aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Modules/_threadmodule.c
diff options
context:
space:
mode:
authornkozlovskiy <nmk@ydb.tech>2023-09-29 12:24:06 +0300
committernkozlovskiy <nmk@ydb.tech>2023-09-29 12:41:34 +0300
commite0e3e1717e3d33762ce61950504f9637a6e669ed (patch)
treebca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python3/src/Modules/_threadmodule.c
parent38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff)
downloadydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz
add ydb deps
Diffstat (limited to 'contrib/tools/python3/src/Modules/_threadmodule.c')
-rw-r--r--contrib/tools/python3/src/Modules/_threadmodule.c1715
1 files changed, 1715 insertions, 0 deletions
diff --git a/contrib/tools/python3/src/Modules/_threadmodule.c b/contrib/tools/python3/src/Modules/_threadmodule.c
new file mode 100644
index 0000000000..199e3b89d9
--- /dev/null
+++ b/contrib/tools/python3/src/Modules/_threadmodule.c
@@ -0,0 +1,1715 @@
+
+/* Thread module */
+/* Interface to Sjoerd's portable C thread library */
+
+#include "Python.h"
+#include "pycore_interp.h" // _PyInterpreterState.threads.count
+#include "pycore_moduleobject.h" // _PyModule_GetState()
+#include "pycore_pylifecycle.h"
+#include "pycore_pystate.h" // _PyThreadState_SetCurrent()
+#include <stddef.h> // offsetof()
+#include "structmember.h" // PyMemberDef
+
+#ifdef HAVE_SIGNAL_H
+# include <signal.h> // SIGINT
+#endif
+
+// ThreadError is just an alias to PyExc_RuntimeError
+#define ThreadError PyExc_RuntimeError
+
+
+// Forward declarations
+static struct PyModuleDef thread_module;
+
+
+typedef struct {
+ PyTypeObject *excepthook_type;
+ PyTypeObject *lock_type;
+ PyTypeObject *local_type;
+ PyTypeObject *local_dummy_type;
+} thread_module_state;
+
+static inline thread_module_state*
+get_thread_state(PyObject *module)
+{
+ void *state = _PyModule_GetState(module);
+ assert(state != NULL);
+ return (thread_module_state *)state;
+}
+
+
+/* Lock objects */
+
+typedef struct {
+ PyObject_HEAD
+ PyThread_type_lock lock_lock;
+ PyObject *in_weakreflist;
+ char locked; /* for sanity checking */
+} lockobject;
+
+static int
+lock_traverse(lockobject *self, visitproc visit, void *arg)
+{
+ Py_VISIT(Py_TYPE(self));
+ return 0;
+}
+
+static void
+lock_dealloc(lockobject *self)
+{
+ PyObject_GC_UnTrack(self);
+ if (self->in_weakreflist != NULL) {
+ PyObject_ClearWeakRefs((PyObject *) self);
+ }
+ if (self->lock_lock != NULL) {
+ /* Unlock the lock so it's safe to free it */
+ if (self->locked)
+ PyThread_release_lock(self->lock_lock);
+ PyThread_free_lock(self->lock_lock);
+ }
+ PyTypeObject *tp = Py_TYPE(self);
+ tp->tp_free((PyObject*)self);
+ Py_DECREF(tp);
+}
+
+/* Helper to acquire an interruptible lock with a timeout. If the lock acquire
+ * is interrupted, signal handlers are run, and if they raise an exception,
+ * PY_LOCK_INTR is returned. Otherwise, PY_LOCK_ACQUIRED or PY_LOCK_FAILURE
+ * are returned, depending on whether the lock can be acquired within the
+ * timeout.
+ */
+static PyLockStatus
+acquire_timed(PyThread_type_lock lock, _PyTime_t timeout)
+{
+ _PyTime_t endtime = 0;
+ if (timeout > 0) {
+ endtime = _PyDeadline_Init(timeout);
+ }
+
+ PyLockStatus r;
+ do {
+ _PyTime_t microseconds;
+ microseconds = _PyTime_AsMicroseconds(timeout, _PyTime_ROUND_CEILING);
+
+ /* first a simple non-blocking try without releasing the GIL */
+ r = PyThread_acquire_lock_timed(lock, 0, 0);
+ if (r == PY_LOCK_FAILURE && microseconds != 0) {
+ Py_BEGIN_ALLOW_THREADS
+ r = PyThread_acquire_lock_timed(lock, microseconds, 1);
+ Py_END_ALLOW_THREADS
+ }
+
+ if (r == PY_LOCK_INTR) {
+ /* Run signal handlers if we were interrupted. Propagate
+ * exceptions from signal handlers, such as KeyboardInterrupt, by
+ * passing up PY_LOCK_INTR. */
+ if (Py_MakePendingCalls() < 0) {
+ return PY_LOCK_INTR;
+ }
+
+ /* If we're using a timeout, recompute the timeout after processing
+ * signals, since those can take time. */
+ if (timeout > 0) {
+ timeout = _PyDeadline_Get(endtime);
+
+ /* Check for negative values, since those mean block forever.
+ */
+ if (timeout < 0) {
+ r = PY_LOCK_FAILURE;
+ }
+ }
+ }
+ } while (r == PY_LOCK_INTR); /* Retry if we were interrupted. */
+
+ return r;
+}
+
+static int
+lock_acquire_parse_args(PyObject *args, PyObject *kwds,
+ _PyTime_t *timeout)
+{
+ char *kwlist[] = {"blocking", "timeout", NULL};
+ int blocking = 1;
+ PyObject *timeout_obj = NULL;
+ const _PyTime_t unset_timeout = _PyTime_FromSeconds(-1);
+
+ *timeout = unset_timeout ;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "|iO:acquire", kwlist,
+ &blocking, &timeout_obj))
+ return -1;
+
+ if (timeout_obj
+ && _PyTime_FromSecondsObject(timeout,
+ timeout_obj, _PyTime_ROUND_TIMEOUT) < 0)
+ return -1;
+
+ if (!blocking && *timeout != unset_timeout ) {
+ PyErr_SetString(PyExc_ValueError,
+ "can't specify a timeout for a non-blocking call");
+ return -1;
+ }
+ if (*timeout < 0 && *timeout != unset_timeout) {
+ PyErr_SetString(PyExc_ValueError,
+ "timeout value must be positive");
+ return -1;
+ }
+ if (!blocking)
+ *timeout = 0;
+ else if (*timeout != unset_timeout) {
+ _PyTime_t microseconds;
+
+ microseconds = _PyTime_AsMicroseconds(*timeout, _PyTime_ROUND_TIMEOUT);
+ if (microseconds > PY_TIMEOUT_MAX) {
+ PyErr_SetString(PyExc_OverflowError,
+ "timeout value is too large");
+ return -1;
+ }
+ }
+ return 0;
+}
+
+static PyObject *
+lock_PyThread_acquire_lock(lockobject *self, PyObject *args, PyObject *kwds)
+{
+ _PyTime_t timeout;
+ if (lock_acquire_parse_args(args, kwds, &timeout) < 0)
+ return NULL;
+
+ PyLockStatus r = acquire_timed(self->lock_lock, timeout);
+ if (r == PY_LOCK_INTR) {
+ return NULL;
+ }
+
+ if (r == PY_LOCK_ACQUIRED)
+ self->locked = 1;
+ return PyBool_FromLong(r == PY_LOCK_ACQUIRED);
+}
+
+PyDoc_STRVAR(acquire_doc,
+"acquire(blocking=True, timeout=-1) -> bool\n\
+(acquire_lock() is an obsolete synonym)\n\
+\n\
+Lock the lock. Without argument, this blocks if the lock is already\n\
+locked (even by the same thread), waiting for another thread to release\n\
+the lock, and return True once the lock is acquired.\n\
+With an argument, this will only block if the argument is true,\n\
+and the return value reflects whether the lock is acquired.\n\
+The blocking operation is interruptible.");
+
+static PyObject *
+lock_PyThread_release_lock(lockobject *self, PyObject *Py_UNUSED(ignored))
+{
+ /* Sanity check: the lock must be locked */
+ if (!self->locked) {
+ PyErr_SetString(ThreadError, "release unlocked lock");
+ return NULL;
+ }
+
+ PyThread_release_lock(self->lock_lock);
+ self->locked = 0;
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(release_doc,
+"release()\n\
+(release_lock() is an obsolete synonym)\n\
+\n\
+Release the lock, allowing another thread that is blocked waiting for\n\
+the lock to acquire the lock. The lock must be in the locked state,\n\
+but it needn't be locked by the same thread that unlocks it.");
+
+static PyObject *
+lock_locked_lock(lockobject *self, PyObject *Py_UNUSED(ignored))
+{
+ return PyBool_FromLong((long)self->locked);
+}
+
+PyDoc_STRVAR(locked_doc,
+"locked() -> bool\n\
+(locked_lock() is an obsolete synonym)\n\
+\n\
+Return whether the lock is in the locked state.");
+
+static PyObject *
+lock_repr(lockobject *self)
+{
+ return PyUnicode_FromFormat("<%s %s object at %p>",
+ self->locked ? "locked" : "unlocked", Py_TYPE(self)->tp_name, self);
+}
+
+#ifdef HAVE_FORK
+static PyObject *
+lock__at_fork_reinit(lockobject *self, PyObject *Py_UNUSED(args))
+{
+ if (_PyThread_at_fork_reinit(&self->lock_lock) < 0) {
+ PyErr_SetString(ThreadError, "failed to reinitialize lock at fork");
+ return NULL;
+ }
+
+ self->locked = 0;
+
+ Py_RETURN_NONE;
+}
+#endif /* HAVE_FORK */
+
+
+static PyMethodDef lock_methods[] = {
+ {"acquire_lock", _PyCFunction_CAST(lock_PyThread_acquire_lock),
+ METH_VARARGS | METH_KEYWORDS, acquire_doc},
+ {"acquire", _PyCFunction_CAST(lock_PyThread_acquire_lock),
+ METH_VARARGS | METH_KEYWORDS, acquire_doc},
+ {"release_lock", (PyCFunction)lock_PyThread_release_lock,
+ METH_NOARGS, release_doc},
+ {"release", (PyCFunction)lock_PyThread_release_lock,
+ METH_NOARGS, release_doc},
+ {"locked_lock", (PyCFunction)lock_locked_lock,
+ METH_NOARGS, locked_doc},
+ {"locked", (PyCFunction)lock_locked_lock,
+ METH_NOARGS, locked_doc},
+ {"__enter__", _PyCFunction_CAST(lock_PyThread_acquire_lock),
+ METH_VARARGS | METH_KEYWORDS, acquire_doc},
+ {"__exit__", (PyCFunction)lock_PyThread_release_lock,
+ METH_VARARGS, release_doc},
+#ifdef HAVE_FORK
+ {"_at_fork_reinit", (PyCFunction)lock__at_fork_reinit,
+ METH_NOARGS, NULL},
+#endif
+ {NULL, NULL} /* sentinel */
+};
+
+PyDoc_STRVAR(lock_doc,
+"A lock object is a synchronization primitive. To create a lock,\n\
+call threading.Lock(). Methods are:\n\
+\n\
+acquire() -- lock the lock, possibly blocking until it can be obtained\n\
+release() -- unlock of the lock\n\
+locked() -- test whether the lock is currently locked\n\
+\n\
+A lock is not owned by the thread that locked it; another thread may\n\
+unlock it. A thread attempting to lock a lock that it has already locked\n\
+will block until another thread unlocks it. Deadlocks may ensue.");
+
+static PyMemberDef lock_type_members[] = {
+ {"__weaklistoffset__", T_PYSSIZET, offsetof(lockobject, in_weakreflist), READONLY},
+ {NULL},
+};
+
+static PyType_Slot lock_type_slots[] = {
+ {Py_tp_dealloc, (destructor)lock_dealloc},
+ {Py_tp_repr, (reprfunc)lock_repr},
+ {Py_tp_doc, (void *)lock_doc},
+ {Py_tp_methods, lock_methods},
+ {Py_tp_traverse, lock_traverse},
+ {Py_tp_members, lock_type_members},
+ {0, 0}
+};
+
+static PyType_Spec lock_type_spec = {
+ .name = "_thread.lock",
+ .basicsize = sizeof(lockobject),
+ .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
+ Py_TPFLAGS_DISALLOW_INSTANTIATION | Py_TPFLAGS_IMMUTABLETYPE),
+ .slots = lock_type_slots,
+};
+
+/* Recursive lock objects */
+
+typedef struct {
+ PyObject_HEAD
+ PyThread_type_lock rlock_lock;
+ unsigned long rlock_owner;
+ unsigned long rlock_count;
+ PyObject *in_weakreflist;
+} rlockobject;
+
+static int
+rlock_traverse(rlockobject *self, visitproc visit, void *arg)
+{
+ Py_VISIT(Py_TYPE(self));
+ return 0;
+}
+
+
+static void
+rlock_dealloc(rlockobject *self)
+{
+ PyObject_GC_UnTrack(self);
+ if (self->in_weakreflist != NULL)
+ PyObject_ClearWeakRefs((PyObject *) self);
+ /* self->rlock_lock can be NULL if PyThread_allocate_lock() failed
+ in rlock_new() */
+ if (self->rlock_lock != NULL) {
+ /* Unlock the lock so it's safe to free it */
+ if (self->rlock_count > 0)
+ PyThread_release_lock(self->rlock_lock);
+
+ PyThread_free_lock(self->rlock_lock);
+ }
+ PyTypeObject *tp = Py_TYPE(self);
+ tp->tp_free(self);
+ Py_DECREF(tp);
+}
+
+static PyObject *
+rlock_acquire(rlockobject *self, PyObject *args, PyObject *kwds)
+{
+ _PyTime_t timeout;
+ unsigned long tid;
+ PyLockStatus r = PY_LOCK_ACQUIRED;
+
+ if (lock_acquire_parse_args(args, kwds, &timeout) < 0)
+ return NULL;
+
+ tid = PyThread_get_thread_ident();
+ if (self->rlock_count > 0 && tid == self->rlock_owner) {
+ unsigned long count = self->rlock_count + 1;
+ if (count <= self->rlock_count) {
+ PyErr_SetString(PyExc_OverflowError,
+ "Internal lock count overflowed");
+ return NULL;
+ }
+ self->rlock_count = count;
+ Py_RETURN_TRUE;
+ }
+ r = acquire_timed(self->rlock_lock, timeout);
+ if (r == PY_LOCK_ACQUIRED) {
+ assert(self->rlock_count == 0);
+ self->rlock_owner = tid;
+ self->rlock_count = 1;
+ }
+ else if (r == PY_LOCK_INTR) {
+ return NULL;
+ }
+
+ return PyBool_FromLong(r == PY_LOCK_ACQUIRED);
+}
+
+PyDoc_STRVAR(rlock_acquire_doc,
+"acquire(blocking=True) -> bool\n\
+\n\
+Lock the lock. `blocking` indicates whether we should wait\n\
+for the lock to be available or not. If `blocking` is False\n\
+and another thread holds the lock, the method will return False\n\
+immediately. If `blocking` is True and another thread holds\n\
+the lock, the method will wait for the lock to be released,\n\
+take it and then return True.\n\
+(note: the blocking operation is interruptible.)\n\
+\n\
+In all other cases, the method will return True immediately.\n\
+Precisely, if the current thread already holds the lock, its\n\
+internal counter is simply incremented. If nobody holds the lock,\n\
+the lock is taken and its internal counter initialized to 1.");
+
+static PyObject *
+rlock_release(rlockobject *self, PyObject *Py_UNUSED(ignored))
+{
+ unsigned long tid = PyThread_get_thread_ident();
+
+ if (self->rlock_count == 0 || self->rlock_owner != tid) {
+ PyErr_SetString(PyExc_RuntimeError,
+ "cannot release un-acquired lock");
+ return NULL;
+ }
+ if (--self->rlock_count == 0) {
+ self->rlock_owner = 0;
+ PyThread_release_lock(self->rlock_lock);
+ }
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(rlock_release_doc,
+"release()\n\
+\n\
+Release the lock, allowing another thread that is blocked waiting for\n\
+the lock to acquire the lock. The lock must be in the locked state,\n\
+and must be locked by the same thread that unlocks it; otherwise a\n\
+`RuntimeError` is raised.\n\
+\n\
+Do note that if the lock was acquire()d several times in a row by the\n\
+current thread, release() needs to be called as many times for the lock\n\
+to be available for other threads.");
+
+static PyObject *
+rlock_acquire_restore(rlockobject *self, PyObject *args)
+{
+ unsigned long owner;
+ unsigned long count;
+ int r = 1;
+
+ if (!PyArg_ParseTuple(args, "(kk):_acquire_restore", &count, &owner))
+ return NULL;
+
+ if (!PyThread_acquire_lock(self->rlock_lock, 0)) {
+ Py_BEGIN_ALLOW_THREADS
+ r = PyThread_acquire_lock(self->rlock_lock, 1);
+ Py_END_ALLOW_THREADS
+ }
+ if (!r) {
+ PyErr_SetString(ThreadError, "couldn't acquire lock");
+ return NULL;
+ }
+ assert(self->rlock_count == 0);
+ self->rlock_owner = owner;
+ self->rlock_count = count;
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(rlock_acquire_restore_doc,
+"_acquire_restore(state) -> None\n\
+\n\
+For internal use by `threading.Condition`.");
+
+static PyObject *
+rlock_release_save(rlockobject *self, PyObject *Py_UNUSED(ignored))
+{
+ unsigned long owner;
+ unsigned long count;
+
+ if (self->rlock_count == 0) {
+ PyErr_SetString(PyExc_RuntimeError,
+ "cannot release un-acquired lock");
+ return NULL;
+ }
+
+ owner = self->rlock_owner;
+ count = self->rlock_count;
+ self->rlock_count = 0;
+ self->rlock_owner = 0;
+ PyThread_release_lock(self->rlock_lock);
+ return Py_BuildValue("kk", count, owner);
+}
+
+PyDoc_STRVAR(rlock_release_save_doc,
+"_release_save() -> tuple\n\
+\n\
+For internal use by `threading.Condition`.");
+
+
+static PyObject *
+rlock_is_owned(rlockobject *self, PyObject *Py_UNUSED(ignored))
+{
+ unsigned long tid = PyThread_get_thread_ident();
+
+ if (self->rlock_count > 0 && self->rlock_owner == tid) {
+ Py_RETURN_TRUE;
+ }
+ Py_RETURN_FALSE;
+}
+
+PyDoc_STRVAR(rlock_is_owned_doc,
+"_is_owned() -> bool\n\
+\n\
+For internal use by `threading.Condition`.");
+
+static PyObject *
+rlock_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+{
+ rlockobject *self = (rlockobject *) type->tp_alloc(type, 0);
+ if (self == NULL) {
+ return NULL;
+ }
+ self->in_weakreflist = NULL;
+ self->rlock_owner = 0;
+ self->rlock_count = 0;
+
+ self->rlock_lock = PyThread_allocate_lock();
+ if (self->rlock_lock == NULL) {
+ Py_DECREF(self);
+ PyErr_SetString(ThreadError, "can't allocate lock");
+ return NULL;
+ }
+ return (PyObject *) self;
+}
+
+static PyObject *
+rlock_repr(rlockobject *self)
+{
+ return PyUnicode_FromFormat("<%s %s object owner=%ld count=%lu at %p>",
+ self->rlock_count ? "locked" : "unlocked",
+ Py_TYPE(self)->tp_name, self->rlock_owner,
+ self->rlock_count, self);
+}
+
+
+#ifdef HAVE_FORK
+static PyObject *
+rlock__at_fork_reinit(rlockobject *self, PyObject *Py_UNUSED(args))
+{
+ if (_PyThread_at_fork_reinit(&self->rlock_lock) < 0) {
+ PyErr_SetString(ThreadError, "failed to reinitialize lock at fork");
+ return NULL;
+ }
+
+ self->rlock_owner = 0;
+ self->rlock_count = 0;
+
+ Py_RETURN_NONE;
+}
+#endif /* HAVE_FORK */
+
+
+static PyMethodDef rlock_methods[] = {
+ {"acquire", _PyCFunction_CAST(rlock_acquire),
+ METH_VARARGS | METH_KEYWORDS, rlock_acquire_doc},
+ {"release", (PyCFunction)rlock_release,
+ METH_NOARGS, rlock_release_doc},
+ {"_is_owned", (PyCFunction)rlock_is_owned,
+ METH_NOARGS, rlock_is_owned_doc},
+ {"_acquire_restore", (PyCFunction)rlock_acquire_restore,
+ METH_VARARGS, rlock_acquire_restore_doc},
+ {"_release_save", (PyCFunction)rlock_release_save,
+ METH_NOARGS, rlock_release_save_doc},
+ {"__enter__", _PyCFunction_CAST(rlock_acquire),
+ METH_VARARGS | METH_KEYWORDS, rlock_acquire_doc},
+ {"__exit__", (PyCFunction)rlock_release,
+ METH_VARARGS, rlock_release_doc},
+#ifdef HAVE_FORK
+ {"_at_fork_reinit", (PyCFunction)rlock__at_fork_reinit,
+ METH_NOARGS, NULL},
+#endif
+ {NULL, NULL} /* sentinel */
+};
+
+
+static PyMemberDef rlock_type_members[] = {
+ {"__weaklistoffset__", T_PYSSIZET, offsetof(rlockobject, in_weakreflist), READONLY},
+ {NULL},
+};
+
+static PyType_Slot rlock_type_slots[] = {
+ {Py_tp_dealloc, (destructor)rlock_dealloc},
+ {Py_tp_repr, (reprfunc)rlock_repr},
+ {Py_tp_methods, rlock_methods},
+ {Py_tp_alloc, PyType_GenericAlloc},
+ {Py_tp_new, rlock_new},
+ {Py_tp_members, rlock_type_members},
+ {Py_tp_traverse, rlock_traverse},
+ {0, 0},
+};
+
+static PyType_Spec rlock_type_spec = {
+ .name = "_thread.RLock",
+ .basicsize = sizeof(rlockobject),
+ .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
+ Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_IMMUTABLETYPE),
+ .slots = rlock_type_slots,
+};
+
+static lockobject *
+newlockobject(PyObject *module)
+{
+ thread_module_state *state = get_thread_state(module);
+
+ PyTypeObject *type = state->lock_type;
+ lockobject *self = (lockobject *)type->tp_alloc(type, 0);
+ if (self == NULL) {
+ return NULL;
+ }
+
+ self->lock_lock = PyThread_allocate_lock();
+ self->locked = 0;
+ self->in_weakreflist = NULL;
+
+ if (self->lock_lock == NULL) {
+ Py_DECREF(self);
+ PyErr_SetString(ThreadError, "can't allocate lock");
+ return NULL;
+ }
+ return self;
+}
+
+/* Thread-local objects */
+
+/* Quick overview:
+
+ We need to be able to reclaim reference cycles as soon as possible
+ (both when a thread is being terminated, or a thread-local object
+ becomes unreachable from user data). Constraints:
+ - it must not be possible for thread-state dicts to be involved in
+ reference cycles (otherwise the cyclic GC will refuse to consider
+ objects referenced from a reachable thread-state dict, even though
+ local_dealloc would clear them)
+ - the death of a thread-state dict must still imply destruction of the
+ corresponding local dicts in all thread-local objects.
+
+ Our implementation uses small "localdummy" objects in order to break
+ the reference chain. These trivial objects are hashable (using the
+ default scheme of identity hashing) and weakrefable.
+ Each thread-state holds a separate localdummy for each local object
+ (as a /strong reference/),
+ and each thread-local object holds a dict mapping /weak references/
+ of localdummies to local dicts.
+
+ Therefore:
+ - only the thread-state dict holds a strong reference to the dummies
+ - only the thread-local object holds a strong reference to the local dicts
+ - only outside objects (application- or library-level) hold strong
+ references to the thread-local objects
+ - as soon as a thread-state dict is destroyed, the weakref callbacks of all
+ dummies attached to that thread are called, and destroy the corresponding
+ local dicts from thread-local objects
+ - as soon as a thread-local object is destroyed, its local dicts are
+ destroyed and its dummies are manually removed from all thread states
+ - the GC can do its work correctly when a thread-local object is dangling,
+ without any interference from the thread-state dicts
+
+ As an additional optimization, each localdummy holds a borrowed reference
+ to the corresponding localdict. This borrowed reference is only used
+ by the thread-local object which has created the localdummy, which should
+ guarantee that the localdict still exists when accessed.
+*/
+
+typedef struct {
+ PyObject_HEAD
+ PyObject *localdict; /* Borrowed reference! */
+ PyObject *weakreflist; /* List of weak references to self */
+} localdummyobject;
+
+static void
+localdummy_dealloc(localdummyobject *self)
+{
+ if (self->weakreflist != NULL)
+ PyObject_ClearWeakRefs((PyObject *) self);
+ PyTypeObject *tp = Py_TYPE(self);
+ tp->tp_free((PyObject*)self);
+ Py_DECREF(tp);
+}
+
+static PyMemberDef local_dummy_type_members[] = {
+ {"__weaklistoffset__", T_PYSSIZET, offsetof(localdummyobject, weakreflist), READONLY},
+ {NULL},
+};
+
+static PyType_Slot local_dummy_type_slots[] = {
+ {Py_tp_dealloc, (destructor)localdummy_dealloc},
+ {Py_tp_doc, "Thread-local dummy"},
+ {Py_tp_members, local_dummy_type_members},
+ {0, 0}
+};
+
+static PyType_Spec local_dummy_type_spec = {
+ .name = "_thread._localdummy",
+ .basicsize = sizeof(localdummyobject),
+ .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION |
+ Py_TPFLAGS_IMMUTABLETYPE),
+ .slots = local_dummy_type_slots,
+};
+
+
+typedef struct {
+ PyObject_HEAD
+ PyObject *key;
+ PyObject *args;
+ PyObject *kw;
+ PyObject *weakreflist; /* List of weak references to self */
+ /* A {localdummy weakref -> localdict} dict */
+ PyObject *dummies;
+ /* The callback for weakrefs to localdummies */
+ PyObject *wr_callback;
+} localobject;
+
+/* Forward declaration */
+static PyObject *_ldict(localobject *self, thread_module_state *state);
+static PyObject *_localdummy_destroyed(PyObject *meth_self, PyObject *dummyweakref);
+
+/* Create and register the dummy for the current thread.
+ Returns a borrowed reference of the corresponding local dict */
+static PyObject *
+_local_create_dummy(localobject *self, thread_module_state *state)
+{
+ PyObject *ldict = NULL, *wr = NULL;
+ localdummyobject *dummy = NULL;
+ PyTypeObject *type = state->local_dummy_type;
+
+ PyObject *tdict = PyThreadState_GetDict();
+ if (tdict == NULL) {
+ PyErr_SetString(PyExc_SystemError,
+ "Couldn't get thread-state dictionary");
+ goto err;
+ }
+
+ ldict = PyDict_New();
+ if (ldict == NULL) {
+ goto err;
+ }
+ dummy = (localdummyobject *) type->tp_alloc(type, 0);
+ if (dummy == NULL) {
+ goto err;
+ }
+ dummy->localdict = ldict;
+ wr = PyWeakref_NewRef((PyObject *) dummy, self->wr_callback);
+ if (wr == NULL) {
+ goto err;
+ }
+
+ /* As a side-effect, this will cache the weakref's hash before the
+ dummy gets deleted */
+ int r = PyDict_SetItem(self->dummies, wr, ldict);
+ if (r < 0) {
+ goto err;
+ }
+ Py_CLEAR(wr);
+ r = PyDict_SetItem(tdict, self->key, (PyObject *) dummy);
+ if (r < 0) {
+ goto err;
+ }
+ Py_CLEAR(dummy);
+
+ Py_DECREF(ldict);
+ return ldict;
+
+err:
+ Py_XDECREF(ldict);
+ Py_XDECREF(wr);
+ Py_XDECREF(dummy);
+ return NULL;
+}
+
+static PyObject *
+local_new(PyTypeObject *type, PyObject *args, PyObject *kw)
+{
+ static PyMethodDef wr_callback_def = {
+ "_localdummy_destroyed", (PyCFunction) _localdummy_destroyed, METH_O
+ };
+
+ if (type->tp_init == PyBaseObject_Type.tp_init) {
+ int rc = 0;
+ if (args != NULL)
+ rc = PyObject_IsTrue(args);
+ if (rc == 0 && kw != NULL)
+ rc = PyObject_IsTrue(kw);
+ if (rc != 0) {
+ if (rc > 0) {
+ PyErr_SetString(PyExc_TypeError,
+ "Initialization arguments are not supported");
+ }
+ return NULL;
+ }
+ }
+
+ PyObject *module = PyType_GetModuleByDef(type, &thread_module);
+ thread_module_state *state = get_thread_state(module);
+
+ localobject *self = (localobject *)type->tp_alloc(type, 0);
+ if (self == NULL) {
+ return NULL;
+ }
+
+ self->args = Py_XNewRef(args);
+ self->kw = Py_XNewRef(kw);
+ self->key = PyUnicode_FromFormat("thread.local.%p", self);
+ if (self->key == NULL) {
+ goto err;
+ }
+
+ self->dummies = PyDict_New();
+ if (self->dummies == NULL) {
+ goto err;
+ }
+
+ /* We use a weak reference to self in the callback closure
+ in order to avoid spurious reference cycles */
+ PyObject *wr = PyWeakref_NewRef((PyObject *) self, NULL);
+ if (wr == NULL) {
+ goto err;
+ }
+ self->wr_callback = PyCFunction_NewEx(&wr_callback_def, wr, NULL);
+ Py_DECREF(wr);
+ if (self->wr_callback == NULL) {
+ goto err;
+ }
+ if (_local_create_dummy(self, state) == NULL) {
+ goto err;
+ }
+ return (PyObject *)self;
+
+ err:
+ Py_DECREF(self);
+ return NULL;
+}
+
+static int
+local_traverse(localobject *self, visitproc visit, void *arg)
+{
+ Py_VISIT(Py_TYPE(self));
+ Py_VISIT(self->args);
+ Py_VISIT(self->kw);
+ Py_VISIT(self->dummies);
+ return 0;
+}
+
+#define HEAD_LOCK(runtime) \
+ PyThread_acquire_lock((runtime)->interpreters.mutex, WAIT_LOCK)
+#define HEAD_UNLOCK(runtime) \
+ PyThread_release_lock((runtime)->interpreters.mutex)
+
+static int
+local_clear(localobject *self)
+{
+ Py_CLEAR(self->args);
+ Py_CLEAR(self->kw);
+ Py_CLEAR(self->dummies);
+ Py_CLEAR(self->wr_callback);
+ /* Remove all strong references to dummies from the thread states */
+ if (self->key) {
+ PyInterpreterState *interp = _PyInterpreterState_GET();
+ _PyRuntimeState *runtime = &_PyRuntime;
+ HEAD_LOCK(runtime);
+ PyThreadState *tstate = PyInterpreterState_ThreadHead(interp);
+ HEAD_UNLOCK(runtime);
+ while (tstate) {
+ if (tstate->dict) {
+ PyObject *v = _PyDict_Pop(tstate->dict, self->key, Py_None);
+ if (v != NULL) {
+ Py_DECREF(v);
+ }
+ else {
+ PyErr_Clear();
+ }
+ }
+ HEAD_LOCK(runtime);
+ tstate = PyThreadState_Next(tstate);
+ HEAD_UNLOCK(runtime);
+ }
+ }
+ return 0;
+}
+
+static void
+local_dealloc(localobject *self)
+{
+ /* Weakrefs must be invalidated right now, otherwise they can be used
+ from code called below, which is very dangerous since Py_REFCNT(self) == 0 */
+ if (self->weakreflist != NULL) {
+ PyObject_ClearWeakRefs((PyObject *) self);
+ }
+
+ PyObject_GC_UnTrack(self);
+
+ local_clear(self);
+ Py_XDECREF(self->key);
+
+ PyTypeObject *tp = Py_TYPE(self);
+ tp->tp_free((PyObject*)self);
+ Py_DECREF(tp);
+}
+
+/* Returns a borrowed reference to the local dict, creating it if necessary */
+static PyObject *
+_ldict(localobject *self, thread_module_state *state)
+{
+ PyObject *tdict = PyThreadState_GetDict();
+ if (tdict == NULL) {
+ PyErr_SetString(PyExc_SystemError,
+ "Couldn't get thread-state dictionary");
+ return NULL;
+ }
+
+ PyObject *ldict;
+ PyObject *dummy = PyDict_GetItemWithError(tdict, self->key);
+ if (dummy == NULL) {
+ if (PyErr_Occurred()) {
+ return NULL;
+ }
+ ldict = _local_create_dummy(self, state);
+ if (ldict == NULL)
+ return NULL;
+
+ if (Py_TYPE(self)->tp_init != PyBaseObject_Type.tp_init &&
+ Py_TYPE(self)->tp_init((PyObject*)self,
+ self->args, self->kw) < 0) {
+ /* we need to get rid of ldict from thread so
+ we create a new one the next time we do an attr
+ access */
+ PyDict_DelItem(tdict, self->key);
+ return NULL;
+ }
+ }
+ else {
+ assert(Py_IS_TYPE(dummy, state->local_dummy_type));
+ ldict = ((localdummyobject *) dummy)->localdict;
+ }
+
+ return ldict;
+}
+
+static int
+local_setattro(localobject *self, PyObject *name, PyObject *v)
+{
+ PyObject *module = PyType_GetModuleByDef(Py_TYPE(self), &thread_module);
+ thread_module_state *state = get_thread_state(module);
+
+ PyObject *ldict = _ldict(self, state);
+ if (ldict == NULL) {
+ return -1;
+ }
+
+ int r = PyObject_RichCompareBool(name, &_Py_ID(__dict__), Py_EQ);
+ if (r == -1) {
+ return -1;
+ }
+ if (r == 1) {
+ PyErr_Format(PyExc_AttributeError,
+ "'%.50s' object attribute '%U' is read-only",
+ Py_TYPE(self)->tp_name, name);
+ return -1;
+ }
+
+ return _PyObject_GenericSetAttrWithDict((PyObject *)self, name, v, ldict);
+}
+
+static PyObject *local_getattro(localobject *, PyObject *);
+
+static PyMemberDef local_type_members[] = {
+ {"__weaklistoffset__", T_PYSSIZET, offsetof(localobject, weakreflist), READONLY},
+ {NULL},
+};
+
+static PyType_Slot local_type_slots[] = {
+ {Py_tp_dealloc, (destructor)local_dealloc},
+ {Py_tp_getattro, (getattrofunc)local_getattro},
+ {Py_tp_setattro, (setattrofunc)local_setattro},
+ {Py_tp_doc, "Thread-local data"},
+ {Py_tp_traverse, (traverseproc)local_traverse},
+ {Py_tp_clear, (inquiry)local_clear},
+ {Py_tp_new, local_new},
+ {Py_tp_members, local_type_members},
+ {0, 0}
+};
+
+static PyType_Spec local_type_spec = {
+ .name = "_thread._local",
+ .basicsize = sizeof(localobject),
+ .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC |
+ Py_TPFLAGS_IMMUTABLETYPE),
+ .slots = local_type_slots,
+};
+
+static PyObject *
+local_getattro(localobject *self, PyObject *name)
+{
+ PyObject *module = PyType_GetModuleByDef(Py_TYPE(self), &thread_module);
+ thread_module_state *state = get_thread_state(module);
+
+ PyObject *ldict = _ldict(self, state);
+ if (ldict == NULL)
+ return NULL;
+
+ int r = PyObject_RichCompareBool(name, &_Py_ID(__dict__), Py_EQ);
+ if (r == 1) {
+ return Py_NewRef(ldict);
+ }
+ if (r == -1) {
+ return NULL;
+ }
+
+ if (!Py_IS_TYPE(self, state->local_type)) {
+ /* use generic lookup for subtypes */
+ return _PyObject_GenericGetAttrWithDict((PyObject *)self, name,
+ ldict, 0);
+ }
+
+ /* Optimization: just look in dict ourselves */
+ PyObject *value = PyDict_GetItemWithError(ldict, name);
+ if (value != NULL) {
+ return Py_NewRef(value);
+ }
+ if (PyErr_Occurred()) {
+ return NULL;
+ }
+
+ /* Fall back on generic to get __class__ and __dict__ */
+ return _PyObject_GenericGetAttrWithDict(
+ (PyObject *)self, name, ldict, 0);
+}
+
+/* Called when a dummy is destroyed. */
+static PyObject *
+_localdummy_destroyed(PyObject *localweakref, PyObject *dummyweakref)
+{
+ assert(PyWeakref_CheckRef(localweakref));
+ PyObject *obj = PyWeakref_GET_OBJECT(localweakref);
+ if (obj == Py_None) {
+ Py_RETURN_NONE;
+ }
+
+ /* If the thread-local object is still alive and not being cleared,
+ remove the corresponding local dict */
+ localobject *self = (localobject *)Py_NewRef(obj);
+ if (self->dummies != NULL) {
+ PyObject *ldict;
+ ldict = PyDict_GetItemWithError(self->dummies, dummyweakref);
+ if (ldict != NULL) {
+ PyDict_DelItem(self->dummies, dummyweakref);
+ }
+ if (PyErr_Occurred())
+ PyErr_WriteUnraisable(obj);
+ }
+ Py_DECREF(obj);
+ Py_RETURN_NONE;
+}
+
+/* Module functions */
+
+struct bootstate {
+ PyInterpreterState *interp;
+ PyObject *func;
+ PyObject *args;
+ PyObject *kwargs;
+ PyThreadState *tstate;
+ _PyRuntimeState *runtime;
+};
+
+
+static void
+thread_bootstate_free(struct bootstate *boot)
+{
+ Py_DECREF(boot->func);
+ Py_DECREF(boot->args);
+ Py_XDECREF(boot->kwargs);
+ PyMem_Free(boot);
+}
+
+
+static void
+thread_run(void *boot_raw)
+{
+ struct bootstate *boot = (struct bootstate *) boot_raw;
+ PyThreadState *tstate;
+
+ tstate = boot->tstate;
+ tstate->thread_id = PyThread_get_thread_ident();
+#ifdef PY_HAVE_THREAD_NATIVE_ID
+ tstate->native_thread_id = PyThread_get_thread_native_id();
+#else
+ tstate->native_thread_id = 0;
+#endif
+ _PyThreadState_SetCurrent(tstate);
+ PyEval_AcquireThread(tstate);
+ tstate->interp->threads.count++;
+
+ PyObject *res = PyObject_Call(boot->func, boot->args, boot->kwargs);
+ if (res == NULL) {
+ if (PyErr_ExceptionMatches(PyExc_SystemExit))
+ /* SystemExit is ignored silently */
+ PyErr_Clear();
+ else {
+ _PyErr_WriteUnraisableMsg("in thread started by", boot->func);
+ }
+ }
+ else {
+ Py_DECREF(res);
+ }
+
+ thread_bootstate_free(boot);
+ tstate->interp->threads.count--;
+ PyThreadState_Clear(tstate);
+ _PyThreadState_DeleteCurrent(tstate);
+
+ // bpo-44434: Don't call explicitly PyThread_exit_thread(). On Linux with
+ // the glibc, pthread_exit() can abort the whole process if dlopen() fails
+ // to open the libgcc_s.so library (ex: EMFILE error).
+}
+
+static PyObject *
+thread_PyThread_start_new_thread(PyObject *self, PyObject *fargs)
+{
+ _PyRuntimeState *runtime = &_PyRuntime;
+ PyObject *func, *args, *kwargs = NULL;
+
+ if (!PyArg_UnpackTuple(fargs, "start_new_thread", 2, 3,
+ &func, &args, &kwargs))
+ return NULL;
+ if (!PyCallable_Check(func)) {
+ PyErr_SetString(PyExc_TypeError,
+ "first arg must be callable");
+ return NULL;
+ }
+ if (!PyTuple_Check(args)) {
+ PyErr_SetString(PyExc_TypeError,
+ "2nd arg must be a tuple");
+ return NULL;
+ }
+ if (kwargs != NULL && !PyDict_Check(kwargs)) {
+ PyErr_SetString(PyExc_TypeError,
+ "optional 3rd arg must be a dictionary");
+ return NULL;
+ }
+
+ PyInterpreterState *interp = _PyInterpreterState_GET();
+ if (interp->config._isolated_interpreter) {
+ PyErr_SetString(PyExc_RuntimeError,
+ "thread is not supported for isolated subinterpreters");
+ return NULL;
+ }
+
+ struct bootstate *boot = PyMem_NEW(struct bootstate, 1);
+ if (boot == NULL) {
+ return PyErr_NoMemory();
+ }
+ boot->interp = _PyInterpreterState_GET();
+ boot->tstate = _PyThreadState_Prealloc(boot->interp);
+ if (boot->tstate == NULL) {
+ PyMem_Free(boot);
+ return PyErr_NoMemory();
+ }
+ boot->runtime = runtime;
+ boot->func = Py_NewRef(func);
+ boot->args = Py_NewRef(args);
+ boot->kwargs = Py_XNewRef(kwargs);
+
+ unsigned long ident = PyThread_start_new_thread(thread_run, (void*) boot);
+ if (ident == PYTHREAD_INVALID_THREAD_ID) {
+ PyErr_SetString(ThreadError, "can't start new thread");
+ PyThreadState_Clear(boot->tstate);
+ thread_bootstate_free(boot);
+ return NULL;
+ }
+ return PyLong_FromUnsignedLong(ident);
+}
+
+PyDoc_STRVAR(start_new_doc,
+"start_new_thread(function, args[, kwargs])\n\
+(start_new() is an obsolete synonym)\n\
+\n\
+Start a new thread and return its identifier. The thread will call the\n\
+function with positional arguments from the tuple args and keyword arguments\n\
+taken from the optional dictionary kwargs. The thread exits when the\n\
+function returns; the return value is ignored. The thread will also exit\n\
+when the function raises an unhandled exception; a stack trace will be\n\
+printed unless the exception is SystemExit.\n");
+
+static PyObject *
+thread_PyThread_exit_thread(PyObject *self, PyObject *Py_UNUSED(ignored))
+{
+ PyErr_SetNone(PyExc_SystemExit);
+ return NULL;
+}
+
+PyDoc_STRVAR(exit_doc,
+"exit()\n\
+(exit_thread() is an obsolete synonym)\n\
+\n\
+This is synonymous to ``raise SystemExit''. It will cause the current\n\
+thread to exit silently unless the exception is caught.");
+
+static PyObject *
+thread_PyThread_interrupt_main(PyObject *self, PyObject *args)
+{
+ int signum = SIGINT;
+ if (!PyArg_ParseTuple(args, "|i:signum", &signum)) {
+ return NULL;
+ }
+
+ if (PyErr_SetInterruptEx(signum)) {
+ PyErr_SetString(PyExc_ValueError, "signal number out of range");
+ return NULL;
+ }
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(interrupt_doc,
+"interrupt_main(signum=signal.SIGINT, /)\n\
+\n\
+Simulate the arrival of the given signal in the main thread,\n\
+where the corresponding signal handler will be executed.\n\
+If *signum* is omitted, SIGINT is assumed.\n\
+A subthread can use this function to interrupt the main thread.\n\
+\n\
+Note: the default signal handler for SIGINT raises ``KeyboardInterrupt``."
+);
+
+static lockobject *newlockobject(PyObject *module);
+
+static PyObject *
+thread_PyThread_allocate_lock(PyObject *module, PyObject *Py_UNUSED(ignored))
+{
+ return (PyObject *) newlockobject(module);
+}
+
+PyDoc_STRVAR(allocate_doc,
+"allocate_lock() -> lock object\n\
+(allocate() is an obsolete synonym)\n\
+\n\
+Create a new lock object. See help(type(threading.Lock())) for\n\
+information about locks.");
+
+static PyObject *
+thread_get_ident(PyObject *self, PyObject *Py_UNUSED(ignored))
+{
+ unsigned long ident = PyThread_get_thread_ident();
+ if (ident == PYTHREAD_INVALID_THREAD_ID) {
+ PyErr_SetString(ThreadError, "no current thread ident");
+ return NULL;
+ }
+ return PyLong_FromUnsignedLong(ident);
+}
+
+PyDoc_STRVAR(get_ident_doc,
+"get_ident() -> integer\n\
+\n\
+Return a non-zero integer that uniquely identifies the current thread\n\
+amongst other threads that exist simultaneously.\n\
+This may be used to identify per-thread resources.\n\
+Even though on some platforms threads identities may appear to be\n\
+allocated consecutive numbers starting at 1, this behavior should not\n\
+be relied upon, and the number should be seen purely as a magic cookie.\n\
+A thread's identity may be reused for another thread after it exits.");
+
+#ifdef PY_HAVE_THREAD_NATIVE_ID
+static PyObject *
+thread_get_native_id(PyObject *self, PyObject *Py_UNUSED(ignored))
+{
+ unsigned long native_id = PyThread_get_thread_native_id();
+ return PyLong_FromUnsignedLong(native_id);
+}
+
+PyDoc_STRVAR(get_native_id_doc,
+"get_native_id() -> integer\n\
+\n\
+Return a non-negative integer identifying the thread as reported\n\
+by the OS (kernel). This may be used to uniquely identify a\n\
+particular thread within a system.");
+#endif
+
+static PyObject *
+thread__count(PyObject *self, PyObject *Py_UNUSED(ignored))
+{
+ PyInterpreterState *interp = _PyInterpreterState_GET();
+ return PyLong_FromLong(interp->threads.count);
+}
+
+PyDoc_STRVAR(_count_doc,
+"_count() -> integer\n\
+\n\
+\
+Return the number of currently running Python threads, excluding\n\
+the main thread. The returned number comprises all threads created\n\
+through `start_new_thread()` as well as `threading.Thread`, and not\n\
+yet finished.\n\
+\n\
+This function is meant for internal and specialized purposes only.\n\
+In most applications `threading.enumerate()` should be used instead.");
+
+static void
+release_sentinel(void *wr_raw)
+{
+ PyObject *wr = _PyObject_CAST(wr_raw);
+ /* Tricky: this function is called when the current thread state
+ is being deleted. Therefore, only simple C code can safely
+ execute here. */
+ PyObject *obj = PyWeakref_GET_OBJECT(wr);
+ lockobject *lock;
+ if (obj != Py_None) {
+ lock = (lockobject *) obj;
+ if (lock->locked) {
+ PyThread_release_lock(lock->lock_lock);
+ lock->locked = 0;
+ }
+ }
+ /* Deallocating a weakref with a NULL callback only calls
+ PyObject_GC_Del(), which can't call any Python code. */
+ Py_DECREF(wr);
+}
+
+static PyObject *
+thread__set_sentinel(PyObject *module, PyObject *Py_UNUSED(ignored))
+{
+ PyObject *wr;
+ PyThreadState *tstate = _PyThreadState_GET();
+ lockobject *lock;
+
+ if (tstate->on_delete_data != NULL) {
+ /* We must support the re-creation of the lock from a
+ fork()ed child. */
+ assert(tstate->on_delete == &release_sentinel);
+ wr = (PyObject *) tstate->on_delete_data;
+ tstate->on_delete = NULL;
+ tstate->on_delete_data = NULL;
+ Py_DECREF(wr);
+ }
+ lock = newlockobject(module);
+ if (lock == NULL)
+ return NULL;
+ /* The lock is owned by whoever called _set_sentinel(), but the weakref
+ hangs to the thread state. */
+ wr = PyWeakref_NewRef((PyObject *) lock, NULL);
+ if (wr == NULL) {
+ Py_DECREF(lock);
+ return NULL;
+ }
+ tstate->on_delete_data = (void *) wr;
+ tstate->on_delete = &release_sentinel;
+ return (PyObject *) lock;
+}
+
+PyDoc_STRVAR(_set_sentinel_doc,
+"_set_sentinel() -> lock\n\
+\n\
+Set a sentinel lock that will be released when the current thread\n\
+state is finalized (after it is untied from the interpreter).\n\
+\n\
+This is a private API for the threading module.");
+
+static PyObject *
+thread_stack_size(PyObject *self, PyObject *args)
+{
+ size_t old_size;
+ Py_ssize_t new_size = 0;
+ int rc;
+
+ if (!PyArg_ParseTuple(args, "|n:stack_size", &new_size))
+ return NULL;
+
+ if (new_size < 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "size must be 0 or a positive value");
+ return NULL;
+ }
+
+ old_size = PyThread_get_stacksize();
+
+ rc = PyThread_set_stacksize((size_t) new_size);
+ if (rc == -1) {
+ PyErr_Format(PyExc_ValueError,
+ "size not valid: %zd bytes",
+ new_size);
+ return NULL;
+ }
+ if (rc == -2) {
+ PyErr_SetString(ThreadError,
+ "setting stack size not supported");
+ return NULL;
+ }
+
+ return PyLong_FromSsize_t((Py_ssize_t) old_size);
+}
+
+PyDoc_STRVAR(stack_size_doc,
+"stack_size([size]) -> size\n\
+\n\
+Return the thread stack size used when creating new threads. The\n\
+optional size argument specifies the stack size (in bytes) to be used\n\
+for subsequently created threads, and must be 0 (use platform or\n\
+configured default) or a positive integer value of at least 32,768 (32k).\n\
+If changing the thread stack size is unsupported, a ThreadError\n\
+exception is raised. If the specified size is invalid, a ValueError\n\
+exception is raised, and the stack size is unmodified. 32k bytes\n\
+ currently the minimum supported stack size value to guarantee\n\
+sufficient stack space for the interpreter itself.\n\
+\n\
+Note that some platforms may have particular restrictions on values for\n\
+the stack size, such as requiring a minimum stack size larger than 32 KiB or\n\
+requiring allocation in multiples of the system memory page size\n\
+- platform documentation should be referred to for more information\n\
+(4 KiB pages are common; using multiples of 4096 for the stack size is\n\
+the suggested approach in the absence of more specific information).");
+
+static int
+thread_excepthook_file(PyObject *file, PyObject *exc_type, PyObject *exc_value,
+ PyObject *exc_traceback, PyObject *thread)
+{
+ /* print(f"Exception in thread {thread.name}:", file=file) */
+ if (PyFile_WriteString("Exception in thread ", file) < 0) {
+ return -1;
+ }
+
+ PyObject *name = NULL;
+ if (thread != Py_None) {
+ if (_PyObject_LookupAttr(thread, &_Py_ID(name), &name) < 0) {
+ return -1;
+ }
+ }
+ if (name != NULL) {
+ if (PyFile_WriteObject(name, file, Py_PRINT_RAW) < 0) {
+ Py_DECREF(name);
+ return -1;
+ }
+ Py_DECREF(name);
+ }
+ else {
+ unsigned long ident = PyThread_get_thread_ident();
+ PyObject *str = PyUnicode_FromFormat("%lu", ident);
+ if (str != NULL) {
+ if (PyFile_WriteObject(str, file, Py_PRINT_RAW) < 0) {
+ Py_DECREF(str);
+ return -1;
+ }
+ Py_DECREF(str);
+ }
+ else {
+ PyErr_Clear();
+
+ if (PyFile_WriteString("<failed to get thread name>", file) < 0) {
+ return -1;
+ }
+ }
+ }
+
+ if (PyFile_WriteString(":\n", file) < 0) {
+ return -1;
+ }
+
+ /* Display the traceback */
+ _PyErr_Display(file, exc_type, exc_value, exc_traceback);
+
+ /* Call file.flush() */
+ PyObject *res = PyObject_CallMethodNoArgs(file, &_Py_ID(flush));
+ if (!res) {
+ return -1;
+ }
+ Py_DECREF(res);
+
+ return 0;
+}
+
+
+PyDoc_STRVAR(ExceptHookArgs__doc__,
+"ExceptHookArgs\n\
+\n\
+Type used to pass arguments to threading.excepthook.");
+
+static PyStructSequence_Field ExceptHookArgs_fields[] = {
+ {"exc_type", "Exception type"},
+ {"exc_value", "Exception value"},
+ {"exc_traceback", "Exception traceback"},
+ {"thread", "Thread"},
+ {0}
+};
+
+static PyStructSequence_Desc ExceptHookArgs_desc = {
+ .name = "_thread._ExceptHookArgs",
+ .doc = ExceptHookArgs__doc__,
+ .fields = ExceptHookArgs_fields,
+ .n_in_sequence = 4
+};
+
+
+static PyObject *
+thread_excepthook(PyObject *module, PyObject *args)
+{
+ thread_module_state *state = get_thread_state(module);
+
+ if (!Py_IS_TYPE(args, state->excepthook_type)) {
+ PyErr_SetString(PyExc_TypeError,
+ "_thread.excepthook argument type "
+ "must be ExceptHookArgs");
+ return NULL;
+ }
+
+ /* Borrowed reference */
+ PyObject *exc_type = PyStructSequence_GET_ITEM(args, 0);
+ if (exc_type == PyExc_SystemExit) {
+ /* silently ignore SystemExit */
+ Py_RETURN_NONE;
+ }
+
+ /* Borrowed references */
+ PyObject *exc_value = PyStructSequence_GET_ITEM(args, 1);
+ PyObject *exc_tb = PyStructSequence_GET_ITEM(args, 2);
+ PyObject *thread = PyStructSequence_GET_ITEM(args, 3);
+
+ PyThreadState *tstate = _PyThreadState_GET();
+ PyObject *file = _PySys_GetAttr(tstate, &_Py_ID(stderr));
+ if (file == NULL || file == Py_None) {
+ if (thread == Py_None) {
+ /* do nothing if sys.stderr is None and thread is None */
+ Py_RETURN_NONE;
+ }
+
+ file = PyObject_GetAttrString(thread, "_stderr");
+ if (file == NULL) {
+ return NULL;
+ }
+ if (file == Py_None) {
+ Py_DECREF(file);
+ /* do nothing if sys.stderr is None and sys.stderr was None
+ when the thread was created */
+ Py_RETURN_NONE;
+ }
+ }
+ else {
+ Py_INCREF(file);
+ }
+
+ int res = thread_excepthook_file(file, exc_type, exc_value, exc_tb,
+ thread);
+ Py_DECREF(file);
+ if (res < 0) {
+ return NULL;
+ }
+
+ Py_RETURN_NONE;
+}
+
+PyDoc_STRVAR(excepthook_doc,
+"excepthook(exc_type, exc_value, exc_traceback, thread)\n\
+\n\
+Handle uncaught Thread.run() exception.");
+
+static PyMethodDef thread_methods[] = {
+ {"start_new_thread", (PyCFunction)thread_PyThread_start_new_thread,
+ METH_VARARGS, start_new_doc},
+ {"start_new", (PyCFunction)thread_PyThread_start_new_thread,
+ METH_VARARGS, start_new_doc},
+ {"allocate_lock", thread_PyThread_allocate_lock,
+ METH_NOARGS, allocate_doc},
+ {"allocate", thread_PyThread_allocate_lock,
+ METH_NOARGS, allocate_doc},
+ {"exit_thread", thread_PyThread_exit_thread,
+ METH_NOARGS, exit_doc},
+ {"exit", thread_PyThread_exit_thread,
+ METH_NOARGS, exit_doc},
+ {"interrupt_main", (PyCFunction)thread_PyThread_interrupt_main,
+ METH_VARARGS, interrupt_doc},
+ {"get_ident", thread_get_ident,
+ METH_NOARGS, get_ident_doc},
+#ifdef PY_HAVE_THREAD_NATIVE_ID
+ {"get_native_id", thread_get_native_id,
+ METH_NOARGS, get_native_id_doc},
+#endif
+ {"_count", thread__count,
+ METH_NOARGS, _count_doc},
+ {"stack_size", (PyCFunction)thread_stack_size,
+ METH_VARARGS, stack_size_doc},
+ {"_set_sentinel", thread__set_sentinel,
+ METH_NOARGS, _set_sentinel_doc},
+ {"_excepthook", thread_excepthook,
+ METH_O, excepthook_doc},
+ {NULL, NULL} /* sentinel */
+};
+
+
+/* Initialization function */
+
+static int
+thread_module_exec(PyObject *module)
+{
+ thread_module_state *state = get_thread_state(module);
+ PyObject *d = PyModule_GetDict(module);
+
+ // Initialize the C thread library
+ PyThread_init_thread();
+
+ // Lock
+ state->lock_type = (PyTypeObject *)PyType_FromSpec(&lock_type_spec);
+ if (state->lock_type == NULL) {
+ return -1;
+ }
+ if (PyDict_SetItemString(d, "LockType", (PyObject *)state->lock_type) < 0) {
+ return -1;
+ }
+
+ // RLock
+ PyTypeObject *rlock_type = (PyTypeObject *)PyType_FromSpec(&rlock_type_spec);
+ if (rlock_type == NULL) {
+ return -1;
+ }
+ if (PyModule_AddType(module, rlock_type) < 0) {
+ Py_DECREF(rlock_type);
+ return -1;
+ }
+ Py_DECREF(rlock_type);
+
+ // Local dummy
+ state->local_dummy_type = (PyTypeObject *)PyType_FromSpec(&local_dummy_type_spec);
+ if (state->local_dummy_type == NULL) {
+ return -1;
+ }
+
+ // Local
+ state->local_type = (PyTypeObject *)PyType_FromModuleAndSpec(module, &local_type_spec, NULL);
+ if (state->local_type == NULL) {
+ return -1;
+ }
+ if (PyModule_AddType(module, state->local_type) < 0) {
+ return -1;
+ }
+
+ // Add module attributes
+ if (PyDict_SetItemString(d, "error", ThreadError) < 0) {
+ return -1;
+ }
+
+ // _ExceptHookArgs type
+ state->excepthook_type = PyStructSequence_NewType(&ExceptHookArgs_desc);
+ if (state->excepthook_type == NULL) {
+ return -1;
+ }
+ if (PyModule_AddType(module, state->excepthook_type) < 0) {
+ return -1;
+ }
+
+ // TIMEOUT_MAX
+ double timeout_max = (double)PY_TIMEOUT_MAX * 1e-6;
+ double time_max = _PyTime_AsSecondsDouble(_PyTime_MAX);
+ timeout_max = Py_MIN(timeout_max, time_max);
+ // Round towards minus infinity
+ timeout_max = floor(timeout_max);
+
+ if (_PyModule_Add(module, "TIMEOUT_MAX",
+ PyFloat_FromDouble(timeout_max)) < 0) {
+ return -1;
+ }
+
+ return 0;
+}
+
+
+static int
+thread_module_traverse(PyObject *module, visitproc visit, void *arg)
+{
+ thread_module_state *state = get_thread_state(module);
+ Py_VISIT(state->excepthook_type);
+ Py_VISIT(state->lock_type);
+ Py_VISIT(state->local_type);
+ Py_VISIT(state->local_dummy_type);
+ return 0;
+}
+
+static int
+thread_module_clear(PyObject *module)
+{
+ thread_module_state *state = get_thread_state(module);
+ Py_CLEAR(state->excepthook_type);
+ Py_CLEAR(state->lock_type);
+ Py_CLEAR(state->local_type);
+ Py_CLEAR(state->local_dummy_type);
+ return 0;
+}
+
+static void
+thread_module_free(void *module)
+{
+ thread_module_clear((PyObject *)module);
+}
+
+
+
+PyDoc_STRVAR(thread_doc,
+"This module provides primitive operations to write multi-threaded programs.\n\
+The 'threading' module provides a more convenient interface.");
+
+static PyModuleDef_Slot thread_module_slots[] = {
+ {Py_mod_exec, thread_module_exec},
+ {0, NULL}
+};
+
+static struct PyModuleDef thread_module = {
+ PyModuleDef_HEAD_INIT,
+ .m_name = "_thread",
+ .m_doc = thread_doc,
+ .m_size = sizeof(thread_module_state),
+ .m_methods = thread_methods,
+ .m_traverse = thread_module_traverse,
+ .m_clear = thread_module_clear,
+ .m_free = thread_module_free,
+ .m_slots = thread_module_slots,
+};
+
+PyMODINIT_FUNC
+PyInit__thread(void)
+{
+ return PyModuleDef_Init(&thread_module);
+}