aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Objects/floatobject.c
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/tools/python3/src/Objects/floatobject.c
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/tools/python3/src/Objects/floatobject.c')
-rw-r--r--contrib/tools/python3/src/Objects/floatobject.c2601
1 files changed, 2601 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Objects/floatobject.c b/contrib/tools/python3/src/Objects/floatobject.c
new file mode 100644
index 0000000000..8538a051b1
--- /dev/null
+++ b/contrib/tools/python3/src/Objects/floatobject.c
@@ -0,0 +1,2601 @@
+/* Float object implementation */
+
+/* XXX There should be overflow checks here, but it's hard to check
+ for any kind of float exception without losing portability. */
+
+#include "Python.h"
+#include "pycore_dtoa.h"
+
+#include <ctype.h>
+#include <float.h>
+
+/*[clinic input]
+class float "PyObject *" "&PyFloat_Type"
+[clinic start generated code]*/
+/*[clinic end generated code: output=da39a3ee5e6b4b0d input=dd0003f68f144284]*/
+
+#include "clinic/floatobject.c.h"
+
+/* Special free list
+ free_list is a singly-linked list of available PyFloatObjects, linked
+ via abuse of their ob_type members.
+*/
+
+#ifndef PyFloat_MAXFREELIST
+#define PyFloat_MAXFREELIST 100
+#endif
+static int numfree = 0;
+static PyFloatObject *free_list = NULL;
+
+double
+PyFloat_GetMax(void)
+{
+ return DBL_MAX;
+}
+
+double
+PyFloat_GetMin(void)
+{
+ return DBL_MIN;
+}
+
+static PyTypeObject FloatInfoType;
+
+PyDoc_STRVAR(floatinfo__doc__,
+"sys.float_info\n\
+\n\
+A named tuple holding information about the float type. It contains low level\n\
+information about the precision and internal representation. Please study\n\
+your system's :file:`float.h` for more information.");
+
+static PyStructSequence_Field floatinfo_fields[] = {
+ {"max", "DBL_MAX -- maximum representable finite float"},
+ {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
+ "is representable"},
+ {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
+ "is representable"},
+ {"min", "DBL_MIN -- Minimum positive normalized float"},
+ {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
+ "is a normalized float"},
+ {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
+ "a normalized"},
+ {"dig", "DBL_DIG -- digits"},
+ {"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
+ {"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
+ "representable float"},
+ {"radix", "FLT_RADIX -- radix of exponent"},
+ {"rounds", "FLT_ROUNDS -- rounding mode"},
+ {0}
+};
+
+static PyStructSequence_Desc floatinfo_desc = {
+ "sys.float_info", /* name */
+ floatinfo__doc__, /* doc */
+ floatinfo_fields, /* fields */
+ 11
+};
+
+PyObject *
+PyFloat_GetInfo(void)
+{
+ PyObject* floatinfo;
+ int pos = 0;
+
+ floatinfo = PyStructSequence_New(&FloatInfoType);
+ if (floatinfo == NULL) {
+ return NULL;
+ }
+
+#define SetIntFlag(flag) \
+ PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
+#define SetDblFlag(flag) \
+ PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
+
+ SetDblFlag(DBL_MAX);
+ SetIntFlag(DBL_MAX_EXP);
+ SetIntFlag(DBL_MAX_10_EXP);
+ SetDblFlag(DBL_MIN);
+ SetIntFlag(DBL_MIN_EXP);
+ SetIntFlag(DBL_MIN_10_EXP);
+ SetIntFlag(DBL_DIG);
+ SetIntFlag(DBL_MANT_DIG);
+ SetDblFlag(DBL_EPSILON);
+ SetIntFlag(FLT_RADIX);
+ SetIntFlag(FLT_ROUNDS);
+#undef SetIntFlag
+#undef SetDblFlag
+
+ if (PyErr_Occurred()) {
+ Py_CLEAR(floatinfo);
+ return NULL;
+ }
+ return floatinfo;
+}
+
+PyObject *
+PyFloat_FromDouble(double fval)
+{
+ PyFloatObject *op = free_list;
+ if (op != NULL) {
+ free_list = (PyFloatObject *) Py_TYPE(op);
+ numfree--;
+ } else {
+ op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject));
+ if (!op)
+ return PyErr_NoMemory();
+ }
+ /* Inline PyObject_New */
+ (void)PyObject_INIT(op, &PyFloat_Type);
+ op->ob_fval = fval;
+ return (PyObject *) op;
+}
+
+static PyObject *
+float_from_string_inner(const char *s, Py_ssize_t len, void *obj)
+{
+ double x;
+ const char *end;
+ const char *last = s + len;
+ /* strip space */
+ while (s < last && Py_ISSPACE(*s)) {
+ s++;
+ }
+
+ while (s < last - 1 && Py_ISSPACE(last[-1])) {
+ last--;
+ }
+
+ /* We don't care about overflow or underflow. If the platform
+ * supports them, infinities and signed zeroes (on underflow) are
+ * fine. */
+ x = PyOS_string_to_double(s, (char **)&end, NULL);
+ if (end != last) {
+ PyErr_Format(PyExc_ValueError,
+ "could not convert string to float: "
+ "%R", obj);
+ return NULL;
+ }
+ else if (x == -1.0 && PyErr_Occurred()) {
+ return NULL;
+ }
+ else {
+ return PyFloat_FromDouble(x);
+ }
+}
+
+PyObject *
+PyFloat_FromString(PyObject *v)
+{
+ const char *s;
+ PyObject *s_buffer = NULL;
+ Py_ssize_t len;
+ Py_buffer view = {NULL, NULL};
+ PyObject *result = NULL;
+
+ if (PyUnicode_Check(v)) {
+ s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
+ if (s_buffer == NULL)
+ return NULL;
+ assert(PyUnicode_IS_ASCII(s_buffer));
+ /* Simply get a pointer to existing ASCII characters. */
+ s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
+ assert(s != NULL);
+ }
+ else if (PyBytes_Check(v)) {
+ s = PyBytes_AS_STRING(v);
+ len = PyBytes_GET_SIZE(v);
+ }
+ else if (PyByteArray_Check(v)) {
+ s = PyByteArray_AS_STRING(v);
+ len = PyByteArray_GET_SIZE(v);
+ }
+ else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) {
+ s = (const char *)view.buf;
+ len = view.len;
+ /* Copy to NUL-terminated buffer. */
+ s_buffer = PyBytes_FromStringAndSize(s, len);
+ if (s_buffer == NULL) {
+ PyBuffer_Release(&view);
+ return NULL;
+ }
+ s = PyBytes_AS_STRING(s_buffer);
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "float() argument must be a string or a number, not '%.200s'",
+ Py_TYPE(v)->tp_name);
+ return NULL;
+ }
+ result = _Py_string_to_number_with_underscores(s, len, "float", v, v,
+ float_from_string_inner);
+ PyBuffer_Release(&view);
+ Py_XDECREF(s_buffer);
+ return result;
+}
+
+static void
+float_dealloc(PyFloatObject *op)
+{
+ if (PyFloat_CheckExact(op)) {
+ if (numfree >= PyFloat_MAXFREELIST) {
+ PyObject_FREE(op);
+ return;
+ }
+ numfree++;
+ Py_SET_TYPE(op, (PyTypeObject *)free_list);
+ free_list = op;
+ }
+ else
+ Py_TYPE(op)->tp_free((PyObject *)op);
+}
+
+double
+PyFloat_AsDouble(PyObject *op)
+{
+ PyNumberMethods *nb;
+ PyObject *res;
+ double val;
+
+ if (op == NULL) {
+ PyErr_BadArgument();
+ return -1;
+ }
+
+ if (PyFloat_Check(op)) {
+ return PyFloat_AS_DOUBLE(op);
+ }
+
+ nb = Py_TYPE(op)->tp_as_number;
+ if (nb == NULL || nb->nb_float == NULL) {
+ if (nb && nb->nb_index) {
+ PyObject *res = PyNumber_Index(op);
+ if (!res) {
+ return -1;
+ }
+ double val = PyLong_AsDouble(res);
+ Py_DECREF(res);
+ return val;
+ }
+ PyErr_Format(PyExc_TypeError, "must be real number, not %.50s",
+ Py_TYPE(op)->tp_name);
+ return -1;
+ }
+
+ res = (*nb->nb_float) (op);
+ if (res == NULL) {
+ return -1;
+ }
+ if (!PyFloat_CheckExact(res)) {
+ if (!PyFloat_Check(res)) {
+ PyErr_Format(PyExc_TypeError,
+ "%.50s.__float__ returned non-float (type %.50s)",
+ Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name);
+ Py_DECREF(res);
+ return -1;
+ }
+ if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
+ "%.50s.__float__ returned non-float (type %.50s). "
+ "The ability to return an instance of a strict subclass of float "
+ "is deprecated, and may be removed in a future version of Python.",
+ Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name)) {
+ Py_DECREF(res);
+ return -1;
+ }
+ }
+
+ val = PyFloat_AS_DOUBLE(res);
+ Py_DECREF(res);
+ return val;
+}
+
+/* Macro and helper that convert PyObject obj to a C double and store
+ the value in dbl. If conversion to double raises an exception, obj is
+ set to NULL, and the function invoking this macro returns NULL. If
+ obj is not of float or int type, Py_NotImplemented is incref'ed,
+ stored in obj, and returned from the function invoking this macro.
+*/
+#define CONVERT_TO_DOUBLE(obj, dbl) \
+ if (PyFloat_Check(obj)) \
+ dbl = PyFloat_AS_DOUBLE(obj); \
+ else if (convert_to_double(&(obj), &(dbl)) < 0) \
+ return obj;
+
+/* Methods */
+
+static int
+convert_to_double(PyObject **v, double *dbl)
+{
+ PyObject *obj = *v;
+
+ if (PyLong_Check(obj)) {
+ *dbl = PyLong_AsDouble(obj);
+ if (*dbl == -1.0 && PyErr_Occurred()) {
+ *v = NULL;
+ return -1;
+ }
+ }
+ else {
+ Py_INCREF(Py_NotImplemented);
+ *v = Py_NotImplemented;
+ return -1;
+ }
+ return 0;
+}
+
+static PyObject *
+float_repr(PyFloatObject *v)
+{
+ PyObject *result;
+ char *buf;
+
+ buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
+ 'r', 0,
+ Py_DTSF_ADD_DOT_0,
+ NULL);
+ if (!buf)
+ return PyErr_NoMemory();
+ result = _PyUnicode_FromASCII(buf, strlen(buf));
+ PyMem_Free(buf);
+ return result;
+}
+
+/* Comparison is pretty much a nightmare. When comparing float to float,
+ * we do it as straightforwardly (and long-windedly) as conceivable, so
+ * that, e.g., Python x == y delivers the same result as the platform
+ * C x == y when x and/or y is a NaN.
+ * When mixing float with an integer type, there's no good *uniform* approach.
+ * Converting the double to an integer obviously doesn't work, since we
+ * may lose info from fractional bits. Converting the integer to a double
+ * also has two failure modes: (1) an int may trigger overflow (too
+ * large to fit in the dynamic range of a C double); (2) even a C long may have
+ * more bits than fit in a C double (e.g., on a 64-bit box long may have
+ * 63 bits of precision, but a C double probably has only 53), and then
+ * we can falsely claim equality when low-order integer bits are lost by
+ * coercion to double. So this part is painful too.
+ */
+
+static PyObject*
+float_richcompare(PyObject *v, PyObject *w, int op)
+{
+ double i, j;
+ int r = 0;
+
+ assert(PyFloat_Check(v));
+ i = PyFloat_AS_DOUBLE(v);
+
+ /* Switch on the type of w. Set i and j to doubles to be compared,
+ * and op to the richcomp to use.
+ */
+ if (PyFloat_Check(w))
+ j = PyFloat_AS_DOUBLE(w);
+
+ else if (!Py_IS_FINITE(i)) {
+ if (PyLong_Check(w))
+ /* If i is an infinity, its magnitude exceeds any
+ * finite integer, so it doesn't matter which int we
+ * compare i with. If i is a NaN, similarly.
+ */
+ j = 0.0;
+ else
+ goto Unimplemented;
+ }
+
+ else if (PyLong_Check(w)) {
+ int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
+ int wsign = _PyLong_Sign(w);
+ size_t nbits;
+ int exponent;
+
+ if (vsign != wsign) {
+ /* Magnitudes are irrelevant -- the signs alone
+ * determine the outcome.
+ */
+ i = (double)vsign;
+ j = (double)wsign;
+ goto Compare;
+ }
+ /* The signs are the same. */
+ /* Convert w to a double if it fits. In particular, 0 fits. */
+ nbits = _PyLong_NumBits(w);
+ if (nbits == (size_t)-1 && PyErr_Occurred()) {
+ /* This long is so large that size_t isn't big enough
+ * to hold the # of bits. Replace with little doubles
+ * that give the same outcome -- w is so large that
+ * its magnitude must exceed the magnitude of any
+ * finite float.
+ */
+ PyErr_Clear();
+ i = (double)vsign;
+ assert(wsign != 0);
+ j = wsign * 2.0;
+ goto Compare;
+ }
+ if (nbits <= 48) {
+ j = PyLong_AsDouble(w);
+ /* It's impossible that <= 48 bits overflowed. */
+ assert(j != -1.0 || ! PyErr_Occurred());
+ goto Compare;
+ }
+ assert(wsign != 0); /* else nbits was 0 */
+ assert(vsign != 0); /* if vsign were 0, then since wsign is
+ * not 0, we would have taken the
+ * vsign != wsign branch at the start */
+ /* We want to work with non-negative numbers. */
+ if (vsign < 0) {
+ /* "Multiply both sides" by -1; this also swaps the
+ * comparator.
+ */
+ i = -i;
+ op = _Py_SwappedOp[op];
+ }
+ assert(i > 0.0);
+ (void) frexp(i, &exponent);
+ /* exponent is the # of bits in v before the radix point;
+ * we know that nbits (the # of bits in w) > 48 at this point
+ */
+ if (exponent < 0 || (size_t)exponent < nbits) {
+ i = 1.0;
+ j = 2.0;
+ goto Compare;
+ }
+ if ((size_t)exponent > nbits) {
+ i = 2.0;
+ j = 1.0;
+ goto Compare;
+ }
+ /* v and w have the same number of bits before the radix
+ * point. Construct two ints that have the same comparison
+ * outcome.
+ */
+ {
+ double fracpart;
+ double intpart;
+ PyObject *result = NULL;
+ PyObject *vv = NULL;
+ PyObject *ww = w;
+
+ if (wsign < 0) {
+ ww = PyNumber_Negative(w);
+ if (ww == NULL)
+ goto Error;
+ }
+ else
+ Py_INCREF(ww);
+
+ fracpart = modf(i, &intpart);
+ vv = PyLong_FromDouble(intpart);
+ if (vv == NULL)
+ goto Error;
+
+ if (fracpart != 0.0) {
+ /* Shift left, and or a 1 bit into vv
+ * to represent the lost fraction.
+ */
+ PyObject *temp;
+
+ temp = _PyLong_Lshift(ww, 1);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(ww);
+ ww = temp;
+
+ temp = _PyLong_Lshift(vv, 1);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(vv);
+ vv = temp;
+
+ temp = PyNumber_Or(vv, _PyLong_One);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(vv);
+ vv = temp;
+ }
+
+ r = PyObject_RichCompareBool(vv, ww, op);
+ if (r < 0)
+ goto Error;
+ result = PyBool_FromLong(r);
+ Error:
+ Py_XDECREF(vv);
+ Py_XDECREF(ww);
+ return result;
+ }
+ } /* else if (PyLong_Check(w)) */
+
+ else /* w isn't float or int */
+ goto Unimplemented;
+
+ Compare:
+ switch (op) {
+ case Py_EQ:
+ r = i == j;
+ break;
+ case Py_NE:
+ r = i != j;
+ break;
+ case Py_LE:
+ r = i <= j;
+ break;
+ case Py_GE:
+ r = i >= j;
+ break;
+ case Py_LT:
+ r = i < j;
+ break;
+ case Py_GT:
+ r = i > j;
+ break;
+ }
+ return PyBool_FromLong(r);
+
+ Unimplemented:
+ Py_RETURN_NOTIMPLEMENTED;
+}
+
+static Py_hash_t
+float_hash(PyFloatObject *v)
+{
+ return _Py_HashDouble(v->ob_fval);
+}
+
+static PyObject *
+float_add(PyObject *v, PyObject *w)
+{
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ a = a + b;
+ return PyFloat_FromDouble(a);
+}
+
+static PyObject *
+float_sub(PyObject *v, PyObject *w)
+{
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ a = a - b;
+ return PyFloat_FromDouble(a);
+}
+
+static PyObject *
+float_mul(PyObject *v, PyObject *w)
+{
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ a = a * b;
+ return PyFloat_FromDouble(a);
+}
+
+static PyObject *
+float_div(PyObject *v, PyObject *w)
+{
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ if (b == 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "float division by zero");
+ return NULL;
+ }
+ a = a / b;
+ return PyFloat_FromDouble(a);
+}
+
+static PyObject *
+float_rem(PyObject *v, PyObject *w)
+{
+ double vx, wx;
+ double mod;
+ CONVERT_TO_DOUBLE(v, vx);
+ CONVERT_TO_DOUBLE(w, wx);
+ if (wx == 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "float modulo");
+ return NULL;
+ }
+ mod = fmod(vx, wx);
+ if (mod) {
+ /* ensure the remainder has the same sign as the denominator */
+ if ((wx < 0) != (mod < 0)) {
+ mod += wx;
+ }
+ }
+ else {
+ /* the remainder is zero, and in the presence of signed zeroes
+ fmod returns different results across platforms; ensure
+ it has the same sign as the denominator. */
+ mod = copysign(0.0, wx);
+ }
+ return PyFloat_FromDouble(mod);
+}
+
+static void
+_float_div_mod(double vx, double wx, double *floordiv, double *mod)
+{
+ double div;
+ *mod = fmod(vx, wx);
+ /* fmod is typically exact, so vx-mod is *mathematically* an
+ exact multiple of wx. But this is fp arithmetic, and fp
+ vx - mod is an approximation; the result is that div may
+ not be an exact integral value after the division, although
+ it will always be very close to one.
+ */
+ div = (vx - *mod) / wx;
+ if (*mod) {
+ /* ensure the remainder has the same sign as the denominator */
+ if ((wx < 0) != (*mod < 0)) {
+ *mod += wx;
+ div -= 1.0;
+ }
+ }
+ else {
+ /* the remainder is zero, and in the presence of signed zeroes
+ fmod returns different results across platforms; ensure
+ it has the same sign as the denominator. */
+ *mod = copysign(0.0, wx);
+ }
+ /* snap quotient to nearest integral value */
+ if (div) {
+ *floordiv = floor(div);
+ if (div - *floordiv > 0.5) {
+ *floordiv += 1.0;
+ }
+ }
+ else {
+ /* div is zero - get the same sign as the true quotient */
+ *floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */
+ }
+}
+
+static PyObject *
+float_divmod(PyObject *v, PyObject *w)
+{
+ double vx, wx;
+ double mod, floordiv;
+ CONVERT_TO_DOUBLE(v, vx);
+ CONVERT_TO_DOUBLE(w, wx);
+ if (wx == 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
+ return NULL;
+ }
+ _float_div_mod(vx, wx, &floordiv, &mod);
+ return Py_BuildValue("(dd)", floordiv, mod);
+}
+
+static PyObject *
+float_floor_div(PyObject *v, PyObject *w)
+{
+ double vx, wx;
+ double mod, floordiv;
+ CONVERT_TO_DOUBLE(v, vx);
+ CONVERT_TO_DOUBLE(w, wx);
+ if (wx == 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError, "float floor division by zero");
+ return NULL;
+ }
+ _float_div_mod(vx, wx, &floordiv, &mod);
+ return PyFloat_FromDouble(floordiv);
+}
+
+/* determine whether x is an odd integer or not; assumes that
+ x is not an infinity or nan. */
+#define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
+
+static PyObject *
+float_pow(PyObject *v, PyObject *w, PyObject *z)
+{
+ double iv, iw, ix;
+ int negate_result = 0;
+
+ if ((PyObject *)z != Py_None) {
+ PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
+ "allowed unless all arguments are integers");
+ return NULL;
+ }
+
+ CONVERT_TO_DOUBLE(v, iv);
+ CONVERT_TO_DOUBLE(w, iw);
+
+ /* Sort out special cases here instead of relying on pow() */
+ if (iw == 0) { /* v**0 is 1, even 0**0 */
+ return PyFloat_FromDouble(1.0);
+ }
+ if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
+ return PyFloat_FromDouble(iv);
+ }
+ if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
+ return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
+ }
+ if (Py_IS_INFINITY(iw)) {
+ /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
+ * abs(v) > 1 (including case where v infinite)
+ *
+ * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
+ * abs(v) > 1 (including case where v infinite)
+ */
+ iv = fabs(iv);
+ if (iv == 1.0)
+ return PyFloat_FromDouble(1.0);
+ else if ((iw > 0.0) == (iv > 1.0))
+ return PyFloat_FromDouble(fabs(iw)); /* return inf */
+ else
+ return PyFloat_FromDouble(0.0);
+ }
+ if (Py_IS_INFINITY(iv)) {
+ /* (+-inf)**w is: inf for w positive, 0 for w negative; in
+ * both cases, we need to add the appropriate sign if w is
+ * an odd integer.
+ */
+ int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
+ if (iw > 0.0)
+ return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
+ else
+ return PyFloat_FromDouble(iw_is_odd ?
+ copysign(0.0, iv) : 0.0);
+ }
+ if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
+ (already dealt with above), and an error
+ if w is negative. */
+ int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
+ if (iw < 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "0.0 cannot be raised to a "
+ "negative power");
+ return NULL;
+ }
+ /* use correct sign if iw is odd */
+ return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
+ }
+
+ if (iv < 0.0) {
+ /* Whether this is an error is a mess, and bumps into libm
+ * bugs so we have to figure it out ourselves.
+ */
+ if (iw != floor(iw)) {
+ /* Negative numbers raised to fractional powers
+ * become complex.
+ */
+ return PyComplex_Type.tp_as_number->nb_power(v, w, z);
+ }
+ /* iw is an exact integer, albeit perhaps a very large
+ * one. Replace iv by its absolute value and remember
+ * to negate the pow result if iw is odd.
+ */
+ iv = -iv;
+ negate_result = DOUBLE_IS_ODD_INTEGER(iw);
+ }
+
+ if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
+ /* (-1) ** large_integer also ends up here. Here's an
+ * extract from the comments for the previous
+ * implementation explaining why this special case is
+ * necessary:
+ *
+ * -1 raised to an exact integer should never be exceptional.
+ * Alas, some libms (chiefly glibc as of early 2003) return
+ * NaN and set EDOM on pow(-1, large_int) if the int doesn't
+ * happen to be representable in a *C* integer. That's a
+ * bug.
+ */
+ return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
+ }
+
+ /* Now iv and iw are finite, iw is nonzero, and iv is
+ * positive and not equal to 1.0. We finally allow
+ * the platform pow to step in and do the rest.
+ */
+ errno = 0;
+ ix = pow(iv, iw);
+ Py_ADJUST_ERANGE1(ix);
+ if (negate_result)
+ ix = -ix;
+
+ if (errno != 0) {
+ /* We don't expect any errno value other than ERANGE, but
+ * the range of libm bugs appears unbounded.
+ */
+ PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
+ PyExc_ValueError);
+ return NULL;
+ }
+ return PyFloat_FromDouble(ix);
+}
+
+#undef DOUBLE_IS_ODD_INTEGER
+
+static PyObject *
+float_neg(PyFloatObject *v)
+{
+ return PyFloat_FromDouble(-v->ob_fval);
+}
+
+static PyObject *
+float_abs(PyFloatObject *v)
+{
+ return PyFloat_FromDouble(fabs(v->ob_fval));
+}
+
+static int
+float_bool(PyFloatObject *v)
+{
+ return v->ob_fval != 0.0;
+}
+
+/*[clinic input]
+float.is_integer
+
+Return True if the float is an integer.
+[clinic start generated code]*/
+
+static PyObject *
+float_is_integer_impl(PyObject *self)
+/*[clinic end generated code: output=7112acf95a4d31ea input=311810d3f777e10d]*/
+{
+ double x = PyFloat_AsDouble(self);
+ PyObject *o;
+
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ if (!Py_IS_FINITE(x))
+ Py_RETURN_FALSE;
+ errno = 0;
+ o = (floor(x) == x) ? Py_True : Py_False;
+ if (errno != 0) {
+ PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
+ PyExc_ValueError);
+ return NULL;
+ }
+ Py_INCREF(o);
+ return o;
+}
+
+/*[clinic input]
+float.__trunc__
+
+Return the Integral closest to x between 0 and x.
+[clinic start generated code]*/
+
+static PyObject *
+float___trunc___impl(PyObject *self)
+/*[clinic end generated code: output=dd3e289dd4c6b538 input=591b9ba0d650fdff]*/
+{
+ return PyLong_FromDouble(PyFloat_AS_DOUBLE(self));
+}
+
+/*[clinic input]
+float.__floor__
+
+Return the floor as an Integral.
+[clinic start generated code]*/
+
+static PyObject *
+float___floor___impl(PyObject *self)
+/*[clinic end generated code: output=e0551dbaea8c01d1 input=77bb13eb12e268df]*/
+{
+ double x = PyFloat_AS_DOUBLE(self);
+ return PyLong_FromDouble(floor(x));
+}
+
+/*[clinic input]
+float.__ceil__
+
+Return the ceiling as an Integral.
+[clinic start generated code]*/
+
+static PyObject *
+float___ceil___impl(PyObject *self)
+/*[clinic end generated code: output=a2fd8858f73736f9 input=79e41ae94aa0a516]*/
+{
+ double x = PyFloat_AS_DOUBLE(self);
+ return PyLong_FromDouble(ceil(x));
+}
+
+/* double_round: rounds a finite double to the closest multiple of
+ 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
+ ndigits <= 323). Returns a Python float, or sets a Python error and
+ returns NULL on failure (OverflowError and memory errors are possible). */
+
+#ifndef PY_NO_SHORT_FLOAT_REPR
+/* version of double_round that uses the correctly-rounded string<->double
+ conversions from Python/dtoa.c */
+
+static PyObject *
+double_round(double x, int ndigits) {
+
+ double rounded;
+ Py_ssize_t buflen, mybuflen=100;
+ char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
+ int decpt, sign;
+ PyObject *result = NULL;
+ _Py_SET_53BIT_PRECISION_HEADER;
+
+ /* round to a decimal string */
+ _Py_SET_53BIT_PRECISION_START;
+ buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
+ _Py_SET_53BIT_PRECISION_END;
+ if (buf == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+
+ /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
+ buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
+ buflen = buf_end - buf;
+ if (buflen + 8 > mybuflen) {
+ mybuflen = buflen+8;
+ mybuf = (char *)PyMem_Malloc(mybuflen);
+ if (mybuf == NULL) {
+ PyErr_NoMemory();
+ goto exit;
+ }
+ }
+ /* copy buf to mybuf, adding exponent, sign and leading 0 */
+ PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
+ buf, decpt - (int)buflen);
+
+ /* and convert the resulting string back to a double */
+ errno = 0;
+ _Py_SET_53BIT_PRECISION_START;
+ rounded = _Py_dg_strtod(mybuf, NULL);
+ _Py_SET_53BIT_PRECISION_END;
+ if (errno == ERANGE && fabs(rounded) >= 1.)
+ PyErr_SetString(PyExc_OverflowError,
+ "rounded value too large to represent");
+ else
+ result = PyFloat_FromDouble(rounded);
+
+ /* done computing value; now clean up */
+ if (mybuf != shortbuf)
+ PyMem_Free(mybuf);
+ exit:
+ _Py_dg_freedtoa(buf);
+ return result;
+}
+
+#else /* PY_NO_SHORT_FLOAT_REPR */
+
+/* fallback version, to be used when correctly rounded binary<->decimal
+ conversions aren't available */
+
+static PyObject *
+double_round(double x, int ndigits) {
+ double pow1, pow2, y, z;
+ if (ndigits >= 0) {
+ if (ndigits > 22) {
+ /* pow1 and pow2 are each safe from overflow, but
+ pow1*pow2 ~= pow(10.0, ndigits) might overflow */
+ pow1 = pow(10.0, (double)(ndigits-22));
+ pow2 = 1e22;
+ }
+ else {
+ pow1 = pow(10.0, (double)ndigits);
+ pow2 = 1.0;
+ }
+ y = (x*pow1)*pow2;
+ /* if y overflows, then rounded value is exactly x */
+ if (!Py_IS_FINITE(y))
+ return PyFloat_FromDouble(x);
+ }
+ else {
+ pow1 = pow(10.0, (double)-ndigits);
+ pow2 = 1.0; /* unused; silences a gcc compiler warning */
+ y = x / pow1;
+ }
+
+ z = round(y);
+ if (fabs(y-z) == 0.5)
+ /* halfway between two integers; use round-half-even */
+ z = 2.0*round(y/2.0);
+
+ if (ndigits >= 0)
+ z = (z / pow2) / pow1;
+ else
+ z *= pow1;
+
+ /* if computation resulted in overflow, raise OverflowError */
+ if (!Py_IS_FINITE(z)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "overflow occurred during round");
+ return NULL;
+ }
+
+ return PyFloat_FromDouble(z);
+}
+
+#endif /* PY_NO_SHORT_FLOAT_REPR */
+
+/* round a Python float v to the closest multiple of 10**-ndigits */
+
+/*[clinic input]
+float.__round__
+
+ ndigits as o_ndigits: object = None
+ /
+
+Return the Integral closest to x, rounding half toward even.
+
+When an argument is passed, work like built-in round(x, ndigits).
+[clinic start generated code]*/
+
+static PyObject *
+float___round___impl(PyObject *self, PyObject *o_ndigits)
+/*[clinic end generated code: output=374c36aaa0f13980 input=fc0fe25924fbc9ed]*/
+{
+ double x, rounded;
+ Py_ssize_t ndigits;
+
+ x = PyFloat_AsDouble(self);
+ if (o_ndigits == Py_None) {
+ /* single-argument round or with None ndigits:
+ * round to nearest integer */
+ rounded = round(x);
+ if (fabs(x-rounded) == 0.5)
+ /* halfway case: round to even */
+ rounded = 2.0*round(x/2.0);
+ return PyLong_FromDouble(rounded);
+ }
+
+ /* interpret second argument as a Py_ssize_t; clips on overflow */
+ ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
+ if (ndigits == -1 && PyErr_Occurred())
+ return NULL;
+
+ /* nans and infinities round to themselves */
+ if (!Py_IS_FINITE(x))
+ return PyFloat_FromDouble(x);
+
+ /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
+ always rounds to itself. For ndigits < NDIGITS_MIN, x always
+ rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
+#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
+#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
+ if (ndigits > NDIGITS_MAX)
+ /* return x */
+ return PyFloat_FromDouble(x);
+ else if (ndigits < NDIGITS_MIN)
+ /* return 0.0, but with sign of x */
+ return PyFloat_FromDouble(0.0*x);
+ else
+ /* finite x, and ndigits is not unreasonably large */
+ return double_round(x, (int)ndigits);
+#undef NDIGITS_MAX
+#undef NDIGITS_MIN
+}
+
+static PyObject *
+float_float(PyObject *v)
+{
+ if (PyFloat_CheckExact(v))
+ Py_INCREF(v);
+ else
+ v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
+ return v;
+}
+
+/*[clinic input]
+float.conjugate
+
+Return self, the complex conjugate of any float.
+[clinic start generated code]*/
+
+static PyObject *
+float_conjugate_impl(PyObject *self)
+/*[clinic end generated code: output=8ca292c2479194af input=82ba6f37a9ff91dd]*/
+{
+ return float_float(self);
+}
+
+/* turn ASCII hex characters into integer values and vice versa */
+
+static char
+char_from_hex(int x)
+{
+ assert(0 <= x && x < 16);
+ return Py_hexdigits[x];
+}
+
+static int
+hex_from_char(char c) {
+ int x;
+ switch(c) {
+ case '0':
+ x = 0;
+ break;
+ case '1':
+ x = 1;
+ break;
+ case '2':
+ x = 2;
+ break;
+ case '3':
+ x = 3;
+ break;
+ case '4':
+ x = 4;
+ break;
+ case '5':
+ x = 5;
+ break;
+ case '6':
+ x = 6;
+ break;
+ case '7':
+ x = 7;
+ break;
+ case '8':
+ x = 8;
+ break;
+ case '9':
+ x = 9;
+ break;
+ case 'a':
+ case 'A':
+ x = 10;
+ break;
+ case 'b':
+ case 'B':
+ x = 11;
+ break;
+ case 'c':
+ case 'C':
+ x = 12;
+ break;
+ case 'd':
+ case 'D':
+ x = 13;
+ break;
+ case 'e':
+ case 'E':
+ x = 14;
+ break;
+ case 'f':
+ case 'F':
+ x = 15;
+ break;
+ default:
+ x = -1;
+ break;
+ }
+ return x;
+}
+
+/* convert a float to a hexadecimal string */
+
+/* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
+ of the form 4k+1. */
+#define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
+
+/*[clinic input]
+float.hex
+
+Return a hexadecimal representation of a floating-point number.
+
+>>> (-0.1).hex()
+'-0x1.999999999999ap-4'
+>>> 3.14159.hex()
+'0x1.921f9f01b866ep+1'
+[clinic start generated code]*/
+
+static PyObject *
+float_hex_impl(PyObject *self)
+/*[clinic end generated code: output=0ebc9836e4d302d4 input=bec1271a33d47e67]*/
+{
+ double x, m;
+ int e, shift, i, si, esign;
+ /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
+ trailing NUL byte. */
+ char s[(TOHEX_NBITS-1)/4+3];
+
+ CONVERT_TO_DOUBLE(self, x);
+
+ if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
+ return float_repr((PyFloatObject *)self);
+
+ if (x == 0.0) {
+ if (copysign(1.0, x) == -1.0)
+ return PyUnicode_FromString("-0x0.0p+0");
+ else
+ return PyUnicode_FromString("0x0.0p+0");
+ }
+
+ m = frexp(fabs(x), &e);
+ shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0);
+ m = ldexp(m, shift);
+ e -= shift;
+
+ si = 0;
+ s[si] = char_from_hex((int)m);
+ si++;
+ m -= (int)m;
+ s[si] = '.';
+ si++;
+ for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
+ m *= 16.0;
+ s[si] = char_from_hex((int)m);
+ si++;
+ m -= (int)m;
+ }
+ s[si] = '\0';
+
+ if (e < 0) {
+ esign = (int)'-';
+ e = -e;
+ }
+ else
+ esign = (int)'+';
+
+ if (x < 0.0)
+ return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
+ else
+ return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
+}
+
+/* Convert a hexadecimal string to a float. */
+
+/*[clinic input]
+@classmethod
+float.fromhex
+
+ string: object
+ /
+
+Create a floating-point number from a hexadecimal string.
+
+>>> float.fromhex('0x1.ffffp10')
+2047.984375
+>>> float.fromhex('-0x1p-1074')
+-5e-324
+[clinic start generated code]*/
+
+static PyObject *
+float_fromhex(PyTypeObject *type, PyObject *string)
+/*[clinic end generated code: output=46c0274d22b78e82 input=0407bebd354bca89]*/
+{
+ PyObject *result;
+ double x;
+ long exp, top_exp, lsb, key_digit;
+ const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
+ int half_eps, digit, round_up, negate=0;
+ Py_ssize_t length, ndigits, fdigits, i;
+
+ /*
+ * For the sake of simplicity and correctness, we impose an artificial
+ * limit on ndigits, the total number of hex digits in the coefficient
+ * The limit is chosen to ensure that, writing exp for the exponent,
+ *
+ * (1) if exp > LONG_MAX/2 then the value of the hex string is
+ * guaranteed to overflow (provided it's nonzero)
+ *
+ * (2) if exp < LONG_MIN/2 then the value of the hex string is
+ * guaranteed to underflow to 0.
+ *
+ * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
+ * overflow in the calculation of exp and top_exp below.
+ *
+ * More specifically, ndigits is assumed to satisfy the following
+ * inequalities:
+ *
+ * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
+ * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
+ *
+ * If either of these inequalities is not satisfied, a ValueError is
+ * raised. Otherwise, write x for the value of the hex string, and
+ * assume x is nonzero. Then
+ *
+ * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
+ *
+ * Now if exp > LONG_MAX/2 then:
+ *
+ * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
+ * = DBL_MAX_EXP
+ *
+ * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
+ * double, so overflows. If exp < LONG_MIN/2, then
+ *
+ * exp + 4*ndigits <= LONG_MIN/2 - 1 + (
+ * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
+ * = DBL_MIN_EXP - DBL_MANT_DIG - 1
+ *
+ * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
+ * when converted to a C double.
+ *
+ * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
+ * exp+4*ndigits and exp-4*ndigits are within the range of a long.
+ */
+
+ s = PyUnicode_AsUTF8AndSize(string, &length);
+ if (s == NULL)
+ return NULL;
+ s_end = s + length;
+
+ /********************
+ * Parse the string *
+ ********************/
+
+ /* leading whitespace */
+ while (Py_ISSPACE(*s))
+ s++;
+
+ /* infinities and nans */
+ x = _Py_parse_inf_or_nan(s, (char **)&coeff_end);
+ if (coeff_end != s) {
+ s = coeff_end;
+ goto finished;
+ }
+
+ /* optional sign */
+ if (*s == '-') {
+ s++;
+ negate = 1;
+ }
+ else if (*s == '+')
+ s++;
+
+ /* [0x] */
+ s_store = s;
+ if (*s == '0') {
+ s++;
+ if (*s == 'x' || *s == 'X')
+ s++;
+ else
+ s = s_store;
+ }
+
+ /* coefficient: <integer> [. <fraction>] */
+ coeff_start = s;
+ while (hex_from_char(*s) >= 0)
+ s++;
+ s_store = s;
+ if (*s == '.') {
+ s++;
+ while (hex_from_char(*s) >= 0)
+ s++;
+ coeff_end = s-1;
+ }
+ else
+ coeff_end = s;
+
+ /* ndigits = total # of hex digits; fdigits = # after point */
+ ndigits = coeff_end - coeff_start;
+ fdigits = coeff_end - s_store;
+ if (ndigits == 0)
+ goto parse_error;
+ if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
+ LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
+ goto insane_length_error;
+
+ /* [p <exponent>] */
+ if (*s == 'p' || *s == 'P') {
+ s++;
+ exp_start = s;
+ if (*s == '-' || *s == '+')
+ s++;
+ if (!('0' <= *s && *s <= '9'))
+ goto parse_error;
+ s++;
+ while ('0' <= *s && *s <= '9')
+ s++;
+ exp = strtol(exp_start, NULL, 10);
+ }
+ else
+ exp = 0;
+
+/* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
+#define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
+ coeff_end-(j) : \
+ coeff_end-1-(j)))
+
+ /*******************************************
+ * Compute rounded value of the hex string *
+ *******************************************/
+
+ /* Discard leading zeros, and catch extreme overflow and underflow */
+ while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
+ ndigits--;
+ if (ndigits == 0 || exp < LONG_MIN/2) {
+ x = 0.0;
+ goto finished;
+ }
+ if (exp > LONG_MAX/2)
+ goto overflow_error;
+
+ /* Adjust exponent for fractional part. */
+ exp = exp - 4*((long)fdigits);
+
+ /* top_exp = 1 more than exponent of most sig. bit of coefficient */
+ top_exp = exp + 4*((long)ndigits - 1);
+ for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
+ top_exp++;
+
+ /* catch almost all nonextreme cases of overflow and underflow here */
+ if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
+ x = 0.0;
+ goto finished;
+ }
+ if (top_exp > DBL_MAX_EXP)
+ goto overflow_error;
+
+ /* lsb = exponent of least significant bit of the *rounded* value.
+ This is top_exp - DBL_MANT_DIG unless result is subnormal. */
+ lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
+
+ x = 0.0;
+ if (exp >= lsb) {
+ /* no rounding required */
+ for (i = ndigits-1; i >= 0; i--)
+ x = 16.0*x + HEX_DIGIT(i);
+ x = ldexp(x, (int)(exp));
+ goto finished;
+ }
+ /* rounding required. key_digit is the index of the hex digit
+ containing the first bit to be rounded away. */
+ half_eps = 1 << (int)((lsb - exp - 1) % 4);
+ key_digit = (lsb - exp - 1) / 4;
+ for (i = ndigits-1; i > key_digit; i--)
+ x = 16.0*x + HEX_DIGIT(i);
+ digit = HEX_DIGIT(key_digit);
+ x = 16.0*x + (double)(digit & (16-2*half_eps));
+
+ /* round-half-even: round up if bit lsb-1 is 1 and at least one of
+ bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
+ if ((digit & half_eps) != 0) {
+ round_up = 0;
+ if ((digit & (3*half_eps-1)) != 0 || (half_eps == 8 &&
+ key_digit+1 < ndigits && (HEX_DIGIT(key_digit+1) & 1) != 0))
+ round_up = 1;
+ else
+ for (i = key_digit-1; i >= 0; i--)
+ if (HEX_DIGIT(i) != 0) {
+ round_up = 1;
+ break;
+ }
+ if (round_up) {
+ x += 2*half_eps;
+ if (top_exp == DBL_MAX_EXP &&
+ x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
+ /* overflow corner case: pre-rounded value <
+ 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
+ goto overflow_error;
+ }
+ }
+ x = ldexp(x, (int)(exp+4*key_digit));
+
+ finished:
+ /* optional trailing whitespace leading to the end of the string */
+ while (Py_ISSPACE(*s))
+ s++;
+ if (s != s_end)
+ goto parse_error;
+ result = PyFloat_FromDouble(negate ? -x : x);
+ if (type != &PyFloat_Type && result != NULL) {
+ Py_SETREF(result, PyObject_CallOneArg((PyObject *)type, result));
+ }
+ return result;
+
+ overflow_error:
+ PyErr_SetString(PyExc_OverflowError,
+ "hexadecimal value too large to represent as a float");
+ return NULL;
+
+ parse_error:
+ PyErr_SetString(PyExc_ValueError,
+ "invalid hexadecimal floating-point string");
+ return NULL;
+
+ insane_length_error:
+ PyErr_SetString(PyExc_ValueError,
+ "hexadecimal string too long to convert");
+ return NULL;
+}
+
+/*[clinic input]
+float.as_integer_ratio
+
+Return integer ratio.
+
+Return a pair of integers, whose ratio is exactly equal to the original float
+and with a positive denominator.
+
+Raise OverflowError on infinities and a ValueError on NaNs.
+
+>>> (10.0).as_integer_ratio()
+(10, 1)
+>>> (0.0).as_integer_ratio()
+(0, 1)
+>>> (-.25).as_integer_ratio()
+(-1, 4)
+[clinic start generated code]*/
+
+static PyObject *
+float_as_integer_ratio_impl(PyObject *self)
+/*[clinic end generated code: output=65f25f0d8d30a712 input=e21d08b4630c2e44]*/
+{
+ double self_double;
+ double float_part;
+ int exponent;
+ int i;
+
+ PyObject *py_exponent = NULL;
+ PyObject *numerator = NULL;
+ PyObject *denominator = NULL;
+ PyObject *result_pair = NULL;
+ PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
+
+ CONVERT_TO_DOUBLE(self, self_double);
+
+ if (Py_IS_INFINITY(self_double)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "cannot convert Infinity to integer ratio");
+ return NULL;
+ }
+ if (Py_IS_NAN(self_double)) {
+ PyErr_SetString(PyExc_ValueError,
+ "cannot convert NaN to integer ratio");
+ return NULL;
+ }
+
+ float_part = frexp(self_double, &exponent); /* self_double == float_part * 2**exponent exactly */
+
+ for (i=0; i<300 && float_part != floor(float_part) ; i++) {
+ float_part *= 2.0;
+ exponent--;
+ }
+ /* self == float_part * 2**exponent exactly and float_part is integral.
+ If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
+ to be truncated by PyLong_FromDouble(). */
+
+ numerator = PyLong_FromDouble(float_part);
+ if (numerator == NULL)
+ goto error;
+ denominator = PyLong_FromLong(1);
+ if (denominator == NULL)
+ goto error;
+ py_exponent = PyLong_FromLong(Py_ABS(exponent));
+ if (py_exponent == NULL)
+ goto error;
+
+ /* fold in 2**exponent */
+ if (exponent > 0) {
+ Py_SETREF(numerator,
+ long_methods->nb_lshift(numerator, py_exponent));
+ if (numerator == NULL)
+ goto error;
+ }
+ else {
+ Py_SETREF(denominator,
+ long_methods->nb_lshift(denominator, py_exponent));
+ if (denominator == NULL)
+ goto error;
+ }
+
+ result_pair = PyTuple_Pack(2, numerator, denominator);
+
+error:
+ Py_XDECREF(py_exponent);
+ Py_XDECREF(denominator);
+ Py_XDECREF(numerator);
+ return result_pair;
+}
+
+static PyObject *
+float_subtype_new(PyTypeObject *type, PyObject *x);
+
+/*[clinic input]
+@classmethod
+float.__new__ as float_new
+ x: object(c_default="_PyLong_Zero") = 0
+ /
+
+Convert a string or number to a floating point number, if possible.
+[clinic start generated code]*/
+
+static PyObject *
+float_new_impl(PyTypeObject *type, PyObject *x)
+/*[clinic end generated code: output=ccf1e8dc460ba6ba input=540ee77c204ff87a]*/
+{
+ if (type != &PyFloat_Type)
+ return float_subtype_new(type, x); /* Wimp out */
+ /* If it's a string, but not a string subclass, use
+ PyFloat_FromString. */
+ if (PyUnicode_CheckExact(x))
+ return PyFloat_FromString(x);
+ return PyNumber_Float(x);
+}
+
+/* Wimpy, slow approach to tp_new calls for subtypes of float:
+ first create a regular float from whatever arguments we got,
+ then allocate a subtype instance and initialize its ob_fval
+ from the regular float. The regular float is then thrown away.
+*/
+static PyObject *
+float_subtype_new(PyTypeObject *type, PyObject *x)
+{
+ PyObject *tmp, *newobj;
+
+ assert(PyType_IsSubtype(type, &PyFloat_Type));
+ tmp = float_new_impl(&PyFloat_Type, x);
+ if (tmp == NULL)
+ return NULL;
+ assert(PyFloat_Check(tmp));
+ newobj = type->tp_alloc(type, 0);
+ if (newobj == NULL) {
+ Py_DECREF(tmp);
+ return NULL;
+ }
+ ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
+ Py_DECREF(tmp);
+ return newobj;
+}
+
+/*[clinic input]
+float.__getnewargs__
+[clinic start generated code]*/
+
+static PyObject *
+float___getnewargs___impl(PyObject *self)
+/*[clinic end generated code: output=873258c9d206b088 input=002279d1d77891e6]*/
+{
+ return Py_BuildValue("(d)", ((PyFloatObject *)self)->ob_fval);
+}
+
+/* this is for the benefit of the pack/unpack routines below */
+
+typedef enum {
+ unknown_format, ieee_big_endian_format, ieee_little_endian_format
+} float_format_type;
+
+static float_format_type double_format, float_format;
+static float_format_type detected_double_format, detected_float_format;
+
+/*[clinic input]
+@classmethod
+float.__getformat__
+
+ typestr: str
+ Must be 'double' or 'float'.
+ /
+
+You probably don't want to use this function.
+
+It exists mainly to be used in Python's test suite.
+
+This function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE,
+little-endian' best describes the format of floating point numbers used by the
+C type named by typestr.
+[clinic start generated code]*/
+
+static PyObject *
+float___getformat___impl(PyTypeObject *type, const char *typestr)
+/*[clinic end generated code: output=2bfb987228cc9628 input=d5a52600f835ad67]*/
+{
+ float_format_type r;
+
+ if (strcmp(typestr, "double") == 0) {
+ r = double_format;
+ }
+ else if (strcmp(typestr, "float") == 0) {
+ r = float_format;
+ }
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "__getformat__() argument 1 must be "
+ "'double' or 'float'");
+ return NULL;
+ }
+
+ switch (r) {
+ case unknown_format:
+ return PyUnicode_FromString("unknown");
+ case ieee_little_endian_format:
+ return PyUnicode_FromString("IEEE, little-endian");
+ case ieee_big_endian_format:
+ return PyUnicode_FromString("IEEE, big-endian");
+ default:
+ PyErr_SetString(PyExc_RuntimeError,
+ "insane float_format or double_format");
+ return NULL;
+ }
+}
+
+/*[clinic input]
+@classmethod
+float.__set_format__
+
+ typestr: str
+ Must be 'double' or 'float'.
+ fmt: str
+ Must be one of 'unknown', 'IEEE, big-endian' or 'IEEE, little-endian',
+ and in addition can only be one of the latter two if it appears to
+ match the underlying C reality.
+ /
+
+You probably don't want to use this function.
+
+It exists mainly to be used in Python's test suite.
+
+Override the automatic determination of C-level floating point type.
+This affects how floats are converted to and from binary strings.
+[clinic start generated code]*/
+
+static PyObject *
+float___set_format___impl(PyTypeObject *type, const char *typestr,
+ const char *fmt)
+/*[clinic end generated code: output=504460f5dc85acbd input=5306fa2b81a997e4]*/
+{
+ float_format_type f;
+ float_format_type detected;
+ float_format_type *p;
+
+ if (strcmp(typestr, "double") == 0) {
+ p = &double_format;
+ detected = detected_double_format;
+ }
+ else if (strcmp(typestr, "float") == 0) {
+ p = &float_format;
+ detected = detected_float_format;
+ }
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "__setformat__() argument 1 must "
+ "be 'double' or 'float'");
+ return NULL;
+ }
+
+ if (strcmp(fmt, "unknown") == 0) {
+ f = unknown_format;
+ }
+ else if (strcmp(fmt, "IEEE, little-endian") == 0) {
+ f = ieee_little_endian_format;
+ }
+ else if (strcmp(fmt, "IEEE, big-endian") == 0) {
+ f = ieee_big_endian_format;
+ }
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "__setformat__() argument 2 must be "
+ "'unknown', 'IEEE, little-endian' or "
+ "'IEEE, big-endian'");
+ return NULL;
+
+ }
+
+ if (f != unknown_format && f != detected) {
+ PyErr_Format(PyExc_ValueError,
+ "can only set %s format to 'unknown' or the "
+ "detected platform value", typestr);
+ return NULL;
+ }
+
+ *p = f;
+ Py_RETURN_NONE;
+}
+
+static PyObject *
+float_getreal(PyObject *v, void *closure)
+{
+ return float_float(v);
+}
+
+static PyObject *
+float_getimag(PyObject *v, void *closure)
+{
+ return PyFloat_FromDouble(0.0);
+}
+
+/*[clinic input]
+float.__format__
+
+ format_spec: unicode
+ /
+
+Formats the float according to format_spec.
+[clinic start generated code]*/
+
+static PyObject *
+float___format___impl(PyObject *self, PyObject *format_spec)
+/*[clinic end generated code: output=b260e52a47eade56 input=2ece1052211fd0e6]*/
+{
+ _PyUnicodeWriter writer;
+ int ret;
+
+ _PyUnicodeWriter_Init(&writer);
+ ret = _PyFloat_FormatAdvancedWriter(
+ &writer,
+ self,
+ format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
+ if (ret == -1) {
+ _PyUnicodeWriter_Dealloc(&writer);
+ return NULL;
+ }
+ return _PyUnicodeWriter_Finish(&writer);
+}
+
+static PyMethodDef float_methods[] = {
+ FLOAT_CONJUGATE_METHODDEF
+ FLOAT___TRUNC___METHODDEF
+ FLOAT___FLOOR___METHODDEF
+ FLOAT___CEIL___METHODDEF
+ FLOAT___ROUND___METHODDEF
+ FLOAT_AS_INTEGER_RATIO_METHODDEF
+ FLOAT_FROMHEX_METHODDEF
+ FLOAT_HEX_METHODDEF
+ FLOAT_IS_INTEGER_METHODDEF
+ FLOAT___GETNEWARGS___METHODDEF
+ FLOAT___GETFORMAT___METHODDEF
+ FLOAT___SET_FORMAT___METHODDEF
+ FLOAT___FORMAT___METHODDEF
+ {NULL, NULL} /* sentinel */
+};
+
+static PyGetSetDef float_getset[] = {
+ {"real",
+ float_getreal, (setter)NULL,
+ "the real part of a complex number",
+ NULL},
+ {"imag",
+ float_getimag, (setter)NULL,
+ "the imaginary part of a complex number",
+ NULL},
+ {NULL} /* Sentinel */
+};
+
+
+static PyNumberMethods float_as_number = {
+ float_add, /* nb_add */
+ float_sub, /* nb_subtract */
+ float_mul, /* nb_multiply */
+ float_rem, /* nb_remainder */
+ float_divmod, /* nb_divmod */
+ float_pow, /* nb_power */
+ (unaryfunc)float_neg, /* nb_negative */
+ float_float, /* nb_positive */
+ (unaryfunc)float_abs, /* nb_absolute */
+ (inquiry)float_bool, /* nb_bool */
+ 0, /* nb_invert */
+ 0, /* nb_lshift */
+ 0, /* nb_rshift */
+ 0, /* nb_and */
+ 0, /* nb_xor */
+ 0, /* nb_or */
+ float___trunc___impl, /* nb_int */
+ 0, /* nb_reserved */
+ float_float, /* nb_float */
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply */
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ float_floor_div, /* nb_floor_divide */
+ float_div, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
+};
+
+PyTypeObject PyFloat_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "float",
+ sizeof(PyFloatObject),
+ 0,
+ (destructor)float_dealloc, /* tp_dealloc */
+ 0, /* tp_vectorcall_offset */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_as_async */
+ (reprfunc)float_repr, /* tp_repr */
+ &float_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)float_hash, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
+ float_new__doc__, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ float_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ float_methods, /* tp_methods */
+ 0, /* tp_members */
+ float_getset, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ 0, /* tp_alloc */
+ float_new, /* tp_new */
+};
+
+int
+_PyFloat_Init(void)
+{
+ /* We attempt to determine if this machine is using IEEE
+ floating point formats by peering at the bits of some
+ carefully chosen values. If it looks like we are on an
+ IEEE platform, the float packing/unpacking routines can
+ just copy bits, if not they resort to arithmetic & shifts
+ and masks. The shifts & masks approach works on all finite
+ values, but what happens to infinities, NaNs and signed
+ zeroes on packing is an accident, and attempting to unpack
+ a NaN or an infinity will raise an exception.
+
+ Note that if we're on some whacked-out platform which uses
+ IEEE formats but isn't strictly little-endian or big-
+ endian, we will fall back to the portable shifts & masks
+ method. */
+
+#if SIZEOF_DOUBLE == 8
+ {
+ double x = 9006104071832581.0;
+ if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
+ detected_double_format = ieee_big_endian_format;
+ else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
+ detected_double_format = ieee_little_endian_format;
+ else
+ detected_double_format = unknown_format;
+ }
+#else
+ detected_double_format = unknown_format;
+#endif
+
+#if SIZEOF_FLOAT == 4
+ {
+ float y = 16711938.0;
+ if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
+ detected_float_format = ieee_big_endian_format;
+ else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
+ detected_float_format = ieee_little_endian_format;
+ else
+ detected_float_format = unknown_format;
+ }
+#else
+ detected_float_format = unknown_format;
+#endif
+
+ double_format = detected_double_format;
+ float_format = detected_float_format;
+
+ /* Init float info */
+ if (FloatInfoType.tp_name == NULL) {
+ if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+void
+_PyFloat_ClearFreeList(void)
+{
+ PyFloatObject *f = free_list, *next;
+ for (; f; f = next) {
+ next = (PyFloatObject*) Py_TYPE(f);
+ PyObject_FREE(f);
+ }
+ free_list = NULL;
+ numfree = 0;
+}
+
+void
+_PyFloat_Fini(void)
+{
+ _PyFloat_ClearFreeList();
+}
+
+/* Print summary info about the state of the optimized allocator */
+void
+_PyFloat_DebugMallocStats(FILE *out)
+{
+ _PyDebugAllocatorStats(out,
+ "free PyFloatObject",
+ numfree, sizeof(PyFloatObject));
+}
+
+
+/*----------------------------------------------------------------------------
+ * _PyFloat_{Pack,Unpack}{2,4,8}. See floatobject.h.
+ * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in:
+ * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c
+ * We use:
+ * bits = (unsigned short)f; Note the truncation
+ * if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) {
+ * bits++;
+ * }
+ */
+
+int
+_PyFloat_Pack2(double x, unsigned char *p, int le)
+{
+ unsigned char sign;
+ int e;
+ double f;
+ unsigned short bits;
+ int incr = 1;
+
+ if (x == 0.0) {
+ sign = (copysign(1.0, x) == -1.0);
+ e = 0;
+ bits = 0;
+ }
+ else if (Py_IS_INFINITY(x)) {
+ sign = (x < 0.0);
+ e = 0x1f;
+ bits = 0;
+ }
+ else if (Py_IS_NAN(x)) {
+ /* There are 2046 distinct half-precision NaNs (1022 signaling and
+ 1024 quiet), but there are only two quiet NaNs that don't arise by
+ quieting a signaling NaN; we get those by setting the topmost bit
+ of the fraction field and clearing all other fraction bits. We
+ choose the one with the appropriate sign. */
+ sign = (copysign(1.0, x) == -1.0);
+ e = 0x1f;
+ bits = 512;
+ }
+ else {
+ sign = (x < 0.0);
+ if (sign) {
+ x = -x;
+ }
+
+ f = frexp(x, &e);
+ if (f < 0.5 || f >= 1.0) {
+ PyErr_SetString(PyExc_SystemError,
+ "frexp() result out of range");
+ return -1;
+ }
+
+ /* Normalize f to be in the range [1.0, 2.0) */
+ f *= 2.0;
+ e--;
+
+ if (e >= 16) {
+ goto Overflow;
+ }
+ else if (e < -25) {
+ /* |x| < 2**-25. Underflow to zero. */
+ f = 0.0;
+ e = 0;
+ }
+ else if (e < -14) {
+ /* |x| < 2**-14. Gradual underflow */
+ f = ldexp(f, 14 + e);
+ e = 0;
+ }
+ else /* if (!(e == 0 && f == 0.0)) */ {
+ e += 15;
+ f -= 1.0; /* Get rid of leading 1 */
+ }
+
+ f *= 1024.0; /* 2**10 */
+ /* Round to even */
+ bits = (unsigned short)f; /* Note the truncation */
+ assert(bits < 1024);
+ assert(e < 31);
+ if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) {
+ ++bits;
+ if (bits == 1024) {
+ /* The carry propagated out of a string of 10 1 bits. */
+ bits = 0;
+ ++e;
+ if (e == 31)
+ goto Overflow;
+ }
+ }
+ }
+
+ bits |= (e << 10) | (sign << 15);
+
+ /* Write out result. */
+ if (le) {
+ p += 1;
+ incr = -1;
+ }
+
+ /* First byte */
+ *p = (unsigned char)((bits >> 8) & 0xFF);
+ p += incr;
+
+ /* Second byte */
+ *p = (unsigned char)(bits & 0xFF);
+
+ return 0;
+
+ Overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "float too large to pack with e format");
+ return -1;
+}
+
+int
+_PyFloat_Pack4(double x, unsigned char *p, int le)
+{
+ if (float_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ double f;
+ unsigned int fbits;
+ int incr = 1;
+
+ if (le) {
+ p += 3;
+ incr = -1;
+ }
+
+ if (x < 0) {
+ sign = 1;
+ x = -x;
+ }
+ else
+ sign = 0;
+
+ f = frexp(x, &e);
+
+ /* Normalize f to be in the range [1.0, 2.0) */
+ if (0.5 <= f && f < 1.0) {
+ f *= 2.0;
+ e--;
+ }
+ else if (f == 0.0)
+ e = 0;
+ else {
+ PyErr_SetString(PyExc_SystemError,
+ "frexp() result out of range");
+ return -1;
+ }
+
+ if (e >= 128)
+ goto Overflow;
+ else if (e < -126) {
+ /* Gradual underflow */
+ f = ldexp(f, 126 + e);
+ e = 0;
+ }
+ else if (!(e == 0 && f == 0.0)) {
+ e += 127;
+ f -= 1.0; /* Get rid of leading 1 */
+ }
+
+ f *= 8388608.0; /* 2**23 */
+ fbits = (unsigned int)(f + 0.5); /* Round */
+ assert(fbits <= 8388608);
+ if (fbits >> 23) {
+ /* The carry propagated out of a string of 23 1 bits. */
+ fbits = 0;
+ ++e;
+ if (e >= 255)
+ goto Overflow;
+ }
+
+ /* First byte */
+ *p = (sign << 7) | (e >> 1);
+ p += incr;
+
+ /* Second byte */
+ *p = (char) (((e & 1) << 7) | (fbits >> 16));
+ p += incr;
+
+ /* Third byte */
+ *p = (fbits >> 8) & 0xFF;
+ p += incr;
+
+ /* Fourth byte */
+ *p = fbits & 0xFF;
+
+ /* Done */
+ return 0;
+
+ }
+ else {
+ float y = (float)x;
+ int i, incr = 1;
+
+ if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
+ goto Overflow;
+
+ unsigned char s[sizeof(float)];
+ memcpy(s, &y, sizeof(float));
+
+ if ((float_format == ieee_little_endian_format && !le)
+ || (float_format == ieee_big_endian_format && le)) {
+ p += 3;
+ incr = -1;
+ }
+
+ for (i = 0; i < 4; i++) {
+ *p = s[i];
+ p += incr;
+ }
+ return 0;
+ }
+ Overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "float too large to pack with f format");
+ return -1;
+}
+
+int
+_PyFloat_Pack8(double x, unsigned char *p, int le)
+{
+ if (double_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ double f;
+ unsigned int fhi, flo;
+ int incr = 1;
+
+ if (le) {
+ p += 7;
+ incr = -1;
+ }
+
+ if (x < 0) {
+ sign = 1;
+ x = -x;
+ }
+ else
+ sign = 0;
+
+ f = frexp(x, &e);
+
+ /* Normalize f to be in the range [1.0, 2.0) */
+ if (0.5 <= f && f < 1.0) {
+ f *= 2.0;
+ e--;
+ }
+ else if (f == 0.0)
+ e = 0;
+ else {
+ PyErr_SetString(PyExc_SystemError,
+ "frexp() result out of range");
+ return -1;
+ }
+
+ if (e >= 1024)
+ goto Overflow;
+ else if (e < -1022) {
+ /* Gradual underflow */
+ f = ldexp(f, 1022 + e);
+ e = 0;
+ }
+ else if (!(e == 0 && f == 0.0)) {
+ e += 1023;
+ f -= 1.0; /* Get rid of leading 1 */
+ }
+
+ /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
+ f *= 268435456.0; /* 2**28 */
+ fhi = (unsigned int)f; /* Truncate */
+ assert(fhi < 268435456);
+
+ f -= (double)fhi;
+ f *= 16777216.0; /* 2**24 */
+ flo = (unsigned int)(f + 0.5); /* Round */
+ assert(flo <= 16777216);
+ if (flo >> 24) {
+ /* The carry propagated out of a string of 24 1 bits. */
+ flo = 0;
+ ++fhi;
+ if (fhi >> 28) {
+ /* And it also propagated out of the next 28 bits. */
+ fhi = 0;
+ ++e;
+ if (e >= 2047)
+ goto Overflow;
+ }
+ }
+
+ /* First byte */
+ *p = (sign << 7) | (e >> 4);
+ p += incr;
+
+ /* Second byte */
+ *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
+ p += incr;
+
+ /* Third byte */
+ *p = (fhi >> 16) & 0xFF;
+ p += incr;
+
+ /* Fourth byte */
+ *p = (fhi >> 8) & 0xFF;
+ p += incr;
+
+ /* Fifth byte */
+ *p = fhi & 0xFF;
+ p += incr;
+
+ /* Sixth byte */
+ *p = (flo >> 16) & 0xFF;
+ p += incr;
+
+ /* Seventh byte */
+ *p = (flo >> 8) & 0xFF;
+ p += incr;
+
+ /* Eighth byte */
+ *p = flo & 0xFF;
+ /* p += incr; */
+
+ /* Done */
+ return 0;
+
+ Overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "float too large to pack with d format");
+ return -1;
+ }
+ else {
+ const unsigned char *s = (unsigned char*)&x;
+ int i, incr = 1;
+
+ if ((double_format == ieee_little_endian_format && !le)
+ || (double_format == ieee_big_endian_format && le)) {
+ p += 7;
+ incr = -1;
+ }
+
+ for (i = 0; i < 8; i++) {
+ *p = *s++;
+ p += incr;
+ }
+ return 0;
+ }
+}
+
+double
+_PyFloat_Unpack2(const unsigned char *p, int le)
+{
+ unsigned char sign;
+ int e;
+ unsigned int f;
+ double x;
+ int incr = 1;
+
+ if (le) {
+ p += 1;
+ incr = -1;
+ }
+
+ /* First byte */
+ sign = (*p >> 7) & 1;
+ e = (*p & 0x7C) >> 2;
+ f = (*p & 0x03) << 8;
+ p += incr;
+
+ /* Second byte */
+ f |= *p;
+
+ if (e == 0x1f) {
+#ifdef PY_NO_SHORT_FLOAT_REPR
+ if (f == 0) {
+ /* Infinity */
+ return sign ? -Py_HUGE_VAL : Py_HUGE_VAL;
+ }
+ else {
+ /* NaN */
+#ifdef Py_NAN
+ return sign ? -Py_NAN : Py_NAN;
+#else
+ PyErr_SetString(
+ PyExc_ValueError,
+ "can't unpack IEEE 754 NaN "
+ "on platform that does not support NaNs");
+ return -1;
+#endif /* #ifdef Py_NAN */
+ }
+#else
+ if (f == 0) {
+ /* Infinity */
+ return _Py_dg_infinity(sign);
+ }
+ else {
+ /* NaN */
+ return _Py_dg_stdnan(sign);
+ }
+#endif /* #ifdef PY_NO_SHORT_FLOAT_REPR */
+ }
+
+ x = (double)f / 1024.0;
+
+ if (e == 0) {
+ e = -14;
+ }
+ else {
+ x += 1.0;
+ e -= 15;
+ }
+ x = ldexp(x, e);
+
+ if (sign)
+ x = -x;
+
+ return x;
+}
+
+double
+_PyFloat_Unpack4(const unsigned char *p, int le)
+{
+ if (float_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ unsigned int f;
+ double x;
+ int incr = 1;
+
+ if (le) {
+ p += 3;
+ incr = -1;
+ }
+
+ /* First byte */
+ sign = (*p >> 7) & 1;
+ e = (*p & 0x7F) << 1;
+ p += incr;
+
+ /* Second byte */
+ e |= (*p >> 7) & 1;
+ f = (*p & 0x7F) << 16;
+ p += incr;
+
+ if (e == 255) {
+ PyErr_SetString(
+ PyExc_ValueError,
+ "can't unpack IEEE 754 special value "
+ "on non-IEEE platform");
+ return -1;
+ }
+
+ /* Third byte */
+ f |= *p << 8;
+ p += incr;
+
+ /* Fourth byte */
+ f |= *p;
+
+ x = (double)f / 8388608.0;
+
+ /* XXX This sadly ignores Inf/NaN issues */
+ if (e == 0)
+ e = -126;
+ else {
+ x += 1.0;
+ e -= 127;
+ }
+ x = ldexp(x, e);
+
+ if (sign)
+ x = -x;
+
+ return x;
+ }
+ else {
+ float x;
+
+ if ((float_format == ieee_little_endian_format && !le)
+ || (float_format == ieee_big_endian_format && le)) {
+ char buf[4];
+ char *d = &buf[3];
+ int i;
+
+ for (i = 0; i < 4; i++) {
+ *d-- = *p++;
+ }
+ memcpy(&x, buf, 4);
+ }
+ else {
+ memcpy(&x, p, 4);
+ }
+
+ return x;
+ }
+}
+
+double
+_PyFloat_Unpack8(const unsigned char *p, int le)
+{
+ if (double_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ unsigned int fhi, flo;
+ double x;
+ int incr = 1;
+
+ if (le) {
+ p += 7;
+ incr = -1;
+ }
+
+ /* First byte */
+ sign = (*p >> 7) & 1;
+ e = (*p & 0x7F) << 4;
+
+ p += incr;
+
+ /* Second byte */
+ e |= (*p >> 4) & 0xF;
+ fhi = (*p & 0xF) << 24;
+ p += incr;
+
+ if (e == 2047) {
+ PyErr_SetString(
+ PyExc_ValueError,
+ "can't unpack IEEE 754 special value "
+ "on non-IEEE platform");
+ return -1.0;
+ }
+
+ /* Third byte */
+ fhi |= *p << 16;
+ p += incr;
+
+ /* Fourth byte */
+ fhi |= *p << 8;
+ p += incr;
+
+ /* Fifth byte */
+ fhi |= *p;
+ p += incr;
+
+ /* Sixth byte */
+ flo = *p << 16;
+ p += incr;
+
+ /* Seventh byte */
+ flo |= *p << 8;
+ p += incr;
+
+ /* Eighth byte */
+ flo |= *p;
+
+ x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
+ x /= 268435456.0; /* 2**28 */
+
+ if (e == 0)
+ e = -1022;
+ else {
+ x += 1.0;
+ e -= 1023;
+ }
+ x = ldexp(x, e);
+
+ if (sign)
+ x = -x;
+
+ return x;
+ }
+ else {
+ double x;
+
+ if ((double_format == ieee_little_endian_format && !le)
+ || (double_format == ieee_big_endian_format && le)) {
+ char buf[8];
+ char *d = &buf[7];
+ int i;
+
+ for (i = 0; i < 8; i++) {
+ *d-- = *p++;
+ }
+ memcpy(&x, buf, 8);
+ }
+ else {
+ memcpy(&x, p, 8);
+ }
+
+ return x;
+ }
+}