name, "malloc") == 0) { + *allocator = PYMEM_ALLOCATOR_MALLOC; + } + else if (strcmp(name, "malloc_debug") == 0) { + *allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG; + } + else { + /* unknown allocator */ + return -1; + } + return 0; +} + + +int +_PyMem_SetupAllocators(PyMemAllocatorName allocator) +{ + switch (allocator) { + case PYMEM_ALLOCATOR_NOT_SET: + /* do nothing */ + break; + + case PYMEM_ALLOCATOR_DEFAULT: + (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, NULL); + (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_MEM, NULL); + (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_OBJ, NULL); + break; + + case PYMEM_ALLOCATOR_DEBUG: + (void)pymem_set_default_allocator(PYMEM_DOMAIN_RAW, 1, NULL); + (void)pymem_set_default_allocator(PYMEM_DOMAIN_MEM, 1, NULL); + (void)pymem_set_default_allocator(PYMEM_DOMAIN_OBJ, 1, NULL); + break; + +#ifdef WITH_PYMALLOC + case PYMEM_ALLOCATOR_PYMALLOC: + case PYMEM_ALLOCATOR_PYMALLOC_DEBUG: + { + PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; + PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc); + + PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; + PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &pymalloc); + PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &pymalloc); + + if (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG) { + PyMem_SetupDebugHooks(); + } + break; + } +#endif + + case PYMEM_ALLOCATOR_MALLOC: + case PYMEM_ALLOCATOR_MALLOC_DEBUG: + { + PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; + PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc); + PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &malloc_alloc); + PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &malloc_alloc); + + if (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG) { + PyMem_SetupDebugHooks(); + } + break; + } + + default: + /* unknown allocator */ + return -1; + } + return 0; +} + + +static int +pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b) +{ + return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0); +} + + +const char* +_PyMem_GetCurrentAllocatorName(void) +{ + PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; +#ifdef WITH_PYMALLOC + PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; +#endif + + if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && + pymemallocator_eq(&_PyMem, &malloc_alloc) && + pymemallocator_eq(&_PyObject, &malloc_alloc)) + { + return "malloc"; + } +#ifdef WITH_PYMALLOC + if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && + pymemallocator_eq(&_PyMem, &pymalloc) && + pymemallocator_eq(&_PyObject, &pymalloc)) + { + return "pymalloc"; + } +#endif + + PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC; + PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC; + PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC; + + if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) && + pymemallocator_eq(&_PyMem, &dbg_mem) && + pymemallocator_eq(&_PyObject, &dbg_obj)) + { + /* Debug hooks installed */ + if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && + pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) && + pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc)) + { + return "malloc_debug"; + } +#ifdef WITH_PYMALLOC + if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && + pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) && + pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc)) + { + return "pymalloc_debug"; + } +#endif + } + return NULL; +} + + +#undef MALLOC_ALLOC +#undef PYMALLOC_ALLOC +#undef PYRAW_ALLOC +#undef PYMEM_ALLOC +#undef PYOBJ_ALLOC +#undef PYDBGRAW_ALLOC +#undef PYDBGMEM_ALLOC +#undef PYDBGOBJ_ALLOC + + +static PyObjectArenaAllocator _PyObject_Arena = {NULL, +#ifdef MS_WINDOWS + _PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree +#elif defined(ARENAS_USE_MMAP) + _PyObject_ArenaMmap, _PyObject_ArenaMunmap +#else + _PyObject_ArenaMalloc, _PyObject_ArenaFree +#endif + }; + +#ifdef WITH_PYMALLOC +static int +_PyMem_DebugEnabled(void) +{ + return (_PyObject.malloc == _PyMem_DebugMalloc); +} + +static int +_PyMem_PymallocEnabled(void) +{ + if (_PyMem_DebugEnabled()) { + return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc); + } + else { + return (_PyObject.malloc == _PyObject_Malloc); + } +} +#endif + + +static void +_PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain) +{ + PyMemAllocatorEx alloc; + + if (domain == PYMEM_DOMAIN_RAW) { + if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) { + return; + } + + PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc); + alloc.ctx = &_PyMem_Debug.raw; + alloc.malloc = _PyMem_DebugRawMalloc; + alloc.calloc = _PyMem_DebugRawCalloc; + alloc.realloc = _PyMem_DebugRawRealloc; + alloc.free = _PyMem_DebugRawFree; + PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc); + } + else if (domain == PYMEM_DOMAIN_MEM) { + if (_PyMem.malloc == _PyMem_DebugMalloc) { + return; + } + + PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc); + alloc.ctx = &_PyMem_Debug.mem; + alloc.malloc = _PyMem_DebugMalloc; + alloc.calloc = _PyMem_DebugCalloc; + alloc.realloc = _PyMem_DebugRealloc; + alloc.free = _PyMem_DebugFree; + PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc); + } + else if (domain == PYMEM_DOMAIN_OBJ) { + if (_PyObject.malloc == _PyMem_DebugMalloc) { + return; + } + + PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc); + alloc.ctx = &_PyMem_Debug.obj; + alloc.malloc = _PyMem_DebugMalloc; + alloc.calloc = _PyMem_DebugCalloc; + alloc.realloc = _PyMem_DebugRealloc; + alloc.free = _PyMem_DebugFree; + PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc); + } +} + + +void +PyMem_SetupDebugHooks(void) +{ + _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_RAW); + _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_MEM); + _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_OBJ); +} + +void +PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) +{ + switch(domain) + { + case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break; + case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break; + case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break; + default: + /* unknown domain: set all attributes to NULL */ + allocator->ctx = NULL; + allocator->malloc = NULL; + allocator->calloc = NULL; + allocator->realloc = NULL; + allocator->free = NULL; + } +} + +void +PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) +{ + switch(domain) + { + case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break; + case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break; + case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break; + /* ignore unknown domain */ + } +} + +void +PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator) +{ + *allocator = _PyObject_Arena; +} + +void * +_PyObject_VirtualAlloc(size_t size) +{ + return _PyObject_Arena.alloc(_PyObject_Arena.ctx, size); +} + +void +_PyObject_VirtualFree(void *obj, size_t size) +{ + _PyObject_Arena.free(_PyObject_Arena.ctx, obj, size); +} + +void +PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator) +{ + _PyObject_Arena = *allocator; +} + +void * +PyMem_RawMalloc(size_t size) +{ + /* + * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes. + * Most python internals blindly use a signed Py_ssize_t to track + * things without checking for overflows or negatives. + * As size_t is unsigned, checking for size < 0 is not required. + */ + if (size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size); +} + +void * +PyMem_RawCalloc(size_t nelem, size_t elsize) +{ + /* see PyMem_RawMalloc() */ + if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) + return NULL; + return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize); +} + +void* +PyMem_RawRealloc(void *ptr, size_t new_size) +{ + /* see PyMem_RawMalloc() */ + if (new_size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size); +} + +void PyMem_RawFree(void *ptr) +{ + _PyMem_Raw.free(_PyMem_Raw.ctx, ptr); +} + + +void * +PyMem_Malloc(size_t size) +{ + /* see PyMem_RawMalloc() */ + if (size > (size_t)PY_SSIZE_T_MAX) + return NULL; + OBJECT_STAT_INC_COND(allocations512, size < 512); + OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094); + OBJECT_STAT_INC_COND(allocations_big, size >= 4094); + OBJECT_STAT_INC(allocations); + return _PyMem.malloc(_PyMem.ctx, size); +} + +void * +PyMem_Calloc(size_t nelem, size_t elsize) +{ + /* see PyMem_RawMalloc() */ + if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) + return NULL; + OBJECT_STAT_INC_COND(allocations512, elsize < 512); + OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094); + OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094); + OBJECT_STAT_INC(allocations); + return _PyMem.calloc(_PyMem.ctx, nelem, elsize); +} + +void * +PyMem_Realloc(void *ptr, size_t new_size) +{ + /* see PyMem_RawMalloc() */ + if (new_size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyMem.realloc(_PyMem.ctx, ptr, new_size); +} + +void +PyMem_Free(void *ptr) +{ + OBJECT_STAT_INC(frees); + _PyMem.free(_PyMem.ctx, ptr); +} + + +wchar_t* +_PyMem_RawWcsdup(const wchar_t *str) +{ + assert(str != NULL); + + size_t len = wcslen(str); + if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) { + return NULL; + } + + size_t size = (len + 1) * sizeof(wchar_t); + wchar_t *str2 = PyMem_RawMalloc(size); + if (str2 == NULL) { + return NULL; + } + + memcpy(str2, str, size); + return str2; +} + +char * +_PyMem_RawStrdup(const char *str) +{ + assert(str != NULL); + size_t size = strlen(str) + 1; + char *copy = PyMem_RawMalloc(size); + if (copy == NULL) { + return NULL; + } + memcpy(copy, str, size); + return copy; +} + +char * +_PyMem_Strdup(const char *str) +{ + assert(str != NULL); + size_t size = strlen(str) + 1; + char *copy = PyMem_Malloc(size); + if (copy == NULL) { + return NULL; + } + memcpy(copy, str, size); + return copy; +} + +void * +PyObject_Malloc(size_t size) +{ + /* see PyMem_RawMalloc() */ + if (size > (size_t)PY_SSIZE_T_MAX) + return NULL; + OBJECT_STAT_INC_COND(allocations512, size < 512); + OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094); + OBJECT_STAT_INC_COND(allocations_big, size >= 4094); + OBJECT_STAT_INC(allocations); + return _PyObject.malloc(_PyObject.ctx, size); +} + +void * +PyObject_Calloc(size_t nelem, size_t elsize) +{ + /* see PyMem_RawMalloc() */ + if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) + return NULL; + OBJECT_STAT_INC_COND(allocations512, elsize < 512); + OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094); + OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094); + OBJECT_STAT_INC(allocations); + return _PyObject.calloc(_PyObject.ctx, nelem, elsize); +} + +void * +PyObject_Realloc(void *ptr, size_t new_size) +{ + /* see PyMem_RawMalloc() */ + if (new_size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyObject.realloc(_PyObject.ctx, ptr, new_size); +} + +void +PyObject_Free(void *ptr) +{ + OBJECT_STAT_INC(frees); + _PyObject.free(_PyObject.ctx, ptr); +} + + +/* If we're using GCC, use __builtin_expect() to reduce overhead of + the valgrind checks */ +#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__) +# define UNLIKELY(value) __builtin_expect((value), 0) +# define LIKELY(value) __builtin_expect((value), 1) +#else +# define UNLIKELY(value) (value) +# define LIKELY(value) (value) +#endif + +#ifdef WITH_PYMALLOC + +#ifdef WITH_VALGRIND +#include <valgrind/valgrind.h> + +/* -1 indicates that we haven't checked that we're running on valgrind yet. */ +static int running_on_valgrind = -1; +#endif + + +/* An object allocator for Python. + + Here is an introduction to the layers of the Python memory architecture, + showing where the object allocator is actually used (layer +2), It is + called for every object allocation and deallocation (PyObject_New/Del), + unless the object-specific allocators implement a proprietary allocation + scheme (ex.: ints use a simple free list). This is also the place where + the cyclic garbage collector operates selectively on container objects. + + + Object-specific allocators + _____ ______ ______ ________ + [ int ] [ dict ] [ list ] ... [ string ] Python core | ++3 | <----- Object-specific memory -----> | <-- Non-object memory --> | + _______________________________ | | + [ Python's object allocator ] | | ++2 | ####### Object memory ####### | <------ Internal buffers ------> | + ______________________________________________________________ | + [ Python's raw memory allocator (PyMem_ API) ] | ++1 | <----- Python memory (under PyMem manager's control) ------> | | + __________________________________________________________________ + [ Underlying general-purpose allocator (ex: C library malloc) ] + 0 | <------ Virtual memory allocated for the python process -------> | + + ========================================================================= + _______________________________________________________________________ + [ OS-specific Virtual Memory Manager (VMM) ] +-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> | + __________________________________ __________________________________ + [ ] [ ] +-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> | + +*/ +/*==========================================================================*/ + +/* A fast, special-purpose memory allocator for small blocks, to be used + on top of a general-purpose malloc -- heavily based on previous art. */ + +/* Vladimir Marangozov -- August 2000 */ + +/* + * "Memory management is where the rubber meets the road -- if we do the wrong + * thing at any level, the results will not be good. And if we don't make the + * levels work well together, we are in serious trouble." (1) + * + * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles, + * "Dynamic Storage Allocation: A Survey and Critical Review", + * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995. + */ + +/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */ + +/*==========================================================================*/ + +/* + * Allocation strategy abstract: + * + * For small requests, the allocator sub-allocates <Big> blocks of memory. + * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the + * system's allocator. + * + * Small requests are grouped in size classes spaced 8 bytes apart, due + * to the required valid alignment of the returned address. Requests of + * a particular size are serviced from memory pools of 4K (one VMM page). + * Pools are fragmented on demand and contain free lists of blocks of one + * particular size class. In other words, there is a fixed-size allocator + * for each size class. Free pools are shared by the different allocators + * thus minimizing the space reserved for a particular size class. + * + * This allocation strategy is a variant of what is known as "simple + * segregated storage based on array of free lists". The main drawback of + * simple segregated storage is that we might end up with lot of reserved + * memory for the different free lists, which degenerate in time. To avoid + * this, we partition each free list in pools and we share dynamically the + * reserved space between all free lists. This technique is quite efficient + * for memory intensive programs which allocate mainly small-sized blocks. + * + * For small requests we have the following table: + * + * Request in bytes Size of allocated block Size class idx + * ---------------------------------------------------------------- + * 1-8 8 0 + * 9-16 16 1 + * 17-24 24 2 + * 25-32 32 3 + * 33-40 40 4 + * 41-48 48 5 + * 49-56 56 6 + * 57-64 64 7 + * 65-72 72 8 + * ... ... ... + * 497-504 504 62 + * 505-512 512 63 + * + * 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying + * allocator. + */ + +/*==========================================================================*/ + +/* + * -- Main tunable settings section -- + */ + +/* + * Alignment of addresses returned to the user. 8-bytes alignment works + * on most current architectures (with 32-bit or 64-bit address buses). + * The alignment value is also used for grouping small requests in size + * classes spaced ALIGNMENT bytes apart. + * + * You shouldn't change this unless you know what you are doing. + */ + +#if SIZEOF_VOID_P > 4 +#define ALIGNMENT 16 /* must be 2^N */ +#define ALIGNMENT_SHIFT 4 +#else +#define ALIGNMENT 8 /* must be 2^N */ +#define ALIGNMENT_SHIFT 3 +#endif + +/* Return the number of bytes in size class I, as a uint. */ +#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT) + +/* + * Max size threshold below which malloc requests are considered to be + * small enough in order to use preallocated memory pools. You can tune + * this value according to your application behaviour and memory needs. + * + * Note: a size threshold of 512 guarantees that newly created dictionaries + * will be allocated from preallocated memory pools on 64-bit. + * + * The following invariants must hold: + * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512 + * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT + * + * Although not required, for better performance and space efficiency, + * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2. + */ +#define SMALL_REQUEST_THRESHOLD 512 +#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT) + +/* + * The system's VMM page size can be obtained on most unices with a + * getpagesize() call or deduced from various header files. To make + * things simpler, we assume that it is 4K, which is OK for most systems. + * It is probably better if this is the native page size, but it doesn't + * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page + * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation + * violation fault. 4K is apparently OK for all the platforms that python + * currently targets. + */ +#define SYSTEM_PAGE_SIZE (4 * 1024) + +/* + * Maximum amount of memory managed by the allocator for small requests. + */ +#ifdef WITH_MEMORY_LIMITS +#ifndef SMALL_MEMORY_LIMIT +#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */ +#endif +#endif + +#if !defined(WITH_PYMALLOC_RADIX_TREE) +/* Use radix-tree to track arena memory regions, for address_in_range(). + * Enable by default since it allows larger pool sizes. Can be disabled + * using -DWITH_PYMALLOC_RADIX_TREE=0 */ +#define WITH_PYMALLOC_RADIX_TREE 1 +#endif + +#if SIZEOF_VOID_P > 4 +/* on 64-bit platforms use larger pools and arenas if we can */ +#define USE_LARGE_ARENAS +#if WITH_PYMALLOC_RADIX_TREE +/* large pools only supported if radix-tree is enabled */ +#define USE_LARGE_POOLS +#endif +#endif + +/* + * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned + * on a page boundary. This is a reserved virtual address space for the + * current process (obtained through a malloc()/mmap() call). In no way this + * means that the memory arenas will be used entirely. A malloc(<Big>) is + * usually an address range reservation for <Big> bytes, unless all pages within + * this space are referenced subsequently. So malloc'ing big blocks and not + * using them does not mean "wasting memory". It's an addressable range + * wastage... + * + * Arenas are allocated with mmap() on systems supporting anonymous memory + * mappings to reduce heap fragmentation. + */ +#ifdef USE_LARGE_ARENAS +#define ARENA_BITS 20 /* 1 MiB */ +#else +#define ARENA_BITS 18 /* 256 KiB */ +#endif +#define ARENA_SIZE (1 << ARENA_BITS) +#define ARENA_SIZE_MASK (ARENA_SIZE - 1) + +#ifdef WITH_MEMORY_LIMITS +#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE) +#endif + +/* + * Size of the pools used for small blocks. Must be a power of 2. + */ +#ifdef USE_LARGE_POOLS +#define POOL_BITS 14 /* 16 KiB */ +#else +#define POOL_BITS 12 /* 4 KiB */ +#endif +#define POOL_SIZE (1 << POOL_BITS) +#define POOL_SIZE_MASK (POOL_SIZE - 1) + +#if !WITH_PYMALLOC_RADIX_TREE +#if POOL_SIZE != SYSTEM_PAGE_SIZE +# error "pool size must be equal to system page size" +#endif +#endif + +#define MAX_POOLS_IN_ARENA (ARENA_SIZE / POOL_SIZE) +#if MAX_POOLS_IN_ARENA * POOL_SIZE != ARENA_SIZE +# error "arena size not an exact multiple of pool size" +#endif + +/* + * -- End of tunable settings section -- + */ + +/*==========================================================================*/ + +/* When you say memory, my mind reasons in terms of (pointers to) blocks */ +typedef uint8_t block; + +/* Pool for small blocks. */ +struct pool_header { + union { block *_padding; + uint count; } ref; /* number of allocated blocks */ + block *freeblock; /* pool's free list head */ + struct pool_header *nextpool; /* next pool of this size class */ + struct pool_header *prevpool; /* previous pool "" */ + uint arenaindex; /* index into arenas of base adr */ + uint szidx; /* block size class index */ + uint nextoffset; /* bytes to virgin block */ + uint maxnextoffset; /* largest valid nextoffset */ +}; + +typedef struct pool_header *poolp; + +/* Record keeping for arenas. */ +struct arena_object { + /* The address of the arena, as returned by malloc. Note that 0 + * will never be returned by a successful malloc, and is used + * here to mark an arena_object that doesn't correspond to an + * allocated arena. + */ + uintptr_t address; + + /* Pool-aligned pointer to the next pool to be carved off. */ + block* pool_address; + + /* The number of available pools in the arena: free pools + never- + * allocated pools. + */ + uint nfreepools; + + /* The total number of pools in the arena, whether or not available. */ + uint ntotalpools; + + /* Singly-linked list of available pools. */ + struct pool_header* freepools; + + /* Whenever this arena_object is not associated with an allocated + * arena, the nextarena member is used to link all unassociated + * arena_objects in the singly-linked `unused_arena_objects` list. + * The prevarena member is unused in this case. + * + * When this arena_object is associated with an allocated arena + * with at least one available pool, both members are used in the + * doubly-linked `usable_arenas` list, which is maintained in + * increasing order of `nfreepools` values. + * + * Else this arena_object is associated with an allocated arena + * all of whose pools are in use. `nextarena` and `prevarena` + * are both meaningless in this case. + */ + struct arena_object* nextarena; + struct arena_object* prevarena; +}; + +#define POOL_OVERHEAD _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT) + +#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */ + +/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */ +#define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE)) + +/* Return total number of blocks in pool of size index I, as a uint. */ +#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I)) + +/*==========================================================================*/ + +/* + * Pool table -- headed, circular, doubly-linked lists of partially used pools. + +This is involved. For an index i, usedpools[i+i] is the header for a list of +all partially used pools holding small blocks with "size class idx" i. So +usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size +16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT. + +Pools are carved off an arena's highwater mark (an arena_object's pool_address +member) as needed. Once carved off, a pool is in one of three states forever +after: + +used == partially used, neither empty nor full + At least one block in the pool is currently allocated, and at least one + block in the pool is not currently allocated (note this implies a pool + has room for at least two blocks). + This is a pool's initial state, as a pool is created only when malloc + needs space. + The pool holds blocks of a fixed size, and is in the circular list headed + at usedpools[i] (see above). It's linked to the other used pools of the + same size class via the pool_header's nextpool and prevpool members. + If all but one block is currently allocated, a malloc can cause a + transition to the full state. If all but one block is not currently + allocated, a free can cause a transition to the empty state. + +full == all the pool's blocks are currently allocated + On transition to full, a pool is unlinked from its usedpools[] list. + It's not linked to from anything then anymore, and its nextpool and + prevpool members are meaningless until it transitions back to used. + A free of a block in a full pool puts the pool back in the used state. + Then it's linked in at the front of the appropriate usedpools[] list, so + that the next allocation for its size class will reuse the freed block. + +empty == all the pool's blocks are currently available for allocation + On transition to empty, a pool is unlinked from its usedpools[] list, + and linked to the front of its arena_object's singly-linked freepools list, + via its nextpool member. The prevpool member has no meaning in this case. + Empty pools have no inherent size class: the next time a malloc finds + an empty list in usedpools[], it takes the first pool off of freepools. + If the size class needed happens to be the same as the size class the pool + last had, some pool initialization can be skipped. + + +Block Management + +Blocks within pools are again carved out as needed. pool->freeblock points to +the start of a singly-linked list of free blocks within the pool. When a +block is freed, it's inserted at the front of its pool's freeblock list. Note +that the available blocks in a pool are *not* linked all together when a pool +is initialized. Instead only "the first two" (lowest addresses) blocks are +set up, returning the first such block, and setting pool->freeblock to a +one-block list holding the second such block. This is consistent with that +pymalloc strives at all levels (arena, pool, and block) never to touch a piece +of memory until it's actually needed. + +So long as a pool is in the used state, we're certain there *is* a block +available for allocating, and pool->freeblock is not NULL. If pool->freeblock +points to the end of the free list before we've carved the entire pool into +blocks, that means we simply haven't yet gotten to one of the higher-address +blocks. The offset from the pool_header to the start of "the next" virgin +block is stored in the pool_header nextoffset member, and the largest value +of nextoffset that makes sense is stored in the maxnextoffset member when a +pool is initialized. All the blocks in a pool have been passed out at least +once when and only when nextoffset > maxnextoffset. + + +Major obscurity: While the usedpools vector is declared to have poolp +entries, it doesn't really. It really contains two pointers per (conceptual) +poolp entry, the nextpool and prevpool members of a pool_header. The +excruciating initialization code below fools C so that + + usedpool[i+i] + +"acts like" a genuine poolp, but only so long as you only reference its +nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is +compensating for that a pool_header's nextpool and prevpool members +immediately follow a pool_header's first two members: + + union { block *_padding; + uint count; } ref; + block *freeblock; + +each of which consume sizeof(block *) bytes. So what usedpools[i+i] really +contains is a fudged-up pointer p such that *if* C believes it's a poolp +pointer, then p->nextpool and p->prevpool are both p (meaning that the headed +circular list is empty). + +It's unclear why the usedpools setup is so convoluted. It could be to +minimize the amount of cache required to hold this heavily-referenced table +(which only *needs* the two interpool pointer members of a pool_header). OTOH, +referencing code has to remember to "double the index" and doing so isn't +free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying +on that C doesn't insert any padding anywhere in a pool_header at or before +the prevpool member. +**************************************************************************** */ + +#define PTA(x) ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *))) +#define PT(x) PTA(x), PTA(x) + +static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = { + PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7) +#if NB_SMALL_SIZE_CLASSES > 8 + , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15) +#if NB_SMALL_SIZE_CLASSES > 16 + , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23) +#if NB_SMALL_SIZE_CLASSES > 24 + , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31) +#if NB_SMALL_SIZE_CLASSES > 32 + , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39) +#if NB_SMALL_SIZE_CLASSES > 40 + , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47) +#if NB_SMALL_SIZE_CLASSES > 48 + , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55) +#if NB_SMALL_SIZE_CLASSES > 56 + , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63) +#if NB_SMALL_SIZE_CLASSES > 64 +#error "NB_SMALL_SIZE_CLASSES should be less than 64" +#endif /* NB_SMALL_SIZE_CLASSES > 64 */ +#endif /* NB_SMALL_SIZE_CLASSES > 56 */ +#endif /* NB_SMALL_SIZE_CLASSES > 48 */ +#endif /* NB_SMALL_SIZE_CLASSES > 40 */ +#endif /* NB_SMALL_SIZE_CLASSES > 32 */ +#endif /* NB_SMALL_SIZE_CLASSES > 24 */ +#endif /* NB_SMALL_SIZE_CLASSES > 16 */ +#endif /* NB_SMALL_SIZE_CLASSES > 8 */ +}; + +/*========================================================================== +Arena management. + +`arenas` is a vector of arena_objects. It contains maxarenas entries, some of +which may not be currently used (== they're arena_objects that aren't +currently associated with an allocated arena). Note that arenas proper are +separately malloc'ed. + +Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5, +we do try to free() arenas, and use some mild heuristic strategies to increase +the likelihood that arenas eventually can be freed. + +unused_arena_objects + + This is a singly-linked list of the arena_objects that are currently not + being used (no arena is associated with them). Objects are taken off the + head of the list in new_arena(), and are pushed on the head of the list in + PyObject_Free() when the arena is empty. Key invariant: an arena_object + is on this list if and only if its .address member is 0. + +usable_arenas + + This is a doubly-linked list of the arena_objects associated with arenas + that have pools available. These pools are either waiting to be reused, + or have not been used before. The list is sorted to have the most- + allocated arenas first (ascending order based on the nfreepools member). + This means that the next allocation will come from a heavily used arena, + which gives the nearly empty arenas a chance to be returned to the system. + In my unscientific tests this dramatically improved the number of arenas + that could be freed. + +Note that an arena_object associated with an arena all of whose pools are +currently in use isn't on either list. + +Changed in Python 3.8: keeping usable_arenas sorted by number of free pools +used to be done by one-at-a-time linear search when an arena's number of +free pools changed. That could, overall, consume time quadratic in the +number of arenas. That didn't really matter when there were only a few +hundred arenas (typical!), but could be a timing disaster when there were +hundreds of thousands. See bpo-37029. + +Now we have a vector of "search fingers" to eliminate the need to search: +nfp2lasta[nfp] returns the last ("rightmost") arena in usable_arenas +with nfp free pools. This is NULL if and only if there is no arena with +nfp free pools in usable_arenas. +*/ + +/* Array of objects used to track chunks of memory (arenas). */ +static struct arena_object* arenas = NULL; +/* Number of slots currently allocated in the `arenas` vector. */ +static uint maxarenas = 0; + +/* The head of the singly-linked, NULL-terminated list of available + * arena_objects. + */ +static struct arena_object* unused_arena_objects = NULL; + +/* The head of the doubly-linked, NULL-terminated at each end, list of + * arena_objects associated with arenas that have pools available. + */ +static struct arena_object* usable_arenas = NULL; + +/* nfp2lasta[nfp] is the last arena in usable_arenas with nfp free pools */ +static struct arena_object* nfp2lasta[MAX_POOLS_IN_ARENA + 1] = { NULL }; + +/* How many arena_objects do we initially allocate? + * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the + * `arenas` vector. + */ +#define INITIAL_ARENA_OBJECTS 16 + +/* Number of arenas allocated that haven't been free()'d. */ +static size_t narenas_currently_allocated = 0; + +/* Total number of times malloc() called to allocate an arena. */ +static size_t ntimes_arena_allocated = 0; +/* High water mark (max value ever seen) for narenas_currently_allocated. */ +static size_t narenas_highwater = 0; + +static Py_ssize_t raw_allocated_blocks; + +Py_ssize_t +_Py_GetAllocatedBlocks(void) +{ + Py_ssize_t n = raw_allocated_blocks; + /* add up allocated blocks for used pools */ + for (uint i = 0; i < maxarenas; ++i) { + /* Skip arenas which are not allocated. */ + if (arenas[i].address == 0) { + continue; + } + + uintptr_t base = (uintptr_t)_Py_ALIGN_UP(arenas[i].address, POOL_SIZE); + + /* visit every pool in the arena */ + assert(base <= (uintptr_t) arenas[i].pool_address); + for (; base < (uintptr_t) arenas[i].pool_address; base += POOL_SIZE) { + poolp p = (poolp)base; + n += p->ref.count; + } + } + return n; +} + +#if WITH_PYMALLOC_RADIX_TREE +/*==========================================================================*/ +/* radix tree for tracking arena usage. If enabled, used to implement + address_in_range(). + + memory address bit allocation for keys + + 64-bit pointers, IGNORE_BITS=0 and 2^20 arena size: + 15 -> MAP_TOP_BITS + 15 -> MAP_MID_BITS + 14 -> MAP_BOT_BITS + 20 -> ideal aligned arena + ---- + 64 + + 64-bit pointers, IGNORE_BITS=16, and 2^20 arena size: + 16 -> IGNORE_BITS + 10 -> MAP_TOP_BITS + 10 -> MAP_MID_BITS + 8 -> MAP_BOT_BITS + 20 -> ideal aligned arena + ---- + 64 + + 32-bit pointers and 2^18 arena size: + 14 -> MAP_BOT_BITS + 18 -> ideal aligned arena + ---- + 32 + +*/ + +#if SIZEOF_VOID_P == 8 + +/* number of bits in a pointer */ +#define POINTER_BITS 64 + +/* High bits of memory addresses that will be ignored when indexing into the + * radix tree. Setting this to zero is the safe default. For most 64-bit + * machines, setting this to 16 would be safe. The kernel would not give + * user-space virtual memory addresses that have significant information in + * those high bits. The main advantage to setting IGNORE_BITS > 0 is that less + * virtual memory will be used for the top and middle radix tree arrays. Those + * arrays are allocated in the BSS segment and so will typically consume real + * memory only if actually accessed. + */ +#define IGNORE_BITS 0 + +/* use the top and mid layers of the radix tree */ +#define USE_INTERIOR_NODES + +#elif SIZEOF_VOID_P == 4 + +#define POINTER_BITS 32 +#define IGNORE_BITS 0 + +#else + + /* Currently this code works for 64-bit or 32-bit pointers only. */ +#error "obmalloc radix tree requires 64-bit or 32-bit pointers." + +#endif /* SIZEOF_VOID_P */ + +/* arena_coverage_t members require this to be true */ +#if ARENA_BITS >= 32 +# error "arena size must be < 2^32" +#endif + +/* the lower bits of the address that are not ignored */ +#define ADDRESS_BITS (POINTER_BITS - IGNORE_BITS) + +#ifdef USE_INTERIOR_NODES +/* number of bits used for MAP_TOP and MAP_MID nodes */ +#define INTERIOR_BITS ((ADDRESS_BITS - ARENA_BITS + 2) / 3) +#else +#define INTERIOR_BITS 0 +#endif + +#define MAP_TOP_BITS INTERIOR_BITS +#define MAP_TOP_LENGTH (1 << MAP_TOP_BITS) +#define MAP_TOP_MASK (MAP_TOP_LENGTH - 1) + +#define MAP_MID_BITS INTERIOR_BITS +#define MAP_MID_LENGTH (1 << MAP_MID_BITS) +#define MAP_MID_MASK (MAP_MID_LENGTH - 1) + +#define MAP_BOT_BITS (ADDRESS_BITS - ARENA_BITS - 2*INTERIOR_BITS) +#define MAP_BOT_LENGTH (1 << MAP_BOT_BITS) +#define MAP_BOT_MASK (MAP_BOT_LENGTH - 1) + +#define MAP_BOT_SHIFT ARENA_BITS +#define MAP_MID_SHIFT (MAP_BOT_BITS + MAP_BOT_SHIFT) +#define MAP_TOP_SHIFT (MAP_MID_BITS + MAP_MID_SHIFT) + +#define AS_UINT(p) ((uintptr_t)(p)) +#define MAP_BOT_INDEX(p) ((AS_UINT(p) >> MAP_BOT_SHIFT) & MAP_BOT_MASK) +#define MAP_MID_INDEX(p) ((AS_UINT(p) >> MAP_MID_SHIFT) & MAP_MID_MASK) +#define MAP_TOP_INDEX(p) ((AS_UINT(p) >> MAP_TOP_SHIFT) & MAP_TOP_MASK) + +#if IGNORE_BITS > 0 +/* Return the ignored part of the pointer address. Those bits should be same + * for all valid pointers if IGNORE_BITS is set correctly. + */ +#define HIGH_BITS(p) (AS_UINT(p) >> ADDRESS_BITS) +#else +#define HIGH_BITS(p) 0 +#endif + + +/* This is the leaf of the radix tree. See arena_map_mark_used() for the + * meaning of these members. */ +typedef struct { + int32_t tail_hi; + int32_t tail_lo; +} arena_coverage_t; + +typedef struct arena_map_bot { + /* The members tail_hi and tail_lo are accessed together. So, it + * better to have them as an array of structs, rather than two + * arrays. + */ + arena_coverage_t arenas[MAP_BOT_LENGTH]; +} arena_map_bot_t; + +#ifdef USE_INTERIOR_NODES +typedef struct arena_map_mid { + struct arena_map_bot *ptrs[MAP_MID_LENGTH]; +} arena_map_mid_t; + +typedef struct arena_map_top { + struct arena_map_mid *ptrs[MAP_TOP_LENGTH]; +} arena_map_top_t; +#endif + +/* The root of radix tree. Note that by initializing like this, the memory + * should be in the BSS. The OS will only memory map pages as the MAP_MID + * nodes get used (OS pages are demand loaded as needed). + */ +#ifdef USE_INTERIOR_NODES +static arena_map_top_t arena_map_root; +/* accounting for number of used interior nodes */ +static int arena_map_mid_count; +static int arena_map_bot_count; +#else +static arena_map_bot_t arena_map_root; +#endif + +/* Return a pointer to a bottom tree node, return NULL if it doesn't exist or + * it cannot be created */ +static inline Py_ALWAYS_INLINE arena_map_bot_t * +arena_map_get(block *p, int create) +{ +#ifdef USE_INTERIOR_NODES + /* sanity check that IGNORE_BITS is correct */ + assert(HIGH_BITS(p) == HIGH_BITS(&arena_map_root)); + int i1 = MAP_TOP_INDEX(p); + if (arena_map_root.ptrs[i1] == NULL) { + if (!create) { + return NULL; + } + arena_map_mid_t *n = PyMem_RawCalloc(1, sizeof(arena_map_mid_t)); + if (n == NULL) { + return NULL; + } + arena_map_root.ptrs[i1] = n; + arena_map_mid_count++; + } + int i2 = MAP_MID_INDEX(p); + if (arena_map_root.ptrs[i1]->ptrs[i2] == NULL) { + if (!create) { + return NULL; + } + arena_map_bot_t *n = PyMem_RawCalloc(1, sizeof(arena_map_bot_t)); + if (n == NULL) { + return NULL; + } + arena_map_root.ptrs[i1]->ptrs[i2] = n; + arena_map_bot_count++; + } + return arena_map_root.ptrs[i1]->ptrs[i2]; +#else + return &arena_map_root; +#endif +} + + +/* The radix tree only tracks arenas. So, for 16 MiB arenas, we throw + * away 24 bits of the address. That reduces the space requirement of + * the tree compared to similar radix tree page-map schemes. In + * exchange for slashing the space requirement, it needs more + * computation to check an address. + * + * Tracking coverage is done by "ideal" arena address. It is easier to + * explain in decimal so let's say that the arena size is 100 bytes. + * Then, ideal addresses are 100, 200, 300, etc. For checking if a + * pointer address is inside an actual arena, we have to check two ideal + * arena addresses. E.g. if pointer is 357, we need to check 200 and + * 300. In the rare case that an arena is aligned in the ideal way + * (e.g. base address of arena is 200) then we only have to check one + * ideal address. + * + * The tree nodes for 200 and 300 both store the address of arena. + * There are two cases: the arena starts at a lower ideal arena and + * extends to this one, or the arena starts in this arena and extends to + * the next ideal arena. The tail_lo and tail_hi members correspond to + * these two cases. + */ + + +/* mark or unmark addresses covered by arena */ +static int +arena_map_mark_used(uintptr_t arena_base, int is_used) +{ + /* sanity check that IGNORE_BITS is correct */ + assert(HIGH_BITS(arena_base) == HIGH_BITS(&arena_map_root)); + arena_map_bot_t *n_hi = arena_map_get((block *)arena_base, is_used); + if (n_hi == NULL) { + assert(is_used); /* otherwise node should already exist */ + return 0; /* failed to allocate space for node */ + } + int i3 = MAP_BOT_INDEX((block *)arena_base); + int32_t tail = (int32_t)(arena_base & ARENA_SIZE_MASK); + if (tail == 0) { + /* is ideal arena address */ + n_hi->arenas[i3].tail_hi = is_used ? -1 : 0; + } + else { + /* arena_base address is not ideal (aligned to arena size) and + * so it potentially covers two MAP_BOT nodes. Get the MAP_BOT node + * for the next arena. Note that it might be in different MAP_TOP + * and MAP_MID nodes as well so we need to call arena_map_get() + * again (do the full tree traversal). + */ + n_hi->arenas[i3].tail_hi = is_used ? tail : 0; + uintptr_t arena_base_next = arena_base + ARENA_SIZE; + /* If arena_base is a legit arena address, so is arena_base_next - 1 + * (last address in arena). If arena_base_next overflows then it + * must overflow to 0. However, that would mean arena_base was + * "ideal" and we should not be in this case. */ + assert(arena_base < arena_base_next); + arena_map_bot_t *n_lo = arena_map_get((block *)arena_base_next, is_used); + if (n_lo == NULL) { + assert(is_used); /* otherwise should already exist */ + n_hi->arenas[i3].tail_hi = 0; + return 0; /* failed to allocate space for node */ + } + int i3_next = MAP_BOT_INDEX(arena_base_next); + n_lo->arenas[i3_next].tail_lo = is_used ? tail : 0; + } + return 1; +} + +/* Return true if 'p' is a pointer inside an obmalloc arena. + * _PyObject_Free() calls this so it needs to be very fast. */ +static int +arena_map_is_used(block *p) +{ + arena_map_bot_t *n = arena_map_get(p, 0); + if (n == NULL) { + return 0; + } + int i3 = MAP_BOT_INDEX(p); + /* ARENA_BITS must be < 32 so that the tail is a non-negative int32_t. */ + int32_t hi = n->arenas[i3].tail_hi; + int32_t lo = n->arenas[i3].tail_lo; + int32_t tail = (int32_t)(AS_UINT(p) & ARENA_SIZE_MASK); + return (tail < lo) || (tail >= hi && hi != 0); +} + +/* end of radix tree logic */ +/*==========================================================================*/ +#endif /* WITH_PYMALLOC_RADIX_TREE */ + + +/* Allocate a new arena. If we run out of memory, return NULL. Else + * allocate a new arena, and return the address of an arena_object + * describing the new arena. It's expected that the caller will set + * `usable_arenas` to the return value. + */ +static struct arena_object* +new_arena(void) +{ + struct arena_object* arenaobj; + uint excess; /* number of bytes above pool alignment */ + void *address; + static int debug_stats = -1; + + if (debug_stats == -1) { + const char *opt = Py_GETENV("PYTHONMALLOCSTATS"); + debug_stats = (opt != NULL && *opt != '\0'); + } + if (debug_stats) { + _PyObject_DebugMallocStats(stderr); + } + + if (unused_arena_objects == NULL) { + uint i; + uint numarenas; + size_t nbytes; + + /* Double the number of arena objects on each allocation. + * Note that it's possible for `numarenas` to overflow. + */ + numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS; + if (numarenas <= maxarenas) + return NULL; /* overflow */ +#if SIZEOF_SIZE_T <= SIZEOF_INT + if (numarenas > SIZE_MAX / sizeof(*arenas)) + return NULL; /* overflow */ +#endif + nbytes = numarenas * sizeof(*arenas); + arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes); + if (arenaobj == NULL) + return NULL; + arenas = arenaobj; + + /* We might need to fix pointers that were copied. However, + * new_arena only gets called when all the pages in the + * previous arenas are full. Thus, there are *no* pointers + * into the old array. Thus, we don't have to worry about + * invalid pointers. Just to be sure, some asserts: + */ + assert(usable_arenas == NULL); + assert(unused_arena_objects == NULL); + + /* Put the new arenas on the unused_arena_objects list. */ + for (i = maxarenas; i < numarenas; ++i) { + arenas[i].address = 0; /* mark as unassociated */ + arenas[i].nextarena = i < numarenas - 1 ? + &arenas[i+1] : NULL; + } + + /* Update globals. */ + unused_arena_objects = &arenas[maxarenas]; + maxarenas = numarenas; + } + + /* Take the next available arena object off the head of the list. */ + assert(unused_arena_objects != NULL); + arenaobj = unused_arena_objects; + unused_arena_objects = arenaobj->nextarena; + assert(arenaobj->address == 0); + address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE); +#if WITH_PYMALLOC_RADIX_TREE + if (address != NULL) { + if (!arena_map_mark_used((uintptr_t)address, 1)) { + /* marking arena in radix tree failed, abort */ + _PyObject_Arena.free(_PyObject_Arena.ctx, address, ARENA_SIZE); + address = NULL; + } + } +#endif + if (address == NULL) { + /* The allocation failed: return NULL after putting the + * arenaobj back. + */ + arenaobj->nextarena = unused_arena_objects; + unused_arena_objects = arenaobj; + return NULL; + } + arenaobj->address = (uintptr_t)address; + + ++narenas_currently_allocated; + ++ntimes_arena_allocated; + if (narenas_currently_allocated > narenas_highwater) + narenas_highwater = narenas_currently_allocated; + arenaobj->freepools = NULL; + /* pool_address <- first pool-aligned address in the arena + nfreepools <- number of whole pools that fit after alignment */ + arenaobj->pool_address = (block*)arenaobj->address; + arenaobj->nfreepools = MAX_POOLS_IN_ARENA; + excess = (uint)(arenaobj->address & POOL_SIZE_MASK); + if (excess != 0) { + --arenaobj->nfreepools; + arenaobj->pool_address += POOL_SIZE - excess; + } + arenaobj->ntotalpools = arenaobj->nfreepools; + + return arenaobj; +} + + + +#if WITH_PYMALLOC_RADIX_TREE +/* Return true if and only if P is an address that was allocated by + pymalloc. When the radix tree is used, 'poolp' is unused. + */ +static bool +address_in_range(void *p, poolp pool) +{ + return arena_map_is_used(p); +} +#else +/* +address_in_range(P, POOL) + +Return true if and only if P is an address that was allocated by pymalloc. +POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P) +(the caller is asked to compute this because the macro expands POOL more than +once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a +variable and pass the latter to the macro; because address_in_range is +called on every alloc/realloc/free, micro-efficiency is important here). + +Tricky: Let B be the arena base address associated with the pool, B = +arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if + + B <= P < B + ARENA_SIZE + +Subtracting B throughout, this is true iff + + 0 <= P-B < ARENA_SIZE + +By using unsigned arithmetic, the "0 <=" half of the test can be skipped. + +Obscure: A PyMem "free memory" function can call the pymalloc free or realloc +before the first arena has been allocated. `arenas` is still NULL in that +case. We're relying on that maxarenas is also 0 in that case, so that +(POOL)->arenaindex < maxarenas must be false, saving us from trying to index +into a NULL arenas. + +Details: given P and POOL, the arena_object corresponding to P is AO = +arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild +stores, etc), POOL is the correct address of P's pool, AO.address is the +correct base address of the pool's arena, and P must be within ARENA_SIZE of +AO.address. In addition, AO.address is not 0 (no arena can start at address 0 +(NULL)). Therefore address_in_range correctly reports that obmalloc +controls P. + +Now suppose obmalloc does not control P (e.g., P was obtained via a direct +call to the system malloc() or realloc()). (POOL)->arenaindex may be anything +in this case -- it may even be uninitialized trash. If the trash arenaindex +is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't +control P. + +Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an +allocated arena, obmalloc controls all the memory in slice AO.address : +AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc, +so P doesn't lie in that slice, so the macro correctly reports that P is not +controlled by obmalloc. + +Finally, if P is not controlled by obmalloc and AO corresponds to an unused +arena_object (one not currently associated with an allocated arena), +AO.address is 0, and the second test in the macro reduces to: + + P < ARENA_SIZE + +If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes +that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part +of the test still passes, and the third clause (AO.address != 0) is necessary +to get the correct result: AO.address is 0 in this case, so the macro +correctly reports that P is not controlled by obmalloc (despite that P lies in +slice AO.address : AO.address + ARENA_SIZE). + +Note: The third (AO.address != 0) clause was added in Python 2.5. Before +2.5, arenas were never free()'ed, and an arenaindex < maxarena always +corresponded to a currently-allocated arena, so the "P is not controlled by +obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case +was impossible. + +Note that the logic is excruciating, and reading up possibly uninitialized +memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex) +creates problems for some memory debuggers. The overwhelming advantage is +that this test determines whether an arbitrary address is controlled by +obmalloc in a small constant time, independent of the number of arenas +obmalloc controls. Since this test is needed at every entry point, it's +extremely desirable that it be this fast. +*/ + +static bool _Py_NO_SANITIZE_ADDRESS + _Py_NO_SANITIZE_THREAD + _Py_NO_SANITIZE_MEMORY +address_in_range(void *p, poolp pool) +{ + // Since address_in_range may be reading from memory which was not allocated + // by Python, it is important that pool->arenaindex is read only once, as + // another thread may be concurrently modifying the value without holding + // the GIL. The following dance forces the compiler to read pool->arenaindex + // only once. + uint arenaindex = *((volatile uint *)&pool->arenaindex); + return arenaindex < maxarenas && + (uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE && + arenas[arenaindex].address != 0; +} + +#endif /* !WITH_PYMALLOC_RADIX_TREE */ + +/*==========================================================================*/ + +// Called when freelist is exhausted. Extend the freelist if there is +// space for a block. Otherwise, remove this pool from usedpools. +static void +pymalloc_pool_extend(poolp pool, uint size) +{ + if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) { + /* There is room for another block. */ + pool->freeblock = (block*)pool + pool->nextoffset; + pool->nextoffset += INDEX2SIZE(size); + *(block **)(pool->freeblock) = NULL; + return; + } + + /* Pool is full, unlink from used pools. */ + poolp next; + next = pool->nextpool; + pool = pool->prevpool; + next->prevpool = pool; + pool->nextpool = next; +} + +/* called when pymalloc_alloc can not allocate a block from usedpool. + * This function takes new pool and allocate a block from it. + */ +static void* +allocate_from_new_pool(uint size) +{ + /* There isn't a pool of the right size class immediately + * available: use a free pool. + */ + if (UNLIKELY(usable_arenas == NULL)) { + /* No arena has a free pool: allocate a new arena. */ +#ifdef WITH_MEMORY_LIMITS + if (narenas_currently_allocated >= MAX_ARENAS) { + return NULL; + } +#endif + usable_arenas = new_arena(); + if (usable_arenas == NULL) { + return NULL; + } + usable_arenas->nextarena = usable_arenas->prevarena = NULL; + assert(nfp2lasta[usable_arenas->nfreepools] == NULL); + nfp2lasta[usable_arenas->nfreepools] = usable_arenas; + } + assert(usable_arenas->address != 0); + + /* This arena already had the smallest nfreepools value, so decreasing + * nfreepools doesn't change that, and we don't need to rearrange the + * usable_arenas list. However, if the arena becomes wholly allocated, + * we need to remove its arena_object from usable_arenas. + */ + assert(usable_arenas->nfreepools > 0); + if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) { + /* It's the last of this size, so there won't be any. */ + nfp2lasta[usable_arenas->nfreepools] = NULL; + } + /* If any free pools will remain, it will be the new smallest. */ + if (usable_arenas->nfreepools > 1) { + assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL); + nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas; + } + + /* Try to get a cached free pool. */ + poolp pool = usable_arenas->freepools; + if (LIKELY(pool != NULL)) { + /* Unlink from cached pools. */ + usable_arenas->freepools = pool->nextpool; + usable_arenas->nfreepools--; + if (UNLIKELY(usable_arenas->nfreepools == 0)) { + /* Wholly allocated: remove. */ + assert(usable_arenas->freepools == NULL); + assert(usable_arenas->nextarena == NULL || + usable_arenas->nextarena->prevarena == + usable_arenas); + usable_arenas = usable_arenas->nextarena; + if (usable_arenas != NULL) { + usable_arenas->prevarena = NULL; + assert(usable_arenas->address != 0); + } + } + else { + /* nfreepools > 0: it must be that freepools + * isn't NULL, or that we haven't yet carved + * off all the arena's pools for the first + * time. + */ + assert(usable_arenas->freepools != NULL || + usable_arenas->pool_address <= + (block*)usable_arenas->address + + ARENA_SIZE - POOL_SIZE); + } + } + else { + /* Carve off a new pool. */ + assert(usable_arenas->nfreepools > 0); + assert(usable_arenas->freepools == NULL); + pool = (poolp)usable_arenas->pool_address; + assert((block*)pool <= (block*)usable_arenas->address + + ARENA_SIZE - POOL_SIZE); + pool->arenaindex = (uint)(usable_arenas - arenas); + assert(&arenas[pool->arenaindex] == usable_arenas); + pool->szidx = DUMMY_SIZE_IDX; + usable_arenas->pool_address += POOL_SIZE; + --usable_arenas->nfreepools; + + if (usable_arenas->nfreepools == 0) { + assert(usable_arenas->nextarena == NULL || + usable_arenas->nextarena->prevarena == + usable_arenas); + /* Unlink the arena: it is completely allocated. */ + usable_arenas = usable_arenas->nextarena; + if (usable_arenas != NULL) { + usable_arenas->prevarena = NULL; + assert(usable_arenas->address != 0); + } + } + } + + /* Frontlink to used pools. */ + block *bp; + poolp next = usedpools[size + size]; /* == prev */ + pool->nextpool = next; + pool->prevpool = next; + next->nextpool = pool; + next->prevpool = pool; + pool->ref.count = 1; + if (pool->szidx == size) { + /* Luckily, this pool last contained blocks + * of the same size class, so its header + * and free list are already initialized. + */ + bp = pool->freeblock; + assert(bp != NULL); + pool->freeblock = *(block **)bp; + return bp; + } + /* + * Initialize the pool header, set up the free list to + * contain just the second block, and return the first + * block. + */ + pool->szidx = size; + size = INDEX2SIZE(size); + bp = (block *)pool + POOL_OVERHEAD; + pool->nextoffset = POOL_OVERHEAD + (size << 1); + pool->maxnextoffset = POOL_SIZE - size; + pool->freeblock = bp + size; + *(block **)(pool->freeblock) = NULL; + return bp; +} + +/* pymalloc allocator + + Return a pointer to newly allocated memory if pymalloc allocated memory. + + Return NULL if pymalloc failed to allocate the memory block: on bigger + requests, on error in the code below (as a last chance to serve the request) + or when the max memory limit has been reached. +*/ +static inline void* +pymalloc_alloc(void *ctx, size_t nbytes) +{ +#ifdef WITH_VALGRIND + if (UNLIKELY(running_on_valgrind == -1)) { + running_on_valgrind = RUNNING_ON_VALGRIND; + } + if (UNLIKELY(running_on_valgrind)) { + return NULL; + } +#endif + + if (UNLIKELY(nbytes == 0)) { + return NULL; + } + if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) { + return NULL; + } + + uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT; + poolp pool = usedpools[size + size]; + block *bp; + + if (LIKELY(pool != pool->nextpool)) { + /* + * There is a used pool for this size class. + * Pick up the head block of its free list. + */ + ++pool->ref.count; + bp = pool->freeblock; + assert(bp != NULL); + + if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL)) { + // Reached the end of the free list, try to extend it. + pymalloc_pool_extend(pool, size); + } + } + else { + /* There isn't a pool of the right size class immediately + * available: use a free pool. + */ + bp = allocate_from_new_pool(size); + } + + return (void *)bp; +} + + +static void * +_PyObject_Malloc(void *ctx, size_t nbytes) +{ + void* ptr = pymalloc_alloc(ctx, nbytes); + if (LIKELY(ptr != NULL)) { + return ptr; + } + + ptr = PyMem_RawMalloc(nbytes); + if (ptr != NULL) { + raw_allocated_blocks++; + } + return ptr; +} + + +static void * +_PyObject_Calloc(void *ctx, size_t nelem, size_t elsize) +{ + assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); + size_t nbytes = nelem * elsize; + + void* ptr = pymalloc_alloc(ctx, nbytes); + if (LIKELY(ptr != NULL)) { + memset(ptr, 0, nbytes); + return ptr; + } + + ptr = PyMem_RawCalloc(nelem, elsize); + if (ptr != NULL) { + raw_allocated_blocks++; + } + return ptr; +} + + +static void +insert_to_usedpool(poolp pool) +{ + assert(pool->ref.count > 0); /* else the pool is empty */ + + uint size = pool->szidx; + poolp next = usedpools[size + size]; + poolp prev = next->prevpool; + + /* insert pool before next: prev <-> pool <-> next */ + pool->nextpool = next; + pool->prevpool = prev; + next->prevpool = pool; + prev->nextpool = pool; +} + +static void +insert_to_freepool(poolp pool) +{ + poolp next = pool->nextpool; + poolp prev = pool->prevpool; + next->prevpool = prev; + prev->nextpool = next; + + /* Link the pool to freepools. This is a singly-linked + * list, and pool->prevpool isn't used there. + */ + struct arena_object *ao = &arenas[pool->arenaindex]; + pool->nextpool = ao->freepools; + ao->freepools = pool; + uint nf = ao->nfreepools; + /* If this is the rightmost arena with this number of free pools, + * nfp2lasta[nf] needs to change. Caution: if nf is 0, there + * are no arenas in usable_arenas with that value. + */ + struct arena_object* lastnf = nfp2lasta[nf]; + assert((nf == 0 && lastnf == NULL) || + (nf > 0 && + lastnf != NULL && + lastnf->nfreepools == nf && + (lastnf->nextarena == NULL || + nf < lastnf->nextarena->nfreepools))); + if (lastnf == ao) { /* it is the rightmost */ + struct arena_object* p = ao->prevarena; + nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL; + } + ao->nfreepools = ++nf; + + /* All the rest is arena management. We just freed + * a pool, and there are 4 cases for arena mgmt: + * 1. If all the pools are free, return the arena to + * the system free(). Except if this is the last + * arena in the list, keep it to avoid thrashing: + * keeping one wholly free arena in the list avoids + * pathological cases where a simple loop would + * otherwise provoke needing to allocate and free an + * arena on every iteration. See bpo-37257. + * 2. If this is the only free pool in the arena, + * add the arena back to the `usable_arenas` list. + * 3. If the "next" arena has a smaller count of free + * pools, we have to "slide this arena right" to + * restore that usable_arenas is sorted in order of + * nfreepools. + * 4. Else there's nothing more to do. + */ + if (nf == ao->ntotalpools && ao->nextarena != NULL) { + /* Case 1. First unlink ao from usable_arenas. + */ + assert(ao->prevarena == NULL || + ao->prevarena->address != 0); + assert(ao ->nextarena == NULL || + ao->nextarena->address != 0); + + /* Fix the pointer in the prevarena, or the + * usable_arenas pointer. + */ + if (ao->prevarena == NULL) { + usable_arenas = ao->nextarena; + assert(usable_arenas == NULL || + usable_arenas->address != 0); + } + else { + assert(ao->prevarena->nextarena == ao); + ao->prevarena->nextarena = + ao->nextarena; + } + /* Fix the pointer in the nextarena. */ + if (ao->nextarena != NULL) { + assert(ao->nextarena->prevarena == ao); + ao->nextarena->prevarena = + ao->prevarena; + } + /* Record that this arena_object slot is + * available to be reused. + */ + ao->nextarena = unused_arena_objects; + unused_arena_objects = ao; + +#if WITH_PYMALLOC_RADIX_TREE + /* mark arena region as not under control of obmalloc */ + arena_map_mark_used(ao->address, 0); +#endif + + /* Free the entire arena. */ + _PyObject_Arena.free(_PyObject_Arena.ctx, + (void *)ao->address, ARENA_SIZE); + ao->address = 0; /* mark unassociated */ + --narenas_currently_allocated; + + return; + } + + if (nf == 1) { + /* Case 2. Put ao at the head of + * usable_arenas. Note that because + * ao->nfreepools was 0 before, ao isn't + * currently on the usable_arenas list. + */ + ao->nextarena = usable_arenas; + ao->prevarena = NULL; + if (usable_arenas) + usable_arenas->prevarena = ao; + usable_arenas = ao; + assert(usable_arenas->address != 0); + if (nfp2lasta[1] == NULL) { + nfp2lasta[1] = ao; + } + + return; + } + + /* If this arena is now out of order, we need to keep + * the list sorted. The list is kept sorted so that + * the "most full" arenas are used first, which allows + * the nearly empty arenas to be completely freed. In + * a few un-scientific tests, it seems like this + * approach allowed a lot more memory to be freed. + */ + /* If this is the only arena with nf, record that. */ + if (nfp2lasta[nf] == NULL) { + nfp2lasta[nf] = ao; + } /* else the rightmost with nf doesn't change */ + /* If this was the rightmost of the old size, it remains in place. */ + if (ao == lastnf) { + /* Case 4. Nothing to do. */ + return; + } + /* If ao were the only arena in the list, the last block would have + * gotten us out. + */ + assert(ao->nextarena != NULL); + + /* Case 3: We have to move the arena towards the end of the list, + * because it has more free pools than the arena to its right. It needs + * to move to follow lastnf. + * First unlink ao from usable_arenas. + */ + if (ao->prevarena != NULL) { + /* ao isn't at the head of the list */ + assert(ao->prevarena->nextarena == ao); + ao->prevarena->nextarena = ao->nextarena; + } + else { + /* ao is at the head of the list */ + assert(usable_arenas == ao); + usable_arenas = ao->nextarena; + } + ao->nextarena->prevarena = ao->prevarena; + /* And insert after lastnf. */ + ao->prevarena = lastnf; + ao->nextarena = lastnf->nextarena; + if (ao->nextarena != NULL) { + ao->nextarena->prevarena = ao; + } + lastnf->nextarena = ao; + /* Verify that the swaps worked. */ + assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools); + assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools); + assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao); + assert((usable_arenas == ao && ao->prevarena == NULL) + || ao->prevarena->nextarena == ao); +} + +/* Free a memory block allocated by pymalloc_alloc(). + Return 1 if it was freed. + Return 0 if the block was not allocated by pymalloc_alloc(). */ +static inline int +pymalloc_free(void *ctx, void *p) +{ + assert(p != NULL); + +#ifdef WITH_VALGRIND + if (UNLIKELY(running_on_valgrind > 0)) { + return 0; + } +#endif + + poolp pool = POOL_ADDR(p); + if (UNLIKELY(!address_in_range(p, pool))) { + return 0; + } + /* We allocated this address. */ + + /* Link p to the start of the pool's freeblock list. Since + * the pool had at least the p block outstanding, the pool + * wasn't empty (so it's already in a usedpools[] list, or + * was full and is in no list -- it's not in the freeblocks + * list in any case). + */ + assert(pool->ref.count > 0); /* else it was empty */ + block *lastfree = pool->freeblock; + *(block **)p = lastfree; + pool->freeblock = (block *)p; + pool->ref.count--; + + if (UNLIKELY(lastfree == NULL)) { + /* Pool was full, so doesn't currently live in any list: + * link it to the front of the appropriate usedpools[] list. + * This mimics LRU pool usage for new allocations and + * targets optimal filling when several pools contain + * blocks of the same size class. + */ + insert_to_usedpool(pool); + return 1; + } + + /* freeblock wasn't NULL, so the pool wasn't full, + * and the pool is in a usedpools[] list. + */ + if (LIKELY(pool->ref.count != 0)) { + /* pool isn't empty: leave it in usedpools */ + return 1; + } + + /* Pool is now empty: unlink from usedpools, and + * link to the front of freepools. This ensures that + * previously freed pools will be allocated later + * (being not referenced, they are perhaps paged out). + */ + insert_to_freepool(pool); + return 1; +} + + +static void +_PyObject_Free(void *ctx, void *p) +{ + /* PyObject_Free(NULL) has no effect */ + if (p == NULL) { + return; + } + + if (UNLIKELY(!pymalloc_free(ctx, p))) { + /* pymalloc didn't allocate this address */ + PyMem_RawFree(p); + raw_allocated_blocks--; + } +} + + +/* pymalloc realloc. + + If nbytes==0, then as the Python docs promise, we do not treat this like + free(p), and return a non-NULL result. + + Return 1 if pymalloc reallocated memory and wrote the new pointer into + newptr_p. + + Return 0 if pymalloc didn't allocated p. */ +static int +pymalloc_realloc(void *ctx, void **newptr_p, void *p, size_t nbytes) +{ + void *bp; + poolp pool; + size_t size; + + assert(p != NULL); + +#ifdef WITH_VALGRIND + /* Treat running_on_valgrind == -1 the same as 0 */ + if (UNLIKELY(running_on_valgrind > 0)) { + return 0; + } +#endif + + pool = POOL_ADDR(p); + if (!address_in_range(p, pool)) { + /* pymalloc is not managing this block. + + If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take + over this block. However, if we do, we need to copy the valid data + from the C-managed block to one of our blocks, and there's no + portable way to know how much of the memory space starting at p is + valid. + + As bug 1185883 pointed out the hard way, it's possible that the + C-managed block is "at the end" of allocated VM space, so that a + memory fault can occur if we try to copy nbytes bytes starting at p. + Instead we punt: let C continue to manage this block. */ + return 0; + } + + /* pymalloc is in charge of this block */ + size = INDEX2SIZE(pool->szidx); + if (nbytes <= size) { + /* The block is staying the same or shrinking. + + If it's shrinking, there's a tradeoff: it costs cycles to copy the + block to a smaller size class, but it wastes memory not to copy it. + + The compromise here is to copy on shrink only if at least 25% of + size can be shaved off. */ + if (4 * nbytes > 3 * size) { + /* It's the same, or shrinking and new/old > 3/4. */ + *newptr_p = p; + return 1; + } + size = nbytes; + } + + bp = _PyObject_Malloc(ctx, nbytes); + if (bp != NULL) { + memcpy(bp, p, size); + _PyObject_Free(ctx, p); + } + *newptr_p = bp; + return 1; +} + + +static void * +_PyObject_Realloc(void *ctx, void *ptr, size_t nbytes) +{ + void *ptr2; + + if (ptr == NULL) { + return _PyObject_Malloc(ctx, nbytes); + } + + if (pymalloc_realloc(ctx, &ptr2, ptr, nbytes)) { + return ptr2; + } + + return PyMem_RawRealloc(ptr, nbytes); +} + +#else /* ! WITH_PYMALLOC */ + +/*==========================================================================*/ +/* pymalloc not enabled: Redirect the entry points to malloc. These will + * only be used by extensions that are compiled with pymalloc enabled. */ + +Py_ssize_t +_Py_GetAllocatedBlocks(void) +{ + return 0; +} + +#endif /* WITH_PYMALLOC */ + + +/*==========================================================================*/ +/* A x-platform debugging allocator. This doesn't manage memory directly, + * it wraps a real allocator, adding extra debugging info to the memory blocks. + */ + +/* Uncomment this define to add the "serialno" field */ +/* #define PYMEM_DEBUG_SERIALNO */ + +#ifdef PYMEM_DEBUG_SERIALNO +static size_t serialno = 0; /* incremented on each debug {m,re}alloc */ + +/* serialno is always incremented via calling this routine. The point is + * to supply a single place to set a breakpoint. + */ +static void +bumpserialno(void) +{ + ++serialno; +} +#endif + +#define SST SIZEOF_SIZE_T + +#ifdef PYMEM_DEBUG_SERIALNO +# define PYMEM_DEBUG_EXTRA_BYTES 4 * SST +#else +# define PYMEM_DEBUG_EXTRA_BYTES 3 * SST +#endif + +/* Read sizeof(size_t) bytes at p as a big-endian size_t. */ +static size_t +read_size_t(const void *p) +{ + const uint8_t *q = (const uint8_t *)p; + size_t result = *q++; + int i; + + for (i = SST; --i > 0; ++q) + result = (result << 8) | *q; + return result; +} + +/* Write n as a big-endian size_t, MSB at address p, LSB at + * p + sizeof(size_t) - 1. + */ +static void +write_size_t(void *p, size_t n) +{ + uint8_t *q = (uint8_t *)p + SST - 1; + int i; + + for (i = SST; --i >= 0; --q) { + *q = (uint8_t)(n & 0xff); + n >>= 8; + } +} + +/* Let S = sizeof(size_t). The debug malloc asks for 4 * S extra bytes and + fills them with useful stuff, here calling the underlying malloc's result p: + +p[0: S] + Number of bytes originally asked for. This is a size_t, big-endian (easier + to read in a memory dump). +p[S] + API ID. See PEP 445. This is a character, but seems undocumented. +p[S+1: 2*S] + Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads. +p[2*S: 2*S+n] + The requested memory, filled with copies of PYMEM_CLEANBYTE. + Used to catch reference to uninitialized memory. + &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc + handled the request itself. +p[2*S+n: 2*S+n+S] + Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads. +p[2*S+n+S: 2*S+n+2*S] + A serial number, incremented by 1 on each call to _PyMem_DebugMalloc + and _PyMem_DebugRealloc. + This is a big-endian size_t. + If "bad memory" is detected later, the serial number gives an + excellent way to set a breakpoint on the next run, to capture the + instant at which this block was passed out. + +If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks +for 3 * S extra bytes, and omits the last serialno field. +*/ + +static void * +_PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes) +{ + debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; + uint8_t *p; /* base address of malloc'ed pad block */ + uint8_t *data; /* p + 2*SST == pointer to data bytes */ + uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */ + size_t total; /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */ + + if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { + /* integer overflow: can't represent total as a Py_ssize_t */ + return NULL; + } + total = nbytes + PYMEM_DEBUG_EXTRA_BYTES; + + /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN] + ^--- p ^--- data ^--- tail + S: nbytes stored as size_t + I: API identifier (1 byte) + F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after) + C: Clean bytes used later to store actual data + N: Serial number stored as size_t + + If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field + is omitted. */ + + if (use_calloc) { + p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total); + } + else { + p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total); + } + if (p == NULL) { + return NULL; + } + data = p + 2*SST; + +#ifdef PYMEM_DEBUG_SERIALNO + bumpserialno(); +#endif + + /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */ + write_size_t(p, nbytes); + p[SST] = (uint8_t)api->api_id; + memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1); + + if (nbytes > 0 && !use_calloc) { + memset(data, PYMEM_CLEANBYTE, nbytes); + } + + /* at tail, write pad (SST bytes) and serialno (SST bytes) */ + tail = data + nbytes; + memset(tail, PYMEM_FORBIDDENBYTE, SST); +#ifdef PYMEM_DEBUG_SERIALNO + write_size_t(tail + SST, serialno); +#endif + + return data; +} + +static void * +_PyMem_DebugRawMalloc(void *ctx, size_t nbytes) +{ + return _PyMem_DebugRawAlloc(0, ctx, nbytes); +} + +static void * +_PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize) +{ + size_t nbytes; + assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); + nbytes = nelem * elsize; + return _PyMem_DebugRawAlloc(1, ctx, nbytes); +} + + +/* The debug free first checks the 2*SST bytes on each end for sanity (in + particular, that the FORBIDDENBYTEs with the api ID are still intact). + Then fills the original bytes with PYMEM_DEADBYTE. + Then calls the underlying free. +*/ +static void +_PyMem_DebugRawFree(void *ctx, void *p) +{ + /* PyMem_Free(NULL) has no effect */ + if (p == NULL) { + return; + } + + debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; + uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */ + size_t nbytes; + + _PyMem_DebugCheckAddress(__func__, api->api_id, p); + nbytes = read_size_t(q); + nbytes += PYMEM_DEBUG_EXTRA_BYTES; + memset(q, PYMEM_DEADBYTE, nbytes); + api->alloc.free(api->alloc.ctx, q); +} + + +static void * +_PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes) +{ + if (p == NULL) { + return _PyMem_DebugRawAlloc(0, ctx, nbytes); + } + + debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; + uint8_t *head; /* base address of malloc'ed pad block */ + uint8_t *data; /* pointer to data bytes */ + uint8_t *r; + uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */ + size_t total; /* 2 * SST + nbytes + 2 * SST */ + size_t original_nbytes; +#define ERASED_SIZE 64 + uint8_t save[2*ERASED_SIZE]; /* A copy of erased bytes. */ + + _PyMem_DebugCheckAddress(__func__, api->api_id, p); + + data = (uint8_t *)p; + head = data - 2*SST; + original_nbytes = read_size_t(head); + if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { + /* integer overflow: can't represent total as a Py_ssize_t */ + return NULL; + } + total = nbytes + PYMEM_DEBUG_EXTRA_BYTES; + + tail = data + original_nbytes; +#ifdef PYMEM_DEBUG_SERIALNO + size_t block_serialno = read_size_t(tail + SST); +#endif + /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and + ERASED_SIZE bytes at the end as dead and save the copy of erased bytes. + */ + if (original_nbytes <= sizeof(save)) { + memcpy(save, data, original_nbytes); + memset(data - 2 * SST, PYMEM_DEADBYTE, + original_nbytes + PYMEM_DEBUG_EXTRA_BYTES); + } + else { + memcpy(save, data, ERASED_SIZE); + memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST); + memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE); + memset(tail - ERASED_SIZE, PYMEM_DEADBYTE, + ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST); + } + + /* Resize and add decorations. */ + r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total); + if (r == NULL) { + /* if realloc() failed: rewrite header and footer which have + just been erased */ + nbytes = original_nbytes; + } + else { + head = r; +#ifdef PYMEM_DEBUG_SERIALNO + bumpserialno(); + block_serialno = serialno; +#endif + } + data = head + 2*SST; + + write_size_t(head, nbytes); + head[SST] = (uint8_t)api->api_id; + memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1); + + tail = data + nbytes; + memset(tail, PYMEM_FORBIDDENBYTE, SST); +#ifdef PYMEM_DEBUG_SERIALNO + write_size_t(tail + SST, block_serialno); +#endif + + /* Restore saved bytes. */ + if (original_nbytes <= sizeof(save)) { + memcpy(data, save, Py_MIN(nbytes, original_nbytes)); + } + else { + size_t i = original_nbytes - ERASED_SIZE; + memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE)); + if (nbytes > i) { + memcpy(data + i, &save[ERASED_SIZE], + Py_MIN(nbytes - i, ERASED_SIZE)); + } + } + + if (r == NULL) { + return NULL; + } + + if (nbytes > original_nbytes) { + /* growing: mark new extra memory clean */ + memset(data + original_nbytes, PYMEM_CLEANBYTE, + nbytes - original_nbytes); + } + + return data; +} + +static inline void +_PyMem_DebugCheckGIL(const char *func) +{ + if (!PyGILState_Check()) { + _Py_FatalErrorFunc(func, + "Python memory allocator called " + "without holding the GIL"); + } +} + +static void * +_PyMem_DebugMalloc(void *ctx, size_t nbytes) +{ + _PyMem_DebugCheckGIL(__func__); + return _PyMem_DebugRawMalloc(ctx, nbytes); +} + +static void * +_PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize) +{ + _PyMem_DebugCheckGIL(__func__); + return _PyMem_DebugRawCalloc(ctx, nelem, elsize); +} + + +static void +_PyMem_DebugFree(void *ctx, void *ptr) +{ + _PyMem_DebugCheckGIL(__func__); + _PyMem_DebugRawFree(ctx, ptr); +} + + +static void * +_PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes) +{ + _PyMem_DebugCheckGIL(__func__); + return _PyMem_DebugRawRealloc(ctx, ptr, nbytes); +} + +/* Check the forbidden bytes on both ends of the memory allocated for p. + * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress, + * and call Py_FatalError to kill the program. + * The API id, is also checked. + */ +static void +_PyMem_DebugCheckAddress(const char *func, char api, const void *p) +{ + assert(p != NULL); + + const uint8_t *q = (const uint8_t *)p; + size_t nbytes; + const uint8_t *tail; + int i; + char id; + + /* Check the API id */ + id = (char)q[-SST]; + if (id != api) { + _PyObject_DebugDumpAddress(p); + _Py_FatalErrorFormat(func, + "bad ID: Allocated using API '%c', " + "verified using API '%c'", + id, api); + } + + /* Check the stuff at the start of p first: if there's underwrite + * corruption, the number-of-bytes field may be nuts, and checking + * the tail could lead to a segfault then. + */ + for (i = SST-1; i >= 1; --i) { + if (*(q-i) != PYMEM_FORBIDDENBYTE) { + _PyObject_DebugDumpAddress(p); + _Py_FatalErrorFunc(func, "bad leading pad byte"); + } + } + + nbytes = read_size_t(q - 2*SST); + tail = q + nbytes; + for (i = 0; i < SST; ++i) { + if (tail[i] != PYMEM_FORBIDDENBYTE) { + _PyObject_DebugDumpAddress(p); + _Py_FatalErrorFunc(func, "bad trailing pad byte"); + } + } +} + +/* Display info to stderr about the memory block at p. */ +static void +_PyObject_DebugDumpAddress(const void *p) +{ + const uint8_t *q = (const uint8_t *)p; + const uint8_t *tail; + size_t nbytes; + int i; + int ok; + char id; + + fprintf(stderr, "Debug memory block at address p=%p:", p); + if (p == NULL) { + fprintf(stderr, "\n"); + return; + } + id = (char)q[-SST]; + fprintf(stderr, " API '%c'\n", id); + + nbytes = read_size_t(q - 2*SST); + fprintf(stderr, " %zu bytes originally requested\n", nbytes); + + /* In case this is nuts, check the leading pad bytes first. */ + fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1); + ok = 1; + for (i = 1; i <= SST-1; ++i) { + if (*(q-i) != PYMEM_FORBIDDENBYTE) { + ok = 0; + break; + } + } + if (ok) + fputs("FORBIDDENBYTE, as expected.\n", stderr); + else { + fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", + PYMEM_FORBIDDENBYTE); + for (i = SST-1; i >= 1; --i) { + const uint8_t byte = *(q-i); + fprintf(stderr, " at p-%d: 0x%02x", i, byte); + if (byte != PYMEM_FORBIDDENBYTE) + fputs(" *** OUCH", stderr); + fputc('\n', stderr); + } + + fputs(" Because memory is corrupted at the start, the " + "count of bytes requested\n" + " may be bogus, and checking the trailing pad " + "bytes may segfault.\n", stderr); + } + + tail = q + nbytes; + fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, (void *)tail); + ok = 1; + for (i = 0; i < SST; ++i) { + if (tail[i] != PYMEM_FORBIDDENBYTE) { + ok = 0; + break; + } + } + if (ok) + fputs("FORBIDDENBYTE, as expected.\n", stderr); + else { + fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", + PYMEM_FORBIDDENBYTE); + for (i = 0; i < SST; ++i) { + const uint8_t byte = tail[i]; + fprintf(stderr, " at tail+%d: 0x%02x", + i, byte); + if (byte != PYMEM_FORBIDDENBYTE) + fputs(" *** OUCH", stderr); + fputc('\n', stderr); + } + } + +#ifdef PYMEM_DEBUG_SERIALNO + size_t serial = read_size_t(tail + SST); + fprintf(stderr, + " The block was made by call #%zu to debug malloc/realloc.\n", + serial); +#endif + + if (nbytes > 0) { + i = 0; + fputs(" Data at p:", stderr); + /* print up to 8 bytes at the start */ + while (q < tail && i < 8) { + fprintf(stderr, " %02x", *q); + ++i; + ++q; + } + /* and up to 8 at the end */ + if (q < tail) { + if (tail - q > 8) { + fputs(" ...", stderr); + q = tail - 8; + } + while (q < tail) { + fprintf(stderr, " %02x", *q); + ++q; + } + } + fputc('\n', stderr); + } + fputc('\n', stderr); + + fflush(stderr); + _PyMem_DumpTraceback(fileno(stderr), p); +} + + +static size_t +printone(FILE *out, const char* msg, size_t value) +{ + int i, k; + char buf[100]; + size_t origvalue = value; + + fputs(msg, out); + for (i = (int)strlen(msg); i < 35; ++i) + fputc(' ', out); + fputc('=', out); + + /* Write the value with commas. */ + i = 22; + buf[i--] = '\0'; + buf[i--] = '\n'; + k = 3; + do { + size_t nextvalue = value / 10; + unsigned int digit = (unsigned int)(value - nextvalue * 10); + value = nextvalue; + buf[i--] = (char)(digit + '0'); + --k; + if (k == 0 && value && i >= 0) { + k = 3; + buf[i--] = ','; + } + } while (value && i >= 0); + + while (i >= 0) + buf[i--] = ' '; + fputs(buf, out); + + return origvalue; +} + +void +_PyDebugAllocatorStats(FILE *out, + const char *block_name, int num_blocks, size_t sizeof_block) +{ + char buf1[128]; + char buf2[128]; + PyOS_snprintf(buf1, sizeof(buf1), + "%d %ss * %zd bytes each", + num_blocks, block_name, sizeof_block); + PyOS_snprintf(buf2, sizeof(buf2), + "%48s ", buf1); + (void)printone(out, buf2, num_blocks * sizeof_block); +} + + +#ifdef WITH_PYMALLOC + +#ifdef Py_DEBUG +/* Is target in the list? The list is traversed via the nextpool pointers. + * The list may be NULL-terminated, or circular. Return 1 if target is in + * list, else 0. + */ +static int +pool_is_in_list(const poolp target, poolp list) +{ + poolp origlist = list; + assert(target != NULL); + if (list == NULL) + return 0; + do { + if (target == list) + return 1; + list = list->nextpool; + } while (list != NULL && list != origlist); + return 0; +} +#endif + +/* Print summary info to "out" about the state of pymalloc's structures. + * In Py_DEBUG mode, also perform some expensive internal consistency + * checks. + * + * Return 0 if the memory debug hooks are not installed or no statistics was + * written into out, return 1 otherwise. + */ +int +_PyObject_DebugMallocStats(FILE *out) +{ + if (!_PyMem_PymallocEnabled()) { + return 0; + } + + uint i; + const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT; + /* # of pools, allocated blocks, and free blocks per class index */ + size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; + size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; + size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; + /* total # of allocated bytes in used and full pools */ + size_t allocated_bytes = 0; + /* total # of available bytes in used pools */ + size_t available_bytes = 0; + /* # of free pools + pools not yet carved out of current arena */ + uint numfreepools = 0; + /* # of bytes for arena alignment padding */ + size_t arena_alignment = 0; + /* # of bytes in used and full pools used for pool_headers */ + size_t pool_header_bytes = 0; + /* # of bytes in used and full pools wasted due to quantization, + * i.e. the necessarily leftover space at the ends of used and + * full pools. + */ + size_t quantization = 0; + /* # of arenas actually allocated. */ + size_t narenas = 0; + /* running total -- should equal narenas * ARENA_SIZE */ + size_t total; + char buf[128]; + + fprintf(out, "Small block threshold = %d, in %u size classes.\n", + SMALL_REQUEST_THRESHOLD, numclasses); + + for (i = 0; i < numclasses; ++i) + numpools[i] = numblocks[i] = numfreeblocks[i] = 0; + + /* Because full pools aren't linked to from anything, it's easiest + * to march over all the arenas. If we're lucky, most of the memory + * will be living in full pools -- would be a shame to miss them. + */ + for (i = 0; i < maxarenas; ++i) { + uintptr_t base = arenas[i].address; + + /* Skip arenas which are not allocated. */ + if (arenas[i].address == (uintptr_t)NULL) + continue; + narenas += 1; + + numfreepools += arenas[i].nfreepools; + + /* round up to pool alignment */ + if (base & (uintptr_t)POOL_SIZE_MASK) { + arena_alignment += POOL_SIZE; + base &= ~(uintptr_t)POOL_SIZE_MASK; + base += POOL_SIZE; + } + + /* visit every pool in the arena */ + assert(base <= (uintptr_t) arenas[i].pool_address); + for (; base < (uintptr_t) arenas[i].pool_address; base += POOL_SIZE) { + poolp p = (poolp)base; + const uint sz = p->szidx; + uint freeblocks; + + if (p->ref.count == 0) { + /* currently unused */ +#ifdef Py_DEBUG + assert(pool_is_in_list(p, arenas[i].freepools)); +#endif + continue; + } + ++numpools[sz]; + numblocks[sz] += p->ref.count; + freeblocks = NUMBLOCKS(sz) - p->ref.count; + numfreeblocks[sz] += freeblocks; +#ifdef Py_DEBUG + if (freeblocks > 0) + assert(pool_is_in_list(p, usedpools[sz + sz])); +#endif + } + } + assert(narenas == narenas_currently_allocated); + + fputc('\n', out); + fputs("class size num pools blocks in use avail blocks\n" + "----- ---- --------- ------------- ------------\n", + out); + + for (i = 0; i < numclasses; ++i) { + size_t p = numpools[i]; + size_t b = numblocks[i]; + size_t f = numfreeblocks[i]; + uint size = INDEX2SIZE(i); + if (p == 0) { + assert(b == 0 && f == 0); + continue; + } + fprintf(out, "%5u %6u %11zu %15zu %13zu\n", + i, size, p, b, f); + allocated_bytes += b * size; + available_bytes += f * size; + pool_header_bytes += p * POOL_OVERHEAD; + quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size); + } + fputc('\n', out); +#ifdef PYMEM_DEBUG_SERIALNO + if (_PyMem_DebugEnabled()) { + (void)printone(out, "# times object malloc called", serialno); + } +#endif + (void)printone(out, "# arenas allocated total", ntimes_arena_allocated); + (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas); + (void)printone(out, "# arenas highwater mark", narenas_highwater); + (void)printone(out, "# arenas allocated current", narenas); + + PyOS_snprintf(buf, sizeof(buf), + "%zu arenas * %d bytes/arena", + narenas, ARENA_SIZE); + (void)printone(out, buf, narenas * ARENA_SIZE); + + fputc('\n', out); + + /* Account for what all of those arena bytes are being used for. */ + total = printone(out, "# bytes in allocated blocks", allocated_bytes); + total += printone(out, "# bytes in available blocks", available_bytes); + + PyOS_snprintf(buf, sizeof(buf), + "%u unused pools * %d bytes", numfreepools, POOL_SIZE); + total += printone(out, buf, (size_t)numfreepools * POOL_SIZE); + + total += printone(out, "# bytes lost to pool headers", pool_header_bytes); + total += printone(out, "# bytes lost to quantization", quantization); + total += printone(out, "# bytes lost to arena alignment", arena_alignment); + (void)printone(out, "Total", total); + assert(narenas * ARENA_SIZE == total); + +#if WITH_PYMALLOC_RADIX_TREE + fputs("\narena map counts\n", out); +#ifdef USE_INTERIOR_NODES + (void)printone(out, "# arena map mid nodes", arena_map_mid_count); + (void)printone(out, "# arena map bot nodes", arena_map_bot_count); + fputc('\n', out); +#endif + total = printone(out, "# bytes lost to arena map root", sizeof(arena_map_root)); +#ifdef USE_INTERIOR_NODES + total += printone(out, "# bytes lost to arena map mid", + sizeof(arena_map_mid_t) * arena_map_mid_count); + total += printone(out, "# bytes lost to arena map bot", + sizeof(arena_map_bot_t) * arena_map_bot_count); + (void)printone(out, "Total", total); +#endif +#endif + + return 1; +} + +#endif /* #ifdef WITH_PYMALLOC */ |