aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Objects/obmalloc.c
diff options
context:
space:
mode:
authornkozlovskiy <nmk@ydb.tech>2023-09-29 12:24:06 +0300
committernkozlovskiy <nmk@ydb.tech>2023-09-29 12:41:34 +0300
commite0e3e1717e3d33762ce61950504f9637a6e669ed (patch)
treebca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python3/src/Objects/obmalloc.c
parent38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff)
downloadydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz
add ydb deps
Diffstat (limited to 'contrib/tools/python3/src/Objects/obmalloc.c')
-rw-r--r--contrib/tools/python3/src/Objects/obmalloc.c3117
1 files changed, 3117 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Objects/obmalloc.c b/contrib/tools/python3/src/Objects/obmalloc.c
new file mode 100644
index 0000000000..b9529e418d
--- /dev/null
+++ b/contrib/tools/python3/src/Objects/obmalloc.c
@@ -0,0 +1,3117 @@
+#include "Python.h"
+#include "pycore_pymem.h" // _PyTraceMalloc_Config
+#include "pycore_code.h" // stats
+
+#include <stdbool.h>
+#include <stdlib.h> // malloc()
+
+
+/* Defined in tracemalloc.c */
+extern void _PyMem_DumpTraceback(int fd, const void *ptr);
+
+
+/* Python's malloc wrappers (see pymem.h) */
+
+#undef uint
+#define uint unsigned int /* assuming >= 16 bits */
+
+/* Forward declaration */
+static void* _PyMem_DebugRawMalloc(void *ctx, size_t size);
+static void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize);
+static void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size);
+static void _PyMem_DebugRawFree(void *ctx, void *ptr);
+
+static void* _PyMem_DebugMalloc(void *ctx, size_t size);
+static void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize);
+static void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size);
+static void _PyMem_DebugFree(void *ctx, void *p);
+
+static void _PyObject_DebugDumpAddress(const void *p);
+static void _PyMem_DebugCheckAddress(const char *func, char api_id, const void *p);
+
+static void _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain);
+
+#if defined(__has_feature) /* Clang */
+# if __has_feature(address_sanitizer) /* is ASAN enabled? */
+# define _Py_NO_SANITIZE_ADDRESS \
+ __attribute__((no_sanitize("address")))
+# endif
+# if __has_feature(thread_sanitizer) /* is TSAN enabled? */
+# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
+# endif
+# if __has_feature(memory_sanitizer) /* is MSAN enabled? */
+# define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
+# endif
+#elif defined(__GNUC__)
+# if defined(__SANITIZE_ADDRESS__) /* GCC 4.8+, is ASAN enabled? */
+# define _Py_NO_SANITIZE_ADDRESS \
+ __attribute__((no_sanitize_address))
+# endif
+ // TSAN is supported since GCC 5.1, but __SANITIZE_THREAD__ macro
+ // is provided only since GCC 7.
+# if __GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1)
+# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
+# endif
+#endif
+
+#ifndef _Py_NO_SANITIZE_ADDRESS
+# define _Py_NO_SANITIZE_ADDRESS
+#endif
+#ifndef _Py_NO_SANITIZE_THREAD
+# define _Py_NO_SANITIZE_THREAD
+#endif
+#ifndef _Py_NO_SANITIZE_MEMORY
+# define _Py_NO_SANITIZE_MEMORY
+#endif
+
+#ifdef WITH_PYMALLOC
+
+#ifdef MS_WINDOWS
+# include <windows.h>
+#elif defined(HAVE_MMAP)
+# include <sys/mman.h>
+# ifdef MAP_ANONYMOUS
+# define ARENAS_USE_MMAP
+# endif
+#endif
+
+/* Forward declaration */
+static void* _PyObject_Malloc(void *ctx, size_t size);
+static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize);
+static void _PyObject_Free(void *ctx, void *p);
+static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size);
+#endif
+
+
+/* bpo-35053: Declare tracemalloc configuration here rather than
+ Modules/_tracemalloc.c because _tracemalloc can be compiled as dynamic
+ library, whereas _Py_NewReference() requires it. */
+struct _PyTraceMalloc_Config _Py_tracemalloc_config = _PyTraceMalloc_Config_INIT;
+
+
+static void *
+_PyMem_RawMalloc(void *ctx, size_t size)
+{
+ /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL
+ for malloc(0), which would be treated as an error. Some platforms would
+ return a pointer with no memory behind it, which would break pymalloc.
+ To solve these problems, allocate an extra byte. */
+ if (size == 0)
+ size = 1;
+ return malloc(size);
+}
+
+static void *
+_PyMem_RawCalloc(void *ctx, size_t nelem, size_t elsize)
+{
+ /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL
+ for calloc(0, 0), which would be treated as an error. Some platforms
+ would return a pointer with no memory behind it, which would break
+ pymalloc. To solve these problems, allocate an extra byte. */
+ if (nelem == 0 || elsize == 0) {
+ nelem = 1;
+ elsize = 1;
+ }
+ return calloc(nelem, elsize);
+}
+
+static void *
+_PyMem_RawRealloc(void *ctx, void *ptr, size_t size)
+{
+ if (size == 0)
+ size = 1;
+ return realloc(ptr, size);
+}
+
+static void
+_PyMem_RawFree(void *ctx, void *ptr)
+{
+ free(ptr);
+}
+
+
+#ifdef MS_WINDOWS
+static void *
+_PyObject_ArenaVirtualAlloc(void *ctx, size_t size)
+{
+ return VirtualAlloc(NULL, size,
+ MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
+}
+
+static void
+_PyObject_ArenaVirtualFree(void *ctx, void *ptr, size_t size)
+{
+ VirtualFree(ptr, 0, MEM_RELEASE);
+}
+
+#elif defined(ARENAS_USE_MMAP)
+static void *
+_PyObject_ArenaMmap(void *ctx, size_t size)
+{
+ void *ptr;
+ ptr = mmap(NULL, size, PROT_READ|PROT_WRITE,
+ MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
+ if (ptr == MAP_FAILED)
+ return NULL;
+ assert(ptr != NULL);
+ return ptr;
+}
+
+static void
+_PyObject_ArenaMunmap(void *ctx, void *ptr, size_t size)
+{
+ munmap(ptr, size);
+}
+
+#else
+static void *
+_PyObject_ArenaMalloc(void *ctx, size_t size)
+{
+ return malloc(size);
+}
+
+static void
+_PyObject_ArenaFree(void *ctx, void *ptr, size_t size)
+{
+ free(ptr);
+}
+#endif
+
+#define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree}
+#ifdef WITH_PYMALLOC
+# define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free}
+#endif
+
+#define PYRAW_ALLOC MALLOC_ALLOC
+#ifdef WITH_PYMALLOC
+# define PYOBJ_ALLOC PYMALLOC_ALLOC
+#else
+# define PYOBJ_ALLOC MALLOC_ALLOC
+#endif
+#define PYMEM_ALLOC PYOBJ_ALLOC
+
+typedef struct {
+ /* We tag each block with an API ID in order to tag API violations */
+ char api_id;
+ PyMemAllocatorEx alloc;
+} debug_alloc_api_t;
+static struct {
+ debug_alloc_api_t raw;
+ debug_alloc_api_t mem;
+ debug_alloc_api_t obj;
+} _PyMem_Debug = {
+ {'r', PYRAW_ALLOC},
+ {'m', PYMEM_ALLOC},
+ {'o', PYOBJ_ALLOC}
+ };
+
+#define PYDBGRAW_ALLOC \
+ {&_PyMem_Debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree}
+#define PYDBGMEM_ALLOC \
+ {&_PyMem_Debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
+#define PYDBGOBJ_ALLOC \
+ {&_PyMem_Debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
+
+#ifdef Py_DEBUG
+static PyMemAllocatorEx _PyMem_Raw = PYDBGRAW_ALLOC;
+static PyMemAllocatorEx _PyMem = PYDBGMEM_ALLOC;
+static PyMemAllocatorEx _PyObject = PYDBGOBJ_ALLOC;
+#else
+static PyMemAllocatorEx _PyMem_Raw = PYRAW_ALLOC;
+static PyMemAllocatorEx _PyMem = PYMEM_ALLOC;
+static PyMemAllocatorEx _PyObject = PYOBJ_ALLOC;
+#endif
+
+
+static int
+pymem_set_default_allocator(PyMemAllocatorDomain domain, int debug,
+ PyMemAllocatorEx *old_alloc)
+{
+ if (old_alloc != NULL) {
+ PyMem_GetAllocator(domain, old_alloc);
+ }
+
+
+ PyMemAllocatorEx new_alloc;
+ switch(domain)
+ {
+ case PYMEM_DOMAIN_RAW:
+ new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC;
+ break;
+ case PYMEM_DOMAIN_MEM:
+ new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC;
+ break;
+ case PYMEM_DOMAIN_OBJ:
+ new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC;
+ break;
+ default:
+ /* unknown domain */
+ return -1;
+ }
+ PyMem_SetAllocator(domain, &new_alloc);
+ if (debug) {
+ _PyMem_SetupDebugHooksDomain(domain);
+ }
+ return 0;
+}
+
+
+int
+_PyMem_SetDefaultAllocator(PyMemAllocatorDomain domain,
+ PyMemAllocatorEx *old_alloc)
+{
+#ifdef Py_DEBUG
+ const int debug = 1;
+#else
+ const int debug = 0;
+#endif
+ return pymem_set_default_allocator(domain, debug, old_alloc);
+}
+
+
+int
+_PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator)
+{
+ if (name == NULL || *name == '\0') {
+ /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line
+ nameions): use default memory allocators */
+ *allocator = PYMEM_ALLOCATOR_DEFAULT;
+ }
+ else if (strcmp(name, "default") == 0) {
+ *allocator = PYMEM_ALLOCATOR_DEFAULT;
+ }
+ else if (strcmp(name, "debug") == 0) {
+ *allocator = PYMEM_ALLOCATOR_DEBUG;
+ }
+#ifdef WITH_PYMALLOC
+ else if (strcmp(name, "pymalloc") == 0) {
+ *allocator = PYMEM_ALLOCATOR_PYMALLOC;
+ }
+ else if (strcmp(name, "pymalloc_debug") == 0) {
+ *allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG;
+ }
+#endif
+ else if (strcmp(name, "malloc") == 0) {
+ *allocator = PYMEM_ALLOCATOR_MALLOC;
+ }
+ else if (strcmp(name, "malloc_debug") == 0) {
+ *allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG;
+ }
+ else {
+ /* unknown allocator */
+ return -1;
+ }
+ return 0;
+}
+
+
+int
+_PyMem_SetupAllocators(PyMemAllocatorName allocator)
+{
+ switch (allocator) {
+ case PYMEM_ALLOCATOR_NOT_SET:
+ /* do nothing */
+ break;
+
+ case PYMEM_ALLOCATOR_DEFAULT:
+ (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, NULL);
+ (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_MEM, NULL);
+ (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_OBJ, NULL);
+ break;
+
+ case PYMEM_ALLOCATOR_DEBUG:
+ (void)pymem_set_default_allocator(PYMEM_DOMAIN_RAW, 1, NULL);
+ (void)pymem_set_default_allocator(PYMEM_DOMAIN_MEM, 1, NULL);
+ (void)pymem_set_default_allocator(PYMEM_DOMAIN_OBJ, 1, NULL);
+ break;
+
+#ifdef WITH_PYMALLOC
+ case PYMEM_ALLOCATOR_PYMALLOC:
+ case PYMEM_ALLOCATOR_PYMALLOC_DEBUG:
+ {
+ PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
+ PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);
+
+ PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
+ PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &pymalloc);
+ PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &pymalloc);
+
+ if (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG) {
+ PyMem_SetupDebugHooks();
+ }
+ break;
+ }
+#endif
+
+ case PYMEM_ALLOCATOR_MALLOC:
+ case PYMEM_ALLOCATOR_MALLOC_DEBUG:
+ {
+ PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
+ PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);
+ PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &malloc_alloc);
+ PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &malloc_alloc);
+
+ if (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG) {
+ PyMem_SetupDebugHooks();
+ }
+ break;
+ }
+
+ default:
+ /* unknown allocator */
+ return -1;
+ }
+ return 0;
+}
+
+
+static int
+pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b)
+{
+ return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0);
+}
+
+
+const char*
+_PyMem_GetCurrentAllocatorName(void)
+{
+ PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
+#ifdef WITH_PYMALLOC
+ PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
+#endif
+
+ if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
+ pymemallocator_eq(&_PyMem, &malloc_alloc) &&
+ pymemallocator_eq(&_PyObject, &malloc_alloc))
+ {
+ return "malloc";
+ }
+#ifdef WITH_PYMALLOC
+ if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
+ pymemallocator_eq(&_PyMem, &pymalloc) &&
+ pymemallocator_eq(&_PyObject, &pymalloc))
+ {
+ return "pymalloc";
+ }
+#endif
+
+ PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC;
+ PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC;
+ PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC;
+
+ if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) &&
+ pymemallocator_eq(&_PyMem, &dbg_mem) &&
+ pymemallocator_eq(&_PyObject, &dbg_obj))
+ {
+ /* Debug hooks installed */
+ if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
+ pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) &&
+ pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc))
+ {
+ return "malloc_debug";
+ }
+#ifdef WITH_PYMALLOC
+ if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
+ pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) &&
+ pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc))
+ {
+ return "pymalloc_debug";
+ }
+#endif
+ }
+ return NULL;
+}
+
+
+#undef MALLOC_ALLOC
+#undef PYMALLOC_ALLOC
+#undef PYRAW_ALLOC
+#undef PYMEM_ALLOC
+#undef PYOBJ_ALLOC
+#undef PYDBGRAW_ALLOC
+#undef PYDBGMEM_ALLOC
+#undef PYDBGOBJ_ALLOC
+
+
+static PyObjectArenaAllocator _PyObject_Arena = {NULL,
+#ifdef MS_WINDOWS
+ _PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree
+#elif defined(ARENAS_USE_MMAP)
+ _PyObject_ArenaMmap, _PyObject_ArenaMunmap
+#else
+ _PyObject_ArenaMalloc, _PyObject_ArenaFree
+#endif
+ };
+
+#ifdef WITH_PYMALLOC
+static int
+_PyMem_DebugEnabled(void)
+{
+ return (_PyObject.malloc == _PyMem_DebugMalloc);
+}
+
+static int
+_PyMem_PymallocEnabled(void)
+{
+ if (_PyMem_DebugEnabled()) {
+ return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc);
+ }
+ else {
+ return (_PyObject.malloc == _PyObject_Malloc);
+ }
+}
+#endif
+
+
+static void
+_PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain)
+{
+ PyMemAllocatorEx alloc;
+
+ if (domain == PYMEM_DOMAIN_RAW) {
+ if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) {
+ return;
+ }
+
+ PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc);
+ alloc.ctx = &_PyMem_Debug.raw;
+ alloc.malloc = _PyMem_DebugRawMalloc;
+ alloc.calloc = _PyMem_DebugRawCalloc;
+ alloc.realloc = _PyMem_DebugRawRealloc;
+ alloc.free = _PyMem_DebugRawFree;
+ PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);
+ }
+ else if (domain == PYMEM_DOMAIN_MEM) {
+ if (_PyMem.malloc == _PyMem_DebugMalloc) {
+ return;
+ }
+
+ PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc);
+ alloc.ctx = &_PyMem_Debug.mem;
+ alloc.malloc = _PyMem_DebugMalloc;
+ alloc.calloc = _PyMem_DebugCalloc;
+ alloc.realloc = _PyMem_DebugRealloc;
+ alloc.free = _PyMem_DebugFree;
+ PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);
+ }
+ else if (domain == PYMEM_DOMAIN_OBJ) {
+ if (_PyObject.malloc == _PyMem_DebugMalloc) {
+ return;
+ }
+
+ PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc);
+ alloc.ctx = &_PyMem_Debug.obj;
+ alloc.malloc = _PyMem_DebugMalloc;
+ alloc.calloc = _PyMem_DebugCalloc;
+ alloc.realloc = _PyMem_DebugRealloc;
+ alloc.free = _PyMem_DebugFree;
+ PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);
+ }
+}
+
+
+void
+PyMem_SetupDebugHooks(void)
+{
+ _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_RAW);
+ _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_MEM);
+ _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_OBJ);
+}
+
+void
+PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
+{
+ switch(domain)
+ {
+ case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break;
+ case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break;
+ case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break;
+ default:
+ /* unknown domain: set all attributes to NULL */
+ allocator->ctx = NULL;
+ allocator->malloc = NULL;
+ allocator->calloc = NULL;
+ allocator->realloc = NULL;
+ allocator->free = NULL;
+ }
+}
+
+void
+PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
+{
+ switch(domain)
+ {
+ case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break;
+ case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break;
+ case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break;
+ /* ignore unknown domain */
+ }
+}
+
+void
+PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
+{
+ *allocator = _PyObject_Arena;
+}
+
+void *
+_PyObject_VirtualAlloc(size_t size)
+{
+ return _PyObject_Arena.alloc(_PyObject_Arena.ctx, size);
+}
+
+void
+_PyObject_VirtualFree(void *obj, size_t size)
+{
+ _PyObject_Arena.free(_PyObject_Arena.ctx, obj, size);
+}
+
+void
+PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
+{
+ _PyObject_Arena = *allocator;
+}
+
+void *
+PyMem_RawMalloc(size_t size)
+{
+ /*
+ * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
+ * Most python internals blindly use a signed Py_ssize_t to track
+ * things without checking for overflows or negatives.
+ * As size_t is unsigned, checking for size < 0 is not required.
+ */
+ if (size > (size_t)PY_SSIZE_T_MAX)
+ return NULL;
+ return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size);
+}
+
+void *
+PyMem_RawCalloc(size_t nelem, size_t elsize)
+{
+ /* see PyMem_RawMalloc() */
+ if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
+ return NULL;
+ return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize);
+}
+
+void*
+PyMem_RawRealloc(void *ptr, size_t new_size)
+{
+ /* see PyMem_RawMalloc() */
+ if (new_size > (size_t)PY_SSIZE_T_MAX)
+ return NULL;
+ return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size);
+}
+
+void PyMem_RawFree(void *ptr)
+{
+ _PyMem_Raw.free(_PyMem_Raw.ctx, ptr);
+}
+
+
+void *
+PyMem_Malloc(size_t size)
+{
+ /* see PyMem_RawMalloc() */
+ if (size > (size_t)PY_SSIZE_T_MAX)
+ return NULL;
+ OBJECT_STAT_INC_COND(allocations512, size < 512);
+ OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094);
+ OBJECT_STAT_INC_COND(allocations_big, size >= 4094);
+ OBJECT_STAT_INC(allocations);
+ return _PyMem.malloc(_PyMem.ctx, size);
+}
+
+void *
+PyMem_Calloc(size_t nelem, size_t elsize)
+{
+ /* see PyMem_RawMalloc() */
+ if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
+ return NULL;
+ OBJECT_STAT_INC_COND(allocations512, elsize < 512);
+ OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094);
+ OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094);
+ OBJECT_STAT_INC(allocations);
+ return _PyMem.calloc(_PyMem.ctx, nelem, elsize);
+}
+
+void *
+PyMem_Realloc(void *ptr, size_t new_size)
+{
+ /* see PyMem_RawMalloc() */
+ if (new_size > (size_t)PY_SSIZE_T_MAX)
+ return NULL;
+ return _PyMem.realloc(_PyMem.ctx, ptr, new_size);
+}
+
+void
+PyMem_Free(void *ptr)
+{
+ OBJECT_STAT_INC(frees);
+ _PyMem.free(_PyMem.ctx, ptr);
+}
+
+
+wchar_t*
+_PyMem_RawWcsdup(const wchar_t *str)
+{
+ assert(str != NULL);
+
+ size_t len = wcslen(str);
+ if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) {
+ return NULL;
+ }
+
+ size_t size = (len + 1) * sizeof(wchar_t);
+ wchar_t *str2 = PyMem_RawMalloc(size);
+ if (str2 == NULL) {
+ return NULL;
+ }
+
+ memcpy(str2, str, size);
+ return str2;
+}
+
+char *
+_PyMem_RawStrdup(const char *str)
+{
+ assert(str != NULL);
+ size_t size = strlen(str) + 1;
+ char *copy = PyMem_RawMalloc(size);
+ if (copy == NULL) {
+ return NULL;
+ }
+ memcpy(copy, str, size);
+ return copy;
+}
+
+char *
+_PyMem_Strdup(const char *str)
+{
+ assert(str != NULL);
+ size_t size = strlen(str) + 1;
+ char *copy = PyMem_Malloc(size);
+ if (copy == NULL) {
+ return NULL;
+ }
+ memcpy(copy, str, size);
+ return copy;
+}
+
+void *
+PyObject_Malloc(size_t size)
+{
+ /* see PyMem_RawMalloc() */
+ if (size > (size_t)PY_SSIZE_T_MAX)
+ return NULL;
+ OBJECT_STAT_INC_COND(allocations512, size < 512);
+ OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094);
+ OBJECT_STAT_INC_COND(allocations_big, size >= 4094);
+ OBJECT_STAT_INC(allocations);
+ return _PyObject.malloc(_PyObject.ctx, size);
+}
+
+void *
+PyObject_Calloc(size_t nelem, size_t elsize)
+{
+ /* see PyMem_RawMalloc() */
+ if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
+ return NULL;
+ OBJECT_STAT_INC_COND(allocations512, elsize < 512);
+ OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094);
+ OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094);
+ OBJECT_STAT_INC(allocations);
+ return _PyObject.calloc(_PyObject.ctx, nelem, elsize);
+}
+
+void *
+PyObject_Realloc(void *ptr, size_t new_size)
+{
+ /* see PyMem_RawMalloc() */
+ if (new_size > (size_t)PY_SSIZE_T_MAX)
+ return NULL;
+ return _PyObject.realloc(_PyObject.ctx, ptr, new_size);
+}
+
+void
+PyObject_Free(void *ptr)
+{
+ OBJECT_STAT_INC(frees);
+ _PyObject.free(_PyObject.ctx, ptr);
+}
+
+
+/* If we're using GCC, use __builtin_expect() to reduce overhead of
+ the valgrind checks */
+#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
+# define UNLIKELY(value) __builtin_expect((value), 0)
+# define LIKELY(value) __builtin_expect((value), 1)
+#else
+# define UNLIKELY(value) (value)
+# define LIKELY(value) (value)
+#endif
+
+#ifdef WITH_PYMALLOC
+
+#ifdef WITH_VALGRIND
+#include <valgrind/valgrind.h>
+
+/* -1 indicates that we haven't checked that we're running on valgrind yet. */
+static int running_on_valgrind = -1;
+#endif
+
+
+/* An object allocator for Python.
+
+ Here is an introduction to the layers of the Python memory architecture,
+ showing where the object allocator is actually used (layer +2), It is
+ called for every object allocation and deallocation (PyObject_New/Del),
+ unless the object-specific allocators implement a proprietary allocation
+ scheme (ex.: ints use a simple free list). This is also the place where
+ the cyclic garbage collector operates selectively on container objects.
+
+
+ Object-specific allocators
+ _____ ______ ______ ________
+ [ int ] [ dict ] [ list ] ... [ string ] Python core |
++3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
+ _______________________________ | |
+ [ Python's object allocator ] | |
++2 | ####### Object memory ####### | <------ Internal buffers ------> |
+ ______________________________________________________________ |
+ [ Python's raw memory allocator (PyMem_ API) ] |
++1 | <----- Python memory (under PyMem manager's control) ------> | |
+ __________________________________________________________________
+ [ Underlying general-purpose allocator (ex: C library malloc) ]
+ 0 | <------ Virtual memory allocated for the python process -------> |
+
+ =========================================================================
+ _______________________________________________________________________
+ [ OS-specific Virtual Memory Manager (VMM) ]
+-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
+ __________________________________ __________________________________
+ [ ] [ ]
+-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
+
+*/
+/*==========================================================================*/
+
+/* A fast, special-purpose memory allocator for small blocks, to be used
+ on top of a general-purpose malloc -- heavily based on previous art. */
+
+/* Vladimir Marangozov -- August 2000 */
+
+/*
+ * "Memory management is where the rubber meets the road -- if we do the wrong
+ * thing at any level, the results will not be good. And if we don't make the
+ * levels work well together, we are in serious trouble." (1)
+ *
+ * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
+ * "Dynamic Storage Allocation: A Survey and Critical Review",
+ * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
+ */
+
+/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
+
+/*==========================================================================*/
+
+/*
+ * Allocation strategy abstract:
+ *
+ * For small requests, the allocator sub-allocates <Big> blocks of memory.
+ * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
+ * system's allocator.
+ *
+ * Small requests are grouped in size classes spaced 8 bytes apart, due
+ * to the required valid alignment of the returned address. Requests of
+ * a particular size are serviced from memory pools of 4K (one VMM page).
+ * Pools are fragmented on demand and contain free lists of blocks of one
+ * particular size class. In other words, there is a fixed-size allocator
+ * for each size class. Free pools are shared by the different allocators
+ * thus minimizing the space reserved for a particular size class.
+ *
+ * This allocation strategy is a variant of what is known as "simple
+ * segregated storage based on array of free lists". The main drawback of
+ * simple segregated storage is that we might end up with lot of reserved
+ * memory for the different free lists, which degenerate in time. To avoid
+ * this, we partition each free list in pools and we share dynamically the
+ * reserved space between all free lists. This technique is quite efficient
+ * for memory intensive programs which allocate mainly small-sized blocks.
+ *
+ * For small requests we have the following table:
+ *
+ * Request in bytes Size of allocated block Size class idx
+ * ----------------------------------------------------------------
+ * 1-8 8 0
+ * 9-16 16 1
+ * 17-24 24 2
+ * 25-32 32 3
+ * 33-40 40 4
+ * 41-48 48 5
+ * 49-56 56 6
+ * 57-64 64 7
+ * 65-72 72 8
+ * ... ... ...
+ * 497-504 504 62
+ * 505-512 512 63
+ *
+ * 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
+ * allocator.
+ */
+
+/*==========================================================================*/
+
+/*
+ * -- Main tunable settings section --
+ */
+
+/*
+ * Alignment of addresses returned to the user. 8-bytes alignment works
+ * on most current architectures (with 32-bit or 64-bit address buses).
+ * The alignment value is also used for grouping small requests in size
+ * classes spaced ALIGNMENT bytes apart.
+ *
+ * You shouldn't change this unless you know what you are doing.
+ */
+
+#if SIZEOF_VOID_P > 4
+#define ALIGNMENT 16 /* must be 2^N */
+#define ALIGNMENT_SHIFT 4
+#else
+#define ALIGNMENT 8 /* must be 2^N */
+#define ALIGNMENT_SHIFT 3
+#endif
+
+/* Return the number of bytes in size class I, as a uint. */
+#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
+
+/*
+ * Max size threshold below which malloc requests are considered to be
+ * small enough in order to use preallocated memory pools. You can tune
+ * this value according to your application behaviour and memory needs.
+ *
+ * Note: a size threshold of 512 guarantees that newly created dictionaries
+ * will be allocated from preallocated memory pools on 64-bit.
+ *
+ * The following invariants must hold:
+ * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
+ * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
+ *
+ * Although not required, for better performance and space efficiency,
+ * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
+ */
+#define SMALL_REQUEST_THRESHOLD 512
+#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
+
+/*
+ * The system's VMM page size can be obtained on most unices with a
+ * getpagesize() call or deduced from various header files. To make
+ * things simpler, we assume that it is 4K, which is OK for most systems.
+ * It is probably better if this is the native page size, but it doesn't
+ * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
+ * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
+ * violation fault. 4K is apparently OK for all the platforms that python
+ * currently targets.
+ */
+#define SYSTEM_PAGE_SIZE (4 * 1024)
+
+/*
+ * Maximum amount of memory managed by the allocator for small requests.
+ */
+#ifdef WITH_MEMORY_LIMITS
+#ifndef SMALL_MEMORY_LIMIT
+#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
+#endif
+#endif
+
+#if !defined(WITH_PYMALLOC_RADIX_TREE)
+/* Use radix-tree to track arena memory regions, for address_in_range().
+ * Enable by default since it allows larger pool sizes. Can be disabled
+ * using -DWITH_PYMALLOC_RADIX_TREE=0 */
+#define WITH_PYMALLOC_RADIX_TREE 1
+#endif
+
+#if SIZEOF_VOID_P > 4
+/* on 64-bit platforms use larger pools and arenas if we can */
+#define USE_LARGE_ARENAS
+#if WITH_PYMALLOC_RADIX_TREE
+/* large pools only supported if radix-tree is enabled */
+#define USE_LARGE_POOLS
+#endif
+#endif
+
+/*
+ * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
+ * on a page boundary. This is a reserved virtual address space for the
+ * current process (obtained through a malloc()/mmap() call). In no way this
+ * means that the memory arenas will be used entirely. A malloc(<Big>) is
+ * usually an address range reservation for <Big> bytes, unless all pages within
+ * this space are referenced subsequently. So malloc'ing big blocks and not
+ * using them does not mean "wasting memory". It's an addressable range
+ * wastage...
+ *
+ * Arenas are allocated with mmap() on systems supporting anonymous memory
+ * mappings to reduce heap fragmentation.
+ */
+#ifdef USE_LARGE_ARENAS
+#define ARENA_BITS 20 /* 1 MiB */
+#else
+#define ARENA_BITS 18 /* 256 KiB */
+#endif
+#define ARENA_SIZE (1 << ARENA_BITS)
+#define ARENA_SIZE_MASK (ARENA_SIZE - 1)
+
+#ifdef WITH_MEMORY_LIMITS
+#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
+#endif
+
+/*
+ * Size of the pools used for small blocks. Must be a power of 2.
+ */
+#ifdef USE_LARGE_POOLS
+#define POOL_BITS 14 /* 16 KiB */
+#else
+#define POOL_BITS 12 /* 4 KiB */
+#endif
+#define POOL_SIZE (1 << POOL_BITS)
+#define POOL_SIZE_MASK (POOL_SIZE - 1)
+
+#if !WITH_PYMALLOC_RADIX_TREE
+#if POOL_SIZE != SYSTEM_PAGE_SIZE
+# error "pool size must be equal to system page size"
+#endif
+#endif
+
+#define MAX_POOLS_IN_ARENA (ARENA_SIZE / POOL_SIZE)
+#if MAX_POOLS_IN_ARENA * POOL_SIZE != ARENA_SIZE
+# error "arena size not an exact multiple of pool size"
+#endif
+
+/*
+ * -- End of tunable settings section --
+ */
+
+/*==========================================================================*/
+
+/* When you say memory, my mind reasons in terms of (pointers to) blocks */
+typedef uint8_t block;
+
+/* Pool for small blocks. */
+struct pool_header {
+ union { block *_padding;
+ uint count; } ref; /* number of allocated blocks */
+ block *freeblock; /* pool's free list head */
+ struct pool_header *nextpool; /* next pool of this size class */
+ struct pool_header *prevpool; /* previous pool "" */
+ uint arenaindex; /* index into arenas of base adr */
+ uint szidx; /* block size class index */
+ uint nextoffset; /* bytes to virgin block */
+ uint maxnextoffset; /* largest valid nextoffset */
+};
+
+typedef struct pool_header *poolp;
+
+/* Record keeping for arenas. */
+struct arena_object {
+ /* The address of the arena, as returned by malloc. Note that 0
+ * will never be returned by a successful malloc, and is used
+ * here to mark an arena_object that doesn't correspond to an
+ * allocated arena.
+ */
+ uintptr_t address;
+
+ /* Pool-aligned pointer to the next pool to be carved off. */
+ block* pool_address;
+
+ /* The number of available pools in the arena: free pools + never-
+ * allocated pools.
+ */
+ uint nfreepools;
+
+ /* The total number of pools in the arena, whether or not available. */
+ uint ntotalpools;
+
+ /* Singly-linked list of available pools. */
+ struct pool_header* freepools;
+
+ /* Whenever this arena_object is not associated with an allocated
+ * arena, the nextarena member is used to link all unassociated
+ * arena_objects in the singly-linked `unused_arena_objects` list.
+ * The prevarena member is unused in this case.
+ *
+ * When this arena_object is associated with an allocated arena
+ * with at least one available pool, both members are used in the
+ * doubly-linked `usable_arenas` list, which is maintained in
+ * increasing order of `nfreepools` values.
+ *
+ * Else this arena_object is associated with an allocated arena
+ * all of whose pools are in use. `nextarena` and `prevarena`
+ * are both meaningless in this case.
+ */
+ struct arena_object* nextarena;
+ struct arena_object* prevarena;
+};
+
+#define POOL_OVERHEAD _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT)
+
+#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
+
+/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
+#define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE))
+
+/* Return total number of blocks in pool of size index I, as a uint. */
+#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
+
+/*==========================================================================*/
+
+/*
+ * Pool table -- headed, circular, doubly-linked lists of partially used pools.
+
+This is involved. For an index i, usedpools[i+i] is the header for a list of
+all partially used pools holding small blocks with "size class idx" i. So
+usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
+16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
+
+Pools are carved off an arena's highwater mark (an arena_object's pool_address
+member) as needed. Once carved off, a pool is in one of three states forever
+after:
+
+used == partially used, neither empty nor full
+ At least one block in the pool is currently allocated, and at least one
+ block in the pool is not currently allocated (note this implies a pool
+ has room for at least two blocks).
+ This is a pool's initial state, as a pool is created only when malloc
+ needs space.
+ The pool holds blocks of a fixed size, and is in the circular list headed
+ at usedpools[i] (see above). It's linked to the other used pools of the
+ same size class via the pool_header's nextpool and prevpool members.
+ If all but one block is currently allocated, a malloc can cause a
+ transition to the full state. If all but one block is not currently
+ allocated, a free can cause a transition to the empty state.
+
+full == all the pool's blocks are currently allocated
+ On transition to full, a pool is unlinked from its usedpools[] list.
+ It's not linked to from anything then anymore, and its nextpool and
+ prevpool members are meaningless until it transitions back to used.
+ A free of a block in a full pool puts the pool back in the used state.
+ Then it's linked in at the front of the appropriate usedpools[] list, so
+ that the next allocation for its size class will reuse the freed block.
+
+empty == all the pool's blocks are currently available for allocation
+ On transition to empty, a pool is unlinked from its usedpools[] list,
+ and linked to the front of its arena_object's singly-linked freepools list,
+ via its nextpool member. The prevpool member has no meaning in this case.
+ Empty pools have no inherent size class: the next time a malloc finds
+ an empty list in usedpools[], it takes the first pool off of freepools.
+ If the size class needed happens to be the same as the size class the pool
+ last had, some pool initialization can be skipped.
+
+
+Block Management
+
+Blocks within pools are again carved out as needed. pool->freeblock points to
+the start of a singly-linked list of free blocks within the pool. When a
+block is freed, it's inserted at the front of its pool's freeblock list. Note
+that the available blocks in a pool are *not* linked all together when a pool
+is initialized. Instead only "the first two" (lowest addresses) blocks are
+set up, returning the first such block, and setting pool->freeblock to a
+one-block list holding the second such block. This is consistent with that
+pymalloc strives at all levels (arena, pool, and block) never to touch a piece
+of memory until it's actually needed.
+
+So long as a pool is in the used state, we're certain there *is* a block
+available for allocating, and pool->freeblock is not NULL. If pool->freeblock
+points to the end of the free list before we've carved the entire pool into
+blocks, that means we simply haven't yet gotten to one of the higher-address
+blocks. The offset from the pool_header to the start of "the next" virgin
+block is stored in the pool_header nextoffset member, and the largest value
+of nextoffset that makes sense is stored in the maxnextoffset member when a
+pool is initialized. All the blocks in a pool have been passed out at least
+once when and only when nextoffset > maxnextoffset.
+
+
+Major obscurity: While the usedpools vector is declared to have poolp
+entries, it doesn't really. It really contains two pointers per (conceptual)
+poolp entry, the nextpool and prevpool members of a pool_header. The
+excruciating initialization code below fools C so that
+
+ usedpool[i+i]
+
+"acts like" a genuine poolp, but only so long as you only reference its
+nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
+compensating for that a pool_header's nextpool and prevpool members
+immediately follow a pool_header's first two members:
+
+ union { block *_padding;
+ uint count; } ref;
+ block *freeblock;
+
+each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
+contains is a fudged-up pointer p such that *if* C believes it's a poolp
+pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
+circular list is empty).
+
+It's unclear why the usedpools setup is so convoluted. It could be to
+minimize the amount of cache required to hold this heavily-referenced table
+(which only *needs* the two interpool pointer members of a pool_header). OTOH,
+referencing code has to remember to "double the index" and doing so isn't
+free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
+on that C doesn't insert any padding anywhere in a pool_header at or before
+the prevpool member.
+**************************************************************************** */
+
+#define PTA(x) ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
+#define PT(x) PTA(x), PTA(x)
+
+static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
+ PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
+#if NB_SMALL_SIZE_CLASSES > 8
+ , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
+#if NB_SMALL_SIZE_CLASSES > 16
+ , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
+#if NB_SMALL_SIZE_CLASSES > 24
+ , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
+#if NB_SMALL_SIZE_CLASSES > 32
+ , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
+#if NB_SMALL_SIZE_CLASSES > 40
+ , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
+#if NB_SMALL_SIZE_CLASSES > 48
+ , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
+#if NB_SMALL_SIZE_CLASSES > 56
+ , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
+#if NB_SMALL_SIZE_CLASSES > 64
+#error "NB_SMALL_SIZE_CLASSES should be less than 64"
+#endif /* NB_SMALL_SIZE_CLASSES > 64 */
+#endif /* NB_SMALL_SIZE_CLASSES > 56 */
+#endif /* NB_SMALL_SIZE_CLASSES > 48 */
+#endif /* NB_SMALL_SIZE_CLASSES > 40 */
+#endif /* NB_SMALL_SIZE_CLASSES > 32 */
+#endif /* NB_SMALL_SIZE_CLASSES > 24 */
+#endif /* NB_SMALL_SIZE_CLASSES > 16 */
+#endif /* NB_SMALL_SIZE_CLASSES > 8 */
+};
+
+/*==========================================================================
+Arena management.
+
+`arenas` is a vector of arena_objects. It contains maxarenas entries, some of
+which may not be currently used (== they're arena_objects that aren't
+currently associated with an allocated arena). Note that arenas proper are
+separately malloc'ed.
+
+Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5,
+we do try to free() arenas, and use some mild heuristic strategies to increase
+the likelihood that arenas eventually can be freed.
+
+unused_arena_objects
+
+ This is a singly-linked list of the arena_objects that are currently not
+ being used (no arena is associated with them). Objects are taken off the
+ head of the list in new_arena(), and are pushed on the head of the list in
+ PyObject_Free() when the arena is empty. Key invariant: an arena_object
+ is on this list if and only if its .address member is 0.
+
+usable_arenas
+
+ This is a doubly-linked list of the arena_objects associated with arenas
+ that have pools available. These pools are either waiting to be reused,
+ or have not been used before. The list is sorted to have the most-
+ allocated arenas first (ascending order based on the nfreepools member).
+ This means that the next allocation will come from a heavily used arena,
+ which gives the nearly empty arenas a chance to be returned to the system.
+ In my unscientific tests this dramatically improved the number of arenas
+ that could be freed.
+
+Note that an arena_object associated with an arena all of whose pools are
+currently in use isn't on either list.
+
+Changed in Python 3.8: keeping usable_arenas sorted by number of free pools
+used to be done by one-at-a-time linear search when an arena's number of
+free pools changed. That could, overall, consume time quadratic in the
+number of arenas. That didn't really matter when there were only a few
+hundred arenas (typical!), but could be a timing disaster when there were
+hundreds of thousands. See bpo-37029.
+
+Now we have a vector of "search fingers" to eliminate the need to search:
+nfp2lasta[nfp] returns the last ("rightmost") arena in usable_arenas
+with nfp free pools. This is NULL if and only if there is no arena with
+nfp free pools in usable_arenas.
+*/
+
+/* Array of objects used to track chunks of memory (arenas). */
+static struct arena_object* arenas = NULL;
+/* Number of slots currently allocated in the `arenas` vector. */
+static uint maxarenas = 0;
+
+/* The head of the singly-linked, NULL-terminated list of available
+ * arena_objects.
+ */
+static struct arena_object* unused_arena_objects = NULL;
+
+/* The head of the doubly-linked, NULL-terminated at each end, list of
+ * arena_objects associated with arenas that have pools available.
+ */
+static struct arena_object* usable_arenas = NULL;
+
+/* nfp2lasta[nfp] is the last arena in usable_arenas with nfp free pools */
+static struct arena_object* nfp2lasta[MAX_POOLS_IN_ARENA + 1] = { NULL };
+
+/* How many arena_objects do we initially allocate?
+ * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
+ * `arenas` vector.
+ */
+#define INITIAL_ARENA_OBJECTS 16
+
+/* Number of arenas allocated that haven't been free()'d. */
+static size_t narenas_currently_allocated = 0;
+
+/* Total number of times malloc() called to allocate an arena. */
+static size_t ntimes_arena_allocated = 0;
+/* High water mark (max value ever seen) for narenas_currently_allocated. */
+static size_t narenas_highwater = 0;
+
+static Py_ssize_t raw_allocated_blocks;
+
+Py_ssize_t
+_Py_GetAllocatedBlocks(void)
+{
+ Py_ssize_t n = raw_allocated_blocks;
+ /* add up allocated blocks for used pools */
+ for (uint i = 0; i < maxarenas; ++i) {
+ /* Skip arenas which are not allocated. */
+ if (arenas[i].address == 0) {
+ continue;
+ }
+
+ uintptr_t base = (uintptr_t)_Py_ALIGN_UP(arenas[i].address, POOL_SIZE);
+
+ /* visit every pool in the arena */
+ assert(base <= (uintptr_t) arenas[i].pool_address);
+ for (; base < (uintptr_t) arenas[i].pool_address; base += POOL_SIZE) {
+ poolp p = (poolp)base;
+ n += p->ref.count;
+ }
+ }
+ return n;
+}
+
+#if WITH_PYMALLOC_RADIX_TREE
+/*==========================================================================*/
+/* radix tree for tracking arena usage. If enabled, used to implement
+ address_in_range().
+
+ memory address bit allocation for keys
+
+ 64-bit pointers, IGNORE_BITS=0 and 2^20 arena size:
+ 15 -> MAP_TOP_BITS
+ 15 -> MAP_MID_BITS
+ 14 -> MAP_BOT_BITS
+ 20 -> ideal aligned arena
+ ----
+ 64
+
+ 64-bit pointers, IGNORE_BITS=16, and 2^20 arena size:
+ 16 -> IGNORE_BITS
+ 10 -> MAP_TOP_BITS
+ 10 -> MAP_MID_BITS
+ 8 -> MAP_BOT_BITS
+ 20 -> ideal aligned arena
+ ----
+ 64
+
+ 32-bit pointers and 2^18 arena size:
+ 14 -> MAP_BOT_BITS
+ 18 -> ideal aligned arena
+ ----
+ 32
+
+*/
+
+#if SIZEOF_VOID_P == 8
+
+/* number of bits in a pointer */
+#define POINTER_BITS 64
+
+/* High bits of memory addresses that will be ignored when indexing into the
+ * radix tree. Setting this to zero is the safe default. For most 64-bit
+ * machines, setting this to 16 would be safe. The kernel would not give
+ * user-space virtual memory addresses that have significant information in
+ * those high bits. The main advantage to setting IGNORE_BITS > 0 is that less
+ * virtual memory will be used for the top and middle radix tree arrays. Those
+ * arrays are allocated in the BSS segment and so will typically consume real
+ * memory only if actually accessed.
+ */
+#define IGNORE_BITS 0
+
+/* use the top and mid layers of the radix tree */
+#define USE_INTERIOR_NODES
+
+#elif SIZEOF_VOID_P == 4
+
+#define POINTER_BITS 32
+#define IGNORE_BITS 0
+
+#else
+
+ /* Currently this code works for 64-bit or 32-bit pointers only. */
+#error "obmalloc radix tree requires 64-bit or 32-bit pointers."
+
+#endif /* SIZEOF_VOID_P */
+
+/* arena_coverage_t members require this to be true */
+#if ARENA_BITS >= 32
+# error "arena size must be < 2^32"
+#endif
+
+/* the lower bits of the address that are not ignored */
+#define ADDRESS_BITS (POINTER_BITS - IGNORE_BITS)
+
+#ifdef USE_INTERIOR_NODES
+/* number of bits used for MAP_TOP and MAP_MID nodes */
+#define INTERIOR_BITS ((ADDRESS_BITS - ARENA_BITS + 2) / 3)
+#else
+#define INTERIOR_BITS 0
+#endif
+
+#define MAP_TOP_BITS INTERIOR_BITS
+#define MAP_TOP_LENGTH (1 << MAP_TOP_BITS)
+#define MAP_TOP_MASK (MAP_TOP_LENGTH - 1)
+
+#define MAP_MID_BITS INTERIOR_BITS
+#define MAP_MID_LENGTH (1 << MAP_MID_BITS)
+#define MAP_MID_MASK (MAP_MID_LENGTH - 1)
+
+#define MAP_BOT_BITS (ADDRESS_BITS - ARENA_BITS - 2*INTERIOR_BITS)
+#define MAP_BOT_LENGTH (1 << MAP_BOT_BITS)
+#define MAP_BOT_MASK (MAP_BOT_LENGTH - 1)
+
+#define MAP_BOT_SHIFT ARENA_BITS
+#define MAP_MID_SHIFT (MAP_BOT_BITS + MAP_BOT_SHIFT)
+#define MAP_TOP_SHIFT (MAP_MID_BITS + MAP_MID_SHIFT)
+
+#define AS_UINT(p) ((uintptr_t)(p))
+#define MAP_BOT_INDEX(p) ((AS_UINT(p) >> MAP_BOT_SHIFT) & MAP_BOT_MASK)
+#define MAP_MID_INDEX(p) ((AS_UINT(p) >> MAP_MID_SHIFT) & MAP_MID_MASK)
+#define MAP_TOP_INDEX(p) ((AS_UINT(p) >> MAP_TOP_SHIFT) & MAP_TOP_MASK)
+
+#if IGNORE_BITS > 0
+/* Return the ignored part of the pointer address. Those bits should be same
+ * for all valid pointers if IGNORE_BITS is set correctly.
+ */
+#define HIGH_BITS(p) (AS_UINT(p) >> ADDRESS_BITS)
+#else
+#define HIGH_BITS(p) 0
+#endif
+
+
+/* This is the leaf of the radix tree. See arena_map_mark_used() for the
+ * meaning of these members. */
+typedef struct {
+ int32_t tail_hi;
+ int32_t tail_lo;
+} arena_coverage_t;
+
+typedef struct arena_map_bot {
+ /* The members tail_hi and tail_lo are accessed together. So, it
+ * better to have them as an array of structs, rather than two
+ * arrays.
+ */
+ arena_coverage_t arenas[MAP_BOT_LENGTH];
+} arena_map_bot_t;
+
+#ifdef USE_INTERIOR_NODES
+typedef struct arena_map_mid {
+ struct arena_map_bot *ptrs[MAP_MID_LENGTH];
+} arena_map_mid_t;
+
+typedef struct arena_map_top {
+ struct arena_map_mid *ptrs[MAP_TOP_LENGTH];
+} arena_map_top_t;
+#endif
+
+/* The root of radix tree. Note that by initializing like this, the memory
+ * should be in the BSS. The OS will only memory map pages as the MAP_MID
+ * nodes get used (OS pages are demand loaded as needed).
+ */
+#ifdef USE_INTERIOR_NODES
+static arena_map_top_t arena_map_root;
+/* accounting for number of used interior nodes */
+static int arena_map_mid_count;
+static int arena_map_bot_count;
+#else
+static arena_map_bot_t arena_map_root;
+#endif
+
+/* Return a pointer to a bottom tree node, return NULL if it doesn't exist or
+ * it cannot be created */
+static inline Py_ALWAYS_INLINE arena_map_bot_t *
+arena_map_get(block *p, int create)
+{
+#ifdef USE_INTERIOR_NODES
+ /* sanity check that IGNORE_BITS is correct */
+ assert(HIGH_BITS(p) == HIGH_BITS(&arena_map_root));
+ int i1 = MAP_TOP_INDEX(p);
+ if (arena_map_root.ptrs[i1] == NULL) {
+ if (!create) {
+ return NULL;
+ }
+ arena_map_mid_t *n = PyMem_RawCalloc(1, sizeof(arena_map_mid_t));
+ if (n == NULL) {
+ return NULL;
+ }
+ arena_map_root.ptrs[i1] = n;
+ arena_map_mid_count++;
+ }
+ int i2 = MAP_MID_INDEX(p);
+ if (arena_map_root.ptrs[i1]->ptrs[i2] == NULL) {
+ if (!create) {
+ return NULL;
+ }
+ arena_map_bot_t *n = PyMem_RawCalloc(1, sizeof(arena_map_bot_t));
+ if (n == NULL) {
+ return NULL;
+ }
+ arena_map_root.ptrs[i1]->ptrs[i2] = n;
+ arena_map_bot_count++;
+ }
+ return arena_map_root.ptrs[i1]->ptrs[i2];
+#else
+ return &arena_map_root;
+#endif
+}
+
+
+/* The radix tree only tracks arenas. So, for 16 MiB arenas, we throw
+ * away 24 bits of the address. That reduces the space requirement of
+ * the tree compared to similar radix tree page-map schemes. In
+ * exchange for slashing the space requirement, it needs more
+ * computation to check an address.
+ *
+ * Tracking coverage is done by "ideal" arena address. It is easier to
+ * explain in decimal so let's say that the arena size is 100 bytes.
+ * Then, ideal addresses are 100, 200, 300, etc. For checking if a
+ * pointer address is inside an actual arena, we have to check two ideal
+ * arena addresses. E.g. if pointer is 357, we need to check 200 and
+ * 300. In the rare case that an arena is aligned in the ideal way
+ * (e.g. base address of arena is 200) then we only have to check one
+ * ideal address.
+ *
+ * The tree nodes for 200 and 300 both store the address of arena.
+ * There are two cases: the arena starts at a lower ideal arena and
+ * extends to this one, or the arena starts in this arena and extends to
+ * the next ideal arena. The tail_lo and tail_hi members correspond to
+ * these two cases.
+ */
+
+
+/* mark or unmark addresses covered by arena */
+static int
+arena_map_mark_used(uintptr_t arena_base, int is_used)
+{
+ /* sanity check that IGNORE_BITS is correct */
+ assert(HIGH_BITS(arena_base) == HIGH_BITS(&arena_map_root));
+ arena_map_bot_t *n_hi = arena_map_get((block *)arena_base, is_used);
+ if (n_hi == NULL) {
+ assert(is_used); /* otherwise node should already exist */
+ return 0; /* failed to allocate space for node */
+ }
+ int i3 = MAP_BOT_INDEX((block *)arena_base);
+ int32_t tail = (int32_t)(arena_base & ARENA_SIZE_MASK);
+ if (tail == 0) {
+ /* is ideal arena address */
+ n_hi->arenas[i3].tail_hi = is_used ? -1 : 0;
+ }
+ else {
+ /* arena_base address is not ideal (aligned to arena size) and
+ * so it potentially covers two MAP_BOT nodes. Get the MAP_BOT node
+ * for the next arena. Note that it might be in different MAP_TOP
+ * and MAP_MID nodes as well so we need to call arena_map_get()
+ * again (do the full tree traversal).
+ */
+ n_hi->arenas[i3].tail_hi = is_used ? tail : 0;
+ uintptr_t arena_base_next = arena_base + ARENA_SIZE;
+ /* If arena_base is a legit arena address, so is arena_base_next - 1
+ * (last address in arena). If arena_base_next overflows then it
+ * must overflow to 0. However, that would mean arena_base was
+ * "ideal" and we should not be in this case. */
+ assert(arena_base < arena_base_next);
+ arena_map_bot_t *n_lo = arena_map_get((block *)arena_base_next, is_used);
+ if (n_lo == NULL) {
+ assert(is_used); /* otherwise should already exist */
+ n_hi->arenas[i3].tail_hi = 0;
+ return 0; /* failed to allocate space for node */
+ }
+ int i3_next = MAP_BOT_INDEX(arena_base_next);
+ n_lo->arenas[i3_next].tail_lo = is_used ? tail : 0;
+ }
+ return 1;
+}
+
+/* Return true if 'p' is a pointer inside an obmalloc arena.
+ * _PyObject_Free() calls this so it needs to be very fast. */
+static int
+arena_map_is_used(block *p)
+{
+ arena_map_bot_t *n = arena_map_get(p, 0);
+ if (n == NULL) {
+ return 0;
+ }
+ int i3 = MAP_BOT_INDEX(p);
+ /* ARENA_BITS must be < 32 so that the tail is a non-negative int32_t. */
+ int32_t hi = n->arenas[i3].tail_hi;
+ int32_t lo = n->arenas[i3].tail_lo;
+ int32_t tail = (int32_t)(AS_UINT(p) & ARENA_SIZE_MASK);
+ return (tail < lo) || (tail >= hi && hi != 0);
+}
+
+/* end of radix tree logic */
+/*==========================================================================*/
+#endif /* WITH_PYMALLOC_RADIX_TREE */
+
+
+/* Allocate a new arena. If we run out of memory, return NULL. Else
+ * allocate a new arena, and return the address of an arena_object
+ * describing the new arena. It's expected that the caller will set
+ * `usable_arenas` to the return value.
+ */
+static struct arena_object*
+new_arena(void)
+{
+ struct arena_object* arenaobj;
+ uint excess; /* number of bytes above pool alignment */
+ void *address;
+ static int debug_stats = -1;
+
+ if (debug_stats == -1) {
+ const char *opt = Py_GETENV("PYTHONMALLOCSTATS");
+ debug_stats = (opt != NULL && *opt != '\0');
+ }
+ if (debug_stats) {
+ _PyObject_DebugMallocStats(stderr);
+ }
+
+ if (unused_arena_objects == NULL) {
+ uint i;
+ uint numarenas;
+ size_t nbytes;
+
+ /* Double the number of arena objects on each allocation.
+ * Note that it's possible for `numarenas` to overflow.
+ */
+ numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
+ if (numarenas <= maxarenas)
+ return NULL; /* overflow */
+#if SIZEOF_SIZE_T <= SIZEOF_INT
+ if (numarenas > SIZE_MAX / sizeof(*arenas))
+ return NULL; /* overflow */
+#endif
+ nbytes = numarenas * sizeof(*arenas);
+ arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes);
+ if (arenaobj == NULL)
+ return NULL;
+ arenas = arenaobj;
+
+ /* We might need to fix pointers that were copied. However,
+ * new_arena only gets called when all the pages in the
+ * previous arenas are full. Thus, there are *no* pointers
+ * into the old array. Thus, we don't have to worry about
+ * invalid pointers. Just to be sure, some asserts:
+ */
+ assert(usable_arenas == NULL);
+ assert(unused_arena_objects == NULL);
+
+ /* Put the new arenas on the unused_arena_objects list. */
+ for (i = maxarenas; i < numarenas; ++i) {
+ arenas[i].address = 0; /* mark as unassociated */
+ arenas[i].nextarena = i < numarenas - 1 ?
+ &arenas[i+1] : NULL;
+ }
+
+ /* Update globals. */
+ unused_arena_objects = &arenas[maxarenas];
+ maxarenas = numarenas;
+ }
+
+ /* Take the next available arena object off the head of the list. */
+ assert(unused_arena_objects != NULL);
+ arenaobj = unused_arena_objects;
+ unused_arena_objects = arenaobj->nextarena;
+ assert(arenaobj->address == 0);
+ address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);
+#if WITH_PYMALLOC_RADIX_TREE
+ if (address != NULL) {
+ if (!arena_map_mark_used((uintptr_t)address, 1)) {
+ /* marking arena in radix tree failed, abort */
+ _PyObject_Arena.free(_PyObject_Arena.ctx, address, ARENA_SIZE);
+ address = NULL;
+ }
+ }
+#endif
+ if (address == NULL) {
+ /* The allocation failed: return NULL after putting the
+ * arenaobj back.
+ */
+ arenaobj->nextarena = unused_arena_objects;
+ unused_arena_objects = arenaobj;
+ return NULL;
+ }
+ arenaobj->address = (uintptr_t)address;
+
+ ++narenas_currently_allocated;
+ ++ntimes_arena_allocated;
+ if (narenas_currently_allocated > narenas_highwater)
+ narenas_highwater = narenas_currently_allocated;
+ arenaobj->freepools = NULL;
+ /* pool_address <- first pool-aligned address in the arena
+ nfreepools <- number of whole pools that fit after alignment */
+ arenaobj->pool_address = (block*)arenaobj->address;
+ arenaobj->nfreepools = MAX_POOLS_IN_ARENA;
+ excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
+ if (excess != 0) {
+ --arenaobj->nfreepools;
+ arenaobj->pool_address += POOL_SIZE - excess;
+ }
+ arenaobj->ntotalpools = arenaobj->nfreepools;
+
+ return arenaobj;
+}
+
+
+
+#if WITH_PYMALLOC_RADIX_TREE
+/* Return true if and only if P is an address that was allocated by
+ pymalloc. When the radix tree is used, 'poolp' is unused.
+ */
+static bool
+address_in_range(void *p, poolp pool)
+{
+ return arena_map_is_used(p);
+}
+#else
+/*
+address_in_range(P, POOL)
+
+Return true if and only if P is an address that was allocated by pymalloc.
+POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
+(the caller is asked to compute this because the macro expands POOL more than
+once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
+variable and pass the latter to the macro; because address_in_range is
+called on every alloc/realloc/free, micro-efficiency is important here).
+
+Tricky: Let B be the arena base address associated with the pool, B =
+arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if
+
+ B <= P < B + ARENA_SIZE
+
+Subtracting B throughout, this is true iff
+
+ 0 <= P-B < ARENA_SIZE
+
+By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
+
+Obscure: A PyMem "free memory" function can call the pymalloc free or realloc
+before the first arena has been allocated. `arenas` is still NULL in that
+case. We're relying on that maxarenas is also 0 in that case, so that
+(POOL)->arenaindex < maxarenas must be false, saving us from trying to index
+into a NULL arenas.
+
+Details: given P and POOL, the arena_object corresponding to P is AO =
+arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild
+stores, etc), POOL is the correct address of P's pool, AO.address is the
+correct base address of the pool's arena, and P must be within ARENA_SIZE of
+AO.address. In addition, AO.address is not 0 (no arena can start at address 0
+(NULL)). Therefore address_in_range correctly reports that obmalloc
+controls P.
+
+Now suppose obmalloc does not control P (e.g., P was obtained via a direct
+call to the system malloc() or realloc()). (POOL)->arenaindex may be anything
+in this case -- it may even be uninitialized trash. If the trash arenaindex
+is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
+control P.
+
+Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an
+allocated arena, obmalloc controls all the memory in slice AO.address :
+AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc,
+so P doesn't lie in that slice, so the macro correctly reports that P is not
+controlled by obmalloc.
+
+Finally, if P is not controlled by obmalloc and AO corresponds to an unused
+arena_object (one not currently associated with an allocated arena),
+AO.address is 0, and the second test in the macro reduces to:
+
+ P < ARENA_SIZE
+
+If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
+that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part
+of the test still passes, and the third clause (AO.address != 0) is necessary
+to get the correct result: AO.address is 0 in this case, so the macro
+correctly reports that P is not controlled by obmalloc (despite that P lies in
+slice AO.address : AO.address + ARENA_SIZE).
+
+Note: The third (AO.address != 0) clause was added in Python 2.5. Before
+2.5, arenas were never free()'ed, and an arenaindex < maxarena always
+corresponded to a currently-allocated arena, so the "P is not controlled by
+obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
+was impossible.
+
+Note that the logic is excruciating, and reading up possibly uninitialized
+memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
+creates problems for some memory debuggers. The overwhelming advantage is
+that this test determines whether an arbitrary address is controlled by
+obmalloc in a small constant time, independent of the number of arenas
+obmalloc controls. Since this test is needed at every entry point, it's
+extremely desirable that it be this fast.
+*/
+
+static bool _Py_NO_SANITIZE_ADDRESS
+ _Py_NO_SANITIZE_THREAD
+ _Py_NO_SANITIZE_MEMORY
+address_in_range(void *p, poolp pool)
+{
+ // Since address_in_range may be reading from memory which was not allocated
+ // by Python, it is important that pool->arenaindex is read only once, as
+ // another thread may be concurrently modifying the value without holding
+ // the GIL. The following dance forces the compiler to read pool->arenaindex
+ // only once.
+ uint arenaindex = *((volatile uint *)&pool->arenaindex);
+ return arenaindex < maxarenas &&
+ (uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE &&
+ arenas[arenaindex].address != 0;
+}
+
+#endif /* !WITH_PYMALLOC_RADIX_TREE */
+
+/*==========================================================================*/
+
+// Called when freelist is exhausted. Extend the freelist if there is
+// space for a block. Otherwise, remove this pool from usedpools.
+static void
+pymalloc_pool_extend(poolp pool, uint size)
+{
+ if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) {
+ /* There is room for another block. */
+ pool->freeblock = (block*)pool + pool->nextoffset;
+ pool->nextoffset += INDEX2SIZE(size);
+ *(block **)(pool->freeblock) = NULL;
+ return;
+ }
+
+ /* Pool is full, unlink from used pools. */
+ poolp next;
+ next = pool->nextpool;
+ pool = pool->prevpool;
+ next->prevpool = pool;
+ pool->nextpool = next;
+}
+
+/* called when pymalloc_alloc can not allocate a block from usedpool.
+ * This function takes new pool and allocate a block from it.
+ */
+static void*
+allocate_from_new_pool(uint size)
+{
+ /* There isn't a pool of the right size class immediately
+ * available: use a free pool.
+ */
+ if (UNLIKELY(usable_arenas == NULL)) {
+ /* No arena has a free pool: allocate a new arena. */
+#ifdef WITH_MEMORY_LIMITS
+ if (narenas_currently_allocated >= MAX_ARENAS) {
+ return NULL;
+ }
+#endif
+ usable_arenas = new_arena();
+ if (usable_arenas == NULL) {
+ return NULL;
+ }
+ usable_arenas->nextarena = usable_arenas->prevarena = NULL;
+ assert(nfp2lasta[usable_arenas->nfreepools] == NULL);
+ nfp2lasta[usable_arenas->nfreepools] = usable_arenas;
+ }
+ assert(usable_arenas->address != 0);
+
+ /* This arena already had the smallest nfreepools value, so decreasing
+ * nfreepools doesn't change that, and we don't need to rearrange the
+ * usable_arenas list. However, if the arena becomes wholly allocated,
+ * we need to remove its arena_object from usable_arenas.
+ */
+ assert(usable_arenas->nfreepools > 0);
+ if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) {
+ /* It's the last of this size, so there won't be any. */
+ nfp2lasta[usable_arenas->nfreepools] = NULL;
+ }
+ /* If any free pools will remain, it will be the new smallest. */
+ if (usable_arenas->nfreepools > 1) {
+ assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL);
+ nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas;
+ }
+
+ /* Try to get a cached free pool. */
+ poolp pool = usable_arenas->freepools;
+ if (LIKELY(pool != NULL)) {
+ /* Unlink from cached pools. */
+ usable_arenas->freepools = pool->nextpool;
+ usable_arenas->nfreepools--;
+ if (UNLIKELY(usable_arenas->nfreepools == 0)) {
+ /* Wholly allocated: remove. */
+ assert(usable_arenas->freepools == NULL);
+ assert(usable_arenas->nextarena == NULL ||
+ usable_arenas->nextarena->prevarena ==
+ usable_arenas);
+ usable_arenas = usable_arenas->nextarena;
+ if (usable_arenas != NULL) {
+ usable_arenas->prevarena = NULL;
+ assert(usable_arenas->address != 0);
+ }
+ }
+ else {
+ /* nfreepools > 0: it must be that freepools
+ * isn't NULL, or that we haven't yet carved
+ * off all the arena's pools for the first
+ * time.
+ */
+ assert(usable_arenas->freepools != NULL ||
+ usable_arenas->pool_address <=
+ (block*)usable_arenas->address +
+ ARENA_SIZE - POOL_SIZE);
+ }
+ }
+ else {
+ /* Carve off a new pool. */
+ assert(usable_arenas->nfreepools > 0);
+ assert(usable_arenas->freepools == NULL);
+ pool = (poolp)usable_arenas->pool_address;
+ assert((block*)pool <= (block*)usable_arenas->address +
+ ARENA_SIZE - POOL_SIZE);
+ pool->arenaindex = (uint)(usable_arenas - arenas);
+ assert(&arenas[pool->arenaindex] == usable_arenas);
+ pool->szidx = DUMMY_SIZE_IDX;
+ usable_arenas->pool_address += POOL_SIZE;
+ --usable_arenas->nfreepools;
+
+ if (usable_arenas->nfreepools == 0) {
+ assert(usable_arenas->nextarena == NULL ||
+ usable_arenas->nextarena->prevarena ==
+ usable_arenas);
+ /* Unlink the arena: it is completely allocated. */
+ usable_arenas = usable_arenas->nextarena;
+ if (usable_arenas != NULL) {
+ usable_arenas->prevarena = NULL;
+ assert(usable_arenas->address != 0);
+ }
+ }
+ }
+
+ /* Frontlink to used pools. */
+ block *bp;
+ poolp next = usedpools[size + size]; /* == prev */
+ pool->nextpool = next;
+ pool->prevpool = next;
+ next->nextpool = pool;
+ next->prevpool = pool;
+ pool->ref.count = 1;
+ if (pool->szidx == size) {
+ /* Luckily, this pool last contained blocks
+ * of the same size class, so its header
+ * and free list are already initialized.
+ */
+ bp = pool->freeblock;
+ assert(bp != NULL);
+ pool->freeblock = *(block **)bp;
+ return bp;
+ }
+ /*
+ * Initialize the pool header, set up the free list to
+ * contain just the second block, and return the first
+ * block.
+ */
+ pool->szidx = size;
+ size = INDEX2SIZE(size);
+ bp = (block *)pool + POOL_OVERHEAD;
+ pool->nextoffset = POOL_OVERHEAD + (size << 1);
+ pool->maxnextoffset = POOL_SIZE - size;
+ pool->freeblock = bp + size;
+ *(block **)(pool->freeblock) = NULL;
+ return bp;
+}
+
+/* pymalloc allocator
+
+ Return a pointer to newly allocated memory if pymalloc allocated memory.
+
+ Return NULL if pymalloc failed to allocate the memory block: on bigger
+ requests, on error in the code below (as a last chance to serve the request)
+ or when the max memory limit has been reached.
+*/
+static inline void*
+pymalloc_alloc(void *ctx, size_t nbytes)
+{
+#ifdef WITH_VALGRIND
+ if (UNLIKELY(running_on_valgrind == -1)) {
+ running_on_valgrind = RUNNING_ON_VALGRIND;
+ }
+ if (UNLIKELY(running_on_valgrind)) {
+ return NULL;
+ }
+#endif
+
+ if (UNLIKELY(nbytes == 0)) {
+ return NULL;
+ }
+ if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) {
+ return NULL;
+ }
+
+ uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
+ poolp pool = usedpools[size + size];
+ block *bp;
+
+ if (LIKELY(pool != pool->nextpool)) {
+ /*
+ * There is a used pool for this size class.
+ * Pick up the head block of its free list.
+ */
+ ++pool->ref.count;
+ bp = pool->freeblock;
+ assert(bp != NULL);
+
+ if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL)) {
+ // Reached the end of the free list, try to extend it.
+ pymalloc_pool_extend(pool, size);
+ }
+ }
+ else {
+ /* There isn't a pool of the right size class immediately
+ * available: use a free pool.
+ */
+ bp = allocate_from_new_pool(size);
+ }
+
+ return (void *)bp;
+}
+
+
+static void *
+_PyObject_Malloc(void *ctx, size_t nbytes)
+{
+ void* ptr = pymalloc_alloc(ctx, nbytes);
+ if (LIKELY(ptr != NULL)) {
+ return ptr;
+ }
+
+ ptr = PyMem_RawMalloc(nbytes);
+ if (ptr != NULL) {
+ raw_allocated_blocks++;
+ }
+ return ptr;
+}
+
+
+static void *
+_PyObject_Calloc(void *ctx, size_t nelem, size_t elsize)
+{
+ assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
+ size_t nbytes = nelem * elsize;
+
+ void* ptr = pymalloc_alloc(ctx, nbytes);
+ if (LIKELY(ptr != NULL)) {
+ memset(ptr, 0, nbytes);
+ return ptr;
+ }
+
+ ptr = PyMem_RawCalloc(nelem, elsize);
+ if (ptr != NULL) {
+ raw_allocated_blocks++;
+ }
+ return ptr;
+}
+
+
+static void
+insert_to_usedpool(poolp pool)
+{
+ assert(pool->ref.count > 0); /* else the pool is empty */
+
+ uint size = pool->szidx;
+ poolp next = usedpools[size + size];
+ poolp prev = next->prevpool;
+
+ /* insert pool before next: prev <-> pool <-> next */
+ pool->nextpool = next;
+ pool->prevpool = prev;
+ next->prevpool = pool;
+ prev->nextpool = pool;
+}
+
+static void
+insert_to_freepool(poolp pool)
+{
+ poolp next = pool->nextpool;
+ poolp prev = pool->prevpool;
+ next->prevpool = prev;
+ prev->nextpool = next;
+
+ /* Link the pool to freepools. This is a singly-linked
+ * list, and pool->prevpool isn't used there.
+ */
+ struct arena_object *ao = &arenas[pool->arenaindex];
+ pool->nextpool = ao->freepools;
+ ao->freepools = pool;
+ uint nf = ao->nfreepools;
+ /* If this is the rightmost arena with this number of free pools,
+ * nfp2lasta[nf] needs to change. Caution: if nf is 0, there
+ * are no arenas in usable_arenas with that value.
+ */
+ struct arena_object* lastnf = nfp2lasta[nf];
+ assert((nf == 0 && lastnf == NULL) ||
+ (nf > 0 &&
+ lastnf != NULL &&
+ lastnf->nfreepools == nf &&
+ (lastnf->nextarena == NULL ||
+ nf < lastnf->nextarena->nfreepools)));
+ if (lastnf == ao) { /* it is the rightmost */
+ struct arena_object* p = ao->prevarena;
+ nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL;
+ }
+ ao->nfreepools = ++nf;
+
+ /* All the rest is arena management. We just freed
+ * a pool, and there are 4 cases for arena mgmt:
+ * 1. If all the pools are free, return the arena to
+ * the system free(). Except if this is the last
+ * arena in the list, keep it to avoid thrashing:
+ * keeping one wholly free arena in the list avoids
+ * pathological cases where a simple loop would
+ * otherwise provoke needing to allocate and free an
+ * arena on every iteration. See bpo-37257.
+ * 2. If this is the only free pool in the arena,
+ * add the arena back to the `usable_arenas` list.
+ * 3. If the "next" arena has a smaller count of free
+ * pools, we have to "slide this arena right" to
+ * restore that usable_arenas is sorted in order of
+ * nfreepools.
+ * 4. Else there's nothing more to do.
+ */
+ if (nf == ao->ntotalpools && ao->nextarena != NULL) {
+ /* Case 1. First unlink ao from usable_arenas.
+ */
+ assert(ao->prevarena == NULL ||
+ ao->prevarena->address != 0);
+ assert(ao ->nextarena == NULL ||
+ ao->nextarena->address != 0);
+
+ /* Fix the pointer in the prevarena, or the
+ * usable_arenas pointer.
+ */
+ if (ao->prevarena == NULL) {
+ usable_arenas = ao->nextarena;
+ assert(usable_arenas == NULL ||
+ usable_arenas->address != 0);
+ }
+ else {
+ assert(ao->prevarena->nextarena == ao);
+ ao->prevarena->nextarena =
+ ao->nextarena;
+ }
+ /* Fix the pointer in the nextarena. */
+ if (ao->nextarena != NULL) {
+ assert(ao->nextarena->prevarena == ao);
+ ao->nextarena->prevarena =
+ ao->prevarena;
+ }
+ /* Record that this arena_object slot is
+ * available to be reused.
+ */
+ ao->nextarena = unused_arena_objects;
+ unused_arena_objects = ao;
+
+#if WITH_PYMALLOC_RADIX_TREE
+ /* mark arena region as not under control of obmalloc */
+ arena_map_mark_used(ao->address, 0);
+#endif
+
+ /* Free the entire arena. */
+ _PyObject_Arena.free(_PyObject_Arena.ctx,
+ (void *)ao->address, ARENA_SIZE);
+ ao->address = 0; /* mark unassociated */
+ --narenas_currently_allocated;
+
+ return;
+ }
+
+ if (nf == 1) {
+ /* Case 2. Put ao at the head of
+ * usable_arenas. Note that because
+ * ao->nfreepools was 0 before, ao isn't
+ * currently on the usable_arenas list.
+ */
+ ao->nextarena = usable_arenas;
+ ao->prevarena = NULL;
+ if (usable_arenas)
+ usable_arenas->prevarena = ao;
+ usable_arenas = ao;
+ assert(usable_arenas->address != 0);
+ if (nfp2lasta[1] == NULL) {
+ nfp2lasta[1] = ao;
+ }
+
+ return;
+ }
+
+ /* If this arena is now out of order, we need to keep
+ * the list sorted. The list is kept sorted so that
+ * the "most full" arenas are used first, which allows
+ * the nearly empty arenas to be completely freed. In
+ * a few un-scientific tests, it seems like this
+ * approach allowed a lot more memory to be freed.
+ */
+ /* If this is the only arena with nf, record that. */
+ if (nfp2lasta[nf] == NULL) {
+ nfp2lasta[nf] = ao;
+ } /* else the rightmost with nf doesn't change */
+ /* If this was the rightmost of the old size, it remains in place. */
+ if (ao == lastnf) {
+ /* Case 4. Nothing to do. */
+ return;
+ }
+ /* If ao were the only arena in the list, the last block would have
+ * gotten us out.
+ */
+ assert(ao->nextarena != NULL);
+
+ /* Case 3: We have to move the arena towards the end of the list,
+ * because it has more free pools than the arena to its right. It needs
+ * to move to follow lastnf.
+ * First unlink ao from usable_arenas.
+ */
+ if (ao->prevarena != NULL) {
+ /* ao isn't at the head of the list */
+ assert(ao->prevarena->nextarena == ao);
+ ao->prevarena->nextarena = ao->nextarena;
+ }
+ else {
+ /* ao is at the head of the list */
+ assert(usable_arenas == ao);
+ usable_arenas = ao->nextarena;
+ }
+ ao->nextarena->prevarena = ao->prevarena;
+ /* And insert after lastnf. */
+ ao->prevarena = lastnf;
+ ao->nextarena = lastnf->nextarena;
+ if (ao->nextarena != NULL) {
+ ao->nextarena->prevarena = ao;
+ }
+ lastnf->nextarena = ao;
+ /* Verify that the swaps worked. */
+ assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools);
+ assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools);
+ assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao);
+ assert((usable_arenas == ao && ao->prevarena == NULL)
+ || ao->prevarena->nextarena == ao);
+}
+
+/* Free a memory block allocated by pymalloc_alloc().
+ Return 1 if it was freed.
+ Return 0 if the block was not allocated by pymalloc_alloc(). */
+static inline int
+pymalloc_free(void *ctx, void *p)
+{
+ assert(p != NULL);
+
+#ifdef WITH_VALGRIND
+ if (UNLIKELY(running_on_valgrind > 0)) {
+ return 0;
+ }
+#endif
+
+ poolp pool = POOL_ADDR(p);
+ if (UNLIKELY(!address_in_range(p, pool))) {
+ return 0;
+ }
+ /* We allocated this address. */
+
+ /* Link p to the start of the pool's freeblock list. Since
+ * the pool had at least the p block outstanding, the pool
+ * wasn't empty (so it's already in a usedpools[] list, or
+ * was full and is in no list -- it's not in the freeblocks
+ * list in any case).
+ */
+ assert(pool->ref.count > 0); /* else it was empty */
+ block *lastfree = pool->freeblock;
+ *(block **)p = lastfree;
+ pool->freeblock = (block *)p;
+ pool->ref.count--;
+
+ if (UNLIKELY(lastfree == NULL)) {
+ /* Pool was full, so doesn't currently live in any list:
+ * link it to the front of the appropriate usedpools[] list.
+ * This mimics LRU pool usage for new allocations and
+ * targets optimal filling when several pools contain
+ * blocks of the same size class.
+ */
+ insert_to_usedpool(pool);
+ return 1;
+ }
+
+ /* freeblock wasn't NULL, so the pool wasn't full,
+ * and the pool is in a usedpools[] list.
+ */
+ if (LIKELY(pool->ref.count != 0)) {
+ /* pool isn't empty: leave it in usedpools */
+ return 1;
+ }
+
+ /* Pool is now empty: unlink from usedpools, and
+ * link to the front of freepools. This ensures that
+ * previously freed pools will be allocated later
+ * (being not referenced, they are perhaps paged out).
+ */
+ insert_to_freepool(pool);
+ return 1;
+}
+
+
+static void
+_PyObject_Free(void *ctx, void *p)
+{
+ /* PyObject_Free(NULL) has no effect */
+ if (p == NULL) {
+ return;
+ }
+
+ if (UNLIKELY(!pymalloc_free(ctx, p))) {
+ /* pymalloc didn't allocate this address */
+ PyMem_RawFree(p);
+ raw_allocated_blocks--;
+ }
+}
+
+
+/* pymalloc realloc.
+
+ If nbytes==0, then as the Python docs promise, we do not treat this like
+ free(p), and return a non-NULL result.
+
+ Return 1 if pymalloc reallocated memory and wrote the new pointer into
+ newptr_p.
+
+ Return 0 if pymalloc didn't allocated p. */
+static int
+pymalloc_realloc(void *ctx, void **newptr_p, void *p, size_t nbytes)
+{
+ void *bp;
+ poolp pool;
+ size_t size;
+
+ assert(p != NULL);
+
+#ifdef WITH_VALGRIND
+ /* Treat running_on_valgrind == -1 the same as 0 */
+ if (UNLIKELY(running_on_valgrind > 0)) {
+ return 0;
+ }
+#endif
+
+ pool = POOL_ADDR(p);
+ if (!address_in_range(p, pool)) {
+ /* pymalloc is not managing this block.
+
+ If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take
+ over this block. However, if we do, we need to copy the valid data
+ from the C-managed block to one of our blocks, and there's no
+ portable way to know how much of the memory space starting at p is
+ valid.
+
+ As bug 1185883 pointed out the hard way, it's possible that the
+ C-managed block is "at the end" of allocated VM space, so that a
+ memory fault can occur if we try to copy nbytes bytes starting at p.
+ Instead we punt: let C continue to manage this block. */
+ return 0;
+ }
+
+ /* pymalloc is in charge of this block */
+ size = INDEX2SIZE(pool->szidx);
+ if (nbytes <= size) {
+ /* The block is staying the same or shrinking.
+
+ If it's shrinking, there's a tradeoff: it costs cycles to copy the
+ block to a smaller size class, but it wastes memory not to copy it.
+
+ The compromise here is to copy on shrink only if at least 25% of
+ size can be shaved off. */
+ if (4 * nbytes > 3 * size) {
+ /* It's the same, or shrinking and new/old > 3/4. */
+ *newptr_p = p;
+ return 1;
+ }
+ size = nbytes;
+ }
+
+ bp = _PyObject_Malloc(ctx, nbytes);
+ if (bp != NULL) {
+ memcpy(bp, p, size);
+ _PyObject_Free(ctx, p);
+ }
+ *newptr_p = bp;
+ return 1;
+}
+
+
+static void *
+_PyObject_Realloc(void *ctx, void *ptr, size_t nbytes)
+{
+ void *ptr2;
+
+ if (ptr == NULL) {
+ return _PyObject_Malloc(ctx, nbytes);
+ }
+
+ if (pymalloc_realloc(ctx, &ptr2, ptr, nbytes)) {
+ return ptr2;
+ }
+
+ return PyMem_RawRealloc(ptr, nbytes);
+}
+
+#else /* ! WITH_PYMALLOC */
+
+/*==========================================================================*/
+/* pymalloc not enabled: Redirect the entry points to malloc. These will
+ * only be used by extensions that are compiled with pymalloc enabled. */
+
+Py_ssize_t
+_Py_GetAllocatedBlocks(void)
+{
+ return 0;
+}
+
+#endif /* WITH_PYMALLOC */
+
+
+/*==========================================================================*/
+/* A x-platform debugging allocator. This doesn't manage memory directly,
+ * it wraps a real allocator, adding extra debugging info to the memory blocks.
+ */
+
+/* Uncomment this define to add the "serialno" field */
+/* #define PYMEM_DEBUG_SERIALNO */
+
+#ifdef PYMEM_DEBUG_SERIALNO
+static size_t serialno = 0; /* incremented on each debug {m,re}alloc */
+
+/* serialno is always incremented via calling this routine. The point is
+ * to supply a single place to set a breakpoint.
+ */
+static void
+bumpserialno(void)
+{
+ ++serialno;
+}
+#endif
+
+#define SST SIZEOF_SIZE_T
+
+#ifdef PYMEM_DEBUG_SERIALNO
+# define PYMEM_DEBUG_EXTRA_BYTES 4 * SST
+#else
+# define PYMEM_DEBUG_EXTRA_BYTES 3 * SST
+#endif
+
+/* Read sizeof(size_t) bytes at p as a big-endian size_t. */
+static size_t
+read_size_t(const void *p)
+{
+ const uint8_t *q = (const uint8_t *)p;
+ size_t result = *q++;
+ int i;
+
+ for (i = SST; --i > 0; ++q)
+ result = (result << 8) | *q;
+ return result;
+}
+
+/* Write n as a big-endian size_t, MSB at address p, LSB at
+ * p + sizeof(size_t) - 1.
+ */
+static void
+write_size_t(void *p, size_t n)
+{
+ uint8_t *q = (uint8_t *)p + SST - 1;
+ int i;
+
+ for (i = SST; --i >= 0; --q) {
+ *q = (uint8_t)(n & 0xff);
+ n >>= 8;
+ }
+}
+
+/* Let S = sizeof(size_t). The debug malloc asks for 4 * S extra bytes and
+ fills them with useful stuff, here calling the underlying malloc's result p:
+
+p[0: S]
+ Number of bytes originally asked for. This is a size_t, big-endian (easier
+ to read in a memory dump).
+p[S]
+ API ID. See PEP 445. This is a character, but seems undocumented.
+p[S+1: 2*S]
+ Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.
+p[2*S: 2*S+n]
+ The requested memory, filled with copies of PYMEM_CLEANBYTE.
+ Used to catch reference to uninitialized memory.
+ &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc
+ handled the request itself.
+p[2*S+n: 2*S+n+S]
+ Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.
+p[2*S+n+S: 2*S+n+2*S]
+ A serial number, incremented by 1 on each call to _PyMem_DebugMalloc
+ and _PyMem_DebugRealloc.
+ This is a big-endian size_t.
+ If "bad memory" is detected later, the serial number gives an
+ excellent way to set a breakpoint on the next run, to capture the
+ instant at which this block was passed out.
+
+If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks
+for 3 * S extra bytes, and omits the last serialno field.
+*/
+
+static void *
+_PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes)
+{
+ debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
+ uint8_t *p; /* base address of malloc'ed pad block */
+ uint8_t *data; /* p + 2*SST == pointer to data bytes */
+ uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
+ size_t total; /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */
+
+ if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
+ /* integer overflow: can't represent total as a Py_ssize_t */
+ return NULL;
+ }
+ total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;
+
+ /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN]
+ ^--- p ^--- data ^--- tail
+ S: nbytes stored as size_t
+ I: API identifier (1 byte)
+ F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after)
+ C: Clean bytes used later to store actual data
+ N: Serial number stored as size_t
+
+ If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field
+ is omitted. */
+
+ if (use_calloc) {
+ p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total);
+ }
+ else {
+ p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total);
+ }
+ if (p == NULL) {
+ return NULL;
+ }
+ data = p + 2*SST;
+
+#ifdef PYMEM_DEBUG_SERIALNO
+ bumpserialno();
+#endif
+
+ /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
+ write_size_t(p, nbytes);
+ p[SST] = (uint8_t)api->api_id;
+ memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);
+
+ if (nbytes > 0 && !use_calloc) {
+ memset(data, PYMEM_CLEANBYTE, nbytes);
+ }
+
+ /* at tail, write pad (SST bytes) and serialno (SST bytes) */
+ tail = data + nbytes;
+ memset(tail, PYMEM_FORBIDDENBYTE, SST);
+#ifdef PYMEM_DEBUG_SERIALNO
+ write_size_t(tail + SST, serialno);
+#endif
+
+ return data;
+}
+
+static void *
+_PyMem_DebugRawMalloc(void *ctx, size_t nbytes)
+{
+ return _PyMem_DebugRawAlloc(0, ctx, nbytes);
+}
+
+static void *
+_PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize)
+{
+ size_t nbytes;
+ assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
+ nbytes = nelem * elsize;
+ return _PyMem_DebugRawAlloc(1, ctx, nbytes);
+}
+
+
+/* The debug free first checks the 2*SST bytes on each end for sanity (in
+ particular, that the FORBIDDENBYTEs with the api ID are still intact).
+ Then fills the original bytes with PYMEM_DEADBYTE.
+ Then calls the underlying free.
+*/
+static void
+_PyMem_DebugRawFree(void *ctx, void *p)
+{
+ /* PyMem_Free(NULL) has no effect */
+ if (p == NULL) {
+ return;
+ }
+
+ debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
+ uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */
+ size_t nbytes;
+
+ _PyMem_DebugCheckAddress(__func__, api->api_id, p);
+ nbytes = read_size_t(q);
+ nbytes += PYMEM_DEBUG_EXTRA_BYTES;
+ memset(q, PYMEM_DEADBYTE, nbytes);
+ api->alloc.free(api->alloc.ctx, q);
+}
+
+
+static void *
+_PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes)
+{
+ if (p == NULL) {
+ return _PyMem_DebugRawAlloc(0, ctx, nbytes);
+ }
+
+ debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
+ uint8_t *head; /* base address of malloc'ed pad block */
+ uint8_t *data; /* pointer to data bytes */
+ uint8_t *r;
+ uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
+ size_t total; /* 2 * SST + nbytes + 2 * SST */
+ size_t original_nbytes;
+#define ERASED_SIZE 64
+ uint8_t save[2*ERASED_SIZE]; /* A copy of erased bytes. */
+
+ _PyMem_DebugCheckAddress(__func__, api->api_id, p);
+
+ data = (uint8_t *)p;
+ head = data - 2*SST;
+ original_nbytes = read_size_t(head);
+ if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
+ /* integer overflow: can't represent total as a Py_ssize_t */
+ return NULL;
+ }
+ total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;
+
+ tail = data + original_nbytes;
+#ifdef PYMEM_DEBUG_SERIALNO
+ size_t block_serialno = read_size_t(tail + SST);
+#endif
+ /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and
+ ERASED_SIZE bytes at the end as dead and save the copy of erased bytes.
+ */
+ if (original_nbytes <= sizeof(save)) {
+ memcpy(save, data, original_nbytes);
+ memset(data - 2 * SST, PYMEM_DEADBYTE,
+ original_nbytes + PYMEM_DEBUG_EXTRA_BYTES);
+ }
+ else {
+ memcpy(save, data, ERASED_SIZE);
+ memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST);
+ memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE);
+ memset(tail - ERASED_SIZE, PYMEM_DEADBYTE,
+ ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST);
+ }
+
+ /* Resize and add decorations. */
+ r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total);
+ if (r == NULL) {
+ /* if realloc() failed: rewrite header and footer which have
+ just been erased */
+ nbytes = original_nbytes;
+ }
+ else {
+ head = r;
+#ifdef PYMEM_DEBUG_SERIALNO
+ bumpserialno();
+ block_serialno = serialno;
+#endif
+ }
+ data = head + 2*SST;
+
+ write_size_t(head, nbytes);
+ head[SST] = (uint8_t)api->api_id;
+ memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);
+
+ tail = data + nbytes;
+ memset(tail, PYMEM_FORBIDDENBYTE, SST);
+#ifdef PYMEM_DEBUG_SERIALNO
+ write_size_t(tail + SST, block_serialno);
+#endif
+
+ /* Restore saved bytes. */
+ if (original_nbytes <= sizeof(save)) {
+ memcpy(data, save, Py_MIN(nbytes, original_nbytes));
+ }
+ else {
+ size_t i = original_nbytes - ERASED_SIZE;
+ memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE));
+ if (nbytes > i) {
+ memcpy(data + i, &save[ERASED_SIZE],
+ Py_MIN(nbytes - i, ERASED_SIZE));
+ }
+ }
+
+ if (r == NULL) {
+ return NULL;
+ }
+
+ if (nbytes > original_nbytes) {
+ /* growing: mark new extra memory clean */
+ memset(data + original_nbytes, PYMEM_CLEANBYTE,
+ nbytes - original_nbytes);
+ }
+
+ return data;
+}
+
+static inline void
+_PyMem_DebugCheckGIL(const char *func)
+{
+ if (!PyGILState_Check()) {
+ _Py_FatalErrorFunc(func,
+ "Python memory allocator called "
+ "without holding the GIL");
+ }
+}
+
+static void *
+_PyMem_DebugMalloc(void *ctx, size_t nbytes)
+{
+ _PyMem_DebugCheckGIL(__func__);
+ return _PyMem_DebugRawMalloc(ctx, nbytes);
+}
+
+static void *
+_PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize)
+{
+ _PyMem_DebugCheckGIL(__func__);
+ return _PyMem_DebugRawCalloc(ctx, nelem, elsize);
+}
+
+
+static void
+_PyMem_DebugFree(void *ctx, void *ptr)
+{
+ _PyMem_DebugCheckGIL(__func__);
+ _PyMem_DebugRawFree(ctx, ptr);
+}
+
+
+static void *
+_PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes)
+{
+ _PyMem_DebugCheckGIL(__func__);
+ return _PyMem_DebugRawRealloc(ctx, ptr, nbytes);
+}
+
+/* Check the forbidden bytes on both ends of the memory allocated for p.
+ * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
+ * and call Py_FatalError to kill the program.
+ * The API id, is also checked.
+ */
+static void
+_PyMem_DebugCheckAddress(const char *func, char api, const void *p)
+{
+ assert(p != NULL);
+
+ const uint8_t *q = (const uint8_t *)p;
+ size_t nbytes;
+ const uint8_t *tail;
+ int i;
+ char id;
+
+ /* Check the API id */
+ id = (char)q[-SST];
+ if (id != api) {
+ _PyObject_DebugDumpAddress(p);
+ _Py_FatalErrorFormat(func,
+ "bad ID: Allocated using API '%c', "
+ "verified using API '%c'",
+ id, api);
+ }
+
+ /* Check the stuff at the start of p first: if there's underwrite
+ * corruption, the number-of-bytes field may be nuts, and checking
+ * the tail could lead to a segfault then.
+ */
+ for (i = SST-1; i >= 1; --i) {
+ if (*(q-i) != PYMEM_FORBIDDENBYTE) {
+ _PyObject_DebugDumpAddress(p);
+ _Py_FatalErrorFunc(func, "bad leading pad byte");
+ }
+ }
+
+ nbytes = read_size_t(q - 2*SST);
+ tail = q + nbytes;
+ for (i = 0; i < SST; ++i) {
+ if (tail[i] != PYMEM_FORBIDDENBYTE) {
+ _PyObject_DebugDumpAddress(p);
+ _Py_FatalErrorFunc(func, "bad trailing pad byte");
+ }
+ }
+}
+
+/* Display info to stderr about the memory block at p. */
+static void
+_PyObject_DebugDumpAddress(const void *p)
+{
+ const uint8_t *q = (const uint8_t *)p;
+ const uint8_t *tail;
+ size_t nbytes;
+ int i;
+ int ok;
+ char id;
+
+ fprintf(stderr, "Debug memory block at address p=%p:", p);
+ if (p == NULL) {
+ fprintf(stderr, "\n");
+ return;
+ }
+ id = (char)q[-SST];
+ fprintf(stderr, " API '%c'\n", id);
+
+ nbytes = read_size_t(q - 2*SST);
+ fprintf(stderr, " %zu bytes originally requested\n", nbytes);
+
+ /* In case this is nuts, check the leading pad bytes first. */
+ fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1);
+ ok = 1;
+ for (i = 1; i <= SST-1; ++i) {
+ if (*(q-i) != PYMEM_FORBIDDENBYTE) {
+ ok = 0;
+ break;
+ }
+ }
+ if (ok)
+ fputs("FORBIDDENBYTE, as expected.\n", stderr);
+ else {
+ fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
+ PYMEM_FORBIDDENBYTE);
+ for (i = SST-1; i >= 1; --i) {
+ const uint8_t byte = *(q-i);
+ fprintf(stderr, " at p-%d: 0x%02x", i, byte);
+ if (byte != PYMEM_FORBIDDENBYTE)
+ fputs(" *** OUCH", stderr);
+ fputc('\n', stderr);
+ }
+
+ fputs(" Because memory is corrupted at the start, the "
+ "count of bytes requested\n"
+ " may be bogus, and checking the trailing pad "
+ "bytes may segfault.\n", stderr);
+ }
+
+ tail = q + nbytes;
+ fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, (void *)tail);
+ ok = 1;
+ for (i = 0; i < SST; ++i) {
+ if (tail[i] != PYMEM_FORBIDDENBYTE) {
+ ok = 0;
+ break;
+ }
+ }
+ if (ok)
+ fputs("FORBIDDENBYTE, as expected.\n", stderr);
+ else {
+ fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
+ PYMEM_FORBIDDENBYTE);
+ for (i = 0; i < SST; ++i) {
+ const uint8_t byte = tail[i];
+ fprintf(stderr, " at tail+%d: 0x%02x",
+ i, byte);
+ if (byte != PYMEM_FORBIDDENBYTE)
+ fputs(" *** OUCH", stderr);
+ fputc('\n', stderr);
+ }
+ }
+
+#ifdef PYMEM_DEBUG_SERIALNO
+ size_t serial = read_size_t(tail + SST);
+ fprintf(stderr,
+ " The block was made by call #%zu to debug malloc/realloc.\n",
+ serial);
+#endif
+
+ if (nbytes > 0) {
+ i = 0;
+ fputs(" Data at p:", stderr);
+ /* print up to 8 bytes at the start */
+ while (q < tail && i < 8) {
+ fprintf(stderr, " %02x", *q);
+ ++i;
+ ++q;
+ }
+ /* and up to 8 at the end */
+ if (q < tail) {
+ if (tail - q > 8) {
+ fputs(" ...", stderr);
+ q = tail - 8;
+ }
+ while (q < tail) {
+ fprintf(stderr, " %02x", *q);
+ ++q;
+ }
+ }
+ fputc('\n', stderr);
+ }
+ fputc('\n', stderr);
+
+ fflush(stderr);
+ _PyMem_DumpTraceback(fileno(stderr), p);
+}
+
+
+static size_t
+printone(FILE *out, const char* msg, size_t value)
+{
+ int i, k;
+ char buf[100];
+ size_t origvalue = value;
+
+ fputs(msg, out);
+ for (i = (int)strlen(msg); i < 35; ++i)
+ fputc(' ', out);
+ fputc('=', out);
+
+ /* Write the value with commas. */
+ i = 22;
+ buf[i--] = '\0';
+ buf[i--] = '\n';
+ k = 3;
+ do {
+ size_t nextvalue = value / 10;
+ unsigned int digit = (unsigned int)(value - nextvalue * 10);
+ value = nextvalue;
+ buf[i--] = (char)(digit + '0');
+ --k;
+ if (k == 0 && value && i >= 0) {
+ k = 3;
+ buf[i--] = ',';
+ }
+ } while (value && i >= 0);
+
+ while (i >= 0)
+ buf[i--] = ' ';
+ fputs(buf, out);
+
+ return origvalue;
+}
+
+void
+_PyDebugAllocatorStats(FILE *out,
+ const char *block_name, int num_blocks, size_t sizeof_block)
+{
+ char buf1[128];
+ char buf2[128];
+ PyOS_snprintf(buf1, sizeof(buf1),
+ "%d %ss * %zd bytes each",
+ num_blocks, block_name, sizeof_block);
+ PyOS_snprintf(buf2, sizeof(buf2),
+ "%48s ", buf1);
+ (void)printone(out, buf2, num_blocks * sizeof_block);
+}
+
+
+#ifdef WITH_PYMALLOC
+
+#ifdef Py_DEBUG
+/* Is target in the list? The list is traversed via the nextpool pointers.
+ * The list may be NULL-terminated, or circular. Return 1 if target is in
+ * list, else 0.
+ */
+static int
+pool_is_in_list(const poolp target, poolp list)
+{
+ poolp origlist = list;
+ assert(target != NULL);
+ if (list == NULL)
+ return 0;
+ do {
+ if (target == list)
+ return 1;
+ list = list->nextpool;
+ } while (list != NULL && list != origlist);
+ return 0;
+}
+#endif
+
+/* Print summary info to "out" about the state of pymalloc's structures.
+ * In Py_DEBUG mode, also perform some expensive internal consistency
+ * checks.
+ *
+ * Return 0 if the memory debug hooks are not installed or no statistics was
+ * written into out, return 1 otherwise.
+ */
+int
+_PyObject_DebugMallocStats(FILE *out)
+{
+ if (!_PyMem_PymallocEnabled()) {
+ return 0;
+ }
+
+ uint i;
+ const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
+ /* # of pools, allocated blocks, and free blocks per class index */
+ size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
+ size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
+ size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
+ /* total # of allocated bytes in used and full pools */
+ size_t allocated_bytes = 0;
+ /* total # of available bytes in used pools */
+ size_t available_bytes = 0;
+ /* # of free pools + pools not yet carved out of current arena */
+ uint numfreepools = 0;
+ /* # of bytes for arena alignment padding */
+ size_t arena_alignment = 0;
+ /* # of bytes in used and full pools used for pool_headers */
+ size_t pool_header_bytes = 0;
+ /* # of bytes in used and full pools wasted due to quantization,
+ * i.e. the necessarily leftover space at the ends of used and
+ * full pools.
+ */
+ size_t quantization = 0;
+ /* # of arenas actually allocated. */
+ size_t narenas = 0;
+ /* running total -- should equal narenas * ARENA_SIZE */
+ size_t total;
+ char buf[128];
+
+ fprintf(out, "Small block threshold = %d, in %u size classes.\n",
+ SMALL_REQUEST_THRESHOLD, numclasses);
+
+ for (i = 0; i < numclasses; ++i)
+ numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
+
+ /* Because full pools aren't linked to from anything, it's easiest
+ * to march over all the arenas. If we're lucky, most of the memory
+ * will be living in full pools -- would be a shame to miss them.
+ */
+ for (i = 0; i < maxarenas; ++i) {
+ uintptr_t base = arenas[i].address;
+
+ /* Skip arenas which are not allocated. */
+ if (arenas[i].address == (uintptr_t)NULL)
+ continue;
+ narenas += 1;
+
+ numfreepools += arenas[i].nfreepools;
+
+ /* round up to pool alignment */
+ if (base & (uintptr_t)POOL_SIZE_MASK) {
+ arena_alignment += POOL_SIZE;
+ base &= ~(uintptr_t)POOL_SIZE_MASK;
+ base += POOL_SIZE;
+ }
+
+ /* visit every pool in the arena */
+ assert(base <= (uintptr_t) arenas[i].pool_address);
+ for (; base < (uintptr_t) arenas[i].pool_address; base += POOL_SIZE) {
+ poolp p = (poolp)base;
+ const uint sz = p->szidx;
+ uint freeblocks;
+
+ if (p->ref.count == 0) {
+ /* currently unused */
+#ifdef Py_DEBUG
+ assert(pool_is_in_list(p, arenas[i].freepools));
+#endif
+ continue;
+ }
+ ++numpools[sz];
+ numblocks[sz] += p->ref.count;
+ freeblocks = NUMBLOCKS(sz) - p->ref.count;
+ numfreeblocks[sz] += freeblocks;
+#ifdef Py_DEBUG
+ if (freeblocks > 0)
+ assert(pool_is_in_list(p, usedpools[sz + sz]));
+#endif
+ }
+ }
+ assert(narenas == narenas_currently_allocated);
+
+ fputc('\n', out);
+ fputs("class size num pools blocks in use avail blocks\n"
+ "----- ---- --------- ------------- ------------\n",
+ out);
+
+ for (i = 0; i < numclasses; ++i) {
+ size_t p = numpools[i];
+ size_t b = numblocks[i];
+ size_t f = numfreeblocks[i];
+ uint size = INDEX2SIZE(i);
+ if (p == 0) {
+ assert(b == 0 && f == 0);
+ continue;
+ }
+ fprintf(out, "%5u %6u %11zu %15zu %13zu\n",
+ i, size, p, b, f);
+ allocated_bytes += b * size;
+ available_bytes += f * size;
+ pool_header_bytes += p * POOL_OVERHEAD;
+ quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
+ }
+ fputc('\n', out);
+#ifdef PYMEM_DEBUG_SERIALNO
+ if (_PyMem_DebugEnabled()) {
+ (void)printone(out, "# times object malloc called", serialno);
+ }
+#endif
+ (void)printone(out, "# arenas allocated total", ntimes_arena_allocated);
+ (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas);
+ (void)printone(out, "# arenas highwater mark", narenas_highwater);
+ (void)printone(out, "# arenas allocated current", narenas);
+
+ PyOS_snprintf(buf, sizeof(buf),
+ "%zu arenas * %d bytes/arena",
+ narenas, ARENA_SIZE);
+ (void)printone(out, buf, narenas * ARENA_SIZE);
+
+ fputc('\n', out);
+
+ /* Account for what all of those arena bytes are being used for. */
+ total = printone(out, "# bytes in allocated blocks", allocated_bytes);
+ total += printone(out, "# bytes in available blocks", available_bytes);
+
+ PyOS_snprintf(buf, sizeof(buf),
+ "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
+ total += printone(out, buf, (size_t)numfreepools * POOL_SIZE);
+
+ total += printone(out, "# bytes lost to pool headers", pool_header_bytes);
+ total += printone(out, "# bytes lost to quantization", quantization);
+ total += printone(out, "# bytes lost to arena alignment", arena_alignment);
+ (void)printone(out, "Total", total);
+ assert(narenas * ARENA_SIZE == total);
+
+#if WITH_PYMALLOC_RADIX_TREE
+ fputs("\narena map counts\n", out);
+#ifdef USE_INTERIOR_NODES
+ (void)printone(out, "# arena map mid nodes", arena_map_mid_count);
+ (void)printone(out, "# arena map bot nodes", arena_map_bot_count);
+ fputc('\n', out);
+#endif
+ total = printone(out, "# bytes lost to arena map root", sizeof(arena_map_root));
+#ifdef USE_INTERIOR_NODES
+ total += printone(out, "# bytes lost to arena map mid",
+ sizeof(arena_map_mid_t) * arena_map_mid_count);
+ total += printone(out, "# bytes lost to arena map bot",
+ sizeof(arena_map_bot_t) * arena_map_bot_count);
+ (void)printone(out, "Total", total);
+#endif
+#endif
+
+ return 1;
+}
+
+#endif /* #ifdef WITH_PYMALLOC */