aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Objects/complexobject.c
diff options
context:
space:
mode:
authornkozlovskiy <nmk@ydb.tech>2023-09-29 12:24:06 +0300
committernkozlovskiy <nmk@ydb.tech>2023-09-29 12:41:34 +0300
commite0e3e1717e3d33762ce61950504f9637a6e669ed (patch)
treebca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python3/src/Objects/complexobject.c
parent38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff)
downloadydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz
add ydb deps
Diffstat (limited to 'contrib/tools/python3/src/Objects/complexobject.c')
-rw-r--r--contrib/tools/python3/src/Objects/complexobject.c1115
1 files changed, 1115 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Objects/complexobject.c b/contrib/tools/python3/src/Objects/complexobject.c
new file mode 100644
index 0000000000..9bd68d50c3
--- /dev/null
+++ b/contrib/tools/python3/src/Objects/complexobject.c
@@ -0,0 +1,1115 @@
+
+/* Complex object implementation */
+
+/* Borrows heavily from floatobject.c */
+
+/* Submitted by Jim Hugunin */
+
+#include "Python.h"
+#include "pycore_call.h" // _PyObject_CallNoArgs()
+#include "pycore_long.h" // _PyLong_GetZero()
+#include "pycore_object.h" // _PyObject_Init()
+#include "pycore_pymath.h" // _Py_ADJUST_ERANGE2()
+#include "structmember.h" // PyMemberDef
+
+
+/*[clinic input]
+class complex "PyComplexObject *" "&PyComplex_Type"
+[clinic start generated code]*/
+/*[clinic end generated code: output=da39a3ee5e6b4b0d input=819e057d2d10f5ec]*/
+
+#include "clinic/complexobject.c.h"
+
+/* elementary operations on complex numbers */
+
+static Py_complex c_1 = {1., 0.};
+
+Py_complex
+_Py_c_sum(Py_complex a, Py_complex b)
+{
+ Py_complex r;
+ r.real = a.real + b.real;
+ r.imag = a.imag + b.imag;
+ return r;
+}
+
+Py_complex
+_Py_c_diff(Py_complex a, Py_complex b)
+{
+ Py_complex r;
+ r.real = a.real - b.real;
+ r.imag = a.imag - b.imag;
+ return r;
+}
+
+Py_complex
+_Py_c_neg(Py_complex a)
+{
+ Py_complex r;
+ r.real = -a.real;
+ r.imag = -a.imag;
+ return r;
+}
+
+Py_complex
+_Py_c_prod(Py_complex a, Py_complex b)
+{
+ Py_complex r;
+ r.real = a.real*b.real - a.imag*b.imag;
+ r.imag = a.real*b.imag + a.imag*b.real;
+ return r;
+}
+
+/* Avoid bad optimization on Windows ARM64 until the compiler is fixed */
+#ifdef _M_ARM64
+#pragma optimize("", off)
+#endif
+Py_complex
+_Py_c_quot(Py_complex a, Py_complex b)
+{
+ /******************************************************************
+ This was the original algorithm. It's grossly prone to spurious
+ overflow and underflow errors. It also merrily divides by 0 despite
+ checking for that(!). The code still serves a doc purpose here, as
+ the algorithm following is a simple by-cases transformation of this
+ one:
+
+ Py_complex r;
+ double d = b.real*b.real + b.imag*b.imag;
+ if (d == 0.)
+ errno = EDOM;
+ r.real = (a.real*b.real + a.imag*b.imag)/d;
+ r.imag = (a.imag*b.real - a.real*b.imag)/d;
+ return r;
+ ******************************************************************/
+
+ /* This algorithm is better, and is pretty obvious: first divide the
+ * numerators and denominator by whichever of {b.real, b.imag} has
+ * larger magnitude. The earliest reference I found was to CACM
+ * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
+ * University). As usual, though, we're still ignoring all IEEE
+ * endcases.
+ */
+ Py_complex r; /* the result */
+ const double abs_breal = b.real < 0 ? -b.real : b.real;
+ const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
+
+ if (abs_breal >= abs_bimag) {
+ /* divide tops and bottom by b.real */
+ if (abs_breal == 0.0) {
+ errno = EDOM;
+ r.real = r.imag = 0.0;
+ }
+ else {
+ const double ratio = b.imag / b.real;
+ const double denom = b.real + b.imag * ratio;
+ r.real = (a.real + a.imag * ratio) / denom;
+ r.imag = (a.imag - a.real * ratio) / denom;
+ }
+ }
+ else if (abs_bimag >= abs_breal) {
+ /* divide tops and bottom by b.imag */
+ const double ratio = b.real / b.imag;
+ const double denom = b.real * ratio + b.imag;
+ assert(b.imag != 0.0);
+ r.real = (a.real * ratio + a.imag) / denom;
+ r.imag = (a.imag * ratio - a.real) / denom;
+ }
+ else {
+ /* At least one of b.real or b.imag is a NaN */
+ r.real = r.imag = Py_NAN;
+ }
+ return r;
+}
+#ifdef _M_ARM64
+#pragma optimize("", on)
+#endif
+
+Py_complex
+_Py_c_pow(Py_complex a, Py_complex b)
+{
+ Py_complex r;
+ double vabs,len,at,phase;
+ if (b.real == 0. && b.imag == 0.) {
+ r.real = 1.;
+ r.imag = 0.;
+ }
+ else if (a.real == 0. && a.imag == 0.) {
+ if (b.imag != 0. || b.real < 0.)
+ errno = EDOM;
+ r.real = 0.;
+ r.imag = 0.;
+ }
+ else {
+ vabs = hypot(a.real,a.imag);
+ len = pow(vabs,b.real);
+ at = atan2(a.imag, a.real);
+ phase = at*b.real;
+ if (b.imag != 0.0) {
+ len /= exp(at*b.imag);
+ phase += b.imag*log(vabs);
+ }
+ r.real = len*cos(phase);
+ r.imag = len*sin(phase);
+ }
+ return r;
+}
+
+static Py_complex
+c_powu(Py_complex x, long n)
+{
+ Py_complex r, p;
+ long mask = 1;
+ r = c_1;
+ p = x;
+ while (mask > 0 && n >= mask) {
+ if (n & mask)
+ r = _Py_c_prod(r,p);
+ mask <<= 1;
+ p = _Py_c_prod(p,p);
+ }
+ return r;
+}
+
+static Py_complex
+c_powi(Py_complex x, long n)
+{
+ if (n > 0)
+ return c_powu(x,n);
+ else
+ return _Py_c_quot(c_1, c_powu(x,-n));
+
+}
+
+double
+_Py_c_abs(Py_complex z)
+{
+ /* sets errno = ERANGE on overflow; otherwise errno = 0 */
+ double result;
+
+ if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+ /* C99 rules: if either the real or the imaginary part is an
+ infinity, return infinity, even if the other part is a
+ NaN. */
+ if (Py_IS_INFINITY(z.real)) {
+ result = fabs(z.real);
+ errno = 0;
+ return result;
+ }
+ if (Py_IS_INFINITY(z.imag)) {
+ result = fabs(z.imag);
+ errno = 0;
+ return result;
+ }
+ /* either the real or imaginary part is a NaN,
+ and neither is infinite. Result should be NaN. */
+ return Py_NAN;
+ }
+ result = hypot(z.real, z.imag);
+ if (!Py_IS_FINITE(result))
+ errno = ERANGE;
+ else
+ errno = 0;
+ return result;
+}
+
+static PyObject *
+complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
+{
+ PyObject *op;
+
+ op = type->tp_alloc(type, 0);
+ if (op != NULL)
+ ((PyComplexObject *)op)->cval = cval;
+ return op;
+}
+
+PyObject *
+PyComplex_FromCComplex(Py_complex cval)
+{
+ /* Inline PyObject_New */
+ PyComplexObject *op = PyObject_Malloc(sizeof(PyComplexObject));
+ if (op == NULL) {
+ return PyErr_NoMemory();
+ }
+ _PyObject_Init((PyObject*)op, &PyComplex_Type);
+ op->cval = cval;
+ return (PyObject *) op;
+}
+
+static PyObject *
+complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
+{
+ Py_complex c;
+ c.real = real;
+ c.imag = imag;
+ return complex_subtype_from_c_complex(type, c);
+}
+
+PyObject *
+PyComplex_FromDoubles(double real, double imag)
+{
+ Py_complex c;
+ c.real = real;
+ c.imag = imag;
+ return PyComplex_FromCComplex(c);
+}
+
+double
+PyComplex_RealAsDouble(PyObject *op)
+{
+ if (PyComplex_Check(op)) {
+ return ((PyComplexObject *)op)->cval.real;
+ }
+ else {
+ return PyFloat_AsDouble(op);
+ }
+}
+
+double
+PyComplex_ImagAsDouble(PyObject *op)
+{
+ if (PyComplex_Check(op)) {
+ return ((PyComplexObject *)op)->cval.imag;
+ }
+ else {
+ return 0.0;
+ }
+}
+
+static PyObject *
+try_complex_special_method(PyObject *op)
+{
+ PyObject *f;
+
+ f = _PyObject_LookupSpecial(op, &_Py_ID(__complex__));
+ if (f) {
+ PyObject *res = _PyObject_CallNoArgs(f);
+ Py_DECREF(f);
+ if (!res || PyComplex_CheckExact(res)) {
+ return res;
+ }
+ if (!PyComplex_Check(res)) {
+ PyErr_Format(PyExc_TypeError,
+ "__complex__ returned non-complex (type %.200s)",
+ Py_TYPE(res)->tp_name);
+ Py_DECREF(res);
+ return NULL;
+ }
+ /* Issue #29894: warn if 'res' not of exact type complex. */
+ if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
+ "__complex__ returned non-complex (type %.200s). "
+ "The ability to return an instance of a strict subclass of complex "
+ "is deprecated, and may be removed in a future version of Python.",
+ Py_TYPE(res)->tp_name)) {
+ Py_DECREF(res);
+ return NULL;
+ }
+ return res;
+ }
+ return NULL;
+}
+
+Py_complex
+PyComplex_AsCComplex(PyObject *op)
+{
+ Py_complex cv;
+ PyObject *newop = NULL;
+
+ assert(op);
+ /* If op is already of type PyComplex_Type, return its value */
+ if (PyComplex_Check(op)) {
+ return ((PyComplexObject *)op)->cval;
+ }
+ /* If not, use op's __complex__ method, if it exists */
+
+ /* return -1 on failure */
+ cv.real = -1.;
+ cv.imag = 0.;
+
+ newop = try_complex_special_method(op);
+
+ if (newop) {
+ cv = ((PyComplexObject *)newop)->cval;
+ Py_DECREF(newop);
+ return cv;
+ }
+ else if (PyErr_Occurred()) {
+ return cv;
+ }
+ /* If neither of the above works, interpret op as a float giving the
+ real part of the result, and fill in the imaginary part as 0. */
+ else {
+ /* PyFloat_AsDouble will return -1 on failure */
+ cv.real = PyFloat_AsDouble(op);
+ return cv;
+ }
+}
+
+static PyObject *
+complex_repr(PyComplexObject *v)
+{
+ int precision = 0;
+ char format_code = 'r';
+ PyObject *result = NULL;
+
+ /* If these are non-NULL, they'll need to be freed. */
+ char *pre = NULL;
+ char *im = NULL;
+
+ /* These do not need to be freed. re is either an alias
+ for pre or a pointer to a constant. lead and tail
+ are pointers to constants. */
+ const char *re = NULL;
+ const char *lead = "";
+ const char *tail = "";
+
+ if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
+ /* Real part is +0: just output the imaginary part and do not
+ include parens. */
+ re = "";
+ im = PyOS_double_to_string(v->cval.imag, format_code,
+ precision, 0, NULL);
+ if (!im) {
+ PyErr_NoMemory();
+ goto done;
+ }
+ } else {
+ /* Format imaginary part with sign, real part without. Include
+ parens in the result. */
+ pre = PyOS_double_to_string(v->cval.real, format_code,
+ precision, 0, NULL);
+ if (!pre) {
+ PyErr_NoMemory();
+ goto done;
+ }
+ re = pre;
+
+ im = PyOS_double_to_string(v->cval.imag, format_code,
+ precision, Py_DTSF_SIGN, NULL);
+ if (!im) {
+ PyErr_NoMemory();
+ goto done;
+ }
+ lead = "(";
+ tail = ")";
+ }
+ result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail);
+ done:
+ PyMem_Free(im);
+ PyMem_Free(pre);
+
+ return result;
+}
+
+static Py_hash_t
+complex_hash(PyComplexObject *v)
+{
+ Py_uhash_t hashreal, hashimag, combined;
+ hashreal = (Py_uhash_t)_Py_HashDouble((PyObject *) v, v->cval.real);
+ if (hashreal == (Py_uhash_t)-1)
+ return -1;
+ hashimag = (Py_uhash_t)_Py_HashDouble((PyObject *)v, v->cval.imag);
+ if (hashimag == (Py_uhash_t)-1)
+ return -1;
+ /* Note: if the imaginary part is 0, hashimag is 0 now,
+ * so the following returns hashreal unchanged. This is
+ * important because numbers of different types that
+ * compare equal must have the same hash value, so that
+ * hash(x + 0*j) must equal hash(x).
+ */
+ combined = hashreal + _PyHASH_IMAG * hashimag;
+ if (combined == (Py_uhash_t)-1)
+ combined = (Py_uhash_t)-2;
+ return (Py_hash_t)combined;
+}
+
+/* This macro may return! */
+#define TO_COMPLEX(obj, c) \
+ if (PyComplex_Check(obj)) \
+ c = ((PyComplexObject *)(obj))->cval; \
+ else if (to_complex(&(obj), &(c)) < 0) \
+ return (obj)
+
+static int
+to_complex(PyObject **pobj, Py_complex *pc)
+{
+ PyObject *obj = *pobj;
+
+ pc->real = pc->imag = 0.0;
+ if (PyLong_Check(obj)) {
+ pc->real = PyLong_AsDouble(obj);
+ if (pc->real == -1.0 && PyErr_Occurred()) {
+ *pobj = NULL;
+ return -1;
+ }
+ return 0;
+ }
+ if (PyFloat_Check(obj)) {
+ pc->real = PyFloat_AsDouble(obj);
+ return 0;
+ }
+ Py_INCREF(Py_NotImplemented);
+ *pobj = Py_NotImplemented;
+ return -1;
+}
+
+
+static PyObject *
+complex_add(PyObject *v, PyObject *w)
+{
+ Py_complex result;
+ Py_complex a, b;
+ TO_COMPLEX(v, a);
+ TO_COMPLEX(w, b);
+ result = _Py_c_sum(a, b);
+ return PyComplex_FromCComplex(result);
+}
+
+static PyObject *
+complex_sub(PyObject *v, PyObject *w)
+{
+ Py_complex result;
+ Py_complex a, b;
+ TO_COMPLEX(v, a);
+ TO_COMPLEX(w, b);
+ result = _Py_c_diff(a, b);
+ return PyComplex_FromCComplex(result);
+}
+
+static PyObject *
+complex_mul(PyObject *v, PyObject *w)
+{
+ Py_complex result;
+ Py_complex a, b;
+ TO_COMPLEX(v, a);
+ TO_COMPLEX(w, b);
+ result = _Py_c_prod(a, b);
+ return PyComplex_FromCComplex(result);
+}
+
+static PyObject *
+complex_div(PyObject *v, PyObject *w)
+{
+ Py_complex quot;
+ Py_complex a, b;
+ TO_COMPLEX(v, a);
+ TO_COMPLEX(w, b);
+ errno = 0;
+ quot = _Py_c_quot(a, b);
+ if (errno == EDOM) {
+ PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
+ return NULL;
+ }
+ return PyComplex_FromCComplex(quot);
+}
+
+static PyObject *
+complex_pow(PyObject *v, PyObject *w, PyObject *z)
+{
+ Py_complex p;
+ Py_complex a, b;
+ TO_COMPLEX(v, a);
+ TO_COMPLEX(w, b);
+
+ if (z != Py_None) {
+ PyErr_SetString(PyExc_ValueError, "complex modulo");
+ return NULL;
+ }
+ errno = 0;
+ // Check whether the exponent has a small integer value, and if so use
+ // a faster and more accurate algorithm.
+ if (b.imag == 0.0 && b.real == floor(b.real) && fabs(b.real) <= 100.0) {
+ p = c_powi(a, (long)b.real);
+ }
+ else {
+ p = _Py_c_pow(a, b);
+ }
+
+ _Py_ADJUST_ERANGE2(p.real, p.imag);
+ if (errno == EDOM) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "0.0 to a negative or complex power");
+ return NULL;
+ }
+ else if (errno == ERANGE) {
+ PyErr_SetString(PyExc_OverflowError,
+ "complex exponentiation");
+ return NULL;
+ }
+ return PyComplex_FromCComplex(p);
+}
+
+static PyObject *
+complex_neg(PyComplexObject *v)
+{
+ Py_complex neg;
+ neg.real = -v->cval.real;
+ neg.imag = -v->cval.imag;
+ return PyComplex_FromCComplex(neg);
+}
+
+static PyObject *
+complex_pos(PyComplexObject *v)
+{
+ if (PyComplex_CheckExact(v)) {
+ Py_INCREF(v);
+ return (PyObject *)v;
+ }
+ else
+ return PyComplex_FromCComplex(v->cval);
+}
+
+static PyObject *
+complex_abs(PyComplexObject *v)
+{
+ double result;
+
+ result = _Py_c_abs(v->cval);
+
+ if (errno == ERANGE) {
+ PyErr_SetString(PyExc_OverflowError,
+ "absolute value too large");
+ return NULL;
+ }
+ return PyFloat_FromDouble(result);
+}
+
+static int
+complex_bool(PyComplexObject *v)
+{
+ return v->cval.real != 0.0 || v->cval.imag != 0.0;
+}
+
+static PyObject *
+complex_richcompare(PyObject *v, PyObject *w, int op)
+{
+ PyObject *res;
+ Py_complex i;
+ int equal;
+
+ if (op != Py_EQ && op != Py_NE) {
+ goto Unimplemented;
+ }
+
+ assert(PyComplex_Check(v));
+ TO_COMPLEX(v, i);
+
+ if (PyLong_Check(w)) {
+ /* Check for 0.0 imaginary part first to avoid the rich
+ * comparison when possible.
+ */
+ if (i.imag == 0.0) {
+ PyObject *j, *sub_res;
+ j = PyFloat_FromDouble(i.real);
+ if (j == NULL)
+ return NULL;
+
+ sub_res = PyObject_RichCompare(j, w, op);
+ Py_DECREF(j);
+ return sub_res;
+ }
+ else {
+ equal = 0;
+ }
+ }
+ else if (PyFloat_Check(w)) {
+ equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
+ }
+ else if (PyComplex_Check(w)) {
+ Py_complex j;
+
+ TO_COMPLEX(w, j);
+ equal = (i.real == j.real && i.imag == j.imag);
+ }
+ else {
+ goto Unimplemented;
+ }
+
+ if (equal == (op == Py_EQ))
+ res = Py_True;
+ else
+ res = Py_False;
+
+ Py_INCREF(res);
+ return res;
+
+Unimplemented:
+ Py_RETURN_NOTIMPLEMENTED;
+}
+
+/*[clinic input]
+complex.conjugate
+
+Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.
+[clinic start generated code]*/
+
+static PyObject *
+complex_conjugate_impl(PyComplexObject *self)
+/*[clinic end generated code: output=5059ef162edfc68e input=5fea33e9747ec2c4]*/
+{
+ Py_complex c = self->cval;
+ c.imag = -c.imag;
+ return PyComplex_FromCComplex(c);
+}
+
+/*[clinic input]
+complex.__getnewargs__
+
+[clinic start generated code]*/
+
+static PyObject *
+complex___getnewargs___impl(PyComplexObject *self)
+/*[clinic end generated code: output=689b8206e8728934 input=539543e0a50533d7]*/
+{
+ Py_complex c = self->cval;
+ return Py_BuildValue("(dd)", c.real, c.imag);
+}
+
+
+/*[clinic input]
+complex.__format__
+
+ format_spec: unicode
+ /
+
+Convert to a string according to format_spec.
+[clinic start generated code]*/
+
+static PyObject *
+complex___format___impl(PyComplexObject *self, PyObject *format_spec)
+/*[clinic end generated code: output=bfcb60df24cafea0 input=014ef5488acbe1d5]*/
+{
+ _PyUnicodeWriter writer;
+ int ret;
+ _PyUnicodeWriter_Init(&writer);
+ ret = _PyComplex_FormatAdvancedWriter(
+ &writer,
+ (PyObject *)self,
+ format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
+ if (ret == -1) {
+ _PyUnicodeWriter_Dealloc(&writer);
+ return NULL;
+ }
+ return _PyUnicodeWriter_Finish(&writer);
+}
+
+/*[clinic input]
+complex.__complex__
+
+Convert this value to exact type complex.
+[clinic start generated code]*/
+
+static PyObject *
+complex___complex___impl(PyComplexObject *self)
+/*[clinic end generated code: output=e6b35ba3d275dc9c input=3589ada9d27db854]*/
+{
+ if (PyComplex_CheckExact(self)) {
+ Py_INCREF(self);
+ return (PyObject *)self;
+ }
+ else {
+ return PyComplex_FromCComplex(self->cval);
+ }
+}
+
+
+static PyMethodDef complex_methods[] = {
+ COMPLEX_CONJUGATE_METHODDEF
+ COMPLEX___COMPLEX___METHODDEF
+ COMPLEX___GETNEWARGS___METHODDEF
+ COMPLEX___FORMAT___METHODDEF
+ {NULL, NULL} /* sentinel */
+};
+
+static PyMemberDef complex_members[] = {
+ {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
+ "the real part of a complex number"},
+ {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
+ "the imaginary part of a complex number"},
+ {0},
+};
+
+static PyObject *
+complex_from_string_inner(const char *s, Py_ssize_t len, void *type)
+{
+ double x=0.0, y=0.0, z;
+ int got_bracket=0;
+ const char *start;
+ char *end;
+
+ /* position on first nonblank */
+ start = s;
+ while (Py_ISSPACE(*s))
+ s++;
+ if (*s == '(') {
+ /* Skip over possible bracket from repr(). */
+ got_bracket = 1;
+ s++;
+ while (Py_ISSPACE(*s))
+ s++;
+ }
+
+ /* a valid complex string usually takes one of the three forms:
+
+ <float> - real part only
+ <float>j - imaginary part only
+ <float><signed-float>j - real and imaginary parts
+
+ where <float> represents any numeric string that's accepted by the
+ float constructor (including 'nan', 'inf', 'infinity', etc.), and
+ <signed-float> is any string of the form <float> whose first
+ character is '+' or '-'.
+
+ For backwards compatibility, the extra forms
+
+ <float><sign>j
+ <sign>j
+ j
+
+ are also accepted, though support for these forms may be removed from
+ a future version of Python.
+ */
+
+ /* first look for forms starting with <float> */
+ z = PyOS_string_to_double(s, &end, NULL);
+ if (z == -1.0 && PyErr_Occurred()) {
+ if (PyErr_ExceptionMatches(PyExc_ValueError))
+ PyErr_Clear();
+ else
+ return NULL;
+ }
+ if (end != s) {
+ /* all 4 forms starting with <float> land here */
+ s = end;
+ if (*s == '+' || *s == '-') {
+ /* <float><signed-float>j | <float><sign>j */
+ x = z;
+ y = PyOS_string_to_double(s, &end, NULL);
+ if (y == -1.0 && PyErr_Occurred()) {
+ if (PyErr_ExceptionMatches(PyExc_ValueError))
+ PyErr_Clear();
+ else
+ return NULL;
+ }
+ if (end != s)
+ /* <float><signed-float>j */
+ s = end;
+ else {
+ /* <float><sign>j */
+ y = *s == '+' ? 1.0 : -1.0;
+ s++;
+ }
+ if (!(*s == 'j' || *s == 'J'))
+ goto parse_error;
+ s++;
+ }
+ else if (*s == 'j' || *s == 'J') {
+ /* <float>j */
+ s++;
+ y = z;
+ }
+ else
+ /* <float> */
+ x = z;
+ }
+ else {
+ /* not starting with <float>; must be <sign>j or j */
+ if (*s == '+' || *s == '-') {
+ /* <sign>j */
+ y = *s == '+' ? 1.0 : -1.0;
+ s++;
+ }
+ else
+ /* j */
+ y = 1.0;
+ if (!(*s == 'j' || *s == 'J'))
+ goto parse_error;
+ s++;
+ }
+
+ /* trailing whitespace and closing bracket */
+ while (Py_ISSPACE(*s))
+ s++;
+ if (got_bracket) {
+ /* if there was an opening parenthesis, then the corresponding
+ closing parenthesis should be right here */
+ if (*s != ')')
+ goto parse_error;
+ s++;
+ while (Py_ISSPACE(*s))
+ s++;
+ }
+
+ /* we should now be at the end of the string */
+ if (s-start != len)
+ goto parse_error;
+
+ return complex_subtype_from_doubles(_PyType_CAST(type), x, y);
+
+ parse_error:
+ PyErr_SetString(PyExc_ValueError,
+ "complex() arg is a malformed string");
+ return NULL;
+}
+
+static PyObject *
+complex_subtype_from_string(PyTypeObject *type, PyObject *v)
+{
+ const char *s;
+ PyObject *s_buffer = NULL, *result = NULL;
+ Py_ssize_t len;
+
+ if (PyUnicode_Check(v)) {
+ s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
+ if (s_buffer == NULL) {
+ return NULL;
+ }
+ assert(PyUnicode_IS_ASCII(s_buffer));
+ /* Simply get a pointer to existing ASCII characters. */
+ s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
+ assert(s != NULL);
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "complex() argument must be a string or a number, not '%.200s'",
+ Py_TYPE(v)->tp_name);
+ return NULL;
+ }
+
+ result = _Py_string_to_number_with_underscores(s, len, "complex", v, type,
+ complex_from_string_inner);
+ Py_DECREF(s_buffer);
+ return result;
+}
+
+/*[clinic input]
+@classmethod
+complex.__new__ as complex_new
+ real as r: object(c_default="NULL") = 0
+ imag as i: object(c_default="NULL") = 0
+
+Create a complex number from a real part and an optional imaginary part.
+
+This is equivalent to (real + imag*1j) where imag defaults to 0.
+[clinic start generated code]*/
+
+static PyObject *
+complex_new_impl(PyTypeObject *type, PyObject *r, PyObject *i)
+/*[clinic end generated code: output=b6c7dd577b537dc1 input=f4c667f2596d4fd1]*/
+{
+ PyObject *tmp;
+ PyNumberMethods *nbr, *nbi = NULL;
+ Py_complex cr, ci;
+ int own_r = 0;
+ int cr_is_complex = 0;
+ int ci_is_complex = 0;
+
+ if (r == NULL) {
+ r = _PyLong_GetZero();
+ }
+
+ /* Special-case for a single argument when type(arg) is complex. */
+ if (PyComplex_CheckExact(r) && i == NULL &&
+ type == &PyComplex_Type) {
+ /* Note that we can't know whether it's safe to return
+ a complex *subclass* instance as-is, hence the restriction
+ to exact complexes here. If either the input or the
+ output is a complex subclass, it will be handled below
+ as a non-orthogonal vector. */
+ Py_INCREF(r);
+ return r;
+ }
+ if (PyUnicode_Check(r)) {
+ if (i != NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "complex() can't take second arg"
+ " if first is a string");
+ return NULL;
+ }
+ return complex_subtype_from_string(type, r);
+ }
+ if (i != NULL && PyUnicode_Check(i)) {
+ PyErr_SetString(PyExc_TypeError,
+ "complex() second arg can't be a string");
+ return NULL;
+ }
+
+ tmp = try_complex_special_method(r);
+ if (tmp) {
+ r = tmp;
+ own_r = 1;
+ }
+ else if (PyErr_Occurred()) {
+ return NULL;
+ }
+
+ nbr = Py_TYPE(r)->tp_as_number;
+ if (nbr == NULL ||
+ (nbr->nb_float == NULL && nbr->nb_index == NULL && !PyComplex_Check(r)))
+ {
+ PyErr_Format(PyExc_TypeError,
+ "complex() first argument must be a string or a number, "
+ "not '%.200s'",
+ Py_TYPE(r)->tp_name);
+ if (own_r) {
+ Py_DECREF(r);
+ }
+ return NULL;
+ }
+ if (i != NULL) {
+ nbi = Py_TYPE(i)->tp_as_number;
+ if (nbi == NULL ||
+ (nbi->nb_float == NULL && nbi->nb_index == NULL && !PyComplex_Check(i)))
+ {
+ PyErr_Format(PyExc_TypeError,
+ "complex() second argument must be a number, "
+ "not '%.200s'",
+ Py_TYPE(i)->tp_name);
+ if (own_r) {
+ Py_DECREF(r);
+ }
+ return NULL;
+ }
+ }
+
+ /* If we get this far, then the "real" and "imag" parts should
+ both be treated as numbers, and the constructor should return a
+ complex number equal to (real + imag*1j).
+
+ Note that we do NOT assume the input to already be in canonical
+ form; the "real" and "imag" parts might themselves be complex
+ numbers, which slightly complicates the code below. */
+ if (PyComplex_Check(r)) {
+ /* Note that if r is of a complex subtype, we're only
+ retaining its real & imag parts here, and the return
+ value is (properly) of the builtin complex type. */
+ cr = ((PyComplexObject*)r)->cval;
+ cr_is_complex = 1;
+ if (own_r) {
+ Py_DECREF(r);
+ }
+ }
+ else {
+ /* The "real" part really is entirely real, and contributes
+ nothing in the imaginary direction.
+ Just treat it as a double. */
+ tmp = PyNumber_Float(r);
+ if (own_r) {
+ /* r was a newly created complex number, rather
+ than the original "real" argument. */
+ Py_DECREF(r);
+ }
+ if (tmp == NULL)
+ return NULL;
+ assert(PyFloat_Check(tmp));
+ cr.real = PyFloat_AsDouble(tmp);
+ cr.imag = 0.0;
+ Py_DECREF(tmp);
+ }
+ if (i == NULL) {
+ ci.real = cr.imag;
+ }
+ else if (PyComplex_Check(i)) {
+ ci = ((PyComplexObject*)i)->cval;
+ ci_is_complex = 1;
+ } else {
+ /* The "imag" part really is entirely imaginary, and
+ contributes nothing in the real direction.
+ Just treat it as a double. */
+ tmp = PyNumber_Float(i);
+ if (tmp == NULL)
+ return NULL;
+ ci.real = PyFloat_AsDouble(tmp);
+ Py_DECREF(tmp);
+ }
+ /* If the input was in canonical form, then the "real" and "imag"
+ parts are real numbers, so that ci.imag and cr.imag are zero.
+ We need this correction in case they were not real numbers. */
+
+ if (ci_is_complex) {
+ cr.real -= ci.imag;
+ }
+ if (cr_is_complex && i != NULL) {
+ ci.real += cr.imag;
+ }
+ return complex_subtype_from_doubles(type, cr.real, ci.real);
+}
+
+static PyNumberMethods complex_as_number = {
+ (binaryfunc)complex_add, /* nb_add */
+ (binaryfunc)complex_sub, /* nb_subtract */
+ (binaryfunc)complex_mul, /* nb_multiply */
+ 0, /* nb_remainder */
+ 0, /* nb_divmod */
+ (ternaryfunc)complex_pow, /* nb_power */
+ (unaryfunc)complex_neg, /* nb_negative */
+ (unaryfunc)complex_pos, /* nb_positive */
+ (unaryfunc)complex_abs, /* nb_absolute */
+ (inquiry)complex_bool, /* nb_bool */
+ 0, /* nb_invert */
+ 0, /* nb_lshift */
+ 0, /* nb_rshift */
+ 0, /* nb_and */
+ 0, /* nb_xor */
+ 0, /* nb_or */
+ 0, /* nb_int */
+ 0, /* nb_reserved */
+ 0, /* nb_float */
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply*/
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ 0, /* nb_floor_divide */
+ (binaryfunc)complex_div, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
+};
+
+PyTypeObject PyComplex_Type = {
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "complex",
+ sizeof(PyComplexObject),
+ 0,
+ 0, /* tp_dealloc */
+ 0, /* tp_vectorcall_offset */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_as_async */
+ (reprfunc)complex_repr, /* tp_repr */
+ &complex_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)complex_hash, /* tp_hash */
+ 0, /* tp_call */
+ 0, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
+ complex_new__doc__, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ complex_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ complex_methods, /* tp_methods */
+ complex_members, /* tp_members */
+ 0, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ PyType_GenericAlloc, /* tp_alloc */
+ complex_new, /* tp_new */
+ PyObject_Del, /* tp_free */
+};