aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Objects/floatobject.c
diff options
context:
space:
mode:
authormonster <monster@ydb.tech>2022-07-07 14:41:37 +0300
committermonster <monster@ydb.tech>2022-07-07 14:41:37 +0300
commit06e5c21a835c0e923506c4ff27929f34e00761c2 (patch)
tree75efcbc6854ef9bd476eb8bf00cc5c900da436a2 /contrib/tools/python3/src/Objects/floatobject.c
parent03f024c4412e3aa613bb543cf1660176320ba8f4 (diff)
downloadydb-06e5c21a835c0e923506c4ff27929f34e00761c2.tar.gz
fix ya.make
Diffstat (limited to 'contrib/tools/python3/src/Objects/floatobject.c')
-rw-r--r--contrib/tools/python3/src/Objects/floatobject.c2660
1 files changed, 0 insertions, 2660 deletions
diff --git a/contrib/tools/python3/src/Objects/floatobject.c b/contrib/tools/python3/src/Objects/floatobject.c
deleted file mode 100644
index 5af2678773..0000000000
--- a/contrib/tools/python3/src/Objects/floatobject.c
+++ /dev/null
@@ -1,2660 +0,0 @@
-/* Float object implementation */
-
-/* XXX There should be overflow checks here, but it's hard to check
- for any kind of float exception without losing portability. */
-
-#include "Python.h"
-#include "pycore_dtoa.h" // _Py_dg_dtoa()
-#include "pycore_interp.h" // _PyInterpreterState.float_state
-#include "pycore_long.h" // _PyLong_GetOne()
-#include "pycore_object.h" // _PyObject_Init()
-#include "pycore_pystate.h" // _PyInterpreterState_GET()
-
-#include <ctype.h>
-#include <float.h>
-
-/*[clinic input]
-class float "PyObject *" "&PyFloat_Type"
-[clinic start generated code]*/
-/*[clinic end generated code: output=da39a3ee5e6b4b0d input=dd0003f68f144284]*/
-
-#include "clinic/floatobject.c.h"
-
-#ifndef PyFloat_MAXFREELIST
-# define PyFloat_MAXFREELIST 100
-#endif
-
-
-static struct _Py_float_state *
-get_float_state(void)
-{
- PyInterpreterState *interp = _PyInterpreterState_GET();
- return &interp->float_state;
-}
-
-
-double
-PyFloat_GetMax(void)
-{
- return DBL_MAX;
-}
-
-double
-PyFloat_GetMin(void)
-{
- return DBL_MIN;
-}
-
-static PyTypeObject FloatInfoType;
-
-PyDoc_STRVAR(floatinfo__doc__,
-"sys.float_info\n\
-\n\
-A named tuple holding information about the float type. It contains low level\n\
-information about the precision and internal representation. Please study\n\
-your system's :file:`float.h` for more information.");
-
-static PyStructSequence_Field floatinfo_fields[] = {
- {"max", "DBL_MAX -- maximum representable finite float"},
- {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
- "is representable"},
- {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
- "is representable"},
- {"min", "DBL_MIN -- Minimum positive normalized float"},
- {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
- "is a normalized float"},
- {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
- "a normalized float"},
- {"dig", "DBL_DIG -- maximum number of decimal digits that "
- "can be faithfully represented in a float"},
- {"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
- {"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
- "representable float"},
- {"radix", "FLT_RADIX -- radix of exponent"},
- {"rounds", "FLT_ROUNDS -- rounding mode used for arithmetic "
- "operations"},
- {0}
-};
-
-static PyStructSequence_Desc floatinfo_desc = {
- "sys.float_info", /* name */
- floatinfo__doc__, /* doc */
- floatinfo_fields, /* fields */
- 11
-};
-
-PyObject *
-PyFloat_GetInfo(void)
-{
- PyObject* floatinfo;
- int pos = 0;
-
- floatinfo = PyStructSequence_New(&FloatInfoType);
- if (floatinfo == NULL) {
- return NULL;
- }
-
-#define SetIntFlag(flag) \
- PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
-#define SetDblFlag(flag) \
- PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
-
- SetDblFlag(DBL_MAX);
- SetIntFlag(DBL_MAX_EXP);
- SetIntFlag(DBL_MAX_10_EXP);
- SetDblFlag(DBL_MIN);
- SetIntFlag(DBL_MIN_EXP);
- SetIntFlag(DBL_MIN_10_EXP);
- SetIntFlag(DBL_DIG);
- SetIntFlag(DBL_MANT_DIG);
- SetDblFlag(DBL_EPSILON);
- SetIntFlag(FLT_RADIX);
- SetIntFlag(FLT_ROUNDS);
-#undef SetIntFlag
-#undef SetDblFlag
-
- if (PyErr_Occurred()) {
- Py_CLEAR(floatinfo);
- return NULL;
- }
- return floatinfo;
-}
-
-PyObject *
-PyFloat_FromDouble(double fval)
-{
- struct _Py_float_state *state = get_float_state();
- PyFloatObject *op = state->free_list;
- if (op != NULL) {
-#ifdef Py_DEBUG
- // PyFloat_FromDouble() must not be called after _PyFloat_Fini()
- assert(state->numfree != -1);
-#endif
- state->free_list = (PyFloatObject *) Py_TYPE(op);
- state->numfree--;
- }
- else {
- op = PyObject_Malloc(sizeof(PyFloatObject));
- if (!op) {
- return PyErr_NoMemory();
- }
- }
- _PyObject_Init((PyObject*)op, &PyFloat_Type);
- op->ob_fval = fval;
- return (PyObject *) op;
-}
-
-static PyObject *
-float_from_string_inner(const char *s, Py_ssize_t len, void *obj)
-{
- double x;
- const char *end;
- const char *last = s + len;
- /* strip space */
- while (s < last && Py_ISSPACE(*s)) {
- s++;
- }
-
- while (s < last - 1 && Py_ISSPACE(last[-1])) {
- last--;
- }
-
- /* We don't care about overflow or underflow. If the platform
- * supports them, infinities and signed zeroes (on underflow) are
- * fine. */
- x = PyOS_string_to_double(s, (char **)&end, NULL);
- if (end != last) {
- PyErr_Format(PyExc_ValueError,
- "could not convert string to float: "
- "%R", obj);
- return NULL;
- }
- else if (x == -1.0 && PyErr_Occurred()) {
- return NULL;
- }
- else {
- return PyFloat_FromDouble(x);
- }
-}
-
-PyObject *
-PyFloat_FromString(PyObject *v)
-{
- const char *s;
- PyObject *s_buffer = NULL;
- Py_ssize_t len;
- Py_buffer view = {NULL, NULL};
- PyObject *result = NULL;
-
- if (PyUnicode_Check(v)) {
- s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
- if (s_buffer == NULL)
- return NULL;
- assert(PyUnicode_IS_ASCII(s_buffer));
- /* Simply get a pointer to existing ASCII characters. */
- s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
- assert(s != NULL);
- }
- else if (PyBytes_Check(v)) {
- s = PyBytes_AS_STRING(v);
- len = PyBytes_GET_SIZE(v);
- }
- else if (PyByteArray_Check(v)) {
- s = PyByteArray_AS_STRING(v);
- len = PyByteArray_GET_SIZE(v);
- }
- else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) {
- s = (const char *)view.buf;
- len = view.len;
- /* Copy to NUL-terminated buffer. */
- s_buffer = PyBytes_FromStringAndSize(s, len);
- if (s_buffer == NULL) {
- PyBuffer_Release(&view);
- return NULL;
- }
- s = PyBytes_AS_STRING(s_buffer);
- }
- else {
- PyErr_Format(PyExc_TypeError,
- "float() argument must be a string or a real number, not '%.200s'",
- Py_TYPE(v)->tp_name);
- return NULL;
- }
- result = _Py_string_to_number_with_underscores(s, len, "float", v, v,
- float_from_string_inner);
- PyBuffer_Release(&view);
- Py_XDECREF(s_buffer);
- return result;
-}
-
-static void
-float_dealloc(PyFloatObject *op)
-{
- if (PyFloat_CheckExact(op)) {
- struct _Py_float_state *state = get_float_state();
-#ifdef Py_DEBUG
- // float_dealloc() must not be called after _PyFloat_Fini()
- assert(state->numfree != -1);
-#endif
- if (state->numfree >= PyFloat_MAXFREELIST) {
- PyObject_Free(op);
- return;
- }
- state->numfree++;
- Py_SET_TYPE(op, (PyTypeObject *)state->free_list);
- state->free_list = op;
- }
- else {
- Py_TYPE(op)->tp_free((PyObject *)op);
- }
-}
-
-double
-PyFloat_AsDouble(PyObject *op)
-{
- PyNumberMethods *nb;
- PyObject *res;
- double val;
-
- if (op == NULL) {
- PyErr_BadArgument();
- return -1;
- }
-
- if (PyFloat_Check(op)) {
- return PyFloat_AS_DOUBLE(op);
- }
-
- nb = Py_TYPE(op)->tp_as_number;
- if (nb == NULL || nb->nb_float == NULL) {
- if (nb && nb->nb_index) {
- PyObject *res = _PyNumber_Index(op);
- if (!res) {
- return -1;
- }
- double val = PyLong_AsDouble(res);
- Py_DECREF(res);
- return val;
- }
- PyErr_Format(PyExc_TypeError, "must be real number, not %.50s",
- Py_TYPE(op)->tp_name);
- return -1;
- }
-
- res = (*nb->nb_float) (op);
- if (res == NULL) {
- return -1;
- }
- if (!PyFloat_CheckExact(res)) {
- if (!PyFloat_Check(res)) {
- PyErr_Format(PyExc_TypeError,
- "%.50s.__float__ returned non-float (type %.50s)",
- Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name);
- Py_DECREF(res);
- return -1;
- }
- if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
- "%.50s.__float__ returned non-float (type %.50s). "
- "The ability to return an instance of a strict subclass of float "
- "is deprecated, and may be removed in a future version of Python.",
- Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name)) {
- Py_DECREF(res);
- return -1;
- }
- }
-
- val = PyFloat_AS_DOUBLE(res);
- Py_DECREF(res);
- return val;
-}
-
-/* Macro and helper that convert PyObject obj to a C double and store
- the value in dbl. If conversion to double raises an exception, obj is
- set to NULL, and the function invoking this macro returns NULL. If
- obj is not of float or int type, Py_NotImplemented is incref'ed,
- stored in obj, and returned from the function invoking this macro.
-*/
-#define CONVERT_TO_DOUBLE(obj, dbl) \
- if (PyFloat_Check(obj)) \
- dbl = PyFloat_AS_DOUBLE(obj); \
- else if (convert_to_double(&(obj), &(dbl)) < 0) \
- return obj;
-
-/* Methods */
-
-static int
-convert_to_double(PyObject **v, double *dbl)
-{
- PyObject *obj = *v;
-
- if (PyLong_Check(obj)) {
- *dbl = PyLong_AsDouble(obj);
- if (*dbl == -1.0 && PyErr_Occurred()) {
- *v = NULL;
- return -1;
- }
- }
- else {
- Py_INCREF(Py_NotImplemented);
- *v = Py_NotImplemented;
- return -1;
- }
- return 0;
-}
-
-static PyObject *
-float_repr(PyFloatObject *v)
-{
- PyObject *result;
- char *buf;
-
- buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
- 'r', 0,
- Py_DTSF_ADD_DOT_0,
- NULL);
- if (!buf)
- return PyErr_NoMemory();
- result = _PyUnicode_FromASCII(buf, strlen(buf));
- PyMem_Free(buf);
- return result;
-}
-
-/* Comparison is pretty much a nightmare. When comparing float to float,
- * we do it as straightforwardly (and long-windedly) as conceivable, so
- * that, e.g., Python x == y delivers the same result as the platform
- * C x == y when x and/or y is a NaN.
- * When mixing float with an integer type, there's no good *uniform* approach.
- * Converting the double to an integer obviously doesn't work, since we
- * may lose info from fractional bits. Converting the integer to a double
- * also has two failure modes: (1) an int may trigger overflow (too
- * large to fit in the dynamic range of a C double); (2) even a C long may have
- * more bits than fit in a C double (e.g., on a 64-bit box long may have
- * 63 bits of precision, but a C double probably has only 53), and then
- * we can falsely claim equality when low-order integer bits are lost by
- * coercion to double. So this part is painful too.
- */
-
-static PyObject*
-float_richcompare(PyObject *v, PyObject *w, int op)
-{
- double i, j;
- int r = 0;
-
- assert(PyFloat_Check(v));
- i = PyFloat_AS_DOUBLE(v);
-
- /* Switch on the type of w. Set i and j to doubles to be compared,
- * and op to the richcomp to use.
- */
- if (PyFloat_Check(w))
- j = PyFloat_AS_DOUBLE(w);
-
- else if (!Py_IS_FINITE(i)) {
- if (PyLong_Check(w))
- /* If i is an infinity, its magnitude exceeds any
- * finite integer, so it doesn't matter which int we
- * compare i with. If i is a NaN, similarly.
- */
- j = 0.0;
- else
- goto Unimplemented;
- }
-
- else if (PyLong_Check(w)) {
- int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
- int wsign = _PyLong_Sign(w);
- size_t nbits;
- int exponent;
-
- if (vsign != wsign) {
- /* Magnitudes are irrelevant -- the signs alone
- * determine the outcome.
- */
- i = (double)vsign;
- j = (double)wsign;
- goto Compare;
- }
- /* The signs are the same. */
- /* Convert w to a double if it fits. In particular, 0 fits. */
- nbits = _PyLong_NumBits(w);
- if (nbits == (size_t)-1 && PyErr_Occurred()) {
- /* This long is so large that size_t isn't big enough
- * to hold the # of bits. Replace with little doubles
- * that give the same outcome -- w is so large that
- * its magnitude must exceed the magnitude of any
- * finite float.
- */
- PyErr_Clear();
- i = (double)vsign;
- assert(wsign != 0);
- j = wsign * 2.0;
- goto Compare;
- }
- if (nbits <= 48) {
- j = PyLong_AsDouble(w);
- /* It's impossible that <= 48 bits overflowed. */
- assert(j != -1.0 || ! PyErr_Occurred());
- goto Compare;
- }
- assert(wsign != 0); /* else nbits was 0 */
- assert(vsign != 0); /* if vsign were 0, then since wsign is
- * not 0, we would have taken the
- * vsign != wsign branch at the start */
- /* We want to work with non-negative numbers. */
- if (vsign < 0) {
- /* "Multiply both sides" by -1; this also swaps the
- * comparator.
- */
- i = -i;
- op = _Py_SwappedOp[op];
- }
- assert(i > 0.0);
- (void) frexp(i, &exponent);
- /* exponent is the # of bits in v before the radix point;
- * we know that nbits (the # of bits in w) > 48 at this point
- */
- if (exponent < 0 || (size_t)exponent < nbits) {
- i = 1.0;
- j = 2.0;
- goto Compare;
- }
- if ((size_t)exponent > nbits) {
- i = 2.0;
- j = 1.0;
- goto Compare;
- }
- /* v and w have the same number of bits before the radix
- * point. Construct two ints that have the same comparison
- * outcome.
- */
- {
- double fracpart;
- double intpart;
- PyObject *result = NULL;
- PyObject *vv = NULL;
- PyObject *ww = w;
-
- if (wsign < 0) {
- ww = PyNumber_Negative(w);
- if (ww == NULL)
- goto Error;
- }
- else
- Py_INCREF(ww);
-
- fracpart = modf(i, &intpart);
- vv = PyLong_FromDouble(intpart);
- if (vv == NULL)
- goto Error;
-
- if (fracpart != 0.0) {
- /* Shift left, and or a 1 bit into vv
- * to represent the lost fraction.
- */
- PyObject *temp;
-
- temp = _PyLong_Lshift(ww, 1);
- if (temp == NULL)
- goto Error;
- Py_DECREF(ww);
- ww = temp;
-
- temp = _PyLong_Lshift(vv, 1);
- if (temp == NULL)
- goto Error;
- Py_DECREF(vv);
- vv = temp;
-
- temp = PyNumber_Or(vv, _PyLong_GetOne());
- if (temp == NULL)
- goto Error;
- Py_DECREF(vv);
- vv = temp;
- }
-
- r = PyObject_RichCompareBool(vv, ww, op);
- if (r < 0)
- goto Error;
- result = PyBool_FromLong(r);
- Error:
- Py_XDECREF(vv);
- Py_XDECREF(ww);
- return result;
- }
- } /* else if (PyLong_Check(w)) */
-
- else /* w isn't float or int */
- goto Unimplemented;
-
- Compare:
- switch (op) {
- case Py_EQ:
- r = i == j;
- break;
- case Py_NE:
- r = i != j;
- break;
- case Py_LE:
- r = i <= j;
- break;
- case Py_GE:
- r = i >= j;
- break;
- case Py_LT:
- r = i < j;
- break;
- case Py_GT:
- r = i > j;
- break;
- }
- return PyBool_FromLong(r);
-
- Unimplemented:
- Py_RETURN_NOTIMPLEMENTED;
-}
-
-static Py_hash_t
-float_hash(PyFloatObject *v)
-{
- return _Py_HashDouble((PyObject *)v, v->ob_fval);
-}
-
-static PyObject *
-float_add(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- a = a + b;
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_sub(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- a = a - b;
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_mul(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- a = a * b;
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_div(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- if (b == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "float division by zero");
- return NULL;
- }
- a = a / b;
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_rem(PyObject *v, PyObject *w)
-{
- double vx, wx;
- double mod;
- CONVERT_TO_DOUBLE(v, vx);
- CONVERT_TO_DOUBLE(w, wx);
- if (wx == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "float modulo");
- return NULL;
- }
- mod = fmod(vx, wx);
- if (mod) {
- /* ensure the remainder has the same sign as the denominator */
- if ((wx < 0) != (mod < 0)) {
- mod += wx;
- }
- }
- else {
- /* the remainder is zero, and in the presence of signed zeroes
- fmod returns different results across platforms; ensure
- it has the same sign as the denominator. */
- mod = copysign(0.0, wx);
- }
- return PyFloat_FromDouble(mod);
-}
-
-static void
-_float_div_mod(double vx, double wx, double *floordiv, double *mod)
-{
- double div;
- *mod = fmod(vx, wx);
- /* fmod is typically exact, so vx-mod is *mathematically* an
- exact multiple of wx. But this is fp arithmetic, and fp
- vx - mod is an approximation; the result is that div may
- not be an exact integral value after the division, although
- it will always be very close to one.
- */
- div = (vx - *mod) / wx;
- if (*mod) {
- /* ensure the remainder has the same sign as the denominator */
- if ((wx < 0) != (*mod < 0)) {
- *mod += wx;
- div -= 1.0;
- }
- }
- else {
- /* the remainder is zero, and in the presence of signed zeroes
- fmod returns different results across platforms; ensure
- it has the same sign as the denominator. */
- *mod = copysign(0.0, wx);
- }
- /* snap quotient to nearest integral value */
- if (div) {
- *floordiv = floor(div);
- if (div - *floordiv > 0.5) {
- *floordiv += 1.0;
- }
- }
- else {
- /* div is zero - get the same sign as the true quotient */
- *floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */
- }
-}
-
-static PyObject *
-float_divmod(PyObject *v, PyObject *w)
-{
- double vx, wx;
- double mod, floordiv;
- CONVERT_TO_DOUBLE(v, vx);
- CONVERT_TO_DOUBLE(w, wx);
- if (wx == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
- return NULL;
- }
- _float_div_mod(vx, wx, &floordiv, &mod);
- return Py_BuildValue("(dd)", floordiv, mod);
-}
-
-static PyObject *
-float_floor_div(PyObject *v, PyObject *w)
-{
- double vx, wx;
- double mod, floordiv;
- CONVERT_TO_DOUBLE(v, vx);
- CONVERT_TO_DOUBLE(w, wx);
- if (wx == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError, "float floor division by zero");
- return NULL;
- }
- _float_div_mod(vx, wx, &floordiv, &mod);
- return PyFloat_FromDouble(floordiv);
-}
-
-/* determine whether x is an odd integer or not; assumes that
- x is not an infinity or nan. */
-#define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
-
-static PyObject *
-float_pow(PyObject *v, PyObject *w, PyObject *z)
-{
- double iv, iw, ix;
- int negate_result = 0;
-
- if ((PyObject *)z != Py_None) {
- PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
- "allowed unless all arguments are integers");
- return NULL;
- }
-
- CONVERT_TO_DOUBLE(v, iv);
- CONVERT_TO_DOUBLE(w, iw);
-
- /* Sort out special cases here instead of relying on pow() */
- if (iw == 0) { /* v**0 is 1, even 0**0 */
- return PyFloat_FromDouble(1.0);
- }
- if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
- return PyFloat_FromDouble(iv);
- }
- if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
- return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
- }
- if (Py_IS_INFINITY(iw)) {
- /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
- * abs(v) > 1 (including case where v infinite)
- *
- * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
- * abs(v) > 1 (including case where v infinite)
- */
- iv = fabs(iv);
- if (iv == 1.0)
- return PyFloat_FromDouble(1.0);
- else if ((iw > 0.0) == (iv > 1.0))
- return PyFloat_FromDouble(fabs(iw)); /* return inf */
- else
- return PyFloat_FromDouble(0.0);
- }
- if (Py_IS_INFINITY(iv)) {
- /* (+-inf)**w is: inf for w positive, 0 for w negative; in
- * both cases, we need to add the appropriate sign if w is
- * an odd integer.
- */
- int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
- if (iw > 0.0)
- return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
- else
- return PyFloat_FromDouble(iw_is_odd ?
- copysign(0.0, iv) : 0.0);
- }
- if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
- (already dealt with above), and an error
- if w is negative. */
- int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
- if (iw < 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "0.0 cannot be raised to a "
- "negative power");
- return NULL;
- }
- /* use correct sign if iw is odd */
- return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
- }
-
- if (iv < 0.0) {
- /* Whether this is an error is a mess, and bumps into libm
- * bugs so we have to figure it out ourselves.
- */
- if (iw != floor(iw)) {
- /* Negative numbers raised to fractional powers
- * become complex.
- */
- return PyComplex_Type.tp_as_number->nb_power(v, w, z);
- }
- /* iw is an exact integer, albeit perhaps a very large
- * one. Replace iv by its absolute value and remember
- * to negate the pow result if iw is odd.
- */
- iv = -iv;
- negate_result = DOUBLE_IS_ODD_INTEGER(iw);
- }
-
- if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
- /* (-1) ** large_integer also ends up here. Here's an
- * extract from the comments for the previous
- * implementation explaining why this special case is
- * necessary:
- *
- * -1 raised to an exact integer should never be exceptional.
- * Alas, some libms (chiefly glibc as of early 2003) return
- * NaN and set EDOM on pow(-1, large_int) if the int doesn't
- * happen to be representable in a *C* integer. That's a
- * bug.
- */
- return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
- }
-
- /* Now iv and iw are finite, iw is nonzero, and iv is
- * positive and not equal to 1.0. We finally allow
- * the platform pow to step in and do the rest.
- */
- errno = 0;
- ix = pow(iv, iw);
- Py_ADJUST_ERANGE1(ix);
- if (negate_result)
- ix = -ix;
-
- if (errno != 0) {
- /* We don't expect any errno value other than ERANGE, but
- * the range of libm bugs appears unbounded.
- */
- PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
- PyExc_ValueError);
- return NULL;
- }
- return PyFloat_FromDouble(ix);
-}
-
-#undef DOUBLE_IS_ODD_INTEGER
-
-static PyObject *
-float_neg(PyFloatObject *v)
-{
- return PyFloat_FromDouble(-v->ob_fval);
-}
-
-static PyObject *
-float_abs(PyFloatObject *v)
-{
- return PyFloat_FromDouble(fabs(v->ob_fval));
-}
-
-static int
-float_bool(PyFloatObject *v)
-{
- return v->ob_fval != 0.0;
-}
-
-/*[clinic input]
-float.is_integer
-
-Return True if the float is an integer.
-[clinic start generated code]*/
-
-static PyObject *
-float_is_integer_impl(PyObject *self)
-/*[clinic end generated code: output=7112acf95a4d31ea input=311810d3f777e10d]*/
-{
- double x = PyFloat_AsDouble(self);
- PyObject *o;
-
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
- if (!Py_IS_FINITE(x))
- Py_RETURN_FALSE;
- errno = 0;
- o = (floor(x) == x) ? Py_True : Py_False;
- if (errno != 0) {
- PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
- PyExc_ValueError);
- return NULL;
- }
- Py_INCREF(o);
- return o;
-}
-
-/*[clinic input]
-float.__trunc__
-
-Return the Integral closest to x between 0 and x.
-[clinic start generated code]*/
-
-static PyObject *
-float___trunc___impl(PyObject *self)
-/*[clinic end generated code: output=dd3e289dd4c6b538 input=591b9ba0d650fdff]*/
-{
- return PyLong_FromDouble(PyFloat_AS_DOUBLE(self));
-}
-
-/*[clinic input]
-float.__floor__
-
-Return the floor as an Integral.
-[clinic start generated code]*/
-
-static PyObject *
-float___floor___impl(PyObject *self)
-/*[clinic end generated code: output=e0551dbaea8c01d1 input=77bb13eb12e268df]*/
-{
- double x = PyFloat_AS_DOUBLE(self);
- return PyLong_FromDouble(floor(x));
-}
-
-/*[clinic input]
-float.__ceil__
-
-Return the ceiling as an Integral.
-[clinic start generated code]*/
-
-static PyObject *
-float___ceil___impl(PyObject *self)
-/*[clinic end generated code: output=a2fd8858f73736f9 input=79e41ae94aa0a516]*/
-{
- double x = PyFloat_AS_DOUBLE(self);
- return PyLong_FromDouble(ceil(x));
-}
-
-/* double_round: rounds a finite double to the closest multiple of
- 10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
- ndigits <= 323). Returns a Python float, or sets a Python error and
- returns NULL on failure (OverflowError and memory errors are possible). */
-
-#ifndef PY_NO_SHORT_FLOAT_REPR
-/* version of double_round that uses the correctly-rounded string<->double
- conversions from Python/dtoa.c */
-
-static PyObject *
-double_round(double x, int ndigits) {
-
- double rounded;
- Py_ssize_t buflen, mybuflen=100;
- char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
- int decpt, sign;
- PyObject *result = NULL;
- _Py_SET_53BIT_PRECISION_HEADER;
-
- /* round to a decimal string */
- _Py_SET_53BIT_PRECISION_START;
- buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
- _Py_SET_53BIT_PRECISION_END;
- if (buf == NULL) {
- PyErr_NoMemory();
- return NULL;
- }
-
- /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
- buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
- buflen = buf_end - buf;
- if (buflen + 8 > mybuflen) {
- mybuflen = buflen+8;
- mybuf = (char *)PyMem_Malloc(mybuflen);
- if (mybuf == NULL) {
- PyErr_NoMemory();
- goto exit;
- }
- }
- /* copy buf to mybuf, adding exponent, sign and leading 0 */
- PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
- buf, decpt - (int)buflen);
-
- /* and convert the resulting string back to a double */
- errno = 0;
- _Py_SET_53BIT_PRECISION_START;
- rounded = _Py_dg_strtod(mybuf, NULL);
- _Py_SET_53BIT_PRECISION_END;
- if (errno == ERANGE && fabs(rounded) >= 1.)
- PyErr_SetString(PyExc_OverflowError,
- "rounded value too large to represent");
- else
- result = PyFloat_FromDouble(rounded);
-
- /* done computing value; now clean up */
- if (mybuf != shortbuf)
- PyMem_Free(mybuf);
- exit:
- _Py_dg_freedtoa(buf);
- return result;
-}
-
-#else /* PY_NO_SHORT_FLOAT_REPR */
-
-/* fallback version, to be used when correctly rounded binary<->decimal
- conversions aren't available */
-
-static PyObject *
-double_round(double x, int ndigits) {
- double pow1, pow2, y, z;
- if (ndigits >= 0) {
- if (ndigits > 22) {
- /* pow1 and pow2 are each safe from overflow, but
- pow1*pow2 ~= pow(10.0, ndigits) might overflow */
- pow1 = pow(10.0, (double)(ndigits-22));
- pow2 = 1e22;
- }
- else {
- pow1 = pow(10.0, (double)ndigits);
- pow2 = 1.0;
- }
- y = (x*pow1)*pow2;
- /* if y overflows, then rounded value is exactly x */
- if (!Py_IS_FINITE(y))
- return PyFloat_FromDouble(x);
- }
- else {
- pow1 = pow(10.0, (double)-ndigits);
- pow2 = 1.0; /* unused; silences a gcc compiler warning */
- y = x / pow1;
- }
-
- z = round(y);
- if (fabs(y-z) == 0.5)
- /* halfway between two integers; use round-half-even */
- z = 2.0*round(y/2.0);
-
- if (ndigits >= 0)
- z = (z / pow2) / pow1;
- else
- z *= pow1;
-
- /* if computation resulted in overflow, raise OverflowError */
- if (!Py_IS_FINITE(z)) {
- PyErr_SetString(PyExc_OverflowError,
- "overflow occurred during round");
- return NULL;
- }
-
- return PyFloat_FromDouble(z);
-}
-
-#endif /* PY_NO_SHORT_FLOAT_REPR */
-
-/* round a Python float v to the closest multiple of 10**-ndigits */
-
-/*[clinic input]
-float.__round__
-
- ndigits as o_ndigits: object = None
- /
-
-Return the Integral closest to x, rounding half toward even.
-
-When an argument is passed, work like built-in round(x, ndigits).
-[clinic start generated code]*/
-
-static PyObject *
-float___round___impl(PyObject *self, PyObject *o_ndigits)
-/*[clinic end generated code: output=374c36aaa0f13980 input=fc0fe25924fbc9ed]*/
-{
- double x, rounded;
- Py_ssize_t ndigits;
-
- x = PyFloat_AsDouble(self);
- if (o_ndigits == Py_None) {
- /* single-argument round or with None ndigits:
- * round to nearest integer */
- rounded = round(x);
- if (fabs(x-rounded) == 0.5)
- /* halfway case: round to even */
- rounded = 2.0*round(x/2.0);
- return PyLong_FromDouble(rounded);
- }
-
- /* interpret second argument as a Py_ssize_t; clips on overflow */
- ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
- if (ndigits == -1 && PyErr_Occurred())
- return NULL;
-
- /* nans and infinities round to themselves */
- if (!Py_IS_FINITE(x))
- return PyFloat_FromDouble(x);
-
- /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
- always rounds to itself. For ndigits < NDIGITS_MIN, x always
- rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
-#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
-#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
- if (ndigits > NDIGITS_MAX)
- /* return x */
- return PyFloat_FromDouble(x);
- else if (ndigits < NDIGITS_MIN)
- /* return 0.0, but with sign of x */
- return PyFloat_FromDouble(0.0*x);
- else
- /* finite x, and ndigits is not unreasonably large */
- return double_round(x, (int)ndigits);
-#undef NDIGITS_MAX
-#undef NDIGITS_MIN
-}
-
-static PyObject *
-float_float(PyObject *v)
-{
- if (PyFloat_CheckExact(v))
- Py_INCREF(v);
- else
- v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
- return v;
-}
-
-/*[clinic input]
-float.conjugate
-
-Return self, the complex conjugate of any float.
-[clinic start generated code]*/
-
-static PyObject *
-float_conjugate_impl(PyObject *self)
-/*[clinic end generated code: output=8ca292c2479194af input=82ba6f37a9ff91dd]*/
-{
- return float_float(self);
-}
-
-/* turn ASCII hex characters into integer values and vice versa */
-
-static char
-char_from_hex(int x)
-{
- assert(0 <= x && x < 16);
- return Py_hexdigits[x];
-}
-
-static int
-hex_from_char(char c) {
- int x;
- switch(c) {
- case '0':
- x = 0;
- break;
- case '1':
- x = 1;
- break;
- case '2':
- x = 2;
- break;
- case '3':
- x = 3;
- break;
- case '4':
- x = 4;
- break;
- case '5':
- x = 5;
- break;
- case '6':
- x = 6;
- break;
- case '7':
- x = 7;
- break;
- case '8':
- x = 8;
- break;
- case '9':
- x = 9;
- break;
- case 'a':
- case 'A':
- x = 10;
- break;
- case 'b':
- case 'B':
- x = 11;
- break;
- case 'c':
- case 'C':
- x = 12;
- break;
- case 'd':
- case 'D':
- x = 13;
- break;
- case 'e':
- case 'E':
- x = 14;
- break;
- case 'f':
- case 'F':
- x = 15;
- break;
- default:
- x = -1;
- break;
- }
- return x;
-}
-
-/* convert a float to a hexadecimal string */
-
-/* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
- of the form 4k+1. */
-#define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
-
-/*[clinic input]
-float.hex
-
-Return a hexadecimal representation of a floating-point number.
-
->>> (-0.1).hex()
-'-0x1.999999999999ap-4'
->>> 3.14159.hex()
-'0x1.921f9f01b866ep+1'
-[clinic start generated code]*/
-
-static PyObject *
-float_hex_impl(PyObject *self)
-/*[clinic end generated code: output=0ebc9836e4d302d4 input=bec1271a33d47e67]*/
-{
- double x, m;
- int e, shift, i, si, esign;
- /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
- trailing NUL byte. */
- char s[(TOHEX_NBITS-1)/4+3];
-
- CONVERT_TO_DOUBLE(self, x);
-
- if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
- return float_repr((PyFloatObject *)self);
-
- if (x == 0.0) {
- if (copysign(1.0, x) == -1.0)
- return PyUnicode_FromString("-0x0.0p+0");
- else
- return PyUnicode_FromString("0x0.0p+0");
- }
-
- m = frexp(fabs(x), &e);
- shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0);
- m = ldexp(m, shift);
- e -= shift;
-
- si = 0;
- s[si] = char_from_hex((int)m);
- si++;
- m -= (int)m;
- s[si] = '.';
- si++;
- for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
- m *= 16.0;
- s[si] = char_from_hex((int)m);
- si++;
- m -= (int)m;
- }
- s[si] = '\0';
-
- if (e < 0) {
- esign = (int)'-';
- e = -e;
- }
- else
- esign = (int)'+';
-
- if (x < 0.0)
- return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
- else
- return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
-}
-
-/* Convert a hexadecimal string to a float. */
-
-/*[clinic input]
-@classmethod
-float.fromhex
-
- string: object
- /
-
-Create a floating-point number from a hexadecimal string.
-
->>> float.fromhex('0x1.ffffp10')
-2047.984375
->>> float.fromhex('-0x1p-1074')
--5e-324
-[clinic start generated code]*/
-
-static PyObject *
-float_fromhex(PyTypeObject *type, PyObject *string)
-/*[clinic end generated code: output=46c0274d22b78e82 input=0407bebd354bca89]*/
-{
- PyObject *result;
- double x;
- long exp, top_exp, lsb, key_digit;
- const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
- int half_eps, digit, round_up, negate=0;
- Py_ssize_t length, ndigits, fdigits, i;
-
- /*
- * For the sake of simplicity and correctness, we impose an artificial
- * limit on ndigits, the total number of hex digits in the coefficient
- * The limit is chosen to ensure that, writing exp for the exponent,
- *
- * (1) if exp > LONG_MAX/2 then the value of the hex string is
- * guaranteed to overflow (provided it's nonzero)
- *
- * (2) if exp < LONG_MIN/2 then the value of the hex string is
- * guaranteed to underflow to 0.
- *
- * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
- * overflow in the calculation of exp and top_exp below.
- *
- * More specifically, ndigits is assumed to satisfy the following
- * inequalities:
- *
- * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
- * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
- *
- * If either of these inequalities is not satisfied, a ValueError is
- * raised. Otherwise, write x for the value of the hex string, and
- * assume x is nonzero. Then
- *
- * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
- *
- * Now if exp > LONG_MAX/2 then:
- *
- * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
- * = DBL_MAX_EXP
- *
- * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
- * double, so overflows. If exp < LONG_MIN/2, then
- *
- * exp + 4*ndigits <= LONG_MIN/2 - 1 + (
- * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
- * = DBL_MIN_EXP - DBL_MANT_DIG - 1
- *
- * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
- * when converted to a C double.
- *
- * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
- * exp+4*ndigits and exp-4*ndigits are within the range of a long.
- */
-
- s = PyUnicode_AsUTF8AndSize(string, &length);
- if (s == NULL)
- return NULL;
- s_end = s + length;
-
- /********************
- * Parse the string *
- ********************/
-
- /* leading whitespace */
- while (Py_ISSPACE(*s))
- s++;
-
- /* infinities and nans */
- x = _Py_parse_inf_or_nan(s, (char **)&coeff_end);
- if (coeff_end != s) {
- s = coeff_end;
- goto finished;
- }
-
- /* optional sign */
- if (*s == '-') {
- s++;
- negate = 1;
- }
- else if (*s == '+')
- s++;
-
- /* [0x] */
- s_store = s;
- if (*s == '0') {
- s++;
- if (*s == 'x' || *s == 'X')
- s++;
- else
- s = s_store;
- }
-
- /* coefficient: <integer> [. <fraction>] */
- coeff_start = s;
- while (hex_from_char(*s) >= 0)
- s++;
- s_store = s;
- if (*s == '.') {
- s++;
- while (hex_from_char(*s) >= 0)
- s++;
- coeff_end = s-1;
- }
- else
- coeff_end = s;
-
- /* ndigits = total # of hex digits; fdigits = # after point */
- ndigits = coeff_end - coeff_start;
- fdigits = coeff_end - s_store;
- if (ndigits == 0)
- goto parse_error;
- if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
- LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
- goto insane_length_error;
-
- /* [p <exponent>] */
- if (*s == 'p' || *s == 'P') {
- s++;
- exp_start = s;
- if (*s == '-' || *s == '+')
- s++;
- if (!('0' <= *s && *s <= '9'))
- goto parse_error;
- s++;
- while ('0' <= *s && *s <= '9')
- s++;
- exp = strtol(exp_start, NULL, 10);
- }
- else
- exp = 0;
-
-/* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
-#define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
- coeff_end-(j) : \
- coeff_end-1-(j)))
-
- /*******************************************
- * Compute rounded value of the hex string *
- *******************************************/
-
- /* Discard leading zeros, and catch extreme overflow and underflow */
- while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
- ndigits--;
- if (ndigits == 0 || exp < LONG_MIN/2) {
- x = 0.0;
- goto finished;
- }
- if (exp > LONG_MAX/2)
- goto overflow_error;
-
- /* Adjust exponent for fractional part. */
- exp = exp - 4*((long)fdigits);
-
- /* top_exp = 1 more than exponent of most sig. bit of coefficient */
- top_exp = exp + 4*((long)ndigits - 1);
- for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
- top_exp++;
-
- /* catch almost all nonextreme cases of overflow and underflow here */
- if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
- x = 0.0;
- goto finished;
- }
- if (top_exp > DBL_MAX_EXP)
- goto overflow_error;
-
- /* lsb = exponent of least significant bit of the *rounded* value.
- This is top_exp - DBL_MANT_DIG unless result is subnormal. */
- lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
-
- x = 0.0;
- if (exp >= lsb) {
- /* no rounding required */
- for (i = ndigits-1; i >= 0; i--)
- x = 16.0*x + HEX_DIGIT(i);
- x = ldexp(x, (int)(exp));
- goto finished;
- }
- /* rounding required. key_digit is the index of the hex digit
- containing the first bit to be rounded away. */
- half_eps = 1 << (int)((lsb - exp - 1) % 4);
- key_digit = (lsb - exp - 1) / 4;
- for (i = ndigits-1; i > key_digit; i--)
- x = 16.0*x + HEX_DIGIT(i);
- digit = HEX_DIGIT(key_digit);
- x = 16.0*x + (double)(digit & (16-2*half_eps));
-
- /* round-half-even: round up if bit lsb-1 is 1 and at least one of
- bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
- if ((digit & half_eps) != 0) {
- round_up = 0;
- if ((digit & (3*half_eps-1)) != 0 || (half_eps == 8 &&
- key_digit+1 < ndigits && (HEX_DIGIT(key_digit+1) & 1) != 0))
- round_up = 1;
- else
- for (i = key_digit-1; i >= 0; i--)
- if (HEX_DIGIT(i) != 0) {
- round_up = 1;
- break;
- }
- if (round_up) {
- x += 2*half_eps;
- if (top_exp == DBL_MAX_EXP &&
- x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
- /* overflow corner case: pre-rounded value <
- 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
- goto overflow_error;
- }
- }
- x = ldexp(x, (int)(exp+4*key_digit));
-
- finished:
- /* optional trailing whitespace leading to the end of the string */
- while (Py_ISSPACE(*s))
- s++;
- if (s != s_end)
- goto parse_error;
- result = PyFloat_FromDouble(negate ? -x : x);
- if (type != &PyFloat_Type && result != NULL) {
- Py_SETREF(result, PyObject_CallOneArg((PyObject *)type, result));
- }
- return result;
-
- overflow_error:
- PyErr_SetString(PyExc_OverflowError,
- "hexadecimal value too large to represent as a float");
- return NULL;
-
- parse_error:
- PyErr_SetString(PyExc_ValueError,
- "invalid hexadecimal floating-point string");
- return NULL;
-
- insane_length_error:
- PyErr_SetString(PyExc_ValueError,
- "hexadecimal string too long to convert");
- return NULL;
-}
-
-/*[clinic input]
-float.as_integer_ratio
-
-Return integer ratio.
-
-Return a pair of integers, whose ratio is exactly equal to the original float
-and with a positive denominator.
-
-Raise OverflowError on infinities and a ValueError on NaNs.
-
->>> (10.0).as_integer_ratio()
-(10, 1)
->>> (0.0).as_integer_ratio()
-(0, 1)
->>> (-.25).as_integer_ratio()
-(-1, 4)
-[clinic start generated code]*/
-
-static PyObject *
-float_as_integer_ratio_impl(PyObject *self)
-/*[clinic end generated code: output=65f25f0d8d30a712 input=e21d08b4630c2e44]*/
-{
- double self_double;
- double float_part;
- int exponent;
- int i;
-
- PyObject *py_exponent = NULL;
- PyObject *numerator = NULL;
- PyObject *denominator = NULL;
- PyObject *result_pair = NULL;
- PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
-
- CONVERT_TO_DOUBLE(self, self_double);
-
- if (Py_IS_INFINITY(self_double)) {
- PyErr_SetString(PyExc_OverflowError,
- "cannot convert Infinity to integer ratio");
- return NULL;
- }
- if (Py_IS_NAN(self_double)) {
- PyErr_SetString(PyExc_ValueError,
- "cannot convert NaN to integer ratio");
- return NULL;
- }
-
- float_part = frexp(self_double, &exponent); /* self_double == float_part * 2**exponent exactly */
-
- for (i=0; i<300 && float_part != floor(float_part) ; i++) {
- float_part *= 2.0;
- exponent--;
- }
- /* self == float_part * 2**exponent exactly and float_part is integral.
- If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
- to be truncated by PyLong_FromDouble(). */
-
- numerator = PyLong_FromDouble(float_part);
- if (numerator == NULL)
- goto error;
- denominator = PyLong_FromLong(1);
- if (denominator == NULL)
- goto error;
- py_exponent = PyLong_FromLong(Py_ABS(exponent));
- if (py_exponent == NULL)
- goto error;
-
- /* fold in 2**exponent */
- if (exponent > 0) {
- Py_SETREF(numerator,
- long_methods->nb_lshift(numerator, py_exponent));
- if (numerator == NULL)
- goto error;
- }
- else {
- Py_SETREF(denominator,
- long_methods->nb_lshift(denominator, py_exponent));
- if (denominator == NULL)
- goto error;
- }
-
- result_pair = PyTuple_Pack(2, numerator, denominator);
-
-error:
- Py_XDECREF(py_exponent);
- Py_XDECREF(denominator);
- Py_XDECREF(numerator);
- return result_pair;
-}
-
-static PyObject *
-float_subtype_new(PyTypeObject *type, PyObject *x);
-
-/*[clinic input]
-@classmethod
-float.__new__ as float_new
- x: object(c_default="NULL") = 0
- /
-
-Convert a string or number to a floating point number, if possible.
-[clinic start generated code]*/
-
-static PyObject *
-float_new_impl(PyTypeObject *type, PyObject *x)
-/*[clinic end generated code: output=ccf1e8dc460ba6ba input=f43661b7de03e9d8]*/
-{
- if (type != &PyFloat_Type) {
- if (x == NULL) {
- x = _PyLong_GetZero();
- }
- return float_subtype_new(type, x); /* Wimp out */
- }
-
- if (x == NULL) {
- return PyFloat_FromDouble(0.0);
- }
- /* If it's a string, but not a string subclass, use
- PyFloat_FromString. */
- if (PyUnicode_CheckExact(x))
- return PyFloat_FromString(x);
- return PyNumber_Float(x);
-}
-
-/* Wimpy, slow approach to tp_new calls for subtypes of float:
- first create a regular float from whatever arguments we got,
- then allocate a subtype instance and initialize its ob_fval
- from the regular float. The regular float is then thrown away.
-*/
-static PyObject *
-float_subtype_new(PyTypeObject *type, PyObject *x)
-{
- PyObject *tmp, *newobj;
-
- assert(PyType_IsSubtype(type, &PyFloat_Type));
- tmp = float_new_impl(&PyFloat_Type, x);
- if (tmp == NULL)
- return NULL;
- assert(PyFloat_Check(tmp));
- newobj = type->tp_alloc(type, 0);
- if (newobj == NULL) {
- Py_DECREF(tmp);
- return NULL;
- }
- ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
- Py_DECREF(tmp);
- return newobj;
-}
-
-static PyObject *
-float_vectorcall(PyObject *type, PyObject * const*args,
- size_t nargsf, PyObject *kwnames)
-{
- if (!_PyArg_NoKwnames("float", kwnames)) {
- return NULL;
- }
-
- Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
- if (!_PyArg_CheckPositional("float", nargs, 0, 1)) {
- return NULL;
- }
-
- PyObject *x = nargs >= 1 ? args[0] : NULL;
- return float_new_impl((PyTypeObject *)type, x);
-}
-
-
-/*[clinic input]
-float.__getnewargs__
-[clinic start generated code]*/
-
-static PyObject *
-float___getnewargs___impl(PyObject *self)
-/*[clinic end generated code: output=873258c9d206b088 input=002279d1d77891e6]*/
-{
- return Py_BuildValue("(d)", ((PyFloatObject *)self)->ob_fval);
-}
-
-/* this is for the benefit of the pack/unpack routines below */
-
-typedef enum {
- unknown_format, ieee_big_endian_format, ieee_little_endian_format
-} float_format_type;
-
-static float_format_type double_format, float_format;
-static float_format_type detected_double_format, detected_float_format;
-
-/*[clinic input]
-@classmethod
-float.__getformat__
-
- typestr: str
- Must be 'double' or 'float'.
- /
-
-You probably don't want to use this function.
-
-It exists mainly to be used in Python's test suite.
-
-This function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE,
-little-endian' best describes the format of floating point numbers used by the
-C type named by typestr.
-[clinic start generated code]*/
-
-static PyObject *
-float___getformat___impl(PyTypeObject *type, const char *typestr)
-/*[clinic end generated code: output=2bfb987228cc9628 input=d5a52600f835ad67]*/
-{
- float_format_type r;
-
- if (strcmp(typestr, "double") == 0) {
- r = double_format;
- }
- else if (strcmp(typestr, "float") == 0) {
- r = float_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__getformat__() argument 1 must be "
- "'double' or 'float'");
- return NULL;
- }
-
- switch (r) {
- case unknown_format:
- return PyUnicode_FromString("unknown");
- case ieee_little_endian_format:
- return PyUnicode_FromString("IEEE, little-endian");
- case ieee_big_endian_format:
- return PyUnicode_FromString("IEEE, big-endian");
- default:
- PyErr_SetString(PyExc_RuntimeError,
- "insane float_format or double_format");
- return NULL;
- }
-}
-
-/*[clinic input]
-@classmethod
-float.__setformat__
-
- typestr: str
- Must be 'double' or 'float'.
- fmt: str
- Must be one of 'unknown', 'IEEE, big-endian' or 'IEEE, little-endian',
- and in addition can only be one of the latter two if it appears to
- match the underlying C reality.
- /
-
-You probably don't want to use this function.
-
-It exists mainly to be used in Python's test suite.
-
-Override the automatic determination of C-level floating point type.
-This affects how floats are converted to and from binary strings.
-[clinic start generated code]*/
-
-static PyObject *
-float___setformat___impl(PyTypeObject *type, const char *typestr,
- const char *fmt)
-/*[clinic end generated code: output=06864de1fb5f1f04 input=c0e9e04dd87f9988]*/
-{
- float_format_type f;
- float_format_type detected;
- float_format_type *p;
-
- if (strcmp(typestr, "double") == 0) {
- p = &double_format;
- detected = detected_double_format;
- }
- else if (strcmp(typestr, "float") == 0) {
- p = &float_format;
- detected = detected_float_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__setformat__() argument 1 must "
- "be 'double' or 'float'");
- return NULL;
- }
-
- if (strcmp(fmt, "unknown") == 0) {
- f = unknown_format;
- }
- else if (strcmp(fmt, "IEEE, little-endian") == 0) {
- f = ieee_little_endian_format;
- }
- else if (strcmp(fmt, "IEEE, big-endian") == 0) {
- f = ieee_big_endian_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__setformat__() argument 2 must be "
- "'unknown', 'IEEE, little-endian' or "
- "'IEEE, big-endian'");
- return NULL;
-
- }
-
- if (f != unknown_format && f != detected) {
- PyErr_Format(PyExc_ValueError,
- "can only set %s format to 'unknown' or the "
- "detected platform value", typestr);
- return NULL;
- }
-
- *p = f;
- Py_RETURN_NONE;
-}
-
-static PyObject *
-float_getreal(PyObject *v, void *closure)
-{
- return float_float(v);
-}
-
-static PyObject *
-float_getimag(PyObject *v, void *closure)
-{
- return PyFloat_FromDouble(0.0);
-}
-
-/*[clinic input]
-float.__format__
-
- format_spec: unicode
- /
-
-Formats the float according to format_spec.
-[clinic start generated code]*/
-
-static PyObject *
-float___format___impl(PyObject *self, PyObject *format_spec)
-/*[clinic end generated code: output=b260e52a47eade56 input=2ece1052211fd0e6]*/
-{
- _PyUnicodeWriter writer;
- int ret;
-
- _PyUnicodeWriter_Init(&writer);
- ret = _PyFloat_FormatAdvancedWriter(
- &writer,
- self,
- format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
- if (ret == -1) {
- _PyUnicodeWriter_Dealloc(&writer);
- return NULL;
- }
- return _PyUnicodeWriter_Finish(&writer);
-}
-
-static PyMethodDef float_methods[] = {
- FLOAT_CONJUGATE_METHODDEF
- FLOAT___TRUNC___METHODDEF
- FLOAT___FLOOR___METHODDEF
- FLOAT___CEIL___METHODDEF
- FLOAT___ROUND___METHODDEF
- FLOAT_AS_INTEGER_RATIO_METHODDEF
- FLOAT_FROMHEX_METHODDEF
- FLOAT_HEX_METHODDEF
- FLOAT_IS_INTEGER_METHODDEF
- FLOAT___GETNEWARGS___METHODDEF
- FLOAT___GETFORMAT___METHODDEF
- FLOAT___SETFORMAT___METHODDEF
- FLOAT___FORMAT___METHODDEF
- {NULL, NULL} /* sentinel */
-};
-
-static PyGetSetDef float_getset[] = {
- {"real",
- float_getreal, (setter)NULL,
- "the real part of a complex number",
- NULL},
- {"imag",
- float_getimag, (setter)NULL,
- "the imaginary part of a complex number",
- NULL},
- {NULL} /* Sentinel */
-};
-
-
-static PyNumberMethods float_as_number = {
- float_add, /* nb_add */
- float_sub, /* nb_subtract */
- float_mul, /* nb_multiply */
- float_rem, /* nb_remainder */
- float_divmod, /* nb_divmod */
- float_pow, /* nb_power */
- (unaryfunc)float_neg, /* nb_negative */
- float_float, /* nb_positive */
- (unaryfunc)float_abs, /* nb_absolute */
- (inquiry)float_bool, /* nb_bool */
- 0, /* nb_invert */
- 0, /* nb_lshift */
- 0, /* nb_rshift */
- 0, /* nb_and */
- 0, /* nb_xor */
- 0, /* nb_or */
- float___trunc___impl, /* nb_int */
- 0, /* nb_reserved */
- float_float, /* nb_float */
- 0, /* nb_inplace_add */
- 0, /* nb_inplace_subtract */
- 0, /* nb_inplace_multiply */
- 0, /* nb_inplace_remainder */
- 0, /* nb_inplace_power */
- 0, /* nb_inplace_lshift */
- 0, /* nb_inplace_rshift */
- 0, /* nb_inplace_and */
- 0, /* nb_inplace_xor */
- 0, /* nb_inplace_or */
- float_floor_div, /* nb_floor_divide */
- float_div, /* nb_true_divide */
- 0, /* nb_inplace_floor_divide */
- 0, /* nb_inplace_true_divide */
-};
-
-PyTypeObject PyFloat_Type = {
- PyVarObject_HEAD_INIT(&PyType_Type, 0)
- "float",
- sizeof(PyFloatObject),
- 0,
- (destructor)float_dealloc, /* tp_dealloc */
- 0, /* tp_vectorcall_offset */
- 0, /* tp_getattr */
- 0, /* tp_setattr */
- 0, /* tp_as_async */
- (reprfunc)float_repr, /* tp_repr */
- &float_as_number, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- (hashfunc)float_hash, /* tp_hash */
- 0, /* tp_call */
- 0, /* tp_str */
- PyObject_GenericGetAttr, /* tp_getattro */
- 0, /* tp_setattro */
- 0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
- _Py_TPFLAGS_MATCH_SELF, /* tp_flags */
- float_new__doc__, /* tp_doc */
- 0, /* tp_traverse */
- 0, /* tp_clear */
- float_richcompare, /* tp_richcompare */
- 0, /* tp_weaklistoffset */
- 0, /* tp_iter */
- 0, /* tp_iternext */
- float_methods, /* tp_methods */
- 0, /* tp_members */
- float_getset, /* tp_getset */
- 0, /* tp_base */
- 0, /* tp_dict */
- 0, /* tp_descr_get */
- 0, /* tp_descr_set */
- 0, /* tp_dictoffset */
- 0, /* tp_init */
- 0, /* tp_alloc */
- float_new, /* tp_new */
- .tp_vectorcall = (vectorcallfunc)float_vectorcall,
-};
-
-void
-_PyFloat_Init(void)
-{
- /* We attempt to determine if this machine is using IEEE
- floating point formats by peering at the bits of some
- carefully chosen values. If it looks like we are on an
- IEEE platform, the float packing/unpacking routines can
- just copy bits, if not they resort to arithmetic & shifts
- and masks. The shifts & masks approach works on all finite
- values, but what happens to infinities, NaNs and signed
- zeroes on packing is an accident, and attempting to unpack
- a NaN or an infinity will raise an exception.
-
- Note that if we're on some whacked-out platform which uses
- IEEE formats but isn't strictly little-endian or big-
- endian, we will fall back to the portable shifts & masks
- method. */
-
-#if SIZEOF_DOUBLE == 8
- {
- double x = 9006104071832581.0;
- if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
- detected_double_format = ieee_big_endian_format;
- else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
- detected_double_format = ieee_little_endian_format;
- else
- detected_double_format = unknown_format;
- }
-#else
- detected_double_format = unknown_format;
-#endif
-
-#if SIZEOF_FLOAT == 4
- {
- float y = 16711938.0;
- if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
- detected_float_format = ieee_big_endian_format;
- else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
- detected_float_format = ieee_little_endian_format;
- else
- detected_float_format = unknown_format;
- }
-#else
- detected_float_format = unknown_format;
-#endif
-
- double_format = detected_double_format;
- float_format = detected_float_format;
-}
-
-int
-_PyFloat_InitTypes(void)
-{
- /* Init float info */
- if (FloatInfoType.tp_name == NULL) {
- if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0) {
- return -1;
- }
- }
- return 0;
-}
-
-void
-_PyFloat_ClearFreeList(PyInterpreterState *interp)
-{
- struct _Py_float_state *state = &interp->float_state;
- PyFloatObject *f = state->free_list;
- while (f != NULL) {
- PyFloatObject *next = (PyFloatObject*) Py_TYPE(f);
- PyObject_Free(f);
- f = next;
- }
- state->free_list = NULL;
- state->numfree = 0;
-}
-
-void
-_PyFloat_Fini(PyInterpreterState *interp)
-{
- _PyFloat_ClearFreeList(interp);
-#ifdef Py_DEBUG
- struct _Py_float_state *state = &interp->float_state;
- state->numfree = -1;
-#endif
-}
-
-/* Print summary info about the state of the optimized allocator */
-void
-_PyFloat_DebugMallocStats(FILE *out)
-{
- struct _Py_float_state *state = get_float_state();
- _PyDebugAllocatorStats(out,
- "free PyFloatObject",
- state->numfree, sizeof(PyFloatObject));
-}
-
-
-/*----------------------------------------------------------------------------
- * _PyFloat_{Pack,Unpack}{2,4,8}. See floatobject.h.
- * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in:
- * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c
- * We use:
- * bits = (unsigned short)f; Note the truncation
- * if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) {
- * bits++;
- * }
- */
-
-int
-_PyFloat_Pack2(double x, unsigned char *p, int le)
-{
- unsigned char sign;
- int e;
- double f;
- unsigned short bits;
- int incr = 1;
-
- if (x == 0.0) {
- sign = (copysign(1.0, x) == -1.0);
- e = 0;
- bits = 0;
- }
- else if (Py_IS_INFINITY(x)) {
- sign = (x < 0.0);
- e = 0x1f;
- bits = 0;
- }
- else if (Py_IS_NAN(x)) {
- /* There are 2046 distinct half-precision NaNs (1022 signaling and
- 1024 quiet), but there are only two quiet NaNs that don't arise by
- quieting a signaling NaN; we get those by setting the topmost bit
- of the fraction field and clearing all other fraction bits. We
- choose the one with the appropriate sign. */
- sign = (copysign(1.0, x) == -1.0);
- e = 0x1f;
- bits = 512;
- }
- else {
- sign = (x < 0.0);
- if (sign) {
- x = -x;
- }
-
- f = frexp(x, &e);
- if (f < 0.5 || f >= 1.0) {
- PyErr_SetString(PyExc_SystemError,
- "frexp() result out of range");
- return -1;
- }
-
- /* Normalize f to be in the range [1.0, 2.0) */
- f *= 2.0;
- e--;
-
- if (e >= 16) {
- goto Overflow;
- }
- else if (e < -25) {
- /* |x| < 2**-25. Underflow to zero. */
- f = 0.0;
- e = 0;
- }
- else if (e < -14) {
- /* |x| < 2**-14. Gradual underflow */
- f = ldexp(f, 14 + e);
- e = 0;
- }
- else /* if (!(e == 0 && f == 0.0)) */ {
- e += 15;
- f -= 1.0; /* Get rid of leading 1 */
- }
-
- f *= 1024.0; /* 2**10 */
- /* Round to even */
- bits = (unsigned short)f; /* Note the truncation */
- assert(bits < 1024);
- assert(e < 31);
- if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) {
- ++bits;
- if (bits == 1024) {
- /* The carry propagated out of a string of 10 1 bits. */
- bits = 0;
- ++e;
- if (e == 31)
- goto Overflow;
- }
- }
- }
-
- bits |= (e << 10) | (sign << 15);
-
- /* Write out result. */
- if (le) {
- p += 1;
- incr = -1;
- }
-
- /* First byte */
- *p = (unsigned char)((bits >> 8) & 0xFF);
- p += incr;
-
- /* Second byte */
- *p = (unsigned char)(bits & 0xFF);
-
- return 0;
-
- Overflow:
- PyErr_SetString(PyExc_OverflowError,
- "float too large to pack with e format");
- return -1;
-}
-
-int
-_PyFloat_Pack4(double x, unsigned char *p, int le)
-{
- if (float_format == unknown_format) {
- unsigned char sign;
- int e;
- double f;
- unsigned int fbits;
- int incr = 1;
-
- if (le) {
- p += 3;
- incr = -1;
- }
-
- if (x < 0) {
- sign = 1;
- x = -x;
- }
- else
- sign = 0;
-
- f = frexp(x, &e);
-
- /* Normalize f to be in the range [1.0, 2.0) */
- if (0.5 <= f && f < 1.0) {
- f *= 2.0;
- e--;
- }
- else if (f == 0.0)
- e = 0;
- else {
- PyErr_SetString(PyExc_SystemError,
- "frexp() result out of range");
- return -1;
- }
-
- if (e >= 128)
- goto Overflow;
- else if (e < -126) {
- /* Gradual underflow */
- f = ldexp(f, 126 + e);
- e = 0;
- }
- else if (!(e == 0 && f == 0.0)) {
- e += 127;
- f -= 1.0; /* Get rid of leading 1 */
- }
-
- f *= 8388608.0; /* 2**23 */
- fbits = (unsigned int)(f + 0.5); /* Round */
- assert(fbits <= 8388608);
- if (fbits >> 23) {
- /* The carry propagated out of a string of 23 1 bits. */
- fbits = 0;
- ++e;
- if (e >= 255)
- goto Overflow;
- }
-
- /* First byte */
- *p = (sign << 7) | (e >> 1);
- p += incr;
-
- /* Second byte */
- *p = (char) (((e & 1) << 7) | (fbits >> 16));
- p += incr;
-
- /* Third byte */
- *p = (fbits >> 8) & 0xFF;
- p += incr;
-
- /* Fourth byte */
- *p = fbits & 0xFF;
-
- /* Done */
- return 0;
-
- }
- else {
- float y = (float)x;
- int i, incr = 1;
-
- if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
- goto Overflow;
-
- unsigned char s[sizeof(float)];
- memcpy(s, &y, sizeof(float));
-
- if ((float_format == ieee_little_endian_format && !le)
- || (float_format == ieee_big_endian_format && le)) {
- p += 3;
- incr = -1;
- }
-
- for (i = 0; i < 4; i++) {
- *p = s[i];
- p += incr;
- }
- return 0;
- }
- Overflow:
- PyErr_SetString(PyExc_OverflowError,
- "float too large to pack with f format");
- return -1;
-}
-
-int
-_PyFloat_Pack8(double x, unsigned char *p, int le)
-{
- if (double_format == unknown_format) {
- unsigned char sign;
- int e;
- double f;
- unsigned int fhi, flo;
- int incr = 1;
-
- if (le) {
- p += 7;
- incr = -1;
- }
-
- if (x < 0) {
- sign = 1;
- x = -x;
- }
- else
- sign = 0;
-
- f = frexp(x, &e);
-
- /* Normalize f to be in the range [1.0, 2.0) */
- if (0.5 <= f && f < 1.0) {
- f *= 2.0;
- e--;
- }
- else if (f == 0.0)
- e = 0;
- else {
- PyErr_SetString(PyExc_SystemError,
- "frexp() result out of range");
- return -1;
- }
-
- if (e >= 1024)
- goto Overflow;
- else if (e < -1022) {
- /* Gradual underflow */
- f = ldexp(f, 1022 + e);
- e = 0;
- }
- else if (!(e == 0 && f == 0.0)) {
- e += 1023;
- f -= 1.0; /* Get rid of leading 1 */
- }
-
- /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
- f *= 268435456.0; /* 2**28 */
- fhi = (unsigned int)f; /* Truncate */
- assert(fhi < 268435456);
-
- f -= (double)fhi;
- f *= 16777216.0; /* 2**24 */
- flo = (unsigned int)(f + 0.5); /* Round */
- assert(flo <= 16777216);
- if (flo >> 24) {
- /* The carry propagated out of a string of 24 1 bits. */
- flo = 0;
- ++fhi;
- if (fhi >> 28) {
- /* And it also propagated out of the next 28 bits. */
- fhi = 0;
- ++e;
- if (e >= 2047)
- goto Overflow;
- }
- }
-
- /* First byte */
- *p = (sign << 7) | (e >> 4);
- p += incr;
-
- /* Second byte */
- *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
- p += incr;
-
- /* Third byte */
- *p = (fhi >> 16) & 0xFF;
- p += incr;
-
- /* Fourth byte */
- *p = (fhi >> 8) & 0xFF;
- p += incr;
-
- /* Fifth byte */
- *p = fhi & 0xFF;
- p += incr;
-
- /* Sixth byte */
- *p = (flo >> 16) & 0xFF;
- p += incr;
-
- /* Seventh byte */
- *p = (flo >> 8) & 0xFF;
- p += incr;
-
- /* Eighth byte */
- *p = flo & 0xFF;
- /* p += incr; */
-
- /* Done */
- return 0;
-
- Overflow:
- PyErr_SetString(PyExc_OverflowError,
- "float too large to pack with d format");
- return -1;
- }
- else {
- const unsigned char *s = (unsigned char*)&x;
- int i, incr = 1;
-
- if ((double_format == ieee_little_endian_format && !le)
- || (double_format == ieee_big_endian_format && le)) {
- p += 7;
- incr = -1;
- }
-
- for (i = 0; i < 8; i++) {
- *p = *s++;
- p += incr;
- }
- return 0;
- }
-}
-
-double
-_PyFloat_Unpack2(const unsigned char *p, int le)
-{
- unsigned char sign;
- int e;
- unsigned int f;
- double x;
- int incr = 1;
-
- if (le) {
- p += 1;
- incr = -1;
- }
-
- /* First byte */
- sign = (*p >> 7) & 1;
- e = (*p & 0x7C) >> 2;
- f = (*p & 0x03) << 8;
- p += incr;
-
- /* Second byte */
- f |= *p;
-
- if (e == 0x1f) {
-#ifdef PY_NO_SHORT_FLOAT_REPR
- if (f == 0) {
- /* Infinity */
- return sign ? -Py_HUGE_VAL : Py_HUGE_VAL;
- }
- else {
- /* NaN */
-#ifdef Py_NAN
- return sign ? -Py_NAN : Py_NAN;
-#else
- PyErr_SetString(
- PyExc_ValueError,
- "can't unpack IEEE 754 NaN "
- "on platform that does not support NaNs");
- return -1;
-#endif /* #ifdef Py_NAN */
- }
-#else
- if (f == 0) {
- /* Infinity */
- return _Py_dg_infinity(sign);
- }
- else {
- /* NaN */
- return _Py_dg_stdnan(sign);
- }
-#endif /* #ifdef PY_NO_SHORT_FLOAT_REPR */
- }
-
- x = (double)f / 1024.0;
-
- if (e == 0) {
- e = -14;
- }
- else {
- x += 1.0;
- e -= 15;
- }
- x = ldexp(x, e);
-
- if (sign)
- x = -x;
-
- return x;
-}
-
-double
-_PyFloat_Unpack4(const unsigned char *p, int le)
-{
- if (float_format == unknown_format) {
- unsigned char sign;
- int e;
- unsigned int f;
- double x;
- int incr = 1;
-
- if (le) {
- p += 3;
- incr = -1;
- }
-
- /* First byte */
- sign = (*p >> 7) & 1;
- e = (*p & 0x7F) << 1;
- p += incr;
-
- /* Second byte */
- e |= (*p >> 7) & 1;
- f = (*p & 0x7F) << 16;
- p += incr;
-
- if (e == 255) {
- PyErr_SetString(
- PyExc_ValueError,
- "can't unpack IEEE 754 special value "
- "on non-IEEE platform");
- return -1;
- }
-
- /* Third byte */
- f |= *p << 8;
- p += incr;
-
- /* Fourth byte */
- f |= *p;
-
- x = (double)f / 8388608.0;
-
- /* XXX This sadly ignores Inf/NaN issues */
- if (e == 0)
- e = -126;
- else {
- x += 1.0;
- e -= 127;
- }
- x = ldexp(x, e);
-
- if (sign)
- x = -x;
-
- return x;
- }
- else {
- float x;
-
- if ((float_format == ieee_little_endian_format && !le)
- || (float_format == ieee_big_endian_format && le)) {
- char buf[4];
- char *d = &buf[3];
- int i;
-
- for (i = 0; i < 4; i++) {
- *d-- = *p++;
- }
- memcpy(&x, buf, 4);
- }
- else {
- memcpy(&x, p, 4);
- }
-
- return x;
- }
-}
-
-double
-_PyFloat_Unpack8(const unsigned char *p, int le)
-{
- if (double_format == unknown_format) {
- unsigned char sign;
- int e;
- unsigned int fhi, flo;
- double x;
- int incr = 1;
-
- if (le) {
- p += 7;
- incr = -1;
- }
-
- /* First byte */
- sign = (*p >> 7) & 1;
- e = (*p & 0x7F) << 4;
-
- p += incr;
-
- /* Second byte */
- e |= (*p >> 4) & 0xF;
- fhi = (*p & 0xF) << 24;
- p += incr;
-
- if (e == 2047) {
- PyErr_SetString(
- PyExc_ValueError,
- "can't unpack IEEE 754 special value "
- "on non-IEEE platform");
- return -1.0;
- }
-
- /* Third byte */
- fhi |= *p << 16;
- p += incr;
-
- /* Fourth byte */
- fhi |= *p << 8;
- p += incr;
-
- /* Fifth byte */
- fhi |= *p;
- p += incr;
-
- /* Sixth byte */
- flo = *p << 16;
- p += incr;
-
- /* Seventh byte */
- flo |= *p << 8;
- p += incr;
-
- /* Eighth byte */
- flo |= *p;
-
- x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
- x /= 268435456.0; /* 2**28 */
-
- if (e == 0)
- e = -1022;
- else {
- x += 1.0;
- e -= 1023;
- }
- x = ldexp(x, e);
-
- if (sign)
- x = -x;
-
- return x;
- }
- else {
- double x;
-
- if ((double_format == ieee_little_endian_format && !le)
- || (double_format == ieee_big_endian_format && le)) {
- char buf[8];
- char *d = &buf[7];
- int i;
-
- for (i = 0; i < 8; i++) {
- *d-- = *p++;
- }
- memcpy(&x, buf, 8);
- }
- else {
- memcpy(&x, p, 8);
- }
-
- return x;
- }
-}