aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Objects/floatobject.c
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:44:49 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:44:49 +0300
commit718c552901d703c502ccbefdfc3c9028d608b947 (patch)
tree46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/tools/python3/src/Objects/floatobject.c
parente9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff)
downloadydb-718c552901d703c502ccbefdfc3c9028d608b947.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/tools/python3/src/Objects/floatobject.c')
-rw-r--r--contrib/tools/python3/src/Objects/floatobject.c4994
1 files changed, 2497 insertions, 2497 deletions
diff --git a/contrib/tools/python3/src/Objects/floatobject.c b/contrib/tools/python3/src/Objects/floatobject.c
index 8538a051b1..61d5b7b002 100644
--- a/contrib/tools/python3/src/Objects/floatobject.c
+++ b/contrib/tools/python3/src/Objects/floatobject.c
@@ -1,252 +1,252 @@
-/* Float object implementation */
-
-/* XXX There should be overflow checks here, but it's hard to check
- for any kind of float exception without losing portability. */
-
-#include "Python.h"
+/* Float object implementation */
+
+/* XXX There should be overflow checks here, but it's hard to check
+ for any kind of float exception without losing portability. */
+
+#include "Python.h"
#include "pycore_dtoa.h"
-
-#include <ctype.h>
-#include <float.h>
-
-/*[clinic input]
-class float "PyObject *" "&PyFloat_Type"
-[clinic start generated code]*/
-/*[clinic end generated code: output=da39a3ee5e6b4b0d input=dd0003f68f144284]*/
-
-#include "clinic/floatobject.c.h"
-
-/* Special free list
- free_list is a singly-linked list of available PyFloatObjects, linked
- via abuse of their ob_type members.
-*/
-
-#ifndef PyFloat_MAXFREELIST
-#define PyFloat_MAXFREELIST 100
-#endif
-static int numfree = 0;
-static PyFloatObject *free_list = NULL;
-
-double
-PyFloat_GetMax(void)
-{
- return DBL_MAX;
-}
-
-double
-PyFloat_GetMin(void)
-{
- return DBL_MIN;
-}
-
-static PyTypeObject FloatInfoType;
-
-PyDoc_STRVAR(floatinfo__doc__,
-"sys.float_info\n\
-\n\
+
+#include <ctype.h>
+#include <float.h>
+
+/*[clinic input]
+class float "PyObject *" "&PyFloat_Type"
+[clinic start generated code]*/
+/*[clinic end generated code: output=da39a3ee5e6b4b0d input=dd0003f68f144284]*/
+
+#include "clinic/floatobject.c.h"
+
+/* Special free list
+ free_list is a singly-linked list of available PyFloatObjects, linked
+ via abuse of their ob_type members.
+*/
+
+#ifndef PyFloat_MAXFREELIST
+#define PyFloat_MAXFREELIST 100
+#endif
+static int numfree = 0;
+static PyFloatObject *free_list = NULL;
+
+double
+PyFloat_GetMax(void)
+{
+ return DBL_MAX;
+}
+
+double
+PyFloat_GetMin(void)
+{
+ return DBL_MIN;
+}
+
+static PyTypeObject FloatInfoType;
+
+PyDoc_STRVAR(floatinfo__doc__,
+"sys.float_info\n\
+\n\
A named tuple holding information about the float type. It contains low level\n\
-information about the precision and internal representation. Please study\n\
-your system's :file:`float.h` for more information.");
-
-static PyStructSequence_Field floatinfo_fields[] = {
- {"max", "DBL_MAX -- maximum representable finite float"},
- {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
- "is representable"},
- {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
- "is representable"},
- {"min", "DBL_MIN -- Minimum positive normalized float"},
- {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
- "is a normalized float"},
- {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
- "a normalized"},
- {"dig", "DBL_DIG -- digits"},
- {"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
- {"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
- "representable float"},
- {"radix", "FLT_RADIX -- radix of exponent"},
- {"rounds", "FLT_ROUNDS -- rounding mode"},
- {0}
-};
-
-static PyStructSequence_Desc floatinfo_desc = {
- "sys.float_info", /* name */
- floatinfo__doc__, /* doc */
- floatinfo_fields, /* fields */
- 11
-};
-
-PyObject *
-PyFloat_GetInfo(void)
-{
- PyObject* floatinfo;
- int pos = 0;
-
- floatinfo = PyStructSequence_New(&FloatInfoType);
- if (floatinfo == NULL) {
- return NULL;
- }
-
-#define SetIntFlag(flag) \
- PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
-#define SetDblFlag(flag) \
- PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
-
- SetDblFlag(DBL_MAX);
- SetIntFlag(DBL_MAX_EXP);
- SetIntFlag(DBL_MAX_10_EXP);
- SetDblFlag(DBL_MIN);
- SetIntFlag(DBL_MIN_EXP);
- SetIntFlag(DBL_MIN_10_EXP);
- SetIntFlag(DBL_DIG);
- SetIntFlag(DBL_MANT_DIG);
- SetDblFlag(DBL_EPSILON);
- SetIntFlag(FLT_RADIX);
- SetIntFlag(FLT_ROUNDS);
-#undef SetIntFlag
-#undef SetDblFlag
-
- if (PyErr_Occurred()) {
- Py_CLEAR(floatinfo);
- return NULL;
- }
- return floatinfo;
-}
-
-PyObject *
-PyFloat_FromDouble(double fval)
-{
- PyFloatObject *op = free_list;
- if (op != NULL) {
- free_list = (PyFloatObject *) Py_TYPE(op);
- numfree--;
- } else {
- op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject));
- if (!op)
- return PyErr_NoMemory();
- }
- /* Inline PyObject_New */
- (void)PyObject_INIT(op, &PyFloat_Type);
- op->ob_fval = fval;
- return (PyObject *) op;
-}
-
-static PyObject *
-float_from_string_inner(const char *s, Py_ssize_t len, void *obj)
-{
- double x;
- const char *end;
- const char *last = s + len;
- /* strip space */
- while (s < last && Py_ISSPACE(*s)) {
- s++;
- }
-
- while (s < last - 1 && Py_ISSPACE(last[-1])) {
- last--;
- }
-
- /* We don't care about overflow or underflow. If the platform
- * supports them, infinities and signed zeroes (on underflow) are
- * fine. */
- x = PyOS_string_to_double(s, (char **)&end, NULL);
- if (end != last) {
- PyErr_Format(PyExc_ValueError,
- "could not convert string to float: "
- "%R", obj);
- return NULL;
- }
- else if (x == -1.0 && PyErr_Occurred()) {
- return NULL;
- }
- else {
- return PyFloat_FromDouble(x);
- }
-}
-
-PyObject *
-PyFloat_FromString(PyObject *v)
-{
- const char *s;
- PyObject *s_buffer = NULL;
- Py_ssize_t len;
- Py_buffer view = {NULL, NULL};
- PyObject *result = NULL;
-
- if (PyUnicode_Check(v)) {
- s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
- if (s_buffer == NULL)
- return NULL;
- assert(PyUnicode_IS_ASCII(s_buffer));
- /* Simply get a pointer to existing ASCII characters. */
- s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
- assert(s != NULL);
- }
- else if (PyBytes_Check(v)) {
- s = PyBytes_AS_STRING(v);
- len = PyBytes_GET_SIZE(v);
- }
- else if (PyByteArray_Check(v)) {
- s = PyByteArray_AS_STRING(v);
- len = PyByteArray_GET_SIZE(v);
- }
- else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) {
- s = (const char *)view.buf;
- len = view.len;
- /* Copy to NUL-terminated buffer. */
- s_buffer = PyBytes_FromStringAndSize(s, len);
- if (s_buffer == NULL) {
- PyBuffer_Release(&view);
- return NULL;
- }
- s = PyBytes_AS_STRING(s_buffer);
- }
- else {
- PyErr_Format(PyExc_TypeError,
- "float() argument must be a string or a number, not '%.200s'",
- Py_TYPE(v)->tp_name);
- return NULL;
- }
- result = _Py_string_to_number_with_underscores(s, len, "float", v, v,
- float_from_string_inner);
- PyBuffer_Release(&view);
- Py_XDECREF(s_buffer);
- return result;
-}
-
-static void
-float_dealloc(PyFloatObject *op)
-{
- if (PyFloat_CheckExact(op)) {
- if (numfree >= PyFloat_MAXFREELIST) {
- PyObject_FREE(op);
- return;
- }
- numfree++;
+information about the precision and internal representation. Please study\n\
+your system's :file:`float.h` for more information.");
+
+static PyStructSequence_Field floatinfo_fields[] = {
+ {"max", "DBL_MAX -- maximum representable finite float"},
+ {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
+ "is representable"},
+ {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
+ "is representable"},
+ {"min", "DBL_MIN -- Minimum positive normalized float"},
+ {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
+ "is a normalized float"},
+ {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
+ "a normalized"},
+ {"dig", "DBL_DIG -- digits"},
+ {"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
+ {"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
+ "representable float"},
+ {"radix", "FLT_RADIX -- radix of exponent"},
+ {"rounds", "FLT_ROUNDS -- rounding mode"},
+ {0}
+};
+
+static PyStructSequence_Desc floatinfo_desc = {
+ "sys.float_info", /* name */
+ floatinfo__doc__, /* doc */
+ floatinfo_fields, /* fields */
+ 11
+};
+
+PyObject *
+PyFloat_GetInfo(void)
+{
+ PyObject* floatinfo;
+ int pos = 0;
+
+ floatinfo = PyStructSequence_New(&FloatInfoType);
+ if (floatinfo == NULL) {
+ return NULL;
+ }
+
+#define SetIntFlag(flag) \
+ PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
+#define SetDblFlag(flag) \
+ PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
+
+ SetDblFlag(DBL_MAX);
+ SetIntFlag(DBL_MAX_EXP);
+ SetIntFlag(DBL_MAX_10_EXP);
+ SetDblFlag(DBL_MIN);
+ SetIntFlag(DBL_MIN_EXP);
+ SetIntFlag(DBL_MIN_10_EXP);
+ SetIntFlag(DBL_DIG);
+ SetIntFlag(DBL_MANT_DIG);
+ SetDblFlag(DBL_EPSILON);
+ SetIntFlag(FLT_RADIX);
+ SetIntFlag(FLT_ROUNDS);
+#undef SetIntFlag
+#undef SetDblFlag
+
+ if (PyErr_Occurred()) {
+ Py_CLEAR(floatinfo);
+ return NULL;
+ }
+ return floatinfo;
+}
+
+PyObject *
+PyFloat_FromDouble(double fval)
+{
+ PyFloatObject *op = free_list;
+ if (op != NULL) {
+ free_list = (PyFloatObject *) Py_TYPE(op);
+ numfree--;
+ } else {
+ op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject));
+ if (!op)
+ return PyErr_NoMemory();
+ }
+ /* Inline PyObject_New */
+ (void)PyObject_INIT(op, &PyFloat_Type);
+ op->ob_fval = fval;
+ return (PyObject *) op;
+}
+
+static PyObject *
+float_from_string_inner(const char *s, Py_ssize_t len, void *obj)
+{
+ double x;
+ const char *end;
+ const char *last = s + len;
+ /* strip space */
+ while (s < last && Py_ISSPACE(*s)) {
+ s++;
+ }
+
+ while (s < last - 1 && Py_ISSPACE(last[-1])) {
+ last--;
+ }
+
+ /* We don't care about overflow or underflow. If the platform
+ * supports them, infinities and signed zeroes (on underflow) are
+ * fine. */
+ x = PyOS_string_to_double(s, (char **)&end, NULL);
+ if (end != last) {
+ PyErr_Format(PyExc_ValueError,
+ "could not convert string to float: "
+ "%R", obj);
+ return NULL;
+ }
+ else if (x == -1.0 && PyErr_Occurred()) {
+ return NULL;
+ }
+ else {
+ return PyFloat_FromDouble(x);
+ }
+}
+
+PyObject *
+PyFloat_FromString(PyObject *v)
+{
+ const char *s;
+ PyObject *s_buffer = NULL;
+ Py_ssize_t len;
+ Py_buffer view = {NULL, NULL};
+ PyObject *result = NULL;
+
+ if (PyUnicode_Check(v)) {
+ s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
+ if (s_buffer == NULL)
+ return NULL;
+ assert(PyUnicode_IS_ASCII(s_buffer));
+ /* Simply get a pointer to existing ASCII characters. */
+ s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
+ assert(s != NULL);
+ }
+ else if (PyBytes_Check(v)) {
+ s = PyBytes_AS_STRING(v);
+ len = PyBytes_GET_SIZE(v);
+ }
+ else if (PyByteArray_Check(v)) {
+ s = PyByteArray_AS_STRING(v);
+ len = PyByteArray_GET_SIZE(v);
+ }
+ else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) {
+ s = (const char *)view.buf;
+ len = view.len;
+ /* Copy to NUL-terminated buffer. */
+ s_buffer = PyBytes_FromStringAndSize(s, len);
+ if (s_buffer == NULL) {
+ PyBuffer_Release(&view);
+ return NULL;
+ }
+ s = PyBytes_AS_STRING(s_buffer);
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "float() argument must be a string or a number, not '%.200s'",
+ Py_TYPE(v)->tp_name);
+ return NULL;
+ }
+ result = _Py_string_to_number_with_underscores(s, len, "float", v, v,
+ float_from_string_inner);
+ PyBuffer_Release(&view);
+ Py_XDECREF(s_buffer);
+ return result;
+}
+
+static void
+float_dealloc(PyFloatObject *op)
+{
+ if (PyFloat_CheckExact(op)) {
+ if (numfree >= PyFloat_MAXFREELIST) {
+ PyObject_FREE(op);
+ return;
+ }
+ numfree++;
Py_SET_TYPE(op, (PyTypeObject *)free_list);
- free_list = op;
- }
- else
- Py_TYPE(op)->tp_free((PyObject *)op);
-}
-
-double
-PyFloat_AsDouble(PyObject *op)
-{
- PyNumberMethods *nb;
- PyObject *res;
- double val;
-
- if (op == NULL) {
- PyErr_BadArgument();
- return -1;
- }
-
- if (PyFloat_Check(op)) {
- return PyFloat_AS_DOUBLE(op);
- }
-
- nb = Py_TYPE(op)->tp_as_number;
- if (nb == NULL || nb->nb_float == NULL) {
+ free_list = op;
+ }
+ else
+ Py_TYPE(op)->tp_free((PyObject *)op);
+}
+
+double
+PyFloat_AsDouble(PyObject *op)
+{
+ PyNumberMethods *nb;
+ PyObject *res;
+ double val;
+
+ if (op == NULL) {
+ PyErr_BadArgument();
+ return -1;
+ }
+
+ if (PyFloat_Check(op)) {
+ return PyFloat_AS_DOUBLE(op);
+ }
+
+ nb = Py_TYPE(op)->tp_as_number;
+ if (nb == NULL || nb->nb_float == NULL) {
if (nb && nb->nb_index) {
PyObject *res = PyNumber_Index(op);
if (!res) {
@@ -256,398 +256,398 @@ PyFloat_AsDouble(PyObject *op)
Py_DECREF(res);
return val;
}
- PyErr_Format(PyExc_TypeError, "must be real number, not %.50s",
+ PyErr_Format(PyExc_TypeError, "must be real number, not %.50s",
Py_TYPE(op)->tp_name);
- return -1;
- }
-
- res = (*nb->nb_float) (op);
- if (res == NULL) {
- return -1;
- }
- if (!PyFloat_CheckExact(res)) {
- if (!PyFloat_Check(res)) {
- PyErr_Format(PyExc_TypeError,
- "%.50s.__float__ returned non-float (type %.50s)",
+ return -1;
+ }
+
+ res = (*nb->nb_float) (op);
+ if (res == NULL) {
+ return -1;
+ }
+ if (!PyFloat_CheckExact(res)) {
+ if (!PyFloat_Check(res)) {
+ PyErr_Format(PyExc_TypeError,
+ "%.50s.__float__ returned non-float (type %.50s)",
Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name);
- Py_DECREF(res);
- return -1;
- }
- if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
- "%.50s.__float__ returned non-float (type %.50s). "
- "The ability to return an instance of a strict subclass of float "
- "is deprecated, and may be removed in a future version of Python.",
+ Py_DECREF(res);
+ return -1;
+ }
+ if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
+ "%.50s.__float__ returned non-float (type %.50s). "
+ "The ability to return an instance of a strict subclass of float "
+ "is deprecated, and may be removed in a future version of Python.",
Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name)) {
- Py_DECREF(res);
- return -1;
- }
- }
-
- val = PyFloat_AS_DOUBLE(res);
- Py_DECREF(res);
- return val;
-}
-
-/* Macro and helper that convert PyObject obj to a C double and store
- the value in dbl. If conversion to double raises an exception, obj is
- set to NULL, and the function invoking this macro returns NULL. If
- obj is not of float or int type, Py_NotImplemented is incref'ed,
- stored in obj, and returned from the function invoking this macro.
-*/
-#define CONVERT_TO_DOUBLE(obj, dbl) \
- if (PyFloat_Check(obj)) \
- dbl = PyFloat_AS_DOUBLE(obj); \
- else if (convert_to_double(&(obj), &(dbl)) < 0) \
- return obj;
-
-/* Methods */
-
-static int
-convert_to_double(PyObject **v, double *dbl)
-{
- PyObject *obj = *v;
-
- if (PyLong_Check(obj)) {
- *dbl = PyLong_AsDouble(obj);
- if (*dbl == -1.0 && PyErr_Occurred()) {
- *v = NULL;
- return -1;
- }
- }
- else {
- Py_INCREF(Py_NotImplemented);
- *v = Py_NotImplemented;
- return -1;
- }
- return 0;
-}
-
-static PyObject *
-float_repr(PyFloatObject *v)
-{
- PyObject *result;
- char *buf;
-
- buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
- 'r', 0,
- Py_DTSF_ADD_DOT_0,
- NULL);
- if (!buf)
- return PyErr_NoMemory();
- result = _PyUnicode_FromASCII(buf, strlen(buf));
- PyMem_Free(buf);
- return result;
-}
-
-/* Comparison is pretty much a nightmare. When comparing float to float,
- * we do it as straightforwardly (and long-windedly) as conceivable, so
- * that, e.g., Python x == y delivers the same result as the platform
- * C x == y when x and/or y is a NaN.
- * When mixing float with an integer type, there's no good *uniform* approach.
- * Converting the double to an integer obviously doesn't work, since we
- * may lose info from fractional bits. Converting the integer to a double
- * also has two failure modes: (1) an int may trigger overflow (too
- * large to fit in the dynamic range of a C double); (2) even a C long may have
- * more bits than fit in a C double (e.g., on a 64-bit box long may have
- * 63 bits of precision, but a C double probably has only 53), and then
- * we can falsely claim equality when low-order integer bits are lost by
- * coercion to double. So this part is painful too.
- */
-
-static PyObject*
-float_richcompare(PyObject *v, PyObject *w, int op)
-{
- double i, j;
- int r = 0;
-
- assert(PyFloat_Check(v));
- i = PyFloat_AS_DOUBLE(v);
-
- /* Switch on the type of w. Set i and j to doubles to be compared,
- * and op to the richcomp to use.
- */
- if (PyFloat_Check(w))
- j = PyFloat_AS_DOUBLE(w);
-
- else if (!Py_IS_FINITE(i)) {
- if (PyLong_Check(w))
- /* If i is an infinity, its magnitude exceeds any
- * finite integer, so it doesn't matter which int we
- * compare i with. If i is a NaN, similarly.
- */
- j = 0.0;
- else
- goto Unimplemented;
- }
-
- else if (PyLong_Check(w)) {
- int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
- int wsign = _PyLong_Sign(w);
- size_t nbits;
- int exponent;
-
- if (vsign != wsign) {
- /* Magnitudes are irrelevant -- the signs alone
- * determine the outcome.
- */
- i = (double)vsign;
- j = (double)wsign;
- goto Compare;
- }
- /* The signs are the same. */
- /* Convert w to a double if it fits. In particular, 0 fits. */
- nbits = _PyLong_NumBits(w);
- if (nbits == (size_t)-1 && PyErr_Occurred()) {
- /* This long is so large that size_t isn't big enough
- * to hold the # of bits. Replace with little doubles
- * that give the same outcome -- w is so large that
- * its magnitude must exceed the magnitude of any
- * finite float.
- */
- PyErr_Clear();
- i = (double)vsign;
- assert(wsign != 0);
- j = wsign * 2.0;
- goto Compare;
- }
- if (nbits <= 48) {
- j = PyLong_AsDouble(w);
- /* It's impossible that <= 48 bits overflowed. */
- assert(j != -1.0 || ! PyErr_Occurred());
- goto Compare;
- }
- assert(wsign != 0); /* else nbits was 0 */
- assert(vsign != 0); /* if vsign were 0, then since wsign is
- * not 0, we would have taken the
- * vsign != wsign branch at the start */
- /* We want to work with non-negative numbers. */
- if (vsign < 0) {
- /* "Multiply both sides" by -1; this also swaps the
- * comparator.
- */
- i = -i;
- op = _Py_SwappedOp[op];
- }
- assert(i > 0.0);
- (void) frexp(i, &exponent);
- /* exponent is the # of bits in v before the radix point;
- * we know that nbits (the # of bits in w) > 48 at this point
- */
- if (exponent < 0 || (size_t)exponent < nbits) {
- i = 1.0;
- j = 2.0;
- goto Compare;
- }
- if ((size_t)exponent > nbits) {
- i = 2.0;
- j = 1.0;
- goto Compare;
- }
- /* v and w have the same number of bits before the radix
- * point. Construct two ints that have the same comparison
- * outcome.
- */
- {
- double fracpart;
- double intpart;
- PyObject *result = NULL;
- PyObject *vv = NULL;
- PyObject *ww = w;
-
- if (wsign < 0) {
- ww = PyNumber_Negative(w);
- if (ww == NULL)
- goto Error;
- }
- else
- Py_INCREF(ww);
-
- fracpart = modf(i, &intpart);
- vv = PyLong_FromDouble(intpart);
- if (vv == NULL)
- goto Error;
-
- if (fracpart != 0.0) {
- /* Shift left, and or a 1 bit into vv
- * to represent the lost fraction.
- */
- PyObject *temp;
-
+ Py_DECREF(res);
+ return -1;
+ }
+ }
+
+ val = PyFloat_AS_DOUBLE(res);
+ Py_DECREF(res);
+ return val;
+}
+
+/* Macro and helper that convert PyObject obj to a C double and store
+ the value in dbl. If conversion to double raises an exception, obj is
+ set to NULL, and the function invoking this macro returns NULL. If
+ obj is not of float or int type, Py_NotImplemented is incref'ed,
+ stored in obj, and returned from the function invoking this macro.
+*/
+#define CONVERT_TO_DOUBLE(obj, dbl) \
+ if (PyFloat_Check(obj)) \
+ dbl = PyFloat_AS_DOUBLE(obj); \
+ else if (convert_to_double(&(obj), &(dbl)) < 0) \
+ return obj;
+
+/* Methods */
+
+static int
+convert_to_double(PyObject **v, double *dbl)
+{
+ PyObject *obj = *v;
+
+ if (PyLong_Check(obj)) {
+ *dbl = PyLong_AsDouble(obj);
+ if (*dbl == -1.0 && PyErr_Occurred()) {
+ *v = NULL;
+ return -1;
+ }
+ }
+ else {
+ Py_INCREF(Py_NotImplemented);
+ *v = Py_NotImplemented;
+ return -1;
+ }
+ return 0;
+}
+
+static PyObject *
+float_repr(PyFloatObject *v)
+{
+ PyObject *result;
+ char *buf;
+
+ buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
+ 'r', 0,
+ Py_DTSF_ADD_DOT_0,
+ NULL);
+ if (!buf)
+ return PyErr_NoMemory();
+ result = _PyUnicode_FromASCII(buf, strlen(buf));
+ PyMem_Free(buf);
+ return result;
+}
+
+/* Comparison is pretty much a nightmare. When comparing float to float,
+ * we do it as straightforwardly (and long-windedly) as conceivable, so
+ * that, e.g., Python x == y delivers the same result as the platform
+ * C x == y when x and/or y is a NaN.
+ * When mixing float with an integer type, there's no good *uniform* approach.
+ * Converting the double to an integer obviously doesn't work, since we
+ * may lose info from fractional bits. Converting the integer to a double
+ * also has two failure modes: (1) an int may trigger overflow (too
+ * large to fit in the dynamic range of a C double); (2) even a C long may have
+ * more bits than fit in a C double (e.g., on a 64-bit box long may have
+ * 63 bits of precision, but a C double probably has only 53), and then
+ * we can falsely claim equality when low-order integer bits are lost by
+ * coercion to double. So this part is painful too.
+ */
+
+static PyObject*
+float_richcompare(PyObject *v, PyObject *w, int op)
+{
+ double i, j;
+ int r = 0;
+
+ assert(PyFloat_Check(v));
+ i = PyFloat_AS_DOUBLE(v);
+
+ /* Switch on the type of w. Set i and j to doubles to be compared,
+ * and op to the richcomp to use.
+ */
+ if (PyFloat_Check(w))
+ j = PyFloat_AS_DOUBLE(w);
+
+ else if (!Py_IS_FINITE(i)) {
+ if (PyLong_Check(w))
+ /* If i is an infinity, its magnitude exceeds any
+ * finite integer, so it doesn't matter which int we
+ * compare i with. If i is a NaN, similarly.
+ */
+ j = 0.0;
+ else
+ goto Unimplemented;
+ }
+
+ else if (PyLong_Check(w)) {
+ int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
+ int wsign = _PyLong_Sign(w);
+ size_t nbits;
+ int exponent;
+
+ if (vsign != wsign) {
+ /* Magnitudes are irrelevant -- the signs alone
+ * determine the outcome.
+ */
+ i = (double)vsign;
+ j = (double)wsign;
+ goto Compare;
+ }
+ /* The signs are the same. */
+ /* Convert w to a double if it fits. In particular, 0 fits. */
+ nbits = _PyLong_NumBits(w);
+ if (nbits == (size_t)-1 && PyErr_Occurred()) {
+ /* This long is so large that size_t isn't big enough
+ * to hold the # of bits. Replace with little doubles
+ * that give the same outcome -- w is so large that
+ * its magnitude must exceed the magnitude of any
+ * finite float.
+ */
+ PyErr_Clear();
+ i = (double)vsign;
+ assert(wsign != 0);
+ j = wsign * 2.0;
+ goto Compare;
+ }
+ if (nbits <= 48) {
+ j = PyLong_AsDouble(w);
+ /* It's impossible that <= 48 bits overflowed. */
+ assert(j != -1.0 || ! PyErr_Occurred());
+ goto Compare;
+ }
+ assert(wsign != 0); /* else nbits was 0 */
+ assert(vsign != 0); /* if vsign were 0, then since wsign is
+ * not 0, we would have taken the
+ * vsign != wsign branch at the start */
+ /* We want to work with non-negative numbers. */
+ if (vsign < 0) {
+ /* "Multiply both sides" by -1; this also swaps the
+ * comparator.
+ */
+ i = -i;
+ op = _Py_SwappedOp[op];
+ }
+ assert(i > 0.0);
+ (void) frexp(i, &exponent);
+ /* exponent is the # of bits in v before the radix point;
+ * we know that nbits (the # of bits in w) > 48 at this point
+ */
+ if (exponent < 0 || (size_t)exponent < nbits) {
+ i = 1.0;
+ j = 2.0;
+ goto Compare;
+ }
+ if ((size_t)exponent > nbits) {
+ i = 2.0;
+ j = 1.0;
+ goto Compare;
+ }
+ /* v and w have the same number of bits before the radix
+ * point. Construct two ints that have the same comparison
+ * outcome.
+ */
+ {
+ double fracpart;
+ double intpart;
+ PyObject *result = NULL;
+ PyObject *vv = NULL;
+ PyObject *ww = w;
+
+ if (wsign < 0) {
+ ww = PyNumber_Negative(w);
+ if (ww == NULL)
+ goto Error;
+ }
+ else
+ Py_INCREF(ww);
+
+ fracpart = modf(i, &intpart);
+ vv = PyLong_FromDouble(intpart);
+ if (vv == NULL)
+ goto Error;
+
+ if (fracpart != 0.0) {
+ /* Shift left, and or a 1 bit into vv
+ * to represent the lost fraction.
+ */
+ PyObject *temp;
+
temp = _PyLong_Lshift(ww, 1);
- if (temp == NULL)
- goto Error;
- Py_DECREF(ww);
- ww = temp;
-
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(ww);
+ ww = temp;
+
temp = _PyLong_Lshift(vv, 1);
- if (temp == NULL)
- goto Error;
- Py_DECREF(vv);
- vv = temp;
-
- temp = PyNumber_Or(vv, _PyLong_One);
- if (temp == NULL)
- goto Error;
- Py_DECREF(vv);
- vv = temp;
- }
-
- r = PyObject_RichCompareBool(vv, ww, op);
- if (r < 0)
- goto Error;
- result = PyBool_FromLong(r);
- Error:
- Py_XDECREF(vv);
- Py_XDECREF(ww);
- return result;
- }
- } /* else if (PyLong_Check(w)) */
-
- else /* w isn't float or int */
- goto Unimplemented;
-
- Compare:
- switch (op) {
- case Py_EQ:
- r = i == j;
- break;
- case Py_NE:
- r = i != j;
- break;
- case Py_LE:
- r = i <= j;
- break;
- case Py_GE:
- r = i >= j;
- break;
- case Py_LT:
- r = i < j;
- break;
- case Py_GT:
- r = i > j;
- break;
- }
- return PyBool_FromLong(r);
-
- Unimplemented:
- Py_RETURN_NOTIMPLEMENTED;
-}
-
-static Py_hash_t
-float_hash(PyFloatObject *v)
-{
- return _Py_HashDouble(v->ob_fval);
-}
-
-static PyObject *
-float_add(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- a = a + b;
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_sub(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- a = a - b;
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_mul(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- a = a * b;
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_div(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- if (b == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "float division by zero");
- return NULL;
- }
- a = a / b;
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_rem(PyObject *v, PyObject *w)
-{
- double vx, wx;
- double mod;
- CONVERT_TO_DOUBLE(v, vx);
- CONVERT_TO_DOUBLE(w, wx);
- if (wx == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "float modulo");
- return NULL;
- }
- mod = fmod(vx, wx);
- if (mod) {
- /* ensure the remainder has the same sign as the denominator */
- if ((wx < 0) != (mod < 0)) {
- mod += wx;
- }
- }
- else {
- /* the remainder is zero, and in the presence of signed zeroes
- fmod returns different results across platforms; ensure
- it has the same sign as the denominator. */
- mod = copysign(0.0, wx);
- }
- return PyFloat_FromDouble(mod);
-}
-
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(vv);
+ vv = temp;
+
+ temp = PyNumber_Or(vv, _PyLong_One);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(vv);
+ vv = temp;
+ }
+
+ r = PyObject_RichCompareBool(vv, ww, op);
+ if (r < 0)
+ goto Error;
+ result = PyBool_FromLong(r);
+ Error:
+ Py_XDECREF(vv);
+ Py_XDECREF(ww);
+ return result;
+ }
+ } /* else if (PyLong_Check(w)) */
+
+ else /* w isn't float or int */
+ goto Unimplemented;
+
+ Compare:
+ switch (op) {
+ case Py_EQ:
+ r = i == j;
+ break;
+ case Py_NE:
+ r = i != j;
+ break;
+ case Py_LE:
+ r = i <= j;
+ break;
+ case Py_GE:
+ r = i >= j;
+ break;
+ case Py_LT:
+ r = i < j;
+ break;
+ case Py_GT:
+ r = i > j;
+ break;
+ }
+ return PyBool_FromLong(r);
+
+ Unimplemented:
+ Py_RETURN_NOTIMPLEMENTED;
+}
+
+static Py_hash_t
+float_hash(PyFloatObject *v)
+{
+ return _Py_HashDouble(v->ob_fval);
+}
+
+static PyObject *
+float_add(PyObject *v, PyObject *w)
+{
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ a = a + b;
+ return PyFloat_FromDouble(a);
+}
+
+static PyObject *
+float_sub(PyObject *v, PyObject *w)
+{
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ a = a - b;
+ return PyFloat_FromDouble(a);
+}
+
+static PyObject *
+float_mul(PyObject *v, PyObject *w)
+{
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ a = a * b;
+ return PyFloat_FromDouble(a);
+}
+
+static PyObject *
+float_div(PyObject *v, PyObject *w)
+{
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ if (b == 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "float division by zero");
+ return NULL;
+ }
+ a = a / b;
+ return PyFloat_FromDouble(a);
+}
+
+static PyObject *
+float_rem(PyObject *v, PyObject *w)
+{
+ double vx, wx;
+ double mod;
+ CONVERT_TO_DOUBLE(v, vx);
+ CONVERT_TO_DOUBLE(w, wx);
+ if (wx == 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "float modulo");
+ return NULL;
+ }
+ mod = fmod(vx, wx);
+ if (mod) {
+ /* ensure the remainder has the same sign as the denominator */
+ if ((wx < 0) != (mod < 0)) {
+ mod += wx;
+ }
+ }
+ else {
+ /* the remainder is zero, and in the presence of signed zeroes
+ fmod returns different results across platforms; ensure
+ it has the same sign as the denominator. */
+ mod = copysign(0.0, wx);
+ }
+ return PyFloat_FromDouble(mod);
+}
+
static void
_float_div_mod(double vx, double wx, double *floordiv, double *mod)
-{
+{
double div;
*mod = fmod(vx, wx);
- /* fmod is typically exact, so vx-mod is *mathematically* an
- exact multiple of wx. But this is fp arithmetic, and fp
- vx - mod is an approximation; the result is that div may
- not be an exact integral value after the division, although
- it will always be very close to one.
- */
+ /* fmod is typically exact, so vx-mod is *mathematically* an
+ exact multiple of wx. But this is fp arithmetic, and fp
+ vx - mod is an approximation; the result is that div may
+ not be an exact integral value after the division, although
+ it will always be very close to one.
+ */
div = (vx - *mod) / wx;
if (*mod) {
- /* ensure the remainder has the same sign as the denominator */
+ /* ensure the remainder has the same sign as the denominator */
if ((wx < 0) != (*mod < 0)) {
*mod += wx;
- div -= 1.0;
- }
- }
- else {
- /* the remainder is zero, and in the presence of signed zeroes
- fmod returns different results across platforms; ensure
- it has the same sign as the denominator. */
+ div -= 1.0;
+ }
+ }
+ else {
+ /* the remainder is zero, and in the presence of signed zeroes
+ fmod returns different results across platforms; ensure
+ it has the same sign as the denominator. */
*mod = copysign(0.0, wx);
- }
- /* snap quotient to nearest integral value */
- if (div) {
+ }
+ /* snap quotient to nearest integral value */
+ if (div) {
*floordiv = floor(div);
if (div - *floordiv > 0.5) {
*floordiv += 1.0;
}
- }
- else {
- /* div is zero - get the same sign as the true quotient */
+ }
+ else {
+ /* div is zero - get the same sign as the true quotient */
*floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */
- }
+ }
}
static PyObject *
@@ -662,12 +662,12 @@ float_divmod(PyObject *v, PyObject *w)
return NULL;
}
_float_div_mod(vx, wx, &floordiv, &mod);
- return Py_BuildValue("(dd)", floordiv, mod);
-}
-
-static PyObject *
-float_floor_div(PyObject *v, PyObject *w)
-{
+ return Py_BuildValue("(dd)", floordiv, mod);
+}
+
+static PyObject *
+float_floor_div(PyObject *v, PyObject *w)
+{
double vx, wx;
double mod, floordiv;
CONVERT_TO_DOUBLE(v, vx);
@@ -678,193 +678,193 @@ float_floor_div(PyObject *v, PyObject *w)
}
_float_div_mod(vx, wx, &floordiv, &mod);
return PyFloat_FromDouble(floordiv);
-}
-
-/* determine whether x is an odd integer or not; assumes that
- x is not an infinity or nan. */
-#define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
-
-static PyObject *
-float_pow(PyObject *v, PyObject *w, PyObject *z)
-{
- double iv, iw, ix;
- int negate_result = 0;
-
- if ((PyObject *)z != Py_None) {
- PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
- "allowed unless all arguments are integers");
- return NULL;
- }
-
- CONVERT_TO_DOUBLE(v, iv);
- CONVERT_TO_DOUBLE(w, iw);
-
- /* Sort out special cases here instead of relying on pow() */
- if (iw == 0) { /* v**0 is 1, even 0**0 */
- return PyFloat_FromDouble(1.0);
- }
- if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
- return PyFloat_FromDouble(iv);
- }
- if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
- return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
- }
- if (Py_IS_INFINITY(iw)) {
- /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
- * abs(v) > 1 (including case where v infinite)
- *
- * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
- * abs(v) > 1 (including case where v infinite)
- */
- iv = fabs(iv);
- if (iv == 1.0)
- return PyFloat_FromDouble(1.0);
- else if ((iw > 0.0) == (iv > 1.0))
- return PyFloat_FromDouble(fabs(iw)); /* return inf */
- else
- return PyFloat_FromDouble(0.0);
- }
- if (Py_IS_INFINITY(iv)) {
- /* (+-inf)**w is: inf for w positive, 0 for w negative; in
- * both cases, we need to add the appropriate sign if w is
- * an odd integer.
- */
- int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
- if (iw > 0.0)
- return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
- else
- return PyFloat_FromDouble(iw_is_odd ?
- copysign(0.0, iv) : 0.0);
- }
- if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
- (already dealt with above), and an error
- if w is negative. */
- int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
- if (iw < 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "0.0 cannot be raised to a "
- "negative power");
- return NULL;
- }
- /* use correct sign if iw is odd */
- return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
- }
-
- if (iv < 0.0) {
- /* Whether this is an error is a mess, and bumps into libm
- * bugs so we have to figure it out ourselves.
- */
- if (iw != floor(iw)) {
- /* Negative numbers raised to fractional powers
- * become complex.
- */
- return PyComplex_Type.tp_as_number->nb_power(v, w, z);
- }
- /* iw is an exact integer, albeit perhaps a very large
- * one. Replace iv by its absolute value and remember
- * to negate the pow result if iw is odd.
- */
- iv = -iv;
- negate_result = DOUBLE_IS_ODD_INTEGER(iw);
- }
-
- if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
- /* (-1) ** large_integer also ends up here. Here's an
- * extract from the comments for the previous
- * implementation explaining why this special case is
- * necessary:
- *
- * -1 raised to an exact integer should never be exceptional.
- * Alas, some libms (chiefly glibc as of early 2003) return
- * NaN and set EDOM on pow(-1, large_int) if the int doesn't
- * happen to be representable in a *C* integer. That's a
- * bug.
- */
- return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
- }
-
- /* Now iv and iw are finite, iw is nonzero, and iv is
- * positive and not equal to 1.0. We finally allow
- * the platform pow to step in and do the rest.
- */
- errno = 0;
- ix = pow(iv, iw);
- Py_ADJUST_ERANGE1(ix);
- if (negate_result)
- ix = -ix;
-
- if (errno != 0) {
- /* We don't expect any errno value other than ERANGE, but
- * the range of libm bugs appears unbounded.
- */
- PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
- PyExc_ValueError);
- return NULL;
- }
- return PyFloat_FromDouble(ix);
-}
-
-#undef DOUBLE_IS_ODD_INTEGER
-
-static PyObject *
-float_neg(PyFloatObject *v)
-{
- return PyFloat_FromDouble(-v->ob_fval);
-}
-
-static PyObject *
-float_abs(PyFloatObject *v)
-{
- return PyFloat_FromDouble(fabs(v->ob_fval));
-}
-
-static int
-float_bool(PyFloatObject *v)
-{
- return v->ob_fval != 0.0;
-}
-
-/*[clinic input]
-float.is_integer
-
-Return True if the float is an integer.
-[clinic start generated code]*/
-
-static PyObject *
-float_is_integer_impl(PyObject *self)
-/*[clinic end generated code: output=7112acf95a4d31ea input=311810d3f777e10d]*/
-{
- double x = PyFloat_AsDouble(self);
- PyObject *o;
-
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
- if (!Py_IS_FINITE(x))
- Py_RETURN_FALSE;
- errno = 0;
- o = (floor(x) == x) ? Py_True : Py_False;
- if (errno != 0) {
- PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
- PyExc_ValueError);
- return NULL;
- }
- Py_INCREF(o);
- return o;
-}
-
-/*[clinic input]
-float.__trunc__
-
-Return the Integral closest to x between 0 and x.
-[clinic start generated code]*/
-
-static PyObject *
-float___trunc___impl(PyObject *self)
-/*[clinic end generated code: output=dd3e289dd4c6b538 input=591b9ba0d650fdff]*/
-{
+}
+
+/* determine whether x is an odd integer or not; assumes that
+ x is not an infinity or nan. */
+#define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
+
+static PyObject *
+float_pow(PyObject *v, PyObject *w, PyObject *z)
+{
+ double iv, iw, ix;
+ int negate_result = 0;
+
+ if ((PyObject *)z != Py_None) {
+ PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
+ "allowed unless all arguments are integers");
+ return NULL;
+ }
+
+ CONVERT_TO_DOUBLE(v, iv);
+ CONVERT_TO_DOUBLE(w, iw);
+
+ /* Sort out special cases here instead of relying on pow() */
+ if (iw == 0) { /* v**0 is 1, even 0**0 */
+ return PyFloat_FromDouble(1.0);
+ }
+ if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
+ return PyFloat_FromDouble(iv);
+ }
+ if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
+ return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
+ }
+ if (Py_IS_INFINITY(iw)) {
+ /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
+ * abs(v) > 1 (including case where v infinite)
+ *
+ * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
+ * abs(v) > 1 (including case where v infinite)
+ */
+ iv = fabs(iv);
+ if (iv == 1.0)
+ return PyFloat_FromDouble(1.0);
+ else if ((iw > 0.0) == (iv > 1.0))
+ return PyFloat_FromDouble(fabs(iw)); /* return inf */
+ else
+ return PyFloat_FromDouble(0.0);
+ }
+ if (Py_IS_INFINITY(iv)) {
+ /* (+-inf)**w is: inf for w positive, 0 for w negative; in
+ * both cases, we need to add the appropriate sign if w is
+ * an odd integer.
+ */
+ int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
+ if (iw > 0.0)
+ return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
+ else
+ return PyFloat_FromDouble(iw_is_odd ?
+ copysign(0.0, iv) : 0.0);
+ }
+ if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
+ (already dealt with above), and an error
+ if w is negative. */
+ int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
+ if (iw < 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "0.0 cannot be raised to a "
+ "negative power");
+ return NULL;
+ }
+ /* use correct sign if iw is odd */
+ return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
+ }
+
+ if (iv < 0.0) {
+ /* Whether this is an error is a mess, and bumps into libm
+ * bugs so we have to figure it out ourselves.
+ */
+ if (iw != floor(iw)) {
+ /* Negative numbers raised to fractional powers
+ * become complex.
+ */
+ return PyComplex_Type.tp_as_number->nb_power(v, w, z);
+ }
+ /* iw is an exact integer, albeit perhaps a very large
+ * one. Replace iv by its absolute value and remember
+ * to negate the pow result if iw is odd.
+ */
+ iv = -iv;
+ negate_result = DOUBLE_IS_ODD_INTEGER(iw);
+ }
+
+ if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
+ /* (-1) ** large_integer also ends up here. Here's an
+ * extract from the comments for the previous
+ * implementation explaining why this special case is
+ * necessary:
+ *
+ * -1 raised to an exact integer should never be exceptional.
+ * Alas, some libms (chiefly glibc as of early 2003) return
+ * NaN and set EDOM on pow(-1, large_int) if the int doesn't
+ * happen to be representable in a *C* integer. That's a
+ * bug.
+ */
+ return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
+ }
+
+ /* Now iv and iw are finite, iw is nonzero, and iv is
+ * positive and not equal to 1.0. We finally allow
+ * the platform pow to step in and do the rest.
+ */
+ errno = 0;
+ ix = pow(iv, iw);
+ Py_ADJUST_ERANGE1(ix);
+ if (negate_result)
+ ix = -ix;
+
+ if (errno != 0) {
+ /* We don't expect any errno value other than ERANGE, but
+ * the range of libm bugs appears unbounded.
+ */
+ PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
+ PyExc_ValueError);
+ return NULL;
+ }
+ return PyFloat_FromDouble(ix);
+}
+
+#undef DOUBLE_IS_ODD_INTEGER
+
+static PyObject *
+float_neg(PyFloatObject *v)
+{
+ return PyFloat_FromDouble(-v->ob_fval);
+}
+
+static PyObject *
+float_abs(PyFloatObject *v)
+{
+ return PyFloat_FromDouble(fabs(v->ob_fval));
+}
+
+static int
+float_bool(PyFloatObject *v)
+{
+ return v->ob_fval != 0.0;
+}
+
+/*[clinic input]
+float.is_integer
+
+Return True if the float is an integer.
+[clinic start generated code]*/
+
+static PyObject *
+float_is_integer_impl(PyObject *self)
+/*[clinic end generated code: output=7112acf95a4d31ea input=311810d3f777e10d]*/
+{
+ double x = PyFloat_AsDouble(self);
+ PyObject *o;
+
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ if (!Py_IS_FINITE(x))
+ Py_RETURN_FALSE;
+ errno = 0;
+ o = (floor(x) == x) ? Py_True : Py_False;
+ if (errno != 0) {
+ PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
+ PyExc_ValueError);
+ return NULL;
+ }
+ Py_INCREF(o);
+ return o;
+}
+
+/*[clinic input]
+float.__trunc__
+
+Return the Integral closest to x between 0 and x.
+[clinic start generated code]*/
+
+static PyObject *
+float___trunc___impl(PyObject *self)
+/*[clinic end generated code: output=dd3e289dd4c6b538 input=591b9ba0d650fdff]*/
+{
return PyLong_FromDouble(PyFloat_AS_DOUBLE(self));
}
-
+
/*[clinic input]
float.__floor__
@@ -877,8 +877,8 @@ float___floor___impl(PyObject *self)
{
double x = PyFloat_AS_DOUBLE(self);
return PyLong_FromDouble(floor(x));
-}
-
+}
+
/*[clinic input]
float.__ceil__
@@ -893,1709 +893,1709 @@ float___ceil___impl(PyObject *self)
return PyLong_FromDouble(ceil(x));
}
-/* double_round: rounds a finite double to the closest multiple of
- 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
- ndigits <= 323). Returns a Python float, or sets a Python error and
- returns NULL on failure (OverflowError and memory errors are possible). */
-
-#ifndef PY_NO_SHORT_FLOAT_REPR
-/* version of double_round that uses the correctly-rounded string<->double
- conversions from Python/dtoa.c */
-
-static PyObject *
-double_round(double x, int ndigits) {
-
- double rounded;
- Py_ssize_t buflen, mybuflen=100;
- char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
- int decpt, sign;
- PyObject *result = NULL;
- _Py_SET_53BIT_PRECISION_HEADER;
-
- /* round to a decimal string */
- _Py_SET_53BIT_PRECISION_START;
- buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
- _Py_SET_53BIT_PRECISION_END;
- if (buf == NULL) {
- PyErr_NoMemory();
- return NULL;
- }
-
- /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
- buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
- buflen = buf_end - buf;
- if (buflen + 8 > mybuflen) {
- mybuflen = buflen+8;
- mybuf = (char *)PyMem_Malloc(mybuflen);
- if (mybuf == NULL) {
- PyErr_NoMemory();
- goto exit;
- }
- }
- /* copy buf to mybuf, adding exponent, sign and leading 0 */
- PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
- buf, decpt - (int)buflen);
-
- /* and convert the resulting string back to a double */
- errno = 0;
- _Py_SET_53BIT_PRECISION_START;
- rounded = _Py_dg_strtod(mybuf, NULL);
- _Py_SET_53BIT_PRECISION_END;
- if (errno == ERANGE && fabs(rounded) >= 1.)
- PyErr_SetString(PyExc_OverflowError,
- "rounded value too large to represent");
- else
- result = PyFloat_FromDouble(rounded);
-
- /* done computing value; now clean up */
- if (mybuf != shortbuf)
- PyMem_Free(mybuf);
- exit:
- _Py_dg_freedtoa(buf);
- return result;
-}
-
-#else /* PY_NO_SHORT_FLOAT_REPR */
-
-/* fallback version, to be used when correctly rounded binary<->decimal
- conversions aren't available */
-
-static PyObject *
-double_round(double x, int ndigits) {
- double pow1, pow2, y, z;
- if (ndigits >= 0) {
- if (ndigits > 22) {
- /* pow1 and pow2 are each safe from overflow, but
- pow1*pow2 ~= pow(10.0, ndigits) might overflow */
- pow1 = pow(10.0, (double)(ndigits-22));
- pow2 = 1e22;
- }
- else {
- pow1 = pow(10.0, (double)ndigits);
- pow2 = 1.0;
- }
- y = (x*pow1)*pow2;
- /* if y overflows, then rounded value is exactly x */
- if (!Py_IS_FINITE(y))
- return PyFloat_FromDouble(x);
- }
- else {
- pow1 = pow(10.0, (double)-ndigits);
- pow2 = 1.0; /* unused; silences a gcc compiler warning */
- y = x / pow1;
- }
-
- z = round(y);
- if (fabs(y-z) == 0.5)
- /* halfway between two integers; use round-half-even */
- z = 2.0*round(y/2.0);
-
- if (ndigits >= 0)
- z = (z / pow2) / pow1;
- else
- z *= pow1;
-
- /* if computation resulted in overflow, raise OverflowError */
- if (!Py_IS_FINITE(z)) {
- PyErr_SetString(PyExc_OverflowError,
- "overflow occurred during round");
- return NULL;
- }
-
- return PyFloat_FromDouble(z);
-}
-
-#endif /* PY_NO_SHORT_FLOAT_REPR */
-
-/* round a Python float v to the closest multiple of 10**-ndigits */
-
-/*[clinic input]
-float.__round__
-
+/* double_round: rounds a finite double to the closest multiple of
+ 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
+ ndigits <= 323). Returns a Python float, or sets a Python error and
+ returns NULL on failure (OverflowError and memory errors are possible). */
+
+#ifndef PY_NO_SHORT_FLOAT_REPR
+/* version of double_round that uses the correctly-rounded string<->double
+ conversions from Python/dtoa.c */
+
+static PyObject *
+double_round(double x, int ndigits) {
+
+ double rounded;
+ Py_ssize_t buflen, mybuflen=100;
+ char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
+ int decpt, sign;
+ PyObject *result = NULL;
+ _Py_SET_53BIT_PRECISION_HEADER;
+
+ /* round to a decimal string */
+ _Py_SET_53BIT_PRECISION_START;
+ buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
+ _Py_SET_53BIT_PRECISION_END;
+ if (buf == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+
+ /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
+ buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
+ buflen = buf_end - buf;
+ if (buflen + 8 > mybuflen) {
+ mybuflen = buflen+8;
+ mybuf = (char *)PyMem_Malloc(mybuflen);
+ if (mybuf == NULL) {
+ PyErr_NoMemory();
+ goto exit;
+ }
+ }
+ /* copy buf to mybuf, adding exponent, sign and leading 0 */
+ PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
+ buf, decpt - (int)buflen);
+
+ /* and convert the resulting string back to a double */
+ errno = 0;
+ _Py_SET_53BIT_PRECISION_START;
+ rounded = _Py_dg_strtod(mybuf, NULL);
+ _Py_SET_53BIT_PRECISION_END;
+ if (errno == ERANGE && fabs(rounded) >= 1.)
+ PyErr_SetString(PyExc_OverflowError,
+ "rounded value too large to represent");
+ else
+ result = PyFloat_FromDouble(rounded);
+
+ /* done computing value; now clean up */
+ if (mybuf != shortbuf)
+ PyMem_Free(mybuf);
+ exit:
+ _Py_dg_freedtoa(buf);
+ return result;
+}
+
+#else /* PY_NO_SHORT_FLOAT_REPR */
+
+/* fallback version, to be used when correctly rounded binary<->decimal
+ conversions aren't available */
+
+static PyObject *
+double_round(double x, int ndigits) {
+ double pow1, pow2, y, z;
+ if (ndigits >= 0) {
+ if (ndigits > 22) {
+ /* pow1 and pow2 are each safe from overflow, but
+ pow1*pow2 ~= pow(10.0, ndigits) might overflow */
+ pow1 = pow(10.0, (double)(ndigits-22));
+ pow2 = 1e22;
+ }
+ else {
+ pow1 = pow(10.0, (double)ndigits);
+ pow2 = 1.0;
+ }
+ y = (x*pow1)*pow2;
+ /* if y overflows, then rounded value is exactly x */
+ if (!Py_IS_FINITE(y))
+ return PyFloat_FromDouble(x);
+ }
+ else {
+ pow1 = pow(10.0, (double)-ndigits);
+ pow2 = 1.0; /* unused; silences a gcc compiler warning */
+ y = x / pow1;
+ }
+
+ z = round(y);
+ if (fabs(y-z) == 0.5)
+ /* halfway between two integers; use round-half-even */
+ z = 2.0*round(y/2.0);
+
+ if (ndigits >= 0)
+ z = (z / pow2) / pow1;
+ else
+ z *= pow1;
+
+ /* if computation resulted in overflow, raise OverflowError */
+ if (!Py_IS_FINITE(z)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "overflow occurred during round");
+ return NULL;
+ }
+
+ return PyFloat_FromDouble(z);
+}
+
+#endif /* PY_NO_SHORT_FLOAT_REPR */
+
+/* round a Python float v to the closest multiple of 10**-ndigits */
+
+/*[clinic input]
+float.__round__
+
ndigits as o_ndigits: object = None
- /
-
-Return the Integral closest to x, rounding half toward even.
-
-When an argument is passed, work like built-in round(x, ndigits).
-[clinic start generated code]*/
-
-static PyObject *
-float___round___impl(PyObject *self, PyObject *o_ndigits)
+ /
+
+Return the Integral closest to x, rounding half toward even.
+
+When an argument is passed, work like built-in round(x, ndigits).
+[clinic start generated code]*/
+
+static PyObject *
+float___round___impl(PyObject *self, PyObject *o_ndigits)
/*[clinic end generated code: output=374c36aaa0f13980 input=fc0fe25924fbc9ed]*/
-{
- double x, rounded;
- Py_ssize_t ndigits;
-
- x = PyFloat_AsDouble(self);
+{
+ double x, rounded;
+ Py_ssize_t ndigits;
+
+ x = PyFloat_AsDouble(self);
if (o_ndigits == Py_None) {
- /* single-argument round or with None ndigits:
- * round to nearest integer */
- rounded = round(x);
- if (fabs(x-rounded) == 0.5)
- /* halfway case: round to even */
- rounded = 2.0*round(x/2.0);
- return PyLong_FromDouble(rounded);
- }
-
- /* interpret second argument as a Py_ssize_t; clips on overflow */
- ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
- if (ndigits == -1 && PyErr_Occurred())
- return NULL;
-
- /* nans and infinities round to themselves */
- if (!Py_IS_FINITE(x))
- return PyFloat_FromDouble(x);
-
- /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
- always rounds to itself. For ndigits < NDIGITS_MIN, x always
- rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
-#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
-#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
- if (ndigits > NDIGITS_MAX)
- /* return x */
- return PyFloat_FromDouble(x);
- else if (ndigits < NDIGITS_MIN)
- /* return 0.0, but with sign of x */
- return PyFloat_FromDouble(0.0*x);
- else
- /* finite x, and ndigits is not unreasonably large */
- return double_round(x, (int)ndigits);
-#undef NDIGITS_MAX
-#undef NDIGITS_MIN
-}
-
-static PyObject *
-float_float(PyObject *v)
-{
- if (PyFloat_CheckExact(v))
- Py_INCREF(v);
- else
- v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
- return v;
-}
-
-/*[clinic input]
-float.conjugate
-
-Return self, the complex conjugate of any float.
-[clinic start generated code]*/
-
-static PyObject *
-float_conjugate_impl(PyObject *self)
-/*[clinic end generated code: output=8ca292c2479194af input=82ba6f37a9ff91dd]*/
-{
- return float_float(self);
-}
-
-/* turn ASCII hex characters into integer values and vice versa */
-
-static char
-char_from_hex(int x)
-{
- assert(0 <= x && x < 16);
- return Py_hexdigits[x];
-}
-
-static int
-hex_from_char(char c) {
- int x;
- switch(c) {
- case '0':
- x = 0;
- break;
- case '1':
- x = 1;
- break;
- case '2':
- x = 2;
- break;
- case '3':
- x = 3;
- break;
- case '4':
- x = 4;
- break;
- case '5':
- x = 5;
- break;
- case '6':
- x = 6;
- break;
- case '7':
- x = 7;
- break;
- case '8':
- x = 8;
- break;
- case '9':
- x = 9;
- break;
- case 'a':
- case 'A':
- x = 10;
- break;
- case 'b':
- case 'B':
- x = 11;
- break;
- case 'c':
- case 'C':
- x = 12;
- break;
- case 'd':
- case 'D':
- x = 13;
- break;
- case 'e':
- case 'E':
- x = 14;
- break;
- case 'f':
- case 'F':
- x = 15;
- break;
- default:
- x = -1;
- break;
- }
- return x;
-}
-
-/* convert a float to a hexadecimal string */
-
-/* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
- of the form 4k+1. */
-#define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
-
-/*[clinic input]
-float.hex
-
-Return a hexadecimal representation of a floating-point number.
-
->>> (-0.1).hex()
-'-0x1.999999999999ap-4'
->>> 3.14159.hex()
-'0x1.921f9f01b866ep+1'
-[clinic start generated code]*/
-
-static PyObject *
-float_hex_impl(PyObject *self)
-/*[clinic end generated code: output=0ebc9836e4d302d4 input=bec1271a33d47e67]*/
-{
- double x, m;
- int e, shift, i, si, esign;
- /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
- trailing NUL byte. */
- char s[(TOHEX_NBITS-1)/4+3];
-
- CONVERT_TO_DOUBLE(self, x);
-
- if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
- return float_repr((PyFloatObject *)self);
-
- if (x == 0.0) {
- if (copysign(1.0, x) == -1.0)
- return PyUnicode_FromString("-0x0.0p+0");
- else
- return PyUnicode_FromString("0x0.0p+0");
- }
-
- m = frexp(fabs(x), &e);
- shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0);
- m = ldexp(m, shift);
- e -= shift;
-
- si = 0;
- s[si] = char_from_hex((int)m);
- si++;
- m -= (int)m;
- s[si] = '.';
- si++;
- for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
- m *= 16.0;
- s[si] = char_from_hex((int)m);
- si++;
- m -= (int)m;
- }
- s[si] = '\0';
-
- if (e < 0) {
- esign = (int)'-';
- e = -e;
- }
- else
- esign = (int)'+';
-
- if (x < 0.0)
- return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
- else
- return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
-}
-
-/* Convert a hexadecimal string to a float. */
-
-/*[clinic input]
-@classmethod
-float.fromhex
-
- string: object
- /
-
-Create a floating-point number from a hexadecimal string.
-
->>> float.fromhex('0x1.ffffp10')
-2047.984375
->>> float.fromhex('-0x1p-1074')
--5e-324
-[clinic start generated code]*/
-
-static PyObject *
-float_fromhex(PyTypeObject *type, PyObject *string)
-/*[clinic end generated code: output=46c0274d22b78e82 input=0407bebd354bca89]*/
-{
- PyObject *result;
- double x;
- long exp, top_exp, lsb, key_digit;
- const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
- int half_eps, digit, round_up, negate=0;
- Py_ssize_t length, ndigits, fdigits, i;
-
- /*
- * For the sake of simplicity and correctness, we impose an artificial
- * limit on ndigits, the total number of hex digits in the coefficient
- * The limit is chosen to ensure that, writing exp for the exponent,
- *
- * (1) if exp > LONG_MAX/2 then the value of the hex string is
- * guaranteed to overflow (provided it's nonzero)
- *
- * (2) if exp < LONG_MIN/2 then the value of the hex string is
- * guaranteed to underflow to 0.
- *
- * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
- * overflow in the calculation of exp and top_exp below.
- *
- * More specifically, ndigits is assumed to satisfy the following
- * inequalities:
- *
- * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
- * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
- *
- * If either of these inequalities is not satisfied, a ValueError is
- * raised. Otherwise, write x for the value of the hex string, and
- * assume x is nonzero. Then
- *
- * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
- *
- * Now if exp > LONG_MAX/2 then:
- *
- * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
- * = DBL_MAX_EXP
- *
- * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
- * double, so overflows. If exp < LONG_MIN/2, then
- *
- * exp + 4*ndigits <= LONG_MIN/2 - 1 + (
- * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
- * = DBL_MIN_EXP - DBL_MANT_DIG - 1
- *
- * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
- * when converted to a C double.
- *
- * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
- * exp+4*ndigits and exp-4*ndigits are within the range of a long.
- */
-
- s = PyUnicode_AsUTF8AndSize(string, &length);
- if (s == NULL)
- return NULL;
- s_end = s + length;
-
- /********************
- * Parse the string *
- ********************/
-
- /* leading whitespace */
- while (Py_ISSPACE(*s))
- s++;
-
- /* infinities and nans */
- x = _Py_parse_inf_or_nan(s, (char **)&coeff_end);
- if (coeff_end != s) {
- s = coeff_end;
- goto finished;
- }
-
- /* optional sign */
- if (*s == '-') {
- s++;
- negate = 1;
- }
- else if (*s == '+')
- s++;
-
- /* [0x] */
- s_store = s;
- if (*s == '0') {
- s++;
- if (*s == 'x' || *s == 'X')
- s++;
- else
- s = s_store;
- }
-
- /* coefficient: <integer> [. <fraction>] */
- coeff_start = s;
- while (hex_from_char(*s) >= 0)
- s++;
- s_store = s;
- if (*s == '.') {
- s++;
- while (hex_from_char(*s) >= 0)
- s++;
- coeff_end = s-1;
- }
- else
- coeff_end = s;
-
- /* ndigits = total # of hex digits; fdigits = # after point */
- ndigits = coeff_end - coeff_start;
- fdigits = coeff_end - s_store;
- if (ndigits == 0)
- goto parse_error;
- if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
- LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
- goto insane_length_error;
-
- /* [p <exponent>] */
- if (*s == 'p' || *s == 'P') {
- s++;
- exp_start = s;
- if (*s == '-' || *s == '+')
- s++;
- if (!('0' <= *s && *s <= '9'))
- goto parse_error;
- s++;
- while ('0' <= *s && *s <= '9')
- s++;
- exp = strtol(exp_start, NULL, 10);
- }
- else
- exp = 0;
-
-/* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
-#define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
- coeff_end-(j) : \
- coeff_end-1-(j)))
-
- /*******************************************
- * Compute rounded value of the hex string *
- *******************************************/
-
- /* Discard leading zeros, and catch extreme overflow and underflow */
- while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
- ndigits--;
- if (ndigits == 0 || exp < LONG_MIN/2) {
- x = 0.0;
- goto finished;
- }
- if (exp > LONG_MAX/2)
- goto overflow_error;
-
- /* Adjust exponent for fractional part. */
- exp = exp - 4*((long)fdigits);
-
- /* top_exp = 1 more than exponent of most sig. bit of coefficient */
- top_exp = exp + 4*((long)ndigits - 1);
- for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
- top_exp++;
-
- /* catch almost all nonextreme cases of overflow and underflow here */
- if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
- x = 0.0;
- goto finished;
- }
- if (top_exp > DBL_MAX_EXP)
- goto overflow_error;
-
- /* lsb = exponent of least significant bit of the *rounded* value.
- This is top_exp - DBL_MANT_DIG unless result is subnormal. */
- lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
-
- x = 0.0;
- if (exp >= lsb) {
- /* no rounding required */
- for (i = ndigits-1; i >= 0; i--)
- x = 16.0*x + HEX_DIGIT(i);
- x = ldexp(x, (int)(exp));
- goto finished;
- }
- /* rounding required. key_digit is the index of the hex digit
- containing the first bit to be rounded away. */
- half_eps = 1 << (int)((lsb - exp - 1) % 4);
- key_digit = (lsb - exp - 1) / 4;
- for (i = ndigits-1; i > key_digit; i--)
- x = 16.0*x + HEX_DIGIT(i);
- digit = HEX_DIGIT(key_digit);
- x = 16.0*x + (double)(digit & (16-2*half_eps));
-
- /* round-half-even: round up if bit lsb-1 is 1 and at least one of
- bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
- if ((digit & half_eps) != 0) {
- round_up = 0;
+ /* single-argument round or with None ndigits:
+ * round to nearest integer */
+ rounded = round(x);
+ if (fabs(x-rounded) == 0.5)
+ /* halfway case: round to even */
+ rounded = 2.0*round(x/2.0);
+ return PyLong_FromDouble(rounded);
+ }
+
+ /* interpret second argument as a Py_ssize_t; clips on overflow */
+ ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
+ if (ndigits == -1 && PyErr_Occurred())
+ return NULL;
+
+ /* nans and infinities round to themselves */
+ if (!Py_IS_FINITE(x))
+ return PyFloat_FromDouble(x);
+
+ /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
+ always rounds to itself. For ndigits < NDIGITS_MIN, x always
+ rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
+#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
+#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
+ if (ndigits > NDIGITS_MAX)
+ /* return x */
+ return PyFloat_FromDouble(x);
+ else if (ndigits < NDIGITS_MIN)
+ /* return 0.0, but with sign of x */
+ return PyFloat_FromDouble(0.0*x);
+ else
+ /* finite x, and ndigits is not unreasonably large */
+ return double_round(x, (int)ndigits);
+#undef NDIGITS_MAX
+#undef NDIGITS_MIN
+}
+
+static PyObject *
+float_float(PyObject *v)
+{
+ if (PyFloat_CheckExact(v))
+ Py_INCREF(v);
+ else
+ v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
+ return v;
+}
+
+/*[clinic input]
+float.conjugate
+
+Return self, the complex conjugate of any float.
+[clinic start generated code]*/
+
+static PyObject *
+float_conjugate_impl(PyObject *self)
+/*[clinic end generated code: output=8ca292c2479194af input=82ba6f37a9ff91dd]*/
+{
+ return float_float(self);
+}
+
+/* turn ASCII hex characters into integer values and vice versa */
+
+static char
+char_from_hex(int x)
+{
+ assert(0 <= x && x < 16);
+ return Py_hexdigits[x];
+}
+
+static int
+hex_from_char(char c) {
+ int x;
+ switch(c) {
+ case '0':
+ x = 0;
+ break;
+ case '1':
+ x = 1;
+ break;
+ case '2':
+ x = 2;
+ break;
+ case '3':
+ x = 3;
+ break;
+ case '4':
+ x = 4;
+ break;
+ case '5':
+ x = 5;
+ break;
+ case '6':
+ x = 6;
+ break;
+ case '7':
+ x = 7;
+ break;
+ case '8':
+ x = 8;
+ break;
+ case '9':
+ x = 9;
+ break;
+ case 'a':
+ case 'A':
+ x = 10;
+ break;
+ case 'b':
+ case 'B':
+ x = 11;
+ break;
+ case 'c':
+ case 'C':
+ x = 12;
+ break;
+ case 'd':
+ case 'D':
+ x = 13;
+ break;
+ case 'e':
+ case 'E':
+ x = 14;
+ break;
+ case 'f':
+ case 'F':
+ x = 15;
+ break;
+ default:
+ x = -1;
+ break;
+ }
+ return x;
+}
+
+/* convert a float to a hexadecimal string */
+
+/* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
+ of the form 4k+1. */
+#define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
+
+/*[clinic input]
+float.hex
+
+Return a hexadecimal representation of a floating-point number.
+
+>>> (-0.1).hex()
+'-0x1.999999999999ap-4'
+>>> 3.14159.hex()
+'0x1.921f9f01b866ep+1'
+[clinic start generated code]*/
+
+static PyObject *
+float_hex_impl(PyObject *self)
+/*[clinic end generated code: output=0ebc9836e4d302d4 input=bec1271a33d47e67]*/
+{
+ double x, m;
+ int e, shift, i, si, esign;
+ /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
+ trailing NUL byte. */
+ char s[(TOHEX_NBITS-1)/4+3];
+
+ CONVERT_TO_DOUBLE(self, x);
+
+ if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
+ return float_repr((PyFloatObject *)self);
+
+ if (x == 0.0) {
+ if (copysign(1.0, x) == -1.0)
+ return PyUnicode_FromString("-0x0.0p+0");
+ else
+ return PyUnicode_FromString("0x0.0p+0");
+ }
+
+ m = frexp(fabs(x), &e);
+ shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0);
+ m = ldexp(m, shift);
+ e -= shift;
+
+ si = 0;
+ s[si] = char_from_hex((int)m);
+ si++;
+ m -= (int)m;
+ s[si] = '.';
+ si++;
+ for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
+ m *= 16.0;
+ s[si] = char_from_hex((int)m);
+ si++;
+ m -= (int)m;
+ }
+ s[si] = '\0';
+
+ if (e < 0) {
+ esign = (int)'-';
+ e = -e;
+ }
+ else
+ esign = (int)'+';
+
+ if (x < 0.0)
+ return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
+ else
+ return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
+}
+
+/* Convert a hexadecimal string to a float. */
+
+/*[clinic input]
+@classmethod
+float.fromhex
+
+ string: object
+ /
+
+Create a floating-point number from a hexadecimal string.
+
+>>> float.fromhex('0x1.ffffp10')
+2047.984375
+>>> float.fromhex('-0x1p-1074')
+-5e-324
+[clinic start generated code]*/
+
+static PyObject *
+float_fromhex(PyTypeObject *type, PyObject *string)
+/*[clinic end generated code: output=46c0274d22b78e82 input=0407bebd354bca89]*/
+{
+ PyObject *result;
+ double x;
+ long exp, top_exp, lsb, key_digit;
+ const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
+ int half_eps, digit, round_up, negate=0;
+ Py_ssize_t length, ndigits, fdigits, i;
+
+ /*
+ * For the sake of simplicity and correctness, we impose an artificial
+ * limit on ndigits, the total number of hex digits in the coefficient
+ * The limit is chosen to ensure that, writing exp for the exponent,
+ *
+ * (1) if exp > LONG_MAX/2 then the value of the hex string is
+ * guaranteed to overflow (provided it's nonzero)
+ *
+ * (2) if exp < LONG_MIN/2 then the value of the hex string is
+ * guaranteed to underflow to 0.
+ *
+ * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
+ * overflow in the calculation of exp and top_exp below.
+ *
+ * More specifically, ndigits is assumed to satisfy the following
+ * inequalities:
+ *
+ * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
+ * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
+ *
+ * If either of these inequalities is not satisfied, a ValueError is
+ * raised. Otherwise, write x for the value of the hex string, and
+ * assume x is nonzero. Then
+ *
+ * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
+ *
+ * Now if exp > LONG_MAX/2 then:
+ *
+ * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
+ * = DBL_MAX_EXP
+ *
+ * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
+ * double, so overflows. If exp < LONG_MIN/2, then
+ *
+ * exp + 4*ndigits <= LONG_MIN/2 - 1 + (
+ * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
+ * = DBL_MIN_EXP - DBL_MANT_DIG - 1
+ *
+ * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
+ * when converted to a C double.
+ *
+ * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
+ * exp+4*ndigits and exp-4*ndigits are within the range of a long.
+ */
+
+ s = PyUnicode_AsUTF8AndSize(string, &length);
+ if (s == NULL)
+ return NULL;
+ s_end = s + length;
+
+ /********************
+ * Parse the string *
+ ********************/
+
+ /* leading whitespace */
+ while (Py_ISSPACE(*s))
+ s++;
+
+ /* infinities and nans */
+ x = _Py_parse_inf_or_nan(s, (char **)&coeff_end);
+ if (coeff_end != s) {
+ s = coeff_end;
+ goto finished;
+ }
+
+ /* optional sign */
+ if (*s == '-') {
+ s++;
+ negate = 1;
+ }
+ else if (*s == '+')
+ s++;
+
+ /* [0x] */
+ s_store = s;
+ if (*s == '0') {
+ s++;
+ if (*s == 'x' || *s == 'X')
+ s++;
+ else
+ s = s_store;
+ }
+
+ /* coefficient: <integer> [. <fraction>] */
+ coeff_start = s;
+ while (hex_from_char(*s) >= 0)
+ s++;
+ s_store = s;
+ if (*s == '.') {
+ s++;
+ while (hex_from_char(*s) >= 0)
+ s++;
+ coeff_end = s-1;
+ }
+ else
+ coeff_end = s;
+
+ /* ndigits = total # of hex digits; fdigits = # after point */
+ ndigits = coeff_end - coeff_start;
+ fdigits = coeff_end - s_store;
+ if (ndigits == 0)
+ goto parse_error;
+ if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
+ LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
+ goto insane_length_error;
+
+ /* [p <exponent>] */
+ if (*s == 'p' || *s == 'P') {
+ s++;
+ exp_start = s;
+ if (*s == '-' || *s == '+')
+ s++;
+ if (!('0' <= *s && *s <= '9'))
+ goto parse_error;
+ s++;
+ while ('0' <= *s && *s <= '9')
+ s++;
+ exp = strtol(exp_start, NULL, 10);
+ }
+ else
+ exp = 0;
+
+/* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
+#define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
+ coeff_end-(j) : \
+ coeff_end-1-(j)))
+
+ /*******************************************
+ * Compute rounded value of the hex string *
+ *******************************************/
+
+ /* Discard leading zeros, and catch extreme overflow and underflow */
+ while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
+ ndigits--;
+ if (ndigits == 0 || exp < LONG_MIN/2) {
+ x = 0.0;
+ goto finished;
+ }
+ if (exp > LONG_MAX/2)
+ goto overflow_error;
+
+ /* Adjust exponent for fractional part. */
+ exp = exp - 4*((long)fdigits);
+
+ /* top_exp = 1 more than exponent of most sig. bit of coefficient */
+ top_exp = exp + 4*((long)ndigits - 1);
+ for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
+ top_exp++;
+
+ /* catch almost all nonextreme cases of overflow and underflow here */
+ if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
+ x = 0.0;
+ goto finished;
+ }
+ if (top_exp > DBL_MAX_EXP)
+ goto overflow_error;
+
+ /* lsb = exponent of least significant bit of the *rounded* value.
+ This is top_exp - DBL_MANT_DIG unless result is subnormal. */
+ lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
+
+ x = 0.0;
+ if (exp >= lsb) {
+ /* no rounding required */
+ for (i = ndigits-1; i >= 0; i--)
+ x = 16.0*x + HEX_DIGIT(i);
+ x = ldexp(x, (int)(exp));
+ goto finished;
+ }
+ /* rounding required. key_digit is the index of the hex digit
+ containing the first bit to be rounded away. */
+ half_eps = 1 << (int)((lsb - exp - 1) % 4);
+ key_digit = (lsb - exp - 1) / 4;
+ for (i = ndigits-1; i > key_digit; i--)
+ x = 16.0*x + HEX_DIGIT(i);
+ digit = HEX_DIGIT(key_digit);
+ x = 16.0*x + (double)(digit & (16-2*half_eps));
+
+ /* round-half-even: round up if bit lsb-1 is 1 and at least one of
+ bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
+ if ((digit & half_eps) != 0) {
+ round_up = 0;
if ((digit & (3*half_eps-1)) != 0 || (half_eps == 8 &&
key_digit+1 < ndigits && (HEX_DIGIT(key_digit+1) & 1) != 0))
- round_up = 1;
- else
- for (i = key_digit-1; i >= 0; i--)
- if (HEX_DIGIT(i) != 0) {
- round_up = 1;
- break;
- }
- if (round_up) {
- x += 2*half_eps;
- if (top_exp == DBL_MAX_EXP &&
- x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
- /* overflow corner case: pre-rounded value <
- 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
- goto overflow_error;
- }
- }
- x = ldexp(x, (int)(exp+4*key_digit));
-
- finished:
- /* optional trailing whitespace leading to the end of the string */
- while (Py_ISSPACE(*s))
- s++;
- if (s != s_end)
- goto parse_error;
- result = PyFloat_FromDouble(negate ? -x : x);
- if (type != &PyFloat_Type && result != NULL) {
+ round_up = 1;
+ else
+ for (i = key_digit-1; i >= 0; i--)
+ if (HEX_DIGIT(i) != 0) {
+ round_up = 1;
+ break;
+ }
+ if (round_up) {
+ x += 2*half_eps;
+ if (top_exp == DBL_MAX_EXP &&
+ x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
+ /* overflow corner case: pre-rounded value <
+ 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
+ goto overflow_error;
+ }
+ }
+ x = ldexp(x, (int)(exp+4*key_digit));
+
+ finished:
+ /* optional trailing whitespace leading to the end of the string */
+ while (Py_ISSPACE(*s))
+ s++;
+ if (s != s_end)
+ goto parse_error;
+ result = PyFloat_FromDouble(negate ? -x : x);
+ if (type != &PyFloat_Type && result != NULL) {
Py_SETREF(result, PyObject_CallOneArg((PyObject *)type, result));
- }
- return result;
-
- overflow_error:
- PyErr_SetString(PyExc_OverflowError,
- "hexadecimal value too large to represent as a float");
- return NULL;
-
- parse_error:
- PyErr_SetString(PyExc_ValueError,
- "invalid hexadecimal floating-point string");
- return NULL;
-
- insane_length_error:
- PyErr_SetString(PyExc_ValueError,
- "hexadecimal string too long to convert");
- return NULL;
-}
-
-/*[clinic input]
-float.as_integer_ratio
-
-Return integer ratio.
-
-Return a pair of integers, whose ratio is exactly equal to the original float
-and with a positive denominator.
-
-Raise OverflowError on infinities and a ValueError on NaNs.
-
->>> (10.0).as_integer_ratio()
-(10, 1)
->>> (0.0).as_integer_ratio()
-(0, 1)
->>> (-.25).as_integer_ratio()
-(-1, 4)
-[clinic start generated code]*/
-
-static PyObject *
-float_as_integer_ratio_impl(PyObject *self)
-/*[clinic end generated code: output=65f25f0d8d30a712 input=e21d08b4630c2e44]*/
-{
- double self_double;
- double float_part;
- int exponent;
- int i;
-
- PyObject *py_exponent = NULL;
- PyObject *numerator = NULL;
- PyObject *denominator = NULL;
- PyObject *result_pair = NULL;
- PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
-
- CONVERT_TO_DOUBLE(self, self_double);
-
- if (Py_IS_INFINITY(self_double)) {
- PyErr_SetString(PyExc_OverflowError,
- "cannot convert Infinity to integer ratio");
- return NULL;
- }
- if (Py_IS_NAN(self_double)) {
- PyErr_SetString(PyExc_ValueError,
- "cannot convert NaN to integer ratio");
- return NULL;
- }
-
- float_part = frexp(self_double, &exponent); /* self_double == float_part * 2**exponent exactly */
-
- for (i=0; i<300 && float_part != floor(float_part) ; i++) {
- float_part *= 2.0;
- exponent--;
- }
- /* self == float_part * 2**exponent exactly and float_part is integral.
- If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
- to be truncated by PyLong_FromDouble(). */
-
- numerator = PyLong_FromDouble(float_part);
- if (numerator == NULL)
- goto error;
- denominator = PyLong_FromLong(1);
- if (denominator == NULL)
- goto error;
- py_exponent = PyLong_FromLong(Py_ABS(exponent));
- if (py_exponent == NULL)
- goto error;
-
- /* fold in 2**exponent */
- if (exponent > 0) {
- Py_SETREF(numerator,
- long_methods->nb_lshift(numerator, py_exponent));
- if (numerator == NULL)
- goto error;
- }
- else {
- Py_SETREF(denominator,
- long_methods->nb_lshift(denominator, py_exponent));
- if (denominator == NULL)
- goto error;
- }
-
- result_pair = PyTuple_Pack(2, numerator, denominator);
-
-error:
- Py_XDECREF(py_exponent);
- Py_XDECREF(denominator);
- Py_XDECREF(numerator);
- return result_pair;
-}
-
-static PyObject *
-float_subtype_new(PyTypeObject *type, PyObject *x);
-
-/*[clinic input]
-@classmethod
-float.__new__ as float_new
- x: object(c_default="_PyLong_Zero") = 0
- /
-
-Convert a string or number to a floating point number, if possible.
-[clinic start generated code]*/
-
-static PyObject *
-float_new_impl(PyTypeObject *type, PyObject *x)
-/*[clinic end generated code: output=ccf1e8dc460ba6ba input=540ee77c204ff87a]*/
-{
- if (type != &PyFloat_Type)
- return float_subtype_new(type, x); /* Wimp out */
- /* If it's a string, but not a string subclass, use
- PyFloat_FromString. */
- if (PyUnicode_CheckExact(x))
- return PyFloat_FromString(x);
- return PyNumber_Float(x);
-}
-
-/* Wimpy, slow approach to tp_new calls for subtypes of float:
- first create a regular float from whatever arguments we got,
- then allocate a subtype instance and initialize its ob_fval
- from the regular float. The regular float is then thrown away.
-*/
-static PyObject *
-float_subtype_new(PyTypeObject *type, PyObject *x)
-{
- PyObject *tmp, *newobj;
-
- assert(PyType_IsSubtype(type, &PyFloat_Type));
- tmp = float_new_impl(&PyFloat_Type, x);
- if (tmp == NULL)
- return NULL;
- assert(PyFloat_Check(tmp));
- newobj = type->tp_alloc(type, 0);
- if (newobj == NULL) {
- Py_DECREF(tmp);
- return NULL;
- }
- ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
- Py_DECREF(tmp);
- return newobj;
-}
-
-/*[clinic input]
-float.__getnewargs__
-[clinic start generated code]*/
-
-static PyObject *
-float___getnewargs___impl(PyObject *self)
-/*[clinic end generated code: output=873258c9d206b088 input=002279d1d77891e6]*/
-{
- return Py_BuildValue("(d)", ((PyFloatObject *)self)->ob_fval);
-}
-
-/* this is for the benefit of the pack/unpack routines below */
-
-typedef enum {
- unknown_format, ieee_big_endian_format, ieee_little_endian_format
-} float_format_type;
-
-static float_format_type double_format, float_format;
-static float_format_type detected_double_format, detected_float_format;
-
-/*[clinic input]
-@classmethod
-float.__getformat__
-
- typestr: str
- Must be 'double' or 'float'.
- /
-
-You probably don't want to use this function.
-
-It exists mainly to be used in Python's test suite.
-
-This function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE,
-little-endian' best describes the format of floating point numbers used by the
-C type named by typestr.
-[clinic start generated code]*/
-
-static PyObject *
-float___getformat___impl(PyTypeObject *type, const char *typestr)
-/*[clinic end generated code: output=2bfb987228cc9628 input=d5a52600f835ad67]*/
-{
- float_format_type r;
-
- if (strcmp(typestr, "double") == 0) {
- r = double_format;
- }
- else if (strcmp(typestr, "float") == 0) {
- r = float_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__getformat__() argument 1 must be "
- "'double' or 'float'");
- return NULL;
- }
-
- switch (r) {
- case unknown_format:
- return PyUnicode_FromString("unknown");
- case ieee_little_endian_format:
- return PyUnicode_FromString("IEEE, little-endian");
- case ieee_big_endian_format:
- return PyUnicode_FromString("IEEE, big-endian");
- default:
+ }
+ return result;
+
+ overflow_error:
+ PyErr_SetString(PyExc_OverflowError,
+ "hexadecimal value too large to represent as a float");
+ return NULL;
+
+ parse_error:
+ PyErr_SetString(PyExc_ValueError,
+ "invalid hexadecimal floating-point string");
+ return NULL;
+
+ insane_length_error:
+ PyErr_SetString(PyExc_ValueError,
+ "hexadecimal string too long to convert");
+ return NULL;
+}
+
+/*[clinic input]
+float.as_integer_ratio
+
+Return integer ratio.
+
+Return a pair of integers, whose ratio is exactly equal to the original float
+and with a positive denominator.
+
+Raise OverflowError on infinities and a ValueError on NaNs.
+
+>>> (10.0).as_integer_ratio()
+(10, 1)
+>>> (0.0).as_integer_ratio()
+(0, 1)
+>>> (-.25).as_integer_ratio()
+(-1, 4)
+[clinic start generated code]*/
+
+static PyObject *
+float_as_integer_ratio_impl(PyObject *self)
+/*[clinic end generated code: output=65f25f0d8d30a712 input=e21d08b4630c2e44]*/
+{
+ double self_double;
+ double float_part;
+ int exponent;
+ int i;
+
+ PyObject *py_exponent = NULL;
+ PyObject *numerator = NULL;
+ PyObject *denominator = NULL;
+ PyObject *result_pair = NULL;
+ PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
+
+ CONVERT_TO_DOUBLE(self, self_double);
+
+ if (Py_IS_INFINITY(self_double)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "cannot convert Infinity to integer ratio");
+ return NULL;
+ }
+ if (Py_IS_NAN(self_double)) {
+ PyErr_SetString(PyExc_ValueError,
+ "cannot convert NaN to integer ratio");
+ return NULL;
+ }
+
+ float_part = frexp(self_double, &exponent); /* self_double == float_part * 2**exponent exactly */
+
+ for (i=0; i<300 && float_part != floor(float_part) ; i++) {
+ float_part *= 2.0;
+ exponent--;
+ }
+ /* self == float_part * 2**exponent exactly and float_part is integral.
+ If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
+ to be truncated by PyLong_FromDouble(). */
+
+ numerator = PyLong_FromDouble(float_part);
+ if (numerator == NULL)
+ goto error;
+ denominator = PyLong_FromLong(1);
+ if (denominator == NULL)
+ goto error;
+ py_exponent = PyLong_FromLong(Py_ABS(exponent));
+ if (py_exponent == NULL)
+ goto error;
+
+ /* fold in 2**exponent */
+ if (exponent > 0) {
+ Py_SETREF(numerator,
+ long_methods->nb_lshift(numerator, py_exponent));
+ if (numerator == NULL)
+ goto error;
+ }
+ else {
+ Py_SETREF(denominator,
+ long_methods->nb_lshift(denominator, py_exponent));
+ if (denominator == NULL)
+ goto error;
+ }
+
+ result_pair = PyTuple_Pack(2, numerator, denominator);
+
+error:
+ Py_XDECREF(py_exponent);
+ Py_XDECREF(denominator);
+ Py_XDECREF(numerator);
+ return result_pair;
+}
+
+static PyObject *
+float_subtype_new(PyTypeObject *type, PyObject *x);
+
+/*[clinic input]
+@classmethod
+float.__new__ as float_new
+ x: object(c_default="_PyLong_Zero") = 0
+ /
+
+Convert a string or number to a floating point number, if possible.
+[clinic start generated code]*/
+
+static PyObject *
+float_new_impl(PyTypeObject *type, PyObject *x)
+/*[clinic end generated code: output=ccf1e8dc460ba6ba input=540ee77c204ff87a]*/
+{
+ if (type != &PyFloat_Type)
+ return float_subtype_new(type, x); /* Wimp out */
+ /* If it's a string, but not a string subclass, use
+ PyFloat_FromString. */
+ if (PyUnicode_CheckExact(x))
+ return PyFloat_FromString(x);
+ return PyNumber_Float(x);
+}
+
+/* Wimpy, slow approach to tp_new calls for subtypes of float:
+ first create a regular float from whatever arguments we got,
+ then allocate a subtype instance and initialize its ob_fval
+ from the regular float. The regular float is then thrown away.
+*/
+static PyObject *
+float_subtype_new(PyTypeObject *type, PyObject *x)
+{
+ PyObject *tmp, *newobj;
+
+ assert(PyType_IsSubtype(type, &PyFloat_Type));
+ tmp = float_new_impl(&PyFloat_Type, x);
+ if (tmp == NULL)
+ return NULL;
+ assert(PyFloat_Check(tmp));
+ newobj = type->tp_alloc(type, 0);
+ if (newobj == NULL) {
+ Py_DECREF(tmp);
+ return NULL;
+ }
+ ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
+ Py_DECREF(tmp);
+ return newobj;
+}
+
+/*[clinic input]
+float.__getnewargs__
+[clinic start generated code]*/
+
+static PyObject *
+float___getnewargs___impl(PyObject *self)
+/*[clinic end generated code: output=873258c9d206b088 input=002279d1d77891e6]*/
+{
+ return Py_BuildValue("(d)", ((PyFloatObject *)self)->ob_fval);
+}
+
+/* this is for the benefit of the pack/unpack routines below */
+
+typedef enum {
+ unknown_format, ieee_big_endian_format, ieee_little_endian_format
+} float_format_type;
+
+static float_format_type double_format, float_format;
+static float_format_type detected_double_format, detected_float_format;
+
+/*[clinic input]
+@classmethod
+float.__getformat__
+
+ typestr: str
+ Must be 'double' or 'float'.
+ /
+
+You probably don't want to use this function.
+
+It exists mainly to be used in Python's test suite.
+
+This function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE,
+little-endian' best describes the format of floating point numbers used by the
+C type named by typestr.
+[clinic start generated code]*/
+
+static PyObject *
+float___getformat___impl(PyTypeObject *type, const char *typestr)
+/*[clinic end generated code: output=2bfb987228cc9628 input=d5a52600f835ad67]*/
+{
+ float_format_type r;
+
+ if (strcmp(typestr, "double") == 0) {
+ r = double_format;
+ }
+ else if (strcmp(typestr, "float") == 0) {
+ r = float_format;
+ }
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "__getformat__() argument 1 must be "
+ "'double' or 'float'");
+ return NULL;
+ }
+
+ switch (r) {
+ case unknown_format:
+ return PyUnicode_FromString("unknown");
+ case ieee_little_endian_format:
+ return PyUnicode_FromString("IEEE, little-endian");
+ case ieee_big_endian_format:
+ return PyUnicode_FromString("IEEE, big-endian");
+ default:
PyErr_SetString(PyExc_RuntimeError,
"insane float_format or double_format");
- return NULL;
- }
-}
-
-/*[clinic input]
-@classmethod
-float.__set_format__
-
- typestr: str
- Must be 'double' or 'float'.
- fmt: str
- Must be one of 'unknown', 'IEEE, big-endian' or 'IEEE, little-endian',
- and in addition can only be one of the latter two if it appears to
- match the underlying C reality.
- /
-
-You probably don't want to use this function.
-
-It exists mainly to be used in Python's test suite.
-
-Override the automatic determination of C-level floating point type.
-This affects how floats are converted to and from binary strings.
-[clinic start generated code]*/
-
-static PyObject *
-float___set_format___impl(PyTypeObject *type, const char *typestr,
- const char *fmt)
-/*[clinic end generated code: output=504460f5dc85acbd input=5306fa2b81a997e4]*/
-{
- float_format_type f;
- float_format_type detected;
- float_format_type *p;
-
- if (strcmp(typestr, "double") == 0) {
- p = &double_format;
- detected = detected_double_format;
- }
- else if (strcmp(typestr, "float") == 0) {
- p = &float_format;
- detected = detected_float_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__setformat__() argument 1 must "
- "be 'double' or 'float'");
- return NULL;
- }
-
- if (strcmp(fmt, "unknown") == 0) {
- f = unknown_format;
- }
- else if (strcmp(fmt, "IEEE, little-endian") == 0) {
- f = ieee_little_endian_format;
- }
- else if (strcmp(fmt, "IEEE, big-endian") == 0) {
- f = ieee_big_endian_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__setformat__() argument 2 must be "
- "'unknown', 'IEEE, little-endian' or "
- "'IEEE, big-endian'");
- return NULL;
-
- }
-
- if (f != unknown_format && f != detected) {
- PyErr_Format(PyExc_ValueError,
- "can only set %s format to 'unknown' or the "
- "detected platform value", typestr);
- return NULL;
- }
-
- *p = f;
- Py_RETURN_NONE;
-}
-
-static PyObject *
-float_getreal(PyObject *v, void *closure)
-{
- return float_float(v);
-}
-
-static PyObject *
-float_getimag(PyObject *v, void *closure)
-{
- return PyFloat_FromDouble(0.0);
-}
-
-/*[clinic input]
-float.__format__
-
- format_spec: unicode
- /
-
-Formats the float according to format_spec.
-[clinic start generated code]*/
-
-static PyObject *
-float___format___impl(PyObject *self, PyObject *format_spec)
-/*[clinic end generated code: output=b260e52a47eade56 input=2ece1052211fd0e6]*/
-{
- _PyUnicodeWriter writer;
- int ret;
-
- _PyUnicodeWriter_Init(&writer);
- ret = _PyFloat_FormatAdvancedWriter(
- &writer,
- self,
- format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
- if (ret == -1) {
- _PyUnicodeWriter_Dealloc(&writer);
- return NULL;
- }
- return _PyUnicodeWriter_Finish(&writer);
-}
-
-static PyMethodDef float_methods[] = {
- FLOAT_CONJUGATE_METHODDEF
- FLOAT___TRUNC___METHODDEF
+ return NULL;
+ }
+}
+
+/*[clinic input]
+@classmethod
+float.__set_format__
+
+ typestr: str
+ Must be 'double' or 'float'.
+ fmt: str
+ Must be one of 'unknown', 'IEEE, big-endian' or 'IEEE, little-endian',
+ and in addition can only be one of the latter two if it appears to
+ match the underlying C reality.
+ /
+
+You probably don't want to use this function.
+
+It exists mainly to be used in Python's test suite.
+
+Override the automatic determination of C-level floating point type.
+This affects how floats are converted to and from binary strings.
+[clinic start generated code]*/
+
+static PyObject *
+float___set_format___impl(PyTypeObject *type, const char *typestr,
+ const char *fmt)
+/*[clinic end generated code: output=504460f5dc85acbd input=5306fa2b81a997e4]*/
+{
+ float_format_type f;
+ float_format_type detected;
+ float_format_type *p;
+
+ if (strcmp(typestr, "double") == 0) {
+ p = &double_format;
+ detected = detected_double_format;
+ }
+ else if (strcmp(typestr, "float") == 0) {
+ p = &float_format;
+ detected = detected_float_format;
+ }
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "__setformat__() argument 1 must "
+ "be 'double' or 'float'");
+ return NULL;
+ }
+
+ if (strcmp(fmt, "unknown") == 0) {
+ f = unknown_format;
+ }
+ else if (strcmp(fmt, "IEEE, little-endian") == 0) {
+ f = ieee_little_endian_format;
+ }
+ else if (strcmp(fmt, "IEEE, big-endian") == 0) {
+ f = ieee_big_endian_format;
+ }
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "__setformat__() argument 2 must be "
+ "'unknown', 'IEEE, little-endian' or "
+ "'IEEE, big-endian'");
+ return NULL;
+
+ }
+
+ if (f != unknown_format && f != detected) {
+ PyErr_Format(PyExc_ValueError,
+ "can only set %s format to 'unknown' or the "
+ "detected platform value", typestr);
+ return NULL;
+ }
+
+ *p = f;
+ Py_RETURN_NONE;
+}
+
+static PyObject *
+float_getreal(PyObject *v, void *closure)
+{
+ return float_float(v);
+}
+
+static PyObject *
+float_getimag(PyObject *v, void *closure)
+{
+ return PyFloat_FromDouble(0.0);
+}
+
+/*[clinic input]
+float.__format__
+
+ format_spec: unicode
+ /
+
+Formats the float according to format_spec.
+[clinic start generated code]*/
+
+static PyObject *
+float___format___impl(PyObject *self, PyObject *format_spec)
+/*[clinic end generated code: output=b260e52a47eade56 input=2ece1052211fd0e6]*/
+{
+ _PyUnicodeWriter writer;
+ int ret;
+
+ _PyUnicodeWriter_Init(&writer);
+ ret = _PyFloat_FormatAdvancedWriter(
+ &writer,
+ self,
+ format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
+ if (ret == -1) {
+ _PyUnicodeWriter_Dealloc(&writer);
+ return NULL;
+ }
+ return _PyUnicodeWriter_Finish(&writer);
+}
+
+static PyMethodDef float_methods[] = {
+ FLOAT_CONJUGATE_METHODDEF
+ FLOAT___TRUNC___METHODDEF
FLOAT___FLOOR___METHODDEF
FLOAT___CEIL___METHODDEF
- FLOAT___ROUND___METHODDEF
- FLOAT_AS_INTEGER_RATIO_METHODDEF
- FLOAT_FROMHEX_METHODDEF
- FLOAT_HEX_METHODDEF
- FLOAT_IS_INTEGER_METHODDEF
- FLOAT___GETNEWARGS___METHODDEF
- FLOAT___GETFORMAT___METHODDEF
- FLOAT___SET_FORMAT___METHODDEF
- FLOAT___FORMAT___METHODDEF
- {NULL, NULL} /* sentinel */
-};
-
-static PyGetSetDef float_getset[] = {
- {"real",
- float_getreal, (setter)NULL,
- "the real part of a complex number",
- NULL},
- {"imag",
- float_getimag, (setter)NULL,
- "the imaginary part of a complex number",
- NULL},
- {NULL} /* Sentinel */
-};
-
-
-static PyNumberMethods float_as_number = {
- float_add, /* nb_add */
- float_sub, /* nb_subtract */
- float_mul, /* nb_multiply */
- float_rem, /* nb_remainder */
- float_divmod, /* nb_divmod */
- float_pow, /* nb_power */
- (unaryfunc)float_neg, /* nb_negative */
- float_float, /* nb_positive */
- (unaryfunc)float_abs, /* nb_absolute */
- (inquiry)float_bool, /* nb_bool */
- 0, /* nb_invert */
- 0, /* nb_lshift */
- 0, /* nb_rshift */
- 0, /* nb_and */
- 0, /* nb_xor */
- 0, /* nb_or */
- float___trunc___impl, /* nb_int */
- 0, /* nb_reserved */
- float_float, /* nb_float */
- 0, /* nb_inplace_add */
- 0, /* nb_inplace_subtract */
- 0, /* nb_inplace_multiply */
- 0, /* nb_inplace_remainder */
- 0, /* nb_inplace_power */
- 0, /* nb_inplace_lshift */
- 0, /* nb_inplace_rshift */
- 0, /* nb_inplace_and */
- 0, /* nb_inplace_xor */
- 0, /* nb_inplace_or */
- float_floor_div, /* nb_floor_divide */
- float_div, /* nb_true_divide */
- 0, /* nb_inplace_floor_divide */
- 0, /* nb_inplace_true_divide */
-};
-
-PyTypeObject PyFloat_Type = {
- PyVarObject_HEAD_INIT(&PyType_Type, 0)
- "float",
- sizeof(PyFloatObject),
- 0,
- (destructor)float_dealloc, /* tp_dealloc */
+ FLOAT___ROUND___METHODDEF
+ FLOAT_AS_INTEGER_RATIO_METHODDEF
+ FLOAT_FROMHEX_METHODDEF
+ FLOAT_HEX_METHODDEF
+ FLOAT_IS_INTEGER_METHODDEF
+ FLOAT___GETNEWARGS___METHODDEF
+ FLOAT___GETFORMAT___METHODDEF
+ FLOAT___SET_FORMAT___METHODDEF
+ FLOAT___FORMAT___METHODDEF
+ {NULL, NULL} /* sentinel */
+};
+
+static PyGetSetDef float_getset[] = {
+ {"real",
+ float_getreal, (setter)NULL,
+ "the real part of a complex number",
+ NULL},
+ {"imag",
+ float_getimag, (setter)NULL,
+ "the imaginary part of a complex number",
+ NULL},
+ {NULL} /* Sentinel */
+};
+
+
+static PyNumberMethods float_as_number = {
+ float_add, /* nb_add */
+ float_sub, /* nb_subtract */
+ float_mul, /* nb_multiply */
+ float_rem, /* nb_remainder */
+ float_divmod, /* nb_divmod */
+ float_pow, /* nb_power */
+ (unaryfunc)float_neg, /* nb_negative */
+ float_float, /* nb_positive */
+ (unaryfunc)float_abs, /* nb_absolute */
+ (inquiry)float_bool, /* nb_bool */
+ 0, /* nb_invert */
+ 0, /* nb_lshift */
+ 0, /* nb_rshift */
+ 0, /* nb_and */
+ 0, /* nb_xor */
+ 0, /* nb_or */
+ float___trunc___impl, /* nb_int */
+ 0, /* nb_reserved */
+ float_float, /* nb_float */
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply */
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ float_floor_div, /* nb_floor_divide */
+ float_div, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
+};
+
+PyTypeObject PyFloat_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "float",
+ sizeof(PyFloatObject),
+ 0,
+ (destructor)float_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
- 0, /* tp_getattr */
- 0, /* tp_setattr */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
0, /* tp_as_async */
- (reprfunc)float_repr, /* tp_repr */
- &float_as_number, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- (hashfunc)float_hash, /* tp_hash */
- 0, /* tp_call */
+ (reprfunc)float_repr, /* tp_repr */
+ &float_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)float_hash, /* tp_hash */
+ 0, /* tp_call */
0, /* tp_str */
- PyObject_GenericGetAttr, /* tp_getattro */
- 0, /* tp_setattro */
- 0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
- float_new__doc__, /* tp_doc */
- 0, /* tp_traverse */
- 0, /* tp_clear */
- float_richcompare, /* tp_richcompare */
- 0, /* tp_weaklistoffset */
- 0, /* tp_iter */
- 0, /* tp_iternext */
- float_methods, /* tp_methods */
- 0, /* tp_members */
- float_getset, /* tp_getset */
- 0, /* tp_base */
- 0, /* tp_dict */
- 0, /* tp_descr_get */
- 0, /* tp_descr_set */
- 0, /* tp_dictoffset */
- 0, /* tp_init */
- 0, /* tp_alloc */
- float_new, /* tp_new */
-};
-
-int
-_PyFloat_Init(void)
-{
- /* We attempt to determine if this machine is using IEEE
- floating point formats by peering at the bits of some
- carefully chosen values. If it looks like we are on an
- IEEE platform, the float packing/unpacking routines can
- just copy bits, if not they resort to arithmetic & shifts
- and masks. The shifts & masks approach works on all finite
- values, but what happens to infinities, NaNs and signed
- zeroes on packing is an accident, and attempting to unpack
- a NaN or an infinity will raise an exception.
-
- Note that if we're on some whacked-out platform which uses
- IEEE formats but isn't strictly little-endian or big-
- endian, we will fall back to the portable shifts & masks
- method. */
-
-#if SIZEOF_DOUBLE == 8
- {
- double x = 9006104071832581.0;
- if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
- detected_double_format = ieee_big_endian_format;
- else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
- detected_double_format = ieee_little_endian_format;
- else
- detected_double_format = unknown_format;
- }
-#else
- detected_double_format = unknown_format;
-#endif
-
-#if SIZEOF_FLOAT == 4
- {
- float y = 16711938.0;
- if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
- detected_float_format = ieee_big_endian_format;
- else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
- detected_float_format = ieee_little_endian_format;
- else
- detected_float_format = unknown_format;
- }
-#else
- detected_float_format = unknown_format;
-#endif
-
- double_format = detected_double_format;
- float_format = detected_float_format;
-
- /* Init float info */
- if (FloatInfoType.tp_name == NULL) {
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
+ float_new__doc__, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ float_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ float_methods, /* tp_methods */
+ 0, /* tp_members */
+ float_getset, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ 0, /* tp_alloc */
+ float_new, /* tp_new */
+};
+
+int
+_PyFloat_Init(void)
+{
+ /* We attempt to determine if this machine is using IEEE
+ floating point formats by peering at the bits of some
+ carefully chosen values. If it looks like we are on an
+ IEEE platform, the float packing/unpacking routines can
+ just copy bits, if not they resort to arithmetic & shifts
+ and masks. The shifts & masks approach works on all finite
+ values, but what happens to infinities, NaNs and signed
+ zeroes on packing is an accident, and attempting to unpack
+ a NaN or an infinity will raise an exception.
+
+ Note that if we're on some whacked-out platform which uses
+ IEEE formats but isn't strictly little-endian or big-
+ endian, we will fall back to the portable shifts & masks
+ method. */
+
+#if SIZEOF_DOUBLE == 8
+ {
+ double x = 9006104071832581.0;
+ if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
+ detected_double_format = ieee_big_endian_format;
+ else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
+ detected_double_format = ieee_little_endian_format;
+ else
+ detected_double_format = unknown_format;
+ }
+#else
+ detected_double_format = unknown_format;
+#endif
+
+#if SIZEOF_FLOAT == 4
+ {
+ float y = 16711938.0;
+ if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
+ detected_float_format = ieee_big_endian_format;
+ else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
+ detected_float_format = ieee_little_endian_format;
+ else
+ detected_float_format = unknown_format;
+ }
+#else
+ detected_float_format = unknown_format;
+#endif
+
+ double_format = detected_double_format;
+ float_format = detected_float_format;
+
+ /* Init float info */
+ if (FloatInfoType.tp_name == NULL) {
if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0) {
- return 0;
+ return 0;
}
- }
- return 1;
-}
-
+ }
+ return 1;
+}
+
void
_PyFloat_ClearFreeList(void)
-{
- PyFloatObject *f = free_list, *next;
+{
+ PyFloatObject *f = free_list, *next;
for (; f; f = next) {
- next = (PyFloatObject*) Py_TYPE(f);
- PyObject_FREE(f);
- }
- free_list = NULL;
- numfree = 0;
-}
-
-void
+ next = (PyFloatObject*) Py_TYPE(f);
+ PyObject_FREE(f);
+ }
+ free_list = NULL;
+ numfree = 0;
+}
+
+void
_PyFloat_Fini(void)
-{
+{
_PyFloat_ClearFreeList();
-}
-
-/* Print summary info about the state of the optimized allocator */
-void
-_PyFloat_DebugMallocStats(FILE *out)
-{
- _PyDebugAllocatorStats(out,
- "free PyFloatObject",
- numfree, sizeof(PyFloatObject));
-}
-
-
-/*----------------------------------------------------------------------------
- * _PyFloat_{Pack,Unpack}{2,4,8}. See floatobject.h.
- * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in:
- * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c
- * We use:
- * bits = (unsigned short)f; Note the truncation
- * if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) {
- * bits++;
- * }
- */
-
-int
-_PyFloat_Pack2(double x, unsigned char *p, int le)
-{
- unsigned char sign;
- int e;
- double f;
- unsigned short bits;
- int incr = 1;
-
- if (x == 0.0) {
- sign = (copysign(1.0, x) == -1.0);
- e = 0;
- bits = 0;
- }
- else if (Py_IS_INFINITY(x)) {
- sign = (x < 0.0);
- e = 0x1f;
- bits = 0;
- }
- else if (Py_IS_NAN(x)) {
- /* There are 2046 distinct half-precision NaNs (1022 signaling and
- 1024 quiet), but there are only two quiet NaNs that don't arise by
- quieting a signaling NaN; we get those by setting the topmost bit
- of the fraction field and clearing all other fraction bits. We
- choose the one with the appropriate sign. */
- sign = (copysign(1.0, x) == -1.0);
- e = 0x1f;
- bits = 512;
- }
- else {
- sign = (x < 0.0);
- if (sign) {
- x = -x;
- }
-
- f = frexp(x, &e);
- if (f < 0.5 || f >= 1.0) {
- PyErr_SetString(PyExc_SystemError,
- "frexp() result out of range");
- return -1;
- }
-
- /* Normalize f to be in the range [1.0, 2.0) */
- f *= 2.0;
- e--;
-
- if (e >= 16) {
- goto Overflow;
- }
- else if (e < -25) {
- /* |x| < 2**-25. Underflow to zero. */
- f = 0.0;
- e = 0;
- }
- else if (e < -14) {
- /* |x| < 2**-14. Gradual underflow */
- f = ldexp(f, 14 + e);
- e = 0;
- }
- else /* if (!(e == 0 && f == 0.0)) */ {
- e += 15;
- f -= 1.0; /* Get rid of leading 1 */
- }
-
- f *= 1024.0; /* 2**10 */
- /* Round to even */
- bits = (unsigned short)f; /* Note the truncation */
- assert(bits < 1024);
- assert(e < 31);
- if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) {
- ++bits;
- if (bits == 1024) {
- /* The carry propagated out of a string of 10 1 bits. */
- bits = 0;
- ++e;
- if (e == 31)
- goto Overflow;
- }
- }
- }
-
- bits |= (e << 10) | (sign << 15);
-
- /* Write out result. */
- if (le) {
- p += 1;
- incr = -1;
- }
-
- /* First byte */
- *p = (unsigned char)((bits >> 8) & 0xFF);
- p += incr;
-
- /* Second byte */
- *p = (unsigned char)(bits & 0xFF);
-
- return 0;
-
- Overflow:
- PyErr_SetString(PyExc_OverflowError,
- "float too large to pack with e format");
- return -1;
-}
-
-int
-_PyFloat_Pack4(double x, unsigned char *p, int le)
-{
- if (float_format == unknown_format) {
- unsigned char sign;
- int e;
- double f;
- unsigned int fbits;
- int incr = 1;
-
- if (le) {
- p += 3;
- incr = -1;
- }
-
- if (x < 0) {
- sign = 1;
- x = -x;
- }
- else
- sign = 0;
-
- f = frexp(x, &e);
-
- /* Normalize f to be in the range [1.0, 2.0) */
- if (0.5 <= f && f < 1.0) {
- f *= 2.0;
- e--;
- }
- else if (f == 0.0)
- e = 0;
- else {
- PyErr_SetString(PyExc_SystemError,
- "frexp() result out of range");
- return -1;
- }
-
- if (e >= 128)
- goto Overflow;
- else if (e < -126) {
- /* Gradual underflow */
- f = ldexp(f, 126 + e);
- e = 0;
- }
- else if (!(e == 0 && f == 0.0)) {
- e += 127;
- f -= 1.0; /* Get rid of leading 1 */
- }
-
- f *= 8388608.0; /* 2**23 */
- fbits = (unsigned int)(f + 0.5); /* Round */
- assert(fbits <= 8388608);
- if (fbits >> 23) {
- /* The carry propagated out of a string of 23 1 bits. */
- fbits = 0;
- ++e;
- if (e >= 255)
- goto Overflow;
- }
-
- /* First byte */
- *p = (sign << 7) | (e >> 1);
- p += incr;
-
- /* Second byte */
- *p = (char) (((e & 1) << 7) | (fbits >> 16));
- p += incr;
-
- /* Third byte */
- *p = (fbits >> 8) & 0xFF;
- p += incr;
-
- /* Fourth byte */
- *p = fbits & 0xFF;
-
- /* Done */
- return 0;
-
- }
- else {
- float y = (float)x;
- int i, incr = 1;
-
- if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
- goto Overflow;
-
- unsigned char s[sizeof(float)];
- memcpy(s, &y, sizeof(float));
-
- if ((float_format == ieee_little_endian_format && !le)
- || (float_format == ieee_big_endian_format && le)) {
- p += 3;
- incr = -1;
- }
-
- for (i = 0; i < 4; i++) {
- *p = s[i];
- p += incr;
- }
- return 0;
- }
- Overflow:
- PyErr_SetString(PyExc_OverflowError,
- "float too large to pack with f format");
- return -1;
-}
-
-int
-_PyFloat_Pack8(double x, unsigned char *p, int le)
-{
- if (double_format == unknown_format) {
- unsigned char sign;
- int e;
- double f;
- unsigned int fhi, flo;
- int incr = 1;
-
- if (le) {
- p += 7;
- incr = -1;
- }
-
- if (x < 0) {
- sign = 1;
- x = -x;
- }
- else
- sign = 0;
-
- f = frexp(x, &e);
-
- /* Normalize f to be in the range [1.0, 2.0) */
- if (0.5 <= f && f < 1.0) {
- f *= 2.0;
- e--;
- }
- else if (f == 0.0)
- e = 0;
- else {
- PyErr_SetString(PyExc_SystemError,
- "frexp() result out of range");
- return -1;
- }
-
- if (e >= 1024)
- goto Overflow;
- else if (e < -1022) {
- /* Gradual underflow */
- f = ldexp(f, 1022 + e);
- e = 0;
- }
- else if (!(e == 0 && f == 0.0)) {
- e += 1023;
- f -= 1.0; /* Get rid of leading 1 */
- }
-
- /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
- f *= 268435456.0; /* 2**28 */
- fhi = (unsigned int)f; /* Truncate */
- assert(fhi < 268435456);
-
- f -= (double)fhi;
- f *= 16777216.0; /* 2**24 */
- flo = (unsigned int)(f + 0.5); /* Round */
- assert(flo <= 16777216);
- if (flo >> 24) {
- /* The carry propagated out of a string of 24 1 bits. */
- flo = 0;
- ++fhi;
- if (fhi >> 28) {
+}
+
+/* Print summary info about the state of the optimized allocator */
+void
+_PyFloat_DebugMallocStats(FILE *out)
+{
+ _PyDebugAllocatorStats(out,
+ "free PyFloatObject",
+ numfree, sizeof(PyFloatObject));
+}
+
+
+/*----------------------------------------------------------------------------
+ * _PyFloat_{Pack,Unpack}{2,4,8}. See floatobject.h.
+ * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in:
+ * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c
+ * We use:
+ * bits = (unsigned short)f; Note the truncation
+ * if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) {
+ * bits++;
+ * }
+ */
+
+int
+_PyFloat_Pack2(double x, unsigned char *p, int le)
+{
+ unsigned char sign;
+ int e;
+ double f;
+ unsigned short bits;
+ int incr = 1;
+
+ if (x == 0.0) {
+ sign = (copysign(1.0, x) == -1.0);
+ e = 0;
+ bits = 0;
+ }
+ else if (Py_IS_INFINITY(x)) {
+ sign = (x < 0.0);
+ e = 0x1f;
+ bits = 0;
+ }
+ else if (Py_IS_NAN(x)) {
+ /* There are 2046 distinct half-precision NaNs (1022 signaling and
+ 1024 quiet), but there are only two quiet NaNs that don't arise by
+ quieting a signaling NaN; we get those by setting the topmost bit
+ of the fraction field and clearing all other fraction bits. We
+ choose the one with the appropriate sign. */
+ sign = (copysign(1.0, x) == -1.0);
+ e = 0x1f;
+ bits = 512;
+ }
+ else {
+ sign = (x < 0.0);
+ if (sign) {
+ x = -x;
+ }
+
+ f = frexp(x, &e);
+ if (f < 0.5 || f >= 1.0) {
+ PyErr_SetString(PyExc_SystemError,
+ "frexp() result out of range");
+ return -1;
+ }
+
+ /* Normalize f to be in the range [1.0, 2.0) */
+ f *= 2.0;
+ e--;
+
+ if (e >= 16) {
+ goto Overflow;
+ }
+ else if (e < -25) {
+ /* |x| < 2**-25. Underflow to zero. */
+ f = 0.0;
+ e = 0;
+ }
+ else if (e < -14) {
+ /* |x| < 2**-14. Gradual underflow */
+ f = ldexp(f, 14 + e);
+ e = 0;
+ }
+ else /* if (!(e == 0 && f == 0.0)) */ {
+ e += 15;
+ f -= 1.0; /* Get rid of leading 1 */
+ }
+
+ f *= 1024.0; /* 2**10 */
+ /* Round to even */
+ bits = (unsigned short)f; /* Note the truncation */
+ assert(bits < 1024);
+ assert(e < 31);
+ if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) {
+ ++bits;
+ if (bits == 1024) {
+ /* The carry propagated out of a string of 10 1 bits. */
+ bits = 0;
+ ++e;
+ if (e == 31)
+ goto Overflow;
+ }
+ }
+ }
+
+ bits |= (e << 10) | (sign << 15);
+
+ /* Write out result. */
+ if (le) {
+ p += 1;
+ incr = -1;
+ }
+
+ /* First byte */
+ *p = (unsigned char)((bits >> 8) & 0xFF);
+ p += incr;
+
+ /* Second byte */
+ *p = (unsigned char)(bits & 0xFF);
+
+ return 0;
+
+ Overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "float too large to pack with e format");
+ return -1;
+}
+
+int
+_PyFloat_Pack4(double x, unsigned char *p, int le)
+{
+ if (float_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ double f;
+ unsigned int fbits;
+ int incr = 1;
+
+ if (le) {
+ p += 3;
+ incr = -1;
+ }
+
+ if (x < 0) {
+ sign = 1;
+ x = -x;
+ }
+ else
+ sign = 0;
+
+ f = frexp(x, &e);
+
+ /* Normalize f to be in the range [1.0, 2.0) */
+ if (0.5 <= f && f < 1.0) {
+ f *= 2.0;
+ e--;
+ }
+ else if (f == 0.0)
+ e = 0;
+ else {
+ PyErr_SetString(PyExc_SystemError,
+ "frexp() result out of range");
+ return -1;
+ }
+
+ if (e >= 128)
+ goto Overflow;
+ else if (e < -126) {
+ /* Gradual underflow */
+ f = ldexp(f, 126 + e);
+ e = 0;
+ }
+ else if (!(e == 0 && f == 0.0)) {
+ e += 127;
+ f -= 1.0; /* Get rid of leading 1 */
+ }
+
+ f *= 8388608.0; /* 2**23 */
+ fbits = (unsigned int)(f + 0.5); /* Round */
+ assert(fbits <= 8388608);
+ if (fbits >> 23) {
+ /* The carry propagated out of a string of 23 1 bits. */
+ fbits = 0;
+ ++e;
+ if (e >= 255)
+ goto Overflow;
+ }
+
+ /* First byte */
+ *p = (sign << 7) | (e >> 1);
+ p += incr;
+
+ /* Second byte */
+ *p = (char) (((e & 1) << 7) | (fbits >> 16));
+ p += incr;
+
+ /* Third byte */
+ *p = (fbits >> 8) & 0xFF;
+ p += incr;
+
+ /* Fourth byte */
+ *p = fbits & 0xFF;
+
+ /* Done */
+ return 0;
+
+ }
+ else {
+ float y = (float)x;
+ int i, incr = 1;
+
+ if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
+ goto Overflow;
+
+ unsigned char s[sizeof(float)];
+ memcpy(s, &y, sizeof(float));
+
+ if ((float_format == ieee_little_endian_format && !le)
+ || (float_format == ieee_big_endian_format && le)) {
+ p += 3;
+ incr = -1;
+ }
+
+ for (i = 0; i < 4; i++) {
+ *p = s[i];
+ p += incr;
+ }
+ return 0;
+ }
+ Overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "float too large to pack with f format");
+ return -1;
+}
+
+int
+_PyFloat_Pack8(double x, unsigned char *p, int le)
+{
+ if (double_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ double f;
+ unsigned int fhi, flo;
+ int incr = 1;
+
+ if (le) {
+ p += 7;
+ incr = -1;
+ }
+
+ if (x < 0) {
+ sign = 1;
+ x = -x;
+ }
+ else
+ sign = 0;
+
+ f = frexp(x, &e);
+
+ /* Normalize f to be in the range [1.0, 2.0) */
+ if (0.5 <= f && f < 1.0) {
+ f *= 2.0;
+ e--;
+ }
+ else if (f == 0.0)
+ e = 0;
+ else {
+ PyErr_SetString(PyExc_SystemError,
+ "frexp() result out of range");
+ return -1;
+ }
+
+ if (e >= 1024)
+ goto Overflow;
+ else if (e < -1022) {
+ /* Gradual underflow */
+ f = ldexp(f, 1022 + e);
+ e = 0;
+ }
+ else if (!(e == 0 && f == 0.0)) {
+ e += 1023;
+ f -= 1.0; /* Get rid of leading 1 */
+ }
+
+ /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
+ f *= 268435456.0; /* 2**28 */
+ fhi = (unsigned int)f; /* Truncate */
+ assert(fhi < 268435456);
+
+ f -= (double)fhi;
+ f *= 16777216.0; /* 2**24 */
+ flo = (unsigned int)(f + 0.5); /* Round */
+ assert(flo <= 16777216);
+ if (flo >> 24) {
+ /* The carry propagated out of a string of 24 1 bits. */
+ flo = 0;
+ ++fhi;
+ if (fhi >> 28) {
/* And it also propagated out of the next 28 bits. */
- fhi = 0;
- ++e;
- if (e >= 2047)
- goto Overflow;
- }
- }
-
- /* First byte */
- *p = (sign << 7) | (e >> 4);
- p += incr;
-
- /* Second byte */
- *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
- p += incr;
-
- /* Third byte */
- *p = (fhi >> 16) & 0xFF;
- p += incr;
-
- /* Fourth byte */
- *p = (fhi >> 8) & 0xFF;
- p += incr;
-
- /* Fifth byte */
- *p = fhi & 0xFF;
- p += incr;
-
- /* Sixth byte */
- *p = (flo >> 16) & 0xFF;
- p += incr;
-
- /* Seventh byte */
- *p = (flo >> 8) & 0xFF;
- p += incr;
-
- /* Eighth byte */
- *p = flo & 0xFF;
- /* p += incr; */
-
- /* Done */
- return 0;
-
- Overflow:
- PyErr_SetString(PyExc_OverflowError,
- "float too large to pack with d format");
- return -1;
- }
- else {
- const unsigned char *s = (unsigned char*)&x;
- int i, incr = 1;
-
- if ((double_format == ieee_little_endian_format && !le)
- || (double_format == ieee_big_endian_format && le)) {
- p += 7;
- incr = -1;
- }
-
- for (i = 0; i < 8; i++) {
- *p = *s++;
- p += incr;
- }
- return 0;
- }
-}
-
-double
-_PyFloat_Unpack2(const unsigned char *p, int le)
-{
- unsigned char sign;
- int e;
- unsigned int f;
- double x;
- int incr = 1;
-
- if (le) {
- p += 1;
- incr = -1;
- }
-
- /* First byte */
- sign = (*p >> 7) & 1;
- e = (*p & 0x7C) >> 2;
- f = (*p & 0x03) << 8;
- p += incr;
-
- /* Second byte */
- f |= *p;
-
- if (e == 0x1f) {
-#ifdef PY_NO_SHORT_FLOAT_REPR
- if (f == 0) {
- /* Infinity */
- return sign ? -Py_HUGE_VAL : Py_HUGE_VAL;
- }
- else {
- /* NaN */
-#ifdef Py_NAN
- return sign ? -Py_NAN : Py_NAN;
-#else
- PyErr_SetString(
- PyExc_ValueError,
- "can't unpack IEEE 754 NaN "
- "on platform that does not support NaNs");
- return -1;
-#endif /* #ifdef Py_NAN */
- }
-#else
- if (f == 0) {
- /* Infinity */
- return _Py_dg_infinity(sign);
- }
- else {
- /* NaN */
- return _Py_dg_stdnan(sign);
- }
-#endif /* #ifdef PY_NO_SHORT_FLOAT_REPR */
- }
-
- x = (double)f / 1024.0;
-
- if (e == 0) {
- e = -14;
- }
- else {
- x += 1.0;
- e -= 15;
- }
- x = ldexp(x, e);
-
- if (sign)
- x = -x;
-
- return x;
-}
-
-double
-_PyFloat_Unpack4(const unsigned char *p, int le)
-{
- if (float_format == unknown_format) {
- unsigned char sign;
- int e;
- unsigned int f;
- double x;
- int incr = 1;
-
- if (le) {
- p += 3;
- incr = -1;
- }
-
- /* First byte */
- sign = (*p >> 7) & 1;
- e = (*p & 0x7F) << 1;
- p += incr;
-
- /* Second byte */
- e |= (*p >> 7) & 1;
- f = (*p & 0x7F) << 16;
- p += incr;
-
- if (e == 255) {
- PyErr_SetString(
- PyExc_ValueError,
- "can't unpack IEEE 754 special value "
- "on non-IEEE platform");
- return -1;
- }
-
- /* Third byte */
- f |= *p << 8;
- p += incr;
-
- /* Fourth byte */
- f |= *p;
-
- x = (double)f / 8388608.0;
-
- /* XXX This sadly ignores Inf/NaN issues */
- if (e == 0)
- e = -126;
- else {
- x += 1.0;
- e -= 127;
- }
- x = ldexp(x, e);
-
- if (sign)
- x = -x;
-
- return x;
- }
- else {
- float x;
-
- if ((float_format == ieee_little_endian_format && !le)
- || (float_format == ieee_big_endian_format && le)) {
- char buf[4];
- char *d = &buf[3];
- int i;
-
- for (i = 0; i < 4; i++) {
- *d-- = *p++;
- }
- memcpy(&x, buf, 4);
- }
- else {
- memcpy(&x, p, 4);
- }
-
- return x;
- }
-}
-
-double
-_PyFloat_Unpack8(const unsigned char *p, int le)
-{
- if (double_format == unknown_format) {
- unsigned char sign;
- int e;
- unsigned int fhi, flo;
- double x;
- int incr = 1;
-
- if (le) {
- p += 7;
- incr = -1;
- }
-
- /* First byte */
- sign = (*p >> 7) & 1;
- e = (*p & 0x7F) << 4;
-
- p += incr;
-
- /* Second byte */
- e |= (*p >> 4) & 0xF;
- fhi = (*p & 0xF) << 24;
- p += incr;
-
- if (e == 2047) {
- PyErr_SetString(
- PyExc_ValueError,
- "can't unpack IEEE 754 special value "
- "on non-IEEE platform");
- return -1.0;
- }
-
- /* Third byte */
- fhi |= *p << 16;
- p += incr;
-
- /* Fourth byte */
- fhi |= *p << 8;
- p += incr;
-
- /* Fifth byte */
- fhi |= *p;
- p += incr;
-
- /* Sixth byte */
- flo = *p << 16;
- p += incr;
-
- /* Seventh byte */
- flo |= *p << 8;
- p += incr;
-
- /* Eighth byte */
- flo |= *p;
-
- x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
- x /= 268435456.0; /* 2**28 */
-
- if (e == 0)
- e = -1022;
- else {
- x += 1.0;
- e -= 1023;
- }
- x = ldexp(x, e);
-
- if (sign)
- x = -x;
-
- return x;
- }
- else {
- double x;
-
- if ((double_format == ieee_little_endian_format && !le)
- || (double_format == ieee_big_endian_format && le)) {
- char buf[8];
- char *d = &buf[7];
- int i;
-
- for (i = 0; i < 8; i++) {
- *d-- = *p++;
- }
- memcpy(&x, buf, 8);
- }
- else {
- memcpy(&x, p, 8);
- }
-
- return x;
- }
-}
+ fhi = 0;
+ ++e;
+ if (e >= 2047)
+ goto Overflow;
+ }
+ }
+
+ /* First byte */
+ *p = (sign << 7) | (e >> 4);
+ p += incr;
+
+ /* Second byte */
+ *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
+ p += incr;
+
+ /* Third byte */
+ *p = (fhi >> 16) & 0xFF;
+ p += incr;
+
+ /* Fourth byte */
+ *p = (fhi >> 8) & 0xFF;
+ p += incr;
+
+ /* Fifth byte */
+ *p = fhi & 0xFF;
+ p += incr;
+
+ /* Sixth byte */
+ *p = (flo >> 16) & 0xFF;
+ p += incr;
+
+ /* Seventh byte */
+ *p = (flo >> 8) & 0xFF;
+ p += incr;
+
+ /* Eighth byte */
+ *p = flo & 0xFF;
+ /* p += incr; */
+
+ /* Done */
+ return 0;
+
+ Overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "float too large to pack with d format");
+ return -1;
+ }
+ else {
+ const unsigned char *s = (unsigned char*)&x;
+ int i, incr = 1;
+
+ if ((double_format == ieee_little_endian_format && !le)
+ || (double_format == ieee_big_endian_format && le)) {
+ p += 7;
+ incr = -1;
+ }
+
+ for (i = 0; i < 8; i++) {
+ *p = *s++;
+ p += incr;
+ }
+ return 0;
+ }
+}
+
+double
+_PyFloat_Unpack2(const unsigned char *p, int le)
+{
+ unsigned char sign;
+ int e;
+ unsigned int f;
+ double x;
+ int incr = 1;
+
+ if (le) {
+ p += 1;
+ incr = -1;
+ }
+
+ /* First byte */
+ sign = (*p >> 7) & 1;
+ e = (*p & 0x7C) >> 2;
+ f = (*p & 0x03) << 8;
+ p += incr;
+
+ /* Second byte */
+ f |= *p;
+
+ if (e == 0x1f) {
+#ifdef PY_NO_SHORT_FLOAT_REPR
+ if (f == 0) {
+ /* Infinity */
+ return sign ? -Py_HUGE_VAL : Py_HUGE_VAL;
+ }
+ else {
+ /* NaN */
+#ifdef Py_NAN
+ return sign ? -Py_NAN : Py_NAN;
+#else
+ PyErr_SetString(
+ PyExc_ValueError,
+ "can't unpack IEEE 754 NaN "
+ "on platform that does not support NaNs");
+ return -1;
+#endif /* #ifdef Py_NAN */
+ }
+#else
+ if (f == 0) {
+ /* Infinity */
+ return _Py_dg_infinity(sign);
+ }
+ else {
+ /* NaN */
+ return _Py_dg_stdnan(sign);
+ }
+#endif /* #ifdef PY_NO_SHORT_FLOAT_REPR */
+ }
+
+ x = (double)f / 1024.0;
+
+ if (e == 0) {
+ e = -14;
+ }
+ else {
+ x += 1.0;
+ e -= 15;
+ }
+ x = ldexp(x, e);
+
+ if (sign)
+ x = -x;
+
+ return x;
+}
+
+double
+_PyFloat_Unpack4(const unsigned char *p, int le)
+{
+ if (float_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ unsigned int f;
+ double x;
+ int incr = 1;
+
+ if (le) {
+ p += 3;
+ incr = -1;
+ }
+
+ /* First byte */
+ sign = (*p >> 7) & 1;
+ e = (*p & 0x7F) << 1;
+ p += incr;
+
+ /* Second byte */
+ e |= (*p >> 7) & 1;
+ f = (*p & 0x7F) << 16;
+ p += incr;
+
+ if (e == 255) {
+ PyErr_SetString(
+ PyExc_ValueError,
+ "can't unpack IEEE 754 special value "
+ "on non-IEEE platform");
+ return -1;
+ }
+
+ /* Third byte */
+ f |= *p << 8;
+ p += incr;
+
+ /* Fourth byte */
+ f |= *p;
+
+ x = (double)f / 8388608.0;
+
+ /* XXX This sadly ignores Inf/NaN issues */
+ if (e == 0)
+ e = -126;
+ else {
+ x += 1.0;
+ e -= 127;
+ }
+ x = ldexp(x, e);
+
+ if (sign)
+ x = -x;
+
+ return x;
+ }
+ else {
+ float x;
+
+ if ((float_format == ieee_little_endian_format && !le)
+ || (float_format == ieee_big_endian_format && le)) {
+ char buf[4];
+ char *d = &buf[3];
+ int i;
+
+ for (i = 0; i < 4; i++) {
+ *d-- = *p++;
+ }
+ memcpy(&x, buf, 4);
+ }
+ else {
+ memcpy(&x, p, 4);
+ }
+
+ return x;
+ }
+}
+
+double
+_PyFloat_Unpack8(const unsigned char *p, int le)
+{
+ if (double_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ unsigned int fhi, flo;
+ double x;
+ int incr = 1;
+
+ if (le) {
+ p += 7;
+ incr = -1;
+ }
+
+ /* First byte */
+ sign = (*p >> 7) & 1;
+ e = (*p & 0x7F) << 4;
+
+ p += incr;
+
+ /* Second byte */
+ e |= (*p >> 4) & 0xF;
+ fhi = (*p & 0xF) << 24;
+ p += incr;
+
+ if (e == 2047) {
+ PyErr_SetString(
+ PyExc_ValueError,
+ "can't unpack IEEE 754 special value "
+ "on non-IEEE platform");
+ return -1.0;
+ }
+
+ /* Third byte */
+ fhi |= *p << 16;
+ p += incr;
+
+ /* Fourth byte */
+ fhi |= *p << 8;
+ p += incr;
+
+ /* Fifth byte */
+ fhi |= *p;
+ p += incr;
+
+ /* Sixth byte */
+ flo = *p << 16;
+ p += incr;
+
+ /* Seventh byte */
+ flo |= *p << 8;
+ p += incr;
+
+ /* Eighth byte */
+ flo |= *p;
+
+ x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
+ x /= 268435456.0; /* 2**28 */
+
+ if (e == 0)
+ e = -1022;
+ else {
+ x += 1.0;
+ e -= 1023;
+ }
+ x = ldexp(x, e);
+
+ if (sign)
+ x = -x;
+
+ return x;
+ }
+ else {
+ double x;
+
+ if ((double_format == ieee_little_endian_format && !le)
+ || (double_format == ieee_big_endian_format && le)) {
+ char buf[8];
+ char *d = &buf[7];
+ int i;
+
+ for (i = 0; i < 8; i++) {
+ *d-- = *p++;
+ }
+ memcpy(&x, buf, 8);
+ }
+ else {
+ memcpy(&x, p, 8);
+ }
+
+ return x;
+ }
+}