aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Objects/longobject.c
diff options
context:
space:
mode:
authornkozlovskiy <nmk@ydb.tech>2023-09-29 12:24:06 +0300
committernkozlovskiy <nmk@ydb.tech>2023-09-29 12:41:34 +0300
commite0e3e1717e3d33762ce61950504f9637a6e669ed (patch)
treebca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python3/src/Objects/longobject.c
parent38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff)
downloadydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz
add ydb deps
Diffstat (limited to 'contrib/tools/python3/src/Objects/longobject.c')
-rw-r--r--contrib/tools/python3/src/Objects/longobject.c6192
1 files changed, 6192 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Objects/longobject.c b/contrib/tools/python3/src/Objects/longobject.c
new file mode 100644
index 0000000000..84c05e8aab
--- /dev/null
+++ b/contrib/tools/python3/src/Objects/longobject.c
@@ -0,0 +1,6192 @@
+/* Long (arbitrary precision) integer object implementation */
+
+/* XXX The functional organization of this file is terrible */
+
+#include "Python.h"
+#include "pycore_bitutils.h" // _Py_popcount32()
+#include "pycore_initconfig.h" // _PyStatus_OK()
+#include "pycore_long.h" // _Py_SmallInts
+#include "pycore_object.h" // _PyObject_InitVar()
+#include "pycore_pystate.h" // _Py_IsMainInterpreter()
+#include "pycore_runtime.h" // _PY_NSMALLPOSINTS
+#include "pycore_structseq.h" // _PyStructSequence_FiniType()
+
+#include <ctype.h>
+#include <float.h>
+#include <stddef.h>
+#include <stdlib.h> // abs()
+
+#include "clinic/longobject.c.h"
+/*[clinic input]
+class int "PyObject *" "&PyLong_Type"
+[clinic start generated code]*/
+/*[clinic end generated code: output=da39a3ee5e6b4b0d input=ec0275e3422a36e3]*/
+
+/* Is this PyLong of size 1, 0 or -1? */
+#define IS_MEDIUM_VALUE(x) (((size_t)Py_SIZE(x)) + 1U < 3U)
+
+/* convert a PyLong of size 1, 0 or -1 to a C integer */
+static inline stwodigits
+medium_value(PyLongObject *x)
+{
+ assert(IS_MEDIUM_VALUE(x));
+ return ((stwodigits)Py_SIZE(x)) * x->ob_digit[0];
+}
+
+#define IS_SMALL_INT(ival) (-_PY_NSMALLNEGINTS <= (ival) && (ival) < _PY_NSMALLPOSINTS)
+#define IS_SMALL_UINT(ival) ((ival) < _PY_NSMALLPOSINTS)
+
+#define _MAX_STR_DIGITS_ERROR_FMT_TO_INT "Exceeds the limit (%d digits) for integer string conversion: value has %zd digits; use sys.set_int_max_str_digits() to increase the limit"
+#define _MAX_STR_DIGITS_ERROR_FMT_TO_STR "Exceeds the limit (%d digits) for integer string conversion; use sys.set_int_max_str_digits() to increase the limit"
+
+static inline void
+_Py_DECREF_INT(PyLongObject *op)
+{
+ assert(PyLong_CheckExact(op));
+ _Py_DECREF_SPECIALIZED((PyObject *)op, (destructor)PyObject_Free);
+}
+
+static inline int
+is_medium_int(stwodigits x)
+{
+ /* Take care that we are comparing unsigned values. */
+ twodigits x_plus_mask = ((twodigits)x) + PyLong_MASK;
+ return x_plus_mask < ((twodigits)PyLong_MASK) + PyLong_BASE;
+}
+
+static PyObject *
+get_small_int(sdigit ival)
+{
+ assert(IS_SMALL_INT(ival));
+ PyObject *v = (PyObject *)&_PyLong_SMALL_INTS[_PY_NSMALLNEGINTS + ival];
+ Py_INCREF(v);
+ return v;
+}
+
+static PyLongObject *
+maybe_small_long(PyLongObject *v)
+{
+ if (v && IS_MEDIUM_VALUE(v)) {
+ stwodigits ival = medium_value(v);
+ if (IS_SMALL_INT(ival)) {
+ _Py_DECREF_INT(v);
+ return (PyLongObject *)get_small_int((sdigit)ival);
+ }
+ }
+ return v;
+}
+
+/* For int multiplication, use the O(N**2) school algorithm unless
+ * both operands contain more than KARATSUBA_CUTOFF digits (this
+ * being an internal Python int digit, in base BASE).
+ */
+#define KARATSUBA_CUTOFF 70
+#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
+
+/* For exponentiation, use the binary left-to-right algorithm unless the
+ ^ exponent contains more than HUGE_EXP_CUTOFF bits. In that case, do
+ * (no more than) EXP_WINDOW_SIZE bits at a time. The potential drawback is
+ * that a table of 2**(EXP_WINDOW_SIZE - 1) intermediate results is
+ * precomputed.
+ */
+#define EXP_WINDOW_SIZE 5
+#define EXP_TABLE_LEN (1 << (EXP_WINDOW_SIZE - 1))
+/* Suppose the exponent has bit length e. All ways of doing this
+ * need e squarings. The binary method also needs a multiply for
+ * each bit set. In a k-ary method with window width w, a multiply
+ * for each non-zero window, so at worst (and likely!)
+ * ceiling(e/w). The k-ary sliding window method has the same
+ * worst case, but the window slides so it can sometimes skip
+ * over an all-zero window that the fixed-window method can't
+ * exploit. In addition, the windowing methods need multiplies
+ * to precompute a table of small powers.
+ *
+ * For the sliding window method with width 5, 16 precomputation
+ * multiplies are needed. Assuming about half the exponent bits
+ * are set, then, the binary method needs about e/2 extra mults
+ * and the window method about 16 + e/5.
+ *
+ * The latter is smaller for e > 53 1/3. We don't have direct
+ * access to the bit length, though, so call it 60, which is a
+ * multiple of a long digit's max bit length (15 or 30 so far).
+ */
+#define HUGE_EXP_CUTOFF 60
+
+#define SIGCHECK(PyTryBlock) \
+ do { \
+ if (PyErr_CheckSignals()) PyTryBlock \
+ } while(0)
+
+/* Normalize (remove leading zeros from) an int object.
+ Doesn't attempt to free the storage--in most cases, due to the nature
+ of the algorithms used, this could save at most be one word anyway. */
+
+static PyLongObject *
+long_normalize(PyLongObject *v)
+{
+ Py_ssize_t j = Py_ABS(Py_SIZE(v));
+ Py_ssize_t i = j;
+
+ while (i > 0 && v->ob_digit[i-1] == 0)
+ --i;
+ if (i != j) {
+ Py_SET_SIZE(v, (Py_SIZE(v) < 0) ? -(i) : i);
+ }
+ return v;
+}
+
+/* Allocate a new int object with size digits.
+ Return NULL and set exception if we run out of memory. */
+
+#define MAX_LONG_DIGITS \
+ ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
+
+PyLongObject *
+_PyLong_New(Py_ssize_t size)
+{
+ PyLongObject *result;
+ if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
+ PyErr_SetString(PyExc_OverflowError,
+ "too many digits in integer");
+ return NULL;
+ }
+ /* Fast operations for single digit integers (including zero)
+ * assume that there is always at least one digit present. */
+ Py_ssize_t ndigits = size ? size : 1;
+ /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
+ sizeof(digit)*size. Previous incarnations of this code used
+ sizeof(PyVarObject) instead of the offsetof, but this risks being
+ incorrect in the presence of padding between the PyVarObject header
+ and the digits. */
+ result = PyObject_Malloc(offsetof(PyLongObject, ob_digit) +
+ ndigits*sizeof(digit));
+ if (!result) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+ _PyObject_InitVar((PyVarObject*)result, &PyLong_Type, size);
+ return result;
+}
+
+PyObject *
+_PyLong_Copy(PyLongObject *src)
+{
+ PyLongObject *result;
+ Py_ssize_t i;
+
+ assert(src != NULL);
+ i = Py_SIZE(src);
+ if (i < 0)
+ i = -(i);
+ if (i < 2) {
+ stwodigits ival = medium_value(src);
+ if (IS_SMALL_INT(ival)) {
+ return get_small_int((sdigit)ival);
+ }
+ }
+ result = _PyLong_New(i);
+ if (result != NULL) {
+ Py_SET_SIZE(result, Py_SIZE(src));
+ while (--i >= 0) {
+ result->ob_digit[i] = src->ob_digit[i];
+ }
+ }
+ return (PyObject *)result;
+}
+
+static PyObject *
+_PyLong_FromMedium(sdigit x)
+{
+ assert(!IS_SMALL_INT(x));
+ assert(is_medium_int(x));
+ /* We could use a freelist here */
+ PyLongObject *v = PyObject_Malloc(sizeof(PyLongObject));
+ if (v == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+ Py_ssize_t sign = x < 0 ? -1: 1;
+ digit abs_x = x < 0 ? -x : x;
+ _PyObject_InitVar((PyVarObject*)v, &PyLong_Type, sign);
+ v->ob_digit[0] = abs_x;
+ return (PyObject*)v;
+}
+
+static PyObject *
+_PyLong_FromLarge(stwodigits ival)
+{
+ twodigits abs_ival;
+ int sign;
+ assert(!is_medium_int(ival));
+
+ if (ival < 0) {
+ /* negate: can't write this as abs_ival = -ival since that
+ invokes undefined behaviour when ival is LONG_MIN */
+ abs_ival = 0U-(twodigits)ival;
+ sign = -1;
+ }
+ else {
+ abs_ival = (twodigits)ival;
+ sign = 1;
+ }
+ /* Must be at least two digits */
+ assert(abs_ival >> PyLong_SHIFT != 0);
+ twodigits t = abs_ival >> (PyLong_SHIFT * 2);
+ Py_ssize_t ndigits = 2;
+ while (t) {
+ ++ndigits;
+ t >>= PyLong_SHIFT;
+ }
+ PyLongObject *v = _PyLong_New(ndigits);
+ if (v != NULL) {
+ digit *p = v->ob_digit;
+ Py_SET_SIZE(v, ndigits * sign);
+ t = abs_ival;
+ while (t) {
+ *p++ = Py_SAFE_DOWNCAST(
+ t & PyLong_MASK, twodigits, digit);
+ t >>= PyLong_SHIFT;
+ }
+ }
+ return (PyObject *)v;
+}
+
+/* Create a new int object from a C word-sized int */
+static inline PyObject *
+_PyLong_FromSTwoDigits(stwodigits x)
+{
+ if (IS_SMALL_INT(x)) {
+ return get_small_int((sdigit)x);
+ }
+ assert(x != 0);
+ if (is_medium_int(x)) {
+ return _PyLong_FromMedium((sdigit)x);
+ }
+ return _PyLong_FromLarge(x);
+}
+
+/* If a freshly-allocated int is already shared, it must
+ be a small integer, so negating it must go to PyLong_FromLong */
+Py_LOCAL_INLINE(void)
+_PyLong_Negate(PyLongObject **x_p)
+{
+ PyLongObject *x;
+
+ x = (PyLongObject *)*x_p;
+ if (Py_REFCNT(x) == 1) {
+ Py_SET_SIZE(x, -Py_SIZE(x));
+ return;
+ }
+
+ *x_p = (PyLongObject *)_PyLong_FromSTwoDigits(-medium_value(x));
+ Py_DECREF(x);
+}
+
+/* Create a new int object from a C long int */
+
+PyObject *
+PyLong_FromLong(long ival)
+{
+ PyLongObject *v;
+ unsigned long abs_ival, t;
+ int ndigits;
+
+ /* Handle small and medium cases. */
+ if (IS_SMALL_INT(ival)) {
+ return get_small_int((sdigit)ival);
+ }
+ if (-(long)PyLong_MASK <= ival && ival <= (long)PyLong_MASK) {
+ return _PyLong_FromMedium((sdigit)ival);
+ }
+
+ /* Count digits (at least two - smaller cases were handled above). */
+ abs_ival = ival < 0 ? 0U-(unsigned long)ival : (unsigned long)ival;
+ /* Do shift in two steps to avoid possible undefined behavior. */
+ t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT;
+ ndigits = 2;
+ while (t) {
+ ++ndigits;
+ t >>= PyLong_SHIFT;
+ }
+
+ /* Construct output value. */
+ v = _PyLong_New(ndigits);
+ if (v != NULL) {
+ digit *p = v->ob_digit;
+ Py_SET_SIZE(v, ival < 0 ? -ndigits : ndigits);
+ t = abs_ival;
+ while (t) {
+ *p++ = (digit)(t & PyLong_MASK);
+ t >>= PyLong_SHIFT;
+ }
+ }
+ return (PyObject *)v;
+}
+
+#define PYLONG_FROM_UINT(INT_TYPE, ival) \
+ do { \
+ if (IS_SMALL_UINT(ival)) { \
+ return get_small_int((sdigit)(ival)); \
+ } \
+ /* Count the number of Python digits. */ \
+ Py_ssize_t ndigits = 0; \
+ INT_TYPE t = (ival); \
+ while (t) { \
+ ++ndigits; \
+ t >>= PyLong_SHIFT; \
+ } \
+ PyLongObject *v = _PyLong_New(ndigits); \
+ if (v == NULL) { \
+ return NULL; \
+ } \
+ digit *p = v->ob_digit; \
+ while ((ival)) { \
+ *p++ = (digit)((ival) & PyLong_MASK); \
+ (ival) >>= PyLong_SHIFT; \
+ } \
+ return (PyObject *)v; \
+ } while(0)
+
+/* Create a new int object from a C unsigned long int */
+
+PyObject *
+PyLong_FromUnsignedLong(unsigned long ival)
+{
+ PYLONG_FROM_UINT(unsigned long, ival);
+}
+
+/* Create a new int object from a C unsigned long long int. */
+
+PyObject *
+PyLong_FromUnsignedLongLong(unsigned long long ival)
+{
+ PYLONG_FROM_UINT(unsigned long long, ival);
+}
+
+/* Create a new int object from a C size_t. */
+
+PyObject *
+PyLong_FromSize_t(size_t ival)
+{
+ PYLONG_FROM_UINT(size_t, ival);
+}
+
+/* Create a new int object from a C double */
+
+PyObject *
+PyLong_FromDouble(double dval)
+{
+ /* Try to get out cheap if this fits in a long. When a finite value of real
+ * floating type is converted to an integer type, the value is truncated
+ * toward zero. If the value of the integral part cannot be represented by
+ * the integer type, the behavior is undefined. Thus, we must check that
+ * value is in range (LONG_MIN - 1, LONG_MAX + 1). If a long has more bits
+ * of precision than a double, casting LONG_MIN - 1 to double may yield an
+ * approximation, but LONG_MAX + 1 is a power of two and can be represented
+ * as double exactly (assuming FLT_RADIX is 2 or 16), so for simplicity
+ * check against [-(LONG_MAX + 1), LONG_MAX + 1).
+ */
+ const double int_max = (unsigned long)LONG_MAX + 1;
+ if (-int_max < dval && dval < int_max) {
+ return PyLong_FromLong((long)dval);
+ }
+
+ PyLongObject *v;
+ double frac;
+ int i, ndig, expo, neg;
+ neg = 0;
+ if (Py_IS_INFINITY(dval)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "cannot convert float infinity to integer");
+ return NULL;
+ }
+ if (Py_IS_NAN(dval)) {
+ PyErr_SetString(PyExc_ValueError,
+ "cannot convert float NaN to integer");
+ return NULL;
+ }
+ if (dval < 0.0) {
+ neg = 1;
+ dval = -dval;
+ }
+ frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
+ assert(expo > 0);
+ ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
+ v = _PyLong_New(ndig);
+ if (v == NULL)
+ return NULL;
+ frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
+ for (i = ndig; --i >= 0; ) {
+ digit bits = (digit)frac;
+ v->ob_digit[i] = bits;
+ frac = frac - (double)bits;
+ frac = ldexp(frac, PyLong_SHIFT);
+ }
+ if (neg) {
+ Py_SET_SIZE(v, -(Py_SIZE(v)));
+ }
+ return (PyObject *)v;
+}
+
+/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
+ * anything about what happens when a signed integer operation overflows,
+ * and some compilers think they're doing you a favor by being "clever"
+ * then. The bit pattern for the largest positive signed long is
+ * (unsigned long)LONG_MAX, and for the smallest negative signed long
+ * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
+ * However, some other compilers warn about applying unary minus to an
+ * unsigned operand. Hence the weird "0-".
+ */
+#define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN)
+#define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN)
+
+/* Get a C long int from an int object or any object that has an __index__
+ method.
+
+ On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
+ the result. Otherwise *overflow is 0.
+
+ For other errors (e.g., TypeError), return -1 and set an error condition.
+ In this case *overflow will be 0.
+*/
+
+long
+PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
+{
+ /* This version by Tim Peters */
+ PyLongObject *v;
+ unsigned long x, prev;
+ long res;
+ Py_ssize_t i;
+ int sign;
+ int do_decref = 0; /* if PyNumber_Index was called */
+
+ *overflow = 0;
+ if (vv == NULL) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+
+ if (PyLong_Check(vv)) {
+ v = (PyLongObject *)vv;
+ }
+ else {
+ v = (PyLongObject *)_PyNumber_Index(vv);
+ if (v == NULL)
+ return -1;
+ do_decref = 1;
+ }
+
+ res = -1;
+ i = Py_SIZE(v);
+
+ switch (i) {
+ case -1:
+ res = -(sdigit)v->ob_digit[0];
+ break;
+ case 0:
+ res = 0;
+ break;
+ case 1:
+ res = v->ob_digit[0];
+ break;
+ default:
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -(i);
+ }
+ while (--i >= 0) {
+ prev = x;
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
+ if ((x >> PyLong_SHIFT) != prev) {
+ *overflow = sign;
+ goto exit;
+ }
+ }
+ /* Haven't lost any bits, but casting to long requires extra
+ * care (see comment above).
+ */
+ if (x <= (unsigned long)LONG_MAX) {
+ res = (long)x * sign;
+ }
+ else if (sign < 0 && x == PY_ABS_LONG_MIN) {
+ res = LONG_MIN;
+ }
+ else {
+ *overflow = sign;
+ /* res is already set to -1 */
+ }
+ }
+ exit:
+ if (do_decref) {
+ Py_DECREF(v);
+ }
+ return res;
+}
+
+/* Get a C long int from an int object or any object that has an __index__
+ method. Return -1 and set an error if overflow occurs. */
+
+long
+PyLong_AsLong(PyObject *obj)
+{
+ int overflow;
+ long result = PyLong_AsLongAndOverflow(obj, &overflow);
+ if (overflow) {
+ /* XXX: could be cute and give a different
+ message for overflow == -1 */
+ PyErr_SetString(PyExc_OverflowError,
+ "Python int too large to convert to C long");
+ }
+ return result;
+}
+
+/* Get a C int from an int object or any object that has an __index__
+ method. Return -1 and set an error if overflow occurs. */
+
+int
+_PyLong_AsInt(PyObject *obj)
+{
+ int overflow;
+ long result = PyLong_AsLongAndOverflow(obj, &overflow);
+ if (overflow || result > INT_MAX || result < INT_MIN) {
+ /* XXX: could be cute and give a different
+ message for overflow == -1 */
+ PyErr_SetString(PyExc_OverflowError,
+ "Python int too large to convert to C int");
+ return -1;
+ }
+ return (int)result;
+}
+
+/* Get a Py_ssize_t from an int object.
+ Returns -1 and sets an error condition if overflow occurs. */
+
+Py_ssize_t
+PyLong_AsSsize_t(PyObject *vv) {
+ PyLongObject *v;
+ size_t x, prev;
+ Py_ssize_t i;
+ int sign;
+
+ if (vv == NULL) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ if (!PyLong_Check(vv)) {
+ PyErr_SetString(PyExc_TypeError, "an integer is required");
+ return -1;
+ }
+
+ v = (PyLongObject *)vv;
+ i = Py_SIZE(v);
+ switch (i) {
+ case -1: return -(sdigit)v->ob_digit[0];
+ case 0: return 0;
+ case 1: return v->ob_digit[0];
+ }
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -(i);
+ }
+ while (--i >= 0) {
+ prev = x;
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
+ if ((x >> PyLong_SHIFT) != prev)
+ goto overflow;
+ }
+ /* Haven't lost any bits, but casting to a signed type requires
+ * extra care (see comment above).
+ */
+ if (x <= (size_t)PY_SSIZE_T_MAX) {
+ return (Py_ssize_t)x * sign;
+ }
+ else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
+ return PY_SSIZE_T_MIN;
+ }
+ /* else overflow */
+
+ overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "Python int too large to convert to C ssize_t");
+ return -1;
+}
+
+/* Get a C unsigned long int from an int object.
+ Returns -1 and sets an error condition if overflow occurs. */
+
+unsigned long
+PyLong_AsUnsignedLong(PyObject *vv)
+{
+ PyLongObject *v;
+ unsigned long x, prev;
+ Py_ssize_t i;
+
+ if (vv == NULL) {
+ PyErr_BadInternalCall();
+ return (unsigned long)-1;
+ }
+ if (!PyLong_Check(vv)) {
+ PyErr_SetString(PyExc_TypeError, "an integer is required");
+ return (unsigned long)-1;
+ }
+
+ v = (PyLongObject *)vv;
+ i = Py_SIZE(v);
+ x = 0;
+ if (i < 0) {
+ PyErr_SetString(PyExc_OverflowError,
+ "can't convert negative value to unsigned int");
+ return (unsigned long) -1;
+ }
+ switch (i) {
+ case 0: return 0;
+ case 1: return v->ob_digit[0];
+ }
+ while (--i >= 0) {
+ prev = x;
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
+ if ((x >> PyLong_SHIFT) != prev) {
+ PyErr_SetString(PyExc_OverflowError,
+ "Python int too large to convert "
+ "to C unsigned long");
+ return (unsigned long) -1;
+ }
+ }
+ return x;
+}
+
+/* Get a C size_t from an int object. Returns (size_t)-1 and sets
+ an error condition if overflow occurs. */
+
+size_t
+PyLong_AsSize_t(PyObject *vv)
+{
+ PyLongObject *v;
+ size_t x, prev;
+ Py_ssize_t i;
+
+ if (vv == NULL) {
+ PyErr_BadInternalCall();
+ return (size_t) -1;
+ }
+ if (!PyLong_Check(vv)) {
+ PyErr_SetString(PyExc_TypeError, "an integer is required");
+ return (size_t)-1;
+ }
+
+ v = (PyLongObject *)vv;
+ i = Py_SIZE(v);
+ x = 0;
+ if (i < 0) {
+ PyErr_SetString(PyExc_OverflowError,
+ "can't convert negative value to size_t");
+ return (size_t) -1;
+ }
+ switch (i) {
+ case 0: return 0;
+ case 1: return v->ob_digit[0];
+ }
+ while (--i >= 0) {
+ prev = x;
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
+ if ((x >> PyLong_SHIFT) != prev) {
+ PyErr_SetString(PyExc_OverflowError,
+ "Python int too large to convert to C size_t");
+ return (size_t) -1;
+ }
+ }
+ return x;
+}
+
+/* Get a C unsigned long int from an int object, ignoring the high bits.
+ Returns -1 and sets an error condition if an error occurs. */
+
+static unsigned long
+_PyLong_AsUnsignedLongMask(PyObject *vv)
+{
+ PyLongObject *v;
+ unsigned long x;
+ Py_ssize_t i;
+ int sign;
+
+ if (vv == NULL || !PyLong_Check(vv)) {
+ PyErr_BadInternalCall();
+ return (unsigned long) -1;
+ }
+ v = (PyLongObject *)vv;
+ i = Py_SIZE(v);
+ switch (i) {
+ case 0: return 0;
+ case 1: return v->ob_digit[0];
+ }
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -i;
+ }
+ while (--i >= 0) {
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
+ }
+ return x * sign;
+}
+
+unsigned long
+PyLong_AsUnsignedLongMask(PyObject *op)
+{
+ PyLongObject *lo;
+ unsigned long val;
+
+ if (op == NULL) {
+ PyErr_BadInternalCall();
+ return (unsigned long)-1;
+ }
+
+ if (PyLong_Check(op)) {
+ return _PyLong_AsUnsignedLongMask(op);
+ }
+
+ lo = (PyLongObject *)_PyNumber_Index(op);
+ if (lo == NULL)
+ return (unsigned long)-1;
+
+ val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
+ Py_DECREF(lo);
+ return val;
+}
+
+int
+_PyLong_Sign(PyObject *vv)
+{
+ PyLongObject *v = (PyLongObject *)vv;
+
+ assert(v != NULL);
+ assert(PyLong_Check(v));
+
+ return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
+}
+
+static int
+bit_length_digit(digit x)
+{
+ // digit can be larger than unsigned long, but only PyLong_SHIFT bits
+ // of it will be ever used.
+ static_assert(PyLong_SHIFT <= sizeof(unsigned long) * 8,
+ "digit is larger than unsigned long");
+ return _Py_bit_length((unsigned long)x);
+}
+
+size_t
+_PyLong_NumBits(PyObject *vv)
+{
+ PyLongObject *v = (PyLongObject *)vv;
+ size_t result = 0;
+ Py_ssize_t ndigits;
+ int msd_bits;
+
+ assert(v != NULL);
+ assert(PyLong_Check(v));
+ ndigits = Py_ABS(Py_SIZE(v));
+ assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
+ if (ndigits > 0) {
+ digit msd = v->ob_digit[ndigits - 1];
+ if ((size_t)(ndigits - 1) > SIZE_MAX / (size_t)PyLong_SHIFT)
+ goto Overflow;
+ result = (size_t)(ndigits - 1) * (size_t)PyLong_SHIFT;
+ msd_bits = bit_length_digit(msd);
+ if (SIZE_MAX - msd_bits < result)
+ goto Overflow;
+ result += msd_bits;
+ }
+ return result;
+
+ Overflow:
+ PyErr_SetString(PyExc_OverflowError, "int has too many bits "
+ "to express in a platform size_t");
+ return (size_t)-1;
+}
+
+PyObject *
+_PyLong_FromByteArray(const unsigned char* bytes, size_t n,
+ int little_endian, int is_signed)
+{
+ const unsigned char* pstartbyte; /* LSB of bytes */
+ int incr; /* direction to move pstartbyte */
+ const unsigned char* pendbyte; /* MSB of bytes */
+ size_t numsignificantbytes; /* number of bytes that matter */
+ Py_ssize_t ndigits; /* number of Python int digits */
+ PyLongObject* v; /* result */
+ Py_ssize_t idigit = 0; /* next free index in v->ob_digit */
+
+ if (n == 0)
+ return PyLong_FromLong(0L);
+
+ if (little_endian) {
+ pstartbyte = bytes;
+ pendbyte = bytes + n - 1;
+ incr = 1;
+ }
+ else {
+ pstartbyte = bytes + n - 1;
+ pendbyte = bytes;
+ incr = -1;
+ }
+
+ if (is_signed)
+ is_signed = *pendbyte >= 0x80;
+
+ /* Compute numsignificantbytes. This consists of finding the most
+ significant byte. Leading 0 bytes are insignificant if the number
+ is positive, and leading 0xff bytes if negative. */
+ {
+ size_t i;
+ const unsigned char* p = pendbyte;
+ const int pincr = -incr; /* search MSB to LSB */
+ const unsigned char insignificant = is_signed ? 0xff : 0x00;
+
+ for (i = 0; i < n; ++i, p += pincr) {
+ if (*p != insignificant)
+ break;
+ }
+ numsignificantbytes = n - i;
+ /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
+ actually has 2 significant bytes. OTOH, 0xff0001 ==
+ -0x00ffff, so we wouldn't *need* to bump it there; but we
+ do for 0xffff = -0x0001. To be safe without bothering to
+ check every case, bump it regardless. */
+ if (is_signed && numsignificantbytes < n)
+ ++numsignificantbytes;
+ }
+
+ /* How many Python int digits do we need? We have
+ 8*numsignificantbytes bits, and each Python int digit has
+ PyLong_SHIFT bits, so it's the ceiling of the quotient. */
+ /* catch overflow before it happens */
+ if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
+ PyErr_SetString(PyExc_OverflowError,
+ "byte array too long to convert to int");
+ return NULL;
+ }
+ ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
+ v = _PyLong_New(ndigits);
+ if (v == NULL)
+ return NULL;
+
+ /* Copy the bits over. The tricky parts are computing 2's-comp on
+ the fly for signed numbers, and dealing with the mismatch between
+ 8-bit bytes and (probably) 15-bit Python digits.*/
+ {
+ size_t i;
+ twodigits carry = 1; /* for 2's-comp calculation */
+ twodigits accum = 0; /* sliding register */
+ unsigned int accumbits = 0; /* number of bits in accum */
+ const unsigned char* p = pstartbyte;
+
+ for (i = 0; i < numsignificantbytes; ++i, p += incr) {
+ twodigits thisbyte = *p;
+ /* Compute correction for 2's comp, if needed. */
+ if (is_signed) {
+ thisbyte = (0xff ^ thisbyte) + carry;
+ carry = thisbyte >> 8;
+ thisbyte &= 0xff;
+ }
+ /* Because we're going LSB to MSB, thisbyte is
+ more significant than what's already in accum,
+ so needs to be prepended to accum. */
+ accum |= thisbyte << accumbits;
+ accumbits += 8;
+ if (accumbits >= PyLong_SHIFT) {
+ /* There's enough to fill a Python digit. */
+ assert(idigit < ndigits);
+ v->ob_digit[idigit] = (digit)(accum & PyLong_MASK);
+ ++idigit;
+ accum >>= PyLong_SHIFT;
+ accumbits -= PyLong_SHIFT;
+ assert(accumbits < PyLong_SHIFT);
+ }
+ }
+ assert(accumbits < PyLong_SHIFT);
+ if (accumbits) {
+ assert(idigit < ndigits);
+ v->ob_digit[idigit] = (digit)accum;
+ ++idigit;
+ }
+ }
+
+ Py_SET_SIZE(v, is_signed ? -idigit : idigit);
+ return (PyObject *)maybe_small_long(long_normalize(v));
+}
+
+int
+_PyLong_AsByteArray(PyLongObject* v,
+ unsigned char* bytes, size_t n,
+ int little_endian, int is_signed)
+{
+ Py_ssize_t i; /* index into v->ob_digit */
+ Py_ssize_t ndigits; /* |v->ob_size| */
+ twodigits accum; /* sliding register */
+ unsigned int accumbits; /* # bits in accum */
+ int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */
+ digit carry; /* for computing 2's-comp */
+ size_t j; /* # bytes filled */
+ unsigned char* p; /* pointer to next byte in bytes */
+ int pincr; /* direction to move p */
+
+ assert(v != NULL && PyLong_Check(v));
+
+ if (Py_SIZE(v) < 0) {
+ ndigits = -(Py_SIZE(v));
+ if (!is_signed) {
+ PyErr_SetString(PyExc_OverflowError,
+ "can't convert negative int to unsigned");
+ return -1;
+ }
+ do_twos_comp = 1;
+ }
+ else {
+ ndigits = Py_SIZE(v);
+ do_twos_comp = 0;
+ }
+
+ if (little_endian) {
+ p = bytes;
+ pincr = 1;
+ }
+ else {
+ p = bytes + n - 1;
+ pincr = -1;
+ }
+
+ /* Copy over all the Python digits.
+ It's crucial that every Python digit except for the MSD contribute
+ exactly PyLong_SHIFT bits to the total, so first assert that the int is
+ normalized. */
+ assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
+ j = 0;
+ accum = 0;
+ accumbits = 0;
+ carry = do_twos_comp ? 1 : 0;
+ for (i = 0; i < ndigits; ++i) {
+ digit thisdigit = v->ob_digit[i];
+ if (do_twos_comp) {
+ thisdigit = (thisdigit ^ PyLong_MASK) + carry;
+ carry = thisdigit >> PyLong_SHIFT;
+ thisdigit &= PyLong_MASK;
+ }
+ /* Because we're going LSB to MSB, thisdigit is more
+ significant than what's already in accum, so needs to be
+ prepended to accum. */
+ accum |= (twodigits)thisdigit << accumbits;
+
+ /* The most-significant digit may be (probably is) at least
+ partly empty. */
+ if (i == ndigits - 1) {
+ /* Count # of sign bits -- they needn't be stored,
+ * although for signed conversion we need later to
+ * make sure at least one sign bit gets stored. */
+ digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
+ while (s != 0) {
+ s >>= 1;
+ accumbits++;
+ }
+ }
+ else
+ accumbits += PyLong_SHIFT;
+
+ /* Store as many bytes as possible. */
+ while (accumbits >= 8) {
+ if (j >= n)
+ goto Overflow;
+ ++j;
+ *p = (unsigned char)(accum & 0xff);
+ p += pincr;
+ accumbits -= 8;
+ accum >>= 8;
+ }
+ }
+
+ /* Store the straggler (if any). */
+ assert(accumbits < 8);
+ assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */
+ if (accumbits > 0) {
+ if (j >= n)
+ goto Overflow;
+ ++j;
+ if (do_twos_comp) {
+ /* Fill leading bits of the byte with sign bits
+ (appropriately pretending that the int had an
+ infinite supply of sign bits). */
+ accum |= (~(twodigits)0) << accumbits;
+ }
+ *p = (unsigned char)(accum & 0xff);
+ p += pincr;
+ }
+ else if (j == n && n > 0 && is_signed) {
+ /* The main loop filled the byte array exactly, so the code
+ just above didn't get to ensure there's a sign bit, and the
+ loop below wouldn't add one either. Make sure a sign bit
+ exists. */
+ unsigned char msb = *(p - pincr);
+ int sign_bit_set = msb >= 0x80;
+ assert(accumbits == 0);
+ if (sign_bit_set == do_twos_comp)
+ return 0;
+ else
+ goto Overflow;
+ }
+
+ /* Fill remaining bytes with copies of the sign bit. */
+ {
+ unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
+ for ( ; j < n; ++j, p += pincr)
+ *p = signbyte;
+ }
+
+ return 0;
+
+ Overflow:
+ PyErr_SetString(PyExc_OverflowError, "int too big to convert");
+ return -1;
+
+}
+
+/* Create a new int object from a C pointer */
+
+PyObject *
+PyLong_FromVoidPtr(void *p)
+{
+#if SIZEOF_VOID_P <= SIZEOF_LONG
+ return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p);
+#else
+
+#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
+# error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)"
+#endif
+ return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p);
+#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
+
+}
+
+/* Get a C pointer from an int object. */
+
+void *
+PyLong_AsVoidPtr(PyObject *vv)
+{
+#if SIZEOF_VOID_P <= SIZEOF_LONG
+ long x;
+
+ if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
+ x = PyLong_AsLong(vv);
+ else
+ x = PyLong_AsUnsignedLong(vv);
+#else
+
+#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
+# error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)"
+#endif
+ long long x;
+
+ if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
+ x = PyLong_AsLongLong(vv);
+ else
+ x = PyLong_AsUnsignedLongLong(vv);
+
+#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
+
+ if (x == -1 && PyErr_Occurred())
+ return NULL;
+ return (void *)x;
+}
+
+/* Initial long long support by Chris Herborth (chrish@qnx.com), later
+ * rewritten to use the newer PyLong_{As,From}ByteArray API.
+ */
+
+#define PY_ABS_LLONG_MIN (0-(unsigned long long)LLONG_MIN)
+
+/* Create a new int object from a C long long int. */
+
+PyObject *
+PyLong_FromLongLong(long long ival)
+{
+ PyLongObject *v;
+ unsigned long long abs_ival, t;
+ int ndigits;
+
+ /* Handle small and medium cases. */
+ if (IS_SMALL_INT(ival)) {
+ return get_small_int((sdigit)ival);
+ }
+ if (-(long long)PyLong_MASK <= ival && ival <= (long long)PyLong_MASK) {
+ return _PyLong_FromMedium((sdigit)ival);
+ }
+
+ /* Count digits (at least two - smaller cases were handled above). */
+ abs_ival = ival < 0 ? 0U-(unsigned long long)ival : (unsigned long long)ival;
+ /* Do shift in two steps to avoid possible undefined behavior. */
+ t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT;
+ ndigits = 2;
+ while (t) {
+ ++ndigits;
+ t >>= PyLong_SHIFT;
+ }
+
+ /* Construct output value. */
+ v = _PyLong_New(ndigits);
+ if (v != NULL) {
+ digit *p = v->ob_digit;
+ Py_SET_SIZE(v, ival < 0 ? -ndigits : ndigits);
+ t = abs_ival;
+ while (t) {
+ *p++ = (digit)(t & PyLong_MASK);
+ t >>= PyLong_SHIFT;
+ }
+ }
+ return (PyObject *)v;
+}
+
+/* Create a new int object from a C Py_ssize_t. */
+
+PyObject *
+PyLong_FromSsize_t(Py_ssize_t ival)
+{
+ PyLongObject *v;
+ size_t abs_ival;
+ size_t t; /* unsigned so >> doesn't propagate sign bit */
+ int ndigits = 0;
+ int negative = 0;
+
+ if (IS_SMALL_INT(ival)) {
+ return get_small_int((sdigit)ival);
+ }
+
+ if (ival < 0) {
+ /* avoid signed overflow when ival = SIZE_T_MIN */
+ abs_ival = (size_t)(-1-ival)+1;
+ negative = 1;
+ }
+ else {
+ abs_ival = (size_t)ival;
+ }
+
+ /* Count the number of Python digits. */
+ t = abs_ival;
+ while (t) {
+ ++ndigits;
+ t >>= PyLong_SHIFT;
+ }
+ v = _PyLong_New(ndigits);
+ if (v != NULL) {
+ digit *p = v->ob_digit;
+ Py_SET_SIZE(v, negative ? -ndigits : ndigits);
+ t = abs_ival;
+ while (t) {
+ *p++ = (digit)(t & PyLong_MASK);
+ t >>= PyLong_SHIFT;
+ }
+ }
+ return (PyObject *)v;
+}
+
+/* Get a C long long int from an int object or any object that has an
+ __index__ method. Return -1 and set an error if overflow occurs. */
+
+long long
+PyLong_AsLongLong(PyObject *vv)
+{
+ PyLongObject *v;
+ long long bytes;
+ int res;
+ int do_decref = 0; /* if PyNumber_Index was called */
+
+ if (vv == NULL) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+
+ if (PyLong_Check(vv)) {
+ v = (PyLongObject *)vv;
+ }
+ else {
+ v = (PyLongObject *)_PyNumber_Index(vv);
+ if (v == NULL)
+ return -1;
+ do_decref = 1;
+ }
+
+ res = 0;
+ switch(Py_SIZE(v)) {
+ case -1:
+ bytes = -(sdigit)v->ob_digit[0];
+ break;
+ case 0:
+ bytes = 0;
+ break;
+ case 1:
+ bytes = v->ob_digit[0];
+ break;
+ default:
+ res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes,
+ SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1);
+ }
+ if (do_decref) {
+ Py_DECREF(v);
+ }
+
+ /* Plan 9 can't handle long long in ? : expressions */
+ if (res < 0)
+ return (long long)-1;
+ else
+ return bytes;
+}
+
+/* Get a C unsigned long long int from an int object.
+ Return -1 and set an error if overflow occurs. */
+
+unsigned long long
+PyLong_AsUnsignedLongLong(PyObject *vv)
+{
+ PyLongObject *v;
+ unsigned long long bytes;
+ int res;
+
+ if (vv == NULL) {
+ PyErr_BadInternalCall();
+ return (unsigned long long)-1;
+ }
+ if (!PyLong_Check(vv)) {
+ PyErr_SetString(PyExc_TypeError, "an integer is required");
+ return (unsigned long long)-1;
+ }
+
+ v = (PyLongObject*)vv;
+ switch(Py_SIZE(v)) {
+ case 0: return 0;
+ case 1: return v->ob_digit[0];
+ }
+
+ res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
+ SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0);
+
+ /* Plan 9 can't handle long long in ? : expressions */
+ if (res < 0)
+ return (unsigned long long)res;
+ else
+ return bytes;
+}
+
+/* Get a C unsigned long int from an int object, ignoring the high bits.
+ Returns -1 and sets an error condition if an error occurs. */
+
+static unsigned long long
+_PyLong_AsUnsignedLongLongMask(PyObject *vv)
+{
+ PyLongObject *v;
+ unsigned long long x;
+ Py_ssize_t i;
+ int sign;
+
+ if (vv == NULL || !PyLong_Check(vv)) {
+ PyErr_BadInternalCall();
+ return (unsigned long long) -1;
+ }
+ v = (PyLongObject *)vv;
+ switch(Py_SIZE(v)) {
+ case 0: return 0;
+ case 1: return v->ob_digit[0];
+ }
+ i = Py_SIZE(v);
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -i;
+ }
+ while (--i >= 0) {
+ x = (x << PyLong_SHIFT) | v->ob_digit[i];
+ }
+ return x * sign;
+}
+
+unsigned long long
+PyLong_AsUnsignedLongLongMask(PyObject *op)
+{
+ PyLongObject *lo;
+ unsigned long long val;
+
+ if (op == NULL) {
+ PyErr_BadInternalCall();
+ return (unsigned long long)-1;
+ }
+
+ if (PyLong_Check(op)) {
+ return _PyLong_AsUnsignedLongLongMask(op);
+ }
+
+ lo = (PyLongObject *)_PyNumber_Index(op);
+ if (lo == NULL)
+ return (unsigned long long)-1;
+
+ val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
+ Py_DECREF(lo);
+ return val;
+}
+
+/* Get a C long long int from an int object or any object that has an
+ __index__ method.
+
+ On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
+ the result. Otherwise *overflow is 0.
+
+ For other errors (e.g., TypeError), return -1 and set an error condition.
+ In this case *overflow will be 0.
+*/
+
+long long
+PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
+{
+ /* This version by Tim Peters */
+ PyLongObject *v;
+ unsigned long long x, prev;
+ long long res;
+ Py_ssize_t i;
+ int sign;
+ int do_decref = 0; /* if PyNumber_Index was called */
+
+ *overflow = 0;
+ if (vv == NULL) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+
+ if (PyLong_Check(vv)) {
+ v = (PyLongObject *)vv;
+ }
+ else {
+ v = (PyLongObject *)_PyNumber_Index(vv);
+ if (v == NULL)
+ return -1;
+ do_decref = 1;
+ }
+
+ res = -1;
+ i = Py_SIZE(v);
+
+ switch (i) {
+ case -1:
+ res = -(sdigit)v->ob_digit[0];
+ break;
+ case 0:
+ res = 0;
+ break;
+ case 1:
+ res = v->ob_digit[0];
+ break;
+ default:
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -(i);
+ }
+ while (--i >= 0) {
+ prev = x;
+ x = (x << PyLong_SHIFT) + v->ob_digit[i];
+ if ((x >> PyLong_SHIFT) != prev) {
+ *overflow = sign;
+ goto exit;
+ }
+ }
+ /* Haven't lost any bits, but casting to long requires extra
+ * care (see comment above).
+ */
+ if (x <= (unsigned long long)LLONG_MAX) {
+ res = (long long)x * sign;
+ }
+ else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
+ res = LLONG_MIN;
+ }
+ else {
+ *overflow = sign;
+ /* res is already set to -1 */
+ }
+ }
+ exit:
+ if (do_decref) {
+ Py_DECREF(v);
+ }
+ return res;
+}
+
+int
+_PyLong_UnsignedShort_Converter(PyObject *obj, void *ptr)
+{
+ unsigned long uval;
+
+ if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
+ PyErr_SetString(PyExc_ValueError, "value must be positive");
+ return 0;
+ }
+ uval = PyLong_AsUnsignedLong(obj);
+ if (uval == (unsigned long)-1 && PyErr_Occurred())
+ return 0;
+ if (uval > USHRT_MAX) {
+ PyErr_SetString(PyExc_OverflowError,
+ "Python int too large for C unsigned short");
+ return 0;
+ }
+
+ *(unsigned short *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned short);
+ return 1;
+}
+
+int
+_PyLong_UnsignedInt_Converter(PyObject *obj, void *ptr)
+{
+ unsigned long uval;
+
+ if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
+ PyErr_SetString(PyExc_ValueError, "value must be positive");
+ return 0;
+ }
+ uval = PyLong_AsUnsignedLong(obj);
+ if (uval == (unsigned long)-1 && PyErr_Occurred())
+ return 0;
+ if (uval > UINT_MAX) {
+ PyErr_SetString(PyExc_OverflowError,
+ "Python int too large for C unsigned int");
+ return 0;
+ }
+
+ *(unsigned int *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned int);
+ return 1;
+}
+
+int
+_PyLong_UnsignedLong_Converter(PyObject *obj, void *ptr)
+{
+ unsigned long uval;
+
+ if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
+ PyErr_SetString(PyExc_ValueError, "value must be positive");
+ return 0;
+ }
+ uval = PyLong_AsUnsignedLong(obj);
+ if (uval == (unsigned long)-1 && PyErr_Occurred())
+ return 0;
+
+ *(unsigned long *)ptr = uval;
+ return 1;
+}
+
+int
+_PyLong_UnsignedLongLong_Converter(PyObject *obj, void *ptr)
+{
+ unsigned long long uval;
+
+ if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
+ PyErr_SetString(PyExc_ValueError, "value must be positive");
+ return 0;
+ }
+ uval = PyLong_AsUnsignedLongLong(obj);
+ if (uval == (unsigned long long)-1 && PyErr_Occurred())
+ return 0;
+
+ *(unsigned long long *)ptr = uval;
+ return 1;
+}
+
+int
+_PyLong_Size_t_Converter(PyObject *obj, void *ptr)
+{
+ size_t uval;
+
+ if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
+ PyErr_SetString(PyExc_ValueError, "value must be positive");
+ return 0;
+ }
+ uval = PyLong_AsSize_t(obj);
+ if (uval == (size_t)-1 && PyErr_Occurred())
+ return 0;
+
+ *(size_t *)ptr = uval;
+ return 1;
+}
+
+
+#define CHECK_BINOP(v,w) \
+ do { \
+ if (!PyLong_Check(v) || !PyLong_Check(w)) \
+ Py_RETURN_NOTIMPLEMENTED; \
+ } while(0)
+
+/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
+ * is modified in place, by adding y to it. Carries are propagated as far as
+ * x[m-1], and the remaining carry (0 or 1) is returned.
+ */
+static digit
+v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
+{
+ Py_ssize_t i;
+ digit carry = 0;
+
+ assert(m >= n);
+ for (i = 0; i < n; ++i) {
+ carry += x[i] + y[i];
+ x[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ assert((carry & 1) == carry);
+ }
+ for (; carry && i < m; ++i) {
+ carry += x[i];
+ x[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ assert((carry & 1) == carry);
+ }
+ return carry;
+}
+
+/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
+ * is modified in place, by subtracting y from it. Borrows are propagated as
+ * far as x[m-1], and the remaining borrow (0 or 1) is returned.
+ */
+static digit
+v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
+{
+ Py_ssize_t i;
+ digit borrow = 0;
+
+ assert(m >= n);
+ for (i = 0; i < n; ++i) {
+ borrow = x[i] - y[i] - borrow;
+ x[i] = borrow & PyLong_MASK;
+ borrow >>= PyLong_SHIFT;
+ borrow &= 1; /* keep only 1 sign bit */
+ }
+ for (; borrow && i < m; ++i) {
+ borrow = x[i] - borrow;
+ x[i] = borrow & PyLong_MASK;
+ borrow >>= PyLong_SHIFT;
+ borrow &= 1;
+ }
+ return borrow;
+}
+
+/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put
+ * result in z[0:m], and return the d bits shifted out of the top.
+ */
+static digit
+v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
+{
+ Py_ssize_t i;
+ digit carry = 0;
+
+ assert(0 <= d && d < PyLong_SHIFT);
+ for (i=0; i < m; i++) {
+ twodigits acc = (twodigits)a[i] << d | carry;
+ z[i] = (digit)acc & PyLong_MASK;
+ carry = (digit)(acc >> PyLong_SHIFT);
+ }
+ return carry;
+}
+
+/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put
+ * result in z[0:m], and return the d bits shifted out of the bottom.
+ */
+static digit
+v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
+{
+ Py_ssize_t i;
+ digit carry = 0;
+ digit mask = ((digit)1 << d) - 1U;
+
+ assert(0 <= d && d < PyLong_SHIFT);
+ for (i=m; i-- > 0;) {
+ twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
+ carry = (digit)acc & mask;
+ z[i] = (digit)(acc >> d);
+ }
+ return carry;
+}
+
+/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
+ in pout, and returning the remainder. pin and pout point at the LSD.
+ It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
+ _PyLong_Format, but that should be done with great care since ints are
+ immutable.
+
+ This version of the code can be 20% faster than the pre-2022 version
+ on todays compilers on architectures like amd64. It evolved from Mark
+ Dickinson observing that a 128:64 divide instruction was always being
+ generated by the compiler despite us working with 30-bit digit values.
+ See the thread for full context:
+
+ https://mail.python.org/archives/list/python-dev@python.org/thread/ZICIMX5VFCX4IOFH5NUPVHCUJCQ4Q7QM/#NEUNFZU3TQU4CPTYZNF3WCN7DOJBBTK5
+
+ If you ever want to change this code, pay attention to performance using
+ different compilers, optimization levels, and cpu architectures. Beware of
+ PGO/FDO builds doing value specialization such as a fast path for //10. :)
+
+ Verify that 17 isn't specialized and this works as a quick test:
+ python -m timeit -s 'x = 10**1000; r=x//10; assert r == 10**999, r' 'x//17'
+*/
+static digit
+inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
+{
+ digit remainder = 0;
+
+ assert(n > 0 && n <= PyLong_MASK);
+ while (--size >= 0) {
+ twodigits dividend;
+ dividend = ((twodigits)remainder << PyLong_SHIFT) | pin[size];
+ digit quotient;
+ quotient = (digit)(dividend / n);
+ remainder = dividend % n;
+ pout[size] = quotient;
+ }
+ return remainder;
+}
+
+
+/* Divide an integer by a digit, returning both the quotient
+ (as function result) and the remainder (through *prem).
+ The sign of a is ignored; n should not be zero. */
+
+static PyLongObject *
+divrem1(PyLongObject *a, digit n, digit *prem)
+{
+ const Py_ssize_t size = Py_ABS(Py_SIZE(a));
+ PyLongObject *z;
+
+ assert(n > 0 && n <= PyLong_MASK);
+ z = _PyLong_New(size);
+ if (z == NULL)
+ return NULL;
+ *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
+ return long_normalize(z);
+}
+
+/* Remainder of long pin, w/ size digits, by non-zero digit n,
+ returning the remainder. pin points at the LSD. */
+
+static digit
+inplace_rem1(digit *pin, Py_ssize_t size, digit n)
+{
+ twodigits rem = 0;
+
+ assert(n > 0 && n <= PyLong_MASK);
+ while (--size >= 0)
+ rem = ((rem << PyLong_SHIFT) | pin[size]) % n;
+ return (digit)rem;
+}
+
+/* Get the remainder of an integer divided by a digit, returning
+ the remainder as the result of the function. The sign of a is
+ ignored; n should not be zero. */
+
+static PyLongObject *
+rem1(PyLongObject *a, digit n)
+{
+ const Py_ssize_t size = Py_ABS(Py_SIZE(a));
+
+ assert(n > 0 && n <= PyLong_MASK);
+ return (PyLongObject *)PyLong_FromLong(
+ (long)inplace_rem1(a->ob_digit, size, n)
+ );
+}
+
+/* Convert an integer to a base 10 string. Returns a new non-shared
+ string. (Return value is non-shared so that callers can modify the
+ returned value if necessary.) */
+
+static int
+long_to_decimal_string_internal(PyObject *aa,
+ PyObject **p_output,
+ _PyUnicodeWriter *writer,
+ _PyBytesWriter *bytes_writer,
+ char **bytes_str)
+{
+ PyLongObject *scratch, *a;
+ PyObject *str = NULL;
+ Py_ssize_t size, strlen, size_a, i, j;
+ digit *pout, *pin, rem, tenpow;
+ int negative;
+ int d;
+ enum PyUnicode_Kind kind;
+
+ a = (PyLongObject *)aa;
+ if (a == NULL || !PyLong_Check(a)) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ size_a = Py_ABS(Py_SIZE(a));
+ negative = Py_SIZE(a) < 0;
+
+ /* quick and dirty pre-check for overflowing the decimal digit limit,
+ based on the inequality 10/3 >= log2(10)
+
+ explanation in https://github.com/python/cpython/pull/96537
+ */
+ if (size_a >= 10 * _PY_LONG_MAX_STR_DIGITS_THRESHOLD
+ / (3 * PyLong_SHIFT) + 2) {
+ PyInterpreterState *interp = _PyInterpreterState_GET();
+ int max_str_digits = interp->int_max_str_digits;
+ if ((max_str_digits > 0) &&
+ (max_str_digits / (3 * PyLong_SHIFT) <= (size_a - 11) / 10)) {
+ PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
+ max_str_digits);
+ return -1;
+ }
+ }
+
+ /* quick and dirty upper bound for the number of digits
+ required to express a in base _PyLong_DECIMAL_BASE:
+
+ #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
+
+ But log2(a) < size_a * PyLong_SHIFT, and
+ log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
+ > 3.3 * _PyLong_DECIMAL_SHIFT
+
+ size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) =
+ size_a + size_a / d < size_a + size_a / floor(d),
+ where d = (3.3 * _PyLong_DECIMAL_SHIFT) /
+ (PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT)
+ */
+ d = (33 * _PyLong_DECIMAL_SHIFT) /
+ (10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT);
+ assert(size_a < PY_SSIZE_T_MAX/2);
+ size = 1 + size_a + size_a / d;
+ scratch = _PyLong_New(size);
+ if (scratch == NULL)
+ return -1;
+
+ /* convert array of base _PyLong_BASE digits in pin to an array of
+ base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
+ Volume 2 (3rd edn), section 4.4, Method 1b). */
+ pin = a->ob_digit;
+ pout = scratch->ob_digit;
+ size = 0;
+ for (i = size_a; --i >= 0; ) {
+ digit hi = pin[i];
+ for (j = 0; j < size; j++) {
+ twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
+ hi = (digit)(z / _PyLong_DECIMAL_BASE);
+ pout[j] = (digit)(z - (twodigits)hi *
+ _PyLong_DECIMAL_BASE);
+ }
+ while (hi) {
+ pout[size++] = hi % _PyLong_DECIMAL_BASE;
+ hi /= _PyLong_DECIMAL_BASE;
+ }
+ /* check for keyboard interrupt */
+ SIGCHECK({
+ Py_DECREF(scratch);
+ return -1;
+ });
+ }
+ /* pout should have at least one digit, so that the case when a = 0
+ works correctly */
+ if (size == 0)
+ pout[size++] = 0;
+
+ /* calculate exact length of output string, and allocate */
+ strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
+ tenpow = 10;
+ rem = pout[size-1];
+ while (rem >= tenpow) {
+ tenpow *= 10;
+ strlen++;
+ }
+ if (strlen > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
+ PyInterpreterState *interp = _PyInterpreterState_GET();
+ int max_str_digits = interp->int_max_str_digits;
+ Py_ssize_t strlen_nosign = strlen - negative;
+ if ((max_str_digits > 0) && (strlen_nosign > max_str_digits)) {
+ Py_DECREF(scratch);
+ PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
+ max_str_digits);
+ return -1;
+ }
+ }
+ if (writer) {
+ if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) {
+ Py_DECREF(scratch);
+ return -1;
+ }
+ kind = writer->kind;
+ }
+ else if (bytes_writer) {
+ *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, strlen);
+ if (*bytes_str == NULL) {
+ Py_DECREF(scratch);
+ return -1;
+ }
+ }
+ else {
+ str = PyUnicode_New(strlen, '9');
+ if (str == NULL) {
+ Py_DECREF(scratch);
+ return -1;
+ }
+ kind = PyUnicode_KIND(str);
+ }
+
+#define WRITE_DIGITS(p) \
+ do { \
+ /* pout[0] through pout[size-2] contribute exactly \
+ _PyLong_DECIMAL_SHIFT digits each */ \
+ for (i=0; i < size - 1; i++) { \
+ rem = pout[i]; \
+ for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { \
+ *--p = '0' + rem % 10; \
+ rem /= 10; \
+ } \
+ } \
+ /* pout[size-1]: always produce at least one decimal digit */ \
+ rem = pout[i]; \
+ do { \
+ *--p = '0' + rem % 10; \
+ rem /= 10; \
+ } while (rem != 0); \
+ \
+ /* and sign */ \
+ if (negative) \
+ *--p = '-'; \
+ } while (0)
+
+#define WRITE_UNICODE_DIGITS(TYPE) \
+ do { \
+ if (writer) \
+ p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \
+ else \
+ p = (TYPE*)PyUnicode_DATA(str) + strlen; \
+ \
+ WRITE_DIGITS(p); \
+ \
+ /* check we've counted correctly */ \
+ if (writer) \
+ assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
+ else \
+ assert(p == (TYPE*)PyUnicode_DATA(str)); \
+ } while (0)
+
+ /* fill the string right-to-left */
+ if (bytes_writer) {
+ char *p = *bytes_str + strlen;
+ WRITE_DIGITS(p);
+ assert(p == *bytes_str);
+ }
+ else if (kind == PyUnicode_1BYTE_KIND) {
+ Py_UCS1 *p;
+ WRITE_UNICODE_DIGITS(Py_UCS1);
+ }
+ else if (kind == PyUnicode_2BYTE_KIND) {
+ Py_UCS2 *p;
+ WRITE_UNICODE_DIGITS(Py_UCS2);
+ }
+ else {
+ Py_UCS4 *p;
+ assert (kind == PyUnicode_4BYTE_KIND);
+ WRITE_UNICODE_DIGITS(Py_UCS4);
+ }
+#undef WRITE_DIGITS
+#undef WRITE_UNICODE_DIGITS
+
+ _Py_DECREF_INT(scratch);
+ if (writer) {
+ writer->pos += strlen;
+ }
+ else if (bytes_writer) {
+ (*bytes_str) += strlen;
+ }
+ else {
+ assert(_PyUnicode_CheckConsistency(str, 1));
+ *p_output = (PyObject *)str;
+ }
+ return 0;
+}
+
+static PyObject *
+long_to_decimal_string(PyObject *aa)
+{
+ PyObject *v;
+ if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1)
+ return NULL;
+ return v;
+}
+
+/* Convert an int object to a string, using a given conversion base,
+ which should be one of 2, 8 or 16. Return a string object.
+ If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'
+ if alternate is nonzero. */
+
+static int
+long_format_binary(PyObject *aa, int base, int alternate,
+ PyObject **p_output, _PyUnicodeWriter *writer,
+ _PyBytesWriter *bytes_writer, char **bytes_str)
+{
+ PyLongObject *a = (PyLongObject *)aa;
+ PyObject *v = NULL;
+ Py_ssize_t sz;
+ Py_ssize_t size_a;
+ enum PyUnicode_Kind kind;
+ int negative;
+ int bits;
+
+ assert(base == 2 || base == 8 || base == 16);
+ if (a == NULL || !PyLong_Check(a)) {
+ PyErr_BadInternalCall();
+ return -1;
+ }
+ size_a = Py_ABS(Py_SIZE(a));
+ negative = Py_SIZE(a) < 0;
+
+ /* Compute a rough upper bound for the length of the string */
+ switch (base) {
+ case 16:
+ bits = 4;
+ break;
+ case 8:
+ bits = 3;
+ break;
+ case 2:
+ bits = 1;
+ break;
+ default:
+ Py_UNREACHABLE();
+ }
+
+ /* Compute exact length 'sz' of output string. */
+ if (size_a == 0) {
+ sz = 1;
+ }
+ else {
+ Py_ssize_t size_a_in_bits;
+ /* Ensure overflow doesn't occur during computation of sz. */
+ if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
+ PyErr_SetString(PyExc_OverflowError,
+ "int too large to format");
+ return -1;
+ }
+ size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
+ bit_length_digit(a->ob_digit[size_a - 1]);
+ /* Allow 1 character for a '-' sign. */
+ sz = negative + (size_a_in_bits + (bits - 1)) / bits;
+ }
+ if (alternate) {
+ /* 2 characters for prefix */
+ sz += 2;
+ }
+
+ if (writer) {
+ if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1)
+ return -1;
+ kind = writer->kind;
+ }
+ else if (bytes_writer) {
+ *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, sz);
+ if (*bytes_str == NULL)
+ return -1;
+ }
+ else {
+ v = PyUnicode_New(sz, 'x');
+ if (v == NULL)
+ return -1;
+ kind = PyUnicode_KIND(v);
+ }
+
+#define WRITE_DIGITS(p) \
+ do { \
+ if (size_a == 0) { \
+ *--p = '0'; \
+ } \
+ else { \
+ /* JRH: special case for power-of-2 bases */ \
+ twodigits accum = 0; \
+ int accumbits = 0; /* # of bits in accum */ \
+ Py_ssize_t i; \
+ for (i = 0; i < size_a; ++i) { \
+ accum |= (twodigits)a->ob_digit[i] << accumbits; \
+ accumbits += PyLong_SHIFT; \
+ assert(accumbits >= bits); \
+ do { \
+ char cdigit; \
+ cdigit = (char)(accum & (base - 1)); \
+ cdigit += (cdigit < 10) ? '0' : 'a'-10; \
+ *--p = cdigit; \
+ accumbits -= bits; \
+ accum >>= bits; \
+ } while (i < size_a-1 ? accumbits >= bits : accum > 0); \
+ } \
+ } \
+ \
+ if (alternate) { \
+ if (base == 16) \
+ *--p = 'x'; \
+ else if (base == 8) \
+ *--p = 'o'; \
+ else /* (base == 2) */ \
+ *--p = 'b'; \
+ *--p = '0'; \
+ } \
+ if (negative) \
+ *--p = '-'; \
+ } while (0)
+
+#define WRITE_UNICODE_DIGITS(TYPE) \
+ do { \
+ if (writer) \
+ p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \
+ else \
+ p = (TYPE*)PyUnicode_DATA(v) + sz; \
+ \
+ WRITE_DIGITS(p); \
+ \
+ if (writer) \
+ assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
+ else \
+ assert(p == (TYPE*)PyUnicode_DATA(v)); \
+ } while (0)
+
+ if (bytes_writer) {
+ char *p = *bytes_str + sz;
+ WRITE_DIGITS(p);
+ assert(p == *bytes_str);
+ }
+ else if (kind == PyUnicode_1BYTE_KIND) {
+ Py_UCS1 *p;
+ WRITE_UNICODE_DIGITS(Py_UCS1);
+ }
+ else if (kind == PyUnicode_2BYTE_KIND) {
+ Py_UCS2 *p;
+ WRITE_UNICODE_DIGITS(Py_UCS2);
+ }
+ else {
+ Py_UCS4 *p;
+ assert (kind == PyUnicode_4BYTE_KIND);
+ WRITE_UNICODE_DIGITS(Py_UCS4);
+ }
+#undef WRITE_DIGITS
+#undef WRITE_UNICODE_DIGITS
+
+ if (writer) {
+ writer->pos += sz;
+ }
+ else if (bytes_writer) {
+ (*bytes_str) += sz;
+ }
+ else {
+ assert(_PyUnicode_CheckConsistency(v, 1));
+ *p_output = v;
+ }
+ return 0;
+}
+
+PyObject *
+_PyLong_Format(PyObject *obj, int base)
+{
+ PyObject *str;
+ int err;
+ if (base == 10)
+ err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL);
+ else
+ err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL);
+ if (err == -1)
+ return NULL;
+ return str;
+}
+
+int
+_PyLong_FormatWriter(_PyUnicodeWriter *writer,
+ PyObject *obj,
+ int base, int alternate)
+{
+ if (base == 10)
+ return long_to_decimal_string_internal(obj, NULL, writer,
+ NULL, NULL);
+ else
+ return long_format_binary(obj, base, alternate, NULL, writer,
+ NULL, NULL);
+}
+
+char*
+_PyLong_FormatBytesWriter(_PyBytesWriter *writer, char *str,
+ PyObject *obj,
+ int base, int alternate)
+{
+ char *str2;
+ int res;
+ str2 = str;
+ if (base == 10)
+ res = long_to_decimal_string_internal(obj, NULL, NULL,
+ writer, &str2);
+ else
+ res = long_format_binary(obj, base, alternate, NULL, NULL,
+ writer, &str2);
+ if (res < 0)
+ return NULL;
+ assert(str2 != NULL);
+ return str2;
+}
+
+/* Table of digit values for 8-bit string -> integer conversion.
+ * '0' maps to 0, ..., '9' maps to 9.
+ * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
+ * All other indices map to 37.
+ * Note that when converting a base B string, a char c is a legitimate
+ * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
+ */
+unsigned char _PyLong_DigitValue[256] = {
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37,
+ 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
+ 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
+ 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
+ 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+ 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
+};
+
+/* *str points to the first digit in a string of base `base` digits. base
+ * is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first
+ * non-digit (which may be *str!). A normalized int is returned.
+ * The point to this routine is that it takes time linear in the number of
+ * string characters.
+ *
+ * Return values:
+ * -1 on syntax error (exception needs to be set, *res is untouched)
+ * 0 else (exception may be set, in that case *res is set to NULL)
+ */
+static int
+long_from_binary_base(const char **str, int base, PyLongObject **res)
+{
+ const char *p = *str;
+ const char *start = p;
+ char prev = 0;
+ Py_ssize_t digits = 0;
+ int bits_per_char;
+ Py_ssize_t n;
+ PyLongObject *z;
+ twodigits accum;
+ int bits_in_accum;
+ digit *pdigit;
+
+ assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
+ n = base;
+ for (bits_per_char = -1; n; ++bits_per_char) {
+ n >>= 1;
+ }
+ /* count digits and set p to end-of-string */
+ while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') {
+ if (*p == '_') {
+ if (prev == '_') {
+ *str = p - 1;
+ return -1;
+ }
+ } else {
+ ++digits;
+ }
+ prev = *p;
+ ++p;
+ }
+ if (prev == '_') {
+ /* Trailing underscore not allowed. */
+ *str = p - 1;
+ return -1;
+ }
+
+ *str = p;
+ /* n <- the number of Python digits needed,
+ = ceiling((digits * bits_per_char) / PyLong_SHIFT). */
+ if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) {
+ PyErr_SetString(PyExc_ValueError,
+ "int string too large to convert");
+ *res = NULL;
+ return 0;
+ }
+ n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT;
+ z = _PyLong_New(n);
+ if (z == NULL) {
+ *res = NULL;
+ return 0;
+ }
+ /* Read string from right, and fill in int from left; i.e.,
+ * from least to most significant in both.
+ */
+ accum = 0;
+ bits_in_accum = 0;
+ pdigit = z->ob_digit;
+ while (--p >= start) {
+ int k;
+ if (*p == '_') {
+ continue;
+ }
+ k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
+ assert(k >= 0 && k < base);
+ accum |= (twodigits)k << bits_in_accum;
+ bits_in_accum += bits_per_char;
+ if (bits_in_accum >= PyLong_SHIFT) {
+ *pdigit++ = (digit)(accum & PyLong_MASK);
+ assert(pdigit - z->ob_digit <= n);
+ accum >>= PyLong_SHIFT;
+ bits_in_accum -= PyLong_SHIFT;
+ assert(bits_in_accum < PyLong_SHIFT);
+ }
+ }
+ if (bits_in_accum) {
+ assert(bits_in_accum <= PyLong_SHIFT);
+ *pdigit++ = (digit)accum;
+ assert(pdigit - z->ob_digit <= n);
+ }
+ while (pdigit - z->ob_digit < n)
+ *pdigit++ = 0;
+ *res = long_normalize(z);
+ return 0;
+}
+
+/* Parses an int from a bytestring. Leading and trailing whitespace will be
+ * ignored.
+ *
+ * If successful, a PyLong object will be returned and 'pend' will be pointing
+ * to the first unused byte unless it's NULL.
+ *
+ * If unsuccessful, NULL will be returned.
+ */
+PyObject *
+PyLong_FromString(const char *str, char **pend, int base)
+{
+ int sign = 1, error_if_nonzero = 0;
+ const char *start, *orig_str = str;
+ PyLongObject *z = NULL;
+ PyObject *strobj;
+ Py_ssize_t slen;
+
+ if ((base != 0 && base < 2) || base > 36) {
+ PyErr_SetString(PyExc_ValueError,
+ "int() arg 2 must be >= 2 and <= 36");
+ return NULL;
+ }
+ while (*str != '\0' && Py_ISSPACE(*str)) {
+ str++;
+ }
+ if (*str == '+') {
+ ++str;
+ }
+ else if (*str == '-') {
+ ++str;
+ sign = -1;
+ }
+ if (base == 0) {
+ if (str[0] != '0') {
+ base = 10;
+ }
+ else if (str[1] == 'x' || str[1] == 'X') {
+ base = 16;
+ }
+ else if (str[1] == 'o' || str[1] == 'O') {
+ base = 8;
+ }
+ else if (str[1] == 'b' || str[1] == 'B') {
+ base = 2;
+ }
+ else {
+ /* "old" (C-style) octal literal, now invalid.
+ it might still be zero though */
+ error_if_nonzero = 1;
+ base = 10;
+ }
+ }
+ if (str[0] == '0' &&
+ ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
+ (base == 8 && (str[1] == 'o' || str[1] == 'O')) ||
+ (base == 2 && (str[1] == 'b' || str[1] == 'B')))) {
+ str += 2;
+ /* One underscore allowed here. */
+ if (*str == '_') {
+ ++str;
+ }
+ }
+ if (str[0] == '_') {
+ /* May not start with underscores. */
+ goto onError;
+ }
+
+ start = str;
+ if ((base & (base - 1)) == 0) {
+ /* binary bases are not limited by int_max_str_digits */
+ int res = long_from_binary_base(&str, base, &z);
+ if (res < 0) {
+ /* Syntax error. */
+ goto onError;
+ }
+ }
+ else {
+/***
+Binary bases can be converted in time linear in the number of digits, because
+Python's representation base is binary. Other bases (including decimal!) use
+the simple quadratic-time algorithm below, complicated by some speed tricks.
+
+First some math: the largest integer that can be expressed in N base-B digits
+is B**N-1. Consequently, if we have an N-digit input in base B, the worst-
+case number of Python digits needed to hold it is the smallest integer n s.t.
+
+ BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
+ BASE**n >= B**N [taking logs to base BASE]
+ n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
+
+The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
+this quickly. A Python int with that much space is reserved near the start,
+and the result is computed into it.
+
+The input string is actually treated as being in base base**i (i.e., i digits
+are processed at a time), where two more static arrays hold:
+
+ convwidth_base[base] = the largest integer i such that base**i <= BASE
+ convmultmax_base[base] = base ** convwidth_base[base]
+
+The first of these is the largest i such that i consecutive input digits
+must fit in a single Python digit. The second is effectively the input
+base we're really using.
+
+Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
+convmultmax_base[base], the result is "simply"
+
+ (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
+
+where B = convmultmax_base[base].
+
+Error analysis: as above, the number of Python digits `n` needed is worst-
+case
+
+ n >= N * log(B)/log(BASE)
+
+where `N` is the number of input digits in base `B`. This is computed via
+
+ size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
+
+below. Two numeric concerns are how much space this can waste, and whether
+the computed result can be too small. To be concrete, assume BASE = 2**15,
+which is the default (and it's unlikely anyone changes that).
+
+Waste isn't a problem: provided the first input digit isn't 0, the difference
+between the worst-case input with N digits and the smallest input with N
+digits is about a factor of B, but B is small compared to BASE so at most
+one allocated Python digit can remain unused on that count. If
+N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
+and adding 1 returns a result 1 larger than necessary. However, that can't
+happen: whenever B is a power of 2, long_from_binary_base() is called
+instead, and it's impossible for B**i to be an integer power of 2**15 when
+B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
+an exact integer when B is not a power of 2, since B**i has a prime factor
+other than 2 in that case, but (2**15)**j's only prime factor is 2).
+
+The computed result can be too small if the true value of N*log(B)/log(BASE)
+is a little bit larger than an exact integer, but due to roundoff errors (in
+computing log(B), log(BASE), their quotient, and/or multiplying that by N)
+yields a numeric result a little less than that integer. Unfortunately, "how
+close can a transcendental function get to an integer over some range?"
+questions are generally theoretically intractable. Computer analysis via
+continued fractions is practical: expand log(B)/log(BASE) via continued
+fractions, giving a sequence i/j of "the best" rational approximations. Then
+j*log(B)/log(BASE) is approximately equal to (the integer) i. This shows that
+we can get very close to being in trouble, but very rarely. For example,
+76573 is a denominator in one of the continued-fraction approximations to
+log(10)/log(2**15), and indeed:
+
+ >>> log(10)/log(2**15)*76573
+ 16958.000000654003
+
+is very close to an integer. If we were working with IEEE single-precision,
+rounding errors could kill us. Finding worst cases in IEEE double-precision
+requires better-than-double-precision log() functions, and Tim didn't bother.
+Instead the code checks to see whether the allocated space is enough as each
+new Python digit is added, and copies the whole thing to a larger int if not.
+This should happen extremely rarely, and in fact I don't have a test case
+that triggers it(!). Instead the code was tested by artificially allocating
+just 1 digit at the start, so that the copying code was exercised for every
+digit beyond the first.
+***/
+ twodigits c; /* current input character */
+ Py_ssize_t size_z;
+ Py_ssize_t digits = 0;
+ int i;
+ int convwidth;
+ twodigits convmultmax, convmult;
+ digit *pz, *pzstop;
+ const char *scan, *lastdigit;
+ char prev = 0;
+
+ static double log_base_BASE[37] = {0.0e0,};
+ static int convwidth_base[37] = {0,};
+ static twodigits convmultmax_base[37] = {0,};
+
+ if (log_base_BASE[base] == 0.0) {
+ twodigits convmax = base;
+ int i = 1;
+
+ log_base_BASE[base] = (log((double)base) /
+ log((double)PyLong_BASE));
+ for (;;) {
+ twodigits next = convmax * base;
+ if (next > PyLong_BASE) {
+ break;
+ }
+ convmax = next;
+ ++i;
+ }
+ convmultmax_base[base] = convmax;
+ assert(i > 0);
+ convwidth_base[base] = i;
+ }
+
+ /* Find length of the string of numeric characters. */
+ scan = str;
+ lastdigit = str;
+
+ while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base || *scan == '_') {
+ if (*scan == '_') {
+ if (prev == '_') {
+ /* Only one underscore allowed. */
+ str = lastdigit + 1;
+ goto onError;
+ }
+ }
+ else {
+ ++digits;
+ lastdigit = scan;
+ }
+ prev = *scan;
+ ++scan;
+ }
+ if (prev == '_') {
+ /* Trailing underscore not allowed. */
+ /* Set error pointer to first underscore. */
+ str = lastdigit + 1;
+ goto onError;
+ }
+
+ /* Limit the size to avoid excessive computation attacks. */
+ if (digits > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
+ PyInterpreterState *interp = _PyInterpreterState_GET();
+ int max_str_digits = interp->int_max_str_digits;
+ if ((max_str_digits > 0) && (digits > max_str_digits)) {
+ PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_INT,
+ max_str_digits, digits);
+ return NULL;
+ }
+ }
+
+ /* Create an int object that can contain the largest possible
+ * integer with this base and length. Note that there's no
+ * need to initialize z->ob_digit -- no slot is read up before
+ * being stored into.
+ */
+ double fsize_z = (double)digits * log_base_BASE[base] + 1.0;
+ if (fsize_z > (double)MAX_LONG_DIGITS) {
+ /* The same exception as in _PyLong_New(). */
+ PyErr_SetString(PyExc_OverflowError,
+ "too many digits in integer");
+ return NULL;
+ }
+ size_z = (Py_ssize_t)fsize_z;
+ /* Uncomment next line to test exceedingly rare copy code */
+ /* size_z = 1; */
+ assert(size_z > 0);
+ z = _PyLong_New(size_z);
+ if (z == NULL) {
+ return NULL;
+ }
+ Py_SET_SIZE(z, 0);
+
+ /* `convwidth` consecutive input digits are treated as a single
+ * digit in base `convmultmax`.
+ */
+ convwidth = convwidth_base[base];
+ convmultmax = convmultmax_base[base];
+
+ /* Work ;-) */
+ while (str < scan) {
+ if (*str == '_') {
+ str++;
+ continue;
+ }
+ /* grab up to convwidth digits from the input string */
+ c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
+ for (i = 1; i < convwidth && str != scan; ++str) {
+ if (*str == '_') {
+ continue;
+ }
+ i++;
+ c = (twodigits)(c * base +
+ (int)_PyLong_DigitValue[Py_CHARMASK(*str)]);
+ assert(c < PyLong_BASE);
+ }
+
+ convmult = convmultmax;
+ /* Calculate the shift only if we couldn't get
+ * convwidth digits.
+ */
+ if (i != convwidth) {
+ convmult = base;
+ for ( ; i > 1; --i) {
+ convmult *= base;
+ }
+ }
+
+ /* Multiply z by convmult, and add c. */
+ pz = z->ob_digit;
+ pzstop = pz + Py_SIZE(z);
+ for (; pz < pzstop; ++pz) {
+ c += (twodigits)*pz * convmult;
+ *pz = (digit)(c & PyLong_MASK);
+ c >>= PyLong_SHIFT;
+ }
+ /* carry off the current end? */
+ if (c) {
+ assert(c < PyLong_BASE);
+ if (Py_SIZE(z) < size_z) {
+ *pz = (digit)c;
+ Py_SET_SIZE(z, Py_SIZE(z) + 1);
+ }
+ else {
+ PyLongObject *tmp;
+ /* Extremely rare. Get more space. */
+ assert(Py_SIZE(z) == size_z);
+ tmp = _PyLong_New(size_z + 1);
+ if (tmp == NULL) {
+ Py_DECREF(z);
+ return NULL;
+ }
+ memcpy(tmp->ob_digit,
+ z->ob_digit,
+ sizeof(digit) * size_z);
+ Py_DECREF(z);
+ z = tmp;
+ z->ob_digit[size_z] = (digit)c;
+ ++size_z;
+ }
+ }
+ }
+ }
+ if (z == NULL) {
+ return NULL;
+ }
+ if (error_if_nonzero) {
+ /* reset the base to 0, else the exception message
+ doesn't make too much sense */
+ base = 0;
+ if (Py_SIZE(z) != 0) {
+ goto onError;
+ }
+ /* there might still be other problems, therefore base
+ remains zero here for the same reason */
+ }
+ if (str == start) {
+ goto onError;
+ }
+ if (sign < 0) {
+ Py_SET_SIZE(z, -(Py_SIZE(z)));
+ }
+ while (*str && Py_ISSPACE(*str)) {
+ str++;
+ }
+ if (*str != '\0') {
+ goto onError;
+ }
+ long_normalize(z);
+ z = maybe_small_long(z);
+ if (z == NULL) {
+ return NULL;
+ }
+ if (pend != NULL) {
+ *pend = (char *)str;
+ }
+ return (PyObject *) z;
+
+ onError:
+ if (pend != NULL) {
+ *pend = (char *)str;
+ }
+ Py_XDECREF(z);
+ slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
+ strobj = PyUnicode_FromStringAndSize(orig_str, slen);
+ if (strobj == NULL) {
+ return NULL;
+ }
+ PyErr_Format(PyExc_ValueError,
+ "invalid literal for int() with base %d: %.200R",
+ base, strobj);
+ Py_DECREF(strobj);
+ return NULL;
+}
+
+/* Since PyLong_FromString doesn't have a length parameter,
+ * check here for possible NULs in the string.
+ *
+ * Reports an invalid literal as a bytes object.
+ */
+PyObject *
+_PyLong_FromBytes(const char *s, Py_ssize_t len, int base)
+{
+ PyObject *result, *strobj;
+ char *end = NULL;
+
+ result = PyLong_FromString(s, &end, base);
+ if (end == NULL || (result != NULL && end == s + len))
+ return result;
+ Py_XDECREF(result);
+ strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200));
+ if (strobj != NULL) {
+ PyErr_Format(PyExc_ValueError,
+ "invalid literal for int() with base %d: %.200R",
+ base, strobj);
+ Py_DECREF(strobj);
+ }
+ return NULL;
+}
+
+PyObject *
+PyLong_FromUnicodeObject(PyObject *u, int base)
+{
+ PyObject *result, *asciidig;
+ const char *buffer;
+ char *end = NULL;
+ Py_ssize_t buflen;
+
+ asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u);
+ if (asciidig == NULL)
+ return NULL;
+ assert(PyUnicode_IS_ASCII(asciidig));
+ /* Simply get a pointer to existing ASCII characters. */
+ buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen);
+ assert(buffer != NULL);
+
+ result = PyLong_FromString(buffer, &end, base);
+ if (end == NULL || (result != NULL && end == buffer + buflen)) {
+ Py_DECREF(asciidig);
+ return result;
+ }
+ Py_DECREF(asciidig);
+ Py_XDECREF(result);
+ PyErr_Format(PyExc_ValueError,
+ "invalid literal for int() with base %d: %.200R",
+ base, u);
+ return NULL;
+}
+
+/* forward */
+static PyLongObject *x_divrem
+ (PyLongObject *, PyLongObject *, PyLongObject **);
+static PyObject *long_long(PyObject *v);
+
+/* Int division with remainder, top-level routine */
+
+static int
+long_divrem(PyLongObject *a, PyLongObject *b,
+ PyLongObject **pdiv, PyLongObject **prem)
+{
+ Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
+ PyLongObject *z;
+
+ if (size_b == 0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "integer division or modulo by zero");
+ return -1;
+ }
+ if (size_a < size_b ||
+ (size_a == size_b &&
+ a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
+ /* |a| < |b|. */
+ *prem = (PyLongObject *)long_long((PyObject *)a);
+ if (*prem == NULL) {
+ return -1;
+ }
+ PyObject *zero = _PyLong_GetZero();
+ Py_INCREF(zero);
+ *pdiv = (PyLongObject*)zero;
+ return 0;
+ }
+ if (size_b == 1) {
+ digit rem = 0;
+ z = divrem1(a, b->ob_digit[0], &rem);
+ if (z == NULL)
+ return -1;
+ *prem = (PyLongObject *) PyLong_FromLong((long)rem);
+ if (*prem == NULL) {
+ Py_DECREF(z);
+ return -1;
+ }
+ }
+ else {
+ z = x_divrem(a, b, prem);
+ *prem = maybe_small_long(*prem);
+ if (z == NULL)
+ return -1;
+ }
+ /* Set the signs.
+ The quotient z has the sign of a*b;
+ the remainder r has the sign of a,
+ so a = b*z + r. */
+ if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0)) {
+ _PyLong_Negate(&z);
+ if (z == NULL) {
+ Py_CLEAR(*prem);
+ return -1;
+ }
+ }
+ if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) {
+ _PyLong_Negate(prem);
+ if (*prem == NULL) {
+ Py_DECREF(z);
+ Py_CLEAR(*prem);
+ return -1;
+ }
+ }
+ *pdiv = maybe_small_long(z);
+ return 0;
+}
+
+/* Int remainder, top-level routine */
+
+static int
+long_rem(PyLongObject *a, PyLongObject *b, PyLongObject **prem)
+{
+ Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
+
+ if (size_b == 0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "integer modulo by zero");
+ return -1;
+ }
+ if (size_a < size_b ||
+ (size_a == size_b &&
+ a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
+ /* |a| < |b|. */
+ *prem = (PyLongObject *)long_long((PyObject *)a);
+ return -(*prem == NULL);
+ }
+ if (size_b == 1) {
+ *prem = rem1(a, b->ob_digit[0]);
+ if (*prem == NULL)
+ return -1;
+ }
+ else {
+ /* Slow path using divrem. */
+ Py_XDECREF(x_divrem(a, b, prem));
+ *prem = maybe_small_long(*prem);
+ if (*prem == NULL)
+ return -1;
+ }
+ /* Set the sign. */
+ if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) {
+ _PyLong_Negate(prem);
+ if (*prem == NULL) {
+ Py_CLEAR(*prem);
+ return -1;
+ }
+ }
+ return 0;
+}
+
+/* Unsigned int division with remainder -- the algorithm. The arguments v1
+ and w1 should satisfy 2 <= Py_ABS(Py_SIZE(w1)) <= Py_ABS(Py_SIZE(v1)). */
+
+static PyLongObject *
+x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
+{
+ PyLongObject *v, *w, *a;
+ Py_ssize_t i, k, size_v, size_w;
+ int d;
+ digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
+ twodigits vv;
+ sdigit zhi;
+ stwodigits z;
+
+ /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
+ edn.), section 4.3.1, Algorithm D], except that we don't explicitly
+ handle the special case when the initial estimate q for a quotient
+ digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
+ that won't overflow a digit. */
+
+ /* allocate space; w will also be used to hold the final remainder */
+ size_v = Py_ABS(Py_SIZE(v1));
+ size_w = Py_ABS(Py_SIZE(w1));
+ assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
+ v = _PyLong_New(size_v+1);
+ if (v == NULL) {
+ *prem = NULL;
+ return NULL;
+ }
+ w = _PyLong_New(size_w);
+ if (w == NULL) {
+ Py_DECREF(v);
+ *prem = NULL;
+ return NULL;
+ }
+
+ /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
+ shift v1 left by the same amount. Results go into w and v. */
+ d = PyLong_SHIFT - bit_length_digit(w1->ob_digit[size_w-1]);
+ carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
+ assert(carry == 0);
+ carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
+ if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
+ v->ob_digit[size_v] = carry;
+ size_v++;
+ }
+
+ /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
+ at most (and usually exactly) k = size_v - size_w digits. */
+ k = size_v - size_w;
+ assert(k >= 0);
+ a = _PyLong_New(k);
+ if (a == NULL) {
+ Py_DECREF(w);
+ Py_DECREF(v);
+ *prem = NULL;
+ return NULL;
+ }
+ v0 = v->ob_digit;
+ w0 = w->ob_digit;
+ wm1 = w0[size_w-1];
+ wm2 = w0[size_w-2];
+ for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
+ /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
+ single-digit quotient q, remainder in vk[0:size_w]. */
+
+ SIGCHECK({
+ Py_DECREF(a);
+ Py_DECREF(w);
+ Py_DECREF(v);
+ *prem = NULL;
+ return NULL;
+ });
+
+ /* estimate quotient digit q; may overestimate by 1 (rare) */
+ vtop = vk[size_w];
+ assert(vtop <= wm1);
+ vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
+ /* The code used to compute the remainder via
+ * r = (digit)(vv - (twodigits)wm1 * q);
+ * and compilers generally generated code to do the * and -.
+ * But modern processors generally compute q and r with a single
+ * instruction, and modern optimizing compilers exploit that if we
+ * _don't_ try to optimize it.
+ */
+ q = (digit)(vv / wm1);
+ r = (digit)(vv % wm1);
+ while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
+ | vk[size_w-2])) {
+ --q;
+ r += wm1;
+ if (r >= PyLong_BASE)
+ break;
+ }
+ assert(q <= PyLong_BASE);
+
+ /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
+ zhi = 0;
+ for (i = 0; i < size_w; ++i) {
+ /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
+ -PyLong_BASE * q <= z < PyLong_BASE */
+ z = (sdigit)vk[i] + zhi -
+ (stwodigits)q * (stwodigits)w0[i];
+ vk[i] = (digit)z & PyLong_MASK;
+ zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
+ z, PyLong_SHIFT);
+ }
+
+ /* add w back if q was too large (this branch taken rarely) */
+ assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
+ if ((sdigit)vtop + zhi < 0) {
+ carry = 0;
+ for (i = 0; i < size_w; ++i) {
+ carry += vk[i] + w0[i];
+ vk[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ }
+ --q;
+ }
+
+ /* store quotient digit */
+ assert(q < PyLong_BASE);
+ *--ak = q;
+ }
+
+ /* unshift remainder; we reuse w to store the result */
+ carry = v_rshift(w0, v0, size_w, d);
+ assert(carry==0);
+ Py_DECREF(v);
+
+ *prem = long_normalize(w);
+ return long_normalize(a);
+}
+
+/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
+ abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is
+ rounded to DBL_MANT_DIG significant bits using round-half-to-even.
+ If a == 0, return 0.0 and set *e = 0. If the resulting exponent
+ e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
+ -1.0. */
+
+/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
+#if DBL_MANT_DIG == 53
+#define EXP2_DBL_MANT_DIG 9007199254740992.0
+#else
+#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
+#endif
+
+double
+_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
+{
+ Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
+ /* See below for why x_digits is always large enough. */
+ digit rem;
+ digit x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT] = {0,};
+ double dx;
+ /* Correction term for round-half-to-even rounding. For a digit x,
+ "x + half_even_correction[x & 7]" gives x rounded to the nearest
+ multiple of 4, rounding ties to a multiple of 8. */
+ static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
+
+ a_size = Py_ABS(Py_SIZE(a));
+ if (a_size == 0) {
+ /* Special case for 0: significand 0.0, exponent 0. */
+ *e = 0;
+ return 0.0;
+ }
+ a_bits = bit_length_digit(a->ob_digit[a_size-1]);
+ /* The following is an overflow-free version of the check
+ "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
+ if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
+ (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
+ a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
+ goto overflow;
+ a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
+
+ /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
+ (shifting left if a_bits <= DBL_MANT_DIG + 2).
+
+ Number of digits needed for result: write // for floor division.
+ Then if shifting left, we end up using
+
+ 1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
+
+ digits. If shifting right, we use
+
+ a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
+
+ digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
+ the inequalities
+
+ m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
+ m // PyLong_SHIFT - n // PyLong_SHIFT <=
+ 1 + (m - n - 1) // PyLong_SHIFT,
+
+ valid for any integers m and n, we find that x_size satisfies
+
+ x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
+
+ in both cases.
+ */
+ if (a_bits <= DBL_MANT_DIG + 2) {
+ shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
+ shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
+ x_size = shift_digits;
+ rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
+ (int)shift_bits);
+ x_size += a_size;
+ x_digits[x_size++] = rem;
+ }
+ else {
+ shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
+ shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
+ rem = v_rshift(x_digits, a->ob_digit + shift_digits,
+ a_size - shift_digits, (int)shift_bits);
+ x_size = a_size - shift_digits;
+ /* For correct rounding below, we need the least significant
+ bit of x to be 'sticky' for this shift: if any of the bits
+ shifted out was nonzero, we set the least significant bit
+ of x. */
+ if (rem)
+ x_digits[0] |= 1;
+ else
+ while (shift_digits > 0)
+ if (a->ob_digit[--shift_digits]) {
+ x_digits[0] |= 1;
+ break;
+ }
+ }
+ assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits));
+
+ /* Round, and convert to double. */
+ x_digits[0] += half_even_correction[x_digits[0] & 7];
+ dx = x_digits[--x_size];
+ while (x_size > 0)
+ dx = dx * PyLong_BASE + x_digits[--x_size];
+
+ /* Rescale; make correction if result is 1.0. */
+ dx /= 4.0 * EXP2_DBL_MANT_DIG;
+ if (dx == 1.0) {
+ if (a_bits == PY_SSIZE_T_MAX)
+ goto overflow;
+ dx = 0.5;
+ a_bits += 1;
+ }
+
+ *e = a_bits;
+ return Py_SIZE(a) < 0 ? -dx : dx;
+
+ overflow:
+ /* exponent > PY_SSIZE_T_MAX */
+ PyErr_SetString(PyExc_OverflowError,
+ "huge integer: number of bits overflows a Py_ssize_t");
+ *e = 0;
+ return -1.0;
+}
+
+/* Get a C double from an int object. Rounds to the nearest double,
+ using the round-half-to-even rule in the case of a tie. */
+
+double
+PyLong_AsDouble(PyObject *v)
+{
+ Py_ssize_t exponent;
+ double x;
+
+ if (v == NULL) {
+ PyErr_BadInternalCall();
+ return -1.0;
+ }
+ if (!PyLong_Check(v)) {
+ PyErr_SetString(PyExc_TypeError, "an integer is required");
+ return -1.0;
+ }
+ if (IS_MEDIUM_VALUE(v)) {
+ /* Fast path; single digit long (31 bits) will cast safely
+ to double. This improves performance of FP/long operations
+ by 20%.
+ */
+ return (double)medium_value((PyLongObject *)v);
+ }
+ x = _PyLong_Frexp((PyLongObject *)v, &exponent);
+ if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
+ PyErr_SetString(PyExc_OverflowError,
+ "int too large to convert to float");
+ return -1.0;
+ }
+ return ldexp(x, (int)exponent);
+}
+
+/* Methods */
+
+/* if a < b, return a negative number
+ if a == b, return 0
+ if a > b, return a positive number */
+
+static Py_ssize_t
+long_compare(PyLongObject *a, PyLongObject *b)
+{
+ Py_ssize_t sign = Py_SIZE(a) - Py_SIZE(b);
+ if (sign == 0) {
+ Py_ssize_t i = Py_ABS(Py_SIZE(a));
+ sdigit diff = 0;
+ while (--i >= 0) {
+ diff = (sdigit) a->ob_digit[i] - (sdigit) b->ob_digit[i];
+ if (diff) {
+ break;
+ }
+ }
+ sign = Py_SIZE(a) < 0 ? -diff : diff;
+ }
+ return sign;
+}
+
+static PyObject *
+long_richcompare(PyObject *self, PyObject *other, int op)
+{
+ Py_ssize_t result;
+ CHECK_BINOP(self, other);
+ if (self == other)
+ result = 0;
+ else
+ result = long_compare((PyLongObject*)self, (PyLongObject*)other);
+ Py_RETURN_RICHCOMPARE(result, 0, op);
+}
+
+static Py_hash_t
+long_hash(PyLongObject *v)
+{
+ Py_uhash_t x;
+ Py_ssize_t i;
+ int sign;
+
+ i = Py_SIZE(v);
+ switch(i) {
+ case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0];
+ case 0: return 0;
+ case 1: return v->ob_digit[0];
+ }
+ sign = 1;
+ x = 0;
+ if (i < 0) {
+ sign = -1;
+ i = -(i);
+ }
+ while (--i >= 0) {
+ /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we
+ want to compute x * 2**PyLong_SHIFT + v->ob_digit[i] modulo
+ _PyHASH_MODULUS.
+
+ The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS
+ amounts to a rotation of the bits of x. To see this, write
+
+ x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z
+
+ where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top
+ PyLong_SHIFT bits of x (those that are shifted out of the
+ original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
+ _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT
+ bits of x, shifted up. Then since 2**_PyHASH_BITS is
+ congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is
+ congruent to y modulo _PyHASH_MODULUS. So
+
+ x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS).
+
+ The right-hand side is just the result of rotating the
+ _PyHASH_BITS bits of x left by PyLong_SHIFT places; since
+ not all _PyHASH_BITS bits of x are 1s, the same is true
+ after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is
+ the reduction of x*2**PyLong_SHIFT modulo
+ _PyHASH_MODULUS. */
+ x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) |
+ (x >> (_PyHASH_BITS - PyLong_SHIFT));
+ x += v->ob_digit[i];
+ if (x >= _PyHASH_MODULUS)
+ x -= _PyHASH_MODULUS;
+ }
+ x = x * sign;
+ if (x == (Py_uhash_t)-1)
+ x = (Py_uhash_t)-2;
+ return (Py_hash_t)x;
+}
+
+
+/* Add the absolute values of two integers. */
+
+static PyLongObject *
+x_add(PyLongObject *a, PyLongObject *b)
+{
+ Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
+ PyLongObject *z;
+ Py_ssize_t i;
+ digit carry = 0;
+
+ /* Ensure a is the larger of the two: */
+ if (size_a < size_b) {
+ { PyLongObject *temp = a; a = b; b = temp; }
+ { Py_ssize_t size_temp = size_a;
+ size_a = size_b;
+ size_b = size_temp; }
+ }
+ z = _PyLong_New(size_a+1);
+ if (z == NULL)
+ return NULL;
+ for (i = 0; i < size_b; ++i) {
+ carry += a->ob_digit[i] + b->ob_digit[i];
+ z->ob_digit[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ }
+ for (; i < size_a; ++i) {
+ carry += a->ob_digit[i];
+ z->ob_digit[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ }
+ z->ob_digit[i] = carry;
+ return long_normalize(z);
+}
+
+/* Subtract the absolute values of two integers. */
+
+static PyLongObject *
+x_sub(PyLongObject *a, PyLongObject *b)
+{
+ Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
+ PyLongObject *z;
+ Py_ssize_t i;
+ int sign = 1;
+ digit borrow = 0;
+
+ /* Ensure a is the larger of the two: */
+ if (size_a < size_b) {
+ sign = -1;
+ { PyLongObject *temp = a; a = b; b = temp; }
+ { Py_ssize_t size_temp = size_a;
+ size_a = size_b;
+ size_b = size_temp; }
+ }
+ else if (size_a == size_b) {
+ /* Find highest digit where a and b differ: */
+ i = size_a;
+ while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
+ ;
+ if (i < 0)
+ return (PyLongObject *)PyLong_FromLong(0);
+ if (a->ob_digit[i] < b->ob_digit[i]) {
+ sign = -1;
+ { PyLongObject *temp = a; a = b; b = temp; }
+ }
+ size_a = size_b = i+1;
+ }
+ z = _PyLong_New(size_a);
+ if (z == NULL)
+ return NULL;
+ for (i = 0; i < size_b; ++i) {
+ /* The following assumes unsigned arithmetic
+ works module 2**N for some N>PyLong_SHIFT. */
+ borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
+ z->ob_digit[i] = borrow & PyLong_MASK;
+ borrow >>= PyLong_SHIFT;
+ borrow &= 1; /* Keep only one sign bit */
+ }
+ for (; i < size_a; ++i) {
+ borrow = a->ob_digit[i] - borrow;
+ z->ob_digit[i] = borrow & PyLong_MASK;
+ borrow >>= PyLong_SHIFT;
+ borrow &= 1; /* Keep only one sign bit */
+ }
+ assert(borrow == 0);
+ if (sign < 0) {
+ Py_SET_SIZE(z, -Py_SIZE(z));
+ }
+ return maybe_small_long(long_normalize(z));
+}
+
+PyObject *
+_PyLong_Add(PyLongObject *a, PyLongObject *b)
+{
+ if (IS_MEDIUM_VALUE(a) && IS_MEDIUM_VALUE(b)) {
+ return _PyLong_FromSTwoDigits(medium_value(a) + medium_value(b));
+ }
+
+ PyLongObject *z;
+ if (Py_SIZE(a) < 0) {
+ if (Py_SIZE(b) < 0) {
+ z = x_add(a, b);
+ if (z != NULL) {
+ /* x_add received at least one multiple-digit int,
+ and thus z must be a multiple-digit int.
+ That also means z is not an element of
+ small_ints, so negating it in-place is safe. */
+ assert(Py_REFCNT(z) == 1);
+ Py_SET_SIZE(z, -(Py_SIZE(z)));
+ }
+ }
+ else
+ z = x_sub(b, a);
+ }
+ else {
+ if (Py_SIZE(b) < 0)
+ z = x_sub(a, b);
+ else
+ z = x_add(a, b);
+ }
+ return (PyObject *)z;
+}
+
+static PyObject *
+long_add(PyLongObject *a, PyLongObject *b)
+{
+ CHECK_BINOP(a, b);
+ return _PyLong_Add(a, b);
+}
+
+PyObject *
+_PyLong_Subtract(PyLongObject *a, PyLongObject *b)
+{
+ PyLongObject *z;
+
+ if (IS_MEDIUM_VALUE(a) && IS_MEDIUM_VALUE(b)) {
+ return _PyLong_FromSTwoDigits(medium_value(a) - medium_value(b));
+ }
+ if (Py_SIZE(a) < 0) {
+ if (Py_SIZE(b) < 0) {
+ z = x_sub(b, a);
+ }
+ else {
+ z = x_add(a, b);
+ if (z != NULL) {
+ assert(Py_SIZE(z) == 0 || Py_REFCNT(z) == 1);
+ Py_SET_SIZE(z, -(Py_SIZE(z)));
+ }
+ }
+ }
+ else {
+ if (Py_SIZE(b) < 0)
+ z = x_add(a, b);
+ else
+ z = x_sub(a, b);
+ }
+ return (PyObject *)z;
+}
+
+static PyObject *
+long_sub(PyLongObject *a, PyLongObject *b)
+{
+ CHECK_BINOP(a, b);
+ return _PyLong_Subtract(a, b);
+}
+
+/* Grade school multiplication, ignoring the signs.
+ * Returns the absolute value of the product, or NULL if error.
+ */
+static PyLongObject *
+x_mul(PyLongObject *a, PyLongObject *b)
+{
+ PyLongObject *z;
+ Py_ssize_t size_a = Py_ABS(Py_SIZE(a));
+ Py_ssize_t size_b = Py_ABS(Py_SIZE(b));
+ Py_ssize_t i;
+
+ z = _PyLong_New(size_a + size_b);
+ if (z == NULL)
+ return NULL;
+
+ memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
+ if (a == b) {
+ /* Efficient squaring per HAC, Algorithm 14.16:
+ * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
+ * Gives slightly less than a 2x speedup when a == b,
+ * via exploiting that each entry in the multiplication
+ * pyramid appears twice (except for the size_a squares).
+ */
+ digit *paend = a->ob_digit + size_a;
+ for (i = 0; i < size_a; ++i) {
+ twodigits carry;
+ twodigits f = a->ob_digit[i];
+ digit *pz = z->ob_digit + (i << 1);
+ digit *pa = a->ob_digit + i + 1;
+
+ SIGCHECK({
+ Py_DECREF(z);
+ return NULL;
+ });
+
+ carry = *pz + f * f;
+ *pz++ = (digit)(carry & PyLong_MASK);
+ carry >>= PyLong_SHIFT;
+ assert(carry <= PyLong_MASK);
+
+ /* Now f is added in twice in each column of the
+ * pyramid it appears. Same as adding f<<1 once.
+ */
+ f <<= 1;
+ while (pa < paend) {
+ carry += *pz + *pa++ * f;
+ *pz++ = (digit)(carry & PyLong_MASK);
+ carry >>= PyLong_SHIFT;
+ assert(carry <= (PyLong_MASK << 1));
+ }
+ if (carry) {
+ /* See comment below. pz points at the highest possible
+ * carry position from the last outer loop iteration, so
+ * *pz is at most 1.
+ */
+ assert(*pz <= 1);
+ carry += *pz;
+ *pz = (digit)(carry & PyLong_MASK);
+ carry >>= PyLong_SHIFT;
+ if (carry) {
+ /* If there's still a carry, it must be into a position
+ * that still holds a 0. Where the base
+ ^ B is 1 << PyLong_SHIFT, the last add was of a carry no
+ * more than 2*B - 2 to a stored digit no more than 1.
+ * So the sum was no more than 2*B - 1, so the current
+ * carry no more than floor((2*B - 1)/B) = 1.
+ */
+ assert(carry == 1);
+ assert(pz[1] == 0);
+ pz[1] = (digit)carry;
+ }
+ }
+ }
+ }
+ else { /* a is not the same as b -- gradeschool int mult */
+ for (i = 0; i < size_a; ++i) {
+ twodigits carry = 0;
+ twodigits f = a->ob_digit[i];
+ digit *pz = z->ob_digit + i;
+ digit *pb = b->ob_digit;
+ digit *pbend = b->ob_digit + size_b;
+
+ SIGCHECK({
+ Py_DECREF(z);
+ return NULL;
+ });
+
+ while (pb < pbend) {
+ carry += *pz + *pb++ * f;
+ *pz++ = (digit)(carry & PyLong_MASK);
+ carry >>= PyLong_SHIFT;
+ assert(carry <= PyLong_MASK);
+ }
+ if (carry)
+ *pz += (digit)(carry & PyLong_MASK);
+ assert((carry >> PyLong_SHIFT) == 0);
+ }
+ }
+ return long_normalize(z);
+}
+
+/* A helper for Karatsuba multiplication (k_mul).
+ Takes an int "n" and an integer "size" representing the place to
+ split, and sets low and high such that abs(n) == (high << size) + low,
+ viewing the shift as being by digits. The sign bit is ignored, and
+ the return values are >= 0.
+ Returns 0 on success, -1 on failure.
+*/
+static int
+kmul_split(PyLongObject *n,
+ Py_ssize_t size,
+ PyLongObject **high,
+ PyLongObject **low)
+{
+ PyLongObject *hi, *lo;
+ Py_ssize_t size_lo, size_hi;
+ const Py_ssize_t size_n = Py_ABS(Py_SIZE(n));
+
+ size_lo = Py_MIN(size_n, size);
+ size_hi = size_n - size_lo;
+
+ if ((hi = _PyLong_New(size_hi)) == NULL)
+ return -1;
+ if ((lo = _PyLong_New(size_lo)) == NULL) {
+ Py_DECREF(hi);
+ return -1;
+ }
+
+ memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
+ memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
+
+ *high = long_normalize(hi);
+ *low = long_normalize(lo);
+ return 0;
+}
+
+static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
+
+/* Karatsuba multiplication. Ignores the input signs, and returns the
+ * absolute value of the product (or NULL if error).
+ * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
+ */
+static PyLongObject *
+k_mul(PyLongObject *a, PyLongObject *b)
+{
+ Py_ssize_t asize = Py_ABS(Py_SIZE(a));
+ Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
+ PyLongObject *ah = NULL;
+ PyLongObject *al = NULL;
+ PyLongObject *bh = NULL;
+ PyLongObject *bl = NULL;
+ PyLongObject *ret = NULL;
+ PyLongObject *t1, *t2, *t3;
+ Py_ssize_t shift; /* the number of digits we split off */
+ Py_ssize_t i;
+
+ /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
+ * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
+ * Then the original product is
+ * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
+ * By picking X to be a power of 2, "*X" is just shifting, and it's
+ * been reduced to 3 multiplies on numbers half the size.
+ */
+
+ /* We want to split based on the larger number; fiddle so that b
+ * is largest.
+ */
+ if (asize > bsize) {
+ t1 = a;
+ a = b;
+ b = t1;
+
+ i = asize;
+ asize = bsize;
+ bsize = i;
+ }
+
+ /* Use gradeschool math when either number is too small. */
+ i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
+ if (asize <= i) {
+ if (asize == 0)
+ return (PyLongObject *)PyLong_FromLong(0);
+ else
+ return x_mul(a, b);
+ }
+
+ /* If a is small compared to b, splitting on b gives a degenerate
+ * case with ah==0, and Karatsuba may be (even much) less efficient
+ * than "grade school" then. However, we can still win, by viewing
+ * b as a string of "big digits", each of width a->ob_size. That
+ * leads to a sequence of balanced calls to k_mul.
+ */
+ if (2 * asize <= bsize)
+ return k_lopsided_mul(a, b);
+
+ /* Split a & b into hi & lo pieces. */
+ shift = bsize >> 1;
+ if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
+ assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */
+
+ if (a == b) {
+ bh = ah;
+ bl = al;
+ Py_INCREF(bh);
+ Py_INCREF(bl);
+ }
+ else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
+
+ /* The plan:
+ * 1. Allocate result space (asize + bsize digits: that's always
+ * enough).
+ * 2. Compute ah*bh, and copy into result at 2*shift.
+ * 3. Compute al*bl, and copy into result at 0. Note that this
+ * can't overlap with #2.
+ * 4. Subtract al*bl from the result, starting at shift. This may
+ * underflow (borrow out of the high digit), but we don't care:
+ * we're effectively doing unsigned arithmetic mod
+ * BASE**(sizea + sizeb), and so long as the *final* result fits,
+ * borrows and carries out of the high digit can be ignored.
+ * 5. Subtract ah*bh from the result, starting at shift.
+ * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
+ * at shift.
+ */
+
+ /* 1. Allocate result space. */
+ ret = _PyLong_New(asize + bsize);
+ if (ret == NULL) goto fail;
+#ifdef Py_DEBUG
+ /* Fill with trash, to catch reference to uninitialized digits. */
+ memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
+#endif
+
+ /* 2. t1 <- ah*bh, and copy into high digits of result. */
+ if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
+ assert(Py_SIZE(t1) >= 0);
+ assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
+ memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
+ Py_SIZE(t1) * sizeof(digit));
+
+ /* Zero-out the digits higher than the ah*bh copy. */
+ i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
+ if (i)
+ memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
+ i * sizeof(digit));
+
+ /* 3. t2 <- al*bl, and copy into the low digits. */
+ if ((t2 = k_mul(al, bl)) == NULL) {
+ Py_DECREF(t1);
+ goto fail;
+ }
+ assert(Py_SIZE(t2) >= 0);
+ assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
+ memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
+
+ /* Zero out remaining digits. */
+ i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */
+ if (i)
+ memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
+
+ /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first
+ * because it's fresher in cache.
+ */
+ i = Py_SIZE(ret) - shift; /* # digits after shift */
+ (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
+ _Py_DECREF_INT(t2);
+
+ (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
+ _Py_DECREF_INT(t1);
+
+ /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
+ if ((t1 = x_add(ah, al)) == NULL) goto fail;
+ _Py_DECREF_INT(ah);
+ _Py_DECREF_INT(al);
+ ah = al = NULL;
+
+ if (a == b) {
+ t2 = t1;
+ Py_INCREF(t2);
+ }
+ else if ((t2 = x_add(bh, bl)) == NULL) {
+ Py_DECREF(t1);
+ goto fail;
+ }
+ _Py_DECREF_INT(bh);
+ _Py_DECREF_INT(bl);
+ bh = bl = NULL;
+
+ t3 = k_mul(t1, t2);
+ _Py_DECREF_INT(t1);
+ _Py_DECREF_INT(t2);
+ if (t3 == NULL) goto fail;
+ assert(Py_SIZE(t3) >= 0);
+
+ /* Add t3. It's not obvious why we can't run out of room here.
+ * See the (*) comment after this function.
+ */
+ (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
+ _Py_DECREF_INT(t3);
+
+ return long_normalize(ret);
+
+ fail:
+ Py_XDECREF(ret);
+ Py_XDECREF(ah);
+ Py_XDECREF(al);
+ Py_XDECREF(bh);
+ Py_XDECREF(bl);
+ return NULL;
+}
+
+/* (*) Why adding t3 can't "run out of room" above.
+
+Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts
+to start with:
+
+1. For any integer i, i = c(i/2) + f(i/2). In particular,
+ bsize = c(bsize/2) + f(bsize/2).
+2. shift = f(bsize/2)
+3. asize <= bsize
+4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
+ routine, so asize > bsize/2 >= f(bsize/2) in this routine.
+
+We allocated asize + bsize result digits, and add t3 into them at an offset
+of shift. This leaves asize+bsize-shift allocated digit positions for t3
+to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
+asize + c(bsize/2) available digit positions.
+
+bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has
+at most c(bsize/2) digits + 1 bit.
+
+If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
+digits, and al has at most f(bsize/2) digits in any case. So ah+al has at
+most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
+
+The product (ah+al)*(bh+bl) therefore has at most
+
+ c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
+
+and we have asize + c(bsize/2) available digit positions. We need to show
+this is always enough. An instance of c(bsize/2) cancels out in both, so
+the question reduces to whether asize digits is enough to hold
+(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
+then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
+asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
+digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If
+asize == bsize, then we're asking whether bsize digits is enough to hold
+c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
+is enough to hold 2 bits. This is so if bsize >= 2, which holds because
+bsize >= KARATSUBA_CUTOFF >= 2.
+
+Note that since there's always enough room for (ah+al)*(bh+bl), and that's
+clearly >= each of ah*bh and al*bl, there's always enough room to subtract
+ah*bh and al*bl too.
+*/
+
+/* b has at least twice the digits of a, and a is big enough that Karatsuba
+ * would pay off *if* the inputs had balanced sizes. View b as a sequence
+ * of slices, each with a->ob_size digits, and multiply the slices by a,
+ * one at a time. This gives k_mul balanced inputs to work with, and is
+ * also cache-friendly (we compute one double-width slice of the result
+ * at a time, then move on, never backtracking except for the helpful
+ * single-width slice overlap between successive partial sums).
+ */
+static PyLongObject *
+k_lopsided_mul(PyLongObject *a, PyLongObject *b)
+{
+ const Py_ssize_t asize = Py_ABS(Py_SIZE(a));
+ Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
+ Py_ssize_t nbdone; /* # of b digits already multiplied */
+ PyLongObject *ret;
+ PyLongObject *bslice = NULL;
+
+ assert(asize > KARATSUBA_CUTOFF);
+ assert(2 * asize <= bsize);
+
+ /* Allocate result space, and zero it out. */
+ ret = _PyLong_New(asize + bsize);
+ if (ret == NULL)
+ return NULL;
+ memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
+
+ /* Successive slices of b are copied into bslice. */
+ bslice = _PyLong_New(asize);
+ if (bslice == NULL)
+ goto fail;
+
+ nbdone = 0;
+ while (bsize > 0) {
+ PyLongObject *product;
+ const Py_ssize_t nbtouse = Py_MIN(bsize, asize);
+
+ /* Multiply the next slice of b by a. */
+ memcpy(bslice->ob_digit, b->ob_digit + nbdone,
+ nbtouse * sizeof(digit));
+ Py_SET_SIZE(bslice, nbtouse);
+ product = k_mul(a, bslice);
+ if (product == NULL)
+ goto fail;
+
+ /* Add into result. */
+ (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
+ product->ob_digit, Py_SIZE(product));
+ _Py_DECREF_INT(product);
+
+ bsize -= nbtouse;
+ nbdone += nbtouse;
+ }
+
+ _Py_DECREF_INT(bslice);
+ return long_normalize(ret);
+
+ fail:
+ Py_DECREF(ret);
+ Py_XDECREF(bslice);
+ return NULL;
+}
+
+PyObject *
+_PyLong_Multiply(PyLongObject *a, PyLongObject *b)
+{
+ PyLongObject *z;
+
+ /* fast path for single-digit multiplication */
+ if (IS_MEDIUM_VALUE(a) && IS_MEDIUM_VALUE(b)) {
+ stwodigits v = medium_value(a) * medium_value(b);
+ return _PyLong_FromSTwoDigits(v);
+ }
+
+ z = k_mul(a, b);
+ /* Negate if exactly one of the inputs is negative. */
+ if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) {
+ _PyLong_Negate(&z);
+ if (z == NULL)
+ return NULL;
+ }
+ return (PyObject *)z;
+}
+
+static PyObject *
+long_mul(PyLongObject *a, PyLongObject *b)
+{
+ CHECK_BINOP(a, b);
+ return _PyLong_Multiply(a, b);
+}
+
+/* Fast modulo division for single-digit longs. */
+static PyObject *
+fast_mod(PyLongObject *a, PyLongObject *b)
+{
+ sdigit left = a->ob_digit[0];
+ sdigit right = b->ob_digit[0];
+ sdigit mod;
+
+ assert(Py_ABS(Py_SIZE(a)) == 1);
+ assert(Py_ABS(Py_SIZE(b)) == 1);
+
+ if (Py_SIZE(a) == Py_SIZE(b)) {
+ /* 'a' and 'b' have the same sign. */
+ mod = left % right;
+ }
+ else {
+ /* Either 'a' or 'b' is negative. */
+ mod = right - 1 - (left - 1) % right;
+ }
+
+ return PyLong_FromLong(mod * (sdigit)Py_SIZE(b));
+}
+
+/* Fast floor division for single-digit longs. */
+static PyObject *
+fast_floor_div(PyLongObject *a, PyLongObject *b)
+{
+ sdigit left = a->ob_digit[0];
+ sdigit right = b->ob_digit[0];
+ sdigit div;
+
+ assert(Py_ABS(Py_SIZE(a)) == 1);
+ assert(Py_ABS(Py_SIZE(b)) == 1);
+
+ if (Py_SIZE(a) == Py_SIZE(b)) {
+ /* 'a' and 'b' have the same sign. */
+ div = left / right;
+ }
+ else {
+ /* Either 'a' or 'b' is negative. */
+ div = -1 - (left - 1) / right;
+ }
+
+ return PyLong_FromLong(div);
+}
+
+/* The / and % operators are now defined in terms of divmod().
+ The expression a mod b has the value a - b*floor(a/b).
+ The long_divrem function gives the remainder after division of
+ |a| by |b|, with the sign of a. This is also expressed
+ as a - b*trunc(a/b), if trunc truncates towards zero.
+ Some examples:
+ a b a rem b a mod b
+ 13 10 3 3
+ -13 10 -3 7
+ 13 -10 3 -7
+ -13 -10 -3 -3
+ So, to get from rem to mod, we have to add b if a and b
+ have different signs. We then subtract one from the 'div'
+ part of the outcome to keep the invariant intact. */
+
+/* Compute
+ * *pdiv, *pmod = divmod(v, w)
+ * NULL can be passed for pdiv or pmod, in which case that part of
+ * the result is simply thrown away. The caller owns a reference to
+ * each of these it requests (does not pass NULL for).
+ */
+static int
+l_divmod(PyLongObject *v, PyLongObject *w,
+ PyLongObject **pdiv, PyLongObject **pmod)
+{
+ PyLongObject *div, *mod;
+
+ if (Py_ABS(Py_SIZE(v)) == 1 && Py_ABS(Py_SIZE(w)) == 1) {
+ /* Fast path for single-digit longs */
+ div = NULL;
+ if (pdiv != NULL) {
+ div = (PyLongObject *)fast_floor_div(v, w);
+ if (div == NULL) {
+ return -1;
+ }
+ }
+ if (pmod != NULL) {
+ mod = (PyLongObject *)fast_mod(v, w);
+ if (mod == NULL) {
+ Py_XDECREF(div);
+ return -1;
+ }
+ *pmod = mod;
+ }
+ if (pdiv != NULL) {
+ /* We only want to set `*pdiv` when `*pmod` is
+ set successfully. */
+ *pdiv = div;
+ }
+ return 0;
+ }
+ if (long_divrem(v, w, &div, &mod) < 0)
+ return -1;
+ if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
+ (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
+ PyLongObject *temp;
+ temp = (PyLongObject *) long_add(mod, w);
+ Py_DECREF(mod);
+ mod = temp;
+ if (mod == NULL) {
+ Py_DECREF(div);
+ return -1;
+ }
+ temp = (PyLongObject *) long_sub(div, (PyLongObject *)_PyLong_GetOne());
+ if (temp == NULL) {
+ Py_DECREF(mod);
+ Py_DECREF(div);
+ return -1;
+ }
+ Py_DECREF(div);
+ div = temp;
+ }
+ if (pdiv != NULL)
+ *pdiv = div;
+ else
+ Py_DECREF(div);
+
+ if (pmod != NULL)
+ *pmod = mod;
+ else
+ Py_DECREF(mod);
+
+ return 0;
+}
+
+/* Compute
+ * *pmod = v % w
+ * pmod cannot be NULL. The caller owns a reference to pmod.
+ */
+static int
+l_mod(PyLongObject *v, PyLongObject *w, PyLongObject **pmod)
+{
+ PyLongObject *mod;
+
+ assert(pmod);
+ if (Py_ABS(Py_SIZE(v)) == 1 && Py_ABS(Py_SIZE(w)) == 1) {
+ /* Fast path for single-digit longs */
+ *pmod = (PyLongObject *)fast_mod(v, w);
+ return -(*pmod == NULL);
+ }
+ if (long_rem(v, w, &mod) < 0)
+ return -1;
+ if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
+ (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
+ PyLongObject *temp;
+ temp = (PyLongObject *) long_add(mod, w);
+ Py_DECREF(mod);
+ mod = temp;
+ if (mod == NULL)
+ return -1;
+ }
+ *pmod = mod;
+
+ return 0;
+}
+
+static PyObject *
+long_div(PyObject *a, PyObject *b)
+{
+ PyLongObject *div;
+
+ CHECK_BINOP(a, b);
+
+ if (Py_ABS(Py_SIZE(a)) == 1 && Py_ABS(Py_SIZE(b)) == 1) {
+ return fast_floor_div((PyLongObject*)a, (PyLongObject*)b);
+ }
+
+ if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
+ div = NULL;
+ return (PyObject *)div;
+}
+
+/* PyLong/PyLong -> float, with correctly rounded result. */
+
+#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
+#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
+
+static PyObject *
+long_true_divide(PyObject *v, PyObject *w)
+{
+ PyLongObject *a, *b, *x;
+ Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
+ digit mask, low;
+ int inexact, negate, a_is_small, b_is_small;
+ double dx, result;
+
+ CHECK_BINOP(v, w);
+ a = (PyLongObject *)v;
+ b = (PyLongObject *)w;
+
+ /*
+ Method in a nutshell:
+
+ 0. reduce to case a, b > 0; filter out obvious underflow/overflow
+ 1. choose a suitable integer 'shift'
+ 2. use integer arithmetic to compute x = floor(2**-shift*a/b)
+ 3. adjust x for correct rounding
+ 4. convert x to a double dx with the same value
+ 5. return ldexp(dx, shift).
+
+ In more detail:
+
+ 0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
+ returns either 0.0 or -0.0, depending on the sign of b. For a and
+ b both nonzero, ignore signs of a and b, and add the sign back in
+ at the end. Now write a_bits and b_bits for the bit lengths of a
+ and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
+ for b). Then
+
+ 2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
+
+ So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
+ so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP -
+ DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of
+ the way, we can assume that
+
+ DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
+
+ 1. The integer 'shift' is chosen so that x has the right number of
+ bits for a double, plus two or three extra bits that will be used
+ in the rounding decisions. Writing a_bits and b_bits for the
+ number of significant bits in a and b respectively, a
+ straightforward formula for shift is:
+
+ shift = a_bits - b_bits - DBL_MANT_DIG - 2
+
+ This is fine in the usual case, but if a/b is smaller than the
+ smallest normal float then it can lead to double rounding on an
+ IEEE 754 platform, giving incorrectly rounded results. So we
+ adjust the formula slightly. The actual formula used is:
+
+ shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
+
+ 2. The quantity x is computed by first shifting a (left -shift bits
+ if shift <= 0, right shift bits if shift > 0) and then dividing by
+ b. For both the shift and the division, we keep track of whether
+ the result is inexact, in a flag 'inexact'; this information is
+ needed at the rounding stage.
+
+ With the choice of shift above, together with our assumption that
+ a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
+ that x >= 1.
+
+ 3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace
+ this with an exactly representable float of the form
+
+ round(x/2**extra_bits) * 2**(extra_bits+shift).
+
+ For float representability, we need x/2**extra_bits <
+ 2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
+ DBL_MANT_DIG. This translates to the condition:
+
+ extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
+
+ To round, we just modify the bottom digit of x in-place; this can
+ end up giving a digit with value > PyLONG_MASK, but that's not a
+ problem since digits can hold values up to 2*PyLONG_MASK+1.
+
+ With the original choices for shift above, extra_bits will always
+ be 2 or 3. Then rounding under the round-half-to-even rule, we
+ round up iff the most significant of the extra bits is 1, and
+ either: (a) the computation of x in step 2 had an inexact result,
+ or (b) at least one other of the extra bits is 1, or (c) the least
+ significant bit of x (above those to be rounded) is 1.
+
+ 4. Conversion to a double is straightforward; all floating-point
+ operations involved in the conversion are exact, so there's no
+ danger of rounding errors.
+
+ 5. Use ldexp(x, shift) to compute x*2**shift, the final result.
+ The result will always be exactly representable as a double, except
+ in the case that it overflows. To avoid dependence on the exact
+ behaviour of ldexp on overflow, we check for overflow before
+ applying ldexp. The result of ldexp is adjusted for sign before
+ returning.
+ */
+
+ /* Reduce to case where a and b are both positive. */
+ a_size = Py_ABS(Py_SIZE(a));
+ b_size = Py_ABS(Py_SIZE(b));
+ negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
+ if (b_size == 0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "division by zero");
+ goto error;
+ }
+ if (a_size == 0)
+ goto underflow_or_zero;
+
+ /* Fast path for a and b small (exactly representable in a double).
+ Relies on floating-point division being correctly rounded; results
+ may be subject to double rounding on x86 machines that operate with
+ the x87 FPU set to 64-bit precision. */
+ a_is_small = a_size <= MANT_DIG_DIGITS ||
+ (a_size == MANT_DIG_DIGITS+1 &&
+ a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
+ b_is_small = b_size <= MANT_DIG_DIGITS ||
+ (b_size == MANT_DIG_DIGITS+1 &&
+ b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
+ if (a_is_small && b_is_small) {
+ double da, db;
+ da = a->ob_digit[--a_size];
+ while (a_size > 0)
+ da = da * PyLong_BASE + a->ob_digit[--a_size];
+ db = b->ob_digit[--b_size];
+ while (b_size > 0)
+ db = db * PyLong_BASE + b->ob_digit[--b_size];
+ result = da / db;
+ goto success;
+ }
+
+ /* Catch obvious cases of underflow and overflow */
+ diff = a_size - b_size;
+ if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
+ /* Extreme overflow */
+ goto overflow;
+ else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
+ /* Extreme underflow */
+ goto underflow_or_zero;
+ /* Next line is now safe from overflowing a Py_ssize_t */
+ diff = diff * PyLong_SHIFT + bit_length_digit(a->ob_digit[a_size - 1]) -
+ bit_length_digit(b->ob_digit[b_size - 1]);
+ /* Now diff = a_bits - b_bits. */
+ if (diff > DBL_MAX_EXP)
+ goto overflow;
+ else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
+ goto underflow_or_zero;
+
+ /* Choose value for shift; see comments for step 1 above. */
+ shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
+
+ inexact = 0;
+
+ /* x = abs(a * 2**-shift) */
+ if (shift <= 0) {
+ Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
+ digit rem;
+ /* x = a << -shift */
+ if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
+ /* In practice, it's probably impossible to end up
+ here. Both a and b would have to be enormous,
+ using close to SIZE_T_MAX bytes of memory each. */
+ PyErr_SetString(PyExc_OverflowError,
+ "intermediate overflow during division");
+ goto error;
+ }
+ x = _PyLong_New(a_size + shift_digits + 1);
+ if (x == NULL)
+ goto error;
+ for (i = 0; i < shift_digits; i++)
+ x->ob_digit[i] = 0;
+ rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
+ a_size, -shift % PyLong_SHIFT);
+ x->ob_digit[a_size + shift_digits] = rem;
+ }
+ else {
+ Py_ssize_t shift_digits = shift / PyLong_SHIFT;
+ digit rem;
+ /* x = a >> shift */
+ assert(a_size >= shift_digits);
+ x = _PyLong_New(a_size - shift_digits);
+ if (x == NULL)
+ goto error;
+ rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
+ a_size - shift_digits, shift % PyLong_SHIFT);
+ /* set inexact if any of the bits shifted out is nonzero */
+ if (rem)
+ inexact = 1;
+ while (!inexact && shift_digits > 0)
+ if (a->ob_digit[--shift_digits])
+ inexact = 1;
+ }
+ long_normalize(x);
+ x_size = Py_SIZE(x);
+
+ /* x //= b. If the remainder is nonzero, set inexact. We own the only
+ reference to x, so it's safe to modify it in-place. */
+ if (b_size == 1) {
+ digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
+ b->ob_digit[0]);
+ long_normalize(x);
+ if (rem)
+ inexact = 1;
+ }
+ else {
+ PyLongObject *div, *rem;
+ div = x_divrem(x, b, &rem);
+ Py_DECREF(x);
+ x = div;
+ if (x == NULL)
+ goto error;
+ if (Py_SIZE(rem))
+ inexact = 1;
+ Py_DECREF(rem);
+ }
+ x_size = Py_ABS(Py_SIZE(x));
+ assert(x_size > 0); /* result of division is never zero */
+ x_bits = (x_size-1)*PyLong_SHIFT+bit_length_digit(x->ob_digit[x_size-1]);
+
+ /* The number of extra bits that have to be rounded away. */
+ extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
+ assert(extra_bits == 2 || extra_bits == 3);
+
+ /* Round by directly modifying the low digit of x. */
+ mask = (digit)1 << (extra_bits - 1);
+ low = x->ob_digit[0] | inexact;
+ if ((low & mask) && (low & (3U*mask-1U)))
+ low += mask;
+ x->ob_digit[0] = low & ~(2U*mask-1U);
+
+ /* Convert x to a double dx; the conversion is exact. */
+ dx = x->ob_digit[--x_size];
+ while (x_size > 0)
+ dx = dx * PyLong_BASE + x->ob_digit[--x_size];
+ Py_DECREF(x);
+
+ /* Check whether ldexp result will overflow a double. */
+ if (shift + x_bits >= DBL_MAX_EXP &&
+ (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
+ goto overflow;
+ result = ldexp(dx, (int)shift);
+
+ success:
+ return PyFloat_FromDouble(negate ? -result : result);
+
+ underflow_or_zero:
+ return PyFloat_FromDouble(negate ? -0.0 : 0.0);
+
+ overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "integer division result too large for a float");
+ error:
+ return NULL;
+}
+
+static PyObject *
+long_mod(PyObject *a, PyObject *b)
+{
+ PyLongObject *mod;
+
+ CHECK_BINOP(a, b);
+
+ if (l_mod((PyLongObject*)a, (PyLongObject*)b, &mod) < 0)
+ mod = NULL;
+ return (PyObject *)mod;
+}
+
+static PyObject *
+long_divmod(PyObject *a, PyObject *b)
+{
+ PyLongObject *div, *mod;
+ PyObject *z;
+
+ CHECK_BINOP(a, b);
+
+ if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
+ return NULL;
+ }
+ z = PyTuple_New(2);
+ if (z != NULL) {
+ PyTuple_SET_ITEM(z, 0, (PyObject *) div);
+ PyTuple_SET_ITEM(z, 1, (PyObject *) mod);
+ }
+ else {
+ Py_DECREF(div);
+ Py_DECREF(mod);
+ }
+ return z;
+}
+
+
+/* Compute an inverse to a modulo n, or raise ValueError if a is not
+ invertible modulo n. Assumes n is positive. The inverse returned
+ is whatever falls out of the extended Euclidean algorithm: it may
+ be either positive or negative, but will be smaller than n in
+ absolute value.
+
+ Pure Python equivalent for long_invmod:
+
+ def invmod(a, n):
+ b, c = 1, 0
+ while n:
+ q, r = divmod(a, n)
+ a, b, c, n = n, c, b - q*c, r
+
+ # at this point a is the gcd of the original inputs
+ if a == 1:
+ return b
+ raise ValueError("Not invertible")
+*/
+
+static PyLongObject *
+long_invmod(PyLongObject *a, PyLongObject *n)
+{
+ PyLongObject *b, *c;
+
+ /* Should only ever be called for positive n */
+ assert(Py_SIZE(n) > 0);
+
+ b = (PyLongObject *)PyLong_FromLong(1L);
+ if (b == NULL) {
+ return NULL;
+ }
+ c = (PyLongObject *)PyLong_FromLong(0L);
+ if (c == NULL) {
+ Py_DECREF(b);
+ return NULL;
+ }
+ Py_INCREF(a);
+ Py_INCREF(n);
+
+ /* references now owned: a, b, c, n */
+ while (Py_SIZE(n) != 0) {
+ PyLongObject *q, *r, *s, *t;
+
+ if (l_divmod(a, n, &q, &r) == -1) {
+ goto Error;
+ }
+ Py_DECREF(a);
+ a = n;
+ n = r;
+ t = (PyLongObject *)long_mul(q, c);
+ Py_DECREF(q);
+ if (t == NULL) {
+ goto Error;
+ }
+ s = (PyLongObject *)long_sub(b, t);
+ Py_DECREF(t);
+ if (s == NULL) {
+ goto Error;
+ }
+ Py_DECREF(b);
+ b = c;
+ c = s;
+ }
+ /* references now owned: a, b, c, n */
+
+ Py_DECREF(c);
+ Py_DECREF(n);
+ if (long_compare(a, (PyLongObject *)_PyLong_GetOne())) {
+ /* a != 1; we don't have an inverse. */
+ Py_DECREF(a);
+ Py_DECREF(b);
+ PyErr_SetString(PyExc_ValueError,
+ "base is not invertible for the given modulus");
+ return NULL;
+ }
+ else {
+ /* a == 1; b gives an inverse modulo n */
+ Py_DECREF(a);
+ return b;
+ }
+
+ Error:
+ Py_DECREF(a);
+ Py_DECREF(b);
+ Py_DECREF(c);
+ Py_DECREF(n);
+ return NULL;
+}
+
+
+/* pow(v, w, x) */
+static PyObject *
+long_pow(PyObject *v, PyObject *w, PyObject *x)
+{
+ PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
+ int negativeOutput = 0; /* if x<0 return negative output */
+
+ PyLongObject *z = NULL; /* accumulated result */
+ Py_ssize_t i, j; /* counters */
+ PyLongObject *temp = NULL;
+ PyLongObject *a2 = NULL; /* may temporarily hold a**2 % c */
+
+ /* k-ary values. If the exponent is large enough, table is
+ * precomputed so that table[i] == a**(2*i+1) % c for i in
+ * range(EXP_TABLE_LEN).
+ * Note: this is uninitialzed stack trash: don't pay to set it to known
+ * values unless it's needed. Instead ensure that num_table_entries is
+ * set to the number of entries actually filled whenever a branch to the
+ * Error or Done labels is possible.
+ */
+ PyLongObject *table[EXP_TABLE_LEN];
+ Py_ssize_t num_table_entries = 0;
+
+ /* a, b, c = v, w, x */
+ CHECK_BINOP(v, w);
+ a = (PyLongObject*)v; Py_INCREF(a);
+ b = (PyLongObject*)w; Py_INCREF(b);
+ if (PyLong_Check(x)) {
+ c = (PyLongObject *)x;
+ Py_INCREF(x);
+ }
+ else if (x == Py_None)
+ c = NULL;
+ else {
+ Py_DECREF(a);
+ Py_DECREF(b);
+ Py_RETURN_NOTIMPLEMENTED;
+ }
+
+ if (Py_SIZE(b) < 0 && c == NULL) {
+ /* if exponent is negative and there's no modulus:
+ return a float. This works because we know
+ that this calls float_pow() which converts its
+ arguments to double. */
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return PyFloat_Type.tp_as_number->nb_power(v, w, x);
+ }
+
+ if (c) {
+ /* if modulus == 0:
+ raise ValueError() */
+ if (Py_SIZE(c) == 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "pow() 3rd argument cannot be 0");
+ goto Error;
+ }
+
+ /* if modulus < 0:
+ negativeOutput = True
+ modulus = -modulus */
+ if (Py_SIZE(c) < 0) {
+ negativeOutput = 1;
+ temp = (PyLongObject *)_PyLong_Copy(c);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(c);
+ c = temp;
+ temp = NULL;
+ _PyLong_Negate(&c);
+ if (c == NULL)
+ goto Error;
+ }
+
+ /* if modulus == 1:
+ return 0 */
+ if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
+ z = (PyLongObject *)PyLong_FromLong(0L);
+ goto Done;
+ }
+
+ /* if exponent is negative, negate the exponent and
+ replace the base with a modular inverse */
+ if (Py_SIZE(b) < 0) {
+ temp = (PyLongObject *)_PyLong_Copy(b);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(b);
+ b = temp;
+ temp = NULL;
+ _PyLong_Negate(&b);
+ if (b == NULL)
+ goto Error;
+
+ temp = long_invmod(a, c);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(a);
+ a = temp;
+ temp = NULL;
+ }
+
+ /* Reduce base by modulus in some cases:
+ 1. If base < 0. Forcing the base non-negative makes things easier.
+ 2. If base is obviously larger than the modulus. The "small
+ exponent" case later can multiply directly by base repeatedly,
+ while the "large exponent" case multiplies directly by base 31
+ times. It can be unboundedly faster to multiply by
+ base % modulus instead.
+ We could _always_ do this reduction, but l_mod() isn't cheap,
+ so we only do it when it buys something. */
+ if (Py_SIZE(a) < 0 || Py_SIZE(a) > Py_SIZE(c)) {
+ if (l_mod(a, c, &temp) < 0)
+ goto Error;
+ Py_DECREF(a);
+ a = temp;
+ temp = NULL;
+ }
+ }
+
+ /* At this point a, b, and c are guaranteed non-negative UNLESS
+ c is NULL, in which case a may be negative. */
+
+ z = (PyLongObject *)PyLong_FromLong(1L);
+ if (z == NULL)
+ goto Error;
+
+ /* Perform a modular reduction, X = X % c, but leave X alone if c
+ * is NULL.
+ */
+#define REDUCE(X) \
+ do { \
+ if (c != NULL) { \
+ if (l_mod(X, c, &temp) < 0) \
+ goto Error; \
+ Py_XDECREF(X); \
+ X = temp; \
+ temp = NULL; \
+ } \
+ } while(0)
+
+ /* Multiply two values, then reduce the result:
+ result = X*Y % c. If c is NULL, skip the mod. */
+#define MULT(X, Y, result) \
+ do { \
+ temp = (PyLongObject *)long_mul(X, Y); \
+ if (temp == NULL) \
+ goto Error; \
+ Py_XDECREF(result); \
+ result = temp; \
+ temp = NULL; \
+ REDUCE(result); \
+ } while(0)
+
+ i = Py_SIZE(b);
+ digit bi = i ? b->ob_digit[i-1] : 0;
+ digit bit;
+ if (i <= 1 && bi <= 3) {
+ /* aim for minimal overhead */
+ if (bi >= 2) {
+ MULT(a, a, z);
+ if (bi == 3) {
+ MULT(z, a, z);
+ }
+ }
+ else if (bi == 1) {
+ /* Multiplying by 1 serves two purposes: if `a` is of an int
+ * subclass, makes the result an int (e.g., pow(False, 1) returns
+ * 0 instead of False), and potentially reduces `a` by the modulus.
+ */
+ MULT(a, z, z);
+ }
+ /* else bi is 0, and z==1 is correct */
+ }
+ else if (i <= HUGE_EXP_CUTOFF / PyLong_SHIFT ) {
+ /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
+ /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */
+
+ /* Find the first significant exponent bit. Search right to left
+ * because we're primarily trying to cut overhead for small powers.
+ */
+ assert(bi); /* else there is no significant bit */
+ Py_INCREF(a);
+ Py_DECREF(z);
+ z = a;
+ for (bit = 2; ; bit <<= 1) {
+ if (bit > bi) { /* found the first bit */
+ assert((bi & bit) == 0);
+ bit >>= 1;
+ assert(bi & bit);
+ break;
+ }
+ }
+ for (--i, bit >>= 1;;) {
+ for (; bit != 0; bit >>= 1) {
+ MULT(z, z, z);
+ if (bi & bit) {
+ MULT(z, a, z);
+ }
+ }
+ if (--i < 0) {
+ break;
+ }
+ bi = b->ob_digit[i];
+ bit = (digit)1 << (PyLong_SHIFT-1);
+ }
+ }
+ else {
+ /* Left-to-right k-ary sliding window exponentiation
+ * (Handbook of Applied Cryptography (HAC) Algorithm 14.85)
+ */
+ Py_INCREF(a);
+ table[0] = a;
+ num_table_entries = 1;
+ MULT(a, a, a2);
+ /* table[i] == a**(2*i + 1) % c */
+ for (i = 1; i < EXP_TABLE_LEN; ++i) {
+ table[i] = NULL; /* must set to known value for MULT */
+ MULT(table[i-1], a2, table[i]);
+ ++num_table_entries; /* incremented iff MULT succeeded */
+ }
+ Py_CLEAR(a2);
+
+ /* Repeatedly extract the next (no more than) EXP_WINDOW_SIZE bits
+ * into `pending`, starting with the next 1 bit. The current bit
+ * length of `pending` is `blen`.
+ */
+ int pending = 0, blen = 0;
+#define ABSORB_PENDING do { \
+ int ntz = 0; /* number of trailing zeroes in `pending` */ \
+ assert(pending && blen); \
+ assert(pending >> (blen - 1)); \
+ assert(pending >> blen == 0); \
+ while ((pending & 1) == 0) { \
+ ++ntz; \
+ pending >>= 1; \
+ } \
+ assert(ntz < blen); \
+ blen -= ntz; \
+ do { \
+ MULT(z, z, z); \
+ } while (--blen); \
+ MULT(z, table[pending >> 1], z); \
+ while (ntz-- > 0) \
+ MULT(z, z, z); \
+ assert(blen == 0); \
+ pending = 0; \
+ } while(0)
+
+ for (i = Py_SIZE(b) - 1; i >= 0; --i) {
+ const digit bi = b->ob_digit[i];
+ for (j = PyLong_SHIFT - 1; j >= 0; --j) {
+ const int bit = (bi >> j) & 1;
+ pending = (pending << 1) | bit;
+ if (pending) {
+ ++blen;
+ if (blen == EXP_WINDOW_SIZE)
+ ABSORB_PENDING;
+ }
+ else /* absorb strings of 0 bits */
+ MULT(z, z, z);
+ }
+ }
+ if (pending)
+ ABSORB_PENDING;
+ }
+
+ if (negativeOutput && (Py_SIZE(z) != 0)) {
+ temp = (PyLongObject *)long_sub(z, c);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(z);
+ z = temp;
+ temp = NULL;
+ }
+ goto Done;
+
+ Error:
+ Py_CLEAR(z);
+ /* fall through */
+ Done:
+ for (i = 0; i < num_table_entries; ++i)
+ Py_DECREF(table[i]);
+ Py_DECREF(a);
+ Py_DECREF(b);
+ Py_XDECREF(c);
+ Py_XDECREF(a2);
+ Py_XDECREF(temp);
+ return (PyObject *)z;
+}
+
+static PyObject *
+long_invert(PyLongObject *v)
+{
+ /* Implement ~x as -(x+1) */
+ PyLongObject *x;
+ if (IS_MEDIUM_VALUE(v))
+ return _PyLong_FromSTwoDigits(~medium_value(v));
+ x = (PyLongObject *) long_add(v, (PyLongObject *)_PyLong_GetOne());
+ if (x == NULL)
+ return NULL;
+ _PyLong_Negate(&x);
+ /* No need for maybe_small_long here, since any small
+ longs will have been caught in the Py_SIZE <= 1 fast path. */
+ return (PyObject *)x;
+}
+
+static PyObject *
+long_neg(PyLongObject *v)
+{
+ PyLongObject *z;
+ if (IS_MEDIUM_VALUE(v))
+ return _PyLong_FromSTwoDigits(-medium_value(v));
+ z = (PyLongObject *)_PyLong_Copy(v);
+ if (z != NULL)
+ Py_SET_SIZE(z, -(Py_SIZE(v)));
+ return (PyObject *)z;
+}
+
+static PyObject *
+long_abs(PyLongObject *v)
+{
+ if (Py_SIZE(v) < 0)
+ return long_neg(v);
+ else
+ return long_long((PyObject *)v);
+}
+
+static int
+long_bool(PyLongObject *v)
+{
+ return Py_SIZE(v) != 0;
+}
+
+/* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
+static int
+divmod_shift(PyObject *shiftby, Py_ssize_t *wordshift, digit *remshift)
+{
+ assert(PyLong_Check(shiftby));
+ assert(Py_SIZE(shiftby) >= 0);
+ Py_ssize_t lshiftby = PyLong_AsSsize_t((PyObject *)shiftby);
+ if (lshiftby >= 0) {
+ *wordshift = lshiftby / PyLong_SHIFT;
+ *remshift = lshiftby % PyLong_SHIFT;
+ return 0;
+ }
+ /* PyLong_Check(shiftby) is true and Py_SIZE(shiftby) >= 0, so it must
+ be that PyLong_AsSsize_t raised an OverflowError. */
+ assert(PyErr_ExceptionMatches(PyExc_OverflowError));
+ PyErr_Clear();
+ PyLongObject *wordshift_obj = divrem1((PyLongObject *)shiftby, PyLong_SHIFT, remshift);
+ if (wordshift_obj == NULL) {
+ return -1;
+ }
+ *wordshift = PyLong_AsSsize_t((PyObject *)wordshift_obj);
+ Py_DECREF(wordshift_obj);
+ if (*wordshift >= 0 && *wordshift < PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(digit)) {
+ return 0;
+ }
+ PyErr_Clear();
+ /* Clip the value. With such large wordshift the right shift
+ returns 0 and the left shift raises an error in _PyLong_New(). */
+ *wordshift = PY_SSIZE_T_MAX / sizeof(digit);
+ *remshift = 0;
+ return 0;
+}
+
+/* Inner function for both long_rshift and _PyLong_Rshift, shifting an
+ integer right by PyLong_SHIFT*wordshift + remshift bits.
+ wordshift should be nonnegative. */
+
+static PyObject *
+long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
+{
+ PyLongObject *z = NULL;
+ Py_ssize_t newsize, hishift, size_a;
+ twodigits accum;
+ int a_negative;
+
+ /* Total number of bits shifted must be nonnegative. */
+ assert(wordshift >= 0);
+ assert(remshift < PyLong_SHIFT);
+
+ /* Fast path for small a. */
+ if (IS_MEDIUM_VALUE(a)) {
+ stwodigits m, x;
+ digit shift;
+ m = medium_value(a);
+ shift = wordshift == 0 ? remshift : PyLong_SHIFT;
+ x = m < 0 ? ~(~m >> shift) : m >> shift;
+ return _PyLong_FromSTwoDigits(x);
+ }
+
+ a_negative = Py_SIZE(a) < 0;
+ size_a = Py_ABS(Py_SIZE(a));
+
+ if (a_negative) {
+ /* For negative 'a', adjust so that 0 < remshift <= PyLong_SHIFT,
+ while keeping PyLong_SHIFT*wordshift + remshift the same. This
+ ensures that 'newsize' is computed correctly below. */
+ if (remshift == 0) {
+ if (wordshift == 0) {
+ /* Can only happen if the original shift was 0. */
+ return long_long((PyObject *)a);
+ }
+ remshift = PyLong_SHIFT;
+ --wordshift;
+ }
+ }
+
+ assert(wordshift >= 0);
+ newsize = size_a - wordshift;
+ if (newsize <= 0) {
+ /* Shifting all the bits of 'a' out gives either -1 or 0. */
+ return PyLong_FromLong(-a_negative);
+ }
+ z = _PyLong_New(newsize);
+ if (z == NULL) {
+ return NULL;
+ }
+ hishift = PyLong_SHIFT - remshift;
+
+ accum = a->ob_digit[wordshift];
+ if (a_negative) {
+ /*
+ For a positive integer a and nonnegative shift, we have:
+
+ (-a) >> shift == -((a + 2**shift - 1) >> shift).
+
+ In the addition `a + (2**shift - 1)`, the low `wordshift` digits of
+ `2**shift - 1` all have value `PyLong_MASK`, so we get a carry out
+ from the bottom `wordshift` digits when at least one of the least
+ significant `wordshift` digits of `a` is nonzero. Digit `wordshift`
+ of `2**shift - 1` has value `PyLong_MASK >> hishift`.
+ */
+ Py_SET_SIZE(z, -newsize);
+
+ digit sticky = 0;
+ for (Py_ssize_t j = 0; j < wordshift; j++) {
+ sticky |= a->ob_digit[j];
+ }
+ accum += (PyLong_MASK >> hishift) + (digit)(sticky != 0);
+ }
+
+ accum >>= remshift;
+ for (Py_ssize_t i = 0, j = wordshift + 1; j < size_a; i++, j++) {
+ accum += (twodigits)a->ob_digit[j] << hishift;
+ z->ob_digit[i] = (digit)(accum & PyLong_MASK);
+ accum >>= PyLong_SHIFT;
+ }
+ assert(accum <= PyLong_MASK);
+ z->ob_digit[newsize - 1] = (digit)accum;
+
+ z = maybe_small_long(long_normalize(z));
+ return (PyObject *)z;
+}
+
+static PyObject *
+long_rshift(PyObject *a, PyObject *b)
+{
+ Py_ssize_t wordshift;
+ digit remshift;
+
+ CHECK_BINOP(a, b);
+
+ if (Py_SIZE(b) < 0) {
+ PyErr_SetString(PyExc_ValueError, "negative shift count");
+ return NULL;
+ }
+ if (Py_SIZE(a) == 0) {
+ return PyLong_FromLong(0);
+ }
+ if (divmod_shift(b, &wordshift, &remshift) < 0)
+ return NULL;
+ return long_rshift1((PyLongObject *)a, wordshift, remshift);
+}
+
+/* Return a >> shiftby. */
+PyObject *
+_PyLong_Rshift(PyObject *a, size_t shiftby)
+{
+ Py_ssize_t wordshift;
+ digit remshift;
+
+ assert(PyLong_Check(a));
+ if (Py_SIZE(a) == 0) {
+ return PyLong_FromLong(0);
+ }
+ wordshift = shiftby / PyLong_SHIFT;
+ remshift = shiftby % PyLong_SHIFT;
+ return long_rshift1((PyLongObject *)a, wordshift, remshift);
+}
+
+static PyObject *
+long_lshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
+{
+ PyLongObject *z = NULL;
+ Py_ssize_t oldsize, newsize, i, j;
+ twodigits accum;
+
+ if (wordshift == 0 && IS_MEDIUM_VALUE(a)) {
+ stwodigits m = medium_value(a);
+ // bypass undefined shift operator behavior
+ stwodigits x = m < 0 ? -(-m << remshift) : m << remshift;
+ return _PyLong_FromSTwoDigits(x);
+ }
+
+ oldsize = Py_ABS(Py_SIZE(a));
+ newsize = oldsize + wordshift;
+ if (remshift)
+ ++newsize;
+ z = _PyLong_New(newsize);
+ if (z == NULL)
+ return NULL;
+ if (Py_SIZE(a) < 0) {
+ assert(Py_REFCNT(z) == 1);
+ Py_SET_SIZE(z, -Py_SIZE(z));
+ }
+ for (i = 0; i < wordshift; i++)
+ z->ob_digit[i] = 0;
+ accum = 0;
+ for (i = wordshift, j = 0; j < oldsize; i++, j++) {
+ accum |= (twodigits)a->ob_digit[j] << remshift;
+ z->ob_digit[i] = (digit)(accum & PyLong_MASK);
+ accum >>= PyLong_SHIFT;
+ }
+ if (remshift)
+ z->ob_digit[newsize-1] = (digit)accum;
+ else
+ assert(!accum);
+ z = long_normalize(z);
+ return (PyObject *) maybe_small_long(z);
+}
+
+static PyObject *
+long_lshift(PyObject *a, PyObject *b)
+{
+ Py_ssize_t wordshift;
+ digit remshift;
+
+ CHECK_BINOP(a, b);
+
+ if (Py_SIZE(b) < 0) {
+ PyErr_SetString(PyExc_ValueError, "negative shift count");
+ return NULL;
+ }
+ if (Py_SIZE(a) == 0) {
+ return PyLong_FromLong(0);
+ }
+ if (divmod_shift(b, &wordshift, &remshift) < 0)
+ return NULL;
+ return long_lshift1((PyLongObject *)a, wordshift, remshift);
+}
+
+/* Return a << shiftby. */
+PyObject *
+_PyLong_Lshift(PyObject *a, size_t shiftby)
+{
+ Py_ssize_t wordshift;
+ digit remshift;
+
+ assert(PyLong_Check(a));
+ if (Py_SIZE(a) == 0) {
+ return PyLong_FromLong(0);
+ }
+ wordshift = shiftby / PyLong_SHIFT;
+ remshift = shiftby % PyLong_SHIFT;
+ return long_lshift1((PyLongObject *)a, wordshift, remshift);
+}
+
+/* Compute two's complement of digit vector a[0:m], writing result to
+ z[0:m]. The digit vector a need not be normalized, but should not
+ be entirely zero. a and z may point to the same digit vector. */
+
+static void
+v_complement(digit *z, digit *a, Py_ssize_t m)
+{
+ Py_ssize_t i;
+ digit carry = 1;
+ for (i = 0; i < m; ++i) {
+ carry += a[i] ^ PyLong_MASK;
+ z[i] = carry & PyLong_MASK;
+ carry >>= PyLong_SHIFT;
+ }
+ assert(carry == 0);
+}
+
+/* Bitwise and/xor/or operations */
+
+static PyObject *
+long_bitwise(PyLongObject *a,
+ char op, /* '&', '|', '^' */
+ PyLongObject *b)
+{
+ int nega, negb, negz;
+ Py_ssize_t size_a, size_b, size_z, i;
+ PyLongObject *z;
+
+ /* Bitwise operations for negative numbers operate as though
+ on a two's complement representation. So convert arguments
+ from sign-magnitude to two's complement, and convert the
+ result back to sign-magnitude at the end. */
+
+ /* If a is negative, replace it by its two's complement. */
+ size_a = Py_ABS(Py_SIZE(a));
+ nega = Py_SIZE(a) < 0;
+ if (nega) {
+ z = _PyLong_New(size_a);
+ if (z == NULL)
+ return NULL;
+ v_complement(z->ob_digit, a->ob_digit, size_a);
+ a = z;
+ }
+ else
+ /* Keep reference count consistent. */
+ Py_INCREF(a);
+
+ /* Same for b. */
+ size_b = Py_ABS(Py_SIZE(b));
+ negb = Py_SIZE(b) < 0;
+ if (negb) {
+ z = _PyLong_New(size_b);
+ if (z == NULL) {
+ Py_DECREF(a);
+ return NULL;
+ }
+ v_complement(z->ob_digit, b->ob_digit, size_b);
+ b = z;
+ }
+ else
+ Py_INCREF(b);
+
+ /* Swap a and b if necessary to ensure size_a >= size_b. */
+ if (size_a < size_b) {
+ z = a; a = b; b = z;
+ size_z = size_a; size_a = size_b; size_b = size_z;
+ negz = nega; nega = negb; negb = negz;
+ }
+
+ /* JRH: The original logic here was to allocate the result value (z)
+ as the longer of the two operands. However, there are some cases
+ where the result is guaranteed to be shorter than that: AND of two
+ positives, OR of two negatives: use the shorter number. AND with
+ mixed signs: use the positive number. OR with mixed signs: use the
+ negative number.
+ */
+ switch (op) {
+ case '^':
+ negz = nega ^ negb;
+ size_z = size_a;
+ break;
+ case '&':
+ negz = nega & negb;
+ size_z = negb ? size_a : size_b;
+ break;
+ case '|':
+ negz = nega | negb;
+ size_z = negb ? size_b : size_a;
+ break;
+ default:
+ Py_UNREACHABLE();
+ }
+
+ /* We allow an extra digit if z is negative, to make sure that
+ the final two's complement of z doesn't overflow. */
+ z = _PyLong_New(size_z + negz);
+ if (z == NULL) {
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return NULL;
+ }
+
+ /* Compute digits for overlap of a and b. */
+ switch(op) {
+ case '&':
+ for (i = 0; i < size_b; ++i)
+ z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
+ break;
+ case '|':
+ for (i = 0; i < size_b; ++i)
+ z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
+ break;
+ case '^':
+ for (i = 0; i < size_b; ++i)
+ z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
+ break;
+ default:
+ Py_UNREACHABLE();
+ }
+
+ /* Copy any remaining digits of a, inverting if necessary. */
+ if (op == '^' && negb)
+ for (; i < size_z; ++i)
+ z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
+ else if (i < size_z)
+ memcpy(&z->ob_digit[i], &a->ob_digit[i],
+ (size_z-i)*sizeof(digit));
+
+ /* Complement result if negative. */
+ if (negz) {
+ Py_SET_SIZE(z, -(Py_SIZE(z)));
+ z->ob_digit[size_z] = PyLong_MASK;
+ v_complement(z->ob_digit, z->ob_digit, size_z+1);
+ }
+
+ Py_DECREF(a);
+ Py_DECREF(b);
+ return (PyObject *)maybe_small_long(long_normalize(z));
+}
+
+static PyObject *
+long_and(PyObject *a, PyObject *b)
+{
+ CHECK_BINOP(a, b);
+ PyLongObject *x = (PyLongObject*)a;
+ PyLongObject *y = (PyLongObject*)b;
+ if (IS_MEDIUM_VALUE(x) && IS_MEDIUM_VALUE(y)) {
+ return _PyLong_FromSTwoDigits(medium_value(x) & medium_value(y));
+ }
+ return long_bitwise(x, '&', y);
+}
+
+static PyObject *
+long_xor(PyObject *a, PyObject *b)
+{
+ CHECK_BINOP(a, b);
+ PyLongObject *x = (PyLongObject*)a;
+ PyLongObject *y = (PyLongObject*)b;
+ if (IS_MEDIUM_VALUE(x) && IS_MEDIUM_VALUE(y)) {
+ return _PyLong_FromSTwoDigits(medium_value(x) ^ medium_value(y));
+ }
+ return long_bitwise(x, '^', y);
+}
+
+static PyObject *
+long_or(PyObject *a, PyObject *b)
+{
+ CHECK_BINOP(a, b);
+ PyLongObject *x = (PyLongObject*)a;
+ PyLongObject *y = (PyLongObject*)b;
+ if (IS_MEDIUM_VALUE(x) && IS_MEDIUM_VALUE(y)) {
+ return _PyLong_FromSTwoDigits(medium_value(x) | medium_value(y));
+ }
+ return long_bitwise(x, '|', y);
+}
+
+static PyObject *
+long_long(PyObject *v)
+{
+ if (PyLong_CheckExact(v))
+ Py_INCREF(v);
+ else
+ v = _PyLong_Copy((PyLongObject *)v);
+ return v;
+}
+
+PyObject *
+_PyLong_GCD(PyObject *aarg, PyObject *barg)
+{
+ PyLongObject *a, *b, *c = NULL, *d = NULL, *r;
+ stwodigits x, y, q, s, t, c_carry, d_carry;
+ stwodigits A, B, C, D, T;
+ int nbits, k;
+ Py_ssize_t size_a, size_b, alloc_a, alloc_b;
+ digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end;
+
+ a = (PyLongObject *)aarg;
+ b = (PyLongObject *)barg;
+ size_a = Py_SIZE(a);
+ size_b = Py_SIZE(b);
+ if (-2 <= size_a && size_a <= 2 && -2 <= size_b && size_b <= 2) {
+ Py_INCREF(a);
+ Py_INCREF(b);
+ goto simple;
+ }
+
+ /* Initial reduction: make sure that 0 <= b <= a. */
+ a = (PyLongObject *)long_abs(a);
+ if (a == NULL)
+ return NULL;
+ b = (PyLongObject *)long_abs(b);
+ if (b == NULL) {
+ Py_DECREF(a);
+ return NULL;
+ }
+ if (long_compare(a, b) < 0) {
+ r = a;
+ a = b;
+ b = r;
+ }
+ /* We now own references to a and b */
+
+ alloc_a = Py_SIZE(a);
+ alloc_b = Py_SIZE(b);
+ /* reduce until a fits into 2 digits */
+ while ((size_a = Py_SIZE(a)) > 2) {
+ nbits = bit_length_digit(a->ob_digit[size_a-1]);
+ /* extract top 2*PyLong_SHIFT bits of a into x, along with
+ corresponding bits of b into y */
+ size_b = Py_SIZE(b);
+ assert(size_b <= size_a);
+ if (size_b == 0) {
+ if (size_a < alloc_a) {
+ r = (PyLongObject *)_PyLong_Copy(a);
+ Py_DECREF(a);
+ }
+ else
+ r = a;
+ Py_DECREF(b);
+ Py_XDECREF(c);
+ Py_XDECREF(d);
+ return (PyObject *)r;
+ }
+ x = (((twodigits)a->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) |
+ ((twodigits)a->ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) |
+ (a->ob_digit[size_a-3] >> nbits));
+
+ y = ((size_b >= size_a - 2 ? b->ob_digit[size_a-3] >> nbits : 0) |
+ (size_b >= size_a - 1 ? (twodigits)b->ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) |
+ (size_b >= size_a ? (twodigits)b->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0));
+
+ /* inner loop of Lehmer's algorithm; A, B, C, D never grow
+ larger than PyLong_MASK during the algorithm. */
+ A = 1; B = 0; C = 0; D = 1;
+ for (k=0;; k++) {
+ if (y-C == 0)
+ break;
+ q = (x+(A-1))/(y-C);
+ s = B+q*D;
+ t = x-q*y;
+ if (s > t)
+ break;
+ x = y; y = t;
+ t = A+q*C; A = D; B = C; C = s; D = t;
+ }
+
+ if (k == 0) {
+ /* no progress; do a Euclidean step */
+ if (l_mod(a, b, &r) < 0)
+ goto error;
+ Py_DECREF(a);
+ a = b;
+ b = r;
+ alloc_a = alloc_b;
+ alloc_b = Py_SIZE(b);
+ continue;
+ }
+
+ /*
+ a, b = A*b-B*a, D*a-C*b if k is odd
+ a, b = A*a-B*b, D*b-C*a if k is even
+ */
+ if (k&1) {
+ T = -A; A = -B; B = T;
+ T = -C; C = -D; D = T;
+ }
+ if (c != NULL) {
+ Py_SET_SIZE(c, size_a);
+ }
+ else if (Py_REFCNT(a) == 1) {
+ Py_INCREF(a);
+ c = a;
+ }
+ else {
+ alloc_a = size_a;
+ c = _PyLong_New(size_a);
+ if (c == NULL)
+ goto error;
+ }
+
+ if (d != NULL) {
+ Py_SET_SIZE(d, size_a);
+ }
+ else if (Py_REFCNT(b) == 1 && size_a <= alloc_b) {
+ Py_INCREF(b);
+ d = b;
+ Py_SET_SIZE(d, size_a);
+ }
+ else {
+ alloc_b = size_a;
+ d = _PyLong_New(size_a);
+ if (d == NULL)
+ goto error;
+ }
+ a_end = a->ob_digit + size_a;
+ b_end = b->ob_digit + size_b;
+
+ /* compute new a and new b in parallel */
+ a_digit = a->ob_digit;
+ b_digit = b->ob_digit;
+ c_digit = c->ob_digit;
+ d_digit = d->ob_digit;
+ c_carry = 0;
+ d_carry = 0;
+ while (b_digit < b_end) {
+ c_carry += (A * *a_digit) - (B * *b_digit);
+ d_carry += (D * *b_digit++) - (C * *a_digit++);
+ *c_digit++ = (digit)(c_carry & PyLong_MASK);
+ *d_digit++ = (digit)(d_carry & PyLong_MASK);
+ c_carry >>= PyLong_SHIFT;
+ d_carry >>= PyLong_SHIFT;
+ }
+ while (a_digit < a_end) {
+ c_carry += A * *a_digit;
+ d_carry -= C * *a_digit++;
+ *c_digit++ = (digit)(c_carry & PyLong_MASK);
+ *d_digit++ = (digit)(d_carry & PyLong_MASK);
+ c_carry >>= PyLong_SHIFT;
+ d_carry >>= PyLong_SHIFT;
+ }
+ assert(c_carry == 0);
+ assert(d_carry == 0);
+
+ Py_INCREF(c);
+ Py_INCREF(d);
+ Py_DECREF(a);
+ Py_DECREF(b);
+ a = long_normalize(c);
+ b = long_normalize(d);
+ }
+ Py_XDECREF(c);
+ Py_XDECREF(d);
+
+simple:
+ assert(Py_REFCNT(a) > 0);
+ assert(Py_REFCNT(b) > 0);
+/* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid
+ undefined behaviour when LONG_MAX type is smaller than 60 bits */
+#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
+ /* a fits into a long, so b must too */
+ x = PyLong_AsLong((PyObject *)a);
+ y = PyLong_AsLong((PyObject *)b);
+#elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
+ x = PyLong_AsLongLong((PyObject *)a);
+ y = PyLong_AsLongLong((PyObject *)b);
+#else
+# error "_PyLong_GCD"
+#endif
+ x = Py_ABS(x);
+ y = Py_ABS(y);
+ Py_DECREF(a);
+ Py_DECREF(b);
+
+ /* usual Euclidean algorithm for longs */
+ while (y != 0) {
+ t = y;
+ y = x % y;
+ x = t;
+ }
+#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
+ return PyLong_FromLong(x);
+#elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
+ return PyLong_FromLongLong(x);
+#else
+# error "_PyLong_GCD"
+#endif
+
+error:
+ Py_DECREF(a);
+ Py_DECREF(b);
+ Py_XDECREF(c);
+ Py_XDECREF(d);
+ return NULL;
+}
+
+static PyObject *
+long_float(PyObject *v)
+{
+ double result;
+ result = PyLong_AsDouble(v);
+ if (result == -1.0 && PyErr_Occurred())
+ return NULL;
+ return PyFloat_FromDouble(result);
+}
+
+static PyObject *
+long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase);
+
+/*[clinic input]
+@classmethod
+int.__new__ as long_new
+ x: object(c_default="NULL") = 0
+ /
+ base as obase: object(c_default="NULL") = 10
+[clinic start generated code]*/
+
+static PyObject *
+long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase)
+/*[clinic end generated code: output=e47cfe777ab0f24c input=81c98f418af9eb6f]*/
+{
+ Py_ssize_t base;
+
+ if (type != &PyLong_Type)
+ return long_subtype_new(type, x, obase); /* Wimp out */
+ if (x == NULL) {
+ if (obase != NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "int() missing string argument");
+ return NULL;
+ }
+ return PyLong_FromLong(0L);
+ }
+ /* default base and limit, forward to standard implementation */
+ if (obase == NULL)
+ return PyNumber_Long(x);
+
+ base = PyNumber_AsSsize_t(obase, NULL);
+ if (base == -1 && PyErr_Occurred())
+ return NULL;
+ if ((base != 0 && base < 2) || base > 36) {
+ PyErr_SetString(PyExc_ValueError,
+ "int() base must be >= 2 and <= 36, or 0");
+ return NULL;
+ }
+
+ if (PyUnicode_Check(x))
+ return PyLong_FromUnicodeObject(x, (int)base);
+ else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
+ const char *string;
+ if (PyByteArray_Check(x))
+ string = PyByteArray_AS_STRING(x);
+ else
+ string = PyBytes_AS_STRING(x);
+ return _PyLong_FromBytes(string, Py_SIZE(x), (int)base);
+ }
+ else {
+ PyErr_SetString(PyExc_TypeError,
+ "int() can't convert non-string with explicit base");
+ return NULL;
+ }
+}
+
+/* Wimpy, slow approach to tp_new calls for subtypes of int:
+ first create a regular int from whatever arguments we got,
+ then allocate a subtype instance and initialize it from
+ the regular int. The regular int is then thrown away.
+*/
+static PyObject *
+long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase)
+{
+ PyLongObject *tmp, *newobj;
+ Py_ssize_t i, n;
+
+ assert(PyType_IsSubtype(type, &PyLong_Type));
+ tmp = (PyLongObject *)long_new_impl(&PyLong_Type, x, obase);
+ if (tmp == NULL)
+ return NULL;
+ assert(PyLong_Check(tmp));
+ n = Py_SIZE(tmp);
+ if (n < 0)
+ n = -n;
+ /* Fast operations for single digit integers (including zero)
+ * assume that there is always at least one digit present. */
+ if (n == 0) {
+ n = 1;
+ }
+ newobj = (PyLongObject *)type->tp_alloc(type, n);
+ if (newobj == NULL) {
+ Py_DECREF(tmp);
+ return NULL;
+ }
+ assert(PyLong_Check(newobj));
+ Py_SET_SIZE(newobj, Py_SIZE(tmp));
+ for (i = 0; i < n; i++) {
+ newobj->ob_digit[i] = tmp->ob_digit[i];
+ }
+ Py_DECREF(tmp);
+ return (PyObject *)newobj;
+}
+
+/*[clinic input]
+int.__getnewargs__
+[clinic start generated code]*/
+
+static PyObject *
+int___getnewargs___impl(PyObject *self)
+/*[clinic end generated code: output=839a49de3f00b61b input=5904770ab1fb8c75]*/
+{
+ return Py_BuildValue("(N)", _PyLong_Copy((PyLongObject *)self));
+}
+
+static PyObject *
+long_get0(PyObject *Py_UNUSED(self), void *Py_UNUSED(context))
+{
+ return PyLong_FromLong(0L);
+}
+
+static PyObject *
+long_get1(PyObject *Py_UNUSED(self), void *Py_UNUSED(ignored))
+{
+ return PyLong_FromLong(1L);
+}
+
+/*[clinic input]
+int.__format__
+
+ format_spec: unicode
+ /
+[clinic start generated code]*/
+
+static PyObject *
+int___format___impl(PyObject *self, PyObject *format_spec)
+/*[clinic end generated code: output=b4929dee9ae18689 input=e31944a9b3e428b7]*/
+{
+ _PyUnicodeWriter writer;
+ int ret;
+
+ _PyUnicodeWriter_Init(&writer);
+ ret = _PyLong_FormatAdvancedWriter(
+ &writer,
+ self,
+ format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
+ if (ret == -1) {
+ _PyUnicodeWriter_Dealloc(&writer);
+ return NULL;
+ }
+ return _PyUnicodeWriter_Finish(&writer);
+}
+
+/* Return a pair (q, r) such that a = b * q + r, and
+ abs(r) <= abs(b)/2, with equality possible only if q is even.
+ In other words, q == a / b, rounded to the nearest integer using
+ round-half-to-even. */
+
+PyObject *
+_PyLong_DivmodNear(PyObject *a, PyObject *b)
+{
+ PyLongObject *quo = NULL, *rem = NULL;
+ PyObject *twice_rem, *result, *temp;
+ int quo_is_odd, quo_is_neg;
+ Py_ssize_t cmp;
+
+ /* Equivalent Python code:
+
+ def divmod_near(a, b):
+ q, r = divmod(a, b)
+ # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
+ # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
+ # positive, 2 * r < b if b negative.
+ greater_than_half = 2*r > b if b > 0 else 2*r < b
+ exactly_half = 2*r == b
+ if greater_than_half or exactly_half and q % 2 == 1:
+ q += 1
+ r -= b
+ return q, r
+
+ */
+ if (!PyLong_Check(a) || !PyLong_Check(b)) {
+ PyErr_SetString(PyExc_TypeError,
+ "non-integer arguments in division");
+ return NULL;
+ }
+
+ /* Do a and b have different signs? If so, quotient is negative. */
+ quo_is_neg = (Py_SIZE(a) < 0) != (Py_SIZE(b) < 0);
+
+ if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
+ goto error;
+
+ /* compare twice the remainder with the divisor, to see
+ if we need to adjust the quotient and remainder */
+ PyObject *one = _PyLong_GetOne(); // borrowed reference
+ twice_rem = long_lshift((PyObject *)rem, one);
+ if (twice_rem == NULL)
+ goto error;
+ if (quo_is_neg) {
+ temp = long_neg((PyLongObject*)twice_rem);
+ Py_DECREF(twice_rem);
+ twice_rem = temp;
+ if (twice_rem == NULL)
+ goto error;
+ }
+ cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
+ Py_DECREF(twice_rem);
+
+ quo_is_odd = Py_SIZE(quo) != 0 && ((quo->ob_digit[0] & 1) != 0);
+ if ((Py_SIZE(b) < 0 ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
+ /* fix up quotient */
+ if (quo_is_neg)
+ temp = long_sub(quo, (PyLongObject *)one);
+ else
+ temp = long_add(quo, (PyLongObject *)one);
+ Py_DECREF(quo);
+ quo = (PyLongObject *)temp;
+ if (quo == NULL)
+ goto error;
+ /* and remainder */
+ if (quo_is_neg)
+ temp = long_add(rem, (PyLongObject *)b);
+ else
+ temp = long_sub(rem, (PyLongObject *)b);
+ Py_DECREF(rem);
+ rem = (PyLongObject *)temp;
+ if (rem == NULL)
+ goto error;
+ }
+
+ result = PyTuple_New(2);
+ if (result == NULL)
+ goto error;
+
+ /* PyTuple_SET_ITEM steals references */
+ PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
+ PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
+ return result;
+
+ error:
+ Py_XDECREF(quo);
+ Py_XDECREF(rem);
+ return NULL;
+}
+
+/*[clinic input]
+int.__round__
+
+ ndigits as o_ndigits: object = NULL
+ /
+
+Rounding an Integral returns itself.
+
+Rounding with an ndigits argument also returns an integer.
+[clinic start generated code]*/
+
+static PyObject *
+int___round___impl(PyObject *self, PyObject *o_ndigits)
+/*[clinic end generated code: output=954fda6b18875998 input=1614cf23ec9e18c3]*/
+{
+ PyObject *temp, *result, *ndigits;
+
+ /* To round an integer m to the nearest 10**n (n positive), we make use of
+ * the divmod_near operation, defined by:
+ *
+ * divmod_near(a, b) = (q, r)
+ *
+ * where q is the nearest integer to the quotient a / b (the
+ * nearest even integer in the case of a tie) and r == a - q * b.
+ * Hence q * b = a - r is the nearest multiple of b to a,
+ * preferring even multiples in the case of a tie.
+ *
+ * So the nearest multiple of 10**n to m is:
+ *
+ * m - divmod_near(m, 10**n)[1].
+ */
+ if (o_ndigits == NULL)
+ return long_long(self);
+
+ ndigits = _PyNumber_Index(o_ndigits);
+ if (ndigits == NULL)
+ return NULL;
+
+ /* if ndigits >= 0 then no rounding is necessary; return self unchanged */
+ if (Py_SIZE(ndigits) >= 0) {
+ Py_DECREF(ndigits);
+ return long_long(self);
+ }
+
+ /* result = self - divmod_near(self, 10 ** -ndigits)[1] */
+ temp = long_neg((PyLongObject*)ndigits);
+ Py_DECREF(ndigits);
+ ndigits = temp;
+ if (ndigits == NULL)
+ return NULL;
+
+ result = PyLong_FromLong(10L);
+ if (result == NULL) {
+ Py_DECREF(ndigits);
+ return NULL;
+ }
+
+ temp = long_pow(result, ndigits, Py_None);
+ Py_DECREF(ndigits);
+ Py_DECREF(result);
+ result = temp;
+ if (result == NULL)
+ return NULL;
+
+ temp = _PyLong_DivmodNear(self, result);
+ Py_DECREF(result);
+ result = temp;
+ if (result == NULL)
+ return NULL;
+
+ temp = long_sub((PyLongObject *)self,
+ (PyLongObject *)PyTuple_GET_ITEM(result, 1));
+ Py_DECREF(result);
+ result = temp;
+
+ return result;
+}
+
+/*[clinic input]
+int.__sizeof__ -> Py_ssize_t
+
+Returns size in memory, in bytes.
+[clinic start generated code]*/
+
+static Py_ssize_t
+int___sizeof___impl(PyObject *self)
+/*[clinic end generated code: output=3303f008eaa6a0a5 input=9b51620c76fc4507]*/
+{
+ Py_ssize_t res;
+
+ res = offsetof(PyLongObject, ob_digit)
+ /* using Py_MAX(..., 1) because we always allocate space for at least
+ one digit, even though the integer zero has a Py_SIZE of 0 */
+ + Py_MAX(Py_ABS(Py_SIZE(self)), 1)*sizeof(digit);
+ return res;
+}
+
+/*[clinic input]
+int.bit_length
+
+Number of bits necessary to represent self in binary.
+
+>>> bin(37)
+'0b100101'
+>>> (37).bit_length()
+6
+[clinic start generated code]*/
+
+static PyObject *
+int_bit_length_impl(PyObject *self)
+/*[clinic end generated code: output=fc1977c9353d6a59 input=e4eb7a587e849a32]*/
+{
+ PyLongObject *result, *x, *y;
+ Py_ssize_t ndigits;
+ int msd_bits;
+ digit msd;
+
+ assert(self != NULL);
+ assert(PyLong_Check(self));
+
+ ndigits = Py_ABS(Py_SIZE(self));
+ if (ndigits == 0)
+ return PyLong_FromLong(0);
+
+ msd = ((PyLongObject *)self)->ob_digit[ndigits-1];
+ msd_bits = bit_length_digit(msd);
+
+ if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
+ return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
+
+ /* expression above may overflow; use Python integers instead */
+ result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
+ if (result == NULL)
+ return NULL;
+ x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
+ if (x == NULL)
+ goto error;
+ y = (PyLongObject *)long_mul(result, x);
+ Py_DECREF(x);
+ if (y == NULL)
+ goto error;
+ Py_DECREF(result);
+ result = y;
+
+ x = (PyLongObject *)PyLong_FromLong((long)msd_bits);
+ if (x == NULL)
+ goto error;
+ y = (PyLongObject *)long_add(result, x);
+ Py_DECREF(x);
+ if (y == NULL)
+ goto error;
+ Py_DECREF(result);
+ result = y;
+
+ return (PyObject *)result;
+
+ error:
+ Py_DECREF(result);
+ return NULL;
+}
+
+static int
+popcount_digit(digit d)
+{
+ // digit can be larger than uint32_t, but only PyLong_SHIFT bits
+ // of it will be ever used.
+ static_assert(PyLong_SHIFT <= 32, "digit is larger than uint32_t");
+ return _Py_popcount32((uint32_t)d);
+}
+
+/*[clinic input]
+int.bit_count
+
+Number of ones in the binary representation of the absolute value of self.
+
+Also known as the population count.
+
+>>> bin(13)
+'0b1101'
+>>> (13).bit_count()
+3
+[clinic start generated code]*/
+
+static PyObject *
+int_bit_count_impl(PyObject *self)
+/*[clinic end generated code: output=2e571970daf1e5c3 input=7e0adef8e8ccdf2e]*/
+{
+ assert(self != NULL);
+ assert(PyLong_Check(self));
+
+ PyLongObject *z = (PyLongObject *)self;
+ Py_ssize_t ndigits = Py_ABS(Py_SIZE(z));
+ Py_ssize_t bit_count = 0;
+
+ /* Each digit has up to PyLong_SHIFT ones, so the accumulated bit count
+ from the first PY_SSIZE_T_MAX/PyLong_SHIFT digits can't overflow a
+ Py_ssize_t. */
+ Py_ssize_t ndigits_fast = Py_MIN(ndigits, PY_SSIZE_T_MAX/PyLong_SHIFT);
+ for (Py_ssize_t i = 0; i < ndigits_fast; i++) {
+ bit_count += popcount_digit(z->ob_digit[i]);
+ }
+
+ PyObject *result = PyLong_FromSsize_t(bit_count);
+ if (result == NULL) {
+ return NULL;
+ }
+
+ /* Use Python integers if bit_count would overflow. */
+ for (Py_ssize_t i = ndigits_fast; i < ndigits; i++) {
+ PyObject *x = PyLong_FromLong(popcount_digit(z->ob_digit[i]));
+ if (x == NULL) {
+ goto error;
+ }
+ PyObject *y = long_add((PyLongObject *)result, (PyLongObject *)x);
+ Py_DECREF(x);
+ if (y == NULL) {
+ goto error;
+ }
+ Py_DECREF(result);
+ result = y;
+ }
+
+ return result;
+
+ error:
+ Py_DECREF(result);
+ return NULL;
+}
+
+/*[clinic input]
+int.as_integer_ratio
+
+Return integer ratio.
+
+Return a pair of integers, whose ratio is exactly equal to the original int
+and with a positive denominator.
+
+>>> (10).as_integer_ratio()
+(10, 1)
+>>> (-10).as_integer_ratio()
+(-10, 1)
+>>> (0).as_integer_ratio()
+(0, 1)
+[clinic start generated code]*/
+
+static PyObject *
+int_as_integer_ratio_impl(PyObject *self)
+/*[clinic end generated code: output=e60803ae1cc8621a input=55ce3058e15de393]*/
+{
+ PyObject *ratio_tuple;
+ PyObject *numerator = long_long(self);
+ if (numerator == NULL) {
+ return NULL;
+ }
+ ratio_tuple = PyTuple_Pack(2, numerator, _PyLong_GetOne());
+ Py_DECREF(numerator);
+ return ratio_tuple;
+}
+
+/*[clinic input]
+int.to_bytes
+
+ length: Py_ssize_t = 1
+ Length of bytes object to use. An OverflowError is raised if the
+ integer is not representable with the given number of bytes. Default
+ is length 1.
+ byteorder: unicode(c_default="NULL") = "big"
+ The byte order used to represent the integer. If byteorder is 'big',
+ the most significant byte is at the beginning of the byte array. If
+ byteorder is 'little', the most significant byte is at the end of the
+ byte array. To request the native byte order of the host system, use
+ `sys.byteorder' as the byte order value. Default is to use 'big'.
+ *
+ signed as is_signed: bool = False
+ Determines whether two's complement is used to represent the integer.
+ If signed is False and a negative integer is given, an OverflowError
+ is raised.
+
+Return an array of bytes representing an integer.
+[clinic start generated code]*/
+
+static PyObject *
+int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder,
+ int is_signed)
+/*[clinic end generated code: output=89c801df114050a3 input=d42ecfb545039d71]*/
+{
+ int little_endian;
+ PyObject *bytes;
+
+ if (byteorder == NULL)
+ little_endian = 0;
+ else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
+ little_endian = 1;
+ else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
+ little_endian = 0;
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "byteorder must be either 'little' or 'big'");
+ return NULL;
+ }
+
+ if (length < 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "length argument must be non-negative");
+ return NULL;
+ }
+
+ bytes = PyBytes_FromStringAndSize(NULL, length);
+ if (bytes == NULL)
+ return NULL;
+
+ if (_PyLong_AsByteArray((PyLongObject *)self,
+ (unsigned char *)PyBytes_AS_STRING(bytes),
+ length, little_endian, is_signed) < 0) {
+ Py_DECREF(bytes);
+ return NULL;
+ }
+
+ return bytes;
+}
+
+/*[clinic input]
+@classmethod
+int.from_bytes
+
+ bytes as bytes_obj: object
+ Holds the array of bytes to convert. The argument must either
+ support the buffer protocol or be an iterable object producing bytes.
+ Bytes and bytearray are examples of built-in objects that support the
+ buffer protocol.
+ byteorder: unicode(c_default="NULL") = "big"
+ The byte order used to represent the integer. If byteorder is 'big',
+ the most significant byte is at the beginning of the byte array. If
+ byteorder is 'little', the most significant byte is at the end of the
+ byte array. To request the native byte order of the host system, use
+ `sys.byteorder' as the byte order value. Default is to use 'big'.
+ *
+ signed as is_signed: bool = False
+ Indicates whether two's complement is used to represent the integer.
+
+Return the integer represented by the given array of bytes.
+[clinic start generated code]*/
+
+static PyObject *
+int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj,
+ PyObject *byteorder, int is_signed)
+/*[clinic end generated code: output=efc5d68e31f9314f input=33326dccdd655553]*/
+{
+ int little_endian;
+ PyObject *long_obj, *bytes;
+
+ if (byteorder == NULL)
+ little_endian = 0;
+ else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
+ little_endian = 1;
+ else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
+ little_endian = 0;
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "byteorder must be either 'little' or 'big'");
+ return NULL;
+ }
+
+ bytes = PyObject_Bytes(bytes_obj);
+ if (bytes == NULL)
+ return NULL;
+
+ long_obj = _PyLong_FromByteArray(
+ (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
+ little_endian, is_signed);
+ Py_DECREF(bytes);
+
+ if (long_obj != NULL && type != &PyLong_Type) {
+ Py_SETREF(long_obj, PyObject_CallOneArg((PyObject *)type, long_obj));
+ }
+
+ return long_obj;
+}
+
+static PyObject *
+long_long_meth(PyObject *self, PyObject *Py_UNUSED(ignored))
+{
+ return long_long(self);
+}
+
+static PyMethodDef long_methods[] = {
+ {"conjugate", long_long_meth, METH_NOARGS,
+ "Returns self, the complex conjugate of any int."},
+ INT_BIT_LENGTH_METHODDEF
+ INT_BIT_COUNT_METHODDEF
+ INT_TO_BYTES_METHODDEF
+ INT_FROM_BYTES_METHODDEF
+ INT_AS_INTEGER_RATIO_METHODDEF
+ {"__trunc__", long_long_meth, METH_NOARGS,
+ "Truncating an Integral returns itself."},
+ {"__floor__", long_long_meth, METH_NOARGS,
+ "Flooring an Integral returns itself."},
+ {"__ceil__", long_long_meth, METH_NOARGS,
+ "Ceiling of an Integral returns itself."},
+ INT___ROUND___METHODDEF
+ INT___GETNEWARGS___METHODDEF
+ INT___FORMAT___METHODDEF
+ INT___SIZEOF___METHODDEF
+ {NULL, NULL} /* sentinel */
+};
+
+static PyGetSetDef long_getset[] = {
+ {"real",
+ (getter)long_long_meth, (setter)NULL,
+ "the real part of a complex number",
+ NULL},
+ {"imag",
+ long_get0, (setter)NULL,
+ "the imaginary part of a complex number",
+ NULL},
+ {"numerator",
+ (getter)long_long_meth, (setter)NULL,
+ "the numerator of a rational number in lowest terms",
+ NULL},
+ {"denominator",
+ long_get1, (setter)NULL,
+ "the denominator of a rational number in lowest terms",
+ NULL},
+ {NULL} /* Sentinel */
+};
+
+PyDoc_STRVAR(long_doc,
+"int([x]) -> integer\n\
+int(x, base=10) -> integer\n\
+\n\
+Convert a number or string to an integer, or return 0 if no arguments\n\
+are given. If x is a number, return x.__int__(). For floating point\n\
+numbers, this truncates towards zero.\n\
+\n\
+If x is not a number or if base is given, then x must be a string,\n\
+bytes, or bytearray instance representing an integer literal in the\n\
+given base. The literal can be preceded by '+' or '-' and be surrounded\n\
+by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.\n\
+Base 0 means to interpret the base from the string as an integer literal.\n\
+>>> int('0b100', base=0)\n\
+4");
+
+static PyNumberMethods long_as_number = {
+ (binaryfunc)long_add, /*nb_add*/
+ (binaryfunc)long_sub, /*nb_subtract*/
+ (binaryfunc)long_mul, /*nb_multiply*/
+ long_mod, /*nb_remainder*/
+ long_divmod, /*nb_divmod*/
+ long_pow, /*nb_power*/
+ (unaryfunc)long_neg, /*nb_negative*/
+ long_long, /*tp_positive*/
+ (unaryfunc)long_abs, /*tp_absolute*/
+ (inquiry)long_bool, /*tp_bool*/
+ (unaryfunc)long_invert, /*nb_invert*/
+ long_lshift, /*nb_lshift*/
+ long_rshift, /*nb_rshift*/
+ long_and, /*nb_and*/
+ long_xor, /*nb_xor*/
+ long_or, /*nb_or*/
+ long_long, /*nb_int*/
+ 0, /*nb_reserved*/
+ long_float, /*nb_float*/
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply */
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ long_div, /* nb_floor_divide */
+ long_true_divide, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
+ long_long, /* nb_index */
+};
+
+PyTypeObject PyLong_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "int", /* tp_name */
+ offsetof(PyLongObject, ob_digit), /* tp_basicsize */
+ sizeof(digit), /* tp_itemsize */
+ 0, /* tp_dealloc */
+ 0, /* tp_vectorcall_offset */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_as_async */
+ long_to_decimal_string, /* tp_repr */
+ &long_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)long_hash, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
+ Py_TPFLAGS_LONG_SUBCLASS |
+ _Py_TPFLAGS_MATCH_SELF, /* tp_flags */
+ long_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ long_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ long_methods, /* tp_methods */
+ 0, /* tp_members */
+ long_getset, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ 0, /* tp_alloc */
+ long_new, /* tp_new */
+ PyObject_Free, /* tp_free */
+};
+
+static PyTypeObject Int_InfoType;
+
+PyDoc_STRVAR(int_info__doc__,
+"sys.int_info\n\
+\n\
+A named tuple that holds information about Python's\n\
+internal representation of integers. The attributes are read only.");
+
+static PyStructSequence_Field int_info_fields[] = {
+ {"bits_per_digit", "size of a digit in bits"},
+ {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
+ {"default_max_str_digits", "maximum string conversion digits limitation"},
+ {"str_digits_check_threshold", "minimum positive value for int_max_str_digits"},
+ {NULL, NULL}
+};
+
+static PyStructSequence_Desc int_info_desc = {
+ "sys.int_info", /* name */
+ int_info__doc__, /* doc */
+ int_info_fields, /* fields */
+ 4 /* number of fields */
+};
+
+PyObject *
+PyLong_GetInfo(void)
+{
+ PyObject* int_info;
+ int field = 0;
+ int_info = PyStructSequence_New(&Int_InfoType);
+ if (int_info == NULL)
+ return NULL;
+ PyStructSequence_SET_ITEM(int_info, field++,
+ PyLong_FromLong(PyLong_SHIFT));
+ PyStructSequence_SET_ITEM(int_info, field++,
+ PyLong_FromLong(sizeof(digit)));
+ /*
+ * The following two fields were added after investigating uses of
+ * sys.int_info in the wild: Exceedingly rarely used. The ONLY use found was
+ * numba using sys.int_info.bits_per_digit as attribute access rather than
+ * sequence unpacking. Cython and sympy also refer to sys.int_info but only
+ * as info for debugging. No concern about adding these in a backport.
+ */
+ PyStructSequence_SET_ITEM(int_info, field++,
+ PyLong_FromLong(_PY_LONG_DEFAULT_MAX_STR_DIGITS));
+ PyStructSequence_SET_ITEM(int_info, field++,
+ PyLong_FromLong(_PY_LONG_MAX_STR_DIGITS_THRESHOLD));
+ if (PyErr_Occurred()) {
+ Py_CLEAR(int_info);
+ return NULL;
+ }
+ return int_info;
+}
+
+
+/* runtime lifecycle */
+
+PyStatus
+_PyLong_InitTypes(PyInterpreterState *interp)
+{
+ if (!_Py_IsMainInterpreter(interp)) {
+ return _PyStatus_OK();
+ }
+
+ if (PyType_Ready(&PyLong_Type) < 0) {
+ return _PyStatus_ERR("Can't initialize int type");
+ }
+
+ /* initialize int_info */
+ if (Int_InfoType.tp_name == NULL) {
+ if (PyStructSequence_InitType2(&Int_InfoType, &int_info_desc) < 0) {
+ return _PyStatus_ERR("can't init int info type");
+ }
+ }
+ interp->int_max_str_digits = _Py_global_config_int_max_str_digits;
+ if (interp->int_max_str_digits == -1) {
+ interp->int_max_str_digits = _PY_LONG_DEFAULT_MAX_STR_DIGITS;
+ }
+
+ return _PyStatus_OK();
+}
+
+
+void
+_PyLong_FiniTypes(PyInterpreterState *interp)
+{
+ if (!_Py_IsMainInterpreter(interp)) {
+ return;
+ }
+
+ _PyStructSequence_FiniType(&Int_InfoType);
+}