diff options
author | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:24:06 +0300 |
---|---|---|
committer | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:41:34 +0300 |
commit | e0e3e1717e3d33762ce61950504f9637a6e669ed (patch) | |
tree | bca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python3/src/Modules/_threadmodule.c | |
parent | 38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff) | |
download | ydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz |
add ydb deps
Diffstat (limited to 'contrib/tools/python3/src/Modules/_threadmodule.c')
-rw-r--r-- | contrib/tools/python3/src/Modules/_threadmodule.c | 1715 |
1 files changed, 1715 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Modules/_threadmodule.c b/contrib/tools/python3/src/Modules/_threadmodule.c new file mode 100644 index 0000000000..199e3b89d9 --- /dev/null +++ b/contrib/tools/python3/src/Modules/_threadmodule.c @@ -0,0 +1,1715 @@ + +/* Thread module */ +/* Interface to Sjoerd's portable C thread library */ + +#include "Python.h" +#include "pycore_interp.h" // _PyInterpreterState.threads.count +#include "pycore_moduleobject.h" // _PyModule_GetState() +#include "pycore_pylifecycle.h" +#include "pycore_pystate.h" // _PyThreadState_SetCurrent() +#include <stddef.h> // offsetof() +#include "structmember.h" // PyMemberDef + +#ifdef HAVE_SIGNAL_H +# include <signal.h> // SIGINT +#endif + +// ThreadError is just an alias to PyExc_RuntimeError +#define ThreadError PyExc_RuntimeError + + +// Forward declarations +static struct PyModuleDef thread_module; + + +typedef struct { + PyTypeObject *excepthook_type; + PyTypeObject *lock_type; + PyTypeObject *local_type; + PyTypeObject *local_dummy_type; +} thread_module_state; + +static inline thread_module_state* +get_thread_state(PyObject *module) +{ + void *state = _PyModule_GetState(module); + assert(state != NULL); + return (thread_module_state *)state; +} + + +/* Lock objects */ + +typedef struct { + PyObject_HEAD + PyThread_type_lock lock_lock; + PyObject *in_weakreflist; + char locked; /* for sanity checking */ +} lockobject; + +static int +lock_traverse(lockobject *self, visitproc visit, void *arg) +{ + Py_VISIT(Py_TYPE(self)); + return 0; +} + +static void +lock_dealloc(lockobject *self) +{ + PyObject_GC_UnTrack(self); + if (self->in_weakreflist != NULL) { + PyObject_ClearWeakRefs((PyObject *) self); + } + if (self->lock_lock != NULL) { + /* Unlock the lock so it's safe to free it */ + if (self->locked) + PyThread_release_lock(self->lock_lock); + PyThread_free_lock(self->lock_lock); + } + PyTypeObject *tp = Py_TYPE(self); + tp->tp_free((PyObject*)self); + Py_DECREF(tp); +} + +/* Helper to acquire an interruptible lock with a timeout. If the lock acquire + * is interrupted, signal handlers are run, and if they raise an exception, + * PY_LOCK_INTR is returned. Otherwise, PY_LOCK_ACQUIRED or PY_LOCK_FAILURE + * are returned, depending on whether the lock can be acquired within the + * timeout. + */ +static PyLockStatus +acquire_timed(PyThread_type_lock lock, _PyTime_t timeout) +{ + _PyTime_t endtime = 0; + if (timeout > 0) { + endtime = _PyDeadline_Init(timeout); + } + + PyLockStatus r; + do { + _PyTime_t microseconds; + microseconds = _PyTime_AsMicroseconds(timeout, _PyTime_ROUND_CEILING); + + /* first a simple non-blocking try without releasing the GIL */ + r = PyThread_acquire_lock_timed(lock, 0, 0); + if (r == PY_LOCK_FAILURE && microseconds != 0) { + Py_BEGIN_ALLOW_THREADS + r = PyThread_acquire_lock_timed(lock, microseconds, 1); + Py_END_ALLOW_THREADS + } + + if (r == PY_LOCK_INTR) { + /* Run signal handlers if we were interrupted. Propagate + * exceptions from signal handlers, such as KeyboardInterrupt, by + * passing up PY_LOCK_INTR. */ + if (Py_MakePendingCalls() < 0) { + return PY_LOCK_INTR; + } + + /* If we're using a timeout, recompute the timeout after processing + * signals, since those can take time. */ + if (timeout > 0) { + timeout = _PyDeadline_Get(endtime); + + /* Check for negative values, since those mean block forever. + */ + if (timeout < 0) { + r = PY_LOCK_FAILURE; + } + } + } + } while (r == PY_LOCK_INTR); /* Retry if we were interrupted. */ + + return r; +} + +static int +lock_acquire_parse_args(PyObject *args, PyObject *kwds, + _PyTime_t *timeout) +{ + char *kwlist[] = {"blocking", "timeout", NULL}; + int blocking = 1; + PyObject *timeout_obj = NULL; + const _PyTime_t unset_timeout = _PyTime_FromSeconds(-1); + + *timeout = unset_timeout ; + + if (!PyArg_ParseTupleAndKeywords(args, kwds, "|iO:acquire", kwlist, + &blocking, &timeout_obj)) + return -1; + + if (timeout_obj + && _PyTime_FromSecondsObject(timeout, + timeout_obj, _PyTime_ROUND_TIMEOUT) < 0) + return -1; + + if (!blocking && *timeout != unset_timeout ) { + PyErr_SetString(PyExc_ValueError, + "can't specify a timeout for a non-blocking call"); + return -1; + } + if (*timeout < 0 && *timeout != unset_timeout) { + PyErr_SetString(PyExc_ValueError, + "timeout value must be positive"); + return -1; + } + if (!blocking) + *timeout = 0; + else if (*timeout != unset_timeout) { + _PyTime_t microseconds; + + microseconds = _PyTime_AsMicroseconds(*timeout, _PyTime_ROUND_TIMEOUT); + if (microseconds > PY_TIMEOUT_MAX) { + PyErr_SetString(PyExc_OverflowError, + "timeout value is too large"); + return -1; + } + } + return 0; +} + +static PyObject * +lock_PyThread_acquire_lock(lockobject *self, PyObject *args, PyObject *kwds) +{ + _PyTime_t timeout; + if (lock_acquire_parse_args(args, kwds, &timeout) < 0) + return NULL; + + PyLockStatus r = acquire_timed(self->lock_lock, timeout); + if (r == PY_LOCK_INTR) { + return NULL; + } + + if (r == PY_LOCK_ACQUIRED) + self->locked = 1; + return PyBool_FromLong(r == PY_LOCK_ACQUIRED); +} + +PyDoc_STRVAR(acquire_doc, +"acquire(blocking=True, timeout=-1) -> bool\n\ +(acquire_lock() is an obsolete synonym)\n\ +\n\ +Lock the lock. Without argument, this blocks if the lock is already\n\ +locked (even by the same thread), waiting for another thread to release\n\ +the lock, and return True once the lock is acquired.\n\ +With an argument, this will only block if the argument is true,\n\ +and the return value reflects whether the lock is acquired.\n\ +The blocking operation is interruptible."); + +static PyObject * +lock_PyThread_release_lock(lockobject *self, PyObject *Py_UNUSED(ignored)) +{ + /* Sanity check: the lock must be locked */ + if (!self->locked) { + PyErr_SetString(ThreadError, "release unlocked lock"); + return NULL; + } + + PyThread_release_lock(self->lock_lock); + self->locked = 0; + Py_RETURN_NONE; +} + +PyDoc_STRVAR(release_doc, +"release()\n\ +(release_lock() is an obsolete synonym)\n\ +\n\ +Release the lock, allowing another thread that is blocked waiting for\n\ +the lock to acquire the lock. The lock must be in the locked state,\n\ +but it needn't be locked by the same thread that unlocks it."); + +static PyObject * +lock_locked_lock(lockobject *self, PyObject *Py_UNUSED(ignored)) +{ + return PyBool_FromLong((long)self->locked); +} + +PyDoc_STRVAR(locked_doc, +"locked() -> bool\n\ +(locked_lock() is an obsolete synonym)\n\ +\n\ +Return whether the lock is in the locked state."); + +static PyObject * +lock_repr(lockobject *self) +{ + return PyUnicode_FromFormat("<%s %s object at %p>", + self->locked ? "locked" : "unlocked", Py_TYPE(self)->tp_name, self); +} + +#ifdef HAVE_FORK +static PyObject * +lock__at_fork_reinit(lockobject *self, PyObject *Py_UNUSED(args)) +{ + if (_PyThread_at_fork_reinit(&self->lock_lock) < 0) { + PyErr_SetString(ThreadError, "failed to reinitialize lock at fork"); + return NULL; + } + + self->locked = 0; + + Py_RETURN_NONE; +} +#endif /* HAVE_FORK */ + + +static PyMethodDef lock_methods[] = { + {"acquire_lock", _PyCFunction_CAST(lock_PyThread_acquire_lock), + METH_VARARGS | METH_KEYWORDS, acquire_doc}, + {"acquire", _PyCFunction_CAST(lock_PyThread_acquire_lock), + METH_VARARGS | METH_KEYWORDS, acquire_doc}, + {"release_lock", (PyCFunction)lock_PyThread_release_lock, + METH_NOARGS, release_doc}, + {"release", (PyCFunction)lock_PyThread_release_lock, + METH_NOARGS, release_doc}, + {"locked_lock", (PyCFunction)lock_locked_lock, + METH_NOARGS, locked_doc}, + {"locked", (PyCFunction)lock_locked_lock, + METH_NOARGS, locked_doc}, + {"__enter__", _PyCFunction_CAST(lock_PyThread_acquire_lock), + METH_VARARGS | METH_KEYWORDS, acquire_doc}, + {"__exit__", (PyCFunction)lock_PyThread_release_lock, + METH_VARARGS, release_doc}, +#ifdef HAVE_FORK + {"_at_fork_reinit", (PyCFunction)lock__at_fork_reinit, + METH_NOARGS, NULL}, +#endif + {NULL, NULL} /* sentinel */ +}; + +PyDoc_STRVAR(lock_doc, +"A lock object is a synchronization primitive. To create a lock,\n\ +call threading.Lock(). Methods are:\n\ +\n\ +acquire() -- lock the lock, possibly blocking until it can be obtained\n\ +release() -- unlock of the lock\n\ +locked() -- test whether the lock is currently locked\n\ +\n\ +A lock is not owned by the thread that locked it; another thread may\n\ +unlock it. A thread attempting to lock a lock that it has already locked\n\ +will block until another thread unlocks it. Deadlocks may ensue."); + +static PyMemberDef lock_type_members[] = { + {"__weaklistoffset__", T_PYSSIZET, offsetof(lockobject, in_weakreflist), READONLY}, + {NULL}, +}; + +static PyType_Slot lock_type_slots[] = { + {Py_tp_dealloc, (destructor)lock_dealloc}, + {Py_tp_repr, (reprfunc)lock_repr}, + {Py_tp_doc, (void *)lock_doc}, + {Py_tp_methods, lock_methods}, + {Py_tp_traverse, lock_traverse}, + {Py_tp_members, lock_type_members}, + {0, 0} +}; + +static PyType_Spec lock_type_spec = { + .name = "_thread.lock", + .basicsize = sizeof(lockobject), + .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | + Py_TPFLAGS_DISALLOW_INSTANTIATION | Py_TPFLAGS_IMMUTABLETYPE), + .slots = lock_type_slots, +}; + +/* Recursive lock objects */ + +typedef struct { + PyObject_HEAD + PyThread_type_lock rlock_lock; + unsigned long rlock_owner; + unsigned long rlock_count; + PyObject *in_weakreflist; +} rlockobject; + +static int +rlock_traverse(rlockobject *self, visitproc visit, void *arg) +{ + Py_VISIT(Py_TYPE(self)); + return 0; +} + + +static void +rlock_dealloc(rlockobject *self) +{ + PyObject_GC_UnTrack(self); + if (self->in_weakreflist != NULL) + PyObject_ClearWeakRefs((PyObject *) self); + /* self->rlock_lock can be NULL if PyThread_allocate_lock() failed + in rlock_new() */ + if (self->rlock_lock != NULL) { + /* Unlock the lock so it's safe to free it */ + if (self->rlock_count > 0) + PyThread_release_lock(self->rlock_lock); + + PyThread_free_lock(self->rlock_lock); + } + PyTypeObject *tp = Py_TYPE(self); + tp->tp_free(self); + Py_DECREF(tp); +} + +static PyObject * +rlock_acquire(rlockobject *self, PyObject *args, PyObject *kwds) +{ + _PyTime_t timeout; + unsigned long tid; + PyLockStatus r = PY_LOCK_ACQUIRED; + + if (lock_acquire_parse_args(args, kwds, &timeout) < 0) + return NULL; + + tid = PyThread_get_thread_ident(); + if (self->rlock_count > 0 && tid == self->rlock_owner) { + unsigned long count = self->rlock_count + 1; + if (count <= self->rlock_count) { + PyErr_SetString(PyExc_OverflowError, + "Internal lock count overflowed"); + return NULL; + } + self->rlock_count = count; + Py_RETURN_TRUE; + } + r = acquire_timed(self->rlock_lock, timeout); + if (r == PY_LOCK_ACQUIRED) { + assert(self->rlock_count == 0); + self->rlock_owner = tid; + self->rlock_count = 1; + } + else if (r == PY_LOCK_INTR) { + return NULL; + } + + return PyBool_FromLong(r == PY_LOCK_ACQUIRED); +} + +PyDoc_STRVAR(rlock_acquire_doc, +"acquire(blocking=True) -> bool\n\ +\n\ +Lock the lock. `blocking` indicates whether we should wait\n\ +for the lock to be available or not. If `blocking` is False\n\ +and another thread holds the lock, the method will return False\n\ +immediately. If `blocking` is True and another thread holds\n\ +the lock, the method will wait for the lock to be released,\n\ +take it and then return True.\n\ +(note: the blocking operation is interruptible.)\n\ +\n\ +In all other cases, the method will return True immediately.\n\ +Precisely, if the current thread already holds the lock, its\n\ +internal counter is simply incremented. If nobody holds the lock,\n\ +the lock is taken and its internal counter initialized to 1."); + +static PyObject * +rlock_release(rlockobject *self, PyObject *Py_UNUSED(ignored)) +{ + unsigned long tid = PyThread_get_thread_ident(); + + if (self->rlock_count == 0 || self->rlock_owner != tid) { + PyErr_SetString(PyExc_RuntimeError, + "cannot release un-acquired lock"); + return NULL; + } + if (--self->rlock_count == 0) { + self->rlock_owner = 0; + PyThread_release_lock(self->rlock_lock); + } + Py_RETURN_NONE; +} + +PyDoc_STRVAR(rlock_release_doc, +"release()\n\ +\n\ +Release the lock, allowing another thread that is blocked waiting for\n\ +the lock to acquire the lock. The lock must be in the locked state,\n\ +and must be locked by the same thread that unlocks it; otherwise a\n\ +`RuntimeError` is raised.\n\ +\n\ +Do note that if the lock was acquire()d several times in a row by the\n\ +current thread, release() needs to be called as many times for the lock\n\ +to be available for other threads."); + +static PyObject * +rlock_acquire_restore(rlockobject *self, PyObject *args) +{ + unsigned long owner; + unsigned long count; + int r = 1; + + if (!PyArg_ParseTuple(args, "(kk):_acquire_restore", &count, &owner)) + return NULL; + + if (!PyThread_acquire_lock(self->rlock_lock, 0)) { + Py_BEGIN_ALLOW_THREADS + r = PyThread_acquire_lock(self->rlock_lock, 1); + Py_END_ALLOW_THREADS + } + if (!r) { + PyErr_SetString(ThreadError, "couldn't acquire lock"); + return NULL; + } + assert(self->rlock_count == 0); + self->rlock_owner = owner; + self->rlock_count = count; + Py_RETURN_NONE; +} + +PyDoc_STRVAR(rlock_acquire_restore_doc, +"_acquire_restore(state) -> None\n\ +\n\ +For internal use by `threading.Condition`."); + +static PyObject * +rlock_release_save(rlockobject *self, PyObject *Py_UNUSED(ignored)) +{ + unsigned long owner; + unsigned long count; + + if (self->rlock_count == 0) { + PyErr_SetString(PyExc_RuntimeError, + "cannot release un-acquired lock"); + return NULL; + } + + owner = self->rlock_owner; + count = self->rlock_count; + self->rlock_count = 0; + self->rlock_owner = 0; + PyThread_release_lock(self->rlock_lock); + return Py_BuildValue("kk", count, owner); +} + +PyDoc_STRVAR(rlock_release_save_doc, +"_release_save() -> tuple\n\ +\n\ +For internal use by `threading.Condition`."); + + +static PyObject * +rlock_is_owned(rlockobject *self, PyObject *Py_UNUSED(ignored)) +{ + unsigned long tid = PyThread_get_thread_ident(); + + if (self->rlock_count > 0 && self->rlock_owner == tid) { + Py_RETURN_TRUE; + } + Py_RETURN_FALSE; +} + +PyDoc_STRVAR(rlock_is_owned_doc, +"_is_owned() -> bool\n\ +\n\ +For internal use by `threading.Condition`."); + +static PyObject * +rlock_new(PyTypeObject *type, PyObject *args, PyObject *kwds) +{ + rlockobject *self = (rlockobject *) type->tp_alloc(type, 0); + if (self == NULL) { + return NULL; + } + self->in_weakreflist = NULL; + self->rlock_owner = 0; + self->rlock_count = 0; + + self->rlock_lock = PyThread_allocate_lock(); + if (self->rlock_lock == NULL) { + Py_DECREF(self); + PyErr_SetString(ThreadError, "can't allocate lock"); + return NULL; + } + return (PyObject *) self; +} + +static PyObject * +rlock_repr(rlockobject *self) +{ + return PyUnicode_FromFormat("<%s %s object owner=%ld count=%lu at %p>", + self->rlock_count ? "locked" : "unlocked", + Py_TYPE(self)->tp_name, self->rlock_owner, + self->rlock_count, self); +} + + +#ifdef HAVE_FORK +static PyObject * +rlock__at_fork_reinit(rlockobject *self, PyObject *Py_UNUSED(args)) +{ + if (_PyThread_at_fork_reinit(&self->rlock_lock) < 0) { + PyErr_SetString(ThreadError, "failed to reinitialize lock at fork"); + return NULL; + } + + self->rlock_owner = 0; + self->rlock_count = 0; + + Py_RETURN_NONE; +} +#endif /* HAVE_FORK */ + + +static PyMethodDef rlock_methods[] = { + {"acquire", _PyCFunction_CAST(rlock_acquire), + METH_VARARGS | METH_KEYWORDS, rlock_acquire_doc}, + {"release", (PyCFunction)rlock_release, + METH_NOARGS, rlock_release_doc}, + {"_is_owned", (PyCFunction)rlock_is_owned, + METH_NOARGS, rlock_is_owned_doc}, + {"_acquire_restore", (PyCFunction)rlock_acquire_restore, + METH_VARARGS, rlock_acquire_restore_doc}, + {"_release_save", (PyCFunction)rlock_release_save, + METH_NOARGS, rlock_release_save_doc}, + {"__enter__", _PyCFunction_CAST(rlock_acquire), + METH_VARARGS | METH_KEYWORDS, rlock_acquire_doc}, + {"__exit__", (PyCFunction)rlock_release, + METH_VARARGS, rlock_release_doc}, +#ifdef HAVE_FORK + {"_at_fork_reinit", (PyCFunction)rlock__at_fork_reinit, + METH_NOARGS, NULL}, +#endif + {NULL, NULL} /* sentinel */ +}; + + +static PyMemberDef rlock_type_members[] = { + {"__weaklistoffset__", T_PYSSIZET, offsetof(rlockobject, in_weakreflist), READONLY}, + {NULL}, +}; + +static PyType_Slot rlock_type_slots[] = { + {Py_tp_dealloc, (destructor)rlock_dealloc}, + {Py_tp_repr, (reprfunc)rlock_repr}, + {Py_tp_methods, rlock_methods}, + {Py_tp_alloc, PyType_GenericAlloc}, + {Py_tp_new, rlock_new}, + {Py_tp_members, rlock_type_members}, + {Py_tp_traverse, rlock_traverse}, + {0, 0}, +}; + +static PyType_Spec rlock_type_spec = { + .name = "_thread.RLock", + .basicsize = sizeof(rlockobject), + .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | + Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_IMMUTABLETYPE), + .slots = rlock_type_slots, +}; + +static lockobject * +newlockobject(PyObject *module) +{ + thread_module_state *state = get_thread_state(module); + + PyTypeObject *type = state->lock_type; + lockobject *self = (lockobject *)type->tp_alloc(type, 0); + if (self == NULL) { + return NULL; + } + + self->lock_lock = PyThread_allocate_lock(); + self->locked = 0; + self->in_weakreflist = NULL; + + if (self->lock_lock == NULL) { + Py_DECREF(self); + PyErr_SetString(ThreadError, "can't allocate lock"); + return NULL; + } + return self; +} + +/* Thread-local objects */ + +/* Quick overview: + + We need to be able to reclaim reference cycles as soon as possible + (both when a thread is being terminated, or a thread-local object + becomes unreachable from user data). Constraints: + - it must not be possible for thread-state dicts to be involved in + reference cycles (otherwise the cyclic GC will refuse to consider + objects referenced from a reachable thread-state dict, even though + local_dealloc would clear them) + - the death of a thread-state dict must still imply destruction of the + corresponding local dicts in all thread-local objects. + + Our implementation uses small "localdummy" objects in order to break + the reference chain. These trivial objects are hashable (using the + default scheme of identity hashing) and weakrefable. + Each thread-state holds a separate localdummy for each local object + (as a /strong reference/), + and each thread-local object holds a dict mapping /weak references/ + of localdummies to local dicts. + + Therefore: + - only the thread-state dict holds a strong reference to the dummies + - only the thread-local object holds a strong reference to the local dicts + - only outside objects (application- or library-level) hold strong + references to the thread-local objects + - as soon as a thread-state dict is destroyed, the weakref callbacks of all + dummies attached to that thread are called, and destroy the corresponding + local dicts from thread-local objects + - as soon as a thread-local object is destroyed, its local dicts are + destroyed and its dummies are manually removed from all thread states + - the GC can do its work correctly when a thread-local object is dangling, + without any interference from the thread-state dicts + + As an additional optimization, each localdummy holds a borrowed reference + to the corresponding localdict. This borrowed reference is only used + by the thread-local object which has created the localdummy, which should + guarantee that the localdict still exists when accessed. +*/ + +typedef struct { + PyObject_HEAD + PyObject *localdict; /* Borrowed reference! */ + PyObject *weakreflist; /* List of weak references to self */ +} localdummyobject; + +static void +localdummy_dealloc(localdummyobject *self) +{ + if (self->weakreflist != NULL) + PyObject_ClearWeakRefs((PyObject *) self); + PyTypeObject *tp = Py_TYPE(self); + tp->tp_free((PyObject*)self); + Py_DECREF(tp); +} + +static PyMemberDef local_dummy_type_members[] = { + {"__weaklistoffset__", T_PYSSIZET, offsetof(localdummyobject, weakreflist), READONLY}, + {NULL}, +}; + +static PyType_Slot local_dummy_type_slots[] = { + {Py_tp_dealloc, (destructor)localdummy_dealloc}, + {Py_tp_doc, "Thread-local dummy"}, + {Py_tp_members, local_dummy_type_members}, + {0, 0} +}; + +static PyType_Spec local_dummy_type_spec = { + .name = "_thread._localdummy", + .basicsize = sizeof(localdummyobject), + .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION | + Py_TPFLAGS_IMMUTABLETYPE), + .slots = local_dummy_type_slots, +}; + + +typedef struct { + PyObject_HEAD + PyObject *key; + PyObject *args; + PyObject *kw; + PyObject *weakreflist; /* List of weak references to self */ + /* A {localdummy weakref -> localdict} dict */ + PyObject *dummies; + /* The callback for weakrefs to localdummies */ + PyObject *wr_callback; +} localobject; + +/* Forward declaration */ +static PyObject *_ldict(localobject *self, thread_module_state *state); +static PyObject *_localdummy_destroyed(PyObject *meth_self, PyObject *dummyweakref); + +/* Create and register the dummy for the current thread. + Returns a borrowed reference of the corresponding local dict */ +static PyObject * +_local_create_dummy(localobject *self, thread_module_state *state) +{ + PyObject *ldict = NULL, *wr = NULL; + localdummyobject *dummy = NULL; + PyTypeObject *type = state->local_dummy_type; + + PyObject *tdict = PyThreadState_GetDict(); + if (tdict == NULL) { + PyErr_SetString(PyExc_SystemError, + "Couldn't get thread-state dictionary"); + goto err; + } + + ldict = PyDict_New(); + if (ldict == NULL) { + goto err; + } + dummy = (localdummyobject *) type->tp_alloc(type, 0); + if (dummy == NULL) { + goto err; + } + dummy->localdict = ldict; + wr = PyWeakref_NewRef((PyObject *) dummy, self->wr_callback); + if (wr == NULL) { + goto err; + } + + /* As a side-effect, this will cache the weakref's hash before the + dummy gets deleted */ + int r = PyDict_SetItem(self->dummies, wr, ldict); + if (r < 0) { + goto err; + } + Py_CLEAR(wr); + r = PyDict_SetItem(tdict, self->key, (PyObject *) dummy); + if (r < 0) { + goto err; + } + Py_CLEAR(dummy); + + Py_DECREF(ldict); + return ldict; + +err: + Py_XDECREF(ldict); + Py_XDECREF(wr); + Py_XDECREF(dummy); + return NULL; +} + +static PyObject * +local_new(PyTypeObject *type, PyObject *args, PyObject *kw) +{ + static PyMethodDef wr_callback_def = { + "_localdummy_destroyed", (PyCFunction) _localdummy_destroyed, METH_O + }; + + if (type->tp_init == PyBaseObject_Type.tp_init) { + int rc = 0; + if (args != NULL) + rc = PyObject_IsTrue(args); + if (rc == 0 && kw != NULL) + rc = PyObject_IsTrue(kw); + if (rc != 0) { + if (rc > 0) { + PyErr_SetString(PyExc_TypeError, + "Initialization arguments are not supported"); + } + return NULL; + } + } + + PyObject *module = PyType_GetModuleByDef(type, &thread_module); + thread_module_state *state = get_thread_state(module); + + localobject *self = (localobject *)type->tp_alloc(type, 0); + if (self == NULL) { + return NULL; + } + + self->args = Py_XNewRef(args); + self->kw = Py_XNewRef(kw); + self->key = PyUnicode_FromFormat("thread.local.%p", self); + if (self->key == NULL) { + goto err; + } + + self->dummies = PyDict_New(); + if (self->dummies == NULL) { + goto err; + } + + /* We use a weak reference to self in the callback closure + in order to avoid spurious reference cycles */ + PyObject *wr = PyWeakref_NewRef((PyObject *) self, NULL); + if (wr == NULL) { + goto err; + } + self->wr_callback = PyCFunction_NewEx(&wr_callback_def, wr, NULL); + Py_DECREF(wr); + if (self->wr_callback == NULL) { + goto err; + } + if (_local_create_dummy(self, state) == NULL) { + goto err; + } + return (PyObject *)self; + + err: + Py_DECREF(self); + return NULL; +} + +static int +local_traverse(localobject *self, visitproc visit, void *arg) +{ + Py_VISIT(Py_TYPE(self)); + Py_VISIT(self->args); + Py_VISIT(self->kw); + Py_VISIT(self->dummies); + return 0; +} + +#define HEAD_LOCK(runtime) \ + PyThread_acquire_lock((runtime)->interpreters.mutex, WAIT_LOCK) +#define HEAD_UNLOCK(runtime) \ + PyThread_release_lock((runtime)->interpreters.mutex) + +static int +local_clear(localobject *self) +{ + Py_CLEAR(self->args); + Py_CLEAR(self->kw); + Py_CLEAR(self->dummies); + Py_CLEAR(self->wr_callback); + /* Remove all strong references to dummies from the thread states */ + if (self->key) { + PyInterpreterState *interp = _PyInterpreterState_GET(); + _PyRuntimeState *runtime = &_PyRuntime; + HEAD_LOCK(runtime); + PyThreadState *tstate = PyInterpreterState_ThreadHead(interp); + HEAD_UNLOCK(runtime); + while (tstate) { + if (tstate->dict) { + PyObject *v = _PyDict_Pop(tstate->dict, self->key, Py_None); + if (v != NULL) { + Py_DECREF(v); + } + else { + PyErr_Clear(); + } + } + HEAD_LOCK(runtime); + tstate = PyThreadState_Next(tstate); + HEAD_UNLOCK(runtime); + } + } + return 0; +} + +static void +local_dealloc(localobject *self) +{ + /* Weakrefs must be invalidated right now, otherwise they can be used + from code called below, which is very dangerous since Py_REFCNT(self) == 0 */ + if (self->weakreflist != NULL) { + PyObject_ClearWeakRefs((PyObject *) self); + } + + PyObject_GC_UnTrack(self); + + local_clear(self); + Py_XDECREF(self->key); + + PyTypeObject *tp = Py_TYPE(self); + tp->tp_free((PyObject*)self); + Py_DECREF(tp); +} + +/* Returns a borrowed reference to the local dict, creating it if necessary */ +static PyObject * +_ldict(localobject *self, thread_module_state *state) +{ + PyObject *tdict = PyThreadState_GetDict(); + if (tdict == NULL) { + PyErr_SetString(PyExc_SystemError, + "Couldn't get thread-state dictionary"); + return NULL; + } + + PyObject *ldict; + PyObject *dummy = PyDict_GetItemWithError(tdict, self->key); + if (dummy == NULL) { + if (PyErr_Occurred()) { + return NULL; + } + ldict = _local_create_dummy(self, state); + if (ldict == NULL) + return NULL; + + if (Py_TYPE(self)->tp_init != PyBaseObject_Type.tp_init && + Py_TYPE(self)->tp_init((PyObject*)self, + self->args, self->kw) < 0) { + /* we need to get rid of ldict from thread so + we create a new one the next time we do an attr + access */ + PyDict_DelItem(tdict, self->key); + return NULL; + } + } + else { + assert(Py_IS_TYPE(dummy, state->local_dummy_type)); + ldict = ((localdummyobject *) dummy)->localdict; + } + + return ldict; +} + +static int +local_setattro(localobject *self, PyObject *name, PyObject *v) +{ + PyObject *module = PyType_GetModuleByDef(Py_TYPE(self), &thread_module); + thread_module_state *state = get_thread_state(module); + + PyObject *ldict = _ldict(self, state); + if (ldict == NULL) { + return -1; + } + + int r = PyObject_RichCompareBool(name, &_Py_ID(__dict__), Py_EQ); + if (r == -1) { + return -1; + } + if (r == 1) { + PyErr_Format(PyExc_AttributeError, + "'%.50s' object attribute '%U' is read-only", + Py_TYPE(self)->tp_name, name); + return -1; + } + + return _PyObject_GenericSetAttrWithDict((PyObject *)self, name, v, ldict); +} + +static PyObject *local_getattro(localobject *, PyObject *); + +static PyMemberDef local_type_members[] = { + {"__weaklistoffset__", T_PYSSIZET, offsetof(localobject, weakreflist), READONLY}, + {NULL}, +}; + +static PyType_Slot local_type_slots[] = { + {Py_tp_dealloc, (destructor)local_dealloc}, + {Py_tp_getattro, (getattrofunc)local_getattro}, + {Py_tp_setattro, (setattrofunc)local_setattro}, + {Py_tp_doc, "Thread-local data"}, + {Py_tp_traverse, (traverseproc)local_traverse}, + {Py_tp_clear, (inquiry)local_clear}, + {Py_tp_new, local_new}, + {Py_tp_members, local_type_members}, + {0, 0} +}; + +static PyType_Spec local_type_spec = { + .name = "_thread._local", + .basicsize = sizeof(localobject), + .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC | + Py_TPFLAGS_IMMUTABLETYPE), + .slots = local_type_slots, +}; + +static PyObject * +local_getattro(localobject *self, PyObject *name) +{ + PyObject *module = PyType_GetModuleByDef(Py_TYPE(self), &thread_module); + thread_module_state *state = get_thread_state(module); + + PyObject *ldict = _ldict(self, state); + if (ldict == NULL) + return NULL; + + int r = PyObject_RichCompareBool(name, &_Py_ID(__dict__), Py_EQ); + if (r == 1) { + return Py_NewRef(ldict); + } + if (r == -1) { + return NULL; + } + + if (!Py_IS_TYPE(self, state->local_type)) { + /* use generic lookup for subtypes */ + return _PyObject_GenericGetAttrWithDict((PyObject *)self, name, + ldict, 0); + } + + /* Optimization: just look in dict ourselves */ + PyObject *value = PyDict_GetItemWithError(ldict, name); + if (value != NULL) { + return Py_NewRef(value); + } + if (PyErr_Occurred()) { + return NULL; + } + + /* Fall back on generic to get __class__ and __dict__ */ + return _PyObject_GenericGetAttrWithDict( + (PyObject *)self, name, ldict, 0); +} + +/* Called when a dummy is destroyed. */ +static PyObject * +_localdummy_destroyed(PyObject *localweakref, PyObject *dummyweakref) +{ + assert(PyWeakref_CheckRef(localweakref)); + PyObject *obj = PyWeakref_GET_OBJECT(localweakref); + if (obj == Py_None) { + Py_RETURN_NONE; + } + + /* If the thread-local object is still alive and not being cleared, + remove the corresponding local dict */ + localobject *self = (localobject *)Py_NewRef(obj); + if (self->dummies != NULL) { + PyObject *ldict; + ldict = PyDict_GetItemWithError(self->dummies, dummyweakref); + if (ldict != NULL) { + PyDict_DelItem(self->dummies, dummyweakref); + } + if (PyErr_Occurred()) + PyErr_WriteUnraisable(obj); + } + Py_DECREF(obj); + Py_RETURN_NONE; +} + +/* Module functions */ + +struct bootstate { + PyInterpreterState *interp; + PyObject *func; + PyObject *args; + PyObject *kwargs; + PyThreadState *tstate; + _PyRuntimeState *runtime; +}; + + +static void +thread_bootstate_free(struct bootstate *boot) +{ + Py_DECREF(boot->func); + Py_DECREF(boot->args); + Py_XDECREF(boot->kwargs); + PyMem_Free(boot); +} + + +static void +thread_run(void *boot_raw) +{ + struct bootstate *boot = (struct bootstate *) boot_raw; + PyThreadState *tstate; + + tstate = boot->tstate; + tstate->thread_id = PyThread_get_thread_ident(); +#ifdef PY_HAVE_THREAD_NATIVE_ID + tstate->native_thread_id = PyThread_get_thread_native_id(); +#else + tstate->native_thread_id = 0; +#endif + _PyThreadState_SetCurrent(tstate); + PyEval_AcquireThread(tstate); + tstate->interp->threads.count++; + + PyObject *res = PyObject_Call(boot->func, boot->args, boot->kwargs); + if (res == NULL) { + if (PyErr_ExceptionMatches(PyExc_SystemExit)) + /* SystemExit is ignored silently */ + PyErr_Clear(); + else { + _PyErr_WriteUnraisableMsg("in thread started by", boot->func); + } + } + else { + Py_DECREF(res); + } + + thread_bootstate_free(boot); + tstate->interp->threads.count--; + PyThreadState_Clear(tstate); + _PyThreadState_DeleteCurrent(tstate); + + // bpo-44434: Don't call explicitly PyThread_exit_thread(). On Linux with + // the glibc, pthread_exit() can abort the whole process if dlopen() fails + // to open the libgcc_s.so library (ex: EMFILE error). +} + +static PyObject * +thread_PyThread_start_new_thread(PyObject *self, PyObject *fargs) +{ + _PyRuntimeState *runtime = &_PyRuntime; + PyObject *func, *args, *kwargs = NULL; + + if (!PyArg_UnpackTuple(fargs, "start_new_thread", 2, 3, + &func, &args, &kwargs)) + return NULL; + if (!PyCallable_Check(func)) { + PyErr_SetString(PyExc_TypeError, + "first arg must be callable"); + return NULL; + } + if (!PyTuple_Check(args)) { + PyErr_SetString(PyExc_TypeError, + "2nd arg must be a tuple"); + return NULL; + } + if (kwargs != NULL && !PyDict_Check(kwargs)) { + PyErr_SetString(PyExc_TypeError, + "optional 3rd arg must be a dictionary"); + return NULL; + } + + PyInterpreterState *interp = _PyInterpreterState_GET(); + if (interp->config._isolated_interpreter) { + PyErr_SetString(PyExc_RuntimeError, + "thread is not supported for isolated subinterpreters"); + return NULL; + } + + struct bootstate *boot = PyMem_NEW(struct bootstate, 1); + if (boot == NULL) { + return PyErr_NoMemory(); + } + boot->interp = _PyInterpreterState_GET(); + boot->tstate = _PyThreadState_Prealloc(boot->interp); + if (boot->tstate == NULL) { + PyMem_Free(boot); + return PyErr_NoMemory(); + } + boot->runtime = runtime; + boot->func = Py_NewRef(func); + boot->args = Py_NewRef(args); + boot->kwargs = Py_XNewRef(kwargs); + + unsigned long ident = PyThread_start_new_thread(thread_run, (void*) boot); + if (ident == PYTHREAD_INVALID_THREAD_ID) { + PyErr_SetString(ThreadError, "can't start new thread"); + PyThreadState_Clear(boot->tstate); + thread_bootstate_free(boot); + return NULL; + } + return PyLong_FromUnsignedLong(ident); +} + +PyDoc_STRVAR(start_new_doc, +"start_new_thread(function, args[, kwargs])\n\ +(start_new() is an obsolete synonym)\n\ +\n\ +Start a new thread and return its identifier. The thread will call the\n\ +function with positional arguments from the tuple args and keyword arguments\n\ +taken from the optional dictionary kwargs. The thread exits when the\n\ +function returns; the return value is ignored. The thread will also exit\n\ +when the function raises an unhandled exception; a stack trace will be\n\ +printed unless the exception is SystemExit.\n"); + +static PyObject * +thread_PyThread_exit_thread(PyObject *self, PyObject *Py_UNUSED(ignored)) +{ + PyErr_SetNone(PyExc_SystemExit); + return NULL; +} + +PyDoc_STRVAR(exit_doc, +"exit()\n\ +(exit_thread() is an obsolete synonym)\n\ +\n\ +This is synonymous to ``raise SystemExit''. It will cause the current\n\ +thread to exit silently unless the exception is caught."); + +static PyObject * +thread_PyThread_interrupt_main(PyObject *self, PyObject *args) +{ + int signum = SIGINT; + if (!PyArg_ParseTuple(args, "|i:signum", &signum)) { + return NULL; + } + + if (PyErr_SetInterruptEx(signum)) { + PyErr_SetString(PyExc_ValueError, "signal number out of range"); + return NULL; + } + Py_RETURN_NONE; +} + +PyDoc_STRVAR(interrupt_doc, +"interrupt_main(signum=signal.SIGINT, /)\n\ +\n\ +Simulate the arrival of the given signal in the main thread,\n\ +where the corresponding signal handler will be executed.\n\ +If *signum* is omitted, SIGINT is assumed.\n\ +A subthread can use this function to interrupt the main thread.\n\ +\n\ +Note: the default signal handler for SIGINT raises ``KeyboardInterrupt``." +); + +static lockobject *newlockobject(PyObject *module); + +static PyObject * +thread_PyThread_allocate_lock(PyObject *module, PyObject *Py_UNUSED(ignored)) +{ + return (PyObject *) newlockobject(module); +} + +PyDoc_STRVAR(allocate_doc, +"allocate_lock() -> lock object\n\ +(allocate() is an obsolete synonym)\n\ +\n\ +Create a new lock object. See help(type(threading.Lock())) for\n\ +information about locks."); + +static PyObject * +thread_get_ident(PyObject *self, PyObject *Py_UNUSED(ignored)) +{ + unsigned long ident = PyThread_get_thread_ident(); + if (ident == PYTHREAD_INVALID_THREAD_ID) { + PyErr_SetString(ThreadError, "no current thread ident"); + return NULL; + } + return PyLong_FromUnsignedLong(ident); +} + +PyDoc_STRVAR(get_ident_doc, +"get_ident() -> integer\n\ +\n\ +Return a non-zero integer that uniquely identifies the current thread\n\ +amongst other threads that exist simultaneously.\n\ +This may be used to identify per-thread resources.\n\ +Even though on some platforms threads identities may appear to be\n\ +allocated consecutive numbers starting at 1, this behavior should not\n\ +be relied upon, and the number should be seen purely as a magic cookie.\n\ +A thread's identity may be reused for another thread after it exits."); + +#ifdef PY_HAVE_THREAD_NATIVE_ID +static PyObject * +thread_get_native_id(PyObject *self, PyObject *Py_UNUSED(ignored)) +{ + unsigned long native_id = PyThread_get_thread_native_id(); + return PyLong_FromUnsignedLong(native_id); +} + +PyDoc_STRVAR(get_native_id_doc, +"get_native_id() -> integer\n\ +\n\ +Return a non-negative integer identifying the thread as reported\n\ +by the OS (kernel). This may be used to uniquely identify a\n\ +particular thread within a system."); +#endif + +static PyObject * +thread__count(PyObject *self, PyObject *Py_UNUSED(ignored)) +{ + PyInterpreterState *interp = _PyInterpreterState_GET(); + return PyLong_FromLong(interp->threads.count); +} + +PyDoc_STRVAR(_count_doc, +"_count() -> integer\n\ +\n\ +\ +Return the number of currently running Python threads, excluding\n\ +the main thread. The returned number comprises all threads created\n\ +through `start_new_thread()` as well as `threading.Thread`, and not\n\ +yet finished.\n\ +\n\ +This function is meant for internal and specialized purposes only.\n\ +In most applications `threading.enumerate()` should be used instead."); + +static void +release_sentinel(void *wr_raw) +{ + PyObject *wr = _PyObject_CAST(wr_raw); + /* Tricky: this function is called when the current thread state + is being deleted. Therefore, only simple C code can safely + execute here. */ + PyObject *obj = PyWeakref_GET_OBJECT(wr); + lockobject *lock; + if (obj != Py_None) { + lock = (lockobject *) obj; + if (lock->locked) { + PyThread_release_lock(lock->lock_lock); + lock->locked = 0; + } + } + /* Deallocating a weakref with a NULL callback only calls + PyObject_GC_Del(), which can't call any Python code. */ + Py_DECREF(wr); +} + +static PyObject * +thread__set_sentinel(PyObject *module, PyObject *Py_UNUSED(ignored)) +{ + PyObject *wr; + PyThreadState *tstate = _PyThreadState_GET(); + lockobject *lock; + + if (tstate->on_delete_data != NULL) { + /* We must support the re-creation of the lock from a + fork()ed child. */ + assert(tstate->on_delete == &release_sentinel); + wr = (PyObject *) tstate->on_delete_data; + tstate->on_delete = NULL; + tstate->on_delete_data = NULL; + Py_DECREF(wr); + } + lock = newlockobject(module); + if (lock == NULL) + return NULL; + /* The lock is owned by whoever called _set_sentinel(), but the weakref + hangs to the thread state. */ + wr = PyWeakref_NewRef((PyObject *) lock, NULL); + if (wr == NULL) { + Py_DECREF(lock); + return NULL; + } + tstate->on_delete_data = (void *) wr; + tstate->on_delete = &release_sentinel; + return (PyObject *) lock; +} + +PyDoc_STRVAR(_set_sentinel_doc, +"_set_sentinel() -> lock\n\ +\n\ +Set a sentinel lock that will be released when the current thread\n\ +state is finalized (after it is untied from the interpreter).\n\ +\n\ +This is a private API for the threading module."); + +static PyObject * +thread_stack_size(PyObject *self, PyObject *args) +{ + size_t old_size; + Py_ssize_t new_size = 0; + int rc; + + if (!PyArg_ParseTuple(args, "|n:stack_size", &new_size)) + return NULL; + + if (new_size < 0) { + PyErr_SetString(PyExc_ValueError, + "size must be 0 or a positive value"); + return NULL; + } + + old_size = PyThread_get_stacksize(); + + rc = PyThread_set_stacksize((size_t) new_size); + if (rc == -1) { + PyErr_Format(PyExc_ValueError, + "size not valid: %zd bytes", + new_size); + return NULL; + } + if (rc == -2) { + PyErr_SetString(ThreadError, + "setting stack size not supported"); + return NULL; + } + + return PyLong_FromSsize_t((Py_ssize_t) old_size); +} + +PyDoc_STRVAR(stack_size_doc, +"stack_size([size]) -> size\n\ +\n\ +Return the thread stack size used when creating new threads. The\n\ +optional size argument specifies the stack size (in bytes) to be used\n\ +for subsequently created threads, and must be 0 (use platform or\n\ +configured default) or a positive integer value of at least 32,768 (32k).\n\ +If changing the thread stack size is unsupported, a ThreadError\n\ +exception is raised. If the specified size is invalid, a ValueError\n\ +exception is raised, and the stack size is unmodified. 32k bytes\n\ + currently the minimum supported stack size value to guarantee\n\ +sufficient stack space for the interpreter itself.\n\ +\n\ +Note that some platforms may have particular restrictions on values for\n\ +the stack size, such as requiring a minimum stack size larger than 32 KiB or\n\ +requiring allocation in multiples of the system memory page size\n\ +- platform documentation should be referred to for more information\n\ +(4 KiB pages are common; using multiples of 4096 for the stack size is\n\ +the suggested approach in the absence of more specific information)."); + +static int +thread_excepthook_file(PyObject *file, PyObject *exc_type, PyObject *exc_value, + PyObject *exc_traceback, PyObject *thread) +{ + /* print(f"Exception in thread {thread.name}:", file=file) */ + if (PyFile_WriteString("Exception in thread ", file) < 0) { + return -1; + } + + PyObject *name = NULL; + if (thread != Py_None) { + if (_PyObject_LookupAttr(thread, &_Py_ID(name), &name) < 0) { + return -1; + } + } + if (name != NULL) { + if (PyFile_WriteObject(name, file, Py_PRINT_RAW) < 0) { + Py_DECREF(name); + return -1; + } + Py_DECREF(name); + } + else { + unsigned long ident = PyThread_get_thread_ident(); + PyObject *str = PyUnicode_FromFormat("%lu", ident); + if (str != NULL) { + if (PyFile_WriteObject(str, file, Py_PRINT_RAW) < 0) { + Py_DECREF(str); + return -1; + } + Py_DECREF(str); + } + else { + PyErr_Clear(); + + if (PyFile_WriteString("<failed to get thread name>", file) < 0) { + return -1; + } + } + } + + if (PyFile_WriteString(":\n", file) < 0) { + return -1; + } + + /* Display the traceback */ + _PyErr_Display(file, exc_type, exc_value, exc_traceback); + + /* Call file.flush() */ + PyObject *res = PyObject_CallMethodNoArgs(file, &_Py_ID(flush)); + if (!res) { + return -1; + } + Py_DECREF(res); + + return 0; +} + + +PyDoc_STRVAR(ExceptHookArgs__doc__, +"ExceptHookArgs\n\ +\n\ +Type used to pass arguments to threading.excepthook."); + +static PyStructSequence_Field ExceptHookArgs_fields[] = { + {"exc_type", "Exception type"}, + {"exc_value", "Exception value"}, + {"exc_traceback", "Exception traceback"}, + {"thread", "Thread"}, + {0} +}; + +static PyStructSequence_Desc ExceptHookArgs_desc = { + .name = "_thread._ExceptHookArgs", + .doc = ExceptHookArgs__doc__, + .fields = ExceptHookArgs_fields, + .n_in_sequence = 4 +}; + + +static PyObject * +thread_excepthook(PyObject *module, PyObject *args) +{ + thread_module_state *state = get_thread_state(module); + + if (!Py_IS_TYPE(args, state->excepthook_type)) { + PyErr_SetString(PyExc_TypeError, + "_thread.excepthook argument type " + "must be ExceptHookArgs"); + return NULL; + } + + /* Borrowed reference */ + PyObject *exc_type = PyStructSequence_GET_ITEM(args, 0); + if (exc_type == PyExc_SystemExit) { + /* silently ignore SystemExit */ + Py_RETURN_NONE; + } + + /* Borrowed references */ + PyObject *exc_value = PyStructSequence_GET_ITEM(args, 1); + PyObject *exc_tb = PyStructSequence_GET_ITEM(args, 2); + PyObject *thread = PyStructSequence_GET_ITEM(args, 3); + + PyThreadState *tstate = _PyThreadState_GET(); + PyObject *file = _PySys_GetAttr(tstate, &_Py_ID(stderr)); + if (file == NULL || file == Py_None) { + if (thread == Py_None) { + /* do nothing if sys.stderr is None and thread is None */ + Py_RETURN_NONE; + } + + file = PyObject_GetAttrString(thread, "_stderr"); + if (file == NULL) { + return NULL; + } + if (file == Py_None) { + Py_DECREF(file); + /* do nothing if sys.stderr is None and sys.stderr was None + when the thread was created */ + Py_RETURN_NONE; + } + } + else { + Py_INCREF(file); + } + + int res = thread_excepthook_file(file, exc_type, exc_value, exc_tb, + thread); + Py_DECREF(file); + if (res < 0) { + return NULL; + } + + Py_RETURN_NONE; +} + +PyDoc_STRVAR(excepthook_doc, +"excepthook(exc_type, exc_value, exc_traceback, thread)\n\ +\n\ +Handle uncaught Thread.run() exception."); + +static PyMethodDef thread_methods[] = { + {"start_new_thread", (PyCFunction)thread_PyThread_start_new_thread, + METH_VARARGS, start_new_doc}, + {"start_new", (PyCFunction)thread_PyThread_start_new_thread, + METH_VARARGS, start_new_doc}, + {"allocate_lock", thread_PyThread_allocate_lock, + METH_NOARGS, allocate_doc}, + {"allocate", thread_PyThread_allocate_lock, + METH_NOARGS, allocate_doc}, + {"exit_thread", thread_PyThread_exit_thread, + METH_NOARGS, exit_doc}, + {"exit", thread_PyThread_exit_thread, + METH_NOARGS, exit_doc}, + {"interrupt_main", (PyCFunction)thread_PyThread_interrupt_main, + METH_VARARGS, interrupt_doc}, + {"get_ident", thread_get_ident, + METH_NOARGS, get_ident_doc}, +#ifdef PY_HAVE_THREAD_NATIVE_ID + {"get_native_id", thread_get_native_id, + METH_NOARGS, get_native_id_doc}, +#endif + {"_count", thread__count, + METH_NOARGS, _count_doc}, + {"stack_size", (PyCFunction)thread_stack_size, + METH_VARARGS, stack_size_doc}, + {"_set_sentinel", thread__set_sentinel, + METH_NOARGS, _set_sentinel_doc}, + {"_excepthook", thread_excepthook, + METH_O, excepthook_doc}, + {NULL, NULL} /* sentinel */ +}; + + +/* Initialization function */ + +static int +thread_module_exec(PyObject *module) +{ + thread_module_state *state = get_thread_state(module); + PyObject *d = PyModule_GetDict(module); + + // Initialize the C thread library + PyThread_init_thread(); + + // Lock + state->lock_type = (PyTypeObject *)PyType_FromSpec(&lock_type_spec); + if (state->lock_type == NULL) { + return -1; + } + if (PyDict_SetItemString(d, "LockType", (PyObject *)state->lock_type) < 0) { + return -1; + } + + // RLock + PyTypeObject *rlock_type = (PyTypeObject *)PyType_FromSpec(&rlock_type_spec); + if (rlock_type == NULL) { + return -1; + } + if (PyModule_AddType(module, rlock_type) < 0) { + Py_DECREF(rlock_type); + return -1; + } + Py_DECREF(rlock_type); + + // Local dummy + state->local_dummy_type = (PyTypeObject *)PyType_FromSpec(&local_dummy_type_spec); + if (state->local_dummy_type == NULL) { + return -1; + } + + // Local + state->local_type = (PyTypeObject *)PyType_FromModuleAndSpec(module, &local_type_spec, NULL); + if (state->local_type == NULL) { + return -1; + } + if (PyModule_AddType(module, state->local_type) < 0) { + return -1; + } + + // Add module attributes + if (PyDict_SetItemString(d, "error", ThreadError) < 0) { + return -1; + } + + // _ExceptHookArgs type + state->excepthook_type = PyStructSequence_NewType(&ExceptHookArgs_desc); + if (state->excepthook_type == NULL) { + return -1; + } + if (PyModule_AddType(module, state->excepthook_type) < 0) { + return -1; + } + + // TIMEOUT_MAX + double timeout_max = (double)PY_TIMEOUT_MAX * 1e-6; + double time_max = _PyTime_AsSecondsDouble(_PyTime_MAX); + timeout_max = Py_MIN(timeout_max, time_max); + // Round towards minus infinity + timeout_max = floor(timeout_max); + + if (_PyModule_Add(module, "TIMEOUT_MAX", + PyFloat_FromDouble(timeout_max)) < 0) { + return -1; + } + + return 0; +} + + +static int +thread_module_traverse(PyObject *module, visitproc visit, void *arg) +{ + thread_module_state *state = get_thread_state(module); + Py_VISIT(state->excepthook_type); + Py_VISIT(state->lock_type); + Py_VISIT(state->local_type); + Py_VISIT(state->local_dummy_type); + return 0; +} + +static int +thread_module_clear(PyObject *module) +{ + thread_module_state *state = get_thread_state(module); + Py_CLEAR(state->excepthook_type); + Py_CLEAR(state->lock_type); + Py_CLEAR(state->local_type); + Py_CLEAR(state->local_dummy_type); + return 0; +} + +static void +thread_module_free(void *module) +{ + thread_module_clear((PyObject *)module); +} + + + +PyDoc_STRVAR(thread_doc, +"This module provides primitive operations to write multi-threaded programs.\n\ +The 'threading' module provides a more convenient interface."); + +static PyModuleDef_Slot thread_module_slots[] = { + {Py_mod_exec, thread_module_exec}, + {0, NULL} +}; + +static struct PyModuleDef thread_module = { + PyModuleDef_HEAD_INIT, + .m_name = "_thread", + .m_doc = thread_doc, + .m_size = sizeof(thread_module_state), + .m_methods = thread_methods, + .m_traverse = thread_module_traverse, + .m_clear = thread_module_clear, + .m_free = thread_module_free, + .m_slots = thread_module_slots, +}; + +PyMODINIT_FUNC +PyInit__thread(void) +{ + return PyModuleDef_Init(&thread_module); +} |