aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Lib/pydoc_data/topics.py
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:45:01 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:01 +0300
commit2d37894b1b037cf24231090eda8589bbb44fb6fc (patch)
treebe835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/tools/python3/src/Lib/pydoc_data/topics.py
parent718c552901d703c502ccbefdfc3c9028d608b947 (diff)
downloadydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/tools/python3/src/Lib/pydoc_data/topics.py')
-rw-r--r--contrib/tools/python3/src/Lib/pydoc_data/topics.py24236
1 files changed, 12118 insertions, 12118 deletions
diff --git a/contrib/tools/python3/src/Lib/pydoc_data/topics.py b/contrib/tools/python3/src/Lib/pydoc_data/topics.py
index b891bae4ef..67a51977cf 100644
--- a/contrib/tools/python3/src/Lib/pydoc_data/topics.py
+++ b/contrib/tools/python3/src/Lib/pydoc_data/topics.py
@@ -1,104 +1,104 @@
-# -*- coding: utf-8 -*-
+# -*- coding: utf-8 -*-
# Autogenerated by Sphinx on Thu Jan 13 21:46:32 2022
-topics = {'assert': 'The "assert" statement\n'
- '**********************\n'
- '\n'
- 'Assert statements are a convenient way to insert debugging '
- 'assertions\n'
- 'into a program:\n'
- '\n'
- ' assert_stmt ::= "assert" expression ["," expression]\n'
- '\n'
- 'The simple form, "assert expression", is equivalent to\n'
- '\n'
- ' if __debug__:\n'
- ' if not expression: raise AssertionError\n'
- '\n'
- 'The extended form, "assert expression1, expression2", is '
- 'equivalent to\n'
- '\n'
- ' if __debug__:\n'
- ' if not expression1: raise AssertionError(expression2)\n'
- '\n'
- 'These equivalences assume that "__debug__" and "AssertionError" '
- 'refer\n'
- 'to the built-in variables with those names. In the current\n'
- 'implementation, the built-in variable "__debug__" is "True" under\n'
- 'normal circumstances, "False" when optimization is requested '
- '(command\n'
- 'line option "-O"). The current code generator emits no code for '
- 'an\n'
- 'assert statement when optimization is requested at compile time. '
- 'Note\n'
- 'that it is unnecessary to include the source code for the '
- 'expression\n'
- 'that failed in the error message; it will be displayed as part of '
- 'the\n'
- 'stack trace.\n'
- '\n'
- 'Assignments to "__debug__" are illegal. The value for the '
- 'built-in\n'
- 'variable is determined when the interpreter starts.\n',
- 'assignment': 'Assignment statements\n'
- '*********************\n'
- '\n'
- 'Assignment statements are used to (re)bind names to values and '
- 'to\n'
- 'modify attributes or items of mutable objects:\n'
- '\n'
- ' assignment_stmt ::= (target_list "=")+ (starred_expression '
- '| yield_expression)\n'
- ' target_list ::= target ("," target)* [","]\n'
- ' target ::= identifier\n'
- ' | "(" [target_list] ")"\n'
- ' | "[" [target_list] "]"\n'
- ' | attributeref\n'
- ' | subscription\n'
- ' | slicing\n'
- ' | "*" target\n'
- '\n'
- '(See section Primaries for the syntax definitions for '
- '*attributeref*,\n'
- '*subscription*, and *slicing*.)\n'
- '\n'
- 'An assignment statement evaluates the expression list '
- '(remember that\n'
- 'this can be a single expression or a comma-separated list, the '
- 'latter\n'
- 'yielding a tuple) and assigns the single resulting object to '
- 'each of\n'
- 'the target lists, from left to right.\n'
- '\n'
- 'Assignment is defined recursively depending on the form of the '
- 'target\n'
- '(list). When a target is part of a mutable object (an '
- 'attribute\n'
- 'reference, subscription or slicing), the mutable object must\n'
- 'ultimately perform the assignment and decide about its '
- 'validity, and\n'
- 'may raise an exception if the assignment is unacceptable. The '
- 'rules\n'
- 'observed by various types and the exceptions raised are given '
- 'with the\n'
- 'definition of the object types (see section The standard type\n'
- 'hierarchy).\n'
- '\n'
- 'Assignment of an object to a target list, optionally enclosed '
- 'in\n'
- 'parentheses or square brackets, is recursively defined as '
- 'follows.\n'
- '\n'
- '* If the target list is a single target with no trailing '
- 'comma,\n'
- ' optionally in parentheses, the object is assigned to that '
- 'target.\n'
- '\n'
- '* Else: The object must be an iterable with the same number of '
- 'items\n'
- ' as there are targets in the target list, and the items are '
- 'assigned,\n'
- ' from left to right, to the corresponding targets.\n'
- '\n'
+topics = {'assert': 'The "assert" statement\n'
+ '**********************\n'
+ '\n'
+ 'Assert statements are a convenient way to insert debugging '
+ 'assertions\n'
+ 'into a program:\n'
+ '\n'
+ ' assert_stmt ::= "assert" expression ["," expression]\n'
+ '\n'
+ 'The simple form, "assert expression", is equivalent to\n'
+ '\n'
+ ' if __debug__:\n'
+ ' if not expression: raise AssertionError\n'
+ '\n'
+ 'The extended form, "assert expression1, expression2", is '
+ 'equivalent to\n'
+ '\n'
+ ' if __debug__:\n'
+ ' if not expression1: raise AssertionError(expression2)\n'
+ '\n'
+ 'These equivalences assume that "__debug__" and "AssertionError" '
+ 'refer\n'
+ 'to the built-in variables with those names. In the current\n'
+ 'implementation, the built-in variable "__debug__" is "True" under\n'
+ 'normal circumstances, "False" when optimization is requested '
+ '(command\n'
+ 'line option "-O"). The current code generator emits no code for '
+ 'an\n'
+ 'assert statement when optimization is requested at compile time. '
+ 'Note\n'
+ 'that it is unnecessary to include the source code for the '
+ 'expression\n'
+ 'that failed in the error message; it will be displayed as part of '
+ 'the\n'
+ 'stack trace.\n'
+ '\n'
+ 'Assignments to "__debug__" are illegal. The value for the '
+ 'built-in\n'
+ 'variable is determined when the interpreter starts.\n',
+ 'assignment': 'Assignment statements\n'
+ '*********************\n'
+ '\n'
+ 'Assignment statements are used to (re)bind names to values and '
+ 'to\n'
+ 'modify attributes or items of mutable objects:\n'
+ '\n'
+ ' assignment_stmt ::= (target_list "=")+ (starred_expression '
+ '| yield_expression)\n'
+ ' target_list ::= target ("," target)* [","]\n'
+ ' target ::= identifier\n'
+ ' | "(" [target_list] ")"\n'
+ ' | "[" [target_list] "]"\n'
+ ' | attributeref\n'
+ ' | subscription\n'
+ ' | slicing\n'
+ ' | "*" target\n'
+ '\n'
+ '(See section Primaries for the syntax definitions for '
+ '*attributeref*,\n'
+ '*subscription*, and *slicing*.)\n'
+ '\n'
+ 'An assignment statement evaluates the expression list '
+ '(remember that\n'
+ 'this can be a single expression or a comma-separated list, the '
+ 'latter\n'
+ 'yielding a tuple) and assigns the single resulting object to '
+ 'each of\n'
+ 'the target lists, from left to right.\n'
+ '\n'
+ 'Assignment is defined recursively depending on the form of the '
+ 'target\n'
+ '(list). When a target is part of a mutable object (an '
+ 'attribute\n'
+ 'reference, subscription or slicing), the mutable object must\n'
+ 'ultimately perform the assignment and decide about its '
+ 'validity, and\n'
+ 'may raise an exception if the assignment is unacceptable. The '
+ 'rules\n'
+ 'observed by various types and the exceptions raised are given '
+ 'with the\n'
+ 'definition of the object types (see section The standard type\n'
+ 'hierarchy).\n'
+ '\n'
+ 'Assignment of an object to a target list, optionally enclosed '
+ 'in\n'
+ 'parentheses or square brackets, is recursively defined as '
+ 'follows.\n'
+ '\n'
+ '* If the target list is a single target with no trailing '
+ 'comma,\n'
+ ' optionally in parentheses, the object is assigned to that '
+ 'target.\n'
+ '\n'
+ '* Else: The object must be an iterable with the same number of '
+ 'items\n'
+ ' as there are targets in the target list, and the items are '
+ 'assigned,\n'
+ ' from left to right, to the corresponding targets.\n'
+ '\n'
' * If the target list contains one target prefixed with an '
'asterisk,\n'
' called a “starred” target: The object must be an iterable '
@@ -110,57 +110,57 @@ topics = {'assert': 'The "assert" statement\n'
' right, to the targets before the starred target. The '
'final items\n'
' of the iterable are assigned to the targets after the '
- 'starred\n'
+ 'starred\n'
' target. A list of the remaining items in the iterable is '
'then\n'
' assigned to the starred target (the list can be empty).\n'
- '\n'
- ' * Else: The object must be an iterable with the same number '
+ '\n'
+ ' * Else: The object must be an iterable with the same number '
'of items\n'
' as there are targets in the target list, and the items '
'are\n'
- ' assigned, from left to right, to the corresponding '
- 'targets.\n'
- '\n'
- 'Assignment of an object to a single target is recursively '
- 'defined as\n'
- 'follows.\n'
- '\n'
- '* If the target is an identifier (name):\n'
- '\n'
- ' * If the name does not occur in a "global" or "nonlocal" '
- 'statement\n'
- ' in the current code block: the name is bound to the object '
- 'in the\n'
- ' current local namespace.\n'
- '\n'
+ ' assigned, from left to right, to the corresponding '
+ 'targets.\n'
+ '\n'
+ 'Assignment of an object to a single target is recursively '
+ 'defined as\n'
+ 'follows.\n'
+ '\n'
+ '* If the target is an identifier (name):\n'
+ '\n'
+ ' * If the name does not occur in a "global" or "nonlocal" '
+ 'statement\n'
+ ' in the current code block: the name is bound to the object '
+ 'in the\n'
+ ' current local namespace.\n'
+ '\n'
' * Otherwise: the name is bound to the object in the global '
'namespace\n'
' or the outer namespace determined by "nonlocal", '
'respectively.\n'
- '\n'
- ' The name is rebound if it was already bound. This may cause '
- 'the\n'
- ' reference count for the object previously bound to the name '
- 'to reach\n'
- ' zero, causing the object to be deallocated and its '
- 'destructor (if it\n'
- ' has one) to be called.\n'
- '\n'
- '* If the target is an attribute reference: The primary '
- 'expression in\n'
- ' the reference is evaluated. It should yield an object with\n'
- ' assignable attributes; if this is not the case, "TypeError" '
- 'is\n'
- ' raised. That object is then asked to assign the assigned '
- 'object to\n'
- ' the given attribute; if it cannot perform the assignment, it '
- 'raises\n'
- ' an exception (usually but not necessarily '
- '"AttributeError").\n'
- '\n'
- ' Note: If the object is a class instance and the attribute '
- 'reference\n'
+ '\n'
+ ' The name is rebound if it was already bound. This may cause '
+ 'the\n'
+ ' reference count for the object previously bound to the name '
+ 'to reach\n'
+ ' zero, causing the object to be deallocated and its '
+ 'destructor (if it\n'
+ ' has one) to be called.\n'
+ '\n'
+ '* If the target is an attribute reference: The primary '
+ 'expression in\n'
+ ' the reference is evaluated. It should yield an object with\n'
+ ' assignable attributes; if this is not the case, "TypeError" '
+ 'is\n'
+ ' raised. That object is then asked to assign the assigned '
+ 'object to\n'
+ ' the given attribute; if it cannot perform the assignment, it '
+ 'raises\n'
+ ' an exception (usually but not necessarily '
+ '"AttributeError").\n'
+ '\n'
+ ' Note: If the object is a class instance and the attribute '
+ 'reference\n'
' occurs on both sides of the assignment operator, the '
'right-hand side\n'
' expression, "a.x" can access either an instance attribute or '
@@ -176,54 +176,54 @@ topics = {'assert': 'The "assert" statement\n'
' refers to a class attribute, the left-hand side creates a '
'new\n'
' instance attribute as the target of the assignment:\n'
- '\n'
- ' class Cls:\n'
- ' x = 3 # class variable\n'
- ' inst = Cls()\n'
- ' inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x '
- 'as 3\n'
- '\n'
- ' This description does not necessarily apply to descriptor\n'
- ' attributes, such as properties created with "property()".\n'
- '\n'
- '* If the target is a subscription: The primary expression in '
- 'the\n'
- ' reference is evaluated. It should yield either a mutable '
- 'sequence\n'
- ' object (such as a list) or a mapping object (such as a '
- 'dictionary).\n'
- ' Next, the subscript expression is evaluated.\n'
- '\n'
- ' If the primary is a mutable sequence object (such as a '
- 'list), the\n'
- ' subscript must yield an integer. If it is negative, the '
- 'sequence’s\n'
- ' length is added to it. The resulting value must be a '
- 'nonnegative\n'
- ' integer less than the sequence’s length, and the sequence is '
- 'asked\n'
- ' to assign the assigned object to its item with that index. '
- 'If the\n'
- ' index is out of range, "IndexError" is raised (assignment to '
- 'a\n'
- ' subscripted sequence cannot add new items to a list).\n'
- '\n'
- ' If the primary is a mapping object (such as a dictionary), '
- 'the\n'
- ' subscript must have a type compatible with the mapping’s key '
- 'type,\n'
- ' and the mapping is then asked to create a key/datum pair '
- 'which maps\n'
- ' the subscript to the assigned object. This can either '
- 'replace an\n'
- ' existing key/value pair with the same key value, or insert a '
- 'new\n'
- ' key/value pair (if no key with the same value existed).\n'
- '\n'
- ' For user-defined objects, the "__setitem__()" method is '
- 'called with\n'
- ' appropriate arguments.\n'
- '\n'
+ '\n'
+ ' class Cls:\n'
+ ' x = 3 # class variable\n'
+ ' inst = Cls()\n'
+ ' inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x '
+ 'as 3\n'
+ '\n'
+ ' This description does not necessarily apply to descriptor\n'
+ ' attributes, such as properties created with "property()".\n'
+ '\n'
+ '* If the target is a subscription: The primary expression in '
+ 'the\n'
+ ' reference is evaluated. It should yield either a mutable '
+ 'sequence\n'
+ ' object (such as a list) or a mapping object (such as a '
+ 'dictionary).\n'
+ ' Next, the subscript expression is evaluated.\n'
+ '\n'
+ ' If the primary is a mutable sequence object (such as a '
+ 'list), the\n'
+ ' subscript must yield an integer. If it is negative, the '
+ 'sequence’s\n'
+ ' length is added to it. The resulting value must be a '
+ 'nonnegative\n'
+ ' integer less than the sequence’s length, and the sequence is '
+ 'asked\n'
+ ' to assign the assigned object to its item with that index. '
+ 'If the\n'
+ ' index is out of range, "IndexError" is raised (assignment to '
+ 'a\n'
+ ' subscripted sequence cannot add new items to a list).\n'
+ '\n'
+ ' If the primary is a mapping object (such as a dictionary), '
+ 'the\n'
+ ' subscript must have a type compatible with the mapping’s key '
+ 'type,\n'
+ ' and the mapping is then asked to create a key/datum pair '
+ 'which maps\n'
+ ' the subscript to the assigned object. This can either '
+ 'replace an\n'
+ ' existing key/value pair with the same key value, or insert a '
+ 'new\n'
+ ' key/value pair (if no key with the same value existed).\n'
+ '\n'
+ ' For user-defined objects, the "__setitem__()" method is '
+ 'called with\n'
+ ' appropriate arguments.\n'
+ '\n'
'* If the target is a slicing: The primary expression in the '
'reference\n'
' is evaluated. It should yield a mutable sequence object '
@@ -241,175 +241,175 @@ topics = {'assert': 'The "assert" statement\n'
' bounds are clipped to lie between zero and the sequence’s '
'length,\n'
' inclusive. Finally, the sequence object is asked to replace '
- 'the\n'
+ 'the\n'
' slice with the items of the assigned sequence. The length '
'of the\n'
' slice may be different from the length of the assigned '
- 'sequence,\n'
- ' thus changing the length of the target sequence, if the '
- 'target\n'
- ' sequence allows it.\n'
- '\n'
- '**CPython implementation detail:** In the current '
- 'implementation, the\n'
- 'syntax for targets is taken to be the same as for expressions, '
- 'and\n'
- 'invalid syntax is rejected during the code generation phase, '
- 'causing\n'
- 'less detailed error messages.\n'
- '\n'
- 'Although the definition of assignment implies that overlaps '
- 'between\n'
- 'the left-hand side and the right-hand side are ‘simultaneous’ '
- '(for\n'
- 'example "a, b = b, a" swaps two variables), overlaps *within* '
- 'the\n'
- 'collection of assigned-to variables occur left-to-right, '
- 'sometimes\n'
- 'resulting in confusion. For instance, the following program '
- 'prints\n'
- '"[0, 2]":\n'
- '\n'
- ' x = [0, 1]\n'
- ' i = 0\n'
- ' i, x[i] = 1, 2 # i is updated, then x[i] is '
- 'updated\n'
- ' print(x)\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 3132** - Extended Iterable Unpacking\n'
- ' The specification for the "*target" feature.\n'
- '\n'
- '\n'
- 'Augmented assignment statements\n'
- '===============================\n'
- '\n'
- 'Augmented assignment is the combination, in a single '
- 'statement, of a\n'
- 'binary operation and an assignment statement:\n'
- '\n'
- ' augmented_assignment_stmt ::= augtarget augop '
- '(expression_list | yield_expression)\n'
- ' augtarget ::= identifier | attributeref | '
- 'subscription | slicing\n'
- ' augop ::= "+=" | "-=" | "*=" | "@=" | '
- '"/=" | "//=" | "%=" | "**="\n'
- ' | ">>=" | "<<=" | "&=" | "^=" | "|="\n'
- '\n'
- '(See section Primaries for the syntax definitions of the last '
- 'three\n'
- 'symbols.)\n'
- '\n'
- 'An augmented assignment evaluates the target (which, unlike '
- 'normal\n'
- 'assignment statements, cannot be an unpacking) and the '
- 'expression\n'
- 'list, performs the binary operation specific to the type of '
- 'assignment\n'
- 'on the two operands, and assigns the result to the original '
- 'target.\n'
- 'The target is only evaluated once.\n'
- '\n'
- 'An augmented assignment expression like "x += 1" can be '
- 'rewritten as\n'
- '"x = x + 1" to achieve a similar, but not exactly equal '
- 'effect. In the\n'
- 'augmented version, "x" is only evaluated once. Also, when '
- 'possible,\n'
- 'the actual operation is performed *in-place*, meaning that '
- 'rather than\n'
- 'creating a new object and assigning that to the target, the '
- 'old object\n'
- 'is modified instead.\n'
- '\n'
- 'Unlike normal assignments, augmented assignments evaluate the '
- 'left-\n'
- 'hand side *before* evaluating the right-hand side. For '
- 'example, "a[i]\n'
- '+= f(x)" first looks-up "a[i]", then it evaluates "f(x)" and '
- 'performs\n'
- 'the addition, and lastly, it writes the result back to '
- '"a[i]".\n'
- '\n'
- 'With the exception of assigning to tuples and multiple targets '
- 'in a\n'
- 'single statement, the assignment done by augmented assignment\n'
- 'statements is handled the same way as normal assignments. '
- 'Similarly,\n'
- 'with the exception of the possible *in-place* behavior, the '
- 'binary\n'
- 'operation performed by augmented assignment is the same as the '
- 'normal\n'
- 'binary operations.\n'
- '\n'
- 'For targets which are attribute references, the same caveat '
- 'about\n'
- 'class and instance attributes applies as for regular '
- 'assignments.\n'
- '\n'
- '\n'
- 'Annotated assignment statements\n'
- '===============================\n'
- '\n'
- '*Annotation* assignment is the combination, in a single '
- 'statement, of\n'
- 'a variable or attribute annotation and an optional assignment\n'
- 'statement:\n'
- '\n'
+ 'sequence,\n'
+ ' thus changing the length of the target sequence, if the '
+ 'target\n'
+ ' sequence allows it.\n'
+ '\n'
+ '**CPython implementation detail:** In the current '
+ 'implementation, the\n'
+ 'syntax for targets is taken to be the same as for expressions, '
+ 'and\n'
+ 'invalid syntax is rejected during the code generation phase, '
+ 'causing\n'
+ 'less detailed error messages.\n'
+ '\n'
+ 'Although the definition of assignment implies that overlaps '
+ 'between\n'
+ 'the left-hand side and the right-hand side are ‘simultaneous’ '
+ '(for\n'
+ 'example "a, b = b, a" swaps two variables), overlaps *within* '
+ 'the\n'
+ 'collection of assigned-to variables occur left-to-right, '
+ 'sometimes\n'
+ 'resulting in confusion. For instance, the following program '
+ 'prints\n'
+ '"[0, 2]":\n'
+ '\n'
+ ' x = [0, 1]\n'
+ ' i = 0\n'
+ ' i, x[i] = 1, 2 # i is updated, then x[i] is '
+ 'updated\n'
+ ' print(x)\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 3132** - Extended Iterable Unpacking\n'
+ ' The specification for the "*target" feature.\n'
+ '\n'
+ '\n'
+ 'Augmented assignment statements\n'
+ '===============================\n'
+ '\n'
+ 'Augmented assignment is the combination, in a single '
+ 'statement, of a\n'
+ 'binary operation and an assignment statement:\n'
+ '\n'
+ ' augmented_assignment_stmt ::= augtarget augop '
+ '(expression_list | yield_expression)\n'
+ ' augtarget ::= identifier | attributeref | '
+ 'subscription | slicing\n'
+ ' augop ::= "+=" | "-=" | "*=" | "@=" | '
+ '"/=" | "//=" | "%=" | "**="\n'
+ ' | ">>=" | "<<=" | "&=" | "^=" | "|="\n'
+ '\n'
+ '(See section Primaries for the syntax definitions of the last '
+ 'three\n'
+ 'symbols.)\n'
+ '\n'
+ 'An augmented assignment evaluates the target (which, unlike '
+ 'normal\n'
+ 'assignment statements, cannot be an unpacking) and the '
+ 'expression\n'
+ 'list, performs the binary operation specific to the type of '
+ 'assignment\n'
+ 'on the two operands, and assigns the result to the original '
+ 'target.\n'
+ 'The target is only evaluated once.\n'
+ '\n'
+ 'An augmented assignment expression like "x += 1" can be '
+ 'rewritten as\n'
+ '"x = x + 1" to achieve a similar, but not exactly equal '
+ 'effect. In the\n'
+ 'augmented version, "x" is only evaluated once. Also, when '
+ 'possible,\n'
+ 'the actual operation is performed *in-place*, meaning that '
+ 'rather than\n'
+ 'creating a new object and assigning that to the target, the '
+ 'old object\n'
+ 'is modified instead.\n'
+ '\n'
+ 'Unlike normal assignments, augmented assignments evaluate the '
+ 'left-\n'
+ 'hand side *before* evaluating the right-hand side. For '
+ 'example, "a[i]\n'
+ '+= f(x)" first looks-up "a[i]", then it evaluates "f(x)" and '
+ 'performs\n'
+ 'the addition, and lastly, it writes the result back to '
+ '"a[i]".\n'
+ '\n'
+ 'With the exception of assigning to tuples and multiple targets '
+ 'in a\n'
+ 'single statement, the assignment done by augmented assignment\n'
+ 'statements is handled the same way as normal assignments. '
+ 'Similarly,\n'
+ 'with the exception of the possible *in-place* behavior, the '
+ 'binary\n'
+ 'operation performed by augmented assignment is the same as the '
+ 'normal\n'
+ 'binary operations.\n'
+ '\n'
+ 'For targets which are attribute references, the same caveat '
+ 'about\n'
+ 'class and instance attributes applies as for regular '
+ 'assignments.\n'
+ '\n'
+ '\n'
+ 'Annotated assignment statements\n'
+ '===============================\n'
+ '\n'
+ '*Annotation* assignment is the combination, in a single '
+ 'statement, of\n'
+ 'a variable or attribute annotation and an optional assignment\n'
+ 'statement:\n'
+ '\n'
' annotated_assignment_stmt ::= augtarget ":" expression\n'
' ["=" (starred_expression | '
'yield_expression)]\n'
- '\n'
- 'The difference from normal Assignment statements is that only '
- 'single\n'
+ '\n'
+ 'The difference from normal Assignment statements is that only '
+ 'single\n'
'target is allowed.\n'
- '\n'
- 'For simple names as assignment targets, if in class or module '
- 'scope,\n'
- 'the annotations are evaluated and stored in a special class or '
- 'module\n'
- 'attribute "__annotations__" that is a dictionary mapping from '
- 'variable\n'
- 'names (mangled if private) to evaluated annotations. This '
- 'attribute is\n'
- 'writable and is automatically created at the start of class or '
- 'module\n'
- 'body execution, if annotations are found statically.\n'
- '\n'
- 'For expressions as assignment targets, the annotations are '
- 'evaluated\n'
- 'if in class or module scope, but not stored.\n'
- '\n'
- 'If a name is annotated in a function scope, then this name is '
- 'local\n'
- 'for that scope. Annotations are never evaluated and stored in '
- 'function\n'
- 'scopes.\n'
- '\n'
- 'If the right hand side is present, an annotated assignment '
- 'performs\n'
- 'the actual assignment before evaluating annotations (where\n'
- 'applicable). If the right hand side is not present for an '
- 'expression\n'
- 'target, then the interpreter evaluates the target except for '
- 'the last\n'
- '"__setitem__()" or "__setattr__()" call.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 526** - Syntax for Variable Annotations\n'
- ' The proposal that added syntax for annotating the types '
- 'of\n'
- ' variables (including class variables and instance '
- 'variables),\n'
- ' instead of expressing them through comments.\n'
- '\n'
- ' **PEP 484** - Type hints\n'
- ' The proposal that added the "typing" module to provide a '
- 'standard\n'
- ' syntax for type annotations that can be used in static '
- 'analysis\n'
+ '\n'
+ 'For simple names as assignment targets, if in class or module '
+ 'scope,\n'
+ 'the annotations are evaluated and stored in a special class or '
+ 'module\n'
+ 'attribute "__annotations__" that is a dictionary mapping from '
+ 'variable\n'
+ 'names (mangled if private) to evaluated annotations. This '
+ 'attribute is\n'
+ 'writable and is automatically created at the start of class or '
+ 'module\n'
+ 'body execution, if annotations are found statically.\n'
+ '\n'
+ 'For expressions as assignment targets, the annotations are '
+ 'evaluated\n'
+ 'if in class or module scope, but not stored.\n'
+ '\n'
+ 'If a name is annotated in a function scope, then this name is '
+ 'local\n'
+ 'for that scope. Annotations are never evaluated and stored in '
+ 'function\n'
+ 'scopes.\n'
+ '\n'
+ 'If the right hand side is present, an annotated assignment '
+ 'performs\n'
+ 'the actual assignment before evaluating annotations (where\n'
+ 'applicable). If the right hand side is not present for an '
+ 'expression\n'
+ 'target, then the interpreter evaluates the target except for '
+ 'the last\n'
+ '"__setitem__()" or "__setattr__()" call.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 526** - Syntax for Variable Annotations\n'
+ ' The proposal that added syntax for annotating the types '
+ 'of\n'
+ ' variables (including class variables and instance '
+ 'variables),\n'
+ ' instead of expressing them through comments.\n'
+ '\n'
+ ' **PEP 484** - Type hints\n'
+ ' The proposal that added the "typing" module to provide a '
+ 'standard\n'
+ ' syntax for type annotations that can be used in static '
+ 'analysis\n'
' tools and IDEs.\n'
'\n'
'Changed in version 3.8: Now annotated assignments allow same\n'
@@ -418,281 +418,281 @@ topics = {'assert': 'The "assert" statement\n'
'Previously, some expressions (like un-parenthesized tuple '
'expressions)\n'
'caused a syntax error.\n',
- 'async': 'Coroutines\n'
- '**********\n'
- '\n'
- 'New in version 3.5.\n'
- '\n'
- '\n'
- 'Coroutine function definition\n'
- '=============================\n'
- '\n'
- ' async_funcdef ::= [decorators] "async" "def" funcname "(" '
- '[parameter_list] ")"\n'
- ' ["->" expression] ":" suite\n'
- '\n'
- 'Execution of Python coroutines can be suspended and resumed at '
- 'many\n'
- 'points (see *coroutine*). Inside the body of a coroutine '
- 'function,\n'
- '"await" and "async" identifiers become reserved keywords; "await"\n'
- 'expressions, "async for" and "async with" can only be used in\n'
- 'coroutine function bodies.\n'
- '\n'
- 'Functions defined with "async def" syntax are always coroutine\n'
- 'functions, even if they do not contain "await" or "async" '
- 'keywords.\n'
- '\n'
- 'It is a "SyntaxError" to use a "yield from" expression inside the '
- 'body\n'
- 'of a coroutine function.\n'
- '\n'
- 'An example of a coroutine function:\n'
- '\n'
- ' async def func(param1, param2):\n'
- ' do_stuff()\n'
- ' await some_coroutine()\n'
- '\n'
- '\n'
- 'The "async for" statement\n'
- '=========================\n'
- '\n'
- ' async_for_stmt ::= "async" for_stmt\n'
- '\n'
+ 'async': 'Coroutines\n'
+ '**********\n'
+ '\n'
+ 'New in version 3.5.\n'
+ '\n'
+ '\n'
+ 'Coroutine function definition\n'
+ '=============================\n'
+ '\n'
+ ' async_funcdef ::= [decorators] "async" "def" funcname "(" '
+ '[parameter_list] ")"\n'
+ ' ["->" expression] ":" suite\n'
+ '\n'
+ 'Execution of Python coroutines can be suspended and resumed at '
+ 'many\n'
+ 'points (see *coroutine*). Inside the body of a coroutine '
+ 'function,\n'
+ '"await" and "async" identifiers become reserved keywords; "await"\n'
+ 'expressions, "async for" and "async with" can only be used in\n'
+ 'coroutine function bodies.\n'
+ '\n'
+ 'Functions defined with "async def" syntax are always coroutine\n'
+ 'functions, even if they do not contain "await" or "async" '
+ 'keywords.\n'
+ '\n'
+ 'It is a "SyntaxError" to use a "yield from" expression inside the '
+ 'body\n'
+ 'of a coroutine function.\n'
+ '\n'
+ 'An example of a coroutine function:\n'
+ '\n'
+ ' async def func(param1, param2):\n'
+ ' do_stuff()\n'
+ ' await some_coroutine()\n'
+ '\n'
+ '\n'
+ 'The "async for" statement\n'
+ '=========================\n'
+ '\n'
+ ' async_for_stmt ::= "async" for_stmt\n'
+ '\n'
'An *asynchronous iterable* provides an "__aiter__" method that\n'
'directly returns an *asynchronous iterator*, which can call\n'
'asynchronous code in its "__anext__" method.\n'
- '\n'
- 'The "async for" statement allows convenient iteration over\n'
+ '\n'
+ 'The "async for" statement allows convenient iteration over\n'
'asynchronous iterables.\n'
- '\n'
- 'The following code:\n'
- '\n'
- ' async for TARGET in ITER:\n'
+ '\n'
+ 'The following code:\n'
+ '\n'
+ ' async for TARGET in ITER:\n'
' SUITE\n'
- ' else:\n'
+ ' else:\n'
' SUITE2\n'
- '\n'
- 'Is semantically equivalent to:\n'
- '\n'
- ' iter = (ITER)\n'
- ' iter = type(iter).__aiter__(iter)\n'
- ' running = True\n'
- '\n'
- ' while running:\n'
- ' try:\n'
- ' TARGET = await type(iter).__anext__(iter)\n'
- ' except StopAsyncIteration:\n'
- ' running = False\n'
- ' else:\n'
+ '\n'
+ 'Is semantically equivalent to:\n'
+ '\n'
+ ' iter = (ITER)\n'
+ ' iter = type(iter).__aiter__(iter)\n'
+ ' running = True\n'
+ '\n'
+ ' while running:\n'
+ ' try:\n'
+ ' TARGET = await type(iter).__anext__(iter)\n'
+ ' except StopAsyncIteration:\n'
+ ' running = False\n'
+ ' else:\n'
' SUITE\n'
- ' else:\n'
+ ' else:\n'
' SUITE2\n'
- '\n'
- 'See also "__aiter__()" and "__anext__()" for details.\n'
- '\n'
- 'It is a "SyntaxError" to use an "async for" statement outside the '
- 'body\n'
- 'of a coroutine function.\n'
- '\n'
- '\n'
- 'The "async with" statement\n'
- '==========================\n'
- '\n'
- ' async_with_stmt ::= "async" with_stmt\n'
- '\n'
- 'An *asynchronous context manager* is a *context manager* that is '
- 'able\n'
- 'to suspend execution in its *enter* and *exit* methods.\n'
- '\n'
- 'The following code:\n'
- '\n'
+ '\n'
+ 'See also "__aiter__()" and "__anext__()" for details.\n'
+ '\n'
+ 'It is a "SyntaxError" to use an "async for" statement outside the '
+ 'body\n'
+ 'of a coroutine function.\n'
+ '\n'
+ '\n'
+ 'The "async with" statement\n'
+ '==========================\n'
+ '\n'
+ ' async_with_stmt ::= "async" with_stmt\n'
+ '\n'
+ 'An *asynchronous context manager* is a *context manager* that is '
+ 'able\n'
+ 'to suspend execution in its *enter* and *exit* methods.\n'
+ '\n'
+ 'The following code:\n'
+ '\n'
' async with EXPRESSION as TARGET:\n'
' SUITE\n'
- '\n'
+ '\n'
'is semantically equivalent to:\n'
- '\n'
+ '\n'
' manager = (EXPRESSION)\n'
' aenter = type(manager).__aenter__\n'
' aexit = type(manager).__aexit__\n'
' value = await aenter(manager)\n'
' hit_except = False\n'
- '\n'
- ' try:\n'
+ '\n'
+ ' try:\n'
' TARGET = value\n'
' SUITE\n'
- ' except:\n'
+ ' except:\n'
' hit_except = True\n'
' if not await aexit(manager, *sys.exc_info()):\n'
- ' raise\n'
+ ' raise\n'
' finally:\n'
' if not hit_except:\n'
' await aexit(manager, None, None, None)\n'
- '\n'
- 'See also "__aenter__()" and "__aexit__()" for details.\n'
- '\n'
- 'It is a "SyntaxError" to use an "async with" statement outside the\n'
- 'body of a coroutine function.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 492** - Coroutines with async and await syntax\n'
- ' The proposal that made coroutines a proper standalone concept '
- 'in\n'
- ' Python, and added supporting syntax.\n'
- '\n'
- '-[ Footnotes ]-\n'
- '\n'
+ '\n'
+ 'See also "__aenter__()" and "__aexit__()" for details.\n'
+ '\n'
+ 'It is a "SyntaxError" to use an "async with" statement outside the\n'
+ 'body of a coroutine function.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 492** - Coroutines with async and await syntax\n'
+ ' The proposal that made coroutines a proper standalone concept '
+ 'in\n'
+ ' Python, and added supporting syntax.\n'
+ '\n'
+ '-[ Footnotes ]-\n'
+ '\n'
'[1] The exception is propagated to the invocation stack unless '
'there\n'
' is a "finally" clause which happens to raise another '
'exception.\n'
' That new exception causes the old one to be lost.\n'
- '\n'
+ '\n'
'[2] A string literal appearing as the first statement in the '
'function\n'
' body is transformed into the function’s "__doc__" attribute '
'and\n'
' therefore the function’s *docstring*.\n'
- '\n'
- '[3] A string literal appearing as the first statement in the class\n'
- ' body is transformed into the namespace’s "__doc__" item and\n'
- ' therefore the class’s *docstring*.\n',
- 'atom-identifiers': 'Identifiers (Names)\n'
- '*******************\n'
- '\n'
- 'An identifier occurring as an atom is a name. See '
- 'section Identifiers\n'
- 'and keywords for lexical definition and section Naming '
- 'and binding for\n'
- 'documentation of naming and binding.\n'
- '\n'
- 'When the name is bound to an object, evaluation of the '
- 'atom yields\n'
- 'that object. When a name is not bound, an attempt to '
- 'evaluate it\n'
- 'raises a "NameError" exception.\n'
- '\n'
- '**Private name mangling:** When an identifier that '
- 'textually occurs in\n'
- 'a class definition begins with two or more underscore '
- 'characters and\n'
- 'does not end in two or more underscores, it is '
- 'considered a *private\n'
- 'name* of that class. Private names are transformed to a '
- 'longer form\n'
- 'before code is generated for them. The transformation '
- 'inserts the\n'
- 'class name, with leading underscores removed and a '
- 'single underscore\n'
- 'inserted, in front of the name. For example, the '
- 'identifier "__spam"\n'
- 'occurring in a class named "Ham" will be transformed to '
- '"_Ham__spam".\n'
- 'This transformation is independent of the syntactical '
- 'context in which\n'
- 'the identifier is used. If the transformed name is '
- 'extremely long\n'
- '(longer than 255 characters), implementation defined '
- 'truncation may\n'
- 'happen. If the class name consists only of underscores, '
- 'no\n'
- 'transformation is done.\n',
- 'atom-literals': 'Literals\n'
- '********\n'
- '\n'
- 'Python supports string and bytes literals and various '
- 'numeric\n'
- 'literals:\n'
- '\n'
- ' literal ::= stringliteral | bytesliteral\n'
- ' | integer | floatnumber | imagnumber\n'
- '\n'
- 'Evaluation of a literal yields an object of the given type '
- '(string,\n'
- 'bytes, integer, floating point number, complex number) with '
- 'the given\n'
- 'value. The value may be approximated in the case of '
- 'floating point\n'
- 'and imaginary (complex) literals. See section Literals for '
- 'details.\n'
- '\n'
- 'All literals correspond to immutable data types, and hence '
- 'the\n'
- 'object’s identity is less important than its value. '
- 'Multiple\n'
- 'evaluations of literals with the same value (either the '
- 'same\n'
- 'occurrence in the program text or a different occurrence) '
- 'may obtain\n'
- 'the same object or a different object with the same '
- 'value.\n',
- 'attribute-access': 'Customizing attribute access\n'
- '****************************\n'
- '\n'
- 'The following methods can be defined to customize the '
- 'meaning of\n'
- 'attribute access (use of, assignment to, or deletion of '
- '"x.name") for\n'
- 'class instances.\n'
- '\n'
- 'object.__getattr__(self, name)\n'
- '\n'
- ' Called when the default attribute access fails with '
- 'an\n'
- ' "AttributeError" (either "__getattribute__()" raises '
- 'an\n'
- ' "AttributeError" because *name* is not an instance '
- 'attribute or an\n'
- ' attribute in the class tree for "self"; or '
- '"__get__()" of a *name*\n'
- ' property raises "AttributeError"). This method '
- 'should either\n'
- ' return the (computed) attribute value or raise an '
- '"AttributeError"\n'
- ' exception.\n'
- '\n'
- ' Note that if the attribute is found through the '
- 'normal mechanism,\n'
- ' "__getattr__()" is not called. (This is an '
- 'intentional asymmetry\n'
- ' between "__getattr__()" and "__setattr__()".) This is '
- 'done both for\n'
- ' efficiency reasons and because otherwise '
- '"__getattr__()" would have\n'
- ' no way to access other attributes of the instance. '
- 'Note that at\n'
- ' least for instance variables, you can fake total '
- 'control by not\n'
- ' inserting any values in the instance attribute '
- 'dictionary (but\n'
- ' instead inserting them in another object). See the\n'
- ' "__getattribute__()" method below for a way to '
- 'actually get total\n'
- ' control over attribute access.\n'
- '\n'
- 'object.__getattribute__(self, name)\n'
- '\n'
- ' Called unconditionally to implement attribute '
- 'accesses for\n'
- ' instances of the class. If the class also defines '
- '"__getattr__()",\n'
- ' the latter will not be called unless '
- '"__getattribute__()" either\n'
- ' calls it explicitly or raises an "AttributeError". '
- 'This method\n'
- ' should return the (computed) attribute value or raise '
- 'an\n'
- ' "AttributeError" exception. In order to avoid '
- 'infinite recursion in\n'
- ' this method, its implementation should always call '
- 'the base class\n'
- ' method with the same name to access any attributes it '
- 'needs, for\n'
- ' example, "object.__getattribute__(self, name)".\n'
- '\n'
+ '\n'
+ '[3] A string literal appearing as the first statement in the class\n'
+ ' body is transformed into the namespace’s "__doc__" item and\n'
+ ' therefore the class’s *docstring*.\n',
+ 'atom-identifiers': 'Identifiers (Names)\n'
+ '*******************\n'
+ '\n'
+ 'An identifier occurring as an atom is a name. See '
+ 'section Identifiers\n'
+ 'and keywords for lexical definition and section Naming '
+ 'and binding for\n'
+ 'documentation of naming and binding.\n'
+ '\n'
+ 'When the name is bound to an object, evaluation of the '
+ 'atom yields\n'
+ 'that object. When a name is not bound, an attempt to '
+ 'evaluate it\n'
+ 'raises a "NameError" exception.\n'
+ '\n'
+ '**Private name mangling:** When an identifier that '
+ 'textually occurs in\n'
+ 'a class definition begins with two or more underscore '
+ 'characters and\n'
+ 'does not end in two or more underscores, it is '
+ 'considered a *private\n'
+ 'name* of that class. Private names are transformed to a '
+ 'longer form\n'
+ 'before code is generated for them. The transformation '
+ 'inserts the\n'
+ 'class name, with leading underscores removed and a '
+ 'single underscore\n'
+ 'inserted, in front of the name. For example, the '
+ 'identifier "__spam"\n'
+ 'occurring in a class named "Ham" will be transformed to '
+ '"_Ham__spam".\n'
+ 'This transformation is independent of the syntactical '
+ 'context in which\n'
+ 'the identifier is used. If the transformed name is '
+ 'extremely long\n'
+ '(longer than 255 characters), implementation defined '
+ 'truncation may\n'
+ 'happen. If the class name consists only of underscores, '
+ 'no\n'
+ 'transformation is done.\n',
+ 'atom-literals': 'Literals\n'
+ '********\n'
+ '\n'
+ 'Python supports string and bytes literals and various '
+ 'numeric\n'
+ 'literals:\n'
+ '\n'
+ ' literal ::= stringliteral | bytesliteral\n'
+ ' | integer | floatnumber | imagnumber\n'
+ '\n'
+ 'Evaluation of a literal yields an object of the given type '
+ '(string,\n'
+ 'bytes, integer, floating point number, complex number) with '
+ 'the given\n'
+ 'value. The value may be approximated in the case of '
+ 'floating point\n'
+ 'and imaginary (complex) literals. See section Literals for '
+ 'details.\n'
+ '\n'
+ 'All literals correspond to immutable data types, and hence '
+ 'the\n'
+ 'object’s identity is less important than its value. '
+ 'Multiple\n'
+ 'evaluations of literals with the same value (either the '
+ 'same\n'
+ 'occurrence in the program text or a different occurrence) '
+ 'may obtain\n'
+ 'the same object or a different object with the same '
+ 'value.\n',
+ 'attribute-access': 'Customizing attribute access\n'
+ '****************************\n'
+ '\n'
+ 'The following methods can be defined to customize the '
+ 'meaning of\n'
+ 'attribute access (use of, assignment to, or deletion of '
+ '"x.name") for\n'
+ 'class instances.\n'
+ '\n'
+ 'object.__getattr__(self, name)\n'
+ '\n'
+ ' Called when the default attribute access fails with '
+ 'an\n'
+ ' "AttributeError" (either "__getattribute__()" raises '
+ 'an\n'
+ ' "AttributeError" because *name* is not an instance '
+ 'attribute or an\n'
+ ' attribute in the class tree for "self"; or '
+ '"__get__()" of a *name*\n'
+ ' property raises "AttributeError"). This method '
+ 'should either\n'
+ ' return the (computed) attribute value or raise an '
+ '"AttributeError"\n'
+ ' exception.\n'
+ '\n'
+ ' Note that if the attribute is found through the '
+ 'normal mechanism,\n'
+ ' "__getattr__()" is not called. (This is an '
+ 'intentional asymmetry\n'
+ ' between "__getattr__()" and "__setattr__()".) This is '
+ 'done both for\n'
+ ' efficiency reasons and because otherwise '
+ '"__getattr__()" would have\n'
+ ' no way to access other attributes of the instance. '
+ 'Note that at\n'
+ ' least for instance variables, you can fake total '
+ 'control by not\n'
+ ' inserting any values in the instance attribute '
+ 'dictionary (but\n'
+ ' instead inserting them in another object). See the\n'
+ ' "__getattribute__()" method below for a way to '
+ 'actually get total\n'
+ ' control over attribute access.\n'
+ '\n'
+ 'object.__getattribute__(self, name)\n'
+ '\n'
+ ' Called unconditionally to implement attribute '
+ 'accesses for\n'
+ ' instances of the class. If the class also defines '
+ '"__getattr__()",\n'
+ ' the latter will not be called unless '
+ '"__getattribute__()" either\n'
+ ' calls it explicitly or raises an "AttributeError". '
+ 'This method\n'
+ ' should return the (computed) attribute value or raise '
+ 'an\n'
+ ' "AttributeError" exception. In order to avoid '
+ 'infinite recursion in\n'
+ ' this method, its implementation should always call '
+ 'the base class\n'
+ ' method with the same name to access any attributes it '
+ 'needs, for\n'
+ ' example, "object.__getattribute__(self, name)".\n'
+ '\n'
' Note:\n'
- '\n'
+ '\n'
' This method may still be bypassed when looking up '
'special methods\n'
' as the result of implicit invocation via language '
@@ -704,100 +704,100 @@ topics = {'assert': 'The "assert" statement\n'
' "object.__getattr__" with arguments "obj" and '
'"name".\n'
'\n'
- 'object.__setattr__(self, name, value)\n'
- '\n'
- ' Called when an attribute assignment is attempted. '
- 'This is called\n'
- ' instead of the normal mechanism (i.e. store the value '
- 'in the\n'
- ' instance dictionary). *name* is the attribute name, '
- '*value* is the\n'
- ' value to be assigned to it.\n'
- '\n'
- ' If "__setattr__()" wants to assign to an instance '
- 'attribute, it\n'
- ' should call the base class method with the same name, '
- 'for example,\n'
- ' "object.__setattr__(self, name, value)".\n'
- '\n'
+ 'object.__setattr__(self, name, value)\n'
+ '\n'
+ ' Called when an attribute assignment is attempted. '
+ 'This is called\n'
+ ' instead of the normal mechanism (i.e. store the value '
+ 'in the\n'
+ ' instance dictionary). *name* is the attribute name, '
+ '*value* is the\n'
+ ' value to be assigned to it.\n'
+ '\n'
+ ' If "__setattr__()" wants to assign to an instance '
+ 'attribute, it\n'
+ ' should call the base class method with the same name, '
+ 'for example,\n'
+ ' "object.__setattr__(self, name, value)".\n'
+ '\n'
' For certain sensitive attribute assignments, raises '
'an auditing\n'
' event "object.__setattr__" with arguments "obj", '
'"name", "value".\n'
'\n'
- 'object.__delattr__(self, name)\n'
- '\n'
- ' Like "__setattr__()" but for attribute deletion '
- 'instead of\n'
- ' assignment. This should only be implemented if "del '
- 'obj.name" is\n'
- ' meaningful for the object.\n'
- '\n'
+ 'object.__delattr__(self, name)\n'
+ '\n'
+ ' Like "__setattr__()" but for attribute deletion '
+ 'instead of\n'
+ ' assignment. This should only be implemented if "del '
+ 'obj.name" is\n'
+ ' meaningful for the object.\n'
+ '\n'
' For certain sensitive attribute deletions, raises an '
'auditing event\n'
' "object.__delattr__" with arguments "obj" and '
'"name".\n'
'\n'
- 'object.__dir__(self)\n'
- '\n'
- ' Called when "dir()" is called on the object. A '
- 'sequence must be\n'
- ' returned. "dir()" converts the returned sequence to a '
- 'list and\n'
- ' sorts it.\n'
- '\n'
- '\n'
- 'Customizing module attribute access\n'
- '===================================\n'
- '\n'
- 'Special names "__getattr__" and "__dir__" can be also '
- 'used to\n'
- 'customize access to module attributes. The "__getattr__" '
- 'function at\n'
- 'the module level should accept one argument which is the '
- 'name of an\n'
- 'attribute and return the computed value or raise an '
- '"AttributeError".\n'
- 'If an attribute is not found on a module object through '
- 'the normal\n'
- 'lookup, i.e. "object.__getattribute__()", then '
- '"__getattr__" is\n'
- 'searched in the module "__dict__" before raising an '
- '"AttributeError".\n'
- 'If found, it is called with the attribute name and the '
- 'result is\n'
- 'returned.\n'
- '\n'
- 'The "__dir__" function should accept no arguments, and '
+ 'object.__dir__(self)\n'
+ '\n'
+ ' Called when "dir()" is called on the object. A '
+ 'sequence must be\n'
+ ' returned. "dir()" converts the returned sequence to a '
+ 'list and\n'
+ ' sorts it.\n'
+ '\n'
+ '\n'
+ 'Customizing module attribute access\n'
+ '===================================\n'
+ '\n'
+ 'Special names "__getattr__" and "__dir__" can be also '
+ 'used to\n'
+ 'customize access to module attributes. The "__getattr__" '
+ 'function at\n'
+ 'the module level should accept one argument which is the '
+ 'name of an\n'
+ 'attribute and return the computed value or raise an '
+ '"AttributeError".\n'
+ 'If an attribute is not found on a module object through '
+ 'the normal\n'
+ 'lookup, i.e. "object.__getattribute__()", then '
+ '"__getattr__" is\n'
+ 'searched in the module "__dict__" before raising an '
+ '"AttributeError".\n'
+ 'If found, it is called with the attribute name and the '
+ 'result is\n'
+ 'returned.\n'
+ '\n'
+ 'The "__dir__" function should accept no arguments, and '
'return a\n'
'sequence of strings that represents the names accessible '
'on module. If\n'
'present, this function overrides the standard "dir()" '
'search on a\n'
- 'module.\n'
- '\n'
- 'For a more fine grained customization of the module '
- 'behavior (setting\n'
- 'attributes, properties, etc.), one can set the '
- '"__class__" attribute\n'
- 'of a module object to a subclass of "types.ModuleType". '
- 'For example:\n'
- '\n'
- ' import sys\n'
- ' from types import ModuleType\n'
- '\n'
- ' class VerboseModule(ModuleType):\n'
- ' def __repr__(self):\n'
- " return f'Verbose {self.__name__}'\n"
- '\n'
- ' def __setattr__(self, attr, value):\n'
- " print(f'Setting {attr}...')\n"
- ' super().__setattr__(attr, value)\n'
- '\n'
- ' sys.modules[__name__].__class__ = VerboseModule\n'
- '\n'
+ 'module.\n'
+ '\n'
+ 'For a more fine grained customization of the module '
+ 'behavior (setting\n'
+ 'attributes, properties, etc.), one can set the '
+ '"__class__" attribute\n'
+ 'of a module object to a subclass of "types.ModuleType". '
+ 'For example:\n'
+ '\n'
+ ' import sys\n'
+ ' from types import ModuleType\n'
+ '\n'
+ ' class VerboseModule(ModuleType):\n'
+ ' def __repr__(self):\n'
+ " return f'Verbose {self.__name__}'\n"
+ '\n'
+ ' def __setattr__(self, attr, value):\n'
+ " print(f'Setting {attr}...')\n"
+ ' super().__setattr__(attr, value)\n'
+ '\n'
+ ' sys.modules[__name__].__class__ = VerboseModule\n'
+ '\n'
'Note:\n'
- '\n'
+ '\n'
' Defining module "__getattr__" and setting module '
'"__class__" only\n'
' affect lookups made using the attribute access syntax '
@@ -807,47 +807,47 @@ topics = {'assert': 'The "assert" statement\n'
' via a reference to the module’s globals dictionary) is '
'unaffected.\n'
'\n'
- 'Changed in version 3.5: "__class__" module attribute is '
- 'now writable.\n'
- '\n'
- 'New in version 3.7: "__getattr__" and "__dir__" module '
- 'attributes.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 562** - Module __getattr__ and __dir__\n'
- ' Describes the "__getattr__" and "__dir__" functions '
- 'on modules.\n'
- '\n'
- '\n'
- 'Implementing Descriptors\n'
- '========================\n'
- '\n'
- 'The following methods only apply when an instance of the '
- 'class\n'
- 'containing the method (a so-called *descriptor* class) '
- 'appears in an\n'
- '*owner* class (the descriptor must be in either the '
- 'owner’s class\n'
- 'dictionary or in the class dictionary for one of its '
- 'parents). In the\n'
- 'examples below, “the attribute” refers to the attribute '
- 'whose name is\n'
- 'the key of the property in the owner class’ "__dict__".\n'
- '\n'
+ 'Changed in version 3.5: "__class__" module attribute is '
+ 'now writable.\n'
+ '\n'
+ 'New in version 3.7: "__getattr__" and "__dir__" module '
+ 'attributes.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 562** - Module __getattr__ and __dir__\n'
+ ' Describes the "__getattr__" and "__dir__" functions '
+ 'on modules.\n'
+ '\n'
+ '\n'
+ 'Implementing Descriptors\n'
+ '========================\n'
+ '\n'
+ 'The following methods only apply when an instance of the '
+ 'class\n'
+ 'containing the method (a so-called *descriptor* class) '
+ 'appears in an\n'
+ '*owner* class (the descriptor must be in either the '
+ 'owner’s class\n'
+ 'dictionary or in the class dictionary for one of its '
+ 'parents). In the\n'
+ 'examples below, “the attribute” refers to the attribute '
+ 'whose name is\n'
+ 'the key of the property in the owner class’ "__dict__".\n'
+ '\n'
'object.__get__(self, instance, owner=None)\n'
- '\n'
- ' Called to get the attribute of the owner class (class '
- 'attribute\n'
- ' access) or of an instance of that class (instance '
- 'attribute\n'
+ '\n'
+ ' Called to get the attribute of the owner class (class '
+ 'attribute\n'
+ ' access) or of an instance of that class (instance '
+ 'attribute\n'
' access). The optional *owner* argument is the owner '
'class, while\n'
' *instance* is the instance that the attribute was '
'accessed through,\n'
' or "None" when the attribute is accessed through the '
'*owner*.\n'
- '\n'
+ '\n'
' This method should return the computed attribute '
'value or raise an\n'
' "AttributeError" exception.\n'
@@ -864,30 +864,30 @@ topics = {'assert': 'The "assert" statement\n'
'both arguments\n'
' whether they are required or not.\n'
'\n'
- 'object.__set__(self, instance, value)\n'
- '\n'
- ' Called to set the attribute on an instance *instance* '
- 'of the owner\n'
- ' class to a new value, *value*.\n'
- '\n'
+ 'object.__set__(self, instance, value)\n'
+ '\n'
+ ' Called to set the attribute on an instance *instance* '
+ 'of the owner\n'
+ ' class to a new value, *value*.\n'
+ '\n'
' Note, adding "__set__()" or "__delete__()" changes '
'the kind of\n'
' descriptor to a “data descriptor”. See Invoking '
'Descriptors for\n'
' more details.\n'
'\n'
- 'object.__delete__(self, instance)\n'
- '\n'
- ' Called to delete the attribute on an instance '
- '*instance* of the\n'
- ' owner class.\n'
- '\n'
- 'object.__set_name__(self, owner, name)\n'
- '\n'
- ' Called at the time the owning class *owner* is '
- 'created. The\n'
- ' descriptor has been assigned to *name*.\n'
- '\n'
+ 'object.__delete__(self, instance)\n'
+ '\n'
+ ' Called to delete the attribute on an instance '
+ '*instance* of the\n'
+ ' owner class.\n'
+ '\n'
+ 'object.__set_name__(self, owner, name)\n'
+ '\n'
+ ' Called at the time the owning class *owner* is '
+ 'created. The\n'
+ ' descriptor has been assigned to *name*.\n'
+ '\n'
' Note:\n'
'\n'
' "__set_name__()" is only called implicitly as part '
@@ -906,102 +906,102 @@ topics = {'assert': 'The "assert" statement\n'
'\n'
' See Creating the class object for more details.\n'
'\n'
- ' New in version 3.6.\n'
- '\n'
- 'The attribute "__objclass__" is interpreted by the '
- '"inspect" module as\n'
- 'specifying the class where this object was defined '
- '(setting this\n'
- 'appropriately can assist in runtime introspection of '
- 'dynamic class\n'
- 'attributes). For callables, it may indicate that an '
- 'instance of the\n'
- 'given type (or a subclass) is expected or required as '
- 'the first\n'
- 'positional argument (for example, CPython sets this '
- 'attribute for\n'
- 'unbound methods that are implemented in C).\n'
- '\n'
- '\n'
- 'Invoking Descriptors\n'
- '====================\n'
- '\n'
- 'In general, a descriptor is an object attribute with '
- '“binding\n'
- 'behavior”, one whose attribute access has been '
- 'overridden by methods\n'
- 'in the descriptor protocol: "__get__()", "__set__()", '
- 'and\n'
- '"__delete__()". If any of those methods are defined for '
- 'an object, it\n'
- 'is said to be a descriptor.\n'
- '\n'
- 'The default behavior for attribute access is to get, '
- 'set, or delete\n'
- 'the attribute from an object’s dictionary. For instance, '
- '"a.x" has a\n'
- 'lookup chain starting with "a.__dict__[\'x\']", then\n'
- '"type(a).__dict__[\'x\']", and continuing through the '
- 'base classes of\n'
- '"type(a)" excluding metaclasses.\n'
- '\n'
- 'However, if the looked-up value is an object defining '
- 'one of the\n'
- 'descriptor methods, then Python may override the default '
- 'behavior and\n'
- 'invoke the descriptor method instead. Where this occurs '
- 'in the\n'
- 'precedence chain depends on which descriptor methods '
- 'were defined and\n'
- 'how they were called.\n'
- '\n'
- 'The starting point for descriptor invocation is a '
- 'binding, "a.x". How\n'
- 'the arguments are assembled depends on "a":\n'
- '\n'
- 'Direct Call\n'
- ' The simplest and least common call is when user code '
- 'directly\n'
- ' invokes a descriptor method: "x.__get__(a)".\n'
- '\n'
- 'Instance Binding\n'
- ' If binding to an object instance, "a.x" is '
- 'transformed into the\n'
- ' call: "type(a).__dict__[\'x\'].__get__(a, type(a))".\n'
- '\n'
- 'Class Binding\n'
- ' If binding to a class, "A.x" is transformed into the '
- 'call:\n'
- ' "A.__dict__[\'x\'].__get__(None, A)".\n'
- '\n'
- 'Super Binding\n'
- ' If "a" is an instance of "super", then the binding '
- '"super(B,\n'
- ' obj).m()" searches "obj.__class__.__mro__" for the '
- 'base class "A"\n'
+ ' New in version 3.6.\n'
+ '\n'
+ 'The attribute "__objclass__" is interpreted by the '
+ '"inspect" module as\n'
+ 'specifying the class where this object was defined '
+ '(setting this\n'
+ 'appropriately can assist in runtime introspection of '
+ 'dynamic class\n'
+ 'attributes). For callables, it may indicate that an '
+ 'instance of the\n'
+ 'given type (or a subclass) is expected or required as '
+ 'the first\n'
+ 'positional argument (for example, CPython sets this '
+ 'attribute for\n'
+ 'unbound methods that are implemented in C).\n'
+ '\n'
+ '\n'
+ 'Invoking Descriptors\n'
+ '====================\n'
+ '\n'
+ 'In general, a descriptor is an object attribute with '
+ '“binding\n'
+ 'behavior”, one whose attribute access has been '
+ 'overridden by methods\n'
+ 'in the descriptor protocol: "__get__()", "__set__()", '
+ 'and\n'
+ '"__delete__()". If any of those methods are defined for '
+ 'an object, it\n'
+ 'is said to be a descriptor.\n'
+ '\n'
+ 'The default behavior for attribute access is to get, '
+ 'set, or delete\n'
+ 'the attribute from an object’s dictionary. For instance, '
+ '"a.x" has a\n'
+ 'lookup chain starting with "a.__dict__[\'x\']", then\n'
+ '"type(a).__dict__[\'x\']", and continuing through the '
+ 'base classes of\n'
+ '"type(a)" excluding metaclasses.\n'
+ '\n'
+ 'However, if the looked-up value is an object defining '
+ 'one of the\n'
+ 'descriptor methods, then Python may override the default '
+ 'behavior and\n'
+ 'invoke the descriptor method instead. Where this occurs '
+ 'in the\n'
+ 'precedence chain depends on which descriptor methods '
+ 'were defined and\n'
+ 'how they were called.\n'
+ '\n'
+ 'The starting point for descriptor invocation is a '
+ 'binding, "a.x". How\n'
+ 'the arguments are assembled depends on "a":\n'
+ '\n'
+ 'Direct Call\n'
+ ' The simplest and least common call is when user code '
+ 'directly\n'
+ ' invokes a descriptor method: "x.__get__(a)".\n'
+ '\n'
+ 'Instance Binding\n'
+ ' If binding to an object instance, "a.x" is '
+ 'transformed into the\n'
+ ' call: "type(a).__dict__[\'x\'].__get__(a, type(a))".\n'
+ '\n'
+ 'Class Binding\n'
+ ' If binding to a class, "A.x" is transformed into the '
+ 'call:\n'
+ ' "A.__dict__[\'x\'].__get__(None, A)".\n'
+ '\n'
+ 'Super Binding\n'
+ ' If "a" is an instance of "super", then the binding '
+ '"super(B,\n'
+ ' obj).m()" searches "obj.__class__.__mro__" for the '
+ 'base class "A"\n'
' immediately following "B" and then invokes the '
- 'descriptor with the\n'
- ' call: "A.__dict__[\'m\'].__get__(obj, '
- 'obj.__class__)".\n'
- '\n'
- 'For instance bindings, the precedence of descriptor '
- 'invocation depends\n'
+ 'descriptor with the\n'
+ ' call: "A.__dict__[\'m\'].__get__(obj, '
+ 'obj.__class__)".\n'
+ '\n'
+ 'For instance bindings, the precedence of descriptor '
+ 'invocation depends\n'
'on which descriptor methods are defined. A descriptor '
'can define any\n'
'combination of "__get__()", "__set__()" and '
- '"__delete__()". If it\n'
- 'does not define "__get__()", then accessing the '
- 'attribute will return\n'
- 'the descriptor object itself unless there is a value in '
- 'the object’s\n'
- 'instance dictionary. If the descriptor defines '
- '"__set__()" and/or\n'
- '"__delete__()", it is a data descriptor; if it defines '
- 'neither, it is\n'
- 'a non-data descriptor. Normally, data descriptors '
- 'define both\n'
- '"__get__()" and "__set__()", while non-data descriptors '
- 'have just the\n'
+ '"__delete__()". If it\n'
+ 'does not define "__get__()", then accessing the '
+ 'attribute will return\n'
+ 'the descriptor object itself unless there is a value in '
+ 'the object’s\n'
+ 'instance dictionary. If the descriptor defines '
+ '"__set__()" and/or\n'
+ '"__delete__()", it is a data descriptor; if it defines '
+ 'neither, it is\n'
+ 'a non-data descriptor. Normally, data descriptors '
+ 'define both\n'
+ '"__get__()" and "__set__()", while non-data descriptors '
+ 'have just the\n'
'"__get__()" method. Data descriptors with "__get__()" '
'and "__set__()"\n'
'(and/or "__delete__()") defined always override a '
@@ -1009,7 +1009,7 @@ topics = {'assert': 'The "assert" statement\n'
'instance dictionary. In contrast, non-data descriptors '
'can be\n'
'overridden by instances.\n'
- '\n'
+ '\n'
'Python methods (including those decorated with '
'"@staticmethod" and\n'
'"@classmethod") are implemented as non-data '
@@ -1019,70 +1019,70 @@ topics = {'assert': 'The "assert" statement\n'
'instances to acquire behaviors that differ from other '
'instances of the\n'
'same class.\n'
- '\n'
- 'The "property()" function is implemented as a data '
- 'descriptor.\n'
- 'Accordingly, instances cannot override the behavior of a '
- 'property.\n'
- '\n'
- '\n'
- '__slots__\n'
- '=========\n'
- '\n'
- '*__slots__* allow us to explicitly declare data members '
- '(like\n'
+ '\n'
+ 'The "property()" function is implemented as a data '
+ 'descriptor.\n'
+ 'Accordingly, instances cannot override the behavior of a '
+ 'property.\n'
+ '\n'
+ '\n'
+ '__slots__\n'
+ '=========\n'
+ '\n'
+ '*__slots__* allow us to explicitly declare data members '
+ '(like\n'
'properties) and deny the creation of "__dict__" and '
- '*__weakref__*\n'
- '(unless explicitly declared in *__slots__* or available '
- 'in a parent.)\n'
- '\n'
+ '*__weakref__*\n'
+ '(unless explicitly declared in *__slots__* or available '
+ 'in a parent.)\n'
+ '\n'
'The space saved over using "__dict__" can be '
- 'significant. Attribute\n'
- 'lookup speed can be significantly improved as well.\n'
- '\n'
- 'object.__slots__\n'
- '\n'
- ' This class variable can be assigned a string, '
- 'iterable, or sequence\n'
- ' of strings with variable names used by instances. '
- '*__slots__*\n'
- ' reserves space for the declared variables and '
- 'prevents the\n'
+ 'significant. Attribute\n'
+ 'lookup speed can be significantly improved as well.\n'
+ '\n'
+ 'object.__slots__\n'
+ '\n'
+ ' This class variable can be assigned a string, '
+ 'iterable, or sequence\n'
+ ' of strings with variable names used by instances. '
+ '*__slots__*\n'
+ ' reserves space for the declared variables and '
+ 'prevents the\n'
' automatic creation of "__dict__" and *__weakref__* '
- 'for each\n'
- ' instance.\n'
- '\n'
- '\n'
- 'Notes on using *__slots__*\n'
- '--------------------------\n'
- '\n'
- '* When inheriting from a class without *__slots__*, the '
+ 'for each\n'
+ ' instance.\n'
+ '\n'
+ '\n'
+ 'Notes on using *__slots__*\n'
+ '--------------------------\n'
+ '\n'
+ '* When inheriting from a class without *__slots__*, the '
'"__dict__" and\n'
' *__weakref__* attribute of the instances will always '
'be accessible.\n'
- '\n'
+ '\n'
'* Without a "__dict__" variable, instances cannot be '
- 'assigned new\n'
- ' variables not listed in the *__slots__* definition. '
- 'Attempts to\n'
- ' assign to an unlisted variable name raises '
- '"AttributeError". If\n'
- ' dynamic assignment of new variables is desired, then '
- 'add\n'
- ' "\'__dict__\'" to the sequence of strings in the '
- '*__slots__*\n'
- ' declaration.\n'
- '\n'
- '* Without a *__weakref__* variable for each instance, '
+ 'assigned new\n'
+ ' variables not listed in the *__slots__* definition. '
+ 'Attempts to\n'
+ ' assign to an unlisted variable name raises '
+ '"AttributeError". If\n'
+ ' dynamic assignment of new variables is desired, then '
+ 'add\n'
+ ' "\'__dict__\'" to the sequence of strings in the '
+ '*__slots__*\n'
+ ' declaration.\n'
+ '\n'
+ '* Without a *__weakref__* variable for each instance, '
'classes defining\n'
' *__slots__* do not support "weak references" to its '
'instances. If\n'
' weak reference support is needed, then add '
'"\'__weakref__\'" to the\n'
' sequence of strings in the *__slots__* declaration.\n'
- '\n'
- '* *__slots__* are implemented at the class level by '
- 'creating\n'
+ '\n'
+ '* *__slots__* are implemented at the class level by '
+ 'creating\n'
' descriptors for each variable name. As a result, '
'class attributes\n'
' cannot be used to set default values for instance '
@@ -1090,8 +1090,8 @@ topics = {'assert': 'The "assert" statement\n'
' by *__slots__*; otherwise, the class attribute would '
'overwrite the\n'
' descriptor assignment.\n'
- '\n'
- '* The action of a *__slots__* declaration is not limited '
+ '\n'
+ '* The action of a *__slots__* declaration is not limited '
'to the class\n'
' where it is defined. *__slots__* declared in parents '
'are available\n'
@@ -1100,8 +1100,8 @@ topics = {'assert': 'The "assert" statement\n'
' and *__weakref__* unless they also define *__slots__* '
'(which should\n'
' only contain names of any *additional* slots).\n'
- '\n'
- '* If a class defines a slot also defined in a base '
+ '\n'
+ '* If a class defines a slot also defined in a base '
'class, the instance\n'
' variable defined by the base class slot is '
'inaccessible (except by\n'
@@ -1109,16 +1109,16 @@ topics = {'assert': 'The "assert" statement\n'
'class). This\n'
' renders the meaning of the program undefined. In the '
'future, a\n'
- ' check may be added to prevent this.\n'
- '\n'
- '* Nonempty *__slots__* does not work for classes derived '
- 'from\n'
- ' “variable-length” built-in types such as "int", '
- '"bytes" and "tuple".\n'
- '\n'
+ ' check may be added to prevent this.\n'
+ '\n'
+ '* Nonempty *__slots__* does not work for classes derived '
+ 'from\n'
+ ' “variable-length” built-in types such as "int", '
+ '"bytes" and "tuple".\n'
+ '\n'
'* Any non-string *iterable* may be assigned to '
'*__slots__*.\n'
- '\n'
+ '\n'
'* If a "dictionary" is used to assign *__slots__*, the '
'dictionary keys\n'
' will be used as the slot names. The values of the '
@@ -1129,15 +1129,15 @@ topics = {'assert': 'The "assert" statement\n'
'"help()".\n'
'\n'
'* "__class__" assignment works only if both classes have '
- 'the same\n'
- ' *__slots__*.\n'
- '\n'
- '* Multiple inheritance with multiple slotted parent '
- 'classes can be\n'
- ' used, but only one parent is allowed to have '
- 'attributes created by\n'
- ' slots (the other bases must have empty slot layouts) - '
- 'violations\n'
+ 'the same\n'
+ ' *__slots__*.\n'
+ '\n'
+ '* Multiple inheritance with multiple slotted parent '
+ 'classes can be\n'
+ ' used, but only one parent is allowed to have '
+ 'attributes created by\n'
+ ' slots (the other bases must have empty slot layouts) - '
+ 'violations\n'
' raise "TypeError".\n'
'\n'
'* If an *iterator* is used for *__slots__* then a '
@@ -1145,819 +1145,819 @@ topics = {'assert': 'The "assert" statement\n'
' created for each of the iterator’s values. However, '
'the *__slots__*\n'
' attribute will be an empty iterator.\n',
- 'attribute-references': 'Attribute references\n'
- '********************\n'
- '\n'
- 'An attribute reference is a primary followed by a '
- 'period and a name:\n'
- '\n'
- ' attributeref ::= primary "." identifier\n'
- '\n'
- 'The primary must evaluate to an object of a type '
- 'that supports\n'
- 'attribute references, which most objects do. This '
- 'object is then\n'
- 'asked to produce the attribute whose name is the '
- 'identifier. This\n'
- 'production can be customized by overriding the '
- '"__getattr__()" method.\n'
- 'If this attribute is not available, the exception '
- '"AttributeError" is\n'
- 'raised. Otherwise, the type and value of the object '
- 'produced is\n'
- 'determined by the object. Multiple evaluations of '
- 'the same attribute\n'
- 'reference may yield different objects.\n',
- 'augassign': 'Augmented assignment statements\n'
- '*******************************\n'
- '\n'
- 'Augmented assignment is the combination, in a single statement, '
- 'of a\n'
- 'binary operation and an assignment statement:\n'
- '\n'
- ' augmented_assignment_stmt ::= augtarget augop '
- '(expression_list | yield_expression)\n'
- ' augtarget ::= identifier | attributeref | '
- 'subscription | slicing\n'
- ' augop ::= "+=" | "-=" | "*=" | "@=" | '
- '"/=" | "//=" | "%=" | "**="\n'
- ' | ">>=" | "<<=" | "&=" | "^=" | "|="\n'
- '\n'
- '(See section Primaries for the syntax definitions of the last '
- 'three\n'
- 'symbols.)\n'
- '\n'
- 'An augmented assignment evaluates the target (which, unlike '
- 'normal\n'
- 'assignment statements, cannot be an unpacking) and the '
- 'expression\n'
- 'list, performs the binary operation specific to the type of '
- 'assignment\n'
- 'on the two operands, and assigns the result to the original '
- 'target.\n'
- 'The target is only evaluated once.\n'
- '\n'
- 'An augmented assignment expression like "x += 1" can be '
- 'rewritten as\n'
- '"x = x + 1" to achieve a similar, but not exactly equal effect. '
- 'In the\n'
- 'augmented version, "x" is only evaluated once. Also, when '
- 'possible,\n'
- 'the actual operation is performed *in-place*, meaning that '
- 'rather than\n'
- 'creating a new object and assigning that to the target, the old '
- 'object\n'
- 'is modified instead.\n'
- '\n'
- 'Unlike normal assignments, augmented assignments evaluate the '
- 'left-\n'
- 'hand side *before* evaluating the right-hand side. For '
- 'example, "a[i]\n'
- '+= f(x)" first looks-up "a[i]", then it evaluates "f(x)" and '
- 'performs\n'
- 'the addition, and lastly, it writes the result back to "a[i]".\n'
- '\n'
- 'With the exception of assigning to tuples and multiple targets '
- 'in a\n'
- 'single statement, the assignment done by augmented assignment\n'
- 'statements is handled the same way as normal assignments. '
- 'Similarly,\n'
- 'with the exception of the possible *in-place* behavior, the '
- 'binary\n'
- 'operation performed by augmented assignment is the same as the '
- 'normal\n'
- 'binary operations.\n'
- '\n'
- 'For targets which are attribute references, the same caveat '
- 'about\n'
- 'class and instance attributes applies as for regular '
- 'assignments.\n',
- 'await': 'Await expression\n'
- '****************\n'
- '\n'
- 'Suspend the execution of *coroutine* on an *awaitable* object. Can\n'
- 'only be used inside a *coroutine function*.\n'
- '\n'
- ' await_expr ::= "await" primary\n'
- '\n'
- 'New in version 3.5.\n',
- 'binary': 'Binary arithmetic operations\n'
- '****************************\n'
- '\n'
- 'The binary arithmetic operations have the conventional priority\n'
- 'levels. Note that some of these operations also apply to certain '
- 'non-\n'
- 'numeric types. Apart from the power operator, there are only two\n'
- 'levels, one for multiplicative operators and one for additive\n'
- 'operators:\n'
- '\n'
- ' m_expr ::= u_expr | m_expr "*" u_expr | m_expr "@" m_expr |\n'
- ' m_expr "//" u_expr | m_expr "/" u_expr |\n'
- ' m_expr "%" u_expr\n'
- ' a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n'
- '\n'
- 'The "*" (multiplication) operator yields the product of its '
- 'arguments.\n'
- 'The arguments must either both be numbers, or one argument must be '
- 'an\n'
- 'integer and the other must be a sequence. In the former case, the\n'
- 'numbers are converted to a common type and then multiplied '
- 'together.\n'
- 'In the latter case, sequence repetition is performed; a negative\n'
- 'repetition factor yields an empty sequence.\n'
- '\n'
+ 'attribute-references': 'Attribute references\n'
+ '********************\n'
+ '\n'
+ 'An attribute reference is a primary followed by a '
+ 'period and a name:\n'
+ '\n'
+ ' attributeref ::= primary "." identifier\n'
+ '\n'
+ 'The primary must evaluate to an object of a type '
+ 'that supports\n'
+ 'attribute references, which most objects do. This '
+ 'object is then\n'
+ 'asked to produce the attribute whose name is the '
+ 'identifier. This\n'
+ 'production can be customized by overriding the '
+ '"__getattr__()" method.\n'
+ 'If this attribute is not available, the exception '
+ '"AttributeError" is\n'
+ 'raised. Otherwise, the type and value of the object '
+ 'produced is\n'
+ 'determined by the object. Multiple evaluations of '
+ 'the same attribute\n'
+ 'reference may yield different objects.\n',
+ 'augassign': 'Augmented assignment statements\n'
+ '*******************************\n'
+ '\n'
+ 'Augmented assignment is the combination, in a single statement, '
+ 'of a\n'
+ 'binary operation and an assignment statement:\n'
+ '\n'
+ ' augmented_assignment_stmt ::= augtarget augop '
+ '(expression_list | yield_expression)\n'
+ ' augtarget ::= identifier | attributeref | '
+ 'subscription | slicing\n'
+ ' augop ::= "+=" | "-=" | "*=" | "@=" | '
+ '"/=" | "//=" | "%=" | "**="\n'
+ ' | ">>=" | "<<=" | "&=" | "^=" | "|="\n'
+ '\n'
+ '(See section Primaries for the syntax definitions of the last '
+ 'three\n'
+ 'symbols.)\n'
+ '\n'
+ 'An augmented assignment evaluates the target (which, unlike '
+ 'normal\n'
+ 'assignment statements, cannot be an unpacking) and the '
+ 'expression\n'
+ 'list, performs the binary operation specific to the type of '
+ 'assignment\n'
+ 'on the two operands, and assigns the result to the original '
+ 'target.\n'
+ 'The target is only evaluated once.\n'
+ '\n'
+ 'An augmented assignment expression like "x += 1" can be '
+ 'rewritten as\n'
+ '"x = x + 1" to achieve a similar, but not exactly equal effect. '
+ 'In the\n'
+ 'augmented version, "x" is only evaluated once. Also, when '
+ 'possible,\n'
+ 'the actual operation is performed *in-place*, meaning that '
+ 'rather than\n'
+ 'creating a new object and assigning that to the target, the old '
+ 'object\n'
+ 'is modified instead.\n'
+ '\n'
+ 'Unlike normal assignments, augmented assignments evaluate the '
+ 'left-\n'
+ 'hand side *before* evaluating the right-hand side. For '
+ 'example, "a[i]\n'
+ '+= f(x)" first looks-up "a[i]", then it evaluates "f(x)" and '
+ 'performs\n'
+ 'the addition, and lastly, it writes the result back to "a[i]".\n'
+ '\n'
+ 'With the exception of assigning to tuples and multiple targets '
+ 'in a\n'
+ 'single statement, the assignment done by augmented assignment\n'
+ 'statements is handled the same way as normal assignments. '
+ 'Similarly,\n'
+ 'with the exception of the possible *in-place* behavior, the '
+ 'binary\n'
+ 'operation performed by augmented assignment is the same as the '
+ 'normal\n'
+ 'binary operations.\n'
+ '\n'
+ 'For targets which are attribute references, the same caveat '
+ 'about\n'
+ 'class and instance attributes applies as for regular '
+ 'assignments.\n',
+ 'await': 'Await expression\n'
+ '****************\n'
+ '\n'
+ 'Suspend the execution of *coroutine* on an *awaitable* object. Can\n'
+ 'only be used inside a *coroutine function*.\n'
+ '\n'
+ ' await_expr ::= "await" primary\n'
+ '\n'
+ 'New in version 3.5.\n',
+ 'binary': 'Binary arithmetic operations\n'
+ '****************************\n'
+ '\n'
+ 'The binary arithmetic operations have the conventional priority\n'
+ 'levels. Note that some of these operations also apply to certain '
+ 'non-\n'
+ 'numeric types. Apart from the power operator, there are only two\n'
+ 'levels, one for multiplicative operators and one for additive\n'
+ 'operators:\n'
+ '\n'
+ ' m_expr ::= u_expr | m_expr "*" u_expr | m_expr "@" m_expr |\n'
+ ' m_expr "//" u_expr | m_expr "/" u_expr |\n'
+ ' m_expr "%" u_expr\n'
+ ' a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n'
+ '\n'
+ 'The "*" (multiplication) operator yields the product of its '
+ 'arguments.\n'
+ 'The arguments must either both be numbers, or one argument must be '
+ 'an\n'
+ 'integer and the other must be a sequence. In the former case, the\n'
+ 'numbers are converted to a common type and then multiplied '
+ 'together.\n'
+ 'In the latter case, sequence repetition is performed; a negative\n'
+ 'repetition factor yields an empty sequence.\n'
+ '\n'
'This operation can be customized using the special "__mul__()" '
'and\n'
'"__rmul__()" methods.\n'
'\n'
- 'The "@" (at) operator is intended to be used for matrix\n'
- 'multiplication. No builtin Python types implement this operator.\n'
- '\n'
- 'New in version 3.5.\n'
- '\n'
- 'The "/" (division) and "//" (floor division) operators yield the\n'
- 'quotient of their arguments. The numeric arguments are first\n'
- 'converted to a common type. Division of integers yields a float, '
- 'while\n'
- 'floor division of integers results in an integer; the result is '
- 'that\n'
- 'of mathematical division with the ‘floor’ function applied to the\n'
- 'result. Division by zero raises the "ZeroDivisionError" '
- 'exception.\n'
- '\n'
+ 'The "@" (at) operator is intended to be used for matrix\n'
+ 'multiplication. No builtin Python types implement this operator.\n'
+ '\n'
+ 'New in version 3.5.\n'
+ '\n'
+ 'The "/" (division) and "//" (floor division) operators yield the\n'
+ 'quotient of their arguments. The numeric arguments are first\n'
+ 'converted to a common type. Division of integers yields a float, '
+ 'while\n'
+ 'floor division of integers results in an integer; the result is '
+ 'that\n'
+ 'of mathematical division with the ‘floor’ function applied to the\n'
+ 'result. Division by zero raises the "ZeroDivisionError" '
+ 'exception.\n'
+ '\n'
'This operation can be customized using the special "__truediv__()" '
'and\n'
'"__floordiv__()" methods.\n'
'\n'
- 'The "%" (modulo) operator yields the remainder from the division '
- 'of\n'
- 'the first argument by the second. The numeric arguments are '
- 'first\n'
- 'converted to a common type. A zero right argument raises the\n'
- '"ZeroDivisionError" exception. The arguments may be floating '
- 'point\n'
- 'numbers, e.g., "3.14%0.7" equals "0.34" (since "3.14" equals '
- '"4*0.7 +\n'
- '0.34".) The modulo operator always yields a result with the same '
- 'sign\n'
- 'as its second operand (or zero); the absolute value of the result '
- 'is\n'
- 'strictly smaller than the absolute value of the second operand '
- '[1].\n'
- '\n'
- 'The floor division and modulo operators are connected by the '
- 'following\n'
- 'identity: "x == (x//y)*y + (x%y)". Floor division and modulo are '
- 'also\n'
- 'connected with the built-in function "divmod()": "divmod(x, y) ==\n'
- '(x//y, x%y)". [2].\n'
- '\n'
- 'In addition to performing the modulo operation on numbers, the '
- '"%"\n'
- 'operator is also overloaded by string objects to perform '
- 'old-style\n'
- 'string formatting (also known as interpolation). The syntax for\n'
- 'string formatting is described in the Python Library Reference,\n'
- 'section printf-style String Formatting.\n'
- '\n'
+ 'The "%" (modulo) operator yields the remainder from the division '
+ 'of\n'
+ 'the first argument by the second. The numeric arguments are '
+ 'first\n'
+ 'converted to a common type. A zero right argument raises the\n'
+ '"ZeroDivisionError" exception. The arguments may be floating '
+ 'point\n'
+ 'numbers, e.g., "3.14%0.7" equals "0.34" (since "3.14" equals '
+ '"4*0.7 +\n'
+ '0.34".) The modulo operator always yields a result with the same '
+ 'sign\n'
+ 'as its second operand (or zero); the absolute value of the result '
+ 'is\n'
+ 'strictly smaller than the absolute value of the second operand '
+ '[1].\n'
+ '\n'
+ 'The floor division and modulo operators are connected by the '
+ 'following\n'
+ 'identity: "x == (x//y)*y + (x%y)". Floor division and modulo are '
+ 'also\n'
+ 'connected with the built-in function "divmod()": "divmod(x, y) ==\n'
+ '(x//y, x%y)". [2].\n'
+ '\n'
+ 'In addition to performing the modulo operation on numbers, the '
+ '"%"\n'
+ 'operator is also overloaded by string objects to perform '
+ 'old-style\n'
+ 'string formatting (also known as interpolation). The syntax for\n'
+ 'string formatting is described in the Python Library Reference,\n'
+ 'section printf-style String Formatting.\n'
+ '\n'
'The *modulo* operation can be customized using the special '
'"__mod__()"\n'
'method.\n'
'\n'
- 'The floor division operator, the modulo operator, and the '
- '"divmod()"\n'
- 'function are not defined for complex numbers. Instead, convert to '
- 'a\n'
- 'floating point number using the "abs()" function if appropriate.\n'
- '\n'
- 'The "+" (addition) operator yields the sum of its arguments. The\n'
- 'arguments must either both be numbers or both be sequences of the '
- 'same\n'
- 'type. In the former case, the numbers are converted to a common '
- 'type\n'
- 'and then added together. In the latter case, the sequences are\n'
- 'concatenated.\n'
- '\n'
+ 'The floor division operator, the modulo operator, and the '
+ '"divmod()"\n'
+ 'function are not defined for complex numbers. Instead, convert to '
+ 'a\n'
+ 'floating point number using the "abs()" function if appropriate.\n'
+ '\n'
+ 'The "+" (addition) operator yields the sum of its arguments. The\n'
+ 'arguments must either both be numbers or both be sequences of the '
+ 'same\n'
+ 'type. In the former case, the numbers are converted to a common '
+ 'type\n'
+ 'and then added together. In the latter case, the sequences are\n'
+ 'concatenated.\n'
+ '\n'
'This operation can be customized using the special "__add__()" '
'and\n'
'"__radd__()" methods.\n'
'\n'
- 'The "-" (subtraction) operator yields the difference of its '
- 'arguments.\n'
+ 'The "-" (subtraction) operator yields the difference of its '
+ 'arguments.\n'
'The numeric arguments are first converted to a common type.\n'
'\n'
'This operation can be customized using the special "__sub__()" '
'method.\n',
- 'bitwise': 'Binary bitwise operations\n'
- '*************************\n'
- '\n'
- 'Each of the three bitwise operations has a different priority '
- 'level:\n'
- '\n'
- ' and_expr ::= shift_expr | and_expr "&" shift_expr\n'
- ' xor_expr ::= and_expr | xor_expr "^" and_expr\n'
- ' or_expr ::= xor_expr | or_expr "|" xor_expr\n'
- '\n'
- 'The "&" operator yields the bitwise AND of its arguments, which '
- 'must\n'
+ 'bitwise': 'Binary bitwise operations\n'
+ '*************************\n'
+ '\n'
+ 'Each of the three bitwise operations has a different priority '
+ 'level:\n'
+ '\n'
+ ' and_expr ::= shift_expr | and_expr "&" shift_expr\n'
+ ' xor_expr ::= and_expr | xor_expr "^" and_expr\n'
+ ' or_expr ::= xor_expr | or_expr "|" xor_expr\n'
+ '\n'
+ 'The "&" operator yields the bitwise AND of its arguments, which '
+ 'must\n'
'be integers or one of them must be a custom object overriding\n'
'"__and__()" or "__rand__()" special methods.\n'
- '\n'
- 'The "^" operator yields the bitwise XOR (exclusive OR) of its\n'
+ '\n'
+ 'The "^" operator yields the bitwise XOR (exclusive OR) of its\n'
'arguments, which must be integers or one of them must be a '
'custom\n'
'object overriding "__xor__()" or "__rxor__()" special methods.\n'
- '\n'
- 'The "|" operator yields the bitwise (inclusive) OR of its '
- 'arguments,\n'
+ '\n'
+ 'The "|" operator yields the bitwise (inclusive) OR of its '
+ 'arguments,\n'
'which must be integers or one of them must be a custom object\n'
'overriding "__or__()" or "__ror__()" special methods.\n',
- 'bltin-code-objects': 'Code Objects\n'
- '************\n'
- '\n'
- 'Code objects are used by the implementation to '
- 'represent “pseudo-\n'
- 'compiled” executable Python code such as a function '
- 'body. They differ\n'
- 'from function objects because they don’t contain a '
- 'reference to their\n'
- 'global execution environment. Code objects are '
- 'returned by the built-\n'
- 'in "compile()" function and can be extracted from '
- 'function objects\n'
- 'through their "__code__" attribute. See also the '
- '"code" module.\n'
- '\n'
+ 'bltin-code-objects': 'Code Objects\n'
+ '************\n'
+ '\n'
+ 'Code objects are used by the implementation to '
+ 'represent “pseudo-\n'
+ 'compiled” executable Python code such as a function '
+ 'body. They differ\n'
+ 'from function objects because they don’t contain a '
+ 'reference to their\n'
+ 'global execution environment. Code objects are '
+ 'returned by the built-\n'
+ 'in "compile()" function and can be extracted from '
+ 'function objects\n'
+ 'through their "__code__" attribute. See also the '
+ '"code" module.\n'
+ '\n'
'Accessing "__code__" raises an auditing event '
'"object.__getattr__"\n'
'with arguments "obj" and ""__code__"".\n'
'\n'
- 'A code object can be executed or evaluated by passing '
- 'it (instead of a\n'
- 'source string) to the "exec()" or "eval()" built-in '
- 'functions.\n'
- '\n'
- 'See The standard type hierarchy for more '
- 'information.\n',
- 'bltin-ellipsis-object': 'The Ellipsis Object\n'
- '*******************\n'
- '\n'
- 'This object is commonly used by slicing (see '
- 'Slicings). It supports\n'
- 'no special operations. There is exactly one '
- 'ellipsis object, named\n'
- '"Ellipsis" (a built-in name). "type(Ellipsis)()" '
- 'produces the\n'
- '"Ellipsis" singleton.\n'
- '\n'
- 'It is written as "Ellipsis" or "...".\n',
- 'bltin-null-object': 'The Null Object\n'
- '***************\n'
- '\n'
- 'This object is returned by functions that don’t '
- 'explicitly return a\n'
- 'value. It supports no special operations. There is '
- 'exactly one null\n'
- 'object, named "None" (a built-in name). "type(None)()" '
- 'produces the\n'
- 'same singleton.\n'
- '\n'
- 'It is written as "None".\n',
- 'bltin-type-objects': 'Type Objects\n'
- '************\n'
- '\n'
- 'Type objects represent the various object types. An '
- 'object’s type is\n'
- 'accessed by the built-in function "type()". There are '
- 'no special\n'
- 'operations on types. The standard module "types" '
- 'defines names for\n'
- 'all standard built-in types.\n'
- '\n'
- 'Types are written like this: "<class \'int\'>".\n',
- 'booleans': 'Boolean operations\n'
- '******************\n'
- '\n'
- ' or_test ::= and_test | or_test "or" and_test\n'
- ' and_test ::= not_test | and_test "and" not_test\n'
- ' not_test ::= comparison | "not" not_test\n'
- '\n'
- 'In the context of Boolean operations, and also when expressions '
- 'are\n'
- 'used by control flow statements, the following values are '
- 'interpreted\n'
- 'as false: "False", "None", numeric zero of all types, and empty\n'
- 'strings and containers (including strings, tuples, lists,\n'
- 'dictionaries, sets and frozensets). All other values are '
- 'interpreted\n'
- 'as true. User-defined objects can customize their truth value '
- 'by\n'
- 'providing a "__bool__()" method.\n'
- '\n'
- 'The operator "not" yields "True" if its argument is false, '
- '"False"\n'
- 'otherwise.\n'
- '\n'
- 'The expression "x and y" first evaluates *x*; if *x* is false, '
- 'its\n'
- 'value is returned; otherwise, *y* is evaluated and the resulting '
- 'value\n'
- 'is returned.\n'
- '\n'
- 'The expression "x or y" first evaluates *x*; if *x* is true, its '
- 'value\n'
- 'is returned; otherwise, *y* is evaluated and the resulting value '
- 'is\n'
- 'returned.\n'
- '\n'
- 'Note that neither "and" nor "or" restrict the value and type '
- 'they\n'
- 'return to "False" and "True", but rather return the last '
- 'evaluated\n'
- 'argument. This is sometimes useful, e.g., if "s" is a string '
- 'that\n'
- 'should be replaced by a default value if it is empty, the '
- 'expression\n'
- '"s or \'foo\'" yields the desired value. Because "not" has to '
- 'create a\n'
- 'new value, it returns a boolean value regardless of the type of '
- 'its\n'
- 'argument (for example, "not \'foo\'" produces "False" rather '
- 'than "\'\'".)\n',
- 'break': 'The "break" statement\n'
- '*********************\n'
- '\n'
- ' break_stmt ::= "break"\n'
- '\n'
- '"break" may only occur syntactically nested in a "for" or "while"\n'
- 'loop, but not nested in a function or class definition within that\n'
- 'loop.\n'
- '\n'
- 'It terminates the nearest enclosing loop, skipping the optional '
- '"else"\n'
- 'clause if the loop has one.\n'
- '\n'
- 'If a "for" loop is terminated by "break", the loop control target\n'
- 'keeps its current value.\n'
- '\n'
- 'When "break" passes control out of a "try" statement with a '
- '"finally"\n'
- 'clause, that "finally" clause is executed before really leaving '
- 'the\n'
- 'loop.\n',
- 'callable-types': 'Emulating callable objects\n'
- '**************************\n'
- '\n'
- 'object.__call__(self[, args...])\n'
- '\n'
- ' Called when the instance is “called” as a function; if '
- 'this method\n'
+ 'A code object can be executed or evaluated by passing '
+ 'it (instead of a\n'
+ 'source string) to the "exec()" or "eval()" built-in '
+ 'functions.\n'
+ '\n'
+ 'See The standard type hierarchy for more '
+ 'information.\n',
+ 'bltin-ellipsis-object': 'The Ellipsis Object\n'
+ '*******************\n'
+ '\n'
+ 'This object is commonly used by slicing (see '
+ 'Slicings). It supports\n'
+ 'no special operations. There is exactly one '
+ 'ellipsis object, named\n'
+ '"Ellipsis" (a built-in name). "type(Ellipsis)()" '
+ 'produces the\n'
+ '"Ellipsis" singleton.\n'
+ '\n'
+ 'It is written as "Ellipsis" or "...".\n',
+ 'bltin-null-object': 'The Null Object\n'
+ '***************\n'
+ '\n'
+ 'This object is returned by functions that don’t '
+ 'explicitly return a\n'
+ 'value. It supports no special operations. There is '
+ 'exactly one null\n'
+ 'object, named "None" (a built-in name). "type(None)()" '
+ 'produces the\n'
+ 'same singleton.\n'
+ '\n'
+ 'It is written as "None".\n',
+ 'bltin-type-objects': 'Type Objects\n'
+ '************\n'
+ '\n'
+ 'Type objects represent the various object types. An '
+ 'object’s type is\n'
+ 'accessed by the built-in function "type()". There are '
+ 'no special\n'
+ 'operations on types. The standard module "types" '
+ 'defines names for\n'
+ 'all standard built-in types.\n'
+ '\n'
+ 'Types are written like this: "<class \'int\'>".\n',
+ 'booleans': 'Boolean operations\n'
+ '******************\n'
+ '\n'
+ ' or_test ::= and_test | or_test "or" and_test\n'
+ ' and_test ::= not_test | and_test "and" not_test\n'
+ ' not_test ::= comparison | "not" not_test\n'
+ '\n'
+ 'In the context of Boolean operations, and also when expressions '
+ 'are\n'
+ 'used by control flow statements, the following values are '
+ 'interpreted\n'
+ 'as false: "False", "None", numeric zero of all types, and empty\n'
+ 'strings and containers (including strings, tuples, lists,\n'
+ 'dictionaries, sets and frozensets). All other values are '
+ 'interpreted\n'
+ 'as true. User-defined objects can customize their truth value '
+ 'by\n'
+ 'providing a "__bool__()" method.\n'
+ '\n'
+ 'The operator "not" yields "True" if its argument is false, '
+ '"False"\n'
+ 'otherwise.\n'
+ '\n'
+ 'The expression "x and y" first evaluates *x*; if *x* is false, '
+ 'its\n'
+ 'value is returned; otherwise, *y* is evaluated and the resulting '
+ 'value\n'
+ 'is returned.\n'
+ '\n'
+ 'The expression "x or y" first evaluates *x*; if *x* is true, its '
+ 'value\n'
+ 'is returned; otherwise, *y* is evaluated and the resulting value '
+ 'is\n'
+ 'returned.\n'
+ '\n'
+ 'Note that neither "and" nor "or" restrict the value and type '
+ 'they\n'
+ 'return to "False" and "True", but rather return the last '
+ 'evaluated\n'
+ 'argument. This is sometimes useful, e.g., if "s" is a string '
+ 'that\n'
+ 'should be replaced by a default value if it is empty, the '
+ 'expression\n'
+ '"s or \'foo\'" yields the desired value. Because "not" has to '
+ 'create a\n'
+ 'new value, it returns a boolean value regardless of the type of '
+ 'its\n'
+ 'argument (for example, "not \'foo\'" produces "False" rather '
+ 'than "\'\'".)\n',
+ 'break': 'The "break" statement\n'
+ '*********************\n'
+ '\n'
+ ' break_stmt ::= "break"\n'
+ '\n'
+ '"break" may only occur syntactically nested in a "for" or "while"\n'
+ 'loop, but not nested in a function or class definition within that\n'
+ 'loop.\n'
+ '\n'
+ 'It terminates the nearest enclosing loop, skipping the optional '
+ '"else"\n'
+ 'clause if the loop has one.\n'
+ '\n'
+ 'If a "for" loop is terminated by "break", the loop control target\n'
+ 'keeps its current value.\n'
+ '\n'
+ 'When "break" passes control out of a "try" statement with a '
+ '"finally"\n'
+ 'clause, that "finally" clause is executed before really leaving '
+ 'the\n'
+ 'loop.\n',
+ 'callable-types': 'Emulating callable objects\n'
+ '**************************\n'
+ '\n'
+ 'object.__call__(self[, args...])\n'
+ '\n'
+ ' Called when the instance is “called” as a function; if '
+ 'this method\n'
' is defined, "x(arg1, arg2, ...)" roughly translates to\n'
' "type(x).__call__(x, arg1, ...)".\n',
- 'calls': 'Calls\n'
- '*****\n'
- '\n'
- 'A call calls a callable object (e.g., a *function*) with a '
- 'possibly\n'
- 'empty series of *arguments*:\n'
- '\n'
- ' call ::= primary "(" [argument_list [","] | '
- 'comprehension] ")"\n'
- ' argument_list ::= positional_arguments ["," '
- 'starred_and_keywords]\n'
- ' ["," keywords_arguments]\n'
- ' | starred_and_keywords ["," '
- 'keywords_arguments]\n'
- ' | keywords_arguments\n'
+ 'calls': 'Calls\n'
+ '*****\n'
+ '\n'
+ 'A call calls a callable object (e.g., a *function*) with a '
+ 'possibly\n'
+ 'empty series of *arguments*:\n'
+ '\n'
+ ' call ::= primary "(" [argument_list [","] | '
+ 'comprehension] ")"\n'
+ ' argument_list ::= positional_arguments ["," '
+ 'starred_and_keywords]\n'
+ ' ["," keywords_arguments]\n'
+ ' | starred_and_keywords ["," '
+ 'keywords_arguments]\n'
+ ' | keywords_arguments\n'
' positional_arguments ::= positional_item ("," positional_item)*\n'
' positional_item ::= assignment_expression | "*" expression\n'
- ' starred_and_keywords ::= ("*" expression | keyword_item)\n'
- ' ("," "*" expression | "," '
- 'keyword_item)*\n'
- ' keywords_arguments ::= (keyword_item | "**" expression)\n'
- ' ("," keyword_item | "," "**" '
- 'expression)*\n'
- ' keyword_item ::= identifier "=" expression\n'
- '\n'
- 'An optional trailing comma may be present after the positional and\n'
- 'keyword arguments but does not affect the semantics.\n'
- '\n'
- 'The primary must evaluate to a callable object (user-defined\n'
- 'functions, built-in functions, methods of built-in objects, class\n'
- 'objects, methods of class instances, and all objects having a\n'
- '"__call__()" method are callable). All argument expressions are\n'
- 'evaluated before the call is attempted. Please refer to section\n'
- 'Function definitions for the syntax of formal *parameter* lists.\n'
- '\n'
- 'If keyword arguments are present, they are first converted to\n'
- 'positional arguments, as follows. First, a list of unfilled slots '
- 'is\n'
- 'created for the formal parameters. If there are N positional\n'
- 'arguments, they are placed in the first N slots. Next, for each\n'
- 'keyword argument, the identifier is used to determine the\n'
- 'corresponding slot (if the identifier is the same as the first '
- 'formal\n'
- 'parameter name, the first slot is used, and so on). If the slot '
- 'is\n'
- 'already filled, a "TypeError" exception is raised. Otherwise, the\n'
- 'value of the argument is placed in the slot, filling it (even if '
- 'the\n'
- 'expression is "None", it fills the slot). When all arguments have\n'
- 'been processed, the slots that are still unfilled are filled with '
- 'the\n'
- 'corresponding default value from the function definition. '
- '(Default\n'
- 'values are calculated, once, when the function is defined; thus, a\n'
- 'mutable object such as a list or dictionary used as default value '
- 'will\n'
- 'be shared by all calls that don’t specify an argument value for '
- 'the\n'
- 'corresponding slot; this should usually be avoided.) If there are '
- 'any\n'
- 'unfilled slots for which no default value is specified, a '
- '"TypeError"\n'
- 'exception is raised. Otherwise, the list of filled slots is used '
- 'as\n'
- 'the argument list for the call.\n'
- '\n'
- '**CPython implementation detail:** An implementation may provide\n'
- 'built-in functions whose positional parameters do not have names, '
- 'even\n'
- 'if they are ‘named’ for the purpose of documentation, and which\n'
- 'therefore cannot be supplied by keyword. In CPython, this is the '
- 'case\n'
- 'for functions implemented in C that use "PyArg_ParseTuple()" to '
- 'parse\n'
- 'their arguments.\n'
- '\n'
- 'If there are more positional arguments than there are formal '
- 'parameter\n'
- 'slots, a "TypeError" exception is raised, unless a formal '
- 'parameter\n'
- 'using the syntax "*identifier" is present; in this case, that '
- 'formal\n'
- 'parameter receives a tuple containing the excess positional '
- 'arguments\n'
- '(or an empty tuple if there were no excess positional arguments).\n'
- '\n'
- 'If any keyword argument does not correspond to a formal parameter\n'
- 'name, a "TypeError" exception is raised, unless a formal parameter\n'
- 'using the syntax "**identifier" is present; in this case, that '
- 'formal\n'
- 'parameter receives a dictionary containing the excess keyword\n'
- 'arguments (using the keywords as keys and the argument values as\n'
- 'corresponding values), or a (new) empty dictionary if there were '
- 'no\n'
- 'excess keyword arguments.\n'
- '\n'
- 'If the syntax "*expression" appears in the function call, '
- '"expression"\n'
- 'must evaluate to an *iterable*. Elements from these iterables are\n'
- 'treated as if they were additional positional arguments. For the '
- 'call\n'
- '"f(x1, x2, *y, x3, x4)", if *y* evaluates to a sequence *y1*, …, '
- '*yM*,\n'
- 'this is equivalent to a call with M+4 positional arguments *x1*, '
- '*x2*,\n'
- '*y1*, …, *yM*, *x3*, *x4*.\n'
- '\n'
- 'A consequence of this is that although the "*expression" syntax '
- 'may\n'
- 'appear *after* explicit keyword arguments, it is processed '
- '*before*\n'
- 'the keyword arguments (and any "**expression" arguments – see '
- 'below).\n'
- 'So:\n'
- '\n'
- ' >>> def f(a, b):\n'
- ' ... print(a, b)\n'
- ' ...\n'
- ' >>> f(b=1, *(2,))\n'
- ' 2 1\n'
- ' >>> f(a=1, *(2,))\n'
- ' Traceback (most recent call last):\n'
- ' File "<stdin>", line 1, in <module>\n'
- " TypeError: f() got multiple values for keyword argument 'a'\n"
- ' >>> f(1, *(2,))\n'
- ' 1 2\n'
- '\n'
- 'It is unusual for both keyword arguments and the "*expression" '
- 'syntax\n'
- 'to be used in the same call, so in practice this confusion does '
- 'not\n'
- 'arise.\n'
- '\n'
- 'If the syntax "**expression" appears in the function call,\n'
- '"expression" must evaluate to a *mapping*, the contents of which '
- 'are\n'
- 'treated as additional keyword arguments. If a keyword is already\n'
- 'present (as an explicit keyword argument, or from another '
- 'unpacking),\n'
- 'a "TypeError" exception is raised.\n'
- '\n'
- 'Formal parameters using the syntax "*identifier" or "**identifier"\n'
- 'cannot be used as positional argument slots or as keyword argument\n'
- 'names.\n'
- '\n'
- 'Changed in version 3.5: Function calls accept any number of "*" '
- 'and\n'
- '"**" unpackings, positional arguments may follow iterable '
- 'unpackings\n'
- '("*"), and keyword arguments may follow dictionary unpackings '
- '("**").\n'
- 'Originally proposed by **PEP 448**.\n'
- '\n'
- 'A call always returns some value, possibly "None", unless it raises '
- 'an\n'
- 'exception. How this value is computed depends on the type of the\n'
- 'callable object.\n'
- '\n'
- 'If it is—\n'
- '\n'
- 'a user-defined function:\n'
- ' The code block for the function is executed, passing it the\n'
- ' argument list. The first thing the code block will do is bind '
- 'the\n'
- ' formal parameters to the arguments; this is described in '
- 'section\n'
- ' Function definitions. When the code block executes a "return"\n'
- ' statement, this specifies the return value of the function '
- 'call.\n'
- '\n'
- 'a built-in function or method:\n'
- ' The result is up to the interpreter; see Built-in Functions for '
- 'the\n'
- ' descriptions of built-in functions and methods.\n'
- '\n'
- 'a class object:\n'
- ' A new instance of that class is returned.\n'
- '\n'
- 'a class instance method:\n'
- ' The corresponding user-defined function is called, with an '
- 'argument\n'
- ' list that is one longer than the argument list of the call: the\n'
- ' instance becomes the first argument.\n'
- '\n'
- 'a class instance:\n'
- ' The class must define a "__call__()" method; the effect is then '
- 'the\n'
- ' same as if that method was called.\n',
- 'class': 'Class definitions\n'
- '*****************\n'
- '\n'
- 'A class definition defines a class object (see section The '
- 'standard\n'
- 'type hierarchy):\n'
- '\n'
- ' classdef ::= [decorators] "class" classname [inheritance] ":" '
- 'suite\n'
- ' inheritance ::= "(" [argument_list] ")"\n'
- ' classname ::= identifier\n'
- '\n'
- 'A class definition is an executable statement. The inheritance '
- 'list\n'
- 'usually gives a list of base classes (see Metaclasses for more\n'
- 'advanced uses), so each item in the list should evaluate to a '
- 'class\n'
- 'object which allows subclassing. Classes without an inheritance '
- 'list\n'
- 'inherit, by default, from the base class "object"; hence,\n'
- '\n'
- ' class Foo:\n'
- ' pass\n'
- '\n'
- 'is equivalent to\n'
- '\n'
- ' class Foo(object):\n'
- ' pass\n'
- '\n'
- 'The class’s suite is then executed in a new execution frame (see\n'
- 'Naming and binding), using a newly created local namespace and the\n'
- 'original global namespace. (Usually, the suite contains mostly\n'
- 'function definitions.) When the class’s suite finishes execution, '
- 'its\n'
- 'execution frame is discarded but its local namespace is saved. [3] '
- 'A\n'
- 'class object is then created using the inheritance list for the '
- 'base\n'
- 'classes and the saved local namespace for the attribute '
- 'dictionary.\n'
- 'The class name is bound to this class object in the original local\n'
- 'namespace.\n'
- '\n'
- 'The order in which attributes are defined in the class body is\n'
- 'preserved in the new class’s "__dict__". Note that this is '
- 'reliable\n'
- 'only right after the class is created and only for classes that '
- 'were\n'
- 'defined using the definition syntax.\n'
- '\n'
- 'Class creation can be customized heavily using metaclasses.\n'
- '\n'
- 'Classes can also be decorated: just like when decorating '
- 'functions,\n'
- '\n'
- ' @f1(arg)\n'
- ' @f2\n'
- ' class Foo: pass\n'
- '\n'
- 'is roughly equivalent to\n'
- '\n'
- ' class Foo: pass\n'
- ' Foo = f1(arg)(f2(Foo))\n'
- '\n'
- 'The evaluation rules for the decorator expressions are the same as '
- 'for\n'
- 'function decorators. The result is then bound to the class name.\n'
- '\n'
+ ' starred_and_keywords ::= ("*" expression | keyword_item)\n'
+ ' ("," "*" expression | "," '
+ 'keyword_item)*\n'
+ ' keywords_arguments ::= (keyword_item | "**" expression)\n'
+ ' ("," keyword_item | "," "**" '
+ 'expression)*\n'
+ ' keyword_item ::= identifier "=" expression\n'
+ '\n'
+ 'An optional trailing comma may be present after the positional and\n'
+ 'keyword arguments but does not affect the semantics.\n'
+ '\n'
+ 'The primary must evaluate to a callable object (user-defined\n'
+ 'functions, built-in functions, methods of built-in objects, class\n'
+ 'objects, methods of class instances, and all objects having a\n'
+ '"__call__()" method are callable). All argument expressions are\n'
+ 'evaluated before the call is attempted. Please refer to section\n'
+ 'Function definitions for the syntax of formal *parameter* lists.\n'
+ '\n'
+ 'If keyword arguments are present, they are first converted to\n'
+ 'positional arguments, as follows. First, a list of unfilled slots '
+ 'is\n'
+ 'created for the formal parameters. If there are N positional\n'
+ 'arguments, they are placed in the first N slots. Next, for each\n'
+ 'keyword argument, the identifier is used to determine the\n'
+ 'corresponding slot (if the identifier is the same as the first '
+ 'formal\n'
+ 'parameter name, the first slot is used, and so on). If the slot '
+ 'is\n'
+ 'already filled, a "TypeError" exception is raised. Otherwise, the\n'
+ 'value of the argument is placed in the slot, filling it (even if '
+ 'the\n'
+ 'expression is "None", it fills the slot). When all arguments have\n'
+ 'been processed, the slots that are still unfilled are filled with '
+ 'the\n'
+ 'corresponding default value from the function definition. '
+ '(Default\n'
+ 'values are calculated, once, when the function is defined; thus, a\n'
+ 'mutable object such as a list or dictionary used as default value '
+ 'will\n'
+ 'be shared by all calls that don’t specify an argument value for '
+ 'the\n'
+ 'corresponding slot; this should usually be avoided.) If there are '
+ 'any\n'
+ 'unfilled slots for which no default value is specified, a '
+ '"TypeError"\n'
+ 'exception is raised. Otherwise, the list of filled slots is used '
+ 'as\n'
+ 'the argument list for the call.\n'
+ '\n'
+ '**CPython implementation detail:** An implementation may provide\n'
+ 'built-in functions whose positional parameters do not have names, '
+ 'even\n'
+ 'if they are ‘named’ for the purpose of documentation, and which\n'
+ 'therefore cannot be supplied by keyword. In CPython, this is the '
+ 'case\n'
+ 'for functions implemented in C that use "PyArg_ParseTuple()" to '
+ 'parse\n'
+ 'their arguments.\n'
+ '\n'
+ 'If there are more positional arguments than there are formal '
+ 'parameter\n'
+ 'slots, a "TypeError" exception is raised, unless a formal '
+ 'parameter\n'
+ 'using the syntax "*identifier" is present; in this case, that '
+ 'formal\n'
+ 'parameter receives a tuple containing the excess positional '
+ 'arguments\n'
+ '(or an empty tuple if there were no excess positional arguments).\n'
+ '\n'
+ 'If any keyword argument does not correspond to a formal parameter\n'
+ 'name, a "TypeError" exception is raised, unless a formal parameter\n'
+ 'using the syntax "**identifier" is present; in this case, that '
+ 'formal\n'
+ 'parameter receives a dictionary containing the excess keyword\n'
+ 'arguments (using the keywords as keys and the argument values as\n'
+ 'corresponding values), or a (new) empty dictionary if there were '
+ 'no\n'
+ 'excess keyword arguments.\n'
+ '\n'
+ 'If the syntax "*expression" appears in the function call, '
+ '"expression"\n'
+ 'must evaluate to an *iterable*. Elements from these iterables are\n'
+ 'treated as if they were additional positional arguments. For the '
+ 'call\n'
+ '"f(x1, x2, *y, x3, x4)", if *y* evaluates to a sequence *y1*, …, '
+ '*yM*,\n'
+ 'this is equivalent to a call with M+4 positional arguments *x1*, '
+ '*x2*,\n'
+ '*y1*, …, *yM*, *x3*, *x4*.\n'
+ '\n'
+ 'A consequence of this is that although the "*expression" syntax '
+ 'may\n'
+ 'appear *after* explicit keyword arguments, it is processed '
+ '*before*\n'
+ 'the keyword arguments (and any "**expression" arguments – see '
+ 'below).\n'
+ 'So:\n'
+ '\n'
+ ' >>> def f(a, b):\n'
+ ' ... print(a, b)\n'
+ ' ...\n'
+ ' >>> f(b=1, *(2,))\n'
+ ' 2 1\n'
+ ' >>> f(a=1, *(2,))\n'
+ ' Traceback (most recent call last):\n'
+ ' File "<stdin>", line 1, in <module>\n'
+ " TypeError: f() got multiple values for keyword argument 'a'\n"
+ ' >>> f(1, *(2,))\n'
+ ' 1 2\n'
+ '\n'
+ 'It is unusual for both keyword arguments and the "*expression" '
+ 'syntax\n'
+ 'to be used in the same call, so in practice this confusion does '
+ 'not\n'
+ 'arise.\n'
+ '\n'
+ 'If the syntax "**expression" appears in the function call,\n'
+ '"expression" must evaluate to a *mapping*, the contents of which '
+ 'are\n'
+ 'treated as additional keyword arguments. If a keyword is already\n'
+ 'present (as an explicit keyword argument, or from another '
+ 'unpacking),\n'
+ 'a "TypeError" exception is raised.\n'
+ '\n'
+ 'Formal parameters using the syntax "*identifier" or "**identifier"\n'
+ 'cannot be used as positional argument slots or as keyword argument\n'
+ 'names.\n'
+ '\n'
+ 'Changed in version 3.5: Function calls accept any number of "*" '
+ 'and\n'
+ '"**" unpackings, positional arguments may follow iterable '
+ 'unpackings\n'
+ '("*"), and keyword arguments may follow dictionary unpackings '
+ '("**").\n'
+ 'Originally proposed by **PEP 448**.\n'
+ '\n'
+ 'A call always returns some value, possibly "None", unless it raises '
+ 'an\n'
+ 'exception. How this value is computed depends on the type of the\n'
+ 'callable object.\n'
+ '\n'
+ 'If it is—\n'
+ '\n'
+ 'a user-defined function:\n'
+ ' The code block for the function is executed, passing it the\n'
+ ' argument list. The first thing the code block will do is bind '
+ 'the\n'
+ ' formal parameters to the arguments; this is described in '
+ 'section\n'
+ ' Function definitions. When the code block executes a "return"\n'
+ ' statement, this specifies the return value of the function '
+ 'call.\n'
+ '\n'
+ 'a built-in function or method:\n'
+ ' The result is up to the interpreter; see Built-in Functions for '
+ 'the\n'
+ ' descriptions of built-in functions and methods.\n'
+ '\n'
+ 'a class object:\n'
+ ' A new instance of that class is returned.\n'
+ '\n'
+ 'a class instance method:\n'
+ ' The corresponding user-defined function is called, with an '
+ 'argument\n'
+ ' list that is one longer than the argument list of the call: the\n'
+ ' instance becomes the first argument.\n'
+ '\n'
+ 'a class instance:\n'
+ ' The class must define a "__call__()" method; the effect is then '
+ 'the\n'
+ ' same as if that method was called.\n',
+ 'class': 'Class definitions\n'
+ '*****************\n'
+ '\n'
+ 'A class definition defines a class object (see section The '
+ 'standard\n'
+ 'type hierarchy):\n'
+ '\n'
+ ' classdef ::= [decorators] "class" classname [inheritance] ":" '
+ 'suite\n'
+ ' inheritance ::= "(" [argument_list] ")"\n'
+ ' classname ::= identifier\n'
+ '\n'
+ 'A class definition is an executable statement. The inheritance '
+ 'list\n'
+ 'usually gives a list of base classes (see Metaclasses for more\n'
+ 'advanced uses), so each item in the list should evaluate to a '
+ 'class\n'
+ 'object which allows subclassing. Classes without an inheritance '
+ 'list\n'
+ 'inherit, by default, from the base class "object"; hence,\n'
+ '\n'
+ ' class Foo:\n'
+ ' pass\n'
+ '\n'
+ 'is equivalent to\n'
+ '\n'
+ ' class Foo(object):\n'
+ ' pass\n'
+ '\n'
+ 'The class’s suite is then executed in a new execution frame (see\n'
+ 'Naming and binding), using a newly created local namespace and the\n'
+ 'original global namespace. (Usually, the suite contains mostly\n'
+ 'function definitions.) When the class’s suite finishes execution, '
+ 'its\n'
+ 'execution frame is discarded but its local namespace is saved. [3] '
+ 'A\n'
+ 'class object is then created using the inheritance list for the '
+ 'base\n'
+ 'classes and the saved local namespace for the attribute '
+ 'dictionary.\n'
+ 'The class name is bound to this class object in the original local\n'
+ 'namespace.\n'
+ '\n'
+ 'The order in which attributes are defined in the class body is\n'
+ 'preserved in the new class’s "__dict__". Note that this is '
+ 'reliable\n'
+ 'only right after the class is created and only for classes that '
+ 'were\n'
+ 'defined using the definition syntax.\n'
+ '\n'
+ 'Class creation can be customized heavily using metaclasses.\n'
+ '\n'
+ 'Classes can also be decorated: just like when decorating '
+ 'functions,\n'
+ '\n'
+ ' @f1(arg)\n'
+ ' @f2\n'
+ ' class Foo: pass\n'
+ '\n'
+ 'is roughly equivalent to\n'
+ '\n'
+ ' class Foo: pass\n'
+ ' Foo = f1(arg)(f2(Foo))\n'
+ '\n'
+ 'The evaluation rules for the decorator expressions are the same as '
+ 'for\n'
+ 'function decorators. The result is then bound to the class name.\n'
+ '\n'
'Changed in version 3.9: Classes may be decorated with any valid\n'
'"assignment_expression". Previously, the grammar was much more\n'
'restrictive; see **PEP 614** for details.\n'
'\n'
- '**Programmer’s note:** Variables defined in the class definition '
- 'are\n'
- 'class attributes; they are shared by instances. Instance '
- 'attributes\n'
- 'can be set in a method with "self.name = value". Both class and\n'
- 'instance attributes are accessible through the notation '
- '“"self.name"”,\n'
- 'and an instance attribute hides a class attribute with the same '
- 'name\n'
- 'when accessed in this way. Class attributes can be used as '
- 'defaults\n'
- 'for instance attributes, but using mutable values there can lead '
- 'to\n'
- 'unexpected results. Descriptors can be used to create instance\n'
- 'variables with different implementation details.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 3115** - Metaclasses in Python 3000\n'
- ' The proposal that changed the declaration of metaclasses to '
- 'the\n'
- ' current syntax, and the semantics for how classes with\n'
- ' metaclasses are constructed.\n'
- '\n'
- ' **PEP 3129** - Class Decorators\n'
- ' The proposal that added class decorators. Function and '
- 'method\n'
- ' decorators were introduced in **PEP 318**.\n',
- 'comparisons': 'Comparisons\n'
- '***********\n'
- '\n'
- 'Unlike C, all comparison operations in Python have the same '
- 'priority,\n'
- 'which is lower than that of any arithmetic, shifting or '
- 'bitwise\n'
- 'operation. Also unlike C, expressions like "a < b < c" have '
- 'the\n'
- 'interpretation that is conventional in mathematics:\n'
- '\n'
- ' comparison ::= or_expr (comp_operator or_expr)*\n'
- ' comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "!="\n'
- ' | "is" ["not"] | ["not"] "in"\n'
- '\n'
+ '**Programmer’s note:** Variables defined in the class definition '
+ 'are\n'
+ 'class attributes; they are shared by instances. Instance '
+ 'attributes\n'
+ 'can be set in a method with "self.name = value". Both class and\n'
+ 'instance attributes are accessible through the notation '
+ '“"self.name"”,\n'
+ 'and an instance attribute hides a class attribute with the same '
+ 'name\n'
+ 'when accessed in this way. Class attributes can be used as '
+ 'defaults\n'
+ 'for instance attributes, but using mutable values there can lead '
+ 'to\n'
+ 'unexpected results. Descriptors can be used to create instance\n'
+ 'variables with different implementation details.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 3115** - Metaclasses in Python 3000\n'
+ ' The proposal that changed the declaration of metaclasses to '
+ 'the\n'
+ ' current syntax, and the semantics for how classes with\n'
+ ' metaclasses are constructed.\n'
+ '\n'
+ ' **PEP 3129** - Class Decorators\n'
+ ' The proposal that added class decorators. Function and '
+ 'method\n'
+ ' decorators were introduced in **PEP 318**.\n',
+ 'comparisons': 'Comparisons\n'
+ '***********\n'
+ '\n'
+ 'Unlike C, all comparison operations in Python have the same '
+ 'priority,\n'
+ 'which is lower than that of any arithmetic, shifting or '
+ 'bitwise\n'
+ 'operation. Also unlike C, expressions like "a < b < c" have '
+ 'the\n'
+ 'interpretation that is conventional in mathematics:\n'
+ '\n'
+ ' comparison ::= or_expr (comp_operator or_expr)*\n'
+ ' comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "!="\n'
+ ' | "is" ["not"] | ["not"] "in"\n'
+ '\n'
'Comparisons yield boolean values: "True" or "False". Custom '
'*rich\n'
'comparison methods* may return non-boolean values. In this '
'case Python\n'
'will call "bool()" on such value in boolean contexts.\n'
- '\n'
- 'Comparisons can be chained arbitrarily, e.g., "x < y <= z" '
- 'is\n'
- 'equivalent to "x < y and y <= z", except that "y" is '
- 'evaluated only\n'
- 'once (but in both cases "z" is not evaluated at all when "x < '
- 'y" is\n'
- 'found to be false).\n'
- '\n'
- 'Formally, if *a*, *b*, *c*, …, *y*, *z* are expressions and '
- '*op1*,\n'
- '*op2*, …, *opN* are comparison operators, then "a op1 b op2 c '
- '... y\n'
- 'opN z" is equivalent to "a op1 b and b op2 c and ... y opN '
- 'z", except\n'
- 'that each expression is evaluated at most once.\n'
- '\n'
- 'Note that "a op1 b op2 c" doesn’t imply any kind of '
- 'comparison between\n'
- '*a* and *c*, so that, e.g., "x < y > z" is perfectly legal '
- '(though\n'
- 'perhaps not pretty).\n'
- '\n'
- '\n'
- 'Value comparisons\n'
- '=================\n'
- '\n'
- 'The operators "<", ">", "==", ">=", "<=", and "!=" compare '
- 'the values\n'
- 'of two objects. The objects do not need to have the same '
- 'type.\n'
- '\n'
- 'Chapter Objects, values and types states that objects have a '
- 'value (in\n'
- 'addition to type and identity). The value of an object is a '
- 'rather\n'
- 'abstract notion in Python: For example, there is no canonical '
- 'access\n'
- 'method for an object’s value. Also, there is no requirement '
- 'that the\n'
- 'value of an object should be constructed in a particular way, '
- 'e.g.\n'
- 'comprised of all its data attributes. Comparison operators '
- 'implement a\n'
- 'particular notion of what the value of an object is. One can '
- 'think of\n'
- 'them as defining the value of an object indirectly, by means '
- 'of their\n'
- 'comparison implementation.\n'
- '\n'
- 'Because all types are (direct or indirect) subtypes of '
- '"object", they\n'
- 'inherit the default comparison behavior from "object". Types '
- 'can\n'
- 'customize their comparison behavior by implementing *rich '
- 'comparison\n'
- 'methods* like "__lt__()", described in Basic customization.\n'
- '\n'
- 'The default behavior for equality comparison ("==" and "!=") '
- 'is based\n'
- 'on the identity of the objects. Hence, equality comparison '
- 'of\n'
- 'instances with the same identity results in equality, and '
- 'equality\n'
- 'comparison of instances with different identities results in\n'
- 'inequality. A motivation for this default behavior is the '
- 'desire that\n'
- 'all objects should be reflexive (i.e. "x is y" implies "x == '
- 'y").\n'
- '\n'
- 'A default order comparison ("<", ">", "<=", and ">=") is not '
- 'provided;\n'
- 'an attempt raises "TypeError". A motivation for this default '
- 'behavior\n'
- 'is the lack of a similar invariant as for equality.\n'
- '\n'
- 'The behavior of the default equality comparison, that '
- 'instances with\n'
- 'different identities are always unequal, may be in contrast '
- 'to what\n'
- 'types will need that have a sensible definition of object '
- 'value and\n'
- 'value-based equality. Such types will need to customize '
- 'their\n'
- 'comparison behavior, and in fact, a number of built-in types '
- 'have done\n'
- 'that.\n'
- '\n'
- 'The following list describes the comparison behavior of the '
- 'most\n'
- 'important built-in types.\n'
- '\n'
- '* Numbers of built-in numeric types (Numeric Types — int, '
- 'float,\n'
- ' complex) and of the standard library types '
- '"fractions.Fraction" and\n'
- ' "decimal.Decimal" can be compared within and across their '
- 'types,\n'
- ' with the restriction that complex numbers do not support '
- 'order\n'
- ' comparison. Within the limits of the types involved, they '
- 'compare\n'
- ' mathematically (algorithmically) correct without loss of '
- 'precision.\n'
- '\n'
- ' The not-a-number values "float(\'NaN\')" and '
- '"decimal.Decimal(\'NaN\')"\n'
- ' are special. Any ordered comparison of a number to a '
- 'not-a-number\n'
- ' value is false. A counter-intuitive implication is that '
- 'not-a-number\n'
- ' values are not equal to themselves. For example, if "x =\n'
+ '\n'
+ 'Comparisons can be chained arbitrarily, e.g., "x < y <= z" '
+ 'is\n'
+ 'equivalent to "x < y and y <= z", except that "y" is '
+ 'evaluated only\n'
+ 'once (but in both cases "z" is not evaluated at all when "x < '
+ 'y" is\n'
+ 'found to be false).\n'
+ '\n'
+ 'Formally, if *a*, *b*, *c*, …, *y*, *z* are expressions and '
+ '*op1*,\n'
+ '*op2*, …, *opN* are comparison operators, then "a op1 b op2 c '
+ '... y\n'
+ 'opN z" is equivalent to "a op1 b and b op2 c and ... y opN '
+ 'z", except\n'
+ 'that each expression is evaluated at most once.\n'
+ '\n'
+ 'Note that "a op1 b op2 c" doesn’t imply any kind of '
+ 'comparison between\n'
+ '*a* and *c*, so that, e.g., "x < y > z" is perfectly legal '
+ '(though\n'
+ 'perhaps not pretty).\n'
+ '\n'
+ '\n'
+ 'Value comparisons\n'
+ '=================\n'
+ '\n'
+ 'The operators "<", ">", "==", ">=", "<=", and "!=" compare '
+ 'the values\n'
+ 'of two objects. The objects do not need to have the same '
+ 'type.\n'
+ '\n'
+ 'Chapter Objects, values and types states that objects have a '
+ 'value (in\n'
+ 'addition to type and identity). The value of an object is a '
+ 'rather\n'
+ 'abstract notion in Python: For example, there is no canonical '
+ 'access\n'
+ 'method for an object’s value. Also, there is no requirement '
+ 'that the\n'
+ 'value of an object should be constructed in a particular way, '
+ 'e.g.\n'
+ 'comprised of all its data attributes. Comparison operators '
+ 'implement a\n'
+ 'particular notion of what the value of an object is. One can '
+ 'think of\n'
+ 'them as defining the value of an object indirectly, by means '
+ 'of their\n'
+ 'comparison implementation.\n'
+ '\n'
+ 'Because all types are (direct or indirect) subtypes of '
+ '"object", they\n'
+ 'inherit the default comparison behavior from "object". Types '
+ 'can\n'
+ 'customize their comparison behavior by implementing *rich '
+ 'comparison\n'
+ 'methods* like "__lt__()", described in Basic customization.\n'
+ '\n'
+ 'The default behavior for equality comparison ("==" and "!=") '
+ 'is based\n'
+ 'on the identity of the objects. Hence, equality comparison '
+ 'of\n'
+ 'instances with the same identity results in equality, and '
+ 'equality\n'
+ 'comparison of instances with different identities results in\n'
+ 'inequality. A motivation for this default behavior is the '
+ 'desire that\n'
+ 'all objects should be reflexive (i.e. "x is y" implies "x == '
+ 'y").\n'
+ '\n'
+ 'A default order comparison ("<", ">", "<=", and ">=") is not '
+ 'provided;\n'
+ 'an attempt raises "TypeError". A motivation for this default '
+ 'behavior\n'
+ 'is the lack of a similar invariant as for equality.\n'
+ '\n'
+ 'The behavior of the default equality comparison, that '
+ 'instances with\n'
+ 'different identities are always unequal, may be in contrast '
+ 'to what\n'
+ 'types will need that have a sensible definition of object '
+ 'value and\n'
+ 'value-based equality. Such types will need to customize '
+ 'their\n'
+ 'comparison behavior, and in fact, a number of built-in types '
+ 'have done\n'
+ 'that.\n'
+ '\n'
+ 'The following list describes the comparison behavior of the '
+ 'most\n'
+ 'important built-in types.\n'
+ '\n'
+ '* Numbers of built-in numeric types (Numeric Types — int, '
+ 'float,\n'
+ ' complex) and of the standard library types '
+ '"fractions.Fraction" and\n'
+ ' "decimal.Decimal" can be compared within and across their '
+ 'types,\n'
+ ' with the restriction that complex numbers do not support '
+ 'order\n'
+ ' comparison. Within the limits of the types involved, they '
+ 'compare\n'
+ ' mathematically (algorithmically) correct without loss of '
+ 'precision.\n'
+ '\n'
+ ' The not-a-number values "float(\'NaN\')" and '
+ '"decimal.Decimal(\'NaN\')"\n'
+ ' are special. Any ordered comparison of a number to a '
+ 'not-a-number\n'
+ ' value is false. A counter-intuitive implication is that '
+ 'not-a-number\n'
+ ' values are not equal to themselves. For example, if "x =\n'
' float(\'NaN\')", "3 < x", "x < 3" and "x == x" are all '
'false, while "x\n'
' != x" is true. This behavior is compliant with IEEE 754.\n'
- '\n'
+ '\n'
'* "None" and "NotImplemented" are singletons. **PEP 8** '
'advises that\n'
' comparisons for singletons should always be done with "is" '
'or "is\n'
' not", never the equality operators.\n'
'\n'
- '* Binary sequences (instances of "bytes" or "bytearray") can '
- 'be\n'
- ' compared within and across their types. They compare\n'
- ' lexicographically using the numeric values of their '
- 'elements.\n'
- '\n'
- '* Strings (instances of "str") compare lexicographically '
- 'using the\n'
- ' numerical Unicode code points (the result of the built-in '
- 'function\n'
- ' "ord()") of their characters. [3]\n'
- '\n'
- ' Strings and binary sequences cannot be directly compared.\n'
- '\n'
+ '* Binary sequences (instances of "bytes" or "bytearray") can '
+ 'be\n'
+ ' compared within and across their types. They compare\n'
+ ' lexicographically using the numeric values of their '
+ 'elements.\n'
+ '\n'
+ '* Strings (instances of "str") compare lexicographically '
+ 'using the\n'
+ ' numerical Unicode code points (the result of the built-in '
+ 'function\n'
+ ' "ord()") of their characters. [3]\n'
+ '\n'
+ ' Strings and binary sequences cannot be directly compared.\n'
+ '\n'
'* Sequences (instances of "tuple", "list", or "range") can be '
'compared\n'
' only within each of their types, with the restriction that '
@@ -1967,8 +1967,8 @@ topics = {'assert': 'The "assert" statement\n'
' types results in inequality, and ordering comparison across '
'these\n'
' types raises "TypeError".\n'
- '\n'
- ' Sequences compare lexicographically using comparison of\n'
+ '\n'
+ ' Sequences compare lexicographically using comparison of\n'
' corresponding elements. The built-in containers typically '
'assume\n'
' identical objects are equal to themselves. That lets them '
@@ -1976,154 +1976,154 @@ topics = {'assert': 'The "assert" statement\n'
' equality tests for identical objects to improve performance '
'and to\n'
' maintain their internal invariants.\n'
- '\n'
- ' Lexicographical comparison between built-in collections '
- 'works as\n'
- ' follows:\n'
- '\n'
- ' * For two collections to compare equal, they must be of the '
- 'same\n'
- ' type, have the same length, and each pair of '
- 'corresponding\n'
- ' elements must compare equal (for example, "[1,2] == '
- '(1,2)" is\n'
- ' false because the type is not the same).\n'
- '\n'
- ' * Collections that support order comparison are ordered the '
+ '\n'
+ ' Lexicographical comparison between built-in collections '
+ 'works as\n'
+ ' follows:\n'
+ '\n'
+ ' * For two collections to compare equal, they must be of the '
+ 'same\n'
+ ' type, have the same length, and each pair of '
+ 'corresponding\n'
+ ' elements must compare equal (for example, "[1,2] == '
+ '(1,2)" is\n'
+ ' false because the type is not the same).\n'
+ '\n'
+ ' * Collections that support order comparison are ordered the '
'same as\n'
' their first unequal elements (for example, "[1,2,x] <= '
- '[1,2,y]"\n'
- ' has the same value as "x <= y"). If a corresponding '
- 'element does\n'
- ' not exist, the shorter collection is ordered first (for '
- 'example,\n'
- ' "[1,2] < [1,2,3]" is true).\n'
- '\n'
- '* Mappings (instances of "dict") compare equal if and only if '
- 'they\n'
- ' have equal *(key, value)* pairs. Equality comparison of the '
- 'keys and\n'
- ' values enforces reflexivity.\n'
- '\n'
- ' Order comparisons ("<", ">", "<=", and ">=") raise '
- '"TypeError".\n'
- '\n'
- '* Sets (instances of "set" or "frozenset") can be compared '
+ '[1,2,y]"\n'
+ ' has the same value as "x <= y"). If a corresponding '
+ 'element does\n'
+ ' not exist, the shorter collection is ordered first (for '
+ 'example,\n'
+ ' "[1,2] < [1,2,3]" is true).\n'
+ '\n'
+ '* Mappings (instances of "dict") compare equal if and only if '
+ 'they\n'
+ ' have equal *(key, value)* pairs. Equality comparison of the '
+ 'keys and\n'
+ ' values enforces reflexivity.\n'
+ '\n'
+ ' Order comparisons ("<", ">", "<=", and ">=") raise '
+ '"TypeError".\n'
+ '\n'
+ '* Sets (instances of "set" or "frozenset") can be compared '
'within and\n'
' across their types.\n'
- '\n'
- ' They define order comparison operators to mean subset and '
- 'superset\n'
- ' tests. Those relations do not define total orderings (for '
- 'example,\n'
- ' the two sets "{1,2}" and "{2,3}" are not equal, nor subsets '
- 'of one\n'
- ' another, nor supersets of one another). Accordingly, sets '
- 'are not\n'
- ' appropriate arguments for functions which depend on total '
- 'ordering\n'
- ' (for example, "min()", "max()", and "sorted()" produce '
- 'undefined\n'
- ' results given a list of sets as inputs).\n'
- '\n'
- ' Comparison of sets enforces reflexivity of its elements.\n'
- '\n'
- '* Most other built-in types have no comparison methods '
+ '\n'
+ ' They define order comparison operators to mean subset and '
+ 'superset\n'
+ ' tests. Those relations do not define total orderings (for '
+ 'example,\n'
+ ' the two sets "{1,2}" and "{2,3}" are not equal, nor subsets '
+ 'of one\n'
+ ' another, nor supersets of one another). Accordingly, sets '
+ 'are not\n'
+ ' appropriate arguments for functions which depend on total '
+ 'ordering\n'
+ ' (for example, "min()", "max()", and "sorted()" produce '
+ 'undefined\n'
+ ' results given a list of sets as inputs).\n'
+ '\n'
+ ' Comparison of sets enforces reflexivity of its elements.\n'
+ '\n'
+ '* Most other built-in types have no comparison methods '
'implemented, so\n'
' they inherit the default comparison behavior.\n'
- '\n'
- 'User-defined classes that customize their comparison behavior '
- 'should\n'
- 'follow some consistency rules, if possible:\n'
- '\n'
- '* Equality comparison should be reflexive. In other words, '
- 'identical\n'
- ' objects should compare equal:\n'
- '\n'
- ' "x is y" implies "x == y"\n'
- '\n'
- '* Comparison should be symmetric. In other words, the '
- 'following\n'
- ' expressions should have the same result:\n'
- '\n'
- ' "x == y" and "y == x"\n'
- '\n'
- ' "x != y" and "y != x"\n'
- '\n'
- ' "x < y" and "y > x"\n'
- '\n'
- ' "x <= y" and "y >= x"\n'
- '\n'
- '* Comparison should be transitive. The following '
- '(non-exhaustive)\n'
- ' examples illustrate that:\n'
- '\n'
- ' "x > y and y > z" implies "x > z"\n'
- '\n'
- ' "x < y and y <= z" implies "x < z"\n'
- '\n'
- '* Inverse comparison should result in the boolean negation. '
- 'In other\n'
- ' words, the following expressions should have the same '
- 'result:\n'
- '\n'
- ' "x == y" and "not x != y"\n'
- '\n'
- ' "x < y" and "not x >= y" (for total ordering)\n'
- '\n'
- ' "x > y" and "not x <= y" (for total ordering)\n'
- '\n'
- ' The last two expressions apply to totally ordered '
- 'collections (e.g.\n'
- ' to sequences, but not to sets or mappings). See also the\n'
- ' "total_ordering()" decorator.\n'
- '\n'
- '* The "hash()" result should be consistent with equality. '
+ '\n'
+ 'User-defined classes that customize their comparison behavior '
+ 'should\n'
+ 'follow some consistency rules, if possible:\n'
+ '\n'
+ '* Equality comparison should be reflexive. In other words, '
+ 'identical\n'
+ ' objects should compare equal:\n'
+ '\n'
+ ' "x is y" implies "x == y"\n'
+ '\n'
+ '* Comparison should be symmetric. In other words, the '
+ 'following\n'
+ ' expressions should have the same result:\n'
+ '\n'
+ ' "x == y" and "y == x"\n'
+ '\n'
+ ' "x != y" and "y != x"\n'
+ '\n'
+ ' "x < y" and "y > x"\n'
+ '\n'
+ ' "x <= y" and "y >= x"\n'
+ '\n'
+ '* Comparison should be transitive. The following '
+ '(non-exhaustive)\n'
+ ' examples illustrate that:\n'
+ '\n'
+ ' "x > y and y > z" implies "x > z"\n'
+ '\n'
+ ' "x < y and y <= z" implies "x < z"\n'
+ '\n'
+ '* Inverse comparison should result in the boolean negation. '
+ 'In other\n'
+ ' words, the following expressions should have the same '
+ 'result:\n'
+ '\n'
+ ' "x == y" and "not x != y"\n'
+ '\n'
+ ' "x < y" and "not x >= y" (for total ordering)\n'
+ '\n'
+ ' "x > y" and "not x <= y" (for total ordering)\n'
+ '\n'
+ ' The last two expressions apply to totally ordered '
+ 'collections (e.g.\n'
+ ' to sequences, but not to sets or mappings). See also the\n'
+ ' "total_ordering()" decorator.\n'
+ '\n'
+ '* The "hash()" result should be consistent with equality. '
'Objects that\n'
' are equal should either have the same hash value, or be '
'marked as\n'
' unhashable.\n'
- '\n'
- 'Python does not enforce these consistency rules. In fact, '
- 'the\n'
- 'not-a-number values are an example for not following these '
- 'rules.\n'
- '\n'
- '\n'
- 'Membership test operations\n'
- '==========================\n'
- '\n'
- 'The operators "in" and "not in" test for membership. "x in '
- 's"\n'
- 'evaluates to "True" if *x* is a member of *s*, and "False" '
- 'otherwise.\n'
- '"x not in s" returns the negation of "x in s". All built-in '
- 'sequences\n'
- 'and set types support this as well as dictionary, for which '
- '"in" tests\n'
- 'whether the dictionary has a given key. For container types '
- 'such as\n'
- 'list, tuple, set, frozenset, dict, or collections.deque, the\n'
- 'expression "x in y" is equivalent to "any(x is e or x == e '
- 'for e in\n'
- 'y)".\n'
- '\n'
- 'For the string and bytes types, "x in y" is "True" if and '
- 'only if *x*\n'
- 'is a substring of *y*. An equivalent test is "y.find(x) != '
- '-1".\n'
- 'Empty strings are always considered to be a substring of any '
- 'other\n'
- 'string, so """ in "abc"" will return "True".\n'
- '\n'
- 'For user-defined classes which define the "__contains__()" '
- 'method, "x\n'
- 'in y" returns "True" if "y.__contains__(x)" returns a true '
- 'value, and\n'
- '"False" otherwise.\n'
- '\n'
- 'For user-defined classes which do not define "__contains__()" '
- 'but do\n'
+ '\n'
+ 'Python does not enforce these consistency rules. In fact, '
+ 'the\n'
+ 'not-a-number values are an example for not following these '
+ 'rules.\n'
+ '\n'
+ '\n'
+ 'Membership test operations\n'
+ '==========================\n'
+ '\n'
+ 'The operators "in" and "not in" test for membership. "x in '
+ 's"\n'
+ 'evaluates to "True" if *x* is a member of *s*, and "False" '
+ 'otherwise.\n'
+ '"x not in s" returns the negation of "x in s". All built-in '
+ 'sequences\n'
+ 'and set types support this as well as dictionary, for which '
+ '"in" tests\n'
+ 'whether the dictionary has a given key. For container types '
+ 'such as\n'
+ 'list, tuple, set, frozenset, dict, or collections.deque, the\n'
+ 'expression "x in y" is equivalent to "any(x is e or x == e '
+ 'for e in\n'
+ 'y)".\n'
+ '\n'
+ 'For the string and bytes types, "x in y" is "True" if and '
+ 'only if *x*\n'
+ 'is a substring of *y*. An equivalent test is "y.find(x) != '
+ '-1".\n'
+ 'Empty strings are always considered to be a substring of any '
+ 'other\n'
+ 'string, so """ in "abc"" will return "True".\n'
+ '\n'
+ 'For user-defined classes which define the "__contains__()" '
+ 'method, "x\n'
+ 'in y" returns "True" if "y.__contains__(x)" returns a true '
+ 'value, and\n'
+ '"False" otherwise.\n'
+ '\n'
+ 'For user-defined classes which do not define "__contains__()" '
+ 'but do\n'
'define "__iter__()", "x in y" is "True" if some value "z", '
'for which\n'
'the expression "x is z or x == z" is true, is produced while '
@@ -2131,26 +2131,26 @@ topics = {'assert': 'The "assert" statement\n'
'over "y". If an exception is raised during the iteration, it '
'is as if\n'
'"in" raised that exception.\n'
- '\n'
- 'Lastly, the old-style iteration protocol is tried: if a class '
- 'defines\n'
- '"__getitem__()", "x in y" is "True" if and only if there is a '
- 'non-\n'
+ '\n'
+ 'Lastly, the old-style iteration protocol is tried: if a class '
+ 'defines\n'
+ '"__getitem__()", "x in y" is "True" if and only if there is a '
+ 'non-\n'
'negative integer index *i* such that "x is y[i] or x == '
'y[i]", and no\n'
'lower integer index raises the "IndexError" exception. (If '
'any other\n'
- 'exception is raised, it is as if "in" raised that '
- 'exception).\n'
- '\n'
+ 'exception is raised, it is as if "in" raised that '
+ 'exception).\n'
+ '\n'
'The operator "not in" is defined to have the inverse truth '
- 'value of\n'
- '"in".\n'
- '\n'
- '\n'
- 'Identity comparisons\n'
- '====================\n'
- '\n'
+ 'value of\n'
+ '"in".\n'
+ '\n'
+ '\n'
+ 'Identity comparisons\n'
+ '====================\n'
+ '\n'
'The operators "is" and "is not" test for an object’s '
'identity: "x is\n'
'y" is true if and only if *x* and *y* are the same object. '
@@ -2158,480 +2158,480 @@ topics = {'assert': 'The "assert" statement\n'
'Object’s identity is determined using the "id()" function. '
'"x is not\n'
'y" yields the inverse truth value. [4]\n',
- 'compound': 'Compound statements\n'
- '*******************\n'
- '\n'
- 'Compound statements contain (groups of) other statements; they '
- 'affect\n'
- 'or control the execution of those other statements in some way. '
- 'In\n'
- 'general, compound statements span multiple lines, although in '
- 'simple\n'
- 'incarnations a whole compound statement may be contained in one '
- 'line.\n'
- '\n'
- 'The "if", "while" and "for" statements implement traditional '
- 'control\n'
- 'flow constructs. "try" specifies exception handlers and/or '
- 'cleanup\n'
- 'code for a group of statements, while the "with" statement '
- 'allows the\n'
- 'execution of initialization and finalization code around a block '
- 'of\n'
- 'code. Function and class definitions are also syntactically '
- 'compound\n'
- 'statements.\n'
- '\n'
- 'A compound statement consists of one or more ‘clauses.’ A '
- 'clause\n'
- 'consists of a header and a ‘suite.’ The clause headers of a\n'
- 'particular compound statement are all at the same indentation '
- 'level.\n'
- 'Each clause header begins with a uniquely identifying keyword '
- 'and ends\n'
- 'with a colon. A suite is a group of statements controlled by a\n'
- 'clause. A suite can be one or more semicolon-separated simple\n'
- 'statements on the same line as the header, following the '
- 'header’s\n'
- 'colon, or it can be one or more indented statements on '
- 'subsequent\n'
- 'lines. Only the latter form of a suite can contain nested '
- 'compound\n'
- 'statements; the following is illegal, mostly because it wouldn’t '
- 'be\n'
- 'clear to which "if" clause a following "else" clause would '
- 'belong:\n'
- '\n'
- ' if test1: if test2: print(x)\n'
- '\n'
- 'Also note that the semicolon binds tighter than the colon in '
- 'this\n'
- 'context, so that in the following example, either all or none of '
- 'the\n'
- '"print()" calls are executed:\n'
- '\n'
- ' if x < y < z: print(x); print(y); print(z)\n'
- '\n'
- 'Summarizing:\n'
- '\n'
- ' compound_stmt ::= if_stmt\n'
- ' | while_stmt\n'
- ' | for_stmt\n'
- ' | try_stmt\n'
- ' | with_stmt\n'
- ' | funcdef\n'
- ' | classdef\n'
- ' | async_with_stmt\n'
- ' | async_for_stmt\n'
- ' | async_funcdef\n'
- ' suite ::= stmt_list NEWLINE | NEWLINE INDENT '
- 'statement+ DEDENT\n'
- ' statement ::= stmt_list NEWLINE | compound_stmt\n'
- ' stmt_list ::= simple_stmt (";" simple_stmt)* [";"]\n'
- '\n'
- 'Note that statements always end in a "NEWLINE" possibly followed '
- 'by a\n'
- '"DEDENT". Also note that optional continuation clauses always '
- 'begin\n'
- 'with a keyword that cannot start a statement, thus there are no\n'
- 'ambiguities (the ‘dangling "else"’ problem is solved in Python '
- 'by\n'
- 'requiring nested "if" statements to be indented).\n'
- '\n'
- 'The formatting of the grammar rules in the following sections '
- 'places\n'
- 'each clause on a separate line for clarity.\n'
- '\n'
- '\n'
- 'The "if" statement\n'
- '==================\n'
- '\n'
- 'The "if" statement is used for conditional execution:\n'
- '\n'
+ 'compound': 'Compound statements\n'
+ '*******************\n'
+ '\n'
+ 'Compound statements contain (groups of) other statements; they '
+ 'affect\n'
+ 'or control the execution of those other statements in some way. '
+ 'In\n'
+ 'general, compound statements span multiple lines, although in '
+ 'simple\n'
+ 'incarnations a whole compound statement may be contained in one '
+ 'line.\n'
+ '\n'
+ 'The "if", "while" and "for" statements implement traditional '
+ 'control\n'
+ 'flow constructs. "try" specifies exception handlers and/or '
+ 'cleanup\n'
+ 'code for a group of statements, while the "with" statement '
+ 'allows the\n'
+ 'execution of initialization and finalization code around a block '
+ 'of\n'
+ 'code. Function and class definitions are also syntactically '
+ 'compound\n'
+ 'statements.\n'
+ '\n'
+ 'A compound statement consists of one or more ‘clauses.’ A '
+ 'clause\n'
+ 'consists of a header and a ‘suite.’ The clause headers of a\n'
+ 'particular compound statement are all at the same indentation '
+ 'level.\n'
+ 'Each clause header begins with a uniquely identifying keyword '
+ 'and ends\n'
+ 'with a colon. A suite is a group of statements controlled by a\n'
+ 'clause. A suite can be one or more semicolon-separated simple\n'
+ 'statements on the same line as the header, following the '
+ 'header’s\n'
+ 'colon, or it can be one or more indented statements on '
+ 'subsequent\n'
+ 'lines. Only the latter form of a suite can contain nested '
+ 'compound\n'
+ 'statements; the following is illegal, mostly because it wouldn’t '
+ 'be\n'
+ 'clear to which "if" clause a following "else" clause would '
+ 'belong:\n'
+ '\n'
+ ' if test1: if test2: print(x)\n'
+ '\n'
+ 'Also note that the semicolon binds tighter than the colon in '
+ 'this\n'
+ 'context, so that in the following example, either all or none of '
+ 'the\n'
+ '"print()" calls are executed:\n'
+ '\n'
+ ' if x < y < z: print(x); print(y); print(z)\n'
+ '\n'
+ 'Summarizing:\n'
+ '\n'
+ ' compound_stmt ::= if_stmt\n'
+ ' | while_stmt\n'
+ ' | for_stmt\n'
+ ' | try_stmt\n'
+ ' | with_stmt\n'
+ ' | funcdef\n'
+ ' | classdef\n'
+ ' | async_with_stmt\n'
+ ' | async_for_stmt\n'
+ ' | async_funcdef\n'
+ ' suite ::= stmt_list NEWLINE | NEWLINE INDENT '
+ 'statement+ DEDENT\n'
+ ' statement ::= stmt_list NEWLINE | compound_stmt\n'
+ ' stmt_list ::= simple_stmt (";" simple_stmt)* [";"]\n'
+ '\n'
+ 'Note that statements always end in a "NEWLINE" possibly followed '
+ 'by a\n'
+ '"DEDENT". Also note that optional continuation clauses always '
+ 'begin\n'
+ 'with a keyword that cannot start a statement, thus there are no\n'
+ 'ambiguities (the ‘dangling "else"’ problem is solved in Python '
+ 'by\n'
+ 'requiring nested "if" statements to be indented).\n'
+ '\n'
+ 'The formatting of the grammar rules in the following sections '
+ 'places\n'
+ 'each clause on a separate line for clarity.\n'
+ '\n'
+ '\n'
+ 'The "if" statement\n'
+ '==================\n'
+ '\n'
+ 'The "if" statement is used for conditional execution:\n'
+ '\n'
' if_stmt ::= "if" assignment_expression ":" suite\n'
' ("elif" assignment_expression ":" suite)*\n'
- ' ["else" ":" suite]\n'
- '\n'
- 'It selects exactly one of the suites by evaluating the '
- 'expressions one\n'
- 'by one until one is found to be true (see section Boolean '
- 'operations\n'
- 'for the definition of true and false); then that suite is '
- 'executed\n'
- '(and no other part of the "if" statement is executed or '
- 'evaluated).\n'
- 'If all expressions are false, the suite of the "else" clause, '
- 'if\n'
- 'present, is executed.\n'
- '\n'
- '\n'
- 'The "while" statement\n'
- '=====================\n'
- '\n'
- 'The "while" statement is used for repeated execution as long as '
- 'an\n'
- 'expression is true:\n'
- '\n'
+ ' ["else" ":" suite]\n'
+ '\n'
+ 'It selects exactly one of the suites by evaluating the '
+ 'expressions one\n'
+ 'by one until one is found to be true (see section Boolean '
+ 'operations\n'
+ 'for the definition of true and false); then that suite is '
+ 'executed\n'
+ '(and no other part of the "if" statement is executed or '
+ 'evaluated).\n'
+ 'If all expressions are false, the suite of the "else" clause, '
+ 'if\n'
+ 'present, is executed.\n'
+ '\n'
+ '\n'
+ 'The "while" statement\n'
+ '=====================\n'
+ '\n'
+ 'The "while" statement is used for repeated execution as long as '
+ 'an\n'
+ 'expression is true:\n'
+ '\n'
' while_stmt ::= "while" assignment_expression ":" suite\n'
- ' ["else" ":" suite]\n'
- '\n'
- 'This repeatedly tests the expression and, if it is true, '
- 'executes the\n'
- 'first suite; if the expression is false (which may be the first '
- 'time\n'
- 'it is tested) the suite of the "else" clause, if present, is '
- 'executed\n'
- 'and the loop terminates.\n'
- '\n'
- 'A "break" statement executed in the first suite terminates the '
- 'loop\n'
- 'without executing the "else" clause’s suite. A "continue" '
- 'statement\n'
- 'executed in the first suite skips the rest of the suite and goes '
- 'back\n'
- 'to testing the expression.\n'
- '\n'
- '\n'
- 'The "for" statement\n'
- '===================\n'
- '\n'
- 'The "for" statement is used to iterate over the elements of a '
- 'sequence\n'
- '(such as a string, tuple or list) or other iterable object:\n'
- '\n'
- ' for_stmt ::= "for" target_list "in" expression_list ":" '
- 'suite\n'
- ' ["else" ":" suite]\n'
- '\n'
- 'The expression list is evaluated once; it should yield an '
- 'iterable\n'
- 'object. An iterator is created for the result of the\n'
- '"expression_list". The suite is then executed once for each '
- 'item\n'
- 'provided by the iterator, in the order returned by the '
- 'iterator. Each\n'
- 'item in turn is assigned to the target list using the standard '
- 'rules\n'
- 'for assignments (see Assignment statements), and then the suite '
- 'is\n'
- 'executed. When the items are exhausted (which is immediately '
- 'when the\n'
- 'sequence is empty or an iterator raises a "StopIteration" '
- 'exception),\n'
- 'the suite in the "else" clause, if present, is executed, and the '
- 'loop\n'
- 'terminates.\n'
- '\n'
- 'A "break" statement executed in the first suite terminates the '
- 'loop\n'
- 'without executing the "else" clause’s suite. A "continue" '
- 'statement\n'
- 'executed in the first suite skips the rest of the suite and '
- 'continues\n'
- 'with the next item, or with the "else" clause if there is no '
- 'next\n'
- 'item.\n'
- '\n'
+ ' ["else" ":" suite]\n'
+ '\n'
+ 'This repeatedly tests the expression and, if it is true, '
+ 'executes the\n'
+ 'first suite; if the expression is false (which may be the first '
+ 'time\n'
+ 'it is tested) the suite of the "else" clause, if present, is '
+ 'executed\n'
+ 'and the loop terminates.\n'
+ '\n'
+ 'A "break" statement executed in the first suite terminates the '
+ 'loop\n'
+ 'without executing the "else" clause’s suite. A "continue" '
+ 'statement\n'
+ 'executed in the first suite skips the rest of the suite and goes '
+ 'back\n'
+ 'to testing the expression.\n'
+ '\n'
+ '\n'
+ 'The "for" statement\n'
+ '===================\n'
+ '\n'
+ 'The "for" statement is used to iterate over the elements of a '
+ 'sequence\n'
+ '(such as a string, tuple or list) or other iterable object:\n'
+ '\n'
+ ' for_stmt ::= "for" target_list "in" expression_list ":" '
+ 'suite\n'
+ ' ["else" ":" suite]\n'
+ '\n'
+ 'The expression list is evaluated once; it should yield an '
+ 'iterable\n'
+ 'object. An iterator is created for the result of the\n'
+ '"expression_list". The suite is then executed once for each '
+ 'item\n'
+ 'provided by the iterator, in the order returned by the '
+ 'iterator. Each\n'
+ 'item in turn is assigned to the target list using the standard '
+ 'rules\n'
+ 'for assignments (see Assignment statements), and then the suite '
+ 'is\n'
+ 'executed. When the items are exhausted (which is immediately '
+ 'when the\n'
+ 'sequence is empty or an iterator raises a "StopIteration" '
+ 'exception),\n'
+ 'the suite in the "else" clause, if present, is executed, and the '
+ 'loop\n'
+ 'terminates.\n'
+ '\n'
+ 'A "break" statement executed in the first suite terminates the '
+ 'loop\n'
+ 'without executing the "else" clause’s suite. A "continue" '
+ 'statement\n'
+ 'executed in the first suite skips the rest of the suite and '
+ 'continues\n'
+ 'with the next item, or with the "else" clause if there is no '
+ 'next\n'
+ 'item.\n'
+ '\n'
'The for-loop makes assignments to the variables in the target '
- 'list.\n'
- 'This overwrites all previous assignments to those variables '
- 'including\n'
- 'those made in the suite of the for-loop:\n'
- '\n'
- ' for i in range(10):\n'
- ' print(i)\n'
- ' i = 5 # this will not affect the for-loop\n'
- ' # because i will be overwritten with '
- 'the next\n'
- ' # index in the range\n'
- '\n'
- 'Names in the target list are not deleted when the loop is '
- 'finished,\n'
- 'but if the sequence is empty, they will not have been assigned '
- 'to at\n'
- 'all by the loop. Hint: the built-in function "range()" returns '
- 'an\n'
- 'iterator of integers suitable to emulate the effect of Pascal’s '
- '"for i\n'
- ':= a to b do"; e.g., "list(range(3))" returns the list "[0, 1, '
- '2]".\n'
- '\n'
+ 'list.\n'
+ 'This overwrites all previous assignments to those variables '
+ 'including\n'
+ 'those made in the suite of the for-loop:\n'
+ '\n'
+ ' for i in range(10):\n'
+ ' print(i)\n'
+ ' i = 5 # this will not affect the for-loop\n'
+ ' # because i will be overwritten with '
+ 'the next\n'
+ ' # index in the range\n'
+ '\n'
+ 'Names in the target list are not deleted when the loop is '
+ 'finished,\n'
+ 'but if the sequence is empty, they will not have been assigned '
+ 'to at\n'
+ 'all by the loop. Hint: the built-in function "range()" returns '
+ 'an\n'
+ 'iterator of integers suitable to emulate the effect of Pascal’s '
+ '"for i\n'
+ ':= a to b do"; e.g., "list(range(3))" returns the list "[0, 1, '
+ '2]".\n'
+ '\n'
'Note:\n'
'\n'
' There is a subtlety when the sequence is being modified by the '
'loop\n'
' (this can only occur for mutable sequences, e.g. lists). An\n'
- ' internal counter is used to keep track of which item is used '
- 'next,\n'
- ' and this is incremented on each iteration. When this counter '
- 'has\n'
- ' reached the length of the sequence the loop terminates. This '
- 'means\n'
- ' that if the suite deletes the current (or a previous) item '
- 'from the\n'
- ' sequence, the next item will be skipped (since it gets the '
- 'index of\n'
- ' the current item which has already been treated). Likewise, '
- 'if the\n'
- ' suite inserts an item in the sequence before the current item, '
- 'the\n'
- ' current item will be treated again the next time through the '
- 'loop.\n'
- ' This can lead to nasty bugs that can be avoided by making a\n'
- ' temporary copy using a slice of the whole sequence, e.g.,\n'
- '\n'
- ' for x in a[:]:\n'
- ' if x < 0: a.remove(x)\n'
- '\n'
- '\n'
- 'The "try" statement\n'
- '===================\n'
- '\n'
- 'The "try" statement specifies exception handlers and/or cleanup '
- 'code\n'
- 'for a group of statements:\n'
- '\n'
- ' try_stmt ::= try1_stmt | try2_stmt\n'
- ' try1_stmt ::= "try" ":" suite\n'
- ' ("except" [expression ["as" identifier]] ":" '
- 'suite)+\n'
- ' ["else" ":" suite]\n'
- ' ["finally" ":" suite]\n'
- ' try2_stmt ::= "try" ":" suite\n'
- ' "finally" ":" suite\n'
- '\n'
- 'The "except" clause(s) specify one or more exception handlers. '
- 'When no\n'
- 'exception occurs in the "try" clause, no exception handler is\n'
- 'executed. When an exception occurs in the "try" suite, a search '
- 'for an\n'
- 'exception handler is started. This search inspects the except '
- 'clauses\n'
- 'in turn until one is found that matches the exception. An '
- 'expression-\n'
- 'less except clause, if present, must be last; it matches any\n'
- 'exception. For an except clause with an expression, that '
- 'expression\n'
- 'is evaluated, and the clause matches the exception if the '
- 'resulting\n'
- 'object is “compatible” with the exception. An object is '
- 'compatible\n'
- 'with an exception if it is the class or a base class of the '
- 'exception\n'
+ ' internal counter is used to keep track of which item is used '
+ 'next,\n'
+ ' and this is incremented on each iteration. When this counter '
+ 'has\n'
+ ' reached the length of the sequence the loop terminates. This '
+ 'means\n'
+ ' that if the suite deletes the current (or a previous) item '
+ 'from the\n'
+ ' sequence, the next item will be skipped (since it gets the '
+ 'index of\n'
+ ' the current item which has already been treated). Likewise, '
+ 'if the\n'
+ ' suite inserts an item in the sequence before the current item, '
+ 'the\n'
+ ' current item will be treated again the next time through the '
+ 'loop.\n'
+ ' This can lead to nasty bugs that can be avoided by making a\n'
+ ' temporary copy using a slice of the whole sequence, e.g.,\n'
+ '\n'
+ ' for x in a[:]:\n'
+ ' if x < 0: a.remove(x)\n'
+ '\n'
+ '\n'
+ 'The "try" statement\n'
+ '===================\n'
+ '\n'
+ 'The "try" statement specifies exception handlers and/or cleanup '
+ 'code\n'
+ 'for a group of statements:\n'
+ '\n'
+ ' try_stmt ::= try1_stmt | try2_stmt\n'
+ ' try1_stmt ::= "try" ":" suite\n'
+ ' ("except" [expression ["as" identifier]] ":" '
+ 'suite)+\n'
+ ' ["else" ":" suite]\n'
+ ' ["finally" ":" suite]\n'
+ ' try2_stmt ::= "try" ":" suite\n'
+ ' "finally" ":" suite\n'
+ '\n'
+ 'The "except" clause(s) specify one or more exception handlers. '
+ 'When no\n'
+ 'exception occurs in the "try" clause, no exception handler is\n'
+ 'executed. When an exception occurs in the "try" suite, a search '
+ 'for an\n'
+ 'exception handler is started. This search inspects the except '
+ 'clauses\n'
+ 'in turn until one is found that matches the exception. An '
+ 'expression-\n'
+ 'less except clause, if present, must be last; it matches any\n'
+ 'exception. For an except clause with an expression, that '
+ 'expression\n'
+ 'is evaluated, and the clause matches the exception if the '
+ 'resulting\n'
+ 'object is “compatible” with the exception. An object is '
+ 'compatible\n'
+ 'with an exception if it is the class or a base class of the '
+ 'exception\n'
'object, or a tuple containing an item that is the class or a '
'base\n'
'class of the exception object.\n'
- '\n'
- 'If no except clause matches the exception, the search for an '
- 'exception\n'
- 'handler continues in the surrounding code and on the invocation '
- 'stack.\n'
- '[1]\n'
- '\n'
- 'If the evaluation of an expression in the header of an except '
- 'clause\n'
- 'raises an exception, the original search for a handler is '
- 'canceled and\n'
- 'a search starts for the new exception in the surrounding code '
- 'and on\n'
- 'the call stack (it is treated as if the entire "try" statement '
- 'raised\n'
- 'the exception).\n'
- '\n'
- 'When a matching except clause is found, the exception is '
- 'assigned to\n'
- 'the target specified after the "as" keyword in that except '
- 'clause, if\n'
- 'present, and the except clause’s suite is executed. All except\n'
- 'clauses must have an executable block. When the end of this '
- 'block is\n'
- 'reached, execution continues normally after the entire try '
- 'statement.\n'
- '(This means that if two nested handlers exist for the same '
- 'exception,\n'
- 'and the exception occurs in the try clause of the inner handler, '
- 'the\n'
- 'outer handler will not handle the exception.)\n'
- '\n'
- 'When an exception has been assigned using "as target", it is '
- 'cleared\n'
- 'at the end of the except clause. This is as if\n'
- '\n'
- ' except E as N:\n'
- ' foo\n'
- '\n'
- 'was translated to\n'
- '\n'
- ' except E as N:\n'
- ' try:\n'
- ' foo\n'
- ' finally:\n'
- ' del N\n'
- '\n'
- 'This means the exception must be assigned to a different name to '
- 'be\n'
- 'able to refer to it after the except clause. Exceptions are '
- 'cleared\n'
- 'because with the traceback attached to them, they form a '
- 'reference\n'
- 'cycle with the stack frame, keeping all locals in that frame '
- 'alive\n'
- 'until the next garbage collection occurs.\n'
- '\n'
- 'Before an except clause’s suite is executed, details about the\n'
- 'exception are stored in the "sys" module and can be accessed '
- 'via\n'
- '"sys.exc_info()". "sys.exc_info()" returns a 3-tuple consisting '
- 'of the\n'
- 'exception class, the exception instance and a traceback object '
- '(see\n'
- 'section The standard type hierarchy) identifying the point in '
- 'the\n'
- 'program where the exception occurred. "sys.exc_info()" values '
- 'are\n'
- 'restored to their previous values (before the call) when '
- 'returning\n'
- 'from a function that handled an exception.\n'
- '\n'
- 'The optional "else" clause is executed if the control flow '
- 'leaves the\n'
- '"try" suite, no exception was raised, and no "return", '
- '"continue", or\n'
- '"break" statement was executed. Exceptions in the "else" clause '
- 'are\n'
- 'not handled by the preceding "except" clauses.\n'
- '\n'
- 'If "finally" is present, it specifies a ‘cleanup’ handler. The '
- '"try"\n'
- 'clause is executed, including any "except" and "else" clauses. '
- 'If an\n'
- 'exception occurs in any of the clauses and is not handled, the\n'
- 'exception is temporarily saved. The "finally" clause is '
- 'executed. If\n'
- 'there is a saved exception it is re-raised at the end of the '
- '"finally"\n'
- 'clause. If the "finally" clause raises another exception, the '
- 'saved\n'
- 'exception is set as the context of the new exception. If the '
- '"finally"\n'
+ '\n'
+ 'If no except clause matches the exception, the search for an '
+ 'exception\n'
+ 'handler continues in the surrounding code and on the invocation '
+ 'stack.\n'
+ '[1]\n'
+ '\n'
+ 'If the evaluation of an expression in the header of an except '
+ 'clause\n'
+ 'raises an exception, the original search for a handler is '
+ 'canceled and\n'
+ 'a search starts for the new exception in the surrounding code '
+ 'and on\n'
+ 'the call stack (it is treated as if the entire "try" statement '
+ 'raised\n'
+ 'the exception).\n'
+ '\n'
+ 'When a matching except clause is found, the exception is '
+ 'assigned to\n'
+ 'the target specified after the "as" keyword in that except '
+ 'clause, if\n'
+ 'present, and the except clause’s suite is executed. All except\n'
+ 'clauses must have an executable block. When the end of this '
+ 'block is\n'
+ 'reached, execution continues normally after the entire try '
+ 'statement.\n'
+ '(This means that if two nested handlers exist for the same '
+ 'exception,\n'
+ 'and the exception occurs in the try clause of the inner handler, '
+ 'the\n'
+ 'outer handler will not handle the exception.)\n'
+ '\n'
+ 'When an exception has been assigned using "as target", it is '
+ 'cleared\n'
+ 'at the end of the except clause. This is as if\n'
+ '\n'
+ ' except E as N:\n'
+ ' foo\n'
+ '\n'
+ 'was translated to\n'
+ '\n'
+ ' except E as N:\n'
+ ' try:\n'
+ ' foo\n'
+ ' finally:\n'
+ ' del N\n'
+ '\n'
+ 'This means the exception must be assigned to a different name to '
+ 'be\n'
+ 'able to refer to it after the except clause. Exceptions are '
+ 'cleared\n'
+ 'because with the traceback attached to them, they form a '
+ 'reference\n'
+ 'cycle with the stack frame, keeping all locals in that frame '
+ 'alive\n'
+ 'until the next garbage collection occurs.\n'
+ '\n'
+ 'Before an except clause’s suite is executed, details about the\n'
+ 'exception are stored in the "sys" module and can be accessed '
+ 'via\n'
+ '"sys.exc_info()". "sys.exc_info()" returns a 3-tuple consisting '
+ 'of the\n'
+ 'exception class, the exception instance and a traceback object '
+ '(see\n'
+ 'section The standard type hierarchy) identifying the point in '
+ 'the\n'
+ 'program where the exception occurred. "sys.exc_info()" values '
+ 'are\n'
+ 'restored to their previous values (before the call) when '
+ 'returning\n'
+ 'from a function that handled an exception.\n'
+ '\n'
+ 'The optional "else" clause is executed if the control flow '
+ 'leaves the\n'
+ '"try" suite, no exception was raised, and no "return", '
+ '"continue", or\n'
+ '"break" statement was executed. Exceptions in the "else" clause '
+ 'are\n'
+ 'not handled by the preceding "except" clauses.\n'
+ '\n'
+ 'If "finally" is present, it specifies a ‘cleanup’ handler. The '
+ '"try"\n'
+ 'clause is executed, including any "except" and "else" clauses. '
+ 'If an\n'
+ 'exception occurs in any of the clauses and is not handled, the\n'
+ 'exception is temporarily saved. The "finally" clause is '
+ 'executed. If\n'
+ 'there is a saved exception it is re-raised at the end of the '
+ '"finally"\n'
+ 'clause. If the "finally" clause raises another exception, the '
+ 'saved\n'
+ 'exception is set as the context of the new exception. If the '
+ '"finally"\n'
'clause executes a "return", "break" or "continue" statement, the '
'saved\n'
'exception is discarded:\n'
- '\n'
- ' >>> def f():\n'
- ' ... try:\n'
- ' ... 1/0\n'
- ' ... finally:\n'
- ' ... return 42\n'
- ' ...\n'
- ' >>> f()\n'
- ' 42\n'
- '\n'
- 'The exception information is not available to the program '
- 'during\n'
- 'execution of the "finally" clause.\n'
- '\n'
- 'When a "return", "break" or "continue" statement is executed in '
- 'the\n'
- '"try" suite of a "try"…"finally" statement, the "finally" clause '
- 'is\n'
+ '\n'
+ ' >>> def f():\n'
+ ' ... try:\n'
+ ' ... 1/0\n'
+ ' ... finally:\n'
+ ' ... return 42\n'
+ ' ...\n'
+ ' >>> f()\n'
+ ' 42\n'
+ '\n'
+ 'The exception information is not available to the program '
+ 'during\n'
+ 'execution of the "finally" clause.\n'
+ '\n'
+ 'When a "return", "break" or "continue" statement is executed in '
+ 'the\n'
+ '"try" suite of a "try"…"finally" statement, the "finally" clause '
+ 'is\n'
'also executed ‘on the way out.’\n'
- '\n'
- 'The return value of a function is determined by the last '
- '"return"\n'
- 'statement executed. Since the "finally" clause always executes, '
- 'a\n'
- '"return" statement executed in the "finally" clause will always '
- 'be the\n'
- 'last one executed:\n'
- '\n'
- ' >>> def foo():\n'
- ' ... try:\n'
- " ... return 'try'\n"
- ' ... finally:\n'
- " ... return 'finally'\n"
- ' ...\n'
- ' >>> foo()\n'
- " 'finally'\n"
- '\n'
- 'Additional information on exceptions can be found in section\n'
- 'Exceptions, and information on using the "raise" statement to '
- 'generate\n'
- 'exceptions may be found in section The raise statement.\n'
- '\n'
+ '\n'
+ 'The return value of a function is determined by the last '
+ '"return"\n'
+ 'statement executed. Since the "finally" clause always executes, '
+ 'a\n'
+ '"return" statement executed in the "finally" clause will always '
+ 'be the\n'
+ 'last one executed:\n'
+ '\n'
+ ' >>> def foo():\n'
+ ' ... try:\n'
+ " ... return 'try'\n"
+ ' ... finally:\n'
+ " ... return 'finally'\n"
+ ' ...\n'
+ ' >>> foo()\n'
+ " 'finally'\n"
+ '\n'
+ 'Additional information on exceptions can be found in section\n'
+ 'Exceptions, and information on using the "raise" statement to '
+ 'generate\n'
+ 'exceptions may be found in section The raise statement.\n'
+ '\n'
'Changed in version 3.8: Prior to Python 3.8, a "continue" '
'statement\n'
'was illegal in the "finally" clause due to a problem with the\n'
'implementation.\n'
- '\n'
- '\n'
- 'The "with" statement\n'
- '====================\n'
- '\n'
- 'The "with" statement is used to wrap the execution of a block '
- 'with\n'
- 'methods defined by a context manager (see section With '
- 'Statement\n'
- 'Context Managers). This allows common "try"…"except"…"finally" '
- 'usage\n'
- 'patterns to be encapsulated for convenient reuse.\n'
- '\n'
- ' with_stmt ::= "with" with_item ("," with_item)* ":" suite\n'
- ' with_item ::= expression ["as" target]\n'
- '\n'
- 'The execution of the "with" statement with one “item” proceeds '
- 'as\n'
- 'follows:\n'
- '\n'
- '1. The context expression (the expression given in the '
+ '\n'
+ '\n'
+ 'The "with" statement\n'
+ '====================\n'
+ '\n'
+ 'The "with" statement is used to wrap the execution of a block '
+ 'with\n'
+ 'methods defined by a context manager (see section With '
+ 'Statement\n'
+ 'Context Managers). This allows common "try"…"except"…"finally" '
+ 'usage\n'
+ 'patterns to be encapsulated for convenient reuse.\n'
+ '\n'
+ ' with_stmt ::= "with" with_item ("," with_item)* ":" suite\n'
+ ' with_item ::= expression ["as" target]\n'
+ '\n'
+ 'The execution of the "with" statement with one “item” proceeds '
+ 'as\n'
+ 'follows:\n'
+ '\n'
+ '1. The context expression (the expression given in the '
'"with_item") is\n'
' evaluated to obtain a context manager.\n'
- '\n'
+ '\n'
'2. The context manager’s "__enter__()" is loaded for later use.\n'
- '\n'
+ '\n'
'3. The context manager’s "__exit__()" is loaded for later use.\n'
- '\n'
+ '\n'
'4. The context manager’s "__enter__()" method is invoked.\n'
'\n'
'5. If a target was included in the "with" statement, the return '
'value\n'
' from "__enter__()" is assigned to it.\n'
- '\n'
+ '\n'
' Note:\n'
'\n'
' The "with" statement guarantees that if the "__enter__()" '
'method\n'
' returns without an error, then "__exit__()" will always be\n'
- ' called. Thus, if an error occurs during the assignment to '
- 'the\n'
- ' target list, it will be treated the same as an error '
- 'occurring\n'
- ' within the suite would be. See step 6 below.\n'
- '\n'
+ ' called. Thus, if an error occurs during the assignment to '
+ 'the\n'
+ ' target list, it will be treated the same as an error '
+ 'occurring\n'
+ ' within the suite would be. See step 6 below.\n'
+ '\n'
'6. The suite is executed.\n'
- '\n'
+ '\n'
'7. The context manager’s "__exit__()" method is invoked. If an\n'
- ' exception caused the suite to be exited, its type, value, '
- 'and\n'
- ' traceback are passed as arguments to "__exit__()". Otherwise, '
- 'three\n'
- ' "None" arguments are supplied.\n'
- '\n'
- ' If the suite was exited due to an exception, and the return '
- 'value\n'
- ' from the "__exit__()" method was false, the exception is '
- 'reraised.\n'
- ' If the return value was true, the exception is suppressed, '
- 'and\n'
- ' execution continues with the statement following the "with"\n'
- ' statement.\n'
- '\n'
- ' If the suite was exited for any reason other than an '
- 'exception, the\n'
- ' return value from "__exit__()" is ignored, and execution '
- 'proceeds\n'
- ' at the normal location for the kind of exit that was taken.\n'
- '\n'
+ ' exception caused the suite to be exited, its type, value, '
+ 'and\n'
+ ' traceback are passed as arguments to "__exit__()". Otherwise, '
+ 'three\n'
+ ' "None" arguments are supplied.\n'
+ '\n'
+ ' If the suite was exited due to an exception, and the return '
+ 'value\n'
+ ' from the "__exit__()" method was false, the exception is '
+ 'reraised.\n'
+ ' If the return value was true, the exception is suppressed, '
+ 'and\n'
+ ' execution continues with the statement following the "with"\n'
+ ' statement.\n'
+ '\n'
+ ' If the suite was exited for any reason other than an '
+ 'exception, the\n'
+ ' return value from "__exit__()" is ignored, and execution '
+ 'proceeds\n'
+ ' at the normal location for the kind of exit that was taken.\n'
+ '\n'
'The following code:\n'
'\n'
' with EXPRESSION as TARGET:\n'
@@ -2656,40 +2656,40 @@ topics = {'assert': 'The "assert" statement\n'
' if not hit_except:\n'
' exit(manager, None, None, None)\n'
'\n'
- 'With more than one item, the context managers are processed as '
- 'if\n'
- 'multiple "with" statements were nested:\n'
- '\n'
- ' with A() as a, B() as b:\n'
+ 'With more than one item, the context managers are processed as '
+ 'if\n'
+ 'multiple "with" statements were nested:\n'
+ '\n'
+ ' with A() as a, B() as b:\n'
' SUITE\n'
- '\n'
+ '\n'
'is semantically equivalent to:\n'
- '\n'
- ' with A() as a:\n'
- ' with B() as b:\n'
+ '\n'
+ ' with A() as a:\n'
+ ' with B() as b:\n'
' SUITE\n'
- '\n'
- 'Changed in version 3.1: Support for multiple context '
- 'expressions.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 343** - The “with” statement\n'
- ' The specification, background, and examples for the Python '
- '"with"\n'
- ' statement.\n'
- '\n'
- '\n'
- 'Function definitions\n'
- '====================\n'
- '\n'
- 'A function definition defines a user-defined function object '
- '(see\n'
- 'section The standard type hierarchy):\n'
- '\n'
+ '\n'
+ 'Changed in version 3.1: Support for multiple context '
+ 'expressions.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 343** - The “with” statement\n'
+ ' The specification, background, and examples for the Python '
+ '"with"\n'
+ ' statement.\n'
+ '\n'
+ '\n'
+ 'Function definitions\n'
+ '====================\n'
+ '\n'
+ 'A function definition defines a user-defined function object '
+ '(see\n'
+ 'section The standard type hierarchy):\n'
+ '\n'
' funcdef ::= [decorators] "def" funcname "(" '
- '[parameter_list] ")"\n'
- ' ["->" expression] ":" suite\n'
+ '[parameter_list] ")"\n'
+ ' ["->" expression] ":" suite\n'
' decorators ::= decorator+\n'
' decorator ::= "@" assignment_expression '
'NEWLINE\n'
@@ -2700,573 +2700,573 @@ topics = {'assert': 'The "assert" statement\n'
'defparameter)* ["," [parameter_list_starargs]]\n'
' | parameter_list_starargs\n'
' parameter_list_starargs ::= "*" [parameter] ("," '
- 'defparameter)* ["," ["**" parameter [","]]]\n'
- ' | "**" parameter [","]\n'
+ 'defparameter)* ["," ["**" parameter [","]]]\n'
+ ' | "**" parameter [","]\n'
' parameter ::= identifier [":" expression]\n'
' defparameter ::= parameter ["=" expression]\n'
' funcname ::= identifier\n'
- '\n'
- 'A function definition is an executable statement. Its execution '
- 'binds\n'
- 'the function name in the current local namespace to a function '
- 'object\n'
- '(a wrapper around the executable code for the function). This\n'
- 'function object contains a reference to the current global '
- 'namespace\n'
- 'as the global namespace to be used when the function is called.\n'
- '\n'
- 'The function definition does not execute the function body; this '
- 'gets\n'
- 'executed only when the function is called. [2]\n'
- '\n'
- 'A function definition may be wrapped by one or more *decorator*\n'
- 'expressions. Decorator expressions are evaluated when the '
- 'function is\n'
- 'defined, in the scope that contains the function definition. '
- 'The\n'
- 'result must be a callable, which is invoked with the function '
- 'object\n'
- 'as the only argument. The returned value is bound to the '
- 'function name\n'
- 'instead of the function object. Multiple decorators are applied '
- 'in\n'
- 'nested fashion. For example, the following code\n'
- '\n'
- ' @f1(arg)\n'
- ' @f2\n'
- ' def func(): pass\n'
- '\n'
- 'is roughly equivalent to\n'
- '\n'
- ' def func(): pass\n'
- ' func = f1(arg)(f2(func))\n'
- '\n'
- 'except that the original function is not temporarily bound to '
- 'the name\n'
- '"func".\n'
- '\n'
+ '\n'
+ 'A function definition is an executable statement. Its execution '
+ 'binds\n'
+ 'the function name in the current local namespace to a function '
+ 'object\n'
+ '(a wrapper around the executable code for the function). This\n'
+ 'function object contains a reference to the current global '
+ 'namespace\n'
+ 'as the global namespace to be used when the function is called.\n'
+ '\n'
+ 'The function definition does not execute the function body; this '
+ 'gets\n'
+ 'executed only when the function is called. [2]\n'
+ '\n'
+ 'A function definition may be wrapped by one or more *decorator*\n'
+ 'expressions. Decorator expressions are evaluated when the '
+ 'function is\n'
+ 'defined, in the scope that contains the function definition. '
+ 'The\n'
+ 'result must be a callable, which is invoked with the function '
+ 'object\n'
+ 'as the only argument. The returned value is bound to the '
+ 'function name\n'
+ 'instead of the function object. Multiple decorators are applied '
+ 'in\n'
+ 'nested fashion. For example, the following code\n'
+ '\n'
+ ' @f1(arg)\n'
+ ' @f2\n'
+ ' def func(): pass\n'
+ '\n'
+ 'is roughly equivalent to\n'
+ '\n'
+ ' def func(): pass\n'
+ ' func = f1(arg)(f2(func))\n'
+ '\n'
+ 'except that the original function is not temporarily bound to '
+ 'the name\n'
+ '"func".\n'
+ '\n'
'Changed in version 3.9: Functions may be decorated with any '
'valid\n'
'"assignment_expression". Previously, the grammar was much more\n'
'restrictive; see **PEP 614** for details.\n'
'\n'
- 'When one or more *parameters* have the form *parameter* "="\n'
- '*expression*, the function is said to have “default parameter '
- 'values.”\n'
- 'For a parameter with a default value, the corresponding '
- '*argument* may\n'
- 'be omitted from a call, in which case the parameter’s default '
- 'value is\n'
- 'substituted. If a parameter has a default value, all following\n'
- 'parameters up until the “"*"” must also have a default value — '
- 'this is\n'
- 'a syntactic restriction that is not expressed by the grammar.\n'
- '\n'
- '**Default parameter values are evaluated from left to right when '
- 'the\n'
- 'function definition is executed.** This means that the '
- 'expression is\n'
- 'evaluated once, when the function is defined, and that the same '
- '“pre-\n'
- 'computed” value is used for each call. This is especially '
- 'important\n'
- 'to understand when a default parameter is a mutable object, such '
- 'as a\n'
- 'list or a dictionary: if the function modifies the object (e.g. '
- 'by\n'
- 'appending an item to a list), the default value is in effect '
- 'modified.\n'
- 'This is generally not what was intended. A way around this is '
- 'to use\n'
- '"None" as the default, and explicitly test for it in the body of '
- 'the\n'
- 'function, e.g.:\n'
- '\n'
- ' def whats_on_the_telly(penguin=None):\n'
- ' if penguin is None:\n'
- ' penguin = []\n'
- ' penguin.append("property of the zoo")\n'
- ' return penguin\n'
- '\n'
- 'Function call semantics are described in more detail in section '
- 'Calls.\n'
- 'A function call always assigns values to all parameters '
- 'mentioned in\n'
+ 'When one or more *parameters* have the form *parameter* "="\n'
+ '*expression*, the function is said to have “default parameter '
+ 'values.”\n'
+ 'For a parameter with a default value, the corresponding '
+ '*argument* may\n'
+ 'be omitted from a call, in which case the parameter’s default '
+ 'value is\n'
+ 'substituted. If a parameter has a default value, all following\n'
+ 'parameters up until the “"*"” must also have a default value — '
+ 'this is\n'
+ 'a syntactic restriction that is not expressed by the grammar.\n'
+ '\n'
+ '**Default parameter values are evaluated from left to right when '
+ 'the\n'
+ 'function definition is executed.** This means that the '
+ 'expression is\n'
+ 'evaluated once, when the function is defined, and that the same '
+ '“pre-\n'
+ 'computed” value is used for each call. This is especially '
+ 'important\n'
+ 'to understand when a default parameter is a mutable object, such '
+ 'as a\n'
+ 'list or a dictionary: if the function modifies the object (e.g. '
+ 'by\n'
+ 'appending an item to a list), the default value is in effect '
+ 'modified.\n'
+ 'This is generally not what was intended. A way around this is '
+ 'to use\n'
+ '"None" as the default, and explicitly test for it in the body of '
+ 'the\n'
+ 'function, e.g.:\n'
+ '\n'
+ ' def whats_on_the_telly(penguin=None):\n'
+ ' if penguin is None:\n'
+ ' penguin = []\n'
+ ' penguin.append("property of the zoo")\n'
+ ' return penguin\n'
+ '\n'
+ 'Function call semantics are described in more detail in section '
+ 'Calls.\n'
+ 'A function call always assigns values to all parameters '
+ 'mentioned in\n'
'the parameter list, either from positional arguments, from '
- 'keyword\n'
- 'arguments, or from default values. If the form “"*identifier"” '
- 'is\n'
- 'present, it is initialized to a tuple receiving any excess '
- 'positional\n'
- 'parameters, defaulting to the empty tuple. If the form\n'
- '“"**identifier"” is present, it is initialized to a new ordered\n'
- 'mapping receiving any excess keyword arguments, defaulting to a '
- 'new\n'
- 'empty mapping of the same type. Parameters after “"*"” or\n'
- '“"*identifier"” are keyword-only parameters and may only be '
+ 'keyword\n'
+ 'arguments, or from default values. If the form “"*identifier"” '
+ 'is\n'
+ 'present, it is initialized to a tuple receiving any excess '
+ 'positional\n'
+ 'parameters, defaulting to the empty tuple. If the form\n'
+ '“"**identifier"” is present, it is initialized to a new ordered\n'
+ 'mapping receiving any excess keyword arguments, defaulting to a '
+ 'new\n'
+ 'empty mapping of the same type. Parameters after “"*"” or\n'
+ '“"*identifier"” are keyword-only parameters and may only be '
'passed by\n'
'keyword arguments. Parameters before “"/"” are positional-only\n'
'parameters and may only be passed by positional arguments.\n'
- '\n'
+ '\n'
'Changed in version 3.8: The "/" function parameter syntax may be '
'used\n'
'to indicate positional-only parameters. See **PEP 570** for '
'details.\n'
'\n'
- 'Parameters may have an *annotation* of the form “": '
- 'expression"”\n'
- 'following the parameter name. Any parameter may have an '
- 'annotation,\n'
- 'even those of the form "*identifier" or "**identifier". '
- 'Functions may\n'
- 'have “return” annotation of the form “"-> expression"” after '
- 'the\n'
- 'parameter list. These annotations can be any valid Python '
- 'expression.\n'
- 'The presence of annotations does not change the semantics of a\n'
- 'function. The annotation values are available as values of a\n'
- 'dictionary keyed by the parameters’ names in the '
- '"__annotations__"\n'
- 'attribute of the function object. If the "annotations" import '
- 'from\n'
- '"__future__" is used, annotations are preserved as strings at '
- 'runtime\n'
- 'which enables postponed evaluation. Otherwise, they are '
- 'evaluated\n'
- 'when the function definition is executed. In this case '
- 'annotations\n'
- 'may be evaluated in a different order than they appear in the '
- 'source\n'
- 'code.\n'
- '\n'
- 'It is also possible to create anonymous functions (functions not '
- 'bound\n'
- 'to a name), for immediate use in expressions. This uses lambda\n'
- 'expressions, described in section Lambdas. Note that the '
- 'lambda\n'
- 'expression is merely a shorthand for a simplified function '
- 'definition;\n'
- 'a function defined in a “"def"” statement can be passed around '
- 'or\n'
- 'assigned to another name just like a function defined by a '
- 'lambda\n'
- 'expression. The “"def"” form is actually more powerful since '
- 'it\n'
- 'allows the execution of multiple statements and annotations.\n'
- '\n'
- '**Programmer’s note:** Functions are first-class objects. A '
- '“"def"”\n'
- 'statement executed inside a function definition defines a local\n'
- 'function that can be returned or passed around. Free variables '
- 'used\n'
- 'in the nested function can access the local variables of the '
- 'function\n'
- 'containing the def. See section Naming and binding for '
- 'details.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 3107** - Function Annotations\n'
- ' The original specification for function annotations.\n'
- '\n'
- ' **PEP 484** - Type Hints\n'
- ' Definition of a standard meaning for annotations: type '
- 'hints.\n'
- '\n'
- ' **PEP 526** - Syntax for Variable Annotations\n'
- ' Ability to type hint variable declarations, including '
- 'class\n'
- ' variables and instance variables\n'
- '\n'
- ' **PEP 563** - Postponed Evaluation of Annotations\n'
- ' Support for forward references within annotations by '
- 'preserving\n'
- ' annotations in a string form at runtime instead of eager\n'
- ' evaluation.\n'
- '\n'
- '\n'
- 'Class definitions\n'
- '=================\n'
- '\n'
- 'A class definition defines a class object (see section The '
- 'standard\n'
- 'type hierarchy):\n'
- '\n'
- ' classdef ::= [decorators] "class" classname [inheritance] '
- '":" suite\n'
- ' inheritance ::= "(" [argument_list] ")"\n'
- ' classname ::= identifier\n'
- '\n'
- 'A class definition is an executable statement. The inheritance '
- 'list\n'
- 'usually gives a list of base classes (see Metaclasses for more\n'
- 'advanced uses), so each item in the list should evaluate to a '
- 'class\n'
- 'object which allows subclassing. Classes without an inheritance '
- 'list\n'
- 'inherit, by default, from the base class "object"; hence,\n'
- '\n'
- ' class Foo:\n'
- ' pass\n'
- '\n'
- 'is equivalent to\n'
- '\n'
- ' class Foo(object):\n'
- ' pass\n'
- '\n'
- 'The class’s suite is then executed in a new execution frame '
- '(see\n'
- 'Naming and binding), using a newly created local namespace and '
- 'the\n'
- 'original global namespace. (Usually, the suite contains mostly\n'
- 'function definitions.) When the class’s suite finishes '
- 'execution, its\n'
- 'execution frame is discarded but its local namespace is saved. '
- '[3] A\n'
- 'class object is then created using the inheritance list for the '
- 'base\n'
- 'classes and the saved local namespace for the attribute '
- 'dictionary.\n'
- 'The class name is bound to this class object in the original '
- 'local\n'
- 'namespace.\n'
- '\n'
- 'The order in which attributes are defined in the class body is\n'
- 'preserved in the new class’s "__dict__". Note that this is '
- 'reliable\n'
- 'only right after the class is created and only for classes that '
- 'were\n'
- 'defined using the definition syntax.\n'
- '\n'
- 'Class creation can be customized heavily using metaclasses.\n'
- '\n'
- 'Classes can also be decorated: just like when decorating '
- 'functions,\n'
- '\n'
- ' @f1(arg)\n'
- ' @f2\n'
- ' class Foo: pass\n'
- '\n'
- 'is roughly equivalent to\n'
- '\n'
- ' class Foo: pass\n'
- ' Foo = f1(arg)(f2(Foo))\n'
- '\n'
- 'The evaluation rules for the decorator expressions are the same '
- 'as for\n'
- 'function decorators. The result is then bound to the class '
- 'name.\n'
- '\n'
+ 'Parameters may have an *annotation* of the form “": '
+ 'expression"”\n'
+ 'following the parameter name. Any parameter may have an '
+ 'annotation,\n'
+ 'even those of the form "*identifier" or "**identifier". '
+ 'Functions may\n'
+ 'have “return” annotation of the form “"-> expression"” after '
+ 'the\n'
+ 'parameter list. These annotations can be any valid Python '
+ 'expression.\n'
+ 'The presence of annotations does not change the semantics of a\n'
+ 'function. The annotation values are available as values of a\n'
+ 'dictionary keyed by the parameters’ names in the '
+ '"__annotations__"\n'
+ 'attribute of the function object. If the "annotations" import '
+ 'from\n'
+ '"__future__" is used, annotations are preserved as strings at '
+ 'runtime\n'
+ 'which enables postponed evaluation. Otherwise, they are '
+ 'evaluated\n'
+ 'when the function definition is executed. In this case '
+ 'annotations\n'
+ 'may be evaluated in a different order than they appear in the '
+ 'source\n'
+ 'code.\n'
+ '\n'
+ 'It is also possible to create anonymous functions (functions not '
+ 'bound\n'
+ 'to a name), for immediate use in expressions. This uses lambda\n'
+ 'expressions, described in section Lambdas. Note that the '
+ 'lambda\n'
+ 'expression is merely a shorthand for a simplified function '
+ 'definition;\n'
+ 'a function defined in a “"def"” statement can be passed around '
+ 'or\n'
+ 'assigned to another name just like a function defined by a '
+ 'lambda\n'
+ 'expression. The “"def"” form is actually more powerful since '
+ 'it\n'
+ 'allows the execution of multiple statements and annotations.\n'
+ '\n'
+ '**Programmer’s note:** Functions are first-class objects. A '
+ '“"def"”\n'
+ 'statement executed inside a function definition defines a local\n'
+ 'function that can be returned or passed around. Free variables '
+ 'used\n'
+ 'in the nested function can access the local variables of the '
+ 'function\n'
+ 'containing the def. See section Naming and binding for '
+ 'details.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 3107** - Function Annotations\n'
+ ' The original specification for function annotations.\n'
+ '\n'
+ ' **PEP 484** - Type Hints\n'
+ ' Definition of a standard meaning for annotations: type '
+ 'hints.\n'
+ '\n'
+ ' **PEP 526** - Syntax for Variable Annotations\n'
+ ' Ability to type hint variable declarations, including '
+ 'class\n'
+ ' variables and instance variables\n'
+ '\n'
+ ' **PEP 563** - Postponed Evaluation of Annotations\n'
+ ' Support for forward references within annotations by '
+ 'preserving\n'
+ ' annotations in a string form at runtime instead of eager\n'
+ ' evaluation.\n'
+ '\n'
+ '\n'
+ 'Class definitions\n'
+ '=================\n'
+ '\n'
+ 'A class definition defines a class object (see section The '
+ 'standard\n'
+ 'type hierarchy):\n'
+ '\n'
+ ' classdef ::= [decorators] "class" classname [inheritance] '
+ '":" suite\n'
+ ' inheritance ::= "(" [argument_list] ")"\n'
+ ' classname ::= identifier\n'
+ '\n'
+ 'A class definition is an executable statement. The inheritance '
+ 'list\n'
+ 'usually gives a list of base classes (see Metaclasses for more\n'
+ 'advanced uses), so each item in the list should evaluate to a '
+ 'class\n'
+ 'object which allows subclassing. Classes without an inheritance '
+ 'list\n'
+ 'inherit, by default, from the base class "object"; hence,\n'
+ '\n'
+ ' class Foo:\n'
+ ' pass\n'
+ '\n'
+ 'is equivalent to\n'
+ '\n'
+ ' class Foo(object):\n'
+ ' pass\n'
+ '\n'
+ 'The class’s suite is then executed in a new execution frame '
+ '(see\n'
+ 'Naming and binding), using a newly created local namespace and '
+ 'the\n'
+ 'original global namespace. (Usually, the suite contains mostly\n'
+ 'function definitions.) When the class’s suite finishes '
+ 'execution, its\n'
+ 'execution frame is discarded but its local namespace is saved. '
+ '[3] A\n'
+ 'class object is then created using the inheritance list for the '
+ 'base\n'
+ 'classes and the saved local namespace for the attribute '
+ 'dictionary.\n'
+ 'The class name is bound to this class object in the original '
+ 'local\n'
+ 'namespace.\n'
+ '\n'
+ 'The order in which attributes are defined in the class body is\n'
+ 'preserved in the new class’s "__dict__". Note that this is '
+ 'reliable\n'
+ 'only right after the class is created and only for classes that '
+ 'were\n'
+ 'defined using the definition syntax.\n'
+ '\n'
+ 'Class creation can be customized heavily using metaclasses.\n'
+ '\n'
+ 'Classes can also be decorated: just like when decorating '
+ 'functions,\n'
+ '\n'
+ ' @f1(arg)\n'
+ ' @f2\n'
+ ' class Foo: pass\n'
+ '\n'
+ 'is roughly equivalent to\n'
+ '\n'
+ ' class Foo: pass\n'
+ ' Foo = f1(arg)(f2(Foo))\n'
+ '\n'
+ 'The evaluation rules for the decorator expressions are the same '
+ 'as for\n'
+ 'function decorators. The result is then bound to the class '
+ 'name.\n'
+ '\n'
'Changed in version 3.9: Classes may be decorated with any valid\n'
'"assignment_expression". Previously, the grammar was much more\n'
'restrictive; see **PEP 614** for details.\n'
'\n'
- '**Programmer’s note:** Variables defined in the class definition '
- 'are\n'
- 'class attributes; they are shared by instances. Instance '
- 'attributes\n'
- 'can be set in a method with "self.name = value". Both class '
- 'and\n'
- 'instance attributes are accessible through the notation '
- '“"self.name"”,\n'
- 'and an instance attribute hides a class attribute with the same '
- 'name\n'
- 'when accessed in this way. Class attributes can be used as '
- 'defaults\n'
- 'for instance attributes, but using mutable values there can lead '
- 'to\n'
- 'unexpected results. Descriptors can be used to create instance\n'
- 'variables with different implementation details.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 3115** - Metaclasses in Python 3000\n'
- ' The proposal that changed the declaration of metaclasses to '
- 'the\n'
- ' current syntax, and the semantics for how classes with\n'
- ' metaclasses are constructed.\n'
- '\n'
- ' **PEP 3129** - Class Decorators\n'
- ' The proposal that added class decorators. Function and '
- 'method\n'
- ' decorators were introduced in **PEP 318**.\n'
- '\n'
- '\n'
- 'Coroutines\n'
- '==========\n'
- '\n'
- 'New in version 3.5.\n'
- '\n'
- '\n'
- 'Coroutine function definition\n'
- '-----------------------------\n'
- '\n'
- ' async_funcdef ::= [decorators] "async" "def" funcname "(" '
- '[parameter_list] ")"\n'
- ' ["->" expression] ":" suite\n'
- '\n'
- 'Execution of Python coroutines can be suspended and resumed at '
- 'many\n'
- 'points (see *coroutine*). Inside the body of a coroutine '
- 'function,\n'
- '"await" and "async" identifiers become reserved keywords; '
- '"await"\n'
- 'expressions, "async for" and "async with" can only be used in\n'
- 'coroutine function bodies.\n'
- '\n'
- 'Functions defined with "async def" syntax are always coroutine\n'
- 'functions, even if they do not contain "await" or "async" '
- 'keywords.\n'
- '\n'
- 'It is a "SyntaxError" to use a "yield from" expression inside '
- 'the body\n'
- 'of a coroutine function.\n'
- '\n'
- 'An example of a coroutine function:\n'
- '\n'
- ' async def func(param1, param2):\n'
- ' do_stuff()\n'
- ' await some_coroutine()\n'
- '\n'
- '\n'
- 'The "async for" statement\n'
- '-------------------------\n'
- '\n'
- ' async_for_stmt ::= "async" for_stmt\n'
- '\n'
+ '**Programmer’s note:** Variables defined in the class definition '
+ 'are\n'
+ 'class attributes; they are shared by instances. Instance '
+ 'attributes\n'
+ 'can be set in a method with "self.name = value". Both class '
+ 'and\n'
+ 'instance attributes are accessible through the notation '
+ '“"self.name"”,\n'
+ 'and an instance attribute hides a class attribute with the same '
+ 'name\n'
+ 'when accessed in this way. Class attributes can be used as '
+ 'defaults\n'
+ 'for instance attributes, but using mutable values there can lead '
+ 'to\n'
+ 'unexpected results. Descriptors can be used to create instance\n'
+ 'variables with different implementation details.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 3115** - Metaclasses in Python 3000\n'
+ ' The proposal that changed the declaration of metaclasses to '
+ 'the\n'
+ ' current syntax, and the semantics for how classes with\n'
+ ' metaclasses are constructed.\n'
+ '\n'
+ ' **PEP 3129** - Class Decorators\n'
+ ' The proposal that added class decorators. Function and '
+ 'method\n'
+ ' decorators were introduced in **PEP 318**.\n'
+ '\n'
+ '\n'
+ 'Coroutines\n'
+ '==========\n'
+ '\n'
+ 'New in version 3.5.\n'
+ '\n'
+ '\n'
+ 'Coroutine function definition\n'
+ '-----------------------------\n'
+ '\n'
+ ' async_funcdef ::= [decorators] "async" "def" funcname "(" '
+ '[parameter_list] ")"\n'
+ ' ["->" expression] ":" suite\n'
+ '\n'
+ 'Execution of Python coroutines can be suspended and resumed at '
+ 'many\n'
+ 'points (see *coroutine*). Inside the body of a coroutine '
+ 'function,\n'
+ '"await" and "async" identifiers become reserved keywords; '
+ '"await"\n'
+ 'expressions, "async for" and "async with" can only be used in\n'
+ 'coroutine function bodies.\n'
+ '\n'
+ 'Functions defined with "async def" syntax are always coroutine\n'
+ 'functions, even if they do not contain "await" or "async" '
+ 'keywords.\n'
+ '\n'
+ 'It is a "SyntaxError" to use a "yield from" expression inside '
+ 'the body\n'
+ 'of a coroutine function.\n'
+ '\n'
+ 'An example of a coroutine function:\n'
+ '\n'
+ ' async def func(param1, param2):\n'
+ ' do_stuff()\n'
+ ' await some_coroutine()\n'
+ '\n'
+ '\n'
+ 'The "async for" statement\n'
+ '-------------------------\n'
+ '\n'
+ ' async_for_stmt ::= "async" for_stmt\n'
+ '\n'
'An *asynchronous iterable* provides an "__aiter__" method that\n'
'directly returns an *asynchronous iterator*, which can call\n'
'asynchronous code in its "__anext__" method.\n'
- '\n'
- 'The "async for" statement allows convenient iteration over\n'
+ '\n'
+ 'The "async for" statement allows convenient iteration over\n'
'asynchronous iterables.\n'
- '\n'
- 'The following code:\n'
- '\n'
- ' async for TARGET in ITER:\n'
+ '\n'
+ 'The following code:\n'
+ '\n'
+ ' async for TARGET in ITER:\n'
' SUITE\n'
- ' else:\n'
+ ' else:\n'
' SUITE2\n'
- '\n'
- 'Is semantically equivalent to:\n'
- '\n'
- ' iter = (ITER)\n'
- ' iter = type(iter).__aiter__(iter)\n'
- ' running = True\n'
- '\n'
- ' while running:\n'
- ' try:\n'
- ' TARGET = await type(iter).__anext__(iter)\n'
- ' except StopAsyncIteration:\n'
- ' running = False\n'
- ' else:\n'
+ '\n'
+ 'Is semantically equivalent to:\n'
+ '\n'
+ ' iter = (ITER)\n'
+ ' iter = type(iter).__aiter__(iter)\n'
+ ' running = True\n'
+ '\n'
+ ' while running:\n'
+ ' try:\n'
+ ' TARGET = await type(iter).__anext__(iter)\n'
+ ' except StopAsyncIteration:\n'
+ ' running = False\n'
+ ' else:\n'
' SUITE\n'
- ' else:\n'
+ ' else:\n'
' SUITE2\n'
- '\n'
- 'See also "__aiter__()" and "__anext__()" for details.\n'
- '\n'
- 'It is a "SyntaxError" to use an "async for" statement outside '
- 'the body\n'
- 'of a coroutine function.\n'
- '\n'
- '\n'
- 'The "async with" statement\n'
- '--------------------------\n'
- '\n'
- ' async_with_stmt ::= "async" with_stmt\n'
- '\n'
- 'An *asynchronous context manager* is a *context manager* that is '
- 'able\n'
- 'to suspend execution in its *enter* and *exit* methods.\n'
- '\n'
- 'The following code:\n'
- '\n'
+ '\n'
+ 'See also "__aiter__()" and "__anext__()" for details.\n'
+ '\n'
+ 'It is a "SyntaxError" to use an "async for" statement outside '
+ 'the body\n'
+ 'of a coroutine function.\n'
+ '\n'
+ '\n'
+ 'The "async with" statement\n'
+ '--------------------------\n'
+ '\n'
+ ' async_with_stmt ::= "async" with_stmt\n'
+ '\n'
+ 'An *asynchronous context manager* is a *context manager* that is '
+ 'able\n'
+ 'to suspend execution in its *enter* and *exit* methods.\n'
+ '\n'
+ 'The following code:\n'
+ '\n'
' async with EXPRESSION as TARGET:\n'
' SUITE\n'
- '\n'
+ '\n'
'is semantically equivalent to:\n'
- '\n'
+ '\n'
' manager = (EXPRESSION)\n'
' aenter = type(manager).__aenter__\n'
' aexit = type(manager).__aexit__\n'
' value = await aenter(manager)\n'
' hit_except = False\n'
- '\n'
- ' try:\n'
+ '\n'
+ ' try:\n'
' TARGET = value\n'
' SUITE\n'
- ' except:\n'
+ ' except:\n'
' hit_except = True\n'
' if not await aexit(manager, *sys.exc_info()):\n'
- ' raise\n'
+ ' raise\n'
' finally:\n'
' if not hit_except:\n'
' await aexit(manager, None, None, None)\n'
- '\n'
- 'See also "__aenter__()" and "__aexit__()" for details.\n'
- '\n'
- 'It is a "SyntaxError" to use an "async with" statement outside '
- 'the\n'
- 'body of a coroutine function.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 492** - Coroutines with async and await syntax\n'
- ' The proposal that made coroutines a proper standalone '
- 'concept in\n'
- ' Python, and added supporting syntax.\n'
- '\n'
- '-[ Footnotes ]-\n'
- '\n'
+ '\n'
+ 'See also "__aenter__()" and "__aexit__()" for details.\n'
+ '\n'
+ 'It is a "SyntaxError" to use an "async with" statement outside '
+ 'the\n'
+ 'body of a coroutine function.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 492** - Coroutines with async and await syntax\n'
+ ' The proposal that made coroutines a proper standalone '
+ 'concept in\n'
+ ' Python, and added supporting syntax.\n'
+ '\n'
+ '-[ Footnotes ]-\n'
+ '\n'
'[1] The exception is propagated to the invocation stack unless '
'there\n'
' is a "finally" clause which happens to raise another '
'exception.\n'
' That new exception causes the old one to be lost.\n'
- '\n'
+ '\n'
'[2] A string literal appearing as the first statement in the '
'function\n'
' body is transformed into the function’s "__doc__" attribute '
'and\n'
' therefore the function’s *docstring*.\n'
- '\n'
- '[3] A string literal appearing as the first statement in the '
- 'class\n'
- ' body is transformed into the namespace’s "__doc__" item and\n'
- ' therefore the class’s *docstring*.\n',
- 'context-managers': 'With Statement Context Managers\n'
- '*******************************\n'
- '\n'
- 'A *context manager* is an object that defines the '
- 'runtime context to\n'
- 'be established when executing a "with" statement. The '
- 'context manager\n'
- 'handles the entry into, and the exit from, the desired '
- 'runtime context\n'
- 'for the execution of the block of code. Context '
- 'managers are normally\n'
- 'invoked using the "with" statement (described in section '
- 'The with\n'
- 'statement), but can also be used by directly invoking '
- 'their methods.\n'
- '\n'
- 'Typical uses of context managers include saving and '
- 'restoring various\n'
- 'kinds of global state, locking and unlocking resources, '
- 'closing opened\n'
- 'files, etc.\n'
- '\n'
- 'For more information on context managers, see Context '
- 'Manager Types.\n'
- '\n'
- 'object.__enter__(self)\n'
- '\n'
- ' Enter the runtime context related to this object. The '
- '"with"\n'
- ' statement will bind this method’s return value to the '
- 'target(s)\n'
- ' specified in the "as" clause of the statement, if '
- 'any.\n'
- '\n'
- 'object.__exit__(self, exc_type, exc_value, traceback)\n'
- '\n'
- ' Exit the runtime context related to this object. The '
- 'parameters\n'
- ' describe the exception that caused the context to be '
- 'exited. If the\n'
- ' context was exited without an exception, all three '
- 'arguments will\n'
- ' be "None".\n'
- '\n'
- ' If an exception is supplied, and the method wishes to '
- 'suppress the\n'
- ' exception (i.e., prevent it from being propagated), '
- 'it should\n'
- ' return a true value. Otherwise, the exception will be '
- 'processed\n'
- ' normally upon exit from this method.\n'
- '\n'
- ' Note that "__exit__()" methods should not reraise the '
- 'passed-in\n'
- ' exception; this is the caller’s responsibility.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 343** - The “with” statement\n'
- ' The specification, background, and examples for the '
- 'Python "with"\n'
- ' statement.\n',
- 'continue': 'The "continue" statement\n'
- '************************\n'
- '\n'
- ' continue_stmt ::= "continue"\n'
- '\n'
- '"continue" may only occur syntactically nested in a "for" or '
- '"while"\n'
+ '\n'
+ '[3] A string literal appearing as the first statement in the '
+ 'class\n'
+ ' body is transformed into the namespace’s "__doc__" item and\n'
+ ' therefore the class’s *docstring*.\n',
+ 'context-managers': 'With Statement Context Managers\n'
+ '*******************************\n'
+ '\n'
+ 'A *context manager* is an object that defines the '
+ 'runtime context to\n'
+ 'be established when executing a "with" statement. The '
+ 'context manager\n'
+ 'handles the entry into, and the exit from, the desired '
+ 'runtime context\n'
+ 'for the execution of the block of code. Context '
+ 'managers are normally\n'
+ 'invoked using the "with" statement (described in section '
+ 'The with\n'
+ 'statement), but can also be used by directly invoking '
+ 'their methods.\n'
+ '\n'
+ 'Typical uses of context managers include saving and '
+ 'restoring various\n'
+ 'kinds of global state, locking and unlocking resources, '
+ 'closing opened\n'
+ 'files, etc.\n'
+ '\n'
+ 'For more information on context managers, see Context '
+ 'Manager Types.\n'
+ '\n'
+ 'object.__enter__(self)\n'
+ '\n'
+ ' Enter the runtime context related to this object. The '
+ '"with"\n'
+ ' statement will bind this method’s return value to the '
+ 'target(s)\n'
+ ' specified in the "as" clause of the statement, if '
+ 'any.\n'
+ '\n'
+ 'object.__exit__(self, exc_type, exc_value, traceback)\n'
+ '\n'
+ ' Exit the runtime context related to this object. The '
+ 'parameters\n'
+ ' describe the exception that caused the context to be '
+ 'exited. If the\n'
+ ' context was exited without an exception, all three '
+ 'arguments will\n'
+ ' be "None".\n'
+ '\n'
+ ' If an exception is supplied, and the method wishes to '
+ 'suppress the\n'
+ ' exception (i.e., prevent it from being propagated), '
+ 'it should\n'
+ ' return a true value. Otherwise, the exception will be '
+ 'processed\n'
+ ' normally upon exit from this method.\n'
+ '\n'
+ ' Note that "__exit__()" methods should not reraise the '
+ 'passed-in\n'
+ ' exception; this is the caller’s responsibility.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 343** - The “with” statement\n'
+ ' The specification, background, and examples for the '
+ 'Python "with"\n'
+ ' statement.\n',
+ 'continue': 'The "continue" statement\n'
+ '************************\n'
+ '\n'
+ ' continue_stmt ::= "continue"\n'
+ '\n'
+ '"continue" may only occur syntactically nested in a "for" or '
+ '"while"\n'
'loop, but not nested in a function or class definition within '
'that\n'
'loop. It continues with the next cycle of the nearest enclosing '
'loop.\n'
- '\n'
- 'When "continue" passes control out of a "try" statement with a\n'
- '"finally" clause, that "finally" clause is executed before '
- 'really\n'
- 'starting the next loop cycle.\n',
- 'conversions': 'Arithmetic conversions\n'
- '**********************\n'
- '\n'
- 'When a description of an arithmetic operator below uses the '
- 'phrase\n'
+ '\n'
+ 'When "continue" passes control out of a "try" statement with a\n'
+ '"finally" clause, that "finally" clause is executed before '
+ 'really\n'
+ 'starting the next loop cycle.\n',
+ 'conversions': 'Arithmetic conversions\n'
+ '**********************\n'
+ '\n'
+ 'When a description of an arithmetic operator below uses the '
+ 'phrase\n'
'“the numeric arguments are converted to a common type”, this '
- 'means\n'
- 'that the operator implementation for built-in types works as '
- 'follows:\n'
- '\n'
- '* If either argument is a complex number, the other is '
- 'converted to\n'
- ' complex;\n'
- '\n'
- '* otherwise, if either argument is a floating point number, '
+ 'means\n'
+ 'that the operator implementation for built-in types works as '
+ 'follows:\n'
+ '\n'
+ '* If either argument is a complex number, the other is '
+ 'converted to\n'
+ ' complex;\n'
+ '\n'
+ '* otherwise, if either argument is a floating point number, '
'the other\n'
' is converted to floating point;\n'
- '\n'
- '* otherwise, both must be integers and no conversion is '
- 'necessary.\n'
- '\n'
- 'Some additional rules apply for certain operators (e.g., a '
- 'string as a\n'
- 'left argument to the ‘%’ operator). Extensions must define '
- 'their own\n'
- 'conversion behavior.\n',
- 'customization': 'Basic customization\n'
- '*******************\n'
- '\n'
- 'object.__new__(cls[, ...])\n'
- '\n'
- ' Called to create a new instance of class *cls*. '
- '"__new__()" is a\n'
- ' static method (special-cased so you need not declare it '
- 'as such)\n'
- ' that takes the class of which an instance was requested '
- 'as its\n'
- ' first argument. The remaining arguments are those '
- 'passed to the\n'
- ' object constructor expression (the call to the class). '
- 'The return\n'
- ' value of "__new__()" should be the new object instance '
- '(usually an\n'
- ' instance of *cls*).\n'
- '\n'
- ' Typical implementations create a new instance of the '
- 'class by\n'
- ' invoking the superclass’s "__new__()" method using\n'
- ' "super().__new__(cls[, ...])" with appropriate arguments '
- 'and then\n'
- ' modifying the newly-created instance as necessary before '
- 'returning\n'
- ' it.\n'
- '\n'
+ '\n'
+ '* otherwise, both must be integers and no conversion is '
+ 'necessary.\n'
+ '\n'
+ 'Some additional rules apply for certain operators (e.g., a '
+ 'string as a\n'
+ 'left argument to the ‘%’ operator). Extensions must define '
+ 'their own\n'
+ 'conversion behavior.\n',
+ 'customization': 'Basic customization\n'
+ '*******************\n'
+ '\n'
+ 'object.__new__(cls[, ...])\n'
+ '\n'
+ ' Called to create a new instance of class *cls*. '
+ '"__new__()" is a\n'
+ ' static method (special-cased so you need not declare it '
+ 'as such)\n'
+ ' that takes the class of which an instance was requested '
+ 'as its\n'
+ ' first argument. The remaining arguments are those '
+ 'passed to the\n'
+ ' object constructor expression (the call to the class). '
+ 'The return\n'
+ ' value of "__new__()" should be the new object instance '
+ '(usually an\n'
+ ' instance of *cls*).\n'
+ '\n'
+ ' Typical implementations create a new instance of the '
+ 'class by\n'
+ ' invoking the superclass’s "__new__()" method using\n'
+ ' "super().__new__(cls[, ...])" with appropriate arguments '
+ 'and then\n'
+ ' modifying the newly-created instance as necessary before '
+ 'returning\n'
+ ' it.\n'
+ '\n'
' If "__new__()" is invoked during object construction and '
'it returns\n'
' an instance of *cls*, then the new instance’s '
@@ -3276,97 +3276,97 @@ topics = {'assert': 'The "assert" statement\n'
' new instance and the remaining arguments are the same as '
'were\n'
' passed to the object constructor.\n'
- '\n'
- ' If "__new__()" does not return an instance of *cls*, '
- 'then the new\n'
- ' instance’s "__init__()" method will not be invoked.\n'
- '\n'
- ' "__new__()" is intended mainly to allow subclasses of '
- 'immutable\n'
- ' types (like int, str, or tuple) to customize instance '
- 'creation. It\n'
- ' is also commonly overridden in custom metaclasses in '
- 'order to\n'
- ' customize class creation.\n'
- '\n'
- 'object.__init__(self[, ...])\n'
- '\n'
- ' Called after the instance has been created (by '
- '"__new__()"), but\n'
- ' before it is returned to the caller. The arguments are '
- 'those\n'
- ' passed to the class constructor expression. If a base '
- 'class has an\n'
- ' "__init__()" method, the derived class’s "__init__()" '
- 'method, if\n'
- ' any, must explicitly call it to ensure proper '
- 'initialization of the\n'
- ' base class part of the instance; for example:\n'
- ' "super().__init__([args...])".\n'
- '\n'
- ' Because "__new__()" and "__init__()" work together in '
- 'constructing\n'
- ' objects ("__new__()" to create it, and "__init__()" to '
- 'customize\n'
- ' it), no non-"None" value may be returned by '
- '"__init__()"; doing so\n'
- ' will cause a "TypeError" to be raised at runtime.\n'
- '\n'
- 'object.__del__(self)\n'
- '\n'
- ' Called when the instance is about to be destroyed. This '
- 'is also\n'
- ' called a finalizer or (improperly) a destructor. If a '
- 'base class\n'
- ' has a "__del__()" method, the derived class’s '
- '"__del__()" method,\n'
- ' if any, must explicitly call it to ensure proper '
- 'deletion of the\n'
- ' base class part of the instance.\n'
- '\n'
- ' It is possible (though not recommended!) for the '
- '"__del__()" method\n'
- ' to postpone destruction of the instance by creating a '
- 'new reference\n'
- ' to it. This is called object *resurrection*. It is\n'
- ' implementation-dependent whether "__del__()" is called a '
- 'second\n'
- ' time when a resurrected object is about to be destroyed; '
- 'the\n'
- ' current *CPython* implementation only calls it once.\n'
- '\n'
- ' It is not guaranteed that "__del__()" methods are called '
- 'for\n'
- ' objects that still exist when the interpreter exits.\n'
- '\n'
+ '\n'
+ ' If "__new__()" does not return an instance of *cls*, '
+ 'then the new\n'
+ ' instance’s "__init__()" method will not be invoked.\n'
+ '\n'
+ ' "__new__()" is intended mainly to allow subclasses of '
+ 'immutable\n'
+ ' types (like int, str, or tuple) to customize instance '
+ 'creation. It\n'
+ ' is also commonly overridden in custom metaclasses in '
+ 'order to\n'
+ ' customize class creation.\n'
+ '\n'
+ 'object.__init__(self[, ...])\n'
+ '\n'
+ ' Called after the instance has been created (by '
+ '"__new__()"), but\n'
+ ' before it is returned to the caller. The arguments are '
+ 'those\n'
+ ' passed to the class constructor expression. If a base '
+ 'class has an\n'
+ ' "__init__()" method, the derived class’s "__init__()" '
+ 'method, if\n'
+ ' any, must explicitly call it to ensure proper '
+ 'initialization of the\n'
+ ' base class part of the instance; for example:\n'
+ ' "super().__init__([args...])".\n'
+ '\n'
+ ' Because "__new__()" and "__init__()" work together in '
+ 'constructing\n'
+ ' objects ("__new__()" to create it, and "__init__()" to '
+ 'customize\n'
+ ' it), no non-"None" value may be returned by '
+ '"__init__()"; doing so\n'
+ ' will cause a "TypeError" to be raised at runtime.\n'
+ '\n'
+ 'object.__del__(self)\n'
+ '\n'
+ ' Called when the instance is about to be destroyed. This '
+ 'is also\n'
+ ' called a finalizer or (improperly) a destructor. If a '
+ 'base class\n'
+ ' has a "__del__()" method, the derived class’s '
+ '"__del__()" method,\n'
+ ' if any, must explicitly call it to ensure proper '
+ 'deletion of the\n'
+ ' base class part of the instance.\n'
+ '\n'
+ ' It is possible (though not recommended!) for the '
+ '"__del__()" method\n'
+ ' to postpone destruction of the instance by creating a '
+ 'new reference\n'
+ ' to it. This is called object *resurrection*. It is\n'
+ ' implementation-dependent whether "__del__()" is called a '
+ 'second\n'
+ ' time when a resurrected object is about to be destroyed; '
+ 'the\n'
+ ' current *CPython* implementation only calls it once.\n'
+ '\n'
+ ' It is not guaranteed that "__del__()" methods are called '
+ 'for\n'
+ ' objects that still exist when the interpreter exits.\n'
+ '\n'
' Note:\n'
'\n'
' "del x" doesn’t directly call "x.__del__()" — the '
- 'former\n'
- ' decrements the reference count for "x" by one, and the '
- 'latter is\n'
- ' only called when "x"’s reference count reaches zero.\n'
- '\n'
- ' **CPython implementation detail:** It is possible for a '
- 'reference\n'
- ' cycle to prevent the reference count of an object from '
- 'going to\n'
- ' zero. In this case, the cycle will be later detected '
- 'and deleted\n'
- ' by the *cyclic garbage collector*. A common cause of '
- 'reference\n'
- ' cycles is when an exception has been caught in a local '
- 'variable.\n'
- ' The frame’s locals then reference the exception, which '
- 'references\n'
- ' its own traceback, which references the locals of all '
- 'frames caught\n'
- ' in the traceback.\n'
- '\n'
- ' See also: Documentation for the "gc" module.\n'
- '\n'
+ 'former\n'
+ ' decrements the reference count for "x" by one, and the '
+ 'latter is\n'
+ ' only called when "x"’s reference count reaches zero.\n'
+ '\n'
+ ' **CPython implementation detail:** It is possible for a '
+ 'reference\n'
+ ' cycle to prevent the reference count of an object from '
+ 'going to\n'
+ ' zero. In this case, the cycle will be later detected '
+ 'and deleted\n'
+ ' by the *cyclic garbage collector*. A common cause of '
+ 'reference\n'
+ ' cycles is when an exception has been caught in a local '
+ 'variable.\n'
+ ' The frame’s locals then reference the exception, which '
+ 'references\n'
+ ' its own traceback, which references the locals of all '
+ 'frames caught\n'
+ ' in the traceback.\n'
+ '\n'
+ ' See also: Documentation for the "gc" module.\n'
+ '\n'
' Warning:\n'
- '\n'
+ '\n'
' Due to the precarious circumstances under which '
'"__del__()"\n'
' methods are invoked, exceptions that occur during '
@@ -3375,17 +3375,17 @@ topics = {'assert': 'The "assert" statement\n'
'instead.\n'
' In particular:\n'
'\n'
- ' * "__del__()" can be invoked when arbitrary code is '
- 'being\n'
- ' executed, including from any arbitrary thread. If '
- '"__del__()"\n'
- ' needs to take a lock or invoke any other blocking '
- 'resource, it\n'
- ' may deadlock as the resource may already be taken by '
- 'the code\n'
- ' that gets interrupted to execute "__del__()".\n'
- '\n'
- ' * "__del__()" can be executed during interpreter '
+ ' * "__del__()" can be invoked when arbitrary code is '
+ 'being\n'
+ ' executed, including from any arbitrary thread. If '
+ '"__del__()"\n'
+ ' needs to take a lock or invoke any other blocking '
+ 'resource, it\n'
+ ' may deadlock as the resource may already be taken by '
+ 'the code\n'
+ ' that gets interrupted to execute "__del__()".\n'
+ '\n'
+ ' * "__del__()" can be executed during interpreter '
'shutdown. As a\n'
' consequence, the global variables it needs to access '
'(including\n'
@@ -3400,124 +3400,124 @@ topics = {'assert': 'The "assert" statement\n'
' may help in assuring that imported modules are still '
'available\n'
' at the time when the "__del__()" method is called.\n'
- '\n'
- 'object.__repr__(self)\n'
- '\n'
- ' Called by the "repr()" built-in function to compute the '
- '“official”\n'
- ' string representation of an object. If at all possible, '
- 'this\n'
- ' should look like a valid Python expression that could be '
- 'used to\n'
- ' recreate an object with the same value (given an '
- 'appropriate\n'
- ' environment). If this is not possible, a string of the '
- 'form\n'
- ' "<...some useful description...>" should be returned. '
- 'The return\n'
- ' value must be a string object. If a class defines '
- '"__repr__()" but\n'
- ' not "__str__()", then "__repr__()" is also used when an '
- '“informal”\n'
- ' string representation of instances of that class is '
- 'required.\n'
- '\n'
- ' This is typically used for debugging, so it is important '
- 'that the\n'
- ' representation is information-rich and unambiguous.\n'
- '\n'
- 'object.__str__(self)\n'
- '\n'
- ' Called by "str(object)" and the built-in functions '
- '"format()" and\n'
- ' "print()" to compute the “informal” or nicely printable '
- 'string\n'
- ' representation of an object. The return value must be a '
- 'string\n'
- ' object.\n'
- '\n'
- ' This method differs from "object.__repr__()" in that '
- 'there is no\n'
- ' expectation that "__str__()" return a valid Python '
- 'expression: a\n'
- ' more convenient or concise representation can be used.\n'
- '\n'
- ' The default implementation defined by the built-in type '
- '"object"\n'
- ' calls "object.__repr__()".\n'
- '\n'
- 'object.__bytes__(self)\n'
- '\n'
- ' Called by bytes to compute a byte-string representation '
- 'of an\n'
- ' object. This should return a "bytes" object.\n'
- '\n'
- 'object.__format__(self, format_spec)\n'
- '\n'
- ' Called by the "format()" built-in function, and by '
- 'extension,\n'
- ' evaluation of formatted string literals and the '
- '"str.format()"\n'
- ' method, to produce a “formatted” string representation '
- 'of an\n'
+ '\n'
+ 'object.__repr__(self)\n'
+ '\n'
+ ' Called by the "repr()" built-in function to compute the '
+ '“official”\n'
+ ' string representation of an object. If at all possible, '
+ 'this\n'
+ ' should look like a valid Python expression that could be '
+ 'used to\n'
+ ' recreate an object with the same value (given an '
+ 'appropriate\n'
+ ' environment). If this is not possible, a string of the '
+ 'form\n'
+ ' "<...some useful description...>" should be returned. '
+ 'The return\n'
+ ' value must be a string object. If a class defines '
+ '"__repr__()" but\n'
+ ' not "__str__()", then "__repr__()" is also used when an '
+ '“informal”\n'
+ ' string representation of instances of that class is '
+ 'required.\n'
+ '\n'
+ ' This is typically used for debugging, so it is important '
+ 'that the\n'
+ ' representation is information-rich and unambiguous.\n'
+ '\n'
+ 'object.__str__(self)\n'
+ '\n'
+ ' Called by "str(object)" and the built-in functions '
+ '"format()" and\n'
+ ' "print()" to compute the “informal” or nicely printable '
+ 'string\n'
+ ' representation of an object. The return value must be a '
+ 'string\n'
+ ' object.\n'
+ '\n'
+ ' This method differs from "object.__repr__()" in that '
+ 'there is no\n'
+ ' expectation that "__str__()" return a valid Python '
+ 'expression: a\n'
+ ' more convenient or concise representation can be used.\n'
+ '\n'
+ ' The default implementation defined by the built-in type '
+ '"object"\n'
+ ' calls "object.__repr__()".\n'
+ '\n'
+ 'object.__bytes__(self)\n'
+ '\n'
+ ' Called by bytes to compute a byte-string representation '
+ 'of an\n'
+ ' object. This should return a "bytes" object.\n'
+ '\n'
+ 'object.__format__(self, format_spec)\n'
+ '\n'
+ ' Called by the "format()" built-in function, and by '
+ 'extension,\n'
+ ' evaluation of formatted string literals and the '
+ '"str.format()"\n'
+ ' method, to produce a “formatted” string representation '
+ 'of an\n'
' object. The *format_spec* argument is a string that '
- 'contains a\n'
- ' description of the formatting options desired. The '
- 'interpretation\n'
+ 'contains a\n'
+ ' description of the formatting options desired. The '
+ 'interpretation\n'
' of the *format_spec* argument is up to the type '
- 'implementing\n'
- ' "__format__()", however most classes will either '
- 'delegate\n'
- ' formatting to one of the built-in types, or use a '
- 'similar\n'
- ' formatting option syntax.\n'
- '\n'
- ' See Format Specification Mini-Language for a description '
- 'of the\n'
- ' standard formatting syntax.\n'
- '\n'
- ' The return value must be a string object.\n'
- '\n'
- ' Changed in version 3.4: The __format__ method of '
- '"object" itself\n'
- ' raises a "TypeError" if passed any non-empty string.\n'
- '\n'
- ' Changed in version 3.7: "object.__format__(x, \'\')" is '
- 'now\n'
+ 'implementing\n'
+ ' "__format__()", however most classes will either '
+ 'delegate\n'
+ ' formatting to one of the built-in types, or use a '
+ 'similar\n'
+ ' formatting option syntax.\n'
+ '\n'
+ ' See Format Specification Mini-Language for a description '
+ 'of the\n'
+ ' standard formatting syntax.\n'
+ '\n'
+ ' The return value must be a string object.\n'
+ '\n'
+ ' Changed in version 3.4: The __format__ method of '
+ '"object" itself\n'
+ ' raises a "TypeError" if passed any non-empty string.\n'
+ '\n'
+ ' Changed in version 3.7: "object.__format__(x, \'\')" is '
+ 'now\n'
' equivalent to "str(x)" rather than "format(str(x), '
- '\'\')".\n'
- '\n'
- 'object.__lt__(self, other)\n'
- 'object.__le__(self, other)\n'
- 'object.__eq__(self, other)\n'
- 'object.__ne__(self, other)\n'
- 'object.__gt__(self, other)\n'
- 'object.__ge__(self, other)\n'
- '\n'
- ' These are the so-called “rich comparison” methods. The\n'
- ' correspondence between operator symbols and method names '
- 'is as\n'
- ' follows: "x<y" calls "x.__lt__(y)", "x<=y" calls '
- '"x.__le__(y)",\n'
- ' "x==y" calls "x.__eq__(y)", "x!=y" calls "x.__ne__(y)", '
- '"x>y" calls\n'
- ' "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n'
- '\n'
- ' A rich comparison method may return the singleton '
- '"NotImplemented"\n'
- ' if it does not implement the operation for a given pair '
- 'of\n'
- ' arguments. By convention, "False" and "True" are '
- 'returned for a\n'
- ' successful comparison. However, these methods can return '
- 'any value,\n'
- ' so if the comparison operator is used in a Boolean '
- 'context (e.g.,\n'
- ' in the condition of an "if" statement), Python will call '
- '"bool()"\n'
- ' on the value to determine if the result is true or '
- 'false.\n'
- '\n'
+ '\'\')".\n'
+ '\n'
+ 'object.__lt__(self, other)\n'
+ 'object.__le__(self, other)\n'
+ 'object.__eq__(self, other)\n'
+ 'object.__ne__(self, other)\n'
+ 'object.__gt__(self, other)\n'
+ 'object.__ge__(self, other)\n'
+ '\n'
+ ' These are the so-called “rich comparison” methods. The\n'
+ ' correspondence between operator symbols and method names '
+ 'is as\n'
+ ' follows: "x<y" calls "x.__lt__(y)", "x<=y" calls '
+ '"x.__le__(y)",\n'
+ ' "x==y" calls "x.__eq__(y)", "x!=y" calls "x.__ne__(y)", '
+ '"x>y" calls\n'
+ ' "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n'
+ '\n'
+ ' A rich comparison method may return the singleton '
+ '"NotImplemented"\n'
+ ' if it does not implement the operation for a given pair '
+ 'of\n'
+ ' arguments. By convention, "False" and "True" are '
+ 'returned for a\n'
+ ' successful comparison. However, these methods can return '
+ 'any value,\n'
+ ' so if the comparison operator is used in a Boolean '
+ 'context (e.g.,\n'
+ ' in the condition of an "if" statement), Python will call '
+ '"bool()"\n'
+ ' on the value to determine if the result is true or '
+ 'false.\n'
+ '\n'
' By default, "object" implements "__eq__()" by using '
'"is", returning\n'
' "NotImplemented" in the case of a false comparison: '
@@ -3533,55 +3533,55 @@ topics = {'assert': 'The "assert" statement\n'
' "(x<y or x==y)" does not imply "x<=y". To automatically '
'generate\n'
' ordering operations from a single root operation, see\n'
- ' "functools.total_ordering()".\n'
- '\n'
- ' See the paragraph on "__hash__()" for some important '
- 'notes on\n'
- ' creating *hashable* objects which support custom '
- 'comparison\n'
- ' operations and are usable as dictionary keys.\n'
- '\n'
- ' There are no swapped-argument versions of these methods '
- '(to be used\n'
- ' when the left argument does not support the operation '
- 'but the right\n'
- ' argument does); rather, "__lt__()" and "__gt__()" are '
- 'each other’s\n'
- ' reflection, "__le__()" and "__ge__()" are each other’s '
- 'reflection,\n'
- ' and "__eq__()" and "__ne__()" are their own reflection. '
- 'If the\n'
- ' operands are of different types, and right operand’s '
- 'type is a\n'
- ' direct or indirect subclass of the left operand’s type, '
- 'the\n'
- ' reflected method of the right operand has priority, '
- 'otherwise the\n'
- ' left operand’s method has priority. Virtual subclassing '
- 'is not\n'
- ' considered.\n'
- '\n'
- 'object.__hash__(self)\n'
- '\n'
- ' Called by built-in function "hash()" and for operations '
- 'on members\n'
- ' of hashed collections including "set", "frozenset", and '
- '"dict".\n'
- ' "__hash__()" should return an integer. The only required '
- 'property\n'
- ' is that objects which compare equal have the same hash '
- 'value; it is\n'
- ' advised to mix together the hash values of the '
- 'components of the\n'
- ' object that also play a part in comparison of objects by '
- 'packing\n'
- ' them into a tuple and hashing the tuple. Example:\n'
- '\n'
- ' def __hash__(self):\n'
- ' return hash((self.name, self.nick, self.color))\n'
- '\n'
+ ' "functools.total_ordering()".\n'
+ '\n'
+ ' See the paragraph on "__hash__()" for some important '
+ 'notes on\n'
+ ' creating *hashable* objects which support custom '
+ 'comparison\n'
+ ' operations and are usable as dictionary keys.\n'
+ '\n'
+ ' There are no swapped-argument versions of these methods '
+ '(to be used\n'
+ ' when the left argument does not support the operation '
+ 'but the right\n'
+ ' argument does); rather, "__lt__()" and "__gt__()" are '
+ 'each other’s\n'
+ ' reflection, "__le__()" and "__ge__()" are each other’s '
+ 'reflection,\n'
+ ' and "__eq__()" and "__ne__()" are their own reflection. '
+ 'If the\n'
+ ' operands are of different types, and right operand’s '
+ 'type is a\n'
+ ' direct or indirect subclass of the left operand’s type, '
+ 'the\n'
+ ' reflected method of the right operand has priority, '
+ 'otherwise the\n'
+ ' left operand’s method has priority. Virtual subclassing '
+ 'is not\n'
+ ' considered.\n'
+ '\n'
+ 'object.__hash__(self)\n'
+ '\n'
+ ' Called by built-in function "hash()" and for operations '
+ 'on members\n'
+ ' of hashed collections including "set", "frozenset", and '
+ '"dict".\n'
+ ' "__hash__()" should return an integer. The only required '
+ 'property\n'
+ ' is that objects which compare equal have the same hash '
+ 'value; it is\n'
+ ' advised to mix together the hash values of the '
+ 'components of the\n'
+ ' object that also play a part in comparison of objects by '
+ 'packing\n'
+ ' them into a tuple and hashing the tuple. Example:\n'
+ '\n'
+ ' def __hash__(self):\n'
+ ' return hash((self.name, self.nick, self.color))\n'
+ '\n'
' Note:\n'
- '\n'
+ '\n'
' "hash()" truncates the value returned from an object’s '
'custom\n'
' "__hash__()" method to the size of a "Py_ssize_t". '
@@ -3596,62 +3596,62 @@ topics = {'assert': 'The "assert" statement\n'
'"import sys;\n'
' print(sys.hash_info.width)"".\n'
'\n'
- ' If a class does not define an "__eq__()" method it '
- 'should not\n'
- ' define a "__hash__()" operation either; if it defines '
- '"__eq__()"\n'
- ' but not "__hash__()", its instances will not be usable '
- 'as items in\n'
- ' hashable collections. If a class defines mutable '
- 'objects and\n'
- ' implements an "__eq__()" method, it should not '
- 'implement\n'
- ' "__hash__()", since the implementation of hashable '
- 'collections\n'
- ' requires that a key’s hash value is immutable (if the '
- 'object’s hash\n'
- ' value changes, it will be in the wrong hash bucket).\n'
- '\n'
- ' User-defined classes have "__eq__()" and "__hash__()" '
- 'methods by\n'
- ' default; with them, all objects compare unequal (except '
- 'with\n'
- ' themselves) and "x.__hash__()" returns an appropriate '
- 'value such\n'
- ' that "x == y" implies both that "x is y" and "hash(x) == '
- 'hash(y)".\n'
- '\n'
- ' A class that overrides "__eq__()" and does not define '
- '"__hash__()"\n'
- ' will have its "__hash__()" implicitly set to "None". '
- 'When the\n'
- ' "__hash__()" method of a class is "None", instances of '
- 'the class\n'
- ' will raise an appropriate "TypeError" when a program '
- 'attempts to\n'
- ' retrieve their hash value, and will also be correctly '
- 'identified as\n'
- ' unhashable when checking "isinstance(obj,\n'
- ' collections.abc.Hashable)".\n'
- '\n'
- ' If a class that overrides "__eq__()" needs to retain '
- 'the\n'
- ' implementation of "__hash__()" from a parent class, the '
- 'interpreter\n'
- ' must be told this explicitly by setting "__hash__ =\n'
- ' <ParentClass>.__hash__".\n'
- '\n'
- ' If a class that does not override "__eq__()" wishes to '
- 'suppress\n'
- ' hash support, it should include "__hash__ = None" in the '
- 'class\n'
- ' definition. A class which defines its own "__hash__()" '
- 'that\n'
- ' explicitly raises a "TypeError" would be incorrectly '
- 'identified as\n'
- ' hashable by an "isinstance(obj, '
- 'collections.abc.Hashable)" call.\n'
- '\n'
+ ' If a class does not define an "__eq__()" method it '
+ 'should not\n'
+ ' define a "__hash__()" operation either; if it defines '
+ '"__eq__()"\n'
+ ' but not "__hash__()", its instances will not be usable '
+ 'as items in\n'
+ ' hashable collections. If a class defines mutable '
+ 'objects and\n'
+ ' implements an "__eq__()" method, it should not '
+ 'implement\n'
+ ' "__hash__()", since the implementation of hashable '
+ 'collections\n'
+ ' requires that a key’s hash value is immutable (if the '
+ 'object’s hash\n'
+ ' value changes, it will be in the wrong hash bucket).\n'
+ '\n'
+ ' User-defined classes have "__eq__()" and "__hash__()" '
+ 'methods by\n'
+ ' default; with them, all objects compare unequal (except '
+ 'with\n'
+ ' themselves) and "x.__hash__()" returns an appropriate '
+ 'value such\n'
+ ' that "x == y" implies both that "x is y" and "hash(x) == '
+ 'hash(y)".\n'
+ '\n'
+ ' A class that overrides "__eq__()" and does not define '
+ '"__hash__()"\n'
+ ' will have its "__hash__()" implicitly set to "None". '
+ 'When the\n'
+ ' "__hash__()" method of a class is "None", instances of '
+ 'the class\n'
+ ' will raise an appropriate "TypeError" when a program '
+ 'attempts to\n'
+ ' retrieve their hash value, and will also be correctly '
+ 'identified as\n'
+ ' unhashable when checking "isinstance(obj,\n'
+ ' collections.abc.Hashable)".\n'
+ '\n'
+ ' If a class that overrides "__eq__()" needs to retain '
+ 'the\n'
+ ' implementation of "__hash__()" from a parent class, the '
+ 'interpreter\n'
+ ' must be told this explicitly by setting "__hash__ =\n'
+ ' <ParentClass>.__hash__".\n'
+ '\n'
+ ' If a class that does not override "__eq__()" wishes to '
+ 'suppress\n'
+ ' hash support, it should include "__hash__ = None" in the '
+ 'class\n'
+ ' definition. A class which defines its own "__hash__()" '
+ 'that\n'
+ ' explicitly raises a "TypeError" would be incorrectly '
+ 'identified as\n'
+ ' hashable by an "isinstance(obj, '
+ 'collections.abc.Hashable)" call.\n'
+ '\n'
' Note:\n'
'\n'
' By default, the "__hash__()" values of str and bytes '
@@ -3670,705 +3670,705 @@ topics = {'assert': 'The "assert" statement\n'
'See\n'
' http://www.ocert.org/advisories/ocert-2011-003.html '
'for\n'
- ' details.Changing hash values affects the iteration '
- 'order of sets.\n'
- ' Python has never made guarantees about this ordering '
- '(and it\n'
- ' typically varies between 32-bit and 64-bit builds).See '
- 'also\n'
- ' "PYTHONHASHSEED".\n'
- '\n'
- ' Changed in version 3.3: Hash randomization is enabled by '
- 'default.\n'
- '\n'
- 'object.__bool__(self)\n'
- '\n'
- ' Called to implement truth value testing and the built-in '
- 'operation\n'
- ' "bool()"; should return "False" or "True". When this '
- 'method is not\n'
- ' defined, "__len__()" is called, if it is defined, and '
- 'the object is\n'
- ' considered true if its result is nonzero. If a class '
- 'defines\n'
- ' neither "__len__()" nor "__bool__()", all its instances '
- 'are\n'
- ' considered true.\n',
- 'debugger': '"pdb" — The Python Debugger\n'
- '***************************\n'
- '\n'
- '**Source code:** Lib/pdb.py\n'
- '\n'
- '======================================================================\n'
- '\n'
- 'The module "pdb" defines an interactive source code debugger '
- 'for\n'
- 'Python programs. It supports setting (conditional) breakpoints '
- 'and\n'
- 'single stepping at the source line level, inspection of stack '
- 'frames,\n'
- 'source code listing, and evaluation of arbitrary Python code in '
- 'the\n'
- 'context of any stack frame. It also supports post-mortem '
- 'debugging\n'
- 'and can be called under program control.\n'
- '\n'
- 'The debugger is extensible – it is actually defined as the '
- 'class\n'
- '"Pdb". This is currently undocumented but easily understood by '
- 'reading\n'
- 'the source. The extension interface uses the modules "bdb" and '
- '"cmd".\n'
- '\n'
- 'The debugger’s prompt is "(Pdb)". Typical usage to run a program '
- 'under\n'
- 'control of the debugger is:\n'
- '\n'
- ' >>> import pdb\n'
- ' >>> import mymodule\n'
- " >>> pdb.run('mymodule.test()')\n"
- ' > <string>(0)?()\n'
- ' (Pdb) continue\n'
- ' > <string>(1)?()\n'
- ' (Pdb) continue\n'
- " NameError: 'spam'\n"
- ' > <string>(1)?()\n'
- ' (Pdb)\n'
- '\n'
- 'Changed in version 3.3: Tab-completion via the "readline" module '
- 'is\n'
- 'available for commands and command arguments, e.g. the current '
- 'global\n'
- 'and local names are offered as arguments of the "p" command.\n'
- '\n'
- '"pdb.py" can also be invoked as a script to debug other '
- 'scripts. For\n'
- 'example:\n'
- '\n'
- ' python3 -m pdb myscript.py\n'
- '\n'
- 'When invoked as a script, pdb will automatically enter '
- 'post-mortem\n'
- 'debugging if the program being debugged exits abnormally. After '
- 'post-\n'
- 'mortem debugging (or after normal exit of the program), pdb '
- 'will\n'
- 'restart the program. Automatic restarting preserves pdb’s state '
- '(such\n'
- 'as breakpoints) and in most cases is more useful than quitting '
- 'the\n'
- 'debugger upon program’s exit.\n'
- '\n'
- 'New in version 3.2: "pdb.py" now accepts a "-c" option that '
- 'executes\n'
- 'commands as if given in a ".pdbrc" file, see Debugger Commands.\n'
- '\n'
- 'New in version 3.7: "pdb.py" now accepts a "-m" option that '
- 'execute\n'
- 'modules similar to the way "python3 -m" does. As with a script, '
- 'the\n'
- 'debugger will pause execution just before the first line of the\n'
- 'module.\n'
- '\n'
+ ' details.Changing hash values affects the iteration '
+ 'order of sets.\n'
+ ' Python has never made guarantees about this ordering '
+ '(and it\n'
+ ' typically varies between 32-bit and 64-bit builds).See '
+ 'also\n'
+ ' "PYTHONHASHSEED".\n'
+ '\n'
+ ' Changed in version 3.3: Hash randomization is enabled by '
+ 'default.\n'
+ '\n'
+ 'object.__bool__(self)\n'
+ '\n'
+ ' Called to implement truth value testing and the built-in '
+ 'operation\n'
+ ' "bool()"; should return "False" or "True". When this '
+ 'method is not\n'
+ ' defined, "__len__()" is called, if it is defined, and '
+ 'the object is\n'
+ ' considered true if its result is nonzero. If a class '
+ 'defines\n'
+ ' neither "__len__()" nor "__bool__()", all its instances '
+ 'are\n'
+ ' considered true.\n',
+ 'debugger': '"pdb" — The Python Debugger\n'
+ '***************************\n'
+ '\n'
+ '**Source code:** Lib/pdb.py\n'
+ '\n'
+ '======================================================================\n'
+ '\n'
+ 'The module "pdb" defines an interactive source code debugger '
+ 'for\n'
+ 'Python programs. It supports setting (conditional) breakpoints '
+ 'and\n'
+ 'single stepping at the source line level, inspection of stack '
+ 'frames,\n'
+ 'source code listing, and evaluation of arbitrary Python code in '
+ 'the\n'
+ 'context of any stack frame. It also supports post-mortem '
+ 'debugging\n'
+ 'and can be called under program control.\n'
+ '\n'
+ 'The debugger is extensible – it is actually defined as the '
+ 'class\n'
+ '"Pdb". This is currently undocumented but easily understood by '
+ 'reading\n'
+ 'the source. The extension interface uses the modules "bdb" and '
+ '"cmd".\n'
+ '\n'
+ 'The debugger’s prompt is "(Pdb)". Typical usage to run a program '
+ 'under\n'
+ 'control of the debugger is:\n'
+ '\n'
+ ' >>> import pdb\n'
+ ' >>> import mymodule\n'
+ " >>> pdb.run('mymodule.test()')\n"
+ ' > <string>(0)?()\n'
+ ' (Pdb) continue\n'
+ ' > <string>(1)?()\n'
+ ' (Pdb) continue\n'
+ " NameError: 'spam'\n"
+ ' > <string>(1)?()\n'
+ ' (Pdb)\n'
+ '\n'
+ 'Changed in version 3.3: Tab-completion via the "readline" module '
+ 'is\n'
+ 'available for commands and command arguments, e.g. the current '
+ 'global\n'
+ 'and local names are offered as arguments of the "p" command.\n'
+ '\n'
+ '"pdb.py" can also be invoked as a script to debug other '
+ 'scripts. For\n'
+ 'example:\n'
+ '\n'
+ ' python3 -m pdb myscript.py\n'
+ '\n'
+ 'When invoked as a script, pdb will automatically enter '
+ 'post-mortem\n'
+ 'debugging if the program being debugged exits abnormally. After '
+ 'post-\n'
+ 'mortem debugging (or after normal exit of the program), pdb '
+ 'will\n'
+ 'restart the program. Automatic restarting preserves pdb’s state '
+ '(such\n'
+ 'as breakpoints) and in most cases is more useful than quitting '
+ 'the\n'
+ 'debugger upon program’s exit.\n'
+ '\n'
+ 'New in version 3.2: "pdb.py" now accepts a "-c" option that '
+ 'executes\n'
+ 'commands as if given in a ".pdbrc" file, see Debugger Commands.\n'
+ '\n'
+ 'New in version 3.7: "pdb.py" now accepts a "-m" option that '
+ 'execute\n'
+ 'modules similar to the way "python3 -m" does. As with a script, '
+ 'the\n'
+ 'debugger will pause execution just before the first line of the\n'
+ 'module.\n'
+ '\n'
'The typical usage to break into the debugger is to insert:\n'
- '\n'
- ' import pdb; pdb.set_trace()\n'
- '\n'
+ '\n'
+ ' import pdb; pdb.set_trace()\n'
+ '\n'
'at the location you want to break into the debugger, and then '
'run the\n'
'program. You can then step through the code following this '
'statement,\n'
'and continue running without the debugger using the "continue"\n'
'command.\n'
- '\n'
- 'New in version 3.7: The built-in "breakpoint()", when called '
- 'with\n'
- 'defaults, can be used instead of "import pdb; pdb.set_trace()".\n'
- '\n'
- 'The typical usage to inspect a crashed program is:\n'
- '\n'
- ' >>> import pdb\n'
- ' >>> import mymodule\n'
- ' >>> mymodule.test()\n'
- ' Traceback (most recent call last):\n'
- ' File "<stdin>", line 1, in <module>\n'
- ' File "./mymodule.py", line 4, in test\n'
- ' test2()\n'
- ' File "./mymodule.py", line 3, in test2\n'
- ' print(spam)\n'
- ' NameError: spam\n'
- ' >>> pdb.pm()\n'
- ' > ./mymodule.py(3)test2()\n'
- ' -> print(spam)\n'
- ' (Pdb)\n'
- '\n'
- 'The module defines the following functions; each enters the '
- 'debugger\n'
- 'in a slightly different way:\n'
- '\n'
- 'pdb.run(statement, globals=None, locals=None)\n'
- '\n'
- ' Execute the *statement* (given as a string or a code object) '
- 'under\n'
- ' debugger control. The debugger prompt appears before any '
- 'code is\n'
- ' executed; you can set breakpoints and type "continue", or you '
- 'can\n'
- ' step through the statement using "step" or "next" (all these\n'
- ' commands are explained below). The optional *globals* and '
- '*locals*\n'
- ' arguments specify the environment in which the code is '
- 'executed; by\n'
- ' default the dictionary of the module "__main__" is used. '
- '(See the\n'
- ' explanation of the built-in "exec()" or "eval()" functions.)\n'
- '\n'
- 'pdb.runeval(expression, globals=None, locals=None)\n'
- '\n'
- ' Evaluate the *expression* (given as a string or a code '
- 'object)\n'
- ' under debugger control. When "runeval()" returns, it returns '
- 'the\n'
- ' value of the expression. Otherwise this function is similar '
- 'to\n'
- ' "run()".\n'
- '\n'
- 'pdb.runcall(function, *args, **kwds)\n'
- '\n'
- ' Call the *function* (a function or method object, not a '
- 'string)\n'
- ' with the given arguments. When "runcall()" returns, it '
- 'returns\n'
- ' whatever the function call returned. The debugger prompt '
- 'appears\n'
- ' as soon as the function is entered.\n'
- '\n'
- 'pdb.set_trace(*, header=None)\n'
- '\n'
- ' Enter the debugger at the calling stack frame. This is '
- 'useful to\n'
- ' hard-code a breakpoint at a given point in a program, even if '
- 'the\n'
- ' code is not otherwise being debugged (e.g. when an assertion\n'
- ' fails). If given, *header* is printed to the console just '
- 'before\n'
- ' debugging begins.\n'
- '\n'
- ' Changed in version 3.7: The keyword-only argument *header*.\n'
- '\n'
- 'pdb.post_mortem(traceback=None)\n'
- '\n'
- ' Enter post-mortem debugging of the given *traceback* object. '
- 'If no\n'
- ' *traceback* is given, it uses the one of the exception that '
- 'is\n'
- ' currently being handled (an exception must be being handled '
- 'if the\n'
- ' default is to be used).\n'
- '\n'
- 'pdb.pm()\n'
- '\n'
- ' Enter post-mortem debugging of the traceback found in\n'
- ' "sys.last_traceback".\n'
- '\n'
- 'The "run*" functions and "set_trace()" are aliases for '
- 'instantiating\n'
- 'the "Pdb" class and calling the method of the same name. If you '
- 'want\n'
- 'to access further features, you have to do this yourself:\n'
- '\n'
- "class pdb.Pdb(completekey='tab', stdin=None, stdout=None, "
- 'skip=None, nosigint=False, readrc=True)\n'
- '\n'
- ' "Pdb" is the debugger class.\n'
- '\n'
- ' The *completekey*, *stdin* and *stdout* arguments are passed '
- 'to the\n'
- ' underlying "cmd.Cmd" class; see the description there.\n'
- '\n'
- ' The *skip* argument, if given, must be an iterable of '
- 'glob-style\n'
- ' module name patterns. The debugger will not step into frames '
- 'that\n'
- ' originate in a module that matches one of these patterns. '
- '[1]\n'
- '\n'
- ' By default, Pdb sets a handler for the SIGINT signal (which '
- 'is sent\n'
- ' when the user presses "Ctrl-C" on the console) when you give '
- 'a\n'
- ' "continue" command. This allows you to break into the '
- 'debugger\n'
- ' again by pressing "Ctrl-C". If you want Pdb not to touch '
- 'the\n'
- ' SIGINT handler, set *nosigint* to true.\n'
- '\n'
- ' The *readrc* argument defaults to true and controls whether '
- 'Pdb\n'
- ' will load .pdbrc files from the filesystem.\n'
- '\n'
- ' Example call to enable tracing with *skip*:\n'
- '\n'
- " import pdb; pdb.Pdb(skip=['django.*']).set_trace()\n"
- '\n'
+ '\n'
+ 'New in version 3.7: The built-in "breakpoint()", when called '
+ 'with\n'
+ 'defaults, can be used instead of "import pdb; pdb.set_trace()".\n'
+ '\n'
+ 'The typical usage to inspect a crashed program is:\n'
+ '\n'
+ ' >>> import pdb\n'
+ ' >>> import mymodule\n'
+ ' >>> mymodule.test()\n'
+ ' Traceback (most recent call last):\n'
+ ' File "<stdin>", line 1, in <module>\n'
+ ' File "./mymodule.py", line 4, in test\n'
+ ' test2()\n'
+ ' File "./mymodule.py", line 3, in test2\n'
+ ' print(spam)\n'
+ ' NameError: spam\n'
+ ' >>> pdb.pm()\n'
+ ' > ./mymodule.py(3)test2()\n'
+ ' -> print(spam)\n'
+ ' (Pdb)\n'
+ '\n'
+ 'The module defines the following functions; each enters the '
+ 'debugger\n'
+ 'in a slightly different way:\n'
+ '\n'
+ 'pdb.run(statement, globals=None, locals=None)\n'
+ '\n'
+ ' Execute the *statement* (given as a string or a code object) '
+ 'under\n'
+ ' debugger control. The debugger prompt appears before any '
+ 'code is\n'
+ ' executed; you can set breakpoints and type "continue", or you '
+ 'can\n'
+ ' step through the statement using "step" or "next" (all these\n'
+ ' commands are explained below). The optional *globals* and '
+ '*locals*\n'
+ ' arguments specify the environment in which the code is '
+ 'executed; by\n'
+ ' default the dictionary of the module "__main__" is used. '
+ '(See the\n'
+ ' explanation of the built-in "exec()" or "eval()" functions.)\n'
+ '\n'
+ 'pdb.runeval(expression, globals=None, locals=None)\n'
+ '\n'
+ ' Evaluate the *expression* (given as a string or a code '
+ 'object)\n'
+ ' under debugger control. When "runeval()" returns, it returns '
+ 'the\n'
+ ' value of the expression. Otherwise this function is similar '
+ 'to\n'
+ ' "run()".\n'
+ '\n'
+ 'pdb.runcall(function, *args, **kwds)\n'
+ '\n'
+ ' Call the *function* (a function or method object, not a '
+ 'string)\n'
+ ' with the given arguments. When "runcall()" returns, it '
+ 'returns\n'
+ ' whatever the function call returned. The debugger prompt '
+ 'appears\n'
+ ' as soon as the function is entered.\n'
+ '\n'
+ 'pdb.set_trace(*, header=None)\n'
+ '\n'
+ ' Enter the debugger at the calling stack frame. This is '
+ 'useful to\n'
+ ' hard-code a breakpoint at a given point in a program, even if '
+ 'the\n'
+ ' code is not otherwise being debugged (e.g. when an assertion\n'
+ ' fails). If given, *header* is printed to the console just '
+ 'before\n'
+ ' debugging begins.\n'
+ '\n'
+ ' Changed in version 3.7: The keyword-only argument *header*.\n'
+ '\n'
+ 'pdb.post_mortem(traceback=None)\n'
+ '\n'
+ ' Enter post-mortem debugging of the given *traceback* object. '
+ 'If no\n'
+ ' *traceback* is given, it uses the one of the exception that '
+ 'is\n'
+ ' currently being handled (an exception must be being handled '
+ 'if the\n'
+ ' default is to be used).\n'
+ '\n'
+ 'pdb.pm()\n'
+ '\n'
+ ' Enter post-mortem debugging of the traceback found in\n'
+ ' "sys.last_traceback".\n'
+ '\n'
+ 'The "run*" functions and "set_trace()" are aliases for '
+ 'instantiating\n'
+ 'the "Pdb" class and calling the method of the same name. If you '
+ 'want\n'
+ 'to access further features, you have to do this yourself:\n'
+ '\n'
+ "class pdb.Pdb(completekey='tab', stdin=None, stdout=None, "
+ 'skip=None, nosigint=False, readrc=True)\n'
+ '\n'
+ ' "Pdb" is the debugger class.\n'
+ '\n'
+ ' The *completekey*, *stdin* and *stdout* arguments are passed '
+ 'to the\n'
+ ' underlying "cmd.Cmd" class; see the description there.\n'
+ '\n'
+ ' The *skip* argument, if given, must be an iterable of '
+ 'glob-style\n'
+ ' module name patterns. The debugger will not step into frames '
+ 'that\n'
+ ' originate in a module that matches one of these patterns. '
+ '[1]\n'
+ '\n'
+ ' By default, Pdb sets a handler for the SIGINT signal (which '
+ 'is sent\n'
+ ' when the user presses "Ctrl-C" on the console) when you give '
+ 'a\n'
+ ' "continue" command. This allows you to break into the '
+ 'debugger\n'
+ ' again by pressing "Ctrl-C". If you want Pdb not to touch '
+ 'the\n'
+ ' SIGINT handler, set *nosigint* to true.\n'
+ '\n'
+ ' The *readrc* argument defaults to true and controls whether '
+ 'Pdb\n'
+ ' will load .pdbrc files from the filesystem.\n'
+ '\n'
+ ' Example call to enable tracing with *skip*:\n'
+ '\n'
+ " import pdb; pdb.Pdb(skip=['django.*']).set_trace()\n"
+ '\n'
' Raises an auditing event "pdb.Pdb" with no arguments.\n'
'\n'
- ' New in version 3.1: The *skip* argument.\n'
- '\n'
- ' New in version 3.2: The *nosigint* argument. Previously, a '
- 'SIGINT\n'
- ' handler was never set by Pdb.\n'
- '\n'
- ' Changed in version 3.6: The *readrc* argument.\n'
- '\n'
- ' run(statement, globals=None, locals=None)\n'
- ' runeval(expression, globals=None, locals=None)\n'
- ' runcall(function, *args, **kwds)\n'
- ' set_trace()\n'
- '\n'
- ' See the documentation for the functions explained above.\n'
- '\n'
- '\n'
- 'Debugger Commands\n'
- '=================\n'
- '\n'
- 'The commands recognized by the debugger are listed below. Most\n'
- 'commands can be abbreviated to one or two letters as indicated; '
- 'e.g.\n'
- '"h(elp)" means that either "h" or "help" can be used to enter '
- 'the help\n'
- 'command (but not "he" or "hel", nor "H" or "Help" or "HELP").\n'
- 'Arguments to commands must be separated by whitespace (spaces '
- 'or\n'
- 'tabs). Optional arguments are enclosed in square brackets '
- '("[]") in\n'
- 'the command syntax; the square brackets must not be typed.\n'
- 'Alternatives in the command syntax are separated by a vertical '
- 'bar\n'
- '("|").\n'
- '\n'
- 'Entering a blank line repeats the last command entered. '
- 'Exception: if\n'
- 'the last command was a "list" command, the next 11 lines are '
- 'listed.\n'
- '\n'
- 'Commands that the debugger doesn’t recognize are assumed to be '
- 'Python\n'
- 'statements and are executed in the context of the program being\n'
- 'debugged. Python statements can also be prefixed with an '
- 'exclamation\n'
- 'point ("!"). This is a powerful way to inspect the program '
- 'being\n'
- 'debugged; it is even possible to change a variable or call a '
- 'function.\n'
- 'When an exception occurs in such a statement, the exception name '
- 'is\n'
- 'printed but the debugger’s state is not changed.\n'
- '\n'
- 'The debugger supports aliases. Aliases can have parameters '
- 'which\n'
- 'allows one a certain level of adaptability to the context under\n'
- 'examination.\n'
- '\n'
- 'Multiple commands may be entered on a single line, separated by '
- '";;".\n'
- '(A single ";" is not used as it is the separator for multiple '
- 'commands\n'
- 'in a line that is passed to the Python parser.) No intelligence '
- 'is\n'
- 'applied to separating the commands; the input is split at the '
- 'first\n'
- '";;" pair, even if it is in the middle of a quoted string.\n'
- '\n'
- 'If a file ".pdbrc" exists in the user’s home directory or in '
- 'the\n'
- 'current directory, it is read in and executed as if it had been '
- 'typed\n'
- 'at the debugger prompt. This is particularly useful for '
- 'aliases. If\n'
- 'both files exist, the one in the home directory is read first '
- 'and\n'
- 'aliases defined there can be overridden by the local file.\n'
- '\n'
- 'Changed in version 3.2: ".pdbrc" can now contain commands that\n'
- 'continue debugging, such as "continue" or "next". Previously, '
- 'these\n'
- 'commands had no effect.\n'
- '\n'
- 'h(elp) [command]\n'
- '\n'
- ' Without argument, print the list of available commands. With '
- 'a\n'
- ' *command* as argument, print help about that command. "help '
- 'pdb"\n'
- ' displays the full documentation (the docstring of the "pdb"\n'
- ' module). Since the *command* argument must be an identifier, '
- '"help\n'
- ' exec" must be entered to get help on the "!" command.\n'
- '\n'
- 'w(here)\n'
- '\n'
- ' Print a stack trace, with the most recent frame at the '
- 'bottom. An\n'
- ' arrow indicates the current frame, which determines the '
- 'context of\n'
- ' most commands.\n'
- '\n'
- 'd(own) [count]\n'
- '\n'
- ' Move the current frame *count* (default one) levels down in '
- 'the\n'
- ' stack trace (to a newer frame).\n'
- '\n'
- 'u(p) [count]\n'
- '\n'
- ' Move the current frame *count* (default one) levels up in the '
- 'stack\n'
- ' trace (to an older frame).\n'
- '\n'
- 'b(reak) [([filename:]lineno | function) [, condition]]\n'
- '\n'
- ' With a *lineno* argument, set a break there in the current '
- 'file.\n'
- ' With a *function* argument, set a break at the first '
- 'executable\n'
- ' statement within that function. The line number may be '
- 'prefixed\n'
- ' with a filename and a colon, to specify a breakpoint in '
- 'another\n'
- ' file (probably one that hasn’t been loaded yet). The file '
- 'is\n'
- ' searched on "sys.path". Note that each breakpoint is '
- 'assigned a\n'
- ' number to which all the other breakpoint commands refer.\n'
- '\n'
- ' If a second argument is present, it is an expression which '
- 'must\n'
- ' evaluate to true before the breakpoint is honored.\n'
- '\n'
- ' Without argument, list all breaks, including for each '
- 'breakpoint,\n'
- ' the number of times that breakpoint has been hit, the '
- 'current\n'
- ' ignore count, and the associated condition if any.\n'
- '\n'
- 'tbreak [([filename:]lineno | function) [, condition]]\n'
- '\n'
- ' Temporary breakpoint, which is removed automatically when it '
- 'is\n'
- ' first hit. The arguments are the same as for "break".\n'
- '\n'
+ ' New in version 3.1: The *skip* argument.\n'
+ '\n'
+ ' New in version 3.2: The *nosigint* argument. Previously, a '
+ 'SIGINT\n'
+ ' handler was never set by Pdb.\n'
+ '\n'
+ ' Changed in version 3.6: The *readrc* argument.\n'
+ '\n'
+ ' run(statement, globals=None, locals=None)\n'
+ ' runeval(expression, globals=None, locals=None)\n'
+ ' runcall(function, *args, **kwds)\n'
+ ' set_trace()\n'
+ '\n'
+ ' See the documentation for the functions explained above.\n'
+ '\n'
+ '\n'
+ 'Debugger Commands\n'
+ '=================\n'
+ '\n'
+ 'The commands recognized by the debugger are listed below. Most\n'
+ 'commands can be abbreviated to one or two letters as indicated; '
+ 'e.g.\n'
+ '"h(elp)" means that either "h" or "help" can be used to enter '
+ 'the help\n'
+ 'command (but not "he" or "hel", nor "H" or "Help" or "HELP").\n'
+ 'Arguments to commands must be separated by whitespace (spaces '
+ 'or\n'
+ 'tabs). Optional arguments are enclosed in square brackets '
+ '("[]") in\n'
+ 'the command syntax; the square brackets must not be typed.\n'
+ 'Alternatives in the command syntax are separated by a vertical '
+ 'bar\n'
+ '("|").\n'
+ '\n'
+ 'Entering a blank line repeats the last command entered. '
+ 'Exception: if\n'
+ 'the last command was a "list" command, the next 11 lines are '
+ 'listed.\n'
+ '\n'
+ 'Commands that the debugger doesn’t recognize are assumed to be '
+ 'Python\n'
+ 'statements and are executed in the context of the program being\n'
+ 'debugged. Python statements can also be prefixed with an '
+ 'exclamation\n'
+ 'point ("!"). This is a powerful way to inspect the program '
+ 'being\n'
+ 'debugged; it is even possible to change a variable or call a '
+ 'function.\n'
+ 'When an exception occurs in such a statement, the exception name '
+ 'is\n'
+ 'printed but the debugger’s state is not changed.\n'
+ '\n'
+ 'The debugger supports aliases. Aliases can have parameters '
+ 'which\n'
+ 'allows one a certain level of adaptability to the context under\n'
+ 'examination.\n'
+ '\n'
+ 'Multiple commands may be entered on a single line, separated by '
+ '";;".\n'
+ '(A single ";" is not used as it is the separator for multiple '
+ 'commands\n'
+ 'in a line that is passed to the Python parser.) No intelligence '
+ 'is\n'
+ 'applied to separating the commands; the input is split at the '
+ 'first\n'
+ '";;" pair, even if it is in the middle of a quoted string.\n'
+ '\n'
+ 'If a file ".pdbrc" exists in the user’s home directory or in '
+ 'the\n'
+ 'current directory, it is read in and executed as if it had been '
+ 'typed\n'
+ 'at the debugger prompt. This is particularly useful for '
+ 'aliases. If\n'
+ 'both files exist, the one in the home directory is read first '
+ 'and\n'
+ 'aliases defined there can be overridden by the local file.\n'
+ '\n'
+ 'Changed in version 3.2: ".pdbrc" can now contain commands that\n'
+ 'continue debugging, such as "continue" or "next". Previously, '
+ 'these\n'
+ 'commands had no effect.\n'
+ '\n'
+ 'h(elp) [command]\n'
+ '\n'
+ ' Without argument, print the list of available commands. With '
+ 'a\n'
+ ' *command* as argument, print help about that command. "help '
+ 'pdb"\n'
+ ' displays the full documentation (the docstring of the "pdb"\n'
+ ' module). Since the *command* argument must be an identifier, '
+ '"help\n'
+ ' exec" must be entered to get help on the "!" command.\n'
+ '\n'
+ 'w(here)\n'
+ '\n'
+ ' Print a stack trace, with the most recent frame at the '
+ 'bottom. An\n'
+ ' arrow indicates the current frame, which determines the '
+ 'context of\n'
+ ' most commands.\n'
+ '\n'
+ 'd(own) [count]\n'
+ '\n'
+ ' Move the current frame *count* (default one) levels down in '
+ 'the\n'
+ ' stack trace (to a newer frame).\n'
+ '\n'
+ 'u(p) [count]\n'
+ '\n'
+ ' Move the current frame *count* (default one) levels up in the '
+ 'stack\n'
+ ' trace (to an older frame).\n'
+ '\n'
+ 'b(reak) [([filename:]lineno | function) [, condition]]\n'
+ '\n'
+ ' With a *lineno* argument, set a break there in the current '
+ 'file.\n'
+ ' With a *function* argument, set a break at the first '
+ 'executable\n'
+ ' statement within that function. The line number may be '
+ 'prefixed\n'
+ ' with a filename and a colon, to specify a breakpoint in '
+ 'another\n'
+ ' file (probably one that hasn’t been loaded yet). The file '
+ 'is\n'
+ ' searched on "sys.path". Note that each breakpoint is '
+ 'assigned a\n'
+ ' number to which all the other breakpoint commands refer.\n'
+ '\n'
+ ' If a second argument is present, it is an expression which '
+ 'must\n'
+ ' evaluate to true before the breakpoint is honored.\n'
+ '\n'
+ ' Without argument, list all breaks, including for each '
+ 'breakpoint,\n'
+ ' the number of times that breakpoint has been hit, the '
+ 'current\n'
+ ' ignore count, and the associated condition if any.\n'
+ '\n'
+ 'tbreak [([filename:]lineno | function) [, condition]]\n'
+ '\n'
+ ' Temporary breakpoint, which is removed automatically when it '
+ 'is\n'
+ ' first hit. The arguments are the same as for "break".\n'
+ '\n'
'cl(ear) [filename:lineno | bpnumber ...]\n'
- '\n'
- ' With a *filename:lineno* argument, clear all the breakpoints '
- 'at\n'
- ' this line. With a space separated list of breakpoint numbers, '
- 'clear\n'
- ' those breakpoints. Without argument, clear all breaks (but '
- 'first\n'
- ' ask confirmation).\n'
- '\n'
+ '\n'
+ ' With a *filename:lineno* argument, clear all the breakpoints '
+ 'at\n'
+ ' this line. With a space separated list of breakpoint numbers, '
+ 'clear\n'
+ ' those breakpoints. Without argument, clear all breaks (but '
+ 'first\n'
+ ' ask confirmation).\n'
+ '\n'
'disable [bpnumber ...]\n'
- '\n'
- ' Disable the breakpoints given as a space separated list of\n'
- ' breakpoint numbers. Disabling a breakpoint means it cannot '
- 'cause\n'
- ' the program to stop execution, but unlike clearing a '
- 'breakpoint, it\n'
- ' remains in the list of breakpoints and can be (re-)enabled.\n'
- '\n'
+ '\n'
+ ' Disable the breakpoints given as a space separated list of\n'
+ ' breakpoint numbers. Disabling a breakpoint means it cannot '
+ 'cause\n'
+ ' the program to stop execution, but unlike clearing a '
+ 'breakpoint, it\n'
+ ' remains in the list of breakpoints and can be (re-)enabled.\n'
+ '\n'
'enable [bpnumber ...]\n'
- '\n'
- ' Enable the breakpoints specified.\n'
- '\n'
- 'ignore bpnumber [count]\n'
- '\n'
- ' Set the ignore count for the given breakpoint number. If '
- 'count is\n'
- ' omitted, the ignore count is set to 0. A breakpoint becomes '
- 'active\n'
- ' when the ignore count is zero. When non-zero, the count is\n'
- ' decremented each time the breakpoint is reached and the '
- 'breakpoint\n'
- ' is not disabled and any associated condition evaluates to '
- 'true.\n'
- '\n'
- 'condition bpnumber [condition]\n'
- '\n'
- ' Set a new *condition* for the breakpoint, an expression which '
- 'must\n'
- ' evaluate to true before the breakpoint is honored. If '
- '*condition*\n'
- ' is absent, any existing condition is removed; i.e., the '
- 'breakpoint\n'
- ' is made unconditional.\n'
- '\n'
- 'commands [bpnumber]\n'
- '\n'
- ' Specify a list of commands for breakpoint number *bpnumber*. '
- 'The\n'
- ' commands themselves appear on the following lines. Type a '
- 'line\n'
- ' containing just "end" to terminate the commands. An example:\n'
- '\n'
- ' (Pdb) commands 1\n'
- ' (com) p some_variable\n'
- ' (com) end\n'
- ' (Pdb)\n'
- '\n'
- ' To remove all commands from a breakpoint, type "commands" '
- 'and\n'
- ' follow it immediately with "end"; that is, give no commands.\n'
- '\n'
- ' With no *bpnumber* argument, "commands" refers to the last\n'
- ' breakpoint set.\n'
- '\n'
- ' You can use breakpoint commands to start your program up '
- 'again.\n'
- ' Simply use the "continue" command, or "step", or any other '
- 'command\n'
- ' that resumes execution.\n'
- '\n'
- ' Specifying any command resuming execution (currently '
- '"continue",\n'
- ' "step", "next", "return", "jump", "quit" and their '
- 'abbreviations)\n'
- ' terminates the command list (as if that command was '
- 'immediately\n'
- ' followed by end). This is because any time you resume '
- 'execution\n'
- ' (even with a simple next or step), you may encounter another\n'
- ' breakpoint—which could have its own command list, leading to\n'
- ' ambiguities about which list to execute.\n'
- '\n'
- ' If you use the ‘silent’ command in the command list, the '
- 'usual\n'
- ' message about stopping at a breakpoint is not printed. This '
- 'may be\n'
- ' desirable for breakpoints that are to print a specific '
- 'message and\n'
- ' then continue. If none of the other commands print anything, '
- 'you\n'
- ' see no sign that the breakpoint was reached.\n'
- '\n'
- 's(tep)\n'
- '\n'
- ' Execute the current line, stop at the first possible '
- 'occasion\n'
- ' (either in a function that is called or on the next line in '
- 'the\n'
- ' current function).\n'
- '\n'
- 'n(ext)\n'
- '\n'
- ' Continue execution until the next line in the current '
- 'function is\n'
- ' reached or it returns. (The difference between "next" and '
- '"step"\n'
- ' is that "step" stops inside a called function, while "next"\n'
- ' executes called functions at (nearly) full speed, only '
- 'stopping at\n'
- ' the next line in the current function.)\n'
- '\n'
- 'unt(il) [lineno]\n'
- '\n'
- ' Without argument, continue execution until the line with a '
- 'number\n'
- ' greater than the current one is reached.\n'
- '\n'
- ' With a line number, continue execution until a line with a '
- 'number\n'
- ' greater or equal to that is reached. In both cases, also '
- 'stop when\n'
- ' the current frame returns.\n'
- '\n'
- ' Changed in version 3.2: Allow giving an explicit line '
- 'number.\n'
- '\n'
- 'r(eturn)\n'
- '\n'
- ' Continue execution until the current function returns.\n'
- '\n'
- 'c(ont(inue))\n'
- '\n'
- ' Continue execution, only stop when a breakpoint is '
- 'encountered.\n'
- '\n'
- 'j(ump) lineno\n'
- '\n'
- ' Set the next line that will be executed. Only available in '
- 'the\n'
- ' bottom-most frame. This lets you jump back and execute code '
- 'again,\n'
- ' or jump forward to skip code that you don’t want to run.\n'
- '\n'
- ' It should be noted that not all jumps are allowed – for '
- 'instance it\n'
- ' is not possible to jump into the middle of a "for" loop or '
- 'out of a\n'
- ' "finally" clause.\n'
- '\n'
- 'l(ist) [first[, last]]\n'
- '\n'
- ' List source code for the current file. Without arguments, '
- 'list 11\n'
- ' lines around the current line or continue the previous '
- 'listing.\n'
- ' With "." as argument, list 11 lines around the current line. '
- 'With\n'
- ' one argument, list 11 lines around at that line. With two\n'
- ' arguments, list the given range; if the second argument is '
- 'less\n'
- ' than the first, it is interpreted as a count.\n'
- '\n'
- ' The current line in the current frame is indicated by "->". '
- 'If an\n'
- ' exception is being debugged, the line where the exception '
- 'was\n'
- ' originally raised or propagated is indicated by ">>", if it '
- 'differs\n'
- ' from the current line.\n'
- '\n'
- ' New in version 3.2: The ">>" marker.\n'
- '\n'
- 'll | longlist\n'
- '\n'
- ' List all source code for the current function or frame.\n'
- ' Interesting lines are marked as for "list".\n'
- '\n'
- ' New in version 3.2.\n'
- '\n'
- 'a(rgs)\n'
- '\n'
- ' Print the argument list of the current function.\n'
- '\n'
- 'p expression\n'
- '\n'
- ' Evaluate the *expression* in the current context and print '
- 'its\n'
- ' value.\n'
- '\n'
+ '\n'
+ ' Enable the breakpoints specified.\n'
+ '\n'
+ 'ignore bpnumber [count]\n'
+ '\n'
+ ' Set the ignore count for the given breakpoint number. If '
+ 'count is\n'
+ ' omitted, the ignore count is set to 0. A breakpoint becomes '
+ 'active\n'
+ ' when the ignore count is zero. When non-zero, the count is\n'
+ ' decremented each time the breakpoint is reached and the '
+ 'breakpoint\n'
+ ' is not disabled and any associated condition evaluates to '
+ 'true.\n'
+ '\n'
+ 'condition bpnumber [condition]\n'
+ '\n'
+ ' Set a new *condition* for the breakpoint, an expression which '
+ 'must\n'
+ ' evaluate to true before the breakpoint is honored. If '
+ '*condition*\n'
+ ' is absent, any existing condition is removed; i.e., the '
+ 'breakpoint\n'
+ ' is made unconditional.\n'
+ '\n'
+ 'commands [bpnumber]\n'
+ '\n'
+ ' Specify a list of commands for breakpoint number *bpnumber*. '
+ 'The\n'
+ ' commands themselves appear on the following lines. Type a '
+ 'line\n'
+ ' containing just "end" to terminate the commands. An example:\n'
+ '\n'
+ ' (Pdb) commands 1\n'
+ ' (com) p some_variable\n'
+ ' (com) end\n'
+ ' (Pdb)\n'
+ '\n'
+ ' To remove all commands from a breakpoint, type "commands" '
+ 'and\n'
+ ' follow it immediately with "end"; that is, give no commands.\n'
+ '\n'
+ ' With no *bpnumber* argument, "commands" refers to the last\n'
+ ' breakpoint set.\n'
+ '\n'
+ ' You can use breakpoint commands to start your program up '
+ 'again.\n'
+ ' Simply use the "continue" command, or "step", or any other '
+ 'command\n'
+ ' that resumes execution.\n'
+ '\n'
+ ' Specifying any command resuming execution (currently '
+ '"continue",\n'
+ ' "step", "next", "return", "jump", "quit" and their '
+ 'abbreviations)\n'
+ ' terminates the command list (as if that command was '
+ 'immediately\n'
+ ' followed by end). This is because any time you resume '
+ 'execution\n'
+ ' (even with a simple next or step), you may encounter another\n'
+ ' breakpoint—which could have its own command list, leading to\n'
+ ' ambiguities about which list to execute.\n'
+ '\n'
+ ' If you use the ‘silent’ command in the command list, the '
+ 'usual\n'
+ ' message about stopping at a breakpoint is not printed. This '
+ 'may be\n'
+ ' desirable for breakpoints that are to print a specific '
+ 'message and\n'
+ ' then continue. If none of the other commands print anything, '
+ 'you\n'
+ ' see no sign that the breakpoint was reached.\n'
+ '\n'
+ 's(tep)\n'
+ '\n'
+ ' Execute the current line, stop at the first possible '
+ 'occasion\n'
+ ' (either in a function that is called or on the next line in '
+ 'the\n'
+ ' current function).\n'
+ '\n'
+ 'n(ext)\n'
+ '\n'
+ ' Continue execution until the next line in the current '
+ 'function is\n'
+ ' reached or it returns. (The difference between "next" and '
+ '"step"\n'
+ ' is that "step" stops inside a called function, while "next"\n'
+ ' executes called functions at (nearly) full speed, only '
+ 'stopping at\n'
+ ' the next line in the current function.)\n'
+ '\n'
+ 'unt(il) [lineno]\n'
+ '\n'
+ ' Without argument, continue execution until the line with a '
+ 'number\n'
+ ' greater than the current one is reached.\n'
+ '\n'
+ ' With a line number, continue execution until a line with a '
+ 'number\n'
+ ' greater or equal to that is reached. In both cases, also '
+ 'stop when\n'
+ ' the current frame returns.\n'
+ '\n'
+ ' Changed in version 3.2: Allow giving an explicit line '
+ 'number.\n'
+ '\n'
+ 'r(eturn)\n'
+ '\n'
+ ' Continue execution until the current function returns.\n'
+ '\n'
+ 'c(ont(inue))\n'
+ '\n'
+ ' Continue execution, only stop when a breakpoint is '
+ 'encountered.\n'
+ '\n'
+ 'j(ump) lineno\n'
+ '\n'
+ ' Set the next line that will be executed. Only available in '
+ 'the\n'
+ ' bottom-most frame. This lets you jump back and execute code '
+ 'again,\n'
+ ' or jump forward to skip code that you don’t want to run.\n'
+ '\n'
+ ' It should be noted that not all jumps are allowed – for '
+ 'instance it\n'
+ ' is not possible to jump into the middle of a "for" loop or '
+ 'out of a\n'
+ ' "finally" clause.\n'
+ '\n'
+ 'l(ist) [first[, last]]\n'
+ '\n'
+ ' List source code for the current file. Without arguments, '
+ 'list 11\n'
+ ' lines around the current line or continue the previous '
+ 'listing.\n'
+ ' With "." as argument, list 11 lines around the current line. '
+ 'With\n'
+ ' one argument, list 11 lines around at that line. With two\n'
+ ' arguments, list the given range; if the second argument is '
+ 'less\n'
+ ' than the first, it is interpreted as a count.\n'
+ '\n'
+ ' The current line in the current frame is indicated by "->". '
+ 'If an\n'
+ ' exception is being debugged, the line where the exception '
+ 'was\n'
+ ' originally raised or propagated is indicated by ">>", if it '
+ 'differs\n'
+ ' from the current line.\n'
+ '\n'
+ ' New in version 3.2: The ">>" marker.\n'
+ '\n'
+ 'll | longlist\n'
+ '\n'
+ ' List all source code for the current function or frame.\n'
+ ' Interesting lines are marked as for "list".\n'
+ '\n'
+ ' New in version 3.2.\n'
+ '\n'
+ 'a(rgs)\n'
+ '\n'
+ ' Print the argument list of the current function.\n'
+ '\n'
+ 'p expression\n'
+ '\n'
+ ' Evaluate the *expression* in the current context and print '
+ 'its\n'
+ ' value.\n'
+ '\n'
' Note:\n'
- '\n'
+ '\n'
' "print()" can also be used, but is not a debugger command — '
'this\n'
' executes the Python "print()" function.\n'
'\n'
- 'pp expression\n'
- '\n'
- ' Like the "p" command, except the value of the expression is '
- 'pretty-\n'
- ' printed using the "pprint" module.\n'
- '\n'
- 'whatis expression\n'
- '\n'
- ' Print the type of the *expression*.\n'
- '\n'
- 'source expression\n'
- '\n'
- ' Try to get source code for the given object and display it.\n'
- '\n'
- ' New in version 3.2.\n'
- '\n'
- 'display [expression]\n'
- '\n'
- ' Display the value of the expression if it changed, each time\n'
- ' execution stops in the current frame.\n'
- '\n'
- ' Without expression, list all display expressions for the '
- 'current\n'
- ' frame.\n'
- '\n'
- ' New in version 3.2.\n'
- '\n'
- 'undisplay [expression]\n'
- '\n'
- ' Do not display the expression any more in the current frame.\n'
- ' Without expression, clear all display expressions for the '
- 'current\n'
- ' frame.\n'
- '\n'
- ' New in version 3.2.\n'
- '\n'
- 'interact\n'
- '\n'
- ' Start an interactive interpreter (using the "code" module) '
- 'whose\n'
- ' global namespace contains all the (global and local) names '
- 'found in\n'
- ' the current scope.\n'
- '\n'
- ' New in version 3.2.\n'
- '\n'
- 'alias [name [command]]\n'
- '\n'
- ' Create an alias called *name* that executes *command*. The '
- 'command\n'
- ' must *not* be enclosed in quotes. Replaceable parameters can '
- 'be\n'
- ' indicated by "%1", "%2", and so on, while "%*" is replaced by '
- 'all\n'
- ' the parameters. If no command is given, the current alias '
- 'for\n'
- ' *name* is shown. If no arguments are given, all aliases are '
- 'listed.\n'
- '\n'
- ' Aliases may be nested and can contain anything that can be '
- 'legally\n'
- ' typed at the pdb prompt. Note that internal pdb commands '
- '*can* be\n'
- ' overridden by aliases. Such a command is then hidden until '
- 'the\n'
- ' alias is removed. Aliasing is recursively applied to the '
- 'first\n'
- ' word of the command line; all other words in the line are '
- 'left\n'
- ' alone.\n'
- '\n'
- ' As an example, here are two useful aliases (especially when '
- 'placed\n'
- ' in the ".pdbrc" file):\n'
- '\n'
- ' # Print instance variables (usage "pi classInst")\n'
- ' alias pi for k in %1.__dict__.keys(): '
- 'print("%1.",k,"=",%1.__dict__[k])\n'
- ' # Print instance variables in self\n'
- ' alias ps pi self\n'
- '\n'
- 'unalias name\n'
- '\n'
- ' Delete the specified alias.\n'
- '\n'
- '! statement\n'
- '\n'
- ' Execute the (one-line) *statement* in the context of the '
- 'current\n'
- ' stack frame. The exclamation point can be omitted unless the '
- 'first\n'
- ' word of the statement resembles a debugger command. To set '
- 'a\n'
- ' global variable, you can prefix the assignment command with '
- 'a\n'
- ' "global" statement on the same line, e.g.:\n'
- '\n'
- " (Pdb) global list_options; list_options = ['-l']\n"
- ' (Pdb)\n'
- '\n'
- 'run [args ...]\n'
- 'restart [args ...]\n'
- '\n'
- ' Restart the debugged Python program. If an argument is '
- 'supplied,\n'
- ' it is split with "shlex" and the result is used as the new\n'
- ' "sys.argv". History, breakpoints, actions and debugger '
- 'options are\n'
- ' preserved. "restart" is an alias for "run".\n'
- '\n'
- 'q(uit)\n'
- '\n'
- ' Quit from the debugger. The program being executed is '
- 'aborted.\n'
- '\n'
+ 'pp expression\n'
+ '\n'
+ ' Like the "p" command, except the value of the expression is '
+ 'pretty-\n'
+ ' printed using the "pprint" module.\n'
+ '\n'
+ 'whatis expression\n'
+ '\n'
+ ' Print the type of the *expression*.\n'
+ '\n'
+ 'source expression\n'
+ '\n'
+ ' Try to get source code for the given object and display it.\n'
+ '\n'
+ ' New in version 3.2.\n'
+ '\n'
+ 'display [expression]\n'
+ '\n'
+ ' Display the value of the expression if it changed, each time\n'
+ ' execution stops in the current frame.\n'
+ '\n'
+ ' Without expression, list all display expressions for the '
+ 'current\n'
+ ' frame.\n'
+ '\n'
+ ' New in version 3.2.\n'
+ '\n'
+ 'undisplay [expression]\n'
+ '\n'
+ ' Do not display the expression any more in the current frame.\n'
+ ' Without expression, clear all display expressions for the '
+ 'current\n'
+ ' frame.\n'
+ '\n'
+ ' New in version 3.2.\n'
+ '\n'
+ 'interact\n'
+ '\n'
+ ' Start an interactive interpreter (using the "code" module) '
+ 'whose\n'
+ ' global namespace contains all the (global and local) names '
+ 'found in\n'
+ ' the current scope.\n'
+ '\n'
+ ' New in version 3.2.\n'
+ '\n'
+ 'alias [name [command]]\n'
+ '\n'
+ ' Create an alias called *name* that executes *command*. The '
+ 'command\n'
+ ' must *not* be enclosed in quotes. Replaceable parameters can '
+ 'be\n'
+ ' indicated by "%1", "%2", and so on, while "%*" is replaced by '
+ 'all\n'
+ ' the parameters. If no command is given, the current alias '
+ 'for\n'
+ ' *name* is shown. If no arguments are given, all aliases are '
+ 'listed.\n'
+ '\n'
+ ' Aliases may be nested and can contain anything that can be '
+ 'legally\n'
+ ' typed at the pdb prompt. Note that internal pdb commands '
+ '*can* be\n'
+ ' overridden by aliases. Such a command is then hidden until '
+ 'the\n'
+ ' alias is removed. Aliasing is recursively applied to the '
+ 'first\n'
+ ' word of the command line; all other words in the line are '
+ 'left\n'
+ ' alone.\n'
+ '\n'
+ ' As an example, here are two useful aliases (especially when '
+ 'placed\n'
+ ' in the ".pdbrc" file):\n'
+ '\n'
+ ' # Print instance variables (usage "pi classInst")\n'
+ ' alias pi for k in %1.__dict__.keys(): '
+ 'print("%1.",k,"=",%1.__dict__[k])\n'
+ ' # Print instance variables in self\n'
+ ' alias ps pi self\n'
+ '\n'
+ 'unalias name\n'
+ '\n'
+ ' Delete the specified alias.\n'
+ '\n'
+ '! statement\n'
+ '\n'
+ ' Execute the (one-line) *statement* in the context of the '
+ 'current\n'
+ ' stack frame. The exclamation point can be omitted unless the '
+ 'first\n'
+ ' word of the statement resembles a debugger command. To set '
+ 'a\n'
+ ' global variable, you can prefix the assignment command with '
+ 'a\n'
+ ' "global" statement on the same line, e.g.:\n'
+ '\n'
+ " (Pdb) global list_options; list_options = ['-l']\n"
+ ' (Pdb)\n'
+ '\n'
+ 'run [args ...]\n'
+ 'restart [args ...]\n'
+ '\n'
+ ' Restart the debugged Python program. If an argument is '
+ 'supplied,\n'
+ ' it is split with "shlex" and the result is used as the new\n'
+ ' "sys.argv". History, breakpoints, actions and debugger '
+ 'options are\n'
+ ' preserved. "restart" is an alias for "run".\n'
+ '\n'
+ 'q(uit)\n'
+ '\n'
+ ' Quit from the debugger. The program being executed is '
+ 'aborted.\n'
+ '\n'
'debug code\n'
'\n'
' Enter a recursive debugger that steps through the code '
@@ -4381,83 +4381,83 @@ topics = {'assert': 'The "assert" statement\n'
'\n'
' Print the return value for the last return of a function.\n'
'\n'
- '-[ Footnotes ]-\n'
- '\n'
- '[1] Whether a frame is considered to originate in a certain '
+ '-[ Footnotes ]-\n'
+ '\n'
+ '[1] Whether a frame is considered to originate in a certain '
'module is\n'
' determined by the "__name__" in the frame globals.\n',
- 'del': 'The "del" statement\n'
- '*******************\n'
- '\n'
- ' del_stmt ::= "del" target_list\n'
- '\n'
- 'Deletion is recursively defined very similar to the way assignment '
- 'is\n'
- 'defined. Rather than spelling it out in full details, here are some\n'
- 'hints.\n'
- '\n'
- 'Deletion of a target list recursively deletes each target, from left\n'
- 'to right.\n'
- '\n'
- 'Deletion of a name removes the binding of that name from the local '
- 'or\n'
- 'global namespace, depending on whether the name occurs in a "global"\n'
- 'statement in the same code block. If the name is unbound, a\n'
- '"NameError" exception will be raised.\n'
- '\n'
- 'Deletion of attribute references, subscriptions and slicings is '
- 'passed\n'
- 'to the primary object involved; deletion of a slicing is in general\n'
- 'equivalent to assignment of an empty slice of the right type (but '
- 'even\n'
- 'this is determined by the sliced object).\n'
- '\n'
- 'Changed in version 3.2: Previously it was illegal to delete a name\n'
- 'from the local namespace if it occurs as a free variable in a nested\n'
- 'block.\n',
- 'dict': 'Dictionary displays\n'
- '*******************\n'
- '\n'
- 'A dictionary display is a possibly empty series of key/datum pairs\n'
- 'enclosed in curly braces:\n'
- '\n'
- ' dict_display ::= "{" [key_datum_list | dict_comprehension] '
- '"}"\n'
- ' key_datum_list ::= key_datum ("," key_datum)* [","]\n'
- ' key_datum ::= expression ":" expression | "**" or_expr\n'
- ' dict_comprehension ::= expression ":" expression comp_for\n'
- '\n'
- 'A dictionary display yields a new dictionary object.\n'
- '\n'
- 'If a comma-separated sequence of key/datum pairs is given, they are\n'
- 'evaluated from left to right to define the entries of the '
- 'dictionary:\n'
- 'each key object is used as a key into the dictionary to store the\n'
- 'corresponding datum. This means that you can specify the same key\n'
- 'multiple times in the key/datum list, and the final dictionary’s '
- 'value\n'
- 'for that key will be the last one given.\n'
- '\n'
- 'A double asterisk "**" denotes *dictionary unpacking*. Its operand\n'
- 'must be a *mapping*. Each mapping item is added to the new\n'
- 'dictionary. Later values replace values already set by earlier\n'
- 'key/datum pairs and earlier dictionary unpackings.\n'
- '\n'
- 'New in version 3.5: Unpacking into dictionary displays, originally\n'
- 'proposed by **PEP 448**.\n'
- '\n'
- 'A dict comprehension, in contrast to list and set comprehensions,\n'
- 'needs two expressions separated with a colon followed by the usual\n'
- '“for” and “if” clauses. When the comprehension is run, the '
- 'resulting\n'
- 'key and value elements are inserted in the new dictionary in the '
- 'order\n'
- 'they are produced.\n'
- '\n'
- 'Restrictions on the types of the key values are listed earlier in\n'
- 'section The standard type hierarchy. (To summarize, the key type\n'
- 'should be *hashable*, which excludes all mutable objects.) Clashes\n'
- 'between duplicate keys are not detected; the last datum (textually\n'
+ 'del': 'The "del" statement\n'
+ '*******************\n'
+ '\n'
+ ' del_stmt ::= "del" target_list\n'
+ '\n'
+ 'Deletion is recursively defined very similar to the way assignment '
+ 'is\n'
+ 'defined. Rather than spelling it out in full details, here are some\n'
+ 'hints.\n'
+ '\n'
+ 'Deletion of a target list recursively deletes each target, from left\n'
+ 'to right.\n'
+ '\n'
+ 'Deletion of a name removes the binding of that name from the local '
+ 'or\n'
+ 'global namespace, depending on whether the name occurs in a "global"\n'
+ 'statement in the same code block. If the name is unbound, a\n'
+ '"NameError" exception will be raised.\n'
+ '\n'
+ 'Deletion of attribute references, subscriptions and slicings is '
+ 'passed\n'
+ 'to the primary object involved; deletion of a slicing is in general\n'
+ 'equivalent to assignment of an empty slice of the right type (but '
+ 'even\n'
+ 'this is determined by the sliced object).\n'
+ '\n'
+ 'Changed in version 3.2: Previously it was illegal to delete a name\n'
+ 'from the local namespace if it occurs as a free variable in a nested\n'
+ 'block.\n',
+ 'dict': 'Dictionary displays\n'
+ '*******************\n'
+ '\n'
+ 'A dictionary display is a possibly empty series of key/datum pairs\n'
+ 'enclosed in curly braces:\n'
+ '\n'
+ ' dict_display ::= "{" [key_datum_list | dict_comprehension] '
+ '"}"\n'
+ ' key_datum_list ::= key_datum ("," key_datum)* [","]\n'
+ ' key_datum ::= expression ":" expression | "**" or_expr\n'
+ ' dict_comprehension ::= expression ":" expression comp_for\n'
+ '\n'
+ 'A dictionary display yields a new dictionary object.\n'
+ '\n'
+ 'If a comma-separated sequence of key/datum pairs is given, they are\n'
+ 'evaluated from left to right to define the entries of the '
+ 'dictionary:\n'
+ 'each key object is used as a key into the dictionary to store the\n'
+ 'corresponding datum. This means that you can specify the same key\n'
+ 'multiple times in the key/datum list, and the final dictionary’s '
+ 'value\n'
+ 'for that key will be the last one given.\n'
+ '\n'
+ 'A double asterisk "**" denotes *dictionary unpacking*. Its operand\n'
+ 'must be a *mapping*. Each mapping item is added to the new\n'
+ 'dictionary. Later values replace values already set by earlier\n'
+ 'key/datum pairs and earlier dictionary unpackings.\n'
+ '\n'
+ 'New in version 3.5: Unpacking into dictionary displays, originally\n'
+ 'proposed by **PEP 448**.\n'
+ '\n'
+ 'A dict comprehension, in contrast to list and set comprehensions,\n'
+ 'needs two expressions separated with a colon followed by the usual\n'
+ '“for” and “if” clauses. When the comprehension is run, the '
+ 'resulting\n'
+ 'key and value elements are inserted in the new dictionary in the '
+ 'order\n'
+ 'they are produced.\n'
+ '\n'
+ 'Restrictions on the types of the key values are listed earlier in\n'
+ 'section The standard type hierarchy. (To summarize, the key type\n'
+ 'should be *hashable*, which excludes all mutable objects.) Clashes\n'
+ 'between duplicate keys are not detected; the last datum (textually\n'
'rightmost in the display) stored for a given key value prevails.\n'
'\n'
'Changed in version 3.8: Prior to Python 3.8, in dict '
@@ -4466,107 +4466,107 @@ topics = {'assert': 'The "assert" statement\n'
'CPython, the value was evaluated before the key. Starting with '
'3.8,\n'
'the key is evaluated before the value, as proposed by **PEP 572**.\n',
- 'dynamic-features': 'Interaction with dynamic features\n'
- '*********************************\n'
- '\n'
- 'Name resolution of free variables occurs at runtime, not '
- 'at compile\n'
- 'time. This means that the following code will print 42:\n'
- '\n'
- ' i = 10\n'
- ' def f():\n'
- ' print(i)\n'
- ' i = 42\n'
- ' f()\n'
- '\n'
- 'The "eval()" and "exec()" functions do not have access '
- 'to the full\n'
- 'environment for resolving names. Names may be resolved '
- 'in the local\n'
- 'and global namespaces of the caller. Free variables are '
- 'not resolved\n'
- 'in the nearest enclosing namespace, but in the global '
- 'namespace. [1]\n'
- 'The "exec()" and "eval()" functions have optional '
- 'arguments to\n'
- 'override the global and local namespace. If only one '
- 'namespace is\n'
- 'specified, it is used for both.\n',
- 'else': 'The "if" statement\n'
- '******************\n'
- '\n'
- 'The "if" statement is used for conditional execution:\n'
- '\n'
+ 'dynamic-features': 'Interaction with dynamic features\n'
+ '*********************************\n'
+ '\n'
+ 'Name resolution of free variables occurs at runtime, not '
+ 'at compile\n'
+ 'time. This means that the following code will print 42:\n'
+ '\n'
+ ' i = 10\n'
+ ' def f():\n'
+ ' print(i)\n'
+ ' i = 42\n'
+ ' f()\n'
+ '\n'
+ 'The "eval()" and "exec()" functions do not have access '
+ 'to the full\n'
+ 'environment for resolving names. Names may be resolved '
+ 'in the local\n'
+ 'and global namespaces of the caller. Free variables are '
+ 'not resolved\n'
+ 'in the nearest enclosing namespace, but in the global '
+ 'namespace. [1]\n'
+ 'The "exec()" and "eval()" functions have optional '
+ 'arguments to\n'
+ 'override the global and local namespace. If only one '
+ 'namespace is\n'
+ 'specified, it is used for both.\n',
+ 'else': 'The "if" statement\n'
+ '******************\n'
+ '\n'
+ 'The "if" statement is used for conditional execution:\n'
+ '\n'
' if_stmt ::= "if" assignment_expression ":" suite\n'
' ("elif" assignment_expression ":" suite)*\n'
- ' ["else" ":" suite]\n'
- '\n'
- 'It selects exactly one of the suites by evaluating the expressions '
- 'one\n'
- 'by one until one is found to be true (see section Boolean '
- 'operations\n'
- 'for the definition of true and false); then that suite is executed\n'
- '(and no other part of the "if" statement is executed or evaluated).\n'
- 'If all expressions are false, the suite of the "else" clause, if\n'
- 'present, is executed.\n',
- 'exceptions': 'Exceptions\n'
- '**********\n'
- '\n'
- 'Exceptions are a means of breaking out of the normal flow of '
- 'control\n'
- 'of a code block in order to handle errors or other '
- 'exceptional\n'
- 'conditions. An exception is *raised* at the point where the '
- 'error is\n'
- 'detected; it may be *handled* by the surrounding code block or '
- 'by any\n'
- 'code block that directly or indirectly invoked the code block '
- 'where\n'
- 'the error occurred.\n'
- '\n'
- 'The Python interpreter raises an exception when it detects a '
- 'run-time\n'
- 'error (such as division by zero). A Python program can also\n'
- 'explicitly raise an exception with the "raise" statement. '
- 'Exception\n'
- 'handlers are specified with the "try" … "except" statement. '
- 'The\n'
- '"finally" clause of such a statement can be used to specify '
- 'cleanup\n'
- 'code which does not handle the exception, but is executed '
- 'whether an\n'
- 'exception occurred or not in the preceding code.\n'
- '\n'
- 'Python uses the “termination” model of error handling: an '
- 'exception\n'
- 'handler can find out what happened and continue execution at '
- 'an outer\n'
- 'level, but it cannot repair the cause of the error and retry '
- 'the\n'
- 'failing operation (except by re-entering the offending piece '
- 'of code\n'
- 'from the top).\n'
- '\n'
- 'When an exception is not handled at all, the interpreter '
- 'terminates\n'
- 'execution of the program, or returns to its interactive main '
- 'loop. In\n'
+ ' ["else" ":" suite]\n'
+ '\n'
+ 'It selects exactly one of the suites by evaluating the expressions '
+ 'one\n'
+ 'by one until one is found to be true (see section Boolean '
+ 'operations\n'
+ 'for the definition of true and false); then that suite is executed\n'
+ '(and no other part of the "if" statement is executed or evaluated).\n'
+ 'If all expressions are false, the suite of the "else" clause, if\n'
+ 'present, is executed.\n',
+ 'exceptions': 'Exceptions\n'
+ '**********\n'
+ '\n'
+ 'Exceptions are a means of breaking out of the normal flow of '
+ 'control\n'
+ 'of a code block in order to handle errors or other '
+ 'exceptional\n'
+ 'conditions. An exception is *raised* at the point where the '
+ 'error is\n'
+ 'detected; it may be *handled* by the surrounding code block or '
+ 'by any\n'
+ 'code block that directly or indirectly invoked the code block '
+ 'where\n'
+ 'the error occurred.\n'
+ '\n'
+ 'The Python interpreter raises an exception when it detects a '
+ 'run-time\n'
+ 'error (such as division by zero). A Python program can also\n'
+ 'explicitly raise an exception with the "raise" statement. '
+ 'Exception\n'
+ 'handlers are specified with the "try" … "except" statement. '
+ 'The\n'
+ '"finally" clause of such a statement can be used to specify '
+ 'cleanup\n'
+ 'code which does not handle the exception, but is executed '
+ 'whether an\n'
+ 'exception occurred or not in the preceding code.\n'
+ '\n'
+ 'Python uses the “termination” model of error handling: an '
+ 'exception\n'
+ 'handler can find out what happened and continue execution at '
+ 'an outer\n'
+ 'level, but it cannot repair the cause of the error and retry '
+ 'the\n'
+ 'failing operation (except by re-entering the offending piece '
+ 'of code\n'
+ 'from the top).\n'
+ '\n'
+ 'When an exception is not handled at all, the interpreter '
+ 'terminates\n'
+ 'execution of the program, or returns to its interactive main '
+ 'loop. In\n'
'either case, it prints a stack traceback, except when the '
- 'exception is\n'
- '"SystemExit".\n'
- '\n'
- 'Exceptions are identified by class instances. The "except" '
- 'clause is\n'
- 'selected depending on the class of the instance: it must '
- 'reference the\n'
- 'class of the instance or a base class thereof. The instance '
- 'can be\n'
- 'received by the handler and can carry additional information '
- 'about the\n'
- 'exceptional condition.\n'
- '\n'
+ 'exception is\n'
+ '"SystemExit".\n'
+ '\n'
+ 'Exceptions are identified by class instances. The "except" '
+ 'clause is\n'
+ 'selected depending on the class of the instance: it must '
+ 'reference the\n'
+ 'class of the instance or a base class thereof. The instance '
+ 'can be\n'
+ 'received by the handler and can carry additional information '
+ 'about the\n'
+ 'exceptional condition.\n'
+ '\n'
'Note:\n'
- '\n'
+ '\n'
' Exception messages are not part of the Python API. Their '
'contents\n'
' may change from one version of Python to the next without '
@@ -4575,38 +4575,38 @@ topics = {'assert': 'The "assert" statement\n'
'multiple\n'
' versions of the interpreter.\n'
'\n'
- 'See also the description of the "try" statement in section The '
- 'try\n'
- 'statement and "raise" statement in section The raise '
- 'statement.\n'
- '\n'
- '-[ Footnotes ]-\n'
- '\n'
- '[1] This limitation occurs because the code that is executed '
+ 'See also the description of the "try" statement in section The '
+ 'try\n'
+ 'statement and "raise" statement in section The raise '
+ 'statement.\n'
+ '\n'
+ '-[ Footnotes ]-\n'
+ '\n'
+ '[1] This limitation occurs because the code that is executed '
'by these\n'
' operations is not available at the time the module is '
'compiled.\n',
- 'execmodel': 'Execution model\n'
- '***************\n'
- '\n'
- '\n'
- 'Structure of a program\n'
- '======================\n'
- '\n'
- 'A Python program is constructed from code blocks. A *block* is '
- 'a piece\n'
- 'of Python program text that is executed as a unit. The '
- 'following are\n'
- 'blocks: a module, a function body, and a class definition. '
- 'Each\n'
- 'command typed interactively is a block. A script file (a file '
- 'given\n'
- 'as standard input to the interpreter or specified as a command '
- 'line\n'
- 'argument to the interpreter) is a code block. A script command '
- '(a\n'
- 'command specified on the interpreter command line with the '
- '"-c"\n'
+ 'execmodel': 'Execution model\n'
+ '***************\n'
+ '\n'
+ '\n'
+ 'Structure of a program\n'
+ '======================\n'
+ '\n'
+ 'A Python program is constructed from code blocks. A *block* is '
+ 'a piece\n'
+ 'of Python program text that is executed as a unit. The '
+ 'following are\n'
+ 'blocks: a module, a function body, and a class definition. '
+ 'Each\n'
+ 'command typed interactively is a block. A script file (a file '
+ 'given\n'
+ 'as standard input to the interpreter or specified as a command '
+ 'line\n'
+ 'argument to the interpreter) is a code block. A script command '
+ '(a\n'
+ 'command specified on the interpreter command line with the '
+ '"-c"\n'
'option) is a code block. A module run as a top level script (as '
'module\n'
'"__main__") from the command line using a "-m" argument is also '
@@ -4614,286 +4614,286 @@ topics = {'assert': 'The "assert" statement\n'
'block. The string argument passed to the built-in functions '
'"eval()"\n'
'and "exec()" is a code block.\n'
- '\n'
- 'A code block is executed in an *execution frame*. A frame '
- 'contains\n'
- 'some administrative information (used for debugging) and '
- 'determines\n'
- 'where and how execution continues after the code block’s '
- 'execution has\n'
- 'completed.\n'
- '\n'
- '\n'
- 'Naming and binding\n'
- '==================\n'
- '\n'
- '\n'
- 'Binding of names\n'
- '----------------\n'
- '\n'
- '*Names* refer to objects. Names are introduced by name '
- 'binding\n'
- 'operations.\n'
- '\n'
- 'The following constructs bind names: formal parameters to '
- 'functions,\n'
- '"import" statements, class and function definitions (these bind '
- 'the\n'
- 'class or function name in the defining block), and targets that '
- 'are\n'
- 'identifiers if occurring in an assignment, "for" loop header, '
- 'or after\n'
- '"as" in a "with" statement or "except" clause. The "import" '
- 'statement\n'
- 'of the form "from ... import *" binds all names defined in the\n'
- 'imported module, except those beginning with an underscore. '
- 'This form\n'
- 'may only be used at the module level.\n'
- '\n'
- 'A target occurring in a "del" statement is also considered '
- 'bound for\n'
- 'this purpose (though the actual semantics are to unbind the '
- 'name).\n'
- '\n'
- 'Each assignment or import statement occurs within a block '
- 'defined by a\n'
- 'class or function definition or at the module level (the '
- 'top-level\n'
- 'code block).\n'
- '\n'
- 'If a name is bound in a block, it is a local variable of that '
- 'block,\n'
- 'unless declared as "nonlocal" or "global". If a name is bound '
- 'at the\n'
- 'module level, it is a global variable. (The variables of the '
- 'module\n'
- 'code block are local and global.) If a variable is used in a '
- 'code\n'
- 'block but not defined there, it is a *free variable*.\n'
- '\n'
- 'Each occurrence of a name in the program text refers to the '
- '*binding*\n'
- 'of that name established by the following name resolution '
- 'rules.\n'
- '\n'
- '\n'
- 'Resolution of names\n'
- '-------------------\n'
- '\n'
- 'A *scope* defines the visibility of a name within a block. If '
- 'a local\n'
- 'variable is defined in a block, its scope includes that block. '
- 'If the\n'
- 'definition occurs in a function block, the scope extends to any '
- 'blocks\n'
- 'contained within the defining one, unless a contained block '
- 'introduces\n'
- 'a different binding for the name.\n'
- '\n'
- 'When a name is used in a code block, it is resolved using the '
- 'nearest\n'
- 'enclosing scope. The set of all such scopes visible to a code '
- 'block\n'
- 'is called the block’s *environment*.\n'
- '\n'
- 'When a name is not found at all, a "NameError" exception is '
- 'raised. If\n'
- 'the current scope is a function scope, and the name refers to a '
- 'local\n'
- 'variable that has not yet been bound to a value at the point '
- 'where the\n'
- 'name is used, an "UnboundLocalError" exception is raised.\n'
- '"UnboundLocalError" is a subclass of "NameError".\n'
- '\n'
- 'If a name binding operation occurs anywhere within a code '
- 'block, all\n'
- 'uses of the name within the block are treated as references to '
- 'the\n'
- 'current block. This can lead to errors when a name is used '
- 'within a\n'
- 'block before it is bound. This rule is subtle. Python lacks\n'
- 'declarations and allows name binding operations to occur '
- 'anywhere\n'
- 'within a code block. The local variables of a code block can '
- 'be\n'
- 'determined by scanning the entire text of the block for name '
- 'binding\n'
- 'operations.\n'
- '\n'
- 'If the "global" statement occurs within a block, all uses of '
+ '\n'
+ 'A code block is executed in an *execution frame*. A frame '
+ 'contains\n'
+ 'some administrative information (used for debugging) and '
+ 'determines\n'
+ 'where and how execution continues after the code block’s '
+ 'execution has\n'
+ 'completed.\n'
+ '\n'
+ '\n'
+ 'Naming and binding\n'
+ '==================\n'
+ '\n'
+ '\n'
+ 'Binding of names\n'
+ '----------------\n'
+ '\n'
+ '*Names* refer to objects. Names are introduced by name '
+ 'binding\n'
+ 'operations.\n'
+ '\n'
+ 'The following constructs bind names: formal parameters to '
+ 'functions,\n'
+ '"import" statements, class and function definitions (these bind '
+ 'the\n'
+ 'class or function name in the defining block), and targets that '
+ 'are\n'
+ 'identifiers if occurring in an assignment, "for" loop header, '
+ 'or after\n'
+ '"as" in a "with" statement or "except" clause. The "import" '
+ 'statement\n'
+ 'of the form "from ... import *" binds all names defined in the\n'
+ 'imported module, except those beginning with an underscore. '
+ 'This form\n'
+ 'may only be used at the module level.\n'
+ '\n'
+ 'A target occurring in a "del" statement is also considered '
+ 'bound for\n'
+ 'this purpose (though the actual semantics are to unbind the '
+ 'name).\n'
+ '\n'
+ 'Each assignment or import statement occurs within a block '
+ 'defined by a\n'
+ 'class or function definition or at the module level (the '
+ 'top-level\n'
+ 'code block).\n'
+ '\n'
+ 'If a name is bound in a block, it is a local variable of that '
+ 'block,\n'
+ 'unless declared as "nonlocal" or "global". If a name is bound '
+ 'at the\n'
+ 'module level, it is a global variable. (The variables of the '
+ 'module\n'
+ 'code block are local and global.) If a variable is used in a '
+ 'code\n'
+ 'block but not defined there, it is a *free variable*.\n'
+ '\n'
+ 'Each occurrence of a name in the program text refers to the '
+ '*binding*\n'
+ 'of that name established by the following name resolution '
+ 'rules.\n'
+ '\n'
+ '\n'
+ 'Resolution of names\n'
+ '-------------------\n'
+ '\n'
+ 'A *scope* defines the visibility of a name within a block. If '
+ 'a local\n'
+ 'variable is defined in a block, its scope includes that block. '
+ 'If the\n'
+ 'definition occurs in a function block, the scope extends to any '
+ 'blocks\n'
+ 'contained within the defining one, unless a contained block '
+ 'introduces\n'
+ 'a different binding for the name.\n'
+ '\n'
+ 'When a name is used in a code block, it is resolved using the '
+ 'nearest\n'
+ 'enclosing scope. The set of all such scopes visible to a code '
+ 'block\n'
+ 'is called the block’s *environment*.\n'
+ '\n'
+ 'When a name is not found at all, a "NameError" exception is '
+ 'raised. If\n'
+ 'the current scope is a function scope, and the name refers to a '
+ 'local\n'
+ 'variable that has not yet been bound to a value at the point '
+ 'where the\n'
+ 'name is used, an "UnboundLocalError" exception is raised.\n'
+ '"UnboundLocalError" is a subclass of "NameError".\n'
+ '\n'
+ 'If a name binding operation occurs anywhere within a code '
+ 'block, all\n'
+ 'uses of the name within the block are treated as references to '
+ 'the\n'
+ 'current block. This can lead to errors when a name is used '
+ 'within a\n'
+ 'block before it is bound. This rule is subtle. Python lacks\n'
+ 'declarations and allows name binding operations to occur '
+ 'anywhere\n'
+ 'within a code block. The local variables of a code block can '
+ 'be\n'
+ 'determined by scanning the entire text of the block for name '
+ 'binding\n'
+ 'operations.\n'
+ '\n'
+ 'If the "global" statement occurs within a block, all uses of '
'the names\n'
'specified in the statement refer to the bindings of those names '
'in the\n'
- 'top-level namespace. Names are resolved in the top-level '
- 'namespace by\n'
- 'searching the global namespace, i.e. the namespace of the '
- 'module\n'
- 'containing the code block, and the builtins namespace, the '
- 'namespace\n'
- 'of the module "builtins". The global namespace is searched '
- 'first. If\n'
+ 'top-level namespace. Names are resolved in the top-level '
+ 'namespace by\n'
+ 'searching the global namespace, i.e. the namespace of the '
+ 'module\n'
+ 'containing the code block, and the builtins namespace, the '
+ 'namespace\n'
+ 'of the module "builtins". The global namespace is searched '
+ 'first. If\n'
'the names are not found there, the builtins namespace is '
'searched.\n'
'The "global" statement must precede all uses of the listed '
'names.\n'
- '\n'
- 'The "global" statement has the same scope as a name binding '
- 'operation\n'
- 'in the same block. If the nearest enclosing scope for a free '
- 'variable\n'
- 'contains a global statement, the free variable is treated as a '
- 'global.\n'
- '\n'
- 'The "nonlocal" statement causes corresponding names to refer '
- 'to\n'
- 'previously bound variables in the nearest enclosing function '
- 'scope.\n'
- '"SyntaxError" is raised at compile time if the given name does '
- 'not\n'
- 'exist in any enclosing function scope.\n'
- '\n'
- 'The namespace for a module is automatically created the first '
- 'time a\n'
- 'module is imported. The main module for a script is always '
- 'called\n'
- '"__main__".\n'
- '\n'
- 'Class definition blocks and arguments to "exec()" and "eval()" '
- 'are\n'
- 'special in the context of name resolution. A class definition '
- 'is an\n'
- 'executable statement that may use and define names. These '
- 'references\n'
- 'follow the normal rules for name resolution with an exception '
- 'that\n'
- 'unbound local variables are looked up in the global namespace. '
- 'The\n'
- 'namespace of the class definition becomes the attribute '
- 'dictionary of\n'
- 'the class. The scope of names defined in a class block is '
- 'limited to\n'
- 'the class block; it does not extend to the code blocks of '
- 'methods –\n'
- 'this includes comprehensions and generator expressions since '
- 'they are\n'
- 'implemented using a function scope. This means that the '
- 'following\n'
- 'will fail:\n'
- '\n'
- ' class A:\n'
- ' a = 42\n'
- ' b = list(a + i for i in range(10))\n'
- '\n'
- '\n'
- 'Builtins and restricted execution\n'
- '---------------------------------\n'
- '\n'
- '**CPython implementation detail:** Users should not touch\n'
- '"__builtins__"; it is strictly an implementation detail. '
- 'Users\n'
- 'wanting to override values in the builtins namespace should '
- '"import"\n'
- 'the "builtins" module and modify its attributes appropriately.\n'
- '\n'
- 'The builtins namespace associated with the execution of a code '
- 'block\n'
- 'is actually found by looking up the name "__builtins__" in its '
- 'global\n'
- 'namespace; this should be a dictionary or a module (in the '
- 'latter case\n'
- 'the module’s dictionary is used). By default, when in the '
- '"__main__"\n'
- 'module, "__builtins__" is the built-in module "builtins"; when '
- 'in any\n'
- 'other module, "__builtins__" is an alias for the dictionary of '
- 'the\n'
- '"builtins" module itself.\n'
- '\n'
- '\n'
- 'Interaction with dynamic features\n'
- '---------------------------------\n'
- '\n'
- 'Name resolution of free variables occurs at runtime, not at '
- 'compile\n'
- 'time. This means that the following code will print 42:\n'
- '\n'
- ' i = 10\n'
- ' def f():\n'
- ' print(i)\n'
- ' i = 42\n'
- ' f()\n'
- '\n'
- 'The "eval()" and "exec()" functions do not have access to the '
- 'full\n'
- 'environment for resolving names. Names may be resolved in the '
- 'local\n'
- 'and global namespaces of the caller. Free variables are not '
- 'resolved\n'
- 'in the nearest enclosing namespace, but in the global '
- 'namespace. [1]\n'
- 'The "exec()" and "eval()" functions have optional arguments to\n'
- 'override the global and local namespace. If only one namespace '
- 'is\n'
- 'specified, it is used for both.\n'
- '\n'
- '\n'
- 'Exceptions\n'
- '==========\n'
- '\n'
- 'Exceptions are a means of breaking out of the normal flow of '
- 'control\n'
- 'of a code block in order to handle errors or other exceptional\n'
- 'conditions. An exception is *raised* at the point where the '
- 'error is\n'
- 'detected; it may be *handled* by the surrounding code block or '
- 'by any\n'
- 'code block that directly or indirectly invoked the code block '
- 'where\n'
- 'the error occurred.\n'
- '\n'
- 'The Python interpreter raises an exception when it detects a '
- 'run-time\n'
- 'error (such as division by zero). A Python program can also\n'
- 'explicitly raise an exception with the "raise" statement. '
- 'Exception\n'
- 'handlers are specified with the "try" … "except" statement. '
- 'The\n'
- '"finally" clause of such a statement can be used to specify '
- 'cleanup\n'
- 'code which does not handle the exception, but is executed '
- 'whether an\n'
- 'exception occurred or not in the preceding code.\n'
- '\n'
- 'Python uses the “termination” model of error handling: an '
- 'exception\n'
- 'handler can find out what happened and continue execution at an '
- 'outer\n'
- 'level, but it cannot repair the cause of the error and retry '
- 'the\n'
- 'failing operation (except by re-entering the offending piece of '
- 'code\n'
- 'from the top).\n'
- '\n'
- 'When an exception is not handled at all, the interpreter '
- 'terminates\n'
- 'execution of the program, or returns to its interactive main '
- 'loop. In\n'
+ '\n'
+ 'The "global" statement has the same scope as a name binding '
+ 'operation\n'
+ 'in the same block. If the nearest enclosing scope for a free '
+ 'variable\n'
+ 'contains a global statement, the free variable is treated as a '
+ 'global.\n'
+ '\n'
+ 'The "nonlocal" statement causes corresponding names to refer '
+ 'to\n'
+ 'previously bound variables in the nearest enclosing function '
+ 'scope.\n'
+ '"SyntaxError" is raised at compile time if the given name does '
+ 'not\n'
+ 'exist in any enclosing function scope.\n'
+ '\n'
+ 'The namespace for a module is automatically created the first '
+ 'time a\n'
+ 'module is imported. The main module for a script is always '
+ 'called\n'
+ '"__main__".\n'
+ '\n'
+ 'Class definition blocks and arguments to "exec()" and "eval()" '
+ 'are\n'
+ 'special in the context of name resolution. A class definition '
+ 'is an\n'
+ 'executable statement that may use and define names. These '
+ 'references\n'
+ 'follow the normal rules for name resolution with an exception '
+ 'that\n'
+ 'unbound local variables are looked up in the global namespace. '
+ 'The\n'
+ 'namespace of the class definition becomes the attribute '
+ 'dictionary of\n'
+ 'the class. The scope of names defined in a class block is '
+ 'limited to\n'
+ 'the class block; it does not extend to the code blocks of '
+ 'methods –\n'
+ 'this includes comprehensions and generator expressions since '
+ 'they are\n'
+ 'implemented using a function scope. This means that the '
+ 'following\n'
+ 'will fail:\n'
+ '\n'
+ ' class A:\n'
+ ' a = 42\n'
+ ' b = list(a + i for i in range(10))\n'
+ '\n'
+ '\n'
+ 'Builtins and restricted execution\n'
+ '---------------------------------\n'
+ '\n'
+ '**CPython implementation detail:** Users should not touch\n'
+ '"__builtins__"; it is strictly an implementation detail. '
+ 'Users\n'
+ 'wanting to override values in the builtins namespace should '
+ '"import"\n'
+ 'the "builtins" module and modify its attributes appropriately.\n'
+ '\n'
+ 'The builtins namespace associated with the execution of a code '
+ 'block\n'
+ 'is actually found by looking up the name "__builtins__" in its '
+ 'global\n'
+ 'namespace; this should be a dictionary or a module (in the '
+ 'latter case\n'
+ 'the module’s dictionary is used). By default, when in the '
+ '"__main__"\n'
+ 'module, "__builtins__" is the built-in module "builtins"; when '
+ 'in any\n'
+ 'other module, "__builtins__" is an alias for the dictionary of '
+ 'the\n'
+ '"builtins" module itself.\n'
+ '\n'
+ '\n'
+ 'Interaction with dynamic features\n'
+ '---------------------------------\n'
+ '\n'
+ 'Name resolution of free variables occurs at runtime, not at '
+ 'compile\n'
+ 'time. This means that the following code will print 42:\n'
+ '\n'
+ ' i = 10\n'
+ ' def f():\n'
+ ' print(i)\n'
+ ' i = 42\n'
+ ' f()\n'
+ '\n'
+ 'The "eval()" and "exec()" functions do not have access to the '
+ 'full\n'
+ 'environment for resolving names. Names may be resolved in the '
+ 'local\n'
+ 'and global namespaces of the caller. Free variables are not '
+ 'resolved\n'
+ 'in the nearest enclosing namespace, but in the global '
+ 'namespace. [1]\n'
+ 'The "exec()" and "eval()" functions have optional arguments to\n'
+ 'override the global and local namespace. If only one namespace '
+ 'is\n'
+ 'specified, it is used for both.\n'
+ '\n'
+ '\n'
+ 'Exceptions\n'
+ '==========\n'
+ '\n'
+ 'Exceptions are a means of breaking out of the normal flow of '
+ 'control\n'
+ 'of a code block in order to handle errors or other exceptional\n'
+ 'conditions. An exception is *raised* at the point where the '
+ 'error is\n'
+ 'detected; it may be *handled* by the surrounding code block or '
+ 'by any\n'
+ 'code block that directly or indirectly invoked the code block '
+ 'where\n'
+ 'the error occurred.\n'
+ '\n'
+ 'The Python interpreter raises an exception when it detects a '
+ 'run-time\n'
+ 'error (such as division by zero). A Python program can also\n'
+ 'explicitly raise an exception with the "raise" statement. '
+ 'Exception\n'
+ 'handlers are specified with the "try" … "except" statement. '
+ 'The\n'
+ '"finally" clause of such a statement can be used to specify '
+ 'cleanup\n'
+ 'code which does not handle the exception, but is executed '
+ 'whether an\n'
+ 'exception occurred or not in the preceding code.\n'
+ '\n'
+ 'Python uses the “termination” model of error handling: an '
+ 'exception\n'
+ 'handler can find out what happened and continue execution at an '
+ 'outer\n'
+ 'level, but it cannot repair the cause of the error and retry '
+ 'the\n'
+ 'failing operation (except by re-entering the offending piece of '
+ 'code\n'
+ 'from the top).\n'
+ '\n'
+ 'When an exception is not handled at all, the interpreter '
+ 'terminates\n'
+ 'execution of the program, or returns to its interactive main '
+ 'loop. In\n'
'either case, it prints a stack traceback, except when the '
- 'exception is\n'
- '"SystemExit".\n'
- '\n'
- 'Exceptions are identified by class instances. The "except" '
- 'clause is\n'
- 'selected depending on the class of the instance: it must '
- 'reference the\n'
- 'class of the instance or a base class thereof. The instance '
- 'can be\n'
- 'received by the handler and can carry additional information '
- 'about the\n'
- 'exceptional condition.\n'
- '\n'
+ 'exception is\n'
+ '"SystemExit".\n'
+ '\n'
+ 'Exceptions are identified by class instances. The "except" '
+ 'clause is\n'
+ 'selected depending on the class of the instance: it must '
+ 'reference the\n'
+ 'class of the instance or a base class thereof. The instance '
+ 'can be\n'
+ 'received by the handler and can carry additional information '
+ 'about the\n'
+ 'exceptional condition.\n'
+ '\n'
'Note:\n'
- '\n'
+ '\n'
' Exception messages are not part of the Python API. Their '
'contents\n'
' may change from one version of Python to the next without '
@@ -4902,455 +4902,455 @@ topics = {'assert': 'The "assert" statement\n'
'multiple\n'
' versions of the interpreter.\n'
'\n'
- 'See also the description of the "try" statement in section The '
- 'try\n'
- 'statement and "raise" statement in section The raise '
- 'statement.\n'
- '\n'
- '-[ Footnotes ]-\n'
- '\n'
+ 'See also the description of the "try" statement in section The '
+ 'try\n'
+ 'statement and "raise" statement in section The raise '
+ 'statement.\n'
+ '\n'
+ '-[ Footnotes ]-\n'
+ '\n'
'[1] This limitation occurs because the code that is executed by '
'these\n'
' operations is not available at the time the module is '
'compiled.\n',
- 'exprlists': 'Expression lists\n'
- '****************\n'
- '\n'
- ' expression_list ::= expression ("," expression)* [","]\n'
- ' starred_list ::= starred_item ("," starred_item)* '
- '[","]\n'
- ' starred_expression ::= expression | (starred_item ",")* '
- '[starred_item]\n'
+ 'exprlists': 'Expression lists\n'
+ '****************\n'
+ '\n'
+ ' expression_list ::= expression ("," expression)* [","]\n'
+ ' starred_list ::= starred_item ("," starred_item)* '
+ '[","]\n'
+ ' starred_expression ::= expression | (starred_item ",")* '
+ '[starred_item]\n'
' starred_item ::= assignment_expression | "*" or_expr\n'
- '\n'
- 'Except when part of a list or set display, an expression list\n'
- 'containing at least one comma yields a tuple. The length of '
- 'the tuple\n'
- 'is the number of expressions in the list. The expressions are\n'
- 'evaluated from left to right.\n'
- '\n'
- 'An asterisk "*" denotes *iterable unpacking*. Its operand must '
- 'be an\n'
- '*iterable*. The iterable is expanded into a sequence of items, '
- 'which\n'
- 'are included in the new tuple, list, or set, at the site of '
- 'the\n'
- 'unpacking.\n'
- '\n'
- 'New in version 3.5: Iterable unpacking in expression lists, '
- 'originally\n'
- 'proposed by **PEP 448**.\n'
- '\n'
- 'The trailing comma is required only to create a single tuple '
- '(a.k.a. a\n'
- '*singleton*); it is optional in all other cases. A single '
- 'expression\n'
- 'without a trailing comma doesn’t create a tuple, but rather '
- 'yields the\n'
- 'value of that expression. (To create an empty tuple, use an '
- 'empty pair\n'
- 'of parentheses: "()".)\n',
- 'floating': 'Floating point literals\n'
- '***********************\n'
- '\n'
- 'Floating point literals are described by the following lexical\n'
- 'definitions:\n'
- '\n'
- ' floatnumber ::= pointfloat | exponentfloat\n'
- ' pointfloat ::= [digitpart] fraction | digitpart "."\n'
- ' exponentfloat ::= (digitpart | pointfloat) exponent\n'
- ' digitpart ::= digit (["_"] digit)*\n'
- ' fraction ::= "." digitpart\n'
- ' exponent ::= ("e" | "E") ["+" | "-"] digitpart\n'
- '\n'
- 'Note that the integer and exponent parts are always interpreted '
- 'using\n'
- 'radix 10. For example, "077e010" is legal, and denotes the same '
- 'number\n'
- 'as "77e10". The allowed range of floating point literals is\n'
- 'implementation-dependent. As in integer literals, underscores '
- 'are\n'
- 'supported for digit grouping.\n'
- '\n'
- 'Some examples of floating point literals:\n'
- '\n'
- ' 3.14 10. .001 1e100 3.14e-10 0e0 '
- '3.14_15_93\n'
- '\n'
- 'Changed in version 3.6: Underscores are now allowed for '
- 'grouping\n'
- 'purposes in literals.\n',
- 'for': 'The "for" statement\n'
- '*******************\n'
- '\n'
- 'The "for" statement is used to iterate over the elements of a '
- 'sequence\n'
- '(such as a string, tuple or list) or other iterable object:\n'
- '\n'
- ' for_stmt ::= "for" target_list "in" expression_list ":" suite\n'
- ' ["else" ":" suite]\n'
- '\n'
- 'The expression list is evaluated once; it should yield an iterable\n'
- 'object. An iterator is created for the result of the\n'
- '"expression_list". The suite is then executed once for each item\n'
- 'provided by the iterator, in the order returned by the iterator. '
- 'Each\n'
- 'item in turn is assigned to the target list using the standard rules\n'
- 'for assignments (see Assignment statements), and then the suite is\n'
- 'executed. When the items are exhausted (which is immediately when '
- 'the\n'
- 'sequence is empty or an iterator raises a "StopIteration" '
- 'exception),\n'
- 'the suite in the "else" clause, if present, is executed, and the '
- 'loop\n'
- 'terminates.\n'
- '\n'
- 'A "break" statement executed in the first suite terminates the loop\n'
- 'without executing the "else" clause’s suite. A "continue" statement\n'
- 'executed in the first suite skips the rest of the suite and '
- 'continues\n'
- 'with the next item, or with the "else" clause if there is no next\n'
- 'item.\n'
- '\n'
+ '\n'
+ 'Except when part of a list or set display, an expression list\n'
+ 'containing at least one comma yields a tuple. The length of '
+ 'the tuple\n'
+ 'is the number of expressions in the list. The expressions are\n'
+ 'evaluated from left to right.\n'
+ '\n'
+ 'An asterisk "*" denotes *iterable unpacking*. Its operand must '
+ 'be an\n'
+ '*iterable*. The iterable is expanded into a sequence of items, '
+ 'which\n'
+ 'are included in the new tuple, list, or set, at the site of '
+ 'the\n'
+ 'unpacking.\n'
+ '\n'
+ 'New in version 3.5: Iterable unpacking in expression lists, '
+ 'originally\n'
+ 'proposed by **PEP 448**.\n'
+ '\n'
+ 'The trailing comma is required only to create a single tuple '
+ '(a.k.a. a\n'
+ '*singleton*); it is optional in all other cases. A single '
+ 'expression\n'
+ 'without a trailing comma doesn’t create a tuple, but rather '
+ 'yields the\n'
+ 'value of that expression. (To create an empty tuple, use an '
+ 'empty pair\n'
+ 'of parentheses: "()".)\n',
+ 'floating': 'Floating point literals\n'
+ '***********************\n'
+ '\n'
+ 'Floating point literals are described by the following lexical\n'
+ 'definitions:\n'
+ '\n'
+ ' floatnumber ::= pointfloat | exponentfloat\n'
+ ' pointfloat ::= [digitpart] fraction | digitpart "."\n'
+ ' exponentfloat ::= (digitpart | pointfloat) exponent\n'
+ ' digitpart ::= digit (["_"] digit)*\n'
+ ' fraction ::= "." digitpart\n'
+ ' exponent ::= ("e" | "E") ["+" | "-"] digitpart\n'
+ '\n'
+ 'Note that the integer and exponent parts are always interpreted '
+ 'using\n'
+ 'radix 10. For example, "077e010" is legal, and denotes the same '
+ 'number\n'
+ 'as "77e10". The allowed range of floating point literals is\n'
+ 'implementation-dependent. As in integer literals, underscores '
+ 'are\n'
+ 'supported for digit grouping.\n'
+ '\n'
+ 'Some examples of floating point literals:\n'
+ '\n'
+ ' 3.14 10. .001 1e100 3.14e-10 0e0 '
+ '3.14_15_93\n'
+ '\n'
+ 'Changed in version 3.6: Underscores are now allowed for '
+ 'grouping\n'
+ 'purposes in literals.\n',
+ 'for': 'The "for" statement\n'
+ '*******************\n'
+ '\n'
+ 'The "for" statement is used to iterate over the elements of a '
+ 'sequence\n'
+ '(such as a string, tuple or list) or other iterable object:\n'
+ '\n'
+ ' for_stmt ::= "for" target_list "in" expression_list ":" suite\n'
+ ' ["else" ":" suite]\n'
+ '\n'
+ 'The expression list is evaluated once; it should yield an iterable\n'
+ 'object. An iterator is created for the result of the\n'
+ '"expression_list". The suite is then executed once for each item\n'
+ 'provided by the iterator, in the order returned by the iterator. '
+ 'Each\n'
+ 'item in turn is assigned to the target list using the standard rules\n'
+ 'for assignments (see Assignment statements), and then the suite is\n'
+ 'executed. When the items are exhausted (which is immediately when '
+ 'the\n'
+ 'sequence is empty or an iterator raises a "StopIteration" '
+ 'exception),\n'
+ 'the suite in the "else" clause, if present, is executed, and the '
+ 'loop\n'
+ 'terminates.\n'
+ '\n'
+ 'A "break" statement executed in the first suite terminates the loop\n'
+ 'without executing the "else" clause’s suite. A "continue" statement\n'
+ 'executed in the first suite skips the rest of the suite and '
+ 'continues\n'
+ 'with the next item, or with the "else" clause if there is no next\n'
+ 'item.\n'
+ '\n'
'The for-loop makes assignments to the variables in the target list.\n'
- 'This overwrites all previous assignments to those variables '
- 'including\n'
- 'those made in the suite of the for-loop:\n'
- '\n'
- ' for i in range(10):\n'
- ' print(i)\n'
- ' i = 5 # this will not affect the for-loop\n'
- ' # because i will be overwritten with the '
- 'next\n'
- ' # index in the range\n'
- '\n'
- 'Names in the target list are not deleted when the loop is finished,\n'
- 'but if the sequence is empty, they will not have been assigned to at\n'
- 'all by the loop. Hint: the built-in function "range()" returns an\n'
- 'iterator of integers suitable to emulate the effect of Pascal’s "for '
- 'i\n'
- ':= a to b do"; e.g., "list(range(3))" returns the list "[0, 1, 2]".\n'
- '\n'
+ 'This overwrites all previous assignments to those variables '
+ 'including\n'
+ 'those made in the suite of the for-loop:\n'
+ '\n'
+ ' for i in range(10):\n'
+ ' print(i)\n'
+ ' i = 5 # this will not affect the for-loop\n'
+ ' # because i will be overwritten with the '
+ 'next\n'
+ ' # index in the range\n'
+ '\n'
+ 'Names in the target list are not deleted when the loop is finished,\n'
+ 'but if the sequence is empty, they will not have been assigned to at\n'
+ 'all by the loop. Hint: the built-in function "range()" returns an\n'
+ 'iterator of integers suitable to emulate the effect of Pascal’s "for '
+ 'i\n'
+ ':= a to b do"; e.g., "list(range(3))" returns the list "[0, 1, 2]".\n'
+ '\n'
'Note:\n'
'\n'
' There is a subtlety when the sequence is being modified by the '
'loop\n'
' (this can only occur for mutable sequences, e.g. lists). An\n'
- ' internal counter is used to keep track of which item is used next,\n'
- ' and this is incremented on each iteration. When this counter has\n'
- ' reached the length of the sequence the loop terminates. This '
- 'means\n'
- ' that if the suite deletes the current (or a previous) item from '
- 'the\n'
- ' sequence, the next item will be skipped (since it gets the index '
- 'of\n'
- ' the current item which has already been treated). Likewise, if '
- 'the\n'
- ' suite inserts an item in the sequence before the current item, the\n'
- ' current item will be treated again the next time through the loop.\n'
- ' This can lead to nasty bugs that can be avoided by making a\n'
- ' temporary copy using a slice of the whole sequence, e.g.,\n'
- '\n'
- ' for x in a[:]:\n'
- ' if x < 0: a.remove(x)\n',
- 'formatstrings': 'Format String Syntax\n'
- '********************\n'
- '\n'
- 'The "str.format()" method and the "Formatter" class share '
- 'the same\n'
- 'syntax for format strings (although in the case of '
- '"Formatter",\n'
- 'subclasses can define their own format string syntax). The '
- 'syntax is\n'
+ ' internal counter is used to keep track of which item is used next,\n'
+ ' and this is incremented on each iteration. When this counter has\n'
+ ' reached the length of the sequence the loop terminates. This '
+ 'means\n'
+ ' that if the suite deletes the current (or a previous) item from '
+ 'the\n'
+ ' sequence, the next item will be skipped (since it gets the index '
+ 'of\n'
+ ' the current item which has already been treated). Likewise, if '
+ 'the\n'
+ ' suite inserts an item in the sequence before the current item, the\n'
+ ' current item will be treated again the next time through the loop.\n'
+ ' This can lead to nasty bugs that can be avoided by making a\n'
+ ' temporary copy using a slice of the whole sequence, e.g.,\n'
+ '\n'
+ ' for x in a[:]:\n'
+ ' if x < 0: a.remove(x)\n',
+ 'formatstrings': 'Format String Syntax\n'
+ '********************\n'
+ '\n'
+ 'The "str.format()" method and the "Formatter" class share '
+ 'the same\n'
+ 'syntax for format strings (although in the case of '
+ '"Formatter",\n'
+ 'subclasses can define their own format string syntax). The '
+ 'syntax is\n'
'related to that of formatted string literals, but it is '
'less\n'
'sophisticated and, in particular, does not support '
'arbitrary\n'
'expressions.\n'
- '\n'
- 'Format strings contain “replacement fields” surrounded by '
- 'curly braces\n'
- '"{}". Anything that is not contained in braces is '
- 'considered literal\n'
- 'text, which is copied unchanged to the output. If you need '
- 'to include\n'
- 'a brace character in the literal text, it can be escaped by '
- 'doubling:\n'
- '"{{" and "}}".\n'
- '\n'
- 'The grammar for a replacement field is as follows:\n'
- '\n'
- ' replacement_field ::= "{" [field_name] ["!" '
- 'conversion] [":" format_spec] "}"\n'
- ' field_name ::= arg_name ("." attribute_name | '
- '"[" element_index "]")*\n'
- ' arg_name ::= [identifier | digit+]\n'
- ' attribute_name ::= identifier\n'
- ' element_index ::= digit+ | index_string\n'
- ' index_string ::= <any source character except '
- '"]"> +\n'
- ' conversion ::= "r" | "s" | "a"\n'
- ' format_spec ::= <described in the next '
- 'section>\n'
- '\n'
- 'In less formal terms, the replacement field can start with '
- 'a\n'
- '*field_name* that specifies the object whose value is to be '
- 'formatted\n'
- 'and inserted into the output instead of the replacement '
- 'field. The\n'
- '*field_name* is optionally followed by a *conversion* '
- 'field, which is\n'
- 'preceded by an exclamation point "\'!\'", and a '
- '*format_spec*, which is\n'
- 'preceded by a colon "\':\'". These specify a non-default '
- 'format for the\n'
- 'replacement value.\n'
- '\n'
- 'See also the Format Specification Mini-Language section.\n'
- '\n'
- 'The *field_name* itself begins with an *arg_name* that is '
- 'either a\n'
- 'number or a keyword. If it’s a number, it refers to a '
- 'positional\n'
- 'argument, and if it’s a keyword, it refers to a named '
- 'keyword\n'
- 'argument. If the numerical arg_names in a format string '
- 'are 0, 1, 2,\n'
- '… in sequence, they can all be omitted (not just some) and '
- 'the numbers\n'
- '0, 1, 2, … will be automatically inserted in that order. '
- 'Because\n'
- '*arg_name* is not quote-delimited, it is not possible to '
- 'specify\n'
- 'arbitrary dictionary keys (e.g., the strings "\'10\'" or '
- '"\':-]\'") within\n'
- 'a format string. The *arg_name* can be followed by any '
- 'number of index\n'
- 'or attribute expressions. An expression of the form '
- '"\'.name\'" selects\n'
- 'the named attribute using "getattr()", while an expression '
- 'of the form\n'
- '"\'[index]\'" does an index lookup using "__getitem__()".\n'
- '\n'
- 'Changed in version 3.1: The positional argument specifiers '
- 'can be\n'
- 'omitted for "str.format()", so "\'{} {}\'.format(a, b)" is '
- 'equivalent to\n'
- '"\'{0} {1}\'.format(a, b)".\n'
- '\n'
- 'Changed in version 3.4: The positional argument specifiers '
- 'can be\n'
- 'omitted for "Formatter".\n'
- '\n'
- 'Some simple format string examples:\n'
- '\n'
- ' "First, thou shalt count to {0}" # References first '
- 'positional argument\n'
- ' "Bring me a {}" # Implicitly '
- 'references the first positional argument\n'
- ' "From {} to {}" # Same as "From {0} to '
- '{1}"\n'
- ' "My quest is {name}" # References keyword '
- "argument 'name'\n"
- ' "Weight in tons {0.weight}" # \'weight\' attribute '
- 'of first positional arg\n'
- ' "Units destroyed: {players[0]}" # First element of '
- "keyword argument 'players'.\n"
- '\n'
- 'The *conversion* field causes a type coercion before '
- 'formatting.\n'
- 'Normally, the job of formatting a value is done by the '
- '"__format__()"\n'
- 'method of the value itself. However, in some cases it is '
- 'desirable to\n'
- 'force a type to be formatted as a string, overriding its '
- 'own\n'
- 'definition of formatting. By converting the value to a '
- 'string before\n'
- 'calling "__format__()", the normal formatting logic is '
- 'bypassed.\n'
- '\n'
- 'Three conversion flags are currently supported: "\'!s\'" '
- 'which calls\n'
- '"str()" on the value, "\'!r\'" which calls "repr()" and '
- '"\'!a\'" which\n'
- 'calls "ascii()".\n'
- '\n'
- 'Some examples:\n'
- '\n'
- ' "Harold\'s a clever {0!s}" # Calls str() on the '
- 'argument first\n'
- ' "Bring out the holy {name!r}" # Calls repr() on the '
- 'argument first\n'
- ' "More {!a}" # Calls ascii() on the '
- 'argument first\n'
- '\n'
- 'The *format_spec* field contains a specification of how the '
- 'value\n'
- 'should be presented, including such details as field width, '
- 'alignment,\n'
- 'padding, decimal precision and so on. Each value type can '
- 'define its\n'
- 'own “formatting mini-language” or interpretation of the '
- '*format_spec*.\n'
- '\n'
- 'Most built-in types support a common formatting '
- 'mini-language, which\n'
- 'is described in the next section.\n'
- '\n'
- 'A *format_spec* field can also include nested replacement '
- 'fields\n'
- 'within it. These nested replacement fields may contain a '
- 'field name,\n'
- 'conversion flag and format specification, but deeper '
- 'nesting is not\n'
- 'allowed. The replacement fields within the format_spec '
- 'are\n'
- 'substituted before the *format_spec* string is interpreted. '
- 'This\n'
- 'allows the formatting of a value to be dynamically '
- 'specified.\n'
- '\n'
- 'See the Format examples section for some examples.\n'
- '\n'
- '\n'
- 'Format Specification Mini-Language\n'
- '==================================\n'
- '\n'
- '“Format specifications” are used within replacement fields '
- 'contained\n'
- 'within a format string to define how individual values are '
- 'presented\n'
- '(see Format String Syntax and Formatted string literals). '
- 'They can\n'
- 'also be passed directly to the built-in "format()" '
- 'function. Each\n'
- 'formattable type may define how the format specification is '
- 'to be\n'
- 'interpreted.\n'
- '\n'
- 'Most built-in types implement the following options for '
- 'format\n'
- 'specifications, although some of the formatting options are '
- 'only\n'
- 'supported by the numeric types.\n'
- '\n'
+ '\n'
+ 'Format strings contain “replacement fields” surrounded by '
+ 'curly braces\n'
+ '"{}". Anything that is not contained in braces is '
+ 'considered literal\n'
+ 'text, which is copied unchanged to the output. If you need '
+ 'to include\n'
+ 'a brace character in the literal text, it can be escaped by '
+ 'doubling:\n'
+ '"{{" and "}}".\n'
+ '\n'
+ 'The grammar for a replacement field is as follows:\n'
+ '\n'
+ ' replacement_field ::= "{" [field_name] ["!" '
+ 'conversion] [":" format_spec] "}"\n'
+ ' field_name ::= arg_name ("." attribute_name | '
+ '"[" element_index "]")*\n'
+ ' arg_name ::= [identifier | digit+]\n'
+ ' attribute_name ::= identifier\n'
+ ' element_index ::= digit+ | index_string\n'
+ ' index_string ::= <any source character except '
+ '"]"> +\n'
+ ' conversion ::= "r" | "s" | "a"\n'
+ ' format_spec ::= <described in the next '
+ 'section>\n'
+ '\n'
+ 'In less formal terms, the replacement field can start with '
+ 'a\n'
+ '*field_name* that specifies the object whose value is to be '
+ 'formatted\n'
+ 'and inserted into the output instead of the replacement '
+ 'field. The\n'
+ '*field_name* is optionally followed by a *conversion* '
+ 'field, which is\n'
+ 'preceded by an exclamation point "\'!\'", and a '
+ '*format_spec*, which is\n'
+ 'preceded by a colon "\':\'". These specify a non-default '
+ 'format for the\n'
+ 'replacement value.\n'
+ '\n'
+ 'See also the Format Specification Mini-Language section.\n'
+ '\n'
+ 'The *field_name* itself begins with an *arg_name* that is '
+ 'either a\n'
+ 'number or a keyword. If it’s a number, it refers to a '
+ 'positional\n'
+ 'argument, and if it’s a keyword, it refers to a named '
+ 'keyword\n'
+ 'argument. If the numerical arg_names in a format string '
+ 'are 0, 1, 2,\n'
+ '… in sequence, they can all be omitted (not just some) and '
+ 'the numbers\n'
+ '0, 1, 2, … will be automatically inserted in that order. '
+ 'Because\n'
+ '*arg_name* is not quote-delimited, it is not possible to '
+ 'specify\n'
+ 'arbitrary dictionary keys (e.g., the strings "\'10\'" or '
+ '"\':-]\'") within\n'
+ 'a format string. The *arg_name* can be followed by any '
+ 'number of index\n'
+ 'or attribute expressions. An expression of the form '
+ '"\'.name\'" selects\n'
+ 'the named attribute using "getattr()", while an expression '
+ 'of the form\n'
+ '"\'[index]\'" does an index lookup using "__getitem__()".\n'
+ '\n'
+ 'Changed in version 3.1: The positional argument specifiers '
+ 'can be\n'
+ 'omitted for "str.format()", so "\'{} {}\'.format(a, b)" is '
+ 'equivalent to\n'
+ '"\'{0} {1}\'.format(a, b)".\n'
+ '\n'
+ 'Changed in version 3.4: The positional argument specifiers '
+ 'can be\n'
+ 'omitted for "Formatter".\n'
+ '\n'
+ 'Some simple format string examples:\n'
+ '\n'
+ ' "First, thou shalt count to {0}" # References first '
+ 'positional argument\n'
+ ' "Bring me a {}" # Implicitly '
+ 'references the first positional argument\n'
+ ' "From {} to {}" # Same as "From {0} to '
+ '{1}"\n'
+ ' "My quest is {name}" # References keyword '
+ "argument 'name'\n"
+ ' "Weight in tons {0.weight}" # \'weight\' attribute '
+ 'of first positional arg\n'
+ ' "Units destroyed: {players[0]}" # First element of '
+ "keyword argument 'players'.\n"
+ '\n'
+ 'The *conversion* field causes a type coercion before '
+ 'formatting.\n'
+ 'Normally, the job of formatting a value is done by the '
+ '"__format__()"\n'
+ 'method of the value itself. However, in some cases it is '
+ 'desirable to\n'
+ 'force a type to be formatted as a string, overriding its '
+ 'own\n'
+ 'definition of formatting. By converting the value to a '
+ 'string before\n'
+ 'calling "__format__()", the normal formatting logic is '
+ 'bypassed.\n'
+ '\n'
+ 'Three conversion flags are currently supported: "\'!s\'" '
+ 'which calls\n'
+ '"str()" on the value, "\'!r\'" which calls "repr()" and '
+ '"\'!a\'" which\n'
+ 'calls "ascii()".\n'
+ '\n'
+ 'Some examples:\n'
+ '\n'
+ ' "Harold\'s a clever {0!s}" # Calls str() on the '
+ 'argument first\n'
+ ' "Bring out the holy {name!r}" # Calls repr() on the '
+ 'argument first\n'
+ ' "More {!a}" # Calls ascii() on the '
+ 'argument first\n'
+ '\n'
+ 'The *format_spec* field contains a specification of how the '
+ 'value\n'
+ 'should be presented, including such details as field width, '
+ 'alignment,\n'
+ 'padding, decimal precision and so on. Each value type can '
+ 'define its\n'
+ 'own “formatting mini-language” or interpretation of the '
+ '*format_spec*.\n'
+ '\n'
+ 'Most built-in types support a common formatting '
+ 'mini-language, which\n'
+ 'is described in the next section.\n'
+ '\n'
+ 'A *format_spec* field can also include nested replacement '
+ 'fields\n'
+ 'within it. These nested replacement fields may contain a '
+ 'field name,\n'
+ 'conversion flag and format specification, but deeper '
+ 'nesting is not\n'
+ 'allowed. The replacement fields within the format_spec '
+ 'are\n'
+ 'substituted before the *format_spec* string is interpreted. '
+ 'This\n'
+ 'allows the formatting of a value to be dynamically '
+ 'specified.\n'
+ '\n'
+ 'See the Format examples section for some examples.\n'
+ '\n'
+ '\n'
+ 'Format Specification Mini-Language\n'
+ '==================================\n'
+ '\n'
+ '“Format specifications” are used within replacement fields '
+ 'contained\n'
+ 'within a format string to define how individual values are '
+ 'presented\n'
+ '(see Format String Syntax and Formatted string literals). '
+ 'They can\n'
+ 'also be passed directly to the built-in "format()" '
+ 'function. Each\n'
+ 'formattable type may define how the format specification is '
+ 'to be\n'
+ 'interpreted.\n'
+ '\n'
+ 'Most built-in types implement the following options for '
+ 'format\n'
+ 'specifications, although some of the formatting options are '
+ 'only\n'
+ 'supported by the numeric types.\n'
+ '\n'
'A general convention is that an empty format specification '
- 'produces\n'
- 'the same result as if you had called "str()" on the value. '
- 'A non-empty\n'
+ 'produces\n'
+ 'the same result as if you had called "str()" on the value. '
+ 'A non-empty\n'
'format specification typically modifies the result.\n'
- '\n'
- 'The general form of a *standard format specifier* is:\n'
- '\n'
- ' format_spec ::= '
- '[[fill]align][sign][#][0][width][grouping_option][.precision][type]\n'
- ' fill ::= <any character>\n'
- ' align ::= "<" | ">" | "=" | "^"\n'
- ' sign ::= "+" | "-" | " "\n'
- ' width ::= digit+\n'
- ' grouping_option ::= "_" | ","\n'
- ' precision ::= digit+\n'
- ' type ::= "b" | "c" | "d" | "e" | "E" | "f" | '
- '"F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"\n'
- '\n'
- 'If a valid *align* value is specified, it can be preceded '
- 'by a *fill*\n'
- 'character that can be any character and defaults to a space '
- 'if\n'
- 'omitted. It is not possible to use a literal curly brace '
+ '\n'
+ 'The general form of a *standard format specifier* is:\n'
+ '\n'
+ ' format_spec ::= '
+ '[[fill]align][sign][#][0][width][grouping_option][.precision][type]\n'
+ ' fill ::= <any character>\n'
+ ' align ::= "<" | ">" | "=" | "^"\n'
+ ' sign ::= "+" | "-" | " "\n'
+ ' width ::= digit+\n'
+ ' grouping_option ::= "_" | ","\n'
+ ' precision ::= digit+\n'
+ ' type ::= "b" | "c" | "d" | "e" | "E" | "f" | '
+ '"F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"\n'
+ '\n'
+ 'If a valid *align* value is specified, it can be preceded '
+ 'by a *fill*\n'
+ 'character that can be any character and defaults to a space '
+ 'if\n'
+ 'omitted. It is not possible to use a literal curly brace '
'(”"{"” or\n'
- '“"}"”) as the *fill* character in a formatted string '
- 'literal or when\n'
- 'using the "str.format()" method. However, it is possible '
- 'to insert a\n'
- 'curly brace with a nested replacement field. This '
- 'limitation doesn’t\n'
- 'affect the "format()" function.\n'
- '\n'
- 'The meaning of the various alignment options is as '
- 'follows:\n'
- '\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | Option | '
- 'Meaning '
- '|\n'
- ' '
+ '“"}"”) as the *fill* character in a formatted string '
+ 'literal or when\n'
+ 'using the "str.format()" method. However, it is possible '
+ 'to insert a\n'
+ 'curly brace with a nested replacement field. This '
+ 'limitation doesn’t\n'
+ 'affect the "format()" function.\n'
+ '\n'
+ 'The meaning of the various alignment options is as '
+ 'follows:\n'
+ '\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | Option | '
+ 'Meaning '
+ '|\n'
+ ' '
'|===========|============================================================|\n'
- ' | "\'<\'" | Forces the field to be left-aligned '
- 'within the available |\n'
- ' | | space (this is the default for most '
- 'objects). |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'>\'" | Forces the field to be right-aligned '
- 'within the available |\n'
- ' | | space (this is the default for '
- 'numbers). |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'=\'" | Forces the padding to be placed after '
- 'the sign (if any) |\n'
- ' | | but before the digits. This is used for '
- 'printing fields |\n'
- ' | | in the form ‘+000000120’. This alignment '
- 'option is only |\n'
- ' | | valid for numeric types. It becomes the '
- 'default when ‘0’ |\n'
- ' | | immediately precedes the field '
- 'width. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'^\'" | Forces the field to be centered within '
- 'the available |\n'
- ' | | '
- 'space. '
- '|\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- '\n'
- 'Note that unless a minimum field width is defined, the '
- 'field width\n'
- 'will always be the same size as the data to fill it, so '
- 'that the\n'
- 'alignment option has no meaning in this case.\n'
- '\n'
- 'The *sign* option is only valid for number types, and can '
- 'be one of\n'
- 'the following:\n'
- '\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | Option | '
- 'Meaning '
- '|\n'
- ' '
+ ' | "\'<\'" | Forces the field to be left-aligned '
+ 'within the available |\n'
+ ' | | space (this is the default for most '
+ 'objects). |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'>\'" | Forces the field to be right-aligned '
+ 'within the available |\n'
+ ' | | space (this is the default for '
+ 'numbers). |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'=\'" | Forces the padding to be placed after '
+ 'the sign (if any) |\n'
+ ' | | but before the digits. This is used for '
+ 'printing fields |\n'
+ ' | | in the form ‘+000000120’. This alignment '
+ 'option is only |\n'
+ ' | | valid for numeric types. It becomes the '
+ 'default when ‘0’ |\n'
+ ' | | immediately precedes the field '
+ 'width. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'^\'" | Forces the field to be centered within '
+ 'the available |\n'
+ ' | | '
+ 'space. '
+ '|\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ '\n'
+ 'Note that unless a minimum field width is defined, the '
+ 'field width\n'
+ 'will always be the same size as the data to fill it, so '
+ 'that the\n'
+ 'alignment option has no meaning in this case.\n'
+ '\n'
+ 'The *sign* option is only valid for number types, and can '
+ 'be one of\n'
+ 'the following:\n'
+ '\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | Option | '
+ 'Meaning '
+ '|\n'
+ ' '
'|===========|============================================================|\n'
- ' | "\'+\'" | indicates that a sign should be used for '
- 'both positive as |\n'
- ' | | well as negative '
- 'numbers. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'-\'" | indicates that a sign should be used '
- 'only for negative |\n'
- ' | | numbers (this is the default '
- 'behavior). |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | space | indicates that a leading space should be '
- 'used on positive |\n'
- ' | | numbers, and a minus sign on negative '
- 'numbers. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- '\n'
- 'The "\'#\'" option causes the “alternate form” to be used '
- 'for the\n'
- 'conversion. The alternate form is defined differently for '
- 'different\n'
+ ' | "\'+\'" | indicates that a sign should be used for '
+ 'both positive as |\n'
+ ' | | well as negative '
+ 'numbers. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'-\'" | indicates that a sign should be used '
+ 'only for negative |\n'
+ ' | | numbers (this is the default '
+ 'behavior). |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | space | indicates that a leading space should be '
+ 'used on positive |\n'
+ ' | | numbers, and a minus sign on negative '
+ 'numbers. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ '\n'
+ 'The "\'#\'" option causes the “alternate form” to be used '
+ 'for the\n'
+ 'conversion. The alternate form is defined differently for '
+ 'different\n'
'types. This option is only valid for integer, float and '
'complex\n'
'types. For integers, when binary, octal, or hexadecimal '
@@ -5368,156 +5368,156 @@ topics = {'assert': 'The "assert" statement\n'
'digit follows it. In addition, for "\'g\'" and "\'G\'" '
'conversions,\n'
'trailing zeros are not removed from the result.\n'
- '\n'
- 'The "\',\'" option signals the use of a comma for a '
- 'thousands separator.\n'
- 'For a locale aware separator, use the "\'n\'" integer '
- 'presentation type\n'
- 'instead.\n'
- '\n'
- 'Changed in version 3.1: Added the "\',\'" option (see also '
- '**PEP 378**).\n'
- '\n'
- 'The "\'_\'" option signals the use of an underscore for a '
- 'thousands\n'
- 'separator for floating point presentation types and for '
- 'integer\n'
- 'presentation type "\'d\'". For integer presentation types '
- '"\'b\'", "\'o\'",\n'
- '"\'x\'", and "\'X\'", underscores will be inserted every 4 '
- 'digits. For\n'
- 'other presentation types, specifying this option is an '
- 'error.\n'
- '\n'
- 'Changed in version 3.6: Added the "\'_\'" option (see also '
- '**PEP 515**).\n'
- '\n'
+ '\n'
+ 'The "\',\'" option signals the use of a comma for a '
+ 'thousands separator.\n'
+ 'For a locale aware separator, use the "\'n\'" integer '
+ 'presentation type\n'
+ 'instead.\n'
+ '\n'
+ 'Changed in version 3.1: Added the "\',\'" option (see also '
+ '**PEP 378**).\n'
+ '\n'
+ 'The "\'_\'" option signals the use of an underscore for a '
+ 'thousands\n'
+ 'separator for floating point presentation types and for '
+ 'integer\n'
+ 'presentation type "\'d\'". For integer presentation types '
+ '"\'b\'", "\'o\'",\n'
+ '"\'x\'", and "\'X\'", underscores will be inserted every 4 '
+ 'digits. For\n'
+ 'other presentation types, specifying this option is an '
+ 'error.\n'
+ '\n'
+ 'Changed in version 3.6: Added the "\'_\'" option (see also '
+ '**PEP 515**).\n'
+ '\n'
'*width* is a decimal integer defining the minimum total '
'field width,\n'
'including any prefixes, separators, and other formatting '
'characters.\n'
'If not specified, then the field width will be determined '
'by the\n'
- 'content.\n'
- '\n'
- 'When no explicit alignment is given, preceding the *width* '
- 'field by a\n'
- 'zero ("\'0\'") character enables sign-aware zero-padding '
- 'for numeric\n'
- 'types. This is equivalent to a *fill* character of "\'0\'" '
- 'with an\n'
- '*alignment* type of "\'=\'".\n'
- '\n'
- 'The *precision* is a decimal number indicating how many '
- 'digits should\n'
- 'be displayed after the decimal point for a floating point '
- 'value\n'
- 'formatted with "\'f\'" and "\'F\'", or before and after the '
- 'decimal point\n'
- 'for a floating point value formatted with "\'g\'" or '
- '"\'G\'". For non-\n'
- 'number types the field indicates the maximum field size - '
- 'in other\n'
- 'words, how many characters will be used from the field '
- 'content. The\n'
- '*precision* is not allowed for integer values.\n'
- '\n'
- 'Finally, the *type* determines how the data should be '
- 'presented.\n'
- '\n'
- 'The available string presentation types are:\n'
- '\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | Type | '
- 'Meaning '
- '|\n'
- ' '
+ 'content.\n'
+ '\n'
+ 'When no explicit alignment is given, preceding the *width* '
+ 'field by a\n'
+ 'zero ("\'0\'") character enables sign-aware zero-padding '
+ 'for numeric\n'
+ 'types. This is equivalent to a *fill* character of "\'0\'" '
+ 'with an\n'
+ '*alignment* type of "\'=\'".\n'
+ '\n'
+ 'The *precision* is a decimal number indicating how many '
+ 'digits should\n'
+ 'be displayed after the decimal point for a floating point '
+ 'value\n'
+ 'formatted with "\'f\'" and "\'F\'", or before and after the '
+ 'decimal point\n'
+ 'for a floating point value formatted with "\'g\'" or '
+ '"\'G\'". For non-\n'
+ 'number types the field indicates the maximum field size - '
+ 'in other\n'
+ 'words, how many characters will be used from the field '
+ 'content. The\n'
+ '*precision* is not allowed for integer values.\n'
+ '\n'
+ 'Finally, the *type* determines how the data should be '
+ 'presented.\n'
+ '\n'
+ 'The available string presentation types are:\n'
+ '\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | Type | '
+ 'Meaning '
+ '|\n'
+ ' '
'|===========|============================================================|\n'
- ' | "\'s\'" | String format. This is the default type '
- 'for strings and |\n'
- ' | | may be '
- 'omitted. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | None | The same as '
- '"\'s\'". |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- '\n'
- 'The available integer presentation types are:\n'
- '\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | Type | '
- 'Meaning '
- '|\n'
- ' '
+ ' | "\'s\'" | String format. This is the default type '
+ 'for strings and |\n'
+ ' | | may be '
+ 'omitted. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | None | The same as '
+ '"\'s\'". |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ '\n'
+ 'The available integer presentation types are:\n'
+ '\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | Type | '
+ 'Meaning '
+ '|\n'
+ ' '
'|===========|============================================================|\n'
- ' | "\'b\'" | Binary format. Outputs the number in '
- 'base 2. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'c\'" | Character. Converts the integer to the '
- 'corresponding |\n'
- ' | | unicode character before '
- 'printing. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'d\'" | Decimal Integer. Outputs the number in '
- 'base 10. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'o\'" | Octal format. Outputs the number in base '
- '8. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'x\'" | Hex format. Outputs the number in base '
- '16, using lower- |\n'
- ' | | case letters for the digits above '
- '9. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'X\'" | Hex format. Outputs the number in base '
- '16, using upper- |\n'
+ ' | "\'b\'" | Binary format. Outputs the number in '
+ 'base 2. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'c\'" | Character. Converts the integer to the '
+ 'corresponding |\n'
+ ' | | unicode character before '
+ 'printing. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'d\'" | Decimal Integer. Outputs the number in '
+ 'base 10. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'o\'" | Octal format. Outputs the number in base '
+ '8. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'x\'" | Hex format. Outputs the number in base '
+ '16, using lower- |\n'
+ ' | | case letters for the digits above '
+ '9. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'X\'" | Hex format. Outputs the number in base '
+ '16, using upper- |\n'
' | | case letters for the digits above 9. In '
'case "\'#\'" is |\n'
' | | specified, the prefix "\'0x\'" will be '
'upper-cased to "\'0X\'" |\n'
' | | as '
'well. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'n\'" | Number. This is the same as "\'d\'", '
- 'except that it uses the |\n'
- ' | | current locale setting to insert the '
- 'appropriate number |\n'
- ' | | separator '
- 'characters. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | None | The same as '
- '"\'d\'". |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- '\n'
- 'In addition to the above presentation types, integers can '
- 'be formatted\n'
- 'with the floating point presentation types listed below '
- '(except "\'n\'"\n'
- 'and "None"). When doing so, "float()" is used to convert '
- 'the integer\n'
- 'to a floating point number before formatting.\n'
- '\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'n\'" | Number. This is the same as "\'d\'", '
+ 'except that it uses the |\n'
+ ' | | current locale setting to insert the '
+ 'appropriate number |\n'
+ ' | | separator '
+ 'characters. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | None | The same as '
+ '"\'d\'". |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ '\n'
+ 'In addition to the above presentation types, integers can '
+ 'be formatted\n'
+ 'with the floating point presentation types listed below '
+ '(except "\'n\'"\n'
+ 'and "None"). When doing so, "float()" is used to convert '
+ 'the integer\n'
+ 'to a floating point number before formatting.\n'
+ '\n'
'The available presentation types for "float" and "Decimal" '
'values are:\n'
- '\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | Type | '
- 'Meaning '
- '|\n'
- ' '
+ '\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | Type | '
+ 'Meaning '
+ '|\n'
+ ' '
'|===========|============================================================|\n'
' | "\'e\'" | Scientific notation. For a given '
'precision "p", formats |\n'
@@ -5539,14 +5539,14 @@ topics = {'assert': 'The "assert" statement\n'
'removed unless |\n'
' | | the "#" option is '
'used. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
' | "\'E\'" | Scientific notation. Same as "\'e\'" '
'except it uses an upper |\n'
- ' | | case ‘E’ as the separator '
- 'character. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
+ ' | | case ‘E’ as the separator '
+ 'character. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
' | "\'f\'" | Fixed-point notation. For a given '
'precision "p", formats |\n'
' | | the number as a decimal number with '
@@ -5563,21 +5563,21 @@ topics = {'assert': 'The "assert" statement\n'
'removed unless |\n'
' | | the "#" option is '
'used. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'F\'" | Fixed-point notation. Same as "\'f\'", '
- 'but converts "nan" to |\n'
- ' | | "NAN" and "inf" to '
- '"INF". |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'g\'" | General format. For a given precision '
- '"p >= 1", this |\n'
- ' | | rounds the number to "p" significant '
- 'digits and then |\n'
- ' | | formats the result in either fixed-point '
- 'format or in |\n'
- ' | | scientific notation, depending on its '
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'F\'" | Fixed-point notation. Same as "\'f\'", '
+ 'but converts "nan" to |\n'
+ ' | | "NAN" and "inf" to '
+ '"INF". |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'g\'" | General format. For a given precision '
+ '"p >= 1", this |\n'
+ ' | | rounds the number to "p" significant '
+ 'digits and then |\n'
+ ' | | formats the result in either fixed-point '
+ 'format or in |\n'
+ ' | | scientific notation, depending on its '
'magnitude. A |\n'
' | | precision of "0" is treated as equivalent '
'to a precision |\n'
@@ -5593,7 +5593,7 @@ topics = {'assert': 'The "assert" statement\n'
'presentation type |\n'
' | | "\'f\'" and precision "p-1-exp". '
'Otherwise, the number is |\n'
- ' | | formatted with presentation type "\'e\'" '
+ ' | | formatted with presentation type "\'e\'" '
'and precision |\n'
' | | "p-1". In both cases insignificant '
'trailing zeros are |\n'
@@ -5623,30 +5623,30 @@ topics = {'assert': 'The "assert" statement\n'
'"nan" |\n'
' | | respectively, regardless of the '
'precision. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'G\'" | General format. Same as "\'g\'" except '
- 'switches to "\'E\'" if |\n'
- ' | | the number gets too large. The '
- 'representations of infinity |\n'
- ' | | and NaN are uppercased, '
- 'too. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'n\'" | Number. This is the same as "\'g\'", '
- 'except that it uses the |\n'
- ' | | current locale setting to insert the '
- 'appropriate number |\n'
- ' | | separator '
- 'characters. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- ' | "\'%\'" | Percentage. Multiplies the number by 100 '
- 'and displays in |\n'
- ' | | fixed ("\'f\'") format, followed by a '
- 'percent sign. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'G\'" | General format. Same as "\'g\'" except '
+ 'switches to "\'E\'" if |\n'
+ ' | | the number gets too large. The '
+ 'representations of infinity |\n'
+ ' | | and NaN are uppercased, '
+ 'too. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'n\'" | Number. This is the same as "\'g\'", '
+ 'except that it uses the |\n'
+ ' | | current locale setting to insert the '
+ 'appropriate number |\n'
+ ' | | separator '
+ 'characters. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ ' | "\'%\'" | Percentage. Multiplies the number by 100 '
+ 'and displays in |\n'
+ ' | | fixed ("\'f\'") format, followed by a '
+ 'percent sign. |\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
' | None | For "float" this is the same as "\'g\'", '
'except that when |\n'
' | | fixed-point notation is used to format the '
@@ -5665,180 +5665,180 @@ topics = {'assert': 'The "assert" statement\n'
'"str()" as |\n'
' | | altered by the other format '
'modifiers. |\n'
- ' '
- '+-----------+------------------------------------------------------------+\n'
- '\n'
- '\n'
- 'Format examples\n'
- '===============\n'
- '\n'
- 'This section contains examples of the "str.format()" syntax '
- 'and\n'
- 'comparison with the old "%"-formatting.\n'
- '\n'
- 'In most of the cases the syntax is similar to the old '
- '"%"-formatting,\n'
- 'with the addition of the "{}" and with ":" used instead of '
- '"%". For\n'
- 'example, "\'%03.2f\'" can be translated to "\'{:03.2f}\'".\n'
- '\n'
- 'The new format syntax also supports new and different '
- 'options, shown\n'
- 'in the following examples.\n'
- '\n'
- 'Accessing arguments by position:\n'
- '\n'
- " >>> '{0}, {1}, {2}'.format('a', 'b', 'c')\n"
- " 'a, b, c'\n"
- " >>> '{}, {}, {}'.format('a', 'b', 'c') # 3.1+ only\n"
- " 'a, b, c'\n"
- " >>> '{2}, {1}, {0}'.format('a', 'b', 'c')\n"
- " 'c, b, a'\n"
- " >>> '{2}, {1}, {0}'.format(*'abc') # unpacking "
- 'argument sequence\n'
- " 'c, b, a'\n"
- " >>> '{0}{1}{0}'.format('abra', 'cad') # arguments' "
- 'indices can be repeated\n'
- " 'abracadabra'\n"
- '\n'
- 'Accessing arguments by name:\n'
- '\n'
- " >>> 'Coordinates: {latitude}, "
- "{longitude}'.format(latitude='37.24N', "
- "longitude='-115.81W')\n"
- " 'Coordinates: 37.24N, -115.81W'\n"
- " >>> coord = {'latitude': '37.24N', 'longitude': "
- "'-115.81W'}\n"
- " >>> 'Coordinates: {latitude}, "
- "{longitude}'.format(**coord)\n"
- " 'Coordinates: 37.24N, -115.81W'\n"
- '\n'
- 'Accessing arguments’ attributes:\n'
- '\n'
- ' >>> c = 3-5j\n'
- " >>> ('The complex number {0} is formed from the real "
- "part {0.real} '\n"
- " ... 'and the imaginary part {0.imag}.').format(c)\n"
- " 'The complex number (3-5j) is formed from the real part "
- "3.0 and the imaginary part -5.0.'\n"
- ' >>> class Point:\n'
- ' ... def __init__(self, x, y):\n'
- ' ... self.x, self.y = x, y\n'
- ' ... def __str__(self):\n'
- " ... return 'Point({self.x}, "
- "{self.y})'.format(self=self)\n"
- ' ...\n'
- ' >>> str(Point(4, 2))\n'
- " 'Point(4, 2)'\n"
- '\n'
- 'Accessing arguments’ items:\n'
- '\n'
- ' >>> coord = (3, 5)\n'
- " >>> 'X: {0[0]}; Y: {0[1]}'.format(coord)\n"
- " 'X: 3; Y: 5'\n"
- '\n'
- 'Replacing "%s" and "%r":\n'
- '\n'
- ' >>> "repr() shows quotes: {!r}; str() doesn\'t: '
- '{!s}".format(\'test1\', \'test2\')\n'
- ' "repr() shows quotes: \'test1\'; str() doesn\'t: test2"\n'
- '\n'
- 'Aligning the text and specifying a width:\n'
- '\n'
- " >>> '{:<30}'.format('left aligned')\n"
- " 'left aligned '\n"
- " >>> '{:>30}'.format('right aligned')\n"
- " ' right aligned'\n"
- " >>> '{:^30}'.format('centered')\n"
- " ' centered '\n"
- " >>> '{:*^30}'.format('centered') # use '*' as a fill "
- 'char\n'
- " '***********centered***********'\n"
- '\n'
- 'Replacing "%+f", "%-f", and "% f" and specifying a sign:\n'
- '\n'
- " >>> '{:+f}; {:+f}'.format(3.14, -3.14) # show it "
- 'always\n'
- " '+3.140000; -3.140000'\n"
- " >>> '{: f}; {: f}'.format(3.14, -3.14) # show a space "
- 'for positive numbers\n'
- " ' 3.140000; -3.140000'\n"
- " >>> '{:-f}; {:-f}'.format(3.14, -3.14) # show only the "
- "minus -- same as '{:f}; {:f}'\n"
- " '3.140000; -3.140000'\n"
- '\n'
- 'Replacing "%x" and "%o" and converting the value to '
- 'different bases:\n'
- '\n'
- ' >>> # format also supports binary numbers\n'
- ' >>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: '
- '{0:b}".format(42)\n'
- " 'int: 42; hex: 2a; oct: 52; bin: 101010'\n"
- ' >>> # with 0x, 0o, or 0b as prefix:\n'
- ' >>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: '
- '{0:#b}".format(42)\n'
- " 'int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010'\n"
- '\n'
- 'Using the comma as a thousands separator:\n'
- '\n'
- " >>> '{:,}'.format(1234567890)\n"
- " '1,234,567,890'\n"
- '\n'
- 'Expressing a percentage:\n'
- '\n'
- ' >>> points = 19\n'
- ' >>> total = 22\n'
- " >>> 'Correct answers: {:.2%}'.format(points/total)\n"
- " 'Correct answers: 86.36%'\n"
- '\n'
- 'Using type-specific formatting:\n'
- '\n'
- ' >>> import datetime\n'
- ' >>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)\n'
- " >>> '{:%Y-%m-%d %H:%M:%S}'.format(d)\n"
- " '2010-07-04 12:15:58'\n"
- '\n'
- 'Nesting arguments and more complex examples:\n'
- '\n'
- " >>> for align, text in zip('<^>', ['left', 'center', "
- "'right']):\n"
- " ... '{0:{fill}{align}16}'.format(text, fill=align, "
- 'align=align)\n'
- ' ...\n'
- " 'left<<<<<<<<<<<<'\n"
- " '^^^^^center^^^^^'\n"
- " '>>>>>>>>>>>right'\n"
- ' >>>\n'
- ' >>> octets = [192, 168, 0, 1]\n'
- " >>> '{:02X}{:02X}{:02X}{:02X}'.format(*octets)\n"
- " 'C0A80001'\n"
- ' >>> int(_, 16)\n'
- ' 3232235521\n'
- ' >>>\n'
- ' >>> width = 5\n'
- ' >>> for num in range(5,12): \n'
- " ... for base in 'dXob':\n"
- " ... print('{0:{width}{base}}'.format(num, "
- "base=base, width=width), end=' ')\n"
- ' ... print()\n'
- ' ...\n'
- ' 5 5 5 101\n'
- ' 6 6 6 110\n'
- ' 7 7 7 111\n'
- ' 8 8 10 1000\n'
- ' 9 9 11 1001\n'
- ' 10 A 12 1010\n'
- ' 11 B 13 1011\n',
- 'function': 'Function definitions\n'
- '********************\n'
- '\n'
- 'A function definition defines a user-defined function object '
- '(see\n'
- 'section The standard type hierarchy):\n'
- '\n'
+ ' '
+ '+-----------+------------------------------------------------------------+\n'
+ '\n'
+ '\n'
+ 'Format examples\n'
+ '===============\n'
+ '\n'
+ 'This section contains examples of the "str.format()" syntax '
+ 'and\n'
+ 'comparison with the old "%"-formatting.\n'
+ '\n'
+ 'In most of the cases the syntax is similar to the old '
+ '"%"-formatting,\n'
+ 'with the addition of the "{}" and with ":" used instead of '
+ '"%". For\n'
+ 'example, "\'%03.2f\'" can be translated to "\'{:03.2f}\'".\n'
+ '\n'
+ 'The new format syntax also supports new and different '
+ 'options, shown\n'
+ 'in the following examples.\n'
+ '\n'
+ 'Accessing arguments by position:\n'
+ '\n'
+ " >>> '{0}, {1}, {2}'.format('a', 'b', 'c')\n"
+ " 'a, b, c'\n"
+ " >>> '{}, {}, {}'.format('a', 'b', 'c') # 3.1+ only\n"
+ " 'a, b, c'\n"
+ " >>> '{2}, {1}, {0}'.format('a', 'b', 'c')\n"
+ " 'c, b, a'\n"
+ " >>> '{2}, {1}, {0}'.format(*'abc') # unpacking "
+ 'argument sequence\n'
+ " 'c, b, a'\n"
+ " >>> '{0}{1}{0}'.format('abra', 'cad') # arguments' "
+ 'indices can be repeated\n'
+ " 'abracadabra'\n"
+ '\n'
+ 'Accessing arguments by name:\n'
+ '\n'
+ " >>> 'Coordinates: {latitude}, "
+ "{longitude}'.format(latitude='37.24N', "
+ "longitude='-115.81W')\n"
+ " 'Coordinates: 37.24N, -115.81W'\n"
+ " >>> coord = {'latitude': '37.24N', 'longitude': "
+ "'-115.81W'}\n"
+ " >>> 'Coordinates: {latitude}, "
+ "{longitude}'.format(**coord)\n"
+ " 'Coordinates: 37.24N, -115.81W'\n"
+ '\n'
+ 'Accessing arguments’ attributes:\n'
+ '\n'
+ ' >>> c = 3-5j\n'
+ " >>> ('The complex number {0} is formed from the real "
+ "part {0.real} '\n"
+ " ... 'and the imaginary part {0.imag}.').format(c)\n"
+ " 'The complex number (3-5j) is formed from the real part "
+ "3.0 and the imaginary part -5.0.'\n"
+ ' >>> class Point:\n'
+ ' ... def __init__(self, x, y):\n'
+ ' ... self.x, self.y = x, y\n'
+ ' ... def __str__(self):\n'
+ " ... return 'Point({self.x}, "
+ "{self.y})'.format(self=self)\n"
+ ' ...\n'
+ ' >>> str(Point(4, 2))\n'
+ " 'Point(4, 2)'\n"
+ '\n'
+ 'Accessing arguments’ items:\n'
+ '\n'
+ ' >>> coord = (3, 5)\n'
+ " >>> 'X: {0[0]}; Y: {0[1]}'.format(coord)\n"
+ " 'X: 3; Y: 5'\n"
+ '\n'
+ 'Replacing "%s" and "%r":\n'
+ '\n'
+ ' >>> "repr() shows quotes: {!r}; str() doesn\'t: '
+ '{!s}".format(\'test1\', \'test2\')\n'
+ ' "repr() shows quotes: \'test1\'; str() doesn\'t: test2"\n'
+ '\n'
+ 'Aligning the text and specifying a width:\n'
+ '\n'
+ " >>> '{:<30}'.format('left aligned')\n"
+ " 'left aligned '\n"
+ " >>> '{:>30}'.format('right aligned')\n"
+ " ' right aligned'\n"
+ " >>> '{:^30}'.format('centered')\n"
+ " ' centered '\n"
+ " >>> '{:*^30}'.format('centered') # use '*' as a fill "
+ 'char\n'
+ " '***********centered***********'\n"
+ '\n'
+ 'Replacing "%+f", "%-f", and "% f" and specifying a sign:\n'
+ '\n'
+ " >>> '{:+f}; {:+f}'.format(3.14, -3.14) # show it "
+ 'always\n'
+ " '+3.140000; -3.140000'\n"
+ " >>> '{: f}; {: f}'.format(3.14, -3.14) # show a space "
+ 'for positive numbers\n'
+ " ' 3.140000; -3.140000'\n"
+ " >>> '{:-f}; {:-f}'.format(3.14, -3.14) # show only the "
+ "minus -- same as '{:f}; {:f}'\n"
+ " '3.140000; -3.140000'\n"
+ '\n'
+ 'Replacing "%x" and "%o" and converting the value to '
+ 'different bases:\n'
+ '\n'
+ ' >>> # format also supports binary numbers\n'
+ ' >>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: '
+ '{0:b}".format(42)\n'
+ " 'int: 42; hex: 2a; oct: 52; bin: 101010'\n"
+ ' >>> # with 0x, 0o, or 0b as prefix:\n'
+ ' >>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: '
+ '{0:#b}".format(42)\n'
+ " 'int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010'\n"
+ '\n'
+ 'Using the comma as a thousands separator:\n'
+ '\n'
+ " >>> '{:,}'.format(1234567890)\n"
+ " '1,234,567,890'\n"
+ '\n'
+ 'Expressing a percentage:\n'
+ '\n'
+ ' >>> points = 19\n'
+ ' >>> total = 22\n'
+ " >>> 'Correct answers: {:.2%}'.format(points/total)\n"
+ " 'Correct answers: 86.36%'\n"
+ '\n'
+ 'Using type-specific formatting:\n'
+ '\n'
+ ' >>> import datetime\n'
+ ' >>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)\n'
+ " >>> '{:%Y-%m-%d %H:%M:%S}'.format(d)\n"
+ " '2010-07-04 12:15:58'\n"
+ '\n'
+ 'Nesting arguments and more complex examples:\n'
+ '\n'
+ " >>> for align, text in zip('<^>', ['left', 'center', "
+ "'right']):\n"
+ " ... '{0:{fill}{align}16}'.format(text, fill=align, "
+ 'align=align)\n'
+ ' ...\n'
+ " 'left<<<<<<<<<<<<'\n"
+ " '^^^^^center^^^^^'\n"
+ " '>>>>>>>>>>>right'\n"
+ ' >>>\n'
+ ' >>> octets = [192, 168, 0, 1]\n'
+ " >>> '{:02X}{:02X}{:02X}{:02X}'.format(*octets)\n"
+ " 'C0A80001'\n"
+ ' >>> int(_, 16)\n'
+ ' 3232235521\n'
+ ' >>>\n'
+ ' >>> width = 5\n'
+ ' >>> for num in range(5,12): \n'
+ " ... for base in 'dXob':\n"
+ " ... print('{0:{width}{base}}'.format(num, "
+ "base=base, width=width), end=' ')\n"
+ ' ... print()\n'
+ ' ...\n'
+ ' 5 5 5 101\n'
+ ' 6 6 6 110\n'
+ ' 7 7 7 111\n'
+ ' 8 8 10 1000\n'
+ ' 9 9 11 1001\n'
+ ' 10 A 12 1010\n'
+ ' 11 B 13 1011\n',
+ 'function': 'Function definitions\n'
+ '********************\n'
+ '\n'
+ 'A function definition defines a user-defined function object '
+ '(see\n'
+ 'section The standard type hierarchy):\n'
+ '\n'
' funcdef ::= [decorators] "def" funcname "(" '
- '[parameter_list] ")"\n'
- ' ["->" expression] ":" suite\n'
+ '[parameter_list] ")"\n'
+ ' ["->" expression] ":" suite\n'
' decorators ::= decorator+\n'
' decorator ::= "@" assignment_expression '
'NEWLINE\n'
@@ -5849,260 +5849,260 @@ topics = {'assert': 'The "assert" statement\n'
'defparameter)* ["," [parameter_list_starargs]]\n'
' | parameter_list_starargs\n'
' parameter_list_starargs ::= "*" [parameter] ("," '
- 'defparameter)* ["," ["**" parameter [","]]]\n'
- ' | "**" parameter [","]\n'
+ 'defparameter)* ["," ["**" parameter [","]]]\n'
+ ' | "**" parameter [","]\n'
' parameter ::= identifier [":" expression]\n'
' defparameter ::= parameter ["=" expression]\n'
' funcname ::= identifier\n'
- '\n'
- 'A function definition is an executable statement. Its execution '
- 'binds\n'
- 'the function name in the current local namespace to a function '
- 'object\n'
- '(a wrapper around the executable code for the function). This\n'
- 'function object contains a reference to the current global '
- 'namespace\n'
- 'as the global namespace to be used when the function is called.\n'
- '\n'
- 'The function definition does not execute the function body; this '
- 'gets\n'
- 'executed only when the function is called. [2]\n'
- '\n'
- 'A function definition may be wrapped by one or more *decorator*\n'
- 'expressions. Decorator expressions are evaluated when the '
- 'function is\n'
- 'defined, in the scope that contains the function definition. '
- 'The\n'
- 'result must be a callable, which is invoked with the function '
- 'object\n'
- 'as the only argument. The returned value is bound to the '
- 'function name\n'
- 'instead of the function object. Multiple decorators are applied '
- 'in\n'
- 'nested fashion. For example, the following code\n'
- '\n'
- ' @f1(arg)\n'
- ' @f2\n'
- ' def func(): pass\n'
- '\n'
- 'is roughly equivalent to\n'
- '\n'
- ' def func(): pass\n'
- ' func = f1(arg)(f2(func))\n'
- '\n'
- 'except that the original function is not temporarily bound to '
- 'the name\n'
- '"func".\n'
- '\n'
+ '\n'
+ 'A function definition is an executable statement. Its execution '
+ 'binds\n'
+ 'the function name in the current local namespace to a function '
+ 'object\n'
+ '(a wrapper around the executable code for the function). This\n'
+ 'function object contains a reference to the current global '
+ 'namespace\n'
+ 'as the global namespace to be used when the function is called.\n'
+ '\n'
+ 'The function definition does not execute the function body; this '
+ 'gets\n'
+ 'executed only when the function is called. [2]\n'
+ '\n'
+ 'A function definition may be wrapped by one or more *decorator*\n'
+ 'expressions. Decorator expressions are evaluated when the '
+ 'function is\n'
+ 'defined, in the scope that contains the function definition. '
+ 'The\n'
+ 'result must be a callable, which is invoked with the function '
+ 'object\n'
+ 'as the only argument. The returned value is bound to the '
+ 'function name\n'
+ 'instead of the function object. Multiple decorators are applied '
+ 'in\n'
+ 'nested fashion. For example, the following code\n'
+ '\n'
+ ' @f1(arg)\n'
+ ' @f2\n'
+ ' def func(): pass\n'
+ '\n'
+ 'is roughly equivalent to\n'
+ '\n'
+ ' def func(): pass\n'
+ ' func = f1(arg)(f2(func))\n'
+ '\n'
+ 'except that the original function is not temporarily bound to '
+ 'the name\n'
+ '"func".\n'
+ '\n'
'Changed in version 3.9: Functions may be decorated with any '
'valid\n'
'"assignment_expression". Previously, the grammar was much more\n'
'restrictive; see **PEP 614** for details.\n'
'\n'
- 'When one or more *parameters* have the form *parameter* "="\n'
- '*expression*, the function is said to have “default parameter '
- 'values.”\n'
- 'For a parameter with a default value, the corresponding '
- '*argument* may\n'
- 'be omitted from a call, in which case the parameter’s default '
- 'value is\n'
- 'substituted. If a parameter has a default value, all following\n'
- 'parameters up until the “"*"” must also have a default value — '
- 'this is\n'
- 'a syntactic restriction that is not expressed by the grammar.\n'
- '\n'
- '**Default parameter values are evaluated from left to right when '
- 'the\n'
- 'function definition is executed.** This means that the '
- 'expression is\n'
- 'evaluated once, when the function is defined, and that the same '
- '“pre-\n'
- 'computed” value is used for each call. This is especially '
- 'important\n'
- 'to understand when a default parameter is a mutable object, such '
- 'as a\n'
- 'list or a dictionary: if the function modifies the object (e.g. '
- 'by\n'
- 'appending an item to a list), the default value is in effect '
- 'modified.\n'
- 'This is generally not what was intended. A way around this is '
- 'to use\n'
- '"None" as the default, and explicitly test for it in the body of '
- 'the\n'
- 'function, e.g.:\n'
- '\n'
- ' def whats_on_the_telly(penguin=None):\n'
- ' if penguin is None:\n'
- ' penguin = []\n'
- ' penguin.append("property of the zoo")\n'
- ' return penguin\n'
- '\n'
- 'Function call semantics are described in more detail in section '
- 'Calls.\n'
- 'A function call always assigns values to all parameters '
- 'mentioned in\n'
+ 'When one or more *parameters* have the form *parameter* "="\n'
+ '*expression*, the function is said to have “default parameter '
+ 'values.”\n'
+ 'For a parameter with a default value, the corresponding '
+ '*argument* may\n'
+ 'be omitted from a call, in which case the parameter’s default '
+ 'value is\n'
+ 'substituted. If a parameter has a default value, all following\n'
+ 'parameters up until the “"*"” must also have a default value — '
+ 'this is\n'
+ 'a syntactic restriction that is not expressed by the grammar.\n'
+ '\n'
+ '**Default parameter values are evaluated from left to right when '
+ 'the\n'
+ 'function definition is executed.** This means that the '
+ 'expression is\n'
+ 'evaluated once, when the function is defined, and that the same '
+ '“pre-\n'
+ 'computed” value is used for each call. This is especially '
+ 'important\n'
+ 'to understand when a default parameter is a mutable object, such '
+ 'as a\n'
+ 'list or a dictionary: if the function modifies the object (e.g. '
+ 'by\n'
+ 'appending an item to a list), the default value is in effect '
+ 'modified.\n'
+ 'This is generally not what was intended. A way around this is '
+ 'to use\n'
+ '"None" as the default, and explicitly test for it in the body of '
+ 'the\n'
+ 'function, e.g.:\n'
+ '\n'
+ ' def whats_on_the_telly(penguin=None):\n'
+ ' if penguin is None:\n'
+ ' penguin = []\n'
+ ' penguin.append("property of the zoo")\n'
+ ' return penguin\n'
+ '\n'
+ 'Function call semantics are described in more detail in section '
+ 'Calls.\n'
+ 'A function call always assigns values to all parameters '
+ 'mentioned in\n'
'the parameter list, either from positional arguments, from '
- 'keyword\n'
- 'arguments, or from default values. If the form “"*identifier"” '
- 'is\n'
- 'present, it is initialized to a tuple receiving any excess '
- 'positional\n'
- 'parameters, defaulting to the empty tuple. If the form\n'
- '“"**identifier"” is present, it is initialized to a new ordered\n'
- 'mapping receiving any excess keyword arguments, defaulting to a '
- 'new\n'
- 'empty mapping of the same type. Parameters after “"*"” or\n'
- '“"*identifier"” are keyword-only parameters and may only be '
+ 'keyword\n'
+ 'arguments, or from default values. If the form “"*identifier"” '
+ 'is\n'
+ 'present, it is initialized to a tuple receiving any excess '
+ 'positional\n'
+ 'parameters, defaulting to the empty tuple. If the form\n'
+ '“"**identifier"” is present, it is initialized to a new ordered\n'
+ 'mapping receiving any excess keyword arguments, defaulting to a '
+ 'new\n'
+ 'empty mapping of the same type. Parameters after “"*"” or\n'
+ '“"*identifier"” are keyword-only parameters and may only be '
'passed by\n'
'keyword arguments. Parameters before “"/"” are positional-only\n'
'parameters and may only be passed by positional arguments.\n'
- '\n'
+ '\n'
'Changed in version 3.8: The "/" function parameter syntax may be '
'used\n'
'to indicate positional-only parameters. See **PEP 570** for '
'details.\n'
'\n'
- 'Parameters may have an *annotation* of the form “": '
- 'expression"”\n'
- 'following the parameter name. Any parameter may have an '
- 'annotation,\n'
- 'even those of the form "*identifier" or "**identifier". '
- 'Functions may\n'
- 'have “return” annotation of the form “"-> expression"” after '
- 'the\n'
- 'parameter list. These annotations can be any valid Python '
- 'expression.\n'
- 'The presence of annotations does not change the semantics of a\n'
- 'function. The annotation values are available as values of a\n'
- 'dictionary keyed by the parameters’ names in the '
- '"__annotations__"\n'
- 'attribute of the function object. If the "annotations" import '
- 'from\n'
- '"__future__" is used, annotations are preserved as strings at '
- 'runtime\n'
- 'which enables postponed evaluation. Otherwise, they are '
- 'evaluated\n'
- 'when the function definition is executed. In this case '
- 'annotations\n'
- 'may be evaluated in a different order than they appear in the '
- 'source\n'
- 'code.\n'
- '\n'
- 'It is also possible to create anonymous functions (functions not '
- 'bound\n'
- 'to a name), for immediate use in expressions. This uses lambda\n'
- 'expressions, described in section Lambdas. Note that the '
- 'lambda\n'
- 'expression is merely a shorthand for a simplified function '
- 'definition;\n'
- 'a function defined in a “"def"” statement can be passed around '
- 'or\n'
- 'assigned to another name just like a function defined by a '
- 'lambda\n'
- 'expression. The “"def"” form is actually more powerful since '
- 'it\n'
- 'allows the execution of multiple statements and annotations.\n'
- '\n'
- '**Programmer’s note:** Functions are first-class objects. A '
- '“"def"”\n'
- 'statement executed inside a function definition defines a local\n'
- 'function that can be returned or passed around. Free variables '
- 'used\n'
- 'in the nested function can access the local variables of the '
- 'function\n'
- 'containing the def. See section Naming and binding for '
- 'details.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 3107** - Function Annotations\n'
- ' The original specification for function annotations.\n'
- '\n'
- ' **PEP 484** - Type Hints\n'
- ' Definition of a standard meaning for annotations: type '
- 'hints.\n'
- '\n'
- ' **PEP 526** - Syntax for Variable Annotations\n'
- ' Ability to type hint variable declarations, including '
- 'class\n'
- ' variables and instance variables\n'
- '\n'
- ' **PEP 563** - Postponed Evaluation of Annotations\n'
- ' Support for forward references within annotations by '
- 'preserving\n'
- ' annotations in a string form at runtime instead of eager\n'
- ' evaluation.\n',
- 'global': 'The "global" statement\n'
- '**********************\n'
- '\n'
- ' global_stmt ::= "global" identifier ("," identifier)*\n'
- '\n'
- 'The "global" statement is a declaration which holds for the '
- 'entire\n'
- 'current code block. It means that the listed identifiers are to '
- 'be\n'
- 'interpreted as globals. It would be impossible to assign to a '
- 'global\n'
- 'variable without "global", although free variables may refer to\n'
- 'globals without being declared global.\n'
- '\n'
- 'Names listed in a "global" statement must not be used in the same '
- 'code\n'
- 'block textually preceding that "global" statement.\n'
- '\n'
- 'Names listed in a "global" statement must not be defined as '
- 'formal\n'
- 'parameters or in a "for" loop control target, "class" definition,\n'
- 'function definition, "import" statement, or variable annotation.\n'
- '\n'
- '**CPython implementation detail:** The current implementation does '
- 'not\n'
- 'enforce some of these restrictions, but programs should not abuse '
- 'this\n'
- 'freedom, as future implementations may enforce them or silently '
- 'change\n'
- 'the meaning of the program.\n'
- '\n'
- '**Programmer’s note:** "global" is a directive to the parser. It\n'
- 'applies only to code parsed at the same time as the "global"\n'
- 'statement. In particular, a "global" statement contained in a '
- 'string\n'
- 'or code object supplied to the built-in "exec()" function does '
- 'not\n'
- 'affect the code block *containing* the function call, and code\n'
- 'contained in such a string is unaffected by "global" statements in '
- 'the\n'
- 'code containing the function call. The same applies to the '
- '"eval()"\n'
- 'and "compile()" functions.\n',
- 'id-classes': 'Reserved classes of identifiers\n'
- '*******************************\n'
- '\n'
- 'Certain classes of identifiers (besides keywords) have '
- 'special\n'
- 'meanings. These classes are identified by the patterns of '
- 'leading and\n'
- 'trailing underscore characters:\n'
- '\n'
- '"_*"\n'
- ' Not imported by "from module import *". The special '
- 'identifier "_"\n'
- ' is used in the interactive interpreter to store the result '
- 'of the\n'
- ' last evaluation; it is stored in the "builtins" module. '
- 'When not\n'
- ' in interactive mode, "_" has no special meaning and is not '
- 'defined.\n'
- ' See section The import statement.\n'
- '\n'
+ 'Parameters may have an *annotation* of the form “": '
+ 'expression"”\n'
+ 'following the parameter name. Any parameter may have an '
+ 'annotation,\n'
+ 'even those of the form "*identifier" or "**identifier". '
+ 'Functions may\n'
+ 'have “return” annotation of the form “"-> expression"” after '
+ 'the\n'
+ 'parameter list. These annotations can be any valid Python '
+ 'expression.\n'
+ 'The presence of annotations does not change the semantics of a\n'
+ 'function. The annotation values are available as values of a\n'
+ 'dictionary keyed by the parameters’ names in the '
+ '"__annotations__"\n'
+ 'attribute of the function object. If the "annotations" import '
+ 'from\n'
+ '"__future__" is used, annotations are preserved as strings at '
+ 'runtime\n'
+ 'which enables postponed evaluation. Otherwise, they are '
+ 'evaluated\n'
+ 'when the function definition is executed. In this case '
+ 'annotations\n'
+ 'may be evaluated in a different order than they appear in the '
+ 'source\n'
+ 'code.\n'
+ '\n'
+ 'It is also possible to create anonymous functions (functions not '
+ 'bound\n'
+ 'to a name), for immediate use in expressions. This uses lambda\n'
+ 'expressions, described in section Lambdas. Note that the '
+ 'lambda\n'
+ 'expression is merely a shorthand for a simplified function '
+ 'definition;\n'
+ 'a function defined in a “"def"” statement can be passed around '
+ 'or\n'
+ 'assigned to another name just like a function defined by a '
+ 'lambda\n'
+ 'expression. The “"def"” form is actually more powerful since '
+ 'it\n'
+ 'allows the execution of multiple statements and annotations.\n'
+ '\n'
+ '**Programmer’s note:** Functions are first-class objects. A '
+ '“"def"”\n'
+ 'statement executed inside a function definition defines a local\n'
+ 'function that can be returned or passed around. Free variables '
+ 'used\n'
+ 'in the nested function can access the local variables of the '
+ 'function\n'
+ 'containing the def. See section Naming and binding for '
+ 'details.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 3107** - Function Annotations\n'
+ ' The original specification for function annotations.\n'
+ '\n'
+ ' **PEP 484** - Type Hints\n'
+ ' Definition of a standard meaning for annotations: type '
+ 'hints.\n'
+ '\n'
+ ' **PEP 526** - Syntax for Variable Annotations\n'
+ ' Ability to type hint variable declarations, including '
+ 'class\n'
+ ' variables and instance variables\n'
+ '\n'
+ ' **PEP 563** - Postponed Evaluation of Annotations\n'
+ ' Support for forward references within annotations by '
+ 'preserving\n'
+ ' annotations in a string form at runtime instead of eager\n'
+ ' evaluation.\n',
+ 'global': 'The "global" statement\n'
+ '**********************\n'
+ '\n'
+ ' global_stmt ::= "global" identifier ("," identifier)*\n'
+ '\n'
+ 'The "global" statement is a declaration which holds for the '
+ 'entire\n'
+ 'current code block. It means that the listed identifiers are to '
+ 'be\n'
+ 'interpreted as globals. It would be impossible to assign to a '
+ 'global\n'
+ 'variable without "global", although free variables may refer to\n'
+ 'globals without being declared global.\n'
+ '\n'
+ 'Names listed in a "global" statement must not be used in the same '
+ 'code\n'
+ 'block textually preceding that "global" statement.\n'
+ '\n'
+ 'Names listed in a "global" statement must not be defined as '
+ 'formal\n'
+ 'parameters or in a "for" loop control target, "class" definition,\n'
+ 'function definition, "import" statement, or variable annotation.\n'
+ '\n'
+ '**CPython implementation detail:** The current implementation does '
+ 'not\n'
+ 'enforce some of these restrictions, but programs should not abuse '
+ 'this\n'
+ 'freedom, as future implementations may enforce them or silently '
+ 'change\n'
+ 'the meaning of the program.\n'
+ '\n'
+ '**Programmer’s note:** "global" is a directive to the parser. It\n'
+ 'applies only to code parsed at the same time as the "global"\n'
+ 'statement. In particular, a "global" statement contained in a '
+ 'string\n'
+ 'or code object supplied to the built-in "exec()" function does '
+ 'not\n'
+ 'affect the code block *containing* the function call, and code\n'
+ 'contained in such a string is unaffected by "global" statements in '
+ 'the\n'
+ 'code containing the function call. The same applies to the '
+ '"eval()"\n'
+ 'and "compile()" functions.\n',
+ 'id-classes': 'Reserved classes of identifiers\n'
+ '*******************************\n'
+ '\n'
+ 'Certain classes of identifiers (besides keywords) have '
+ 'special\n'
+ 'meanings. These classes are identified by the patterns of '
+ 'leading and\n'
+ 'trailing underscore characters:\n'
+ '\n'
+ '"_*"\n'
+ ' Not imported by "from module import *". The special '
+ 'identifier "_"\n'
+ ' is used in the interactive interpreter to store the result '
+ 'of the\n'
+ ' last evaluation; it is stored in the "builtins" module. '
+ 'When not\n'
+ ' in interactive mode, "_" has no special meaning and is not '
+ 'defined.\n'
+ ' See section The import statement.\n'
+ '\n'
' Note:\n'
'\n'
' The name "_" is often used in conjunction with\n'
- ' internationalization; refer to the documentation for the\n'
- ' "gettext" module for more information on this '
- 'convention.\n'
- '\n'
- '"__*__"\n'
+ ' internationalization; refer to the documentation for the\n'
+ ' "gettext" module for more information on this '
+ 'convention.\n'
+ '\n'
+ '"__*__"\n'
' System-defined names, informally known as “dunder” names. '
'These\n'
' names are defined by the interpreter and its '
@@ -6115,143 +6115,143 @@ topics = {'assert': 'The "assert" statement\n'
' "__*__" names, in any context, that does not follow '
'explicitly\n'
' documented use, is subject to breakage without warning.\n'
- '\n'
- '"__*"\n'
- ' Class-private names. Names in this category, when used '
- 'within the\n'
- ' context of a class definition, are re-written to use a '
- 'mangled form\n'
- ' to help avoid name clashes between “private” attributes of '
- 'base and\n'
- ' derived classes. See section Identifiers (Names).\n',
- 'identifiers': 'Identifiers and keywords\n'
- '************************\n'
- '\n'
- 'Identifiers (also referred to as *names*) are described by '
- 'the\n'
- 'following lexical definitions.\n'
- '\n'
- 'The syntax of identifiers in Python is based on the Unicode '
- 'standard\n'
- 'annex UAX-31, with elaboration and changes as defined below; '
- 'see also\n'
- '**PEP 3131** for further details.\n'
- '\n'
- 'Within the ASCII range (U+0001..U+007F), the valid characters '
- 'for\n'
- 'identifiers are the same as in Python 2.x: the uppercase and '
- 'lowercase\n'
- 'letters "A" through "Z", the underscore "_" and, except for '
- 'the first\n'
- 'character, the digits "0" through "9".\n'
- '\n'
- 'Python 3.0 introduces additional characters from outside the '
- 'ASCII\n'
- 'range (see **PEP 3131**). For these characters, the '
- 'classification\n'
- 'uses the version of the Unicode Character Database as '
- 'included in the\n'
- '"unicodedata" module.\n'
- '\n'
- 'Identifiers are unlimited in length. Case is significant.\n'
- '\n'
- ' identifier ::= xid_start xid_continue*\n'
- ' id_start ::= <all characters in general categories Lu, '
- 'Ll, Lt, Lm, Lo, Nl, the underscore, and characters with the '
- 'Other_ID_Start property>\n'
- ' id_continue ::= <all characters in id_start, plus '
- 'characters in the categories Mn, Mc, Nd, Pc and others with '
- 'the Other_ID_Continue property>\n'
- ' xid_start ::= <all characters in id_start whose NFKC '
- 'normalization is in "id_start xid_continue*">\n'
- ' xid_continue ::= <all characters in id_continue whose NFKC '
- 'normalization is in "id_continue*">\n'
- '\n'
- 'The Unicode category codes mentioned above stand for:\n'
- '\n'
- '* *Lu* - uppercase letters\n'
- '\n'
- '* *Ll* - lowercase letters\n'
- '\n'
- '* *Lt* - titlecase letters\n'
- '\n'
- '* *Lm* - modifier letters\n'
- '\n'
- '* *Lo* - other letters\n'
- '\n'
- '* *Nl* - letter numbers\n'
- '\n'
- '* *Mn* - nonspacing marks\n'
- '\n'
- '* *Mc* - spacing combining marks\n'
- '\n'
- '* *Nd* - decimal numbers\n'
- '\n'
- '* *Pc* - connector punctuations\n'
- '\n'
- '* *Other_ID_Start* - explicit list of characters in '
- 'PropList.txt to\n'
- ' support backwards compatibility\n'
- '\n'
- '* *Other_ID_Continue* - likewise\n'
- '\n'
- 'All identifiers are converted into the normal form NFKC while '
- 'parsing;\n'
- 'comparison of identifiers is based on NFKC.\n'
- '\n'
- 'A non-normative HTML file listing all valid identifier '
- 'characters for\n'
+ '\n'
+ '"__*"\n'
+ ' Class-private names. Names in this category, when used '
+ 'within the\n'
+ ' context of a class definition, are re-written to use a '
+ 'mangled form\n'
+ ' to help avoid name clashes between “private” attributes of '
+ 'base and\n'
+ ' derived classes. See section Identifiers (Names).\n',
+ 'identifiers': 'Identifiers and keywords\n'
+ '************************\n'
+ '\n'
+ 'Identifiers (also referred to as *names*) are described by '
+ 'the\n'
+ 'following lexical definitions.\n'
+ '\n'
+ 'The syntax of identifiers in Python is based on the Unicode '
+ 'standard\n'
+ 'annex UAX-31, with elaboration and changes as defined below; '
+ 'see also\n'
+ '**PEP 3131** for further details.\n'
+ '\n'
+ 'Within the ASCII range (U+0001..U+007F), the valid characters '
+ 'for\n'
+ 'identifiers are the same as in Python 2.x: the uppercase and '
+ 'lowercase\n'
+ 'letters "A" through "Z", the underscore "_" and, except for '
+ 'the first\n'
+ 'character, the digits "0" through "9".\n'
+ '\n'
+ 'Python 3.0 introduces additional characters from outside the '
+ 'ASCII\n'
+ 'range (see **PEP 3131**). For these characters, the '
+ 'classification\n'
+ 'uses the version of the Unicode Character Database as '
+ 'included in the\n'
+ '"unicodedata" module.\n'
+ '\n'
+ 'Identifiers are unlimited in length. Case is significant.\n'
+ '\n'
+ ' identifier ::= xid_start xid_continue*\n'
+ ' id_start ::= <all characters in general categories Lu, '
+ 'Ll, Lt, Lm, Lo, Nl, the underscore, and characters with the '
+ 'Other_ID_Start property>\n'
+ ' id_continue ::= <all characters in id_start, plus '
+ 'characters in the categories Mn, Mc, Nd, Pc and others with '
+ 'the Other_ID_Continue property>\n'
+ ' xid_start ::= <all characters in id_start whose NFKC '
+ 'normalization is in "id_start xid_continue*">\n'
+ ' xid_continue ::= <all characters in id_continue whose NFKC '
+ 'normalization is in "id_continue*">\n'
+ '\n'
+ 'The Unicode category codes mentioned above stand for:\n'
+ '\n'
+ '* *Lu* - uppercase letters\n'
+ '\n'
+ '* *Ll* - lowercase letters\n'
+ '\n'
+ '* *Lt* - titlecase letters\n'
+ '\n'
+ '* *Lm* - modifier letters\n'
+ '\n'
+ '* *Lo* - other letters\n'
+ '\n'
+ '* *Nl* - letter numbers\n'
+ '\n'
+ '* *Mn* - nonspacing marks\n'
+ '\n'
+ '* *Mc* - spacing combining marks\n'
+ '\n'
+ '* *Nd* - decimal numbers\n'
+ '\n'
+ '* *Pc* - connector punctuations\n'
+ '\n'
+ '* *Other_ID_Start* - explicit list of characters in '
+ 'PropList.txt to\n'
+ ' support backwards compatibility\n'
+ '\n'
+ '* *Other_ID_Continue* - likewise\n'
+ '\n'
+ 'All identifiers are converted into the normal form NFKC while '
+ 'parsing;\n'
+ 'comparison of identifiers is based on NFKC.\n'
+ '\n'
+ 'A non-normative HTML file listing all valid identifier '
+ 'characters for\n'
'Unicode 4.1 can be found at\n'
'https://www.unicode.org/Public/13.0.0/ucd/DerivedCoreProperties.txt\n'
- '\n'
- '\n'
- 'Keywords\n'
- '========\n'
- '\n'
- 'The following identifiers are used as reserved words, or '
- '*keywords* of\n'
- 'the language, and cannot be used as ordinary identifiers. '
- 'They must\n'
- 'be spelled exactly as written here:\n'
- '\n'
- ' False await else import pass\n'
- ' None break except in raise\n'
- ' True class finally is return\n'
- ' and continue for lambda try\n'
- ' as def from nonlocal while\n'
- ' assert del global not with\n'
- ' async elif if or yield\n'
- '\n'
- '\n'
- 'Reserved classes of identifiers\n'
- '===============================\n'
- '\n'
- 'Certain classes of identifiers (besides keywords) have '
- 'special\n'
- 'meanings. These classes are identified by the patterns of '
- 'leading and\n'
- 'trailing underscore characters:\n'
- '\n'
- '"_*"\n'
- ' Not imported by "from module import *". The special '
- 'identifier "_"\n'
- ' is used in the interactive interpreter to store the result '
- 'of the\n'
- ' last evaluation; it is stored in the "builtins" module. '
- 'When not\n'
- ' in interactive mode, "_" has no special meaning and is not '
- 'defined.\n'
- ' See section The import statement.\n'
- '\n'
+ '\n'
+ '\n'
+ 'Keywords\n'
+ '========\n'
+ '\n'
+ 'The following identifiers are used as reserved words, or '
+ '*keywords* of\n'
+ 'the language, and cannot be used as ordinary identifiers. '
+ 'They must\n'
+ 'be spelled exactly as written here:\n'
+ '\n'
+ ' False await else import pass\n'
+ ' None break except in raise\n'
+ ' True class finally is return\n'
+ ' and continue for lambda try\n'
+ ' as def from nonlocal while\n'
+ ' assert del global not with\n'
+ ' async elif if or yield\n'
+ '\n'
+ '\n'
+ 'Reserved classes of identifiers\n'
+ '===============================\n'
+ '\n'
+ 'Certain classes of identifiers (besides keywords) have '
+ 'special\n'
+ 'meanings. These classes are identified by the patterns of '
+ 'leading and\n'
+ 'trailing underscore characters:\n'
+ '\n'
+ '"_*"\n'
+ ' Not imported by "from module import *". The special '
+ 'identifier "_"\n'
+ ' is used in the interactive interpreter to store the result '
+ 'of the\n'
+ ' last evaluation; it is stored in the "builtins" module. '
+ 'When not\n'
+ ' in interactive mode, "_" has no special meaning and is not '
+ 'defined.\n'
+ ' See section The import statement.\n'
+ '\n'
' Note:\n'
'\n'
' The name "_" is often used in conjunction with\n'
- ' internationalization; refer to the documentation for '
- 'the\n'
- ' "gettext" module for more information on this '
- 'convention.\n'
- '\n'
- '"__*__"\n'
+ ' internationalization; refer to the documentation for '
+ 'the\n'
+ ' "gettext" module for more information on this '
+ 'convention.\n'
+ '\n'
+ '"__*__"\n'
' System-defined names, informally known as “dunder” names. '
'These\n'
' names are defined by the interpreter and its '
@@ -6265,778 +6265,778 @@ topics = {'assert': 'The "assert" statement\n'
' "__*__" names, in any context, that does not follow '
'explicitly\n'
' documented use, is subject to breakage without warning.\n'
- '\n'
- '"__*"\n'
- ' Class-private names. Names in this category, when used '
- 'within the\n'
- ' context of a class definition, are re-written to use a '
- 'mangled form\n'
- ' to help avoid name clashes between “private” attributes of '
- 'base and\n'
- ' derived classes. See section Identifiers (Names).\n',
- 'if': 'The "if" statement\n'
- '******************\n'
- '\n'
- 'The "if" statement is used for conditional execution:\n'
- '\n'
+ '\n'
+ '"__*"\n'
+ ' Class-private names. Names in this category, when used '
+ 'within the\n'
+ ' context of a class definition, are re-written to use a '
+ 'mangled form\n'
+ ' to help avoid name clashes between “private” attributes of '
+ 'base and\n'
+ ' derived classes. See section Identifiers (Names).\n',
+ 'if': 'The "if" statement\n'
+ '******************\n'
+ '\n'
+ 'The "if" statement is used for conditional execution:\n'
+ '\n'
' if_stmt ::= "if" assignment_expression ":" suite\n'
' ("elif" assignment_expression ":" suite)*\n'
- ' ["else" ":" suite]\n'
- '\n'
- 'It selects exactly one of the suites by evaluating the expressions '
- 'one\n'
- 'by one until one is found to be true (see section Boolean operations\n'
- 'for the definition of true and false); then that suite is executed\n'
- '(and no other part of the "if" statement is executed or evaluated).\n'
- 'If all expressions are false, the suite of the "else" clause, if\n'
- 'present, is executed.\n',
- 'imaginary': 'Imaginary literals\n'
- '******************\n'
- '\n'
- 'Imaginary literals are described by the following lexical '
- 'definitions:\n'
- '\n'
- ' imagnumber ::= (floatnumber | digitpart) ("j" | "J")\n'
- '\n'
- 'An imaginary literal yields a complex number with a real part '
- 'of 0.0.\n'
- 'Complex numbers are represented as a pair of floating point '
- 'numbers\n'
- 'and have the same restrictions on their range. To create a '
- 'complex\n'
- 'number with a nonzero real part, add a floating point number to '
- 'it,\n'
- 'e.g., "(3+4j)". Some examples of imaginary literals:\n'
- '\n'
- ' 3.14j 10.j 10j .001j 1e100j 3.14e-10j '
- '3.14_15_93j\n',
- 'import': 'The "import" statement\n'
- '**********************\n'
- '\n'
- ' import_stmt ::= "import" module ["as" identifier] ("," '
- 'module ["as" identifier])*\n'
- ' | "from" relative_module "import" identifier '
- '["as" identifier]\n'
- ' ("," identifier ["as" identifier])*\n'
- ' | "from" relative_module "import" "(" '
- 'identifier ["as" identifier]\n'
- ' ("," identifier ["as" identifier])* [","] ")"\n'
+ ' ["else" ":" suite]\n'
+ '\n'
+ 'It selects exactly one of the suites by evaluating the expressions '
+ 'one\n'
+ 'by one until one is found to be true (see section Boolean operations\n'
+ 'for the definition of true and false); then that suite is executed\n'
+ '(and no other part of the "if" statement is executed or evaluated).\n'
+ 'If all expressions are false, the suite of the "else" clause, if\n'
+ 'present, is executed.\n',
+ 'imaginary': 'Imaginary literals\n'
+ '******************\n'
+ '\n'
+ 'Imaginary literals are described by the following lexical '
+ 'definitions:\n'
+ '\n'
+ ' imagnumber ::= (floatnumber | digitpart) ("j" | "J")\n'
+ '\n'
+ 'An imaginary literal yields a complex number with a real part '
+ 'of 0.0.\n'
+ 'Complex numbers are represented as a pair of floating point '
+ 'numbers\n'
+ 'and have the same restrictions on their range. To create a '
+ 'complex\n'
+ 'number with a nonzero real part, add a floating point number to '
+ 'it,\n'
+ 'e.g., "(3+4j)". Some examples of imaginary literals:\n'
+ '\n'
+ ' 3.14j 10.j 10j .001j 1e100j 3.14e-10j '
+ '3.14_15_93j\n',
+ 'import': 'The "import" statement\n'
+ '**********************\n'
+ '\n'
+ ' import_stmt ::= "import" module ["as" identifier] ("," '
+ 'module ["as" identifier])*\n'
+ ' | "from" relative_module "import" identifier '
+ '["as" identifier]\n'
+ ' ("," identifier ["as" identifier])*\n'
+ ' | "from" relative_module "import" "(" '
+ 'identifier ["as" identifier]\n'
+ ' ("," identifier ["as" identifier])* [","] ")"\n'
' | "from" relative_module "import" "*"\n'
- ' module ::= (identifier ".")* identifier\n'
- ' relative_module ::= "."* module | "."+\n'
- '\n'
- 'The basic import statement (no "from" clause) is executed in two\n'
- 'steps:\n'
- '\n'
- '1. find a module, loading and initializing it if necessary\n'
- '\n'
+ ' module ::= (identifier ".")* identifier\n'
+ ' relative_module ::= "."* module | "."+\n'
+ '\n'
+ 'The basic import statement (no "from" clause) is executed in two\n'
+ 'steps:\n'
+ '\n'
+ '1. find a module, loading and initializing it if necessary\n'
+ '\n'
'2. define a name or names in the local namespace for the scope '
'where\n'
' the "import" statement occurs.\n'
- '\n'
- 'When the statement contains multiple clauses (separated by commas) '
- 'the\n'
- 'two steps are carried out separately for each clause, just as '
- 'though\n'
- 'the clauses had been separated out into individual import '
- 'statements.\n'
- '\n'
- 'The details of the first step, finding and loading modules are\n'
- 'described in greater detail in the section on the import system, '
- 'which\n'
- 'also describes the various types of packages and modules that can '
- 'be\n'
- 'imported, as well as all the hooks that can be used to customize '
- 'the\n'
- 'import system. Note that failures in this step may indicate '
- 'either\n'
- 'that the module could not be located, *or* that an error occurred\n'
- 'while initializing the module, which includes execution of the\n'
- 'module’s code.\n'
- '\n'
- 'If the requested module is retrieved successfully, it will be '
- 'made\n'
- 'available in the local namespace in one of three ways:\n'
- '\n'
+ '\n'
+ 'When the statement contains multiple clauses (separated by commas) '
+ 'the\n'
+ 'two steps are carried out separately for each clause, just as '
+ 'though\n'
+ 'the clauses had been separated out into individual import '
+ 'statements.\n'
+ '\n'
+ 'The details of the first step, finding and loading modules are\n'
+ 'described in greater detail in the section on the import system, '
+ 'which\n'
+ 'also describes the various types of packages and modules that can '
+ 'be\n'
+ 'imported, as well as all the hooks that can be used to customize '
+ 'the\n'
+ 'import system. Note that failures in this step may indicate '
+ 'either\n'
+ 'that the module could not be located, *or* that an error occurred\n'
+ 'while initializing the module, which includes execution of the\n'
+ 'module’s code.\n'
+ '\n'
+ 'If the requested module is retrieved successfully, it will be '
+ 'made\n'
+ 'available in the local namespace in one of three ways:\n'
+ '\n'
'* If the module name is followed by "as", then the name following '
'"as"\n'
' is bound directly to the imported module.\n'
- '\n'
- '* If no other name is specified, and the module being imported is '
- 'a\n'
- ' top level module, the module’s name is bound in the local '
- 'namespace\n'
- ' as a reference to the imported module\n'
- '\n'
- '* If the module being imported is *not* a top level module, then '
- 'the\n'
- ' name of the top level package that contains the module is bound '
- 'in\n'
- ' the local namespace as a reference to the top level package. '
- 'The\n'
- ' imported module must be accessed using its full qualified name\n'
- ' rather than directly\n'
- '\n'
- 'The "from" form uses a slightly more complex process:\n'
- '\n'
- '1. find the module specified in the "from" clause, loading and\n'
- ' initializing it if necessary;\n'
- '\n'
- '2. for each of the identifiers specified in the "import" clauses:\n'
- '\n'
- ' 1. check if the imported module has an attribute by that name\n'
- '\n'
- ' 2. if not, attempt to import a submodule with that name and '
- 'then\n'
- ' check the imported module again for that attribute\n'
- '\n'
- ' 3. if the attribute is not found, "ImportError" is raised.\n'
- '\n'
- ' 4. otherwise, a reference to that value is stored in the local\n'
- ' namespace, using the name in the "as" clause if it is '
- 'present,\n'
- ' otherwise using the attribute name\n'
- '\n'
- 'Examples:\n'
- '\n'
- ' import foo # foo imported and bound locally\n'
- ' import foo.bar.baz # foo.bar.baz imported, foo bound '
- 'locally\n'
- ' import foo.bar.baz as fbb # foo.bar.baz imported and bound as '
- 'fbb\n'
- ' from foo.bar import baz # foo.bar.baz imported and bound as '
- 'baz\n'
- ' from foo import attr # foo imported and foo.attr bound as '
- 'attr\n'
- '\n'
- 'If the list of identifiers is replaced by a star ("\'*\'"), all '
- 'public\n'
- 'names defined in the module are bound in the local namespace for '
- 'the\n'
- 'scope where the "import" statement occurs.\n'
- '\n'
- 'The *public names* defined by a module are determined by checking '
- 'the\n'
- 'module’s namespace for a variable named "__all__"; if defined, it '
- 'must\n'
- 'be a sequence of strings which are names defined or imported by '
- 'that\n'
- 'module. The names given in "__all__" are all considered public '
- 'and\n'
- 'are required to exist. If "__all__" is not defined, the set of '
- 'public\n'
- 'names includes all names found in the module’s namespace which do '
- 'not\n'
- 'begin with an underscore character ("\'_\'"). "__all__" should '
- 'contain\n'
- 'the entire public API. It is intended to avoid accidentally '
- 'exporting\n'
- 'items that are not part of the API (such as library modules which '
- 'were\n'
- 'imported and used within the module).\n'
- '\n'
- 'The wild card form of import — "from module import *" — is only\n'
- 'allowed at the module level. Attempting to use it in class or\n'
- 'function definitions will raise a "SyntaxError".\n'
- '\n'
- 'When specifying what module to import you do not have to specify '
- 'the\n'
- 'absolute name of the module. When a module or package is '
- 'contained\n'
- 'within another package it is possible to make a relative import '
- 'within\n'
- 'the same top package without having to mention the package name. '
- 'By\n'
- 'using leading dots in the specified module or package after "from" '
- 'you\n'
- 'can specify how high to traverse up the current package hierarchy\n'
- 'without specifying exact names. One leading dot means the current\n'
- 'package where the module making the import exists. Two dots means '
- 'up\n'
- 'one package level. Three dots is up two levels, etc. So if you '
- 'execute\n'
- '"from . import mod" from a module in the "pkg" package then you '
- 'will\n'
- 'end up importing "pkg.mod". If you execute "from ..subpkg2 import '
- 'mod"\n'
- 'from within "pkg.subpkg1" you will import "pkg.subpkg2.mod". The\n'
+ '\n'
+ '* If no other name is specified, and the module being imported is '
+ 'a\n'
+ ' top level module, the module’s name is bound in the local '
+ 'namespace\n'
+ ' as a reference to the imported module\n'
+ '\n'
+ '* If the module being imported is *not* a top level module, then '
+ 'the\n'
+ ' name of the top level package that contains the module is bound '
+ 'in\n'
+ ' the local namespace as a reference to the top level package. '
+ 'The\n'
+ ' imported module must be accessed using its full qualified name\n'
+ ' rather than directly\n'
+ '\n'
+ 'The "from" form uses a slightly more complex process:\n'
+ '\n'
+ '1. find the module specified in the "from" clause, loading and\n'
+ ' initializing it if necessary;\n'
+ '\n'
+ '2. for each of the identifiers specified in the "import" clauses:\n'
+ '\n'
+ ' 1. check if the imported module has an attribute by that name\n'
+ '\n'
+ ' 2. if not, attempt to import a submodule with that name and '
+ 'then\n'
+ ' check the imported module again for that attribute\n'
+ '\n'
+ ' 3. if the attribute is not found, "ImportError" is raised.\n'
+ '\n'
+ ' 4. otherwise, a reference to that value is stored in the local\n'
+ ' namespace, using the name in the "as" clause if it is '
+ 'present,\n'
+ ' otherwise using the attribute name\n'
+ '\n'
+ 'Examples:\n'
+ '\n'
+ ' import foo # foo imported and bound locally\n'
+ ' import foo.bar.baz # foo.bar.baz imported, foo bound '
+ 'locally\n'
+ ' import foo.bar.baz as fbb # foo.bar.baz imported and bound as '
+ 'fbb\n'
+ ' from foo.bar import baz # foo.bar.baz imported and bound as '
+ 'baz\n'
+ ' from foo import attr # foo imported and foo.attr bound as '
+ 'attr\n'
+ '\n'
+ 'If the list of identifiers is replaced by a star ("\'*\'"), all '
+ 'public\n'
+ 'names defined in the module are bound in the local namespace for '
+ 'the\n'
+ 'scope where the "import" statement occurs.\n'
+ '\n'
+ 'The *public names* defined by a module are determined by checking '
+ 'the\n'
+ 'module’s namespace for a variable named "__all__"; if defined, it '
+ 'must\n'
+ 'be a sequence of strings which are names defined or imported by '
+ 'that\n'
+ 'module. The names given in "__all__" are all considered public '
+ 'and\n'
+ 'are required to exist. If "__all__" is not defined, the set of '
+ 'public\n'
+ 'names includes all names found in the module’s namespace which do '
+ 'not\n'
+ 'begin with an underscore character ("\'_\'"). "__all__" should '
+ 'contain\n'
+ 'the entire public API. It is intended to avoid accidentally '
+ 'exporting\n'
+ 'items that are not part of the API (such as library modules which '
+ 'were\n'
+ 'imported and used within the module).\n'
+ '\n'
+ 'The wild card form of import — "from module import *" — is only\n'
+ 'allowed at the module level. Attempting to use it in class or\n'
+ 'function definitions will raise a "SyntaxError".\n'
+ '\n'
+ 'When specifying what module to import you do not have to specify '
+ 'the\n'
+ 'absolute name of the module. When a module or package is '
+ 'contained\n'
+ 'within another package it is possible to make a relative import '
+ 'within\n'
+ 'the same top package without having to mention the package name. '
+ 'By\n'
+ 'using leading dots in the specified module or package after "from" '
+ 'you\n'
+ 'can specify how high to traverse up the current package hierarchy\n'
+ 'without specifying exact names. One leading dot means the current\n'
+ 'package where the module making the import exists. Two dots means '
+ 'up\n'
+ 'one package level. Three dots is up two levels, etc. So if you '
+ 'execute\n'
+ '"from . import mod" from a module in the "pkg" package then you '
+ 'will\n'
+ 'end up importing "pkg.mod". If you execute "from ..subpkg2 import '
+ 'mod"\n'
+ 'from within "pkg.subpkg1" you will import "pkg.subpkg2.mod". The\n'
'specification for relative imports is contained in the Package\n'
'Relative Imports section.\n'
- '\n'
- '"importlib.import_module()" is provided to support applications '
- 'that\n'
- 'determine dynamically the modules to be loaded.\n'
- '\n'
+ '\n'
+ '"importlib.import_module()" is provided to support applications '
+ 'that\n'
+ 'determine dynamically the modules to be loaded.\n'
+ '\n'
'Raises an auditing event "import" with arguments "module", '
'"filename",\n'
'"sys.path", "sys.meta_path", "sys.path_hooks".\n'
- '\n'
'\n'
- 'Future statements\n'
- '=================\n'
- '\n'
- 'A *future statement* is a directive to the compiler that a '
- 'particular\n'
- 'module should be compiled using syntax or semantics that will be\n'
- 'available in a specified future release of Python where the '
- 'feature\n'
- 'becomes standard.\n'
- '\n'
- 'The future statement is intended to ease migration to future '
- 'versions\n'
- 'of Python that introduce incompatible changes to the language. '
- 'It\n'
- 'allows use of the new features on a per-module basis before the\n'
- 'release in which the feature becomes standard.\n'
- '\n'
- ' future_stmt ::= "from" "__future__" "import" feature ["as" '
- 'identifier]\n'
- ' ("," feature ["as" identifier])*\n'
- ' | "from" "__future__" "import" "(" feature '
- '["as" identifier]\n'
- ' ("," feature ["as" identifier])* [","] ")"\n'
- ' feature ::= identifier\n'
- '\n'
- 'A future statement must appear near the top of the module. The '
- 'only\n'
- 'lines that can appear before a future statement are:\n'
- '\n'
- '* the module docstring (if any),\n'
- '\n'
- '* comments,\n'
- '\n'
- '* blank lines, and\n'
- '\n'
- '* other future statements.\n'
- '\n'
+ '\n'
+ 'Future statements\n'
+ '=================\n'
+ '\n'
+ 'A *future statement* is a directive to the compiler that a '
+ 'particular\n'
+ 'module should be compiled using syntax or semantics that will be\n'
+ 'available in a specified future release of Python where the '
+ 'feature\n'
+ 'becomes standard.\n'
+ '\n'
+ 'The future statement is intended to ease migration to future '
+ 'versions\n'
+ 'of Python that introduce incompatible changes to the language. '
+ 'It\n'
+ 'allows use of the new features on a per-module basis before the\n'
+ 'release in which the feature becomes standard.\n'
+ '\n'
+ ' future_stmt ::= "from" "__future__" "import" feature ["as" '
+ 'identifier]\n'
+ ' ("," feature ["as" identifier])*\n'
+ ' | "from" "__future__" "import" "(" feature '
+ '["as" identifier]\n'
+ ' ("," feature ["as" identifier])* [","] ")"\n'
+ ' feature ::= identifier\n'
+ '\n'
+ 'A future statement must appear near the top of the module. The '
+ 'only\n'
+ 'lines that can appear before a future statement are:\n'
+ '\n'
+ '* the module docstring (if any),\n'
+ '\n'
+ '* comments,\n'
+ '\n'
+ '* blank lines, and\n'
+ '\n'
+ '* other future statements.\n'
+ '\n'
'The only feature that requires using the future statement is\n'
'"annotations" (see **PEP 563**).\n'
- '\n'
- 'All historical features enabled by the future statement are still\n'
- 'recognized by Python 3. The list includes "absolute_import",\n'
- '"division", "generators", "generator_stop", "unicode_literals",\n'
- '"print_function", "nested_scopes" and "with_statement". They are '
- 'all\n'
- 'redundant because they are always enabled, and only kept for '
- 'backwards\n'
- 'compatibility.\n'
- '\n'
- 'A future statement is recognized and treated specially at compile\n'
- 'time: Changes to the semantics of core constructs are often\n'
- 'implemented by generating different code. It may even be the '
- 'case\n'
- 'that a new feature introduces new incompatible syntax (such as a '
- 'new\n'
- 'reserved word), in which case the compiler may need to parse the\n'
- 'module differently. Such decisions cannot be pushed off until\n'
- 'runtime.\n'
- '\n'
- 'For any given release, the compiler knows which feature names '
- 'have\n'
- 'been defined, and raises a compile-time error if a future '
- 'statement\n'
- 'contains a feature not known to it.\n'
- '\n'
- 'The direct runtime semantics are the same as for any import '
- 'statement:\n'
- 'there is a standard module "__future__", described later, and it '
- 'will\n'
- 'be imported in the usual way at the time the future statement is\n'
- 'executed.\n'
- '\n'
- 'The interesting runtime semantics depend on the specific feature\n'
- 'enabled by the future statement.\n'
- '\n'
- 'Note that there is nothing special about the statement:\n'
- '\n'
- ' import __future__ [as name]\n'
- '\n'
- 'That is not a future statement; it’s an ordinary import statement '
- 'with\n'
- 'no special semantics or syntax restrictions.\n'
- '\n'
- 'Code compiled by calls to the built-in functions "exec()" and\n'
- '"compile()" that occur in a module "M" containing a future '
- 'statement\n'
- 'will, by default, use the new syntax or semantics associated with '
- 'the\n'
- 'future statement. This can be controlled by optional arguments '
- 'to\n'
- '"compile()" — see the documentation of that function for details.\n'
- '\n'
- 'A future statement typed at an interactive interpreter prompt '
- 'will\n'
- 'take effect for the rest of the interpreter session. If an\n'
- 'interpreter is started with the "-i" option, is passed a script '
- 'name\n'
- 'to execute, and the script includes a future statement, it will be '
- 'in\n'
- 'effect in the interactive session started after the script is\n'
- 'executed.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 236** - Back to the __future__\n'
- ' The original proposal for the __future__ mechanism.\n',
- 'in': 'Membership test operations\n'
- '**************************\n'
- '\n'
- 'The operators "in" and "not in" test for membership. "x in s"\n'
- 'evaluates to "True" if *x* is a member of *s*, and "False" otherwise.\n'
- '"x not in s" returns the negation of "x in s". All built-in '
- 'sequences\n'
- 'and set types support this as well as dictionary, for which "in" '
- 'tests\n'
- 'whether the dictionary has a given key. For container types such as\n'
- 'list, tuple, set, frozenset, dict, or collections.deque, the\n'
- 'expression "x in y" is equivalent to "any(x is e or x == e for e in\n'
- 'y)".\n'
- '\n'
- 'For the string and bytes types, "x in y" is "True" if and only if *x*\n'
- 'is a substring of *y*. An equivalent test is "y.find(x) != -1".\n'
- 'Empty strings are always considered to be a substring of any other\n'
- 'string, so """ in "abc"" will return "True".\n'
- '\n'
- 'For user-defined classes which define the "__contains__()" method, "x\n'
- 'in y" returns "True" if "y.__contains__(x)" returns a true value, and\n'
- '"False" otherwise.\n'
- '\n'
- 'For user-defined classes which do not define "__contains__()" but do\n'
+ '\n'
+ 'All historical features enabled by the future statement are still\n'
+ 'recognized by Python 3. The list includes "absolute_import",\n'
+ '"division", "generators", "generator_stop", "unicode_literals",\n'
+ '"print_function", "nested_scopes" and "with_statement". They are '
+ 'all\n'
+ 'redundant because they are always enabled, and only kept for '
+ 'backwards\n'
+ 'compatibility.\n'
+ '\n'
+ 'A future statement is recognized and treated specially at compile\n'
+ 'time: Changes to the semantics of core constructs are often\n'
+ 'implemented by generating different code. It may even be the '
+ 'case\n'
+ 'that a new feature introduces new incompatible syntax (such as a '
+ 'new\n'
+ 'reserved word), in which case the compiler may need to parse the\n'
+ 'module differently. Such decisions cannot be pushed off until\n'
+ 'runtime.\n'
+ '\n'
+ 'For any given release, the compiler knows which feature names '
+ 'have\n'
+ 'been defined, and raises a compile-time error if a future '
+ 'statement\n'
+ 'contains a feature not known to it.\n'
+ '\n'
+ 'The direct runtime semantics are the same as for any import '
+ 'statement:\n'
+ 'there is a standard module "__future__", described later, and it '
+ 'will\n'
+ 'be imported in the usual way at the time the future statement is\n'
+ 'executed.\n'
+ '\n'
+ 'The interesting runtime semantics depend on the specific feature\n'
+ 'enabled by the future statement.\n'
+ '\n'
+ 'Note that there is nothing special about the statement:\n'
+ '\n'
+ ' import __future__ [as name]\n'
+ '\n'
+ 'That is not a future statement; it’s an ordinary import statement '
+ 'with\n'
+ 'no special semantics or syntax restrictions.\n'
+ '\n'
+ 'Code compiled by calls to the built-in functions "exec()" and\n'
+ '"compile()" that occur in a module "M" containing a future '
+ 'statement\n'
+ 'will, by default, use the new syntax or semantics associated with '
+ 'the\n'
+ 'future statement. This can be controlled by optional arguments '
+ 'to\n'
+ '"compile()" — see the documentation of that function for details.\n'
+ '\n'
+ 'A future statement typed at an interactive interpreter prompt '
+ 'will\n'
+ 'take effect for the rest of the interpreter session. If an\n'
+ 'interpreter is started with the "-i" option, is passed a script '
+ 'name\n'
+ 'to execute, and the script includes a future statement, it will be '
+ 'in\n'
+ 'effect in the interactive session started after the script is\n'
+ 'executed.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 236** - Back to the __future__\n'
+ ' The original proposal for the __future__ mechanism.\n',
+ 'in': 'Membership test operations\n'
+ '**************************\n'
+ '\n'
+ 'The operators "in" and "not in" test for membership. "x in s"\n'
+ 'evaluates to "True" if *x* is a member of *s*, and "False" otherwise.\n'
+ '"x not in s" returns the negation of "x in s". All built-in '
+ 'sequences\n'
+ 'and set types support this as well as dictionary, for which "in" '
+ 'tests\n'
+ 'whether the dictionary has a given key. For container types such as\n'
+ 'list, tuple, set, frozenset, dict, or collections.deque, the\n'
+ 'expression "x in y" is equivalent to "any(x is e or x == e for e in\n'
+ 'y)".\n'
+ '\n'
+ 'For the string and bytes types, "x in y" is "True" if and only if *x*\n'
+ 'is a substring of *y*. An equivalent test is "y.find(x) != -1".\n'
+ 'Empty strings are always considered to be a substring of any other\n'
+ 'string, so """ in "abc"" will return "True".\n'
+ '\n'
+ 'For user-defined classes which define the "__contains__()" method, "x\n'
+ 'in y" returns "True" if "y.__contains__(x)" returns a true value, and\n'
+ '"False" otherwise.\n'
+ '\n'
+ 'For user-defined classes which do not define "__contains__()" but do\n'
'define "__iter__()", "x in y" is "True" if some value "z", for which\n'
'the expression "x is z or x == z" is true, is produced while '
'iterating\n'
'over "y". If an exception is raised during the iteration, it is as if\n'
'"in" raised that exception.\n'
- '\n'
- 'Lastly, the old-style iteration protocol is tried: if a class defines\n'
- '"__getitem__()", "x in y" is "True" if and only if there is a non-\n'
+ '\n'
+ 'Lastly, the old-style iteration protocol is tried: if a class defines\n'
+ '"__getitem__()", "x in y" is "True" if and only if there is a non-\n'
'negative integer index *i* such that "x is y[i] or x == y[i]", and no\n'
'lower integer index raises the "IndexError" exception. (If any other\n'
- 'exception is raised, it is as if "in" raised that exception).\n'
- '\n'
+ 'exception is raised, it is as if "in" raised that exception).\n'
+ '\n'
'The operator "not in" is defined to have the inverse truth value of\n'
- '"in".\n',
- 'integers': 'Integer literals\n'
- '****************\n'
- '\n'
- 'Integer literals are described by the following lexical '
- 'definitions:\n'
- '\n'
- ' integer ::= decinteger | bininteger | octinteger | '
- 'hexinteger\n'
- ' decinteger ::= nonzerodigit (["_"] digit)* | "0"+ (["_"] '
- '"0")*\n'
- ' bininteger ::= "0" ("b" | "B") (["_"] bindigit)+\n'
- ' octinteger ::= "0" ("o" | "O") (["_"] octdigit)+\n'
- ' hexinteger ::= "0" ("x" | "X") (["_"] hexdigit)+\n'
- ' nonzerodigit ::= "1"..."9"\n'
- ' digit ::= "0"..."9"\n'
- ' bindigit ::= "0" | "1"\n'
- ' octdigit ::= "0"..."7"\n'
- ' hexdigit ::= digit | "a"..."f" | "A"..."F"\n'
- '\n'
- 'There is no limit for the length of integer literals apart from '
- 'what\n'
- 'can be stored in available memory.\n'
- '\n'
- 'Underscores are ignored for determining the numeric value of '
- 'the\n'
- 'literal. They can be used to group digits for enhanced '
- 'readability.\n'
- 'One underscore can occur between digits, and after base '
- 'specifiers\n'
- 'like "0x".\n'
- '\n'
- 'Note that leading zeros in a non-zero decimal number are not '
- 'allowed.\n'
- 'This is for disambiguation with C-style octal literals, which '
- 'Python\n'
- 'used before version 3.0.\n'
- '\n'
- 'Some examples of integer literals:\n'
- '\n'
- ' 7 2147483647 0o177 0b100110111\n'
- ' 3 79228162514264337593543950336 0o377 0xdeadbeef\n'
- ' 100_000_000_000 0b_1110_0101\n'
- '\n'
- 'Changed in version 3.6: Underscores are now allowed for '
- 'grouping\n'
- 'purposes in literals.\n',
- 'lambda': 'Lambdas\n'
- '*******\n'
- '\n'
+ '"in".\n',
+ 'integers': 'Integer literals\n'
+ '****************\n'
+ '\n'
+ 'Integer literals are described by the following lexical '
+ 'definitions:\n'
+ '\n'
+ ' integer ::= decinteger | bininteger | octinteger | '
+ 'hexinteger\n'
+ ' decinteger ::= nonzerodigit (["_"] digit)* | "0"+ (["_"] '
+ '"0")*\n'
+ ' bininteger ::= "0" ("b" | "B") (["_"] bindigit)+\n'
+ ' octinteger ::= "0" ("o" | "O") (["_"] octdigit)+\n'
+ ' hexinteger ::= "0" ("x" | "X") (["_"] hexdigit)+\n'
+ ' nonzerodigit ::= "1"..."9"\n'
+ ' digit ::= "0"..."9"\n'
+ ' bindigit ::= "0" | "1"\n'
+ ' octdigit ::= "0"..."7"\n'
+ ' hexdigit ::= digit | "a"..."f" | "A"..."F"\n'
+ '\n'
+ 'There is no limit for the length of integer literals apart from '
+ 'what\n'
+ 'can be stored in available memory.\n'
+ '\n'
+ 'Underscores are ignored for determining the numeric value of '
+ 'the\n'
+ 'literal. They can be used to group digits for enhanced '
+ 'readability.\n'
+ 'One underscore can occur between digits, and after base '
+ 'specifiers\n'
+ 'like "0x".\n'
+ '\n'
+ 'Note that leading zeros in a non-zero decimal number are not '
+ 'allowed.\n'
+ 'This is for disambiguation with C-style octal literals, which '
+ 'Python\n'
+ 'used before version 3.0.\n'
+ '\n'
+ 'Some examples of integer literals:\n'
+ '\n'
+ ' 7 2147483647 0o177 0b100110111\n'
+ ' 3 79228162514264337593543950336 0o377 0xdeadbeef\n'
+ ' 100_000_000_000 0b_1110_0101\n'
+ '\n'
+ 'Changed in version 3.6: Underscores are now allowed for '
+ 'grouping\n'
+ 'purposes in literals.\n',
+ 'lambda': 'Lambdas\n'
+ '*******\n'
+ '\n'
' lambda_expr ::= "lambda" [parameter_list] ":" expression\n'
- '\n'
- 'Lambda expressions (sometimes called lambda forms) are used to '
- 'create\n'
- 'anonymous functions. The expression "lambda parameters: '
- 'expression"\n'
- 'yields a function object. The unnamed object behaves like a '
- 'function\n'
- 'object defined with:\n'
- '\n'
- ' def <lambda>(parameters):\n'
- ' return expression\n'
- '\n'
- 'See section Function definitions for the syntax of parameter '
- 'lists.\n'
- 'Note that functions created with lambda expressions cannot '
- 'contain\n'
- 'statements or annotations.\n',
- 'lists': 'List displays\n'
- '*************\n'
- '\n'
- 'A list display is a possibly empty series of expressions enclosed '
- 'in\n'
- 'square brackets:\n'
- '\n'
- ' list_display ::= "[" [starred_list | comprehension] "]"\n'
- '\n'
- 'A list display yields a new list object, the contents being '
- 'specified\n'
- 'by either a list of expressions or a comprehension. When a comma-\n'
- 'separated list of expressions is supplied, its elements are '
- 'evaluated\n'
- 'from left to right and placed into the list object in that order.\n'
- 'When a comprehension is supplied, the list is constructed from the\n'
- 'elements resulting from the comprehension.\n',
- 'naming': 'Naming and binding\n'
- '******************\n'
- '\n'
- '\n'
- 'Binding of names\n'
- '================\n'
- '\n'
- '*Names* refer to objects. Names are introduced by name binding\n'
- 'operations.\n'
- '\n'
- 'The following constructs bind names: formal parameters to '
- 'functions,\n'
- '"import" statements, class and function definitions (these bind '
- 'the\n'
- 'class or function name in the defining block), and targets that '
- 'are\n'
- 'identifiers if occurring in an assignment, "for" loop header, or '
- 'after\n'
- '"as" in a "with" statement or "except" clause. The "import" '
- 'statement\n'
- 'of the form "from ... import *" binds all names defined in the\n'
- 'imported module, except those beginning with an underscore. This '
- 'form\n'
- 'may only be used at the module level.\n'
- '\n'
- 'A target occurring in a "del" statement is also considered bound '
- 'for\n'
- 'this purpose (though the actual semantics are to unbind the '
- 'name).\n'
- '\n'
- 'Each assignment or import statement occurs within a block defined '
- 'by a\n'
- 'class or function definition or at the module level (the '
- 'top-level\n'
- 'code block).\n'
- '\n'
- 'If a name is bound in a block, it is a local variable of that '
- 'block,\n'
- 'unless declared as "nonlocal" or "global". If a name is bound at '
- 'the\n'
- 'module level, it is a global variable. (The variables of the '
- 'module\n'
- 'code block are local and global.) If a variable is used in a '
- 'code\n'
- 'block but not defined there, it is a *free variable*.\n'
- '\n'
- 'Each occurrence of a name in the program text refers to the '
- '*binding*\n'
- 'of that name established by the following name resolution rules.\n'
- '\n'
- '\n'
- 'Resolution of names\n'
- '===================\n'
- '\n'
- 'A *scope* defines the visibility of a name within a block. If a '
- 'local\n'
- 'variable is defined in a block, its scope includes that block. If '
- 'the\n'
- 'definition occurs in a function block, the scope extends to any '
- 'blocks\n'
- 'contained within the defining one, unless a contained block '
- 'introduces\n'
- 'a different binding for the name.\n'
- '\n'
- 'When a name is used in a code block, it is resolved using the '
- 'nearest\n'
- 'enclosing scope. The set of all such scopes visible to a code '
- 'block\n'
- 'is called the block’s *environment*.\n'
- '\n'
- 'When a name is not found at all, a "NameError" exception is '
- 'raised. If\n'
- 'the current scope is a function scope, and the name refers to a '
- 'local\n'
- 'variable that has not yet been bound to a value at the point where '
- 'the\n'
- 'name is used, an "UnboundLocalError" exception is raised.\n'
- '"UnboundLocalError" is a subclass of "NameError".\n'
- '\n'
- 'If a name binding operation occurs anywhere within a code block, '
- 'all\n'
- 'uses of the name within the block are treated as references to '
- 'the\n'
- 'current block. This can lead to errors when a name is used within '
- 'a\n'
- 'block before it is bound. This rule is subtle. Python lacks\n'
- 'declarations and allows name binding operations to occur anywhere\n'
- 'within a code block. The local variables of a code block can be\n'
- 'determined by scanning the entire text of the block for name '
- 'binding\n'
- 'operations.\n'
- '\n'
- 'If the "global" statement occurs within a block, all uses of the '
+ '\n'
+ 'Lambda expressions (sometimes called lambda forms) are used to '
+ 'create\n'
+ 'anonymous functions. The expression "lambda parameters: '
+ 'expression"\n'
+ 'yields a function object. The unnamed object behaves like a '
+ 'function\n'
+ 'object defined with:\n'
+ '\n'
+ ' def <lambda>(parameters):\n'
+ ' return expression\n'
+ '\n'
+ 'See section Function definitions for the syntax of parameter '
+ 'lists.\n'
+ 'Note that functions created with lambda expressions cannot '
+ 'contain\n'
+ 'statements or annotations.\n',
+ 'lists': 'List displays\n'
+ '*************\n'
+ '\n'
+ 'A list display is a possibly empty series of expressions enclosed '
+ 'in\n'
+ 'square brackets:\n'
+ '\n'
+ ' list_display ::= "[" [starred_list | comprehension] "]"\n'
+ '\n'
+ 'A list display yields a new list object, the contents being '
+ 'specified\n'
+ 'by either a list of expressions or a comprehension. When a comma-\n'
+ 'separated list of expressions is supplied, its elements are '
+ 'evaluated\n'
+ 'from left to right and placed into the list object in that order.\n'
+ 'When a comprehension is supplied, the list is constructed from the\n'
+ 'elements resulting from the comprehension.\n',
+ 'naming': 'Naming and binding\n'
+ '******************\n'
+ '\n'
+ '\n'
+ 'Binding of names\n'
+ '================\n'
+ '\n'
+ '*Names* refer to objects. Names are introduced by name binding\n'
+ 'operations.\n'
+ '\n'
+ 'The following constructs bind names: formal parameters to '
+ 'functions,\n'
+ '"import" statements, class and function definitions (these bind '
+ 'the\n'
+ 'class or function name in the defining block), and targets that '
+ 'are\n'
+ 'identifiers if occurring in an assignment, "for" loop header, or '
+ 'after\n'
+ '"as" in a "with" statement or "except" clause. The "import" '
+ 'statement\n'
+ 'of the form "from ... import *" binds all names defined in the\n'
+ 'imported module, except those beginning with an underscore. This '
+ 'form\n'
+ 'may only be used at the module level.\n'
+ '\n'
+ 'A target occurring in a "del" statement is also considered bound '
+ 'for\n'
+ 'this purpose (though the actual semantics are to unbind the '
+ 'name).\n'
+ '\n'
+ 'Each assignment or import statement occurs within a block defined '
+ 'by a\n'
+ 'class or function definition or at the module level (the '
+ 'top-level\n'
+ 'code block).\n'
+ '\n'
+ 'If a name is bound in a block, it is a local variable of that '
+ 'block,\n'
+ 'unless declared as "nonlocal" or "global". If a name is bound at '
+ 'the\n'
+ 'module level, it is a global variable. (The variables of the '
+ 'module\n'
+ 'code block are local and global.) If a variable is used in a '
+ 'code\n'
+ 'block but not defined there, it is a *free variable*.\n'
+ '\n'
+ 'Each occurrence of a name in the program text refers to the '
+ '*binding*\n'
+ 'of that name established by the following name resolution rules.\n'
+ '\n'
+ '\n'
+ 'Resolution of names\n'
+ '===================\n'
+ '\n'
+ 'A *scope* defines the visibility of a name within a block. If a '
+ 'local\n'
+ 'variable is defined in a block, its scope includes that block. If '
+ 'the\n'
+ 'definition occurs in a function block, the scope extends to any '
+ 'blocks\n'
+ 'contained within the defining one, unless a contained block '
+ 'introduces\n'
+ 'a different binding for the name.\n'
+ '\n'
+ 'When a name is used in a code block, it is resolved using the '
+ 'nearest\n'
+ 'enclosing scope. The set of all such scopes visible to a code '
+ 'block\n'
+ 'is called the block’s *environment*.\n'
+ '\n'
+ 'When a name is not found at all, a "NameError" exception is '
+ 'raised. If\n'
+ 'the current scope is a function scope, and the name refers to a '
+ 'local\n'
+ 'variable that has not yet been bound to a value at the point where '
+ 'the\n'
+ 'name is used, an "UnboundLocalError" exception is raised.\n'
+ '"UnboundLocalError" is a subclass of "NameError".\n'
+ '\n'
+ 'If a name binding operation occurs anywhere within a code block, '
+ 'all\n'
+ 'uses of the name within the block are treated as references to '
+ 'the\n'
+ 'current block. This can lead to errors when a name is used within '
+ 'a\n'
+ 'block before it is bound. This rule is subtle. Python lacks\n'
+ 'declarations and allows name binding operations to occur anywhere\n'
+ 'within a code block. The local variables of a code block can be\n'
+ 'determined by scanning the entire text of the block for name '
+ 'binding\n'
+ 'operations.\n'
+ '\n'
+ 'If the "global" statement occurs within a block, all uses of the '
'names\n'
'specified in the statement refer to the bindings of those names in '
- 'the\n'
- 'top-level namespace. Names are resolved in the top-level '
- 'namespace by\n'
- 'searching the global namespace, i.e. the namespace of the module\n'
- 'containing the code block, and the builtins namespace, the '
- 'namespace\n'
- 'of the module "builtins". The global namespace is searched '
- 'first. If\n'
+ 'the\n'
+ 'top-level namespace. Names are resolved in the top-level '
+ 'namespace by\n'
+ 'searching the global namespace, i.e. the namespace of the module\n'
+ 'containing the code block, and the builtins namespace, the '
+ 'namespace\n'
+ 'of the module "builtins". The global namespace is searched '
+ 'first. If\n'
'the names are not found there, the builtins namespace is '
'searched.\n'
'The "global" statement must precede all uses of the listed names.\n'
- '\n'
- 'The "global" statement has the same scope as a name binding '
- 'operation\n'
- 'in the same block. If the nearest enclosing scope for a free '
- 'variable\n'
- 'contains a global statement, the free variable is treated as a '
- 'global.\n'
- '\n'
- 'The "nonlocal" statement causes corresponding names to refer to\n'
- 'previously bound variables in the nearest enclosing function '
- 'scope.\n'
- '"SyntaxError" is raised at compile time if the given name does '
- 'not\n'
- 'exist in any enclosing function scope.\n'
- '\n'
- 'The namespace for a module is automatically created the first time '
- 'a\n'
- 'module is imported. The main module for a script is always '
- 'called\n'
- '"__main__".\n'
- '\n'
- 'Class definition blocks and arguments to "exec()" and "eval()" '
- 'are\n'
- 'special in the context of name resolution. A class definition is '
- 'an\n'
- 'executable statement that may use and define names. These '
- 'references\n'
- 'follow the normal rules for name resolution with an exception '
- 'that\n'
- 'unbound local variables are looked up in the global namespace. '
- 'The\n'
- 'namespace of the class definition becomes the attribute dictionary '
- 'of\n'
- 'the class. The scope of names defined in a class block is limited '
- 'to\n'
- 'the class block; it does not extend to the code blocks of methods '
- '–\n'
- 'this includes comprehensions and generator expressions since they '
- 'are\n'
- 'implemented using a function scope. This means that the '
- 'following\n'
- 'will fail:\n'
- '\n'
- ' class A:\n'
- ' a = 42\n'
- ' b = list(a + i for i in range(10))\n'
- '\n'
- '\n'
- 'Builtins and restricted execution\n'
- '=================================\n'
- '\n'
- '**CPython implementation detail:** Users should not touch\n'
- '"__builtins__"; it is strictly an implementation detail. Users\n'
- 'wanting to override values in the builtins namespace should '
- '"import"\n'
- 'the "builtins" module and modify its attributes appropriately.\n'
- '\n'
- 'The builtins namespace associated with the execution of a code '
- 'block\n'
- 'is actually found by looking up the name "__builtins__" in its '
- 'global\n'
- 'namespace; this should be a dictionary or a module (in the latter '
- 'case\n'
- 'the module’s dictionary is used). By default, when in the '
- '"__main__"\n'
- 'module, "__builtins__" is the built-in module "builtins"; when in '
- 'any\n'
- 'other module, "__builtins__" is an alias for the dictionary of '
- 'the\n'
- '"builtins" module itself.\n'
- '\n'
- '\n'
- 'Interaction with dynamic features\n'
- '=================================\n'
- '\n'
- 'Name resolution of free variables occurs at runtime, not at '
- 'compile\n'
- 'time. This means that the following code will print 42:\n'
- '\n'
- ' i = 10\n'
- ' def f():\n'
- ' print(i)\n'
- ' i = 42\n'
- ' f()\n'
- '\n'
- 'The "eval()" and "exec()" functions do not have access to the '
- 'full\n'
- 'environment for resolving names. Names may be resolved in the '
- 'local\n'
- 'and global namespaces of the caller. Free variables are not '
- 'resolved\n'
- 'in the nearest enclosing namespace, but in the global namespace. '
- '[1]\n'
- 'The "exec()" and "eval()" functions have optional arguments to\n'
- 'override the global and local namespace. If only one namespace '
- 'is\n'
- 'specified, it is used for both.\n',
- 'nonlocal': 'The "nonlocal" statement\n'
- '************************\n'
- '\n'
- ' nonlocal_stmt ::= "nonlocal" identifier ("," identifier)*\n'
- '\n'
- 'The "nonlocal" statement causes the listed identifiers to refer '
- 'to\n'
- 'previously bound variables in the nearest enclosing scope '
- 'excluding\n'
- 'globals. This is important because the default behavior for '
- 'binding is\n'
- 'to search the local namespace first. The statement allows\n'
- 'encapsulated code to rebind variables outside of the local '
- 'scope\n'
- 'besides the global (module) scope.\n'
- '\n'
- 'Names listed in a "nonlocal" statement, unlike those listed in '
- 'a\n'
- '"global" statement, must refer to pre-existing bindings in an\n'
- 'enclosing scope (the scope in which a new binding should be '
- 'created\n'
- 'cannot be determined unambiguously).\n'
- '\n'
- 'Names listed in a "nonlocal" statement must not collide with '
- 'pre-\n'
- 'existing bindings in the local scope.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 3104** - Access to Names in Outer Scopes\n'
- ' The specification for the "nonlocal" statement.\n',
- 'numbers': 'Numeric literals\n'
- '****************\n'
- '\n'
- 'There are three types of numeric literals: integers, floating '
- 'point\n'
- 'numbers, and imaginary numbers. There are no complex literals\n'
- '(complex numbers can be formed by adding a real number and an\n'
- 'imaginary number).\n'
- '\n'
- 'Note that numeric literals do not include a sign; a phrase like '
- '"-1"\n'
+ '\n'
+ 'The "global" statement has the same scope as a name binding '
+ 'operation\n'
+ 'in the same block. If the nearest enclosing scope for a free '
+ 'variable\n'
+ 'contains a global statement, the free variable is treated as a '
+ 'global.\n'
+ '\n'
+ 'The "nonlocal" statement causes corresponding names to refer to\n'
+ 'previously bound variables in the nearest enclosing function '
+ 'scope.\n'
+ '"SyntaxError" is raised at compile time if the given name does '
+ 'not\n'
+ 'exist in any enclosing function scope.\n'
+ '\n'
+ 'The namespace for a module is automatically created the first time '
+ 'a\n'
+ 'module is imported. The main module for a script is always '
+ 'called\n'
+ '"__main__".\n'
+ '\n'
+ 'Class definition blocks and arguments to "exec()" and "eval()" '
+ 'are\n'
+ 'special in the context of name resolution. A class definition is '
+ 'an\n'
+ 'executable statement that may use and define names. These '
+ 'references\n'
+ 'follow the normal rules for name resolution with an exception '
+ 'that\n'
+ 'unbound local variables are looked up in the global namespace. '
+ 'The\n'
+ 'namespace of the class definition becomes the attribute dictionary '
+ 'of\n'
+ 'the class. The scope of names defined in a class block is limited '
+ 'to\n'
+ 'the class block; it does not extend to the code blocks of methods '
+ '–\n'
+ 'this includes comprehensions and generator expressions since they '
+ 'are\n'
+ 'implemented using a function scope. This means that the '
+ 'following\n'
+ 'will fail:\n'
+ '\n'
+ ' class A:\n'
+ ' a = 42\n'
+ ' b = list(a + i for i in range(10))\n'
+ '\n'
+ '\n'
+ 'Builtins and restricted execution\n'
+ '=================================\n'
+ '\n'
+ '**CPython implementation detail:** Users should not touch\n'
+ '"__builtins__"; it is strictly an implementation detail. Users\n'
+ 'wanting to override values in the builtins namespace should '
+ '"import"\n'
+ 'the "builtins" module and modify its attributes appropriately.\n'
+ '\n'
+ 'The builtins namespace associated with the execution of a code '
+ 'block\n'
+ 'is actually found by looking up the name "__builtins__" in its '
+ 'global\n'
+ 'namespace; this should be a dictionary or a module (in the latter '
+ 'case\n'
+ 'the module’s dictionary is used). By default, when in the '
+ '"__main__"\n'
+ 'module, "__builtins__" is the built-in module "builtins"; when in '
+ 'any\n'
+ 'other module, "__builtins__" is an alias for the dictionary of '
+ 'the\n'
+ '"builtins" module itself.\n'
+ '\n'
+ '\n'
+ 'Interaction with dynamic features\n'
+ '=================================\n'
+ '\n'
+ 'Name resolution of free variables occurs at runtime, not at '
+ 'compile\n'
+ 'time. This means that the following code will print 42:\n'
+ '\n'
+ ' i = 10\n'
+ ' def f():\n'
+ ' print(i)\n'
+ ' i = 42\n'
+ ' f()\n'
+ '\n'
+ 'The "eval()" and "exec()" functions do not have access to the '
+ 'full\n'
+ 'environment for resolving names. Names may be resolved in the '
+ 'local\n'
+ 'and global namespaces of the caller. Free variables are not '
+ 'resolved\n'
+ 'in the nearest enclosing namespace, but in the global namespace. '
+ '[1]\n'
+ 'The "exec()" and "eval()" functions have optional arguments to\n'
+ 'override the global and local namespace. If only one namespace '
+ 'is\n'
+ 'specified, it is used for both.\n',
+ 'nonlocal': 'The "nonlocal" statement\n'
+ '************************\n'
+ '\n'
+ ' nonlocal_stmt ::= "nonlocal" identifier ("," identifier)*\n'
+ '\n'
+ 'The "nonlocal" statement causes the listed identifiers to refer '
+ 'to\n'
+ 'previously bound variables in the nearest enclosing scope '
+ 'excluding\n'
+ 'globals. This is important because the default behavior for '
+ 'binding is\n'
+ 'to search the local namespace first. The statement allows\n'
+ 'encapsulated code to rebind variables outside of the local '
+ 'scope\n'
+ 'besides the global (module) scope.\n'
+ '\n'
+ 'Names listed in a "nonlocal" statement, unlike those listed in '
+ 'a\n'
+ '"global" statement, must refer to pre-existing bindings in an\n'
+ 'enclosing scope (the scope in which a new binding should be '
+ 'created\n'
+ 'cannot be determined unambiguously).\n'
+ '\n'
+ 'Names listed in a "nonlocal" statement must not collide with '
+ 'pre-\n'
+ 'existing bindings in the local scope.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 3104** - Access to Names in Outer Scopes\n'
+ ' The specification for the "nonlocal" statement.\n',
+ 'numbers': 'Numeric literals\n'
+ '****************\n'
+ '\n'
+ 'There are three types of numeric literals: integers, floating '
+ 'point\n'
+ 'numbers, and imaginary numbers. There are no complex literals\n'
+ '(complex numbers can be formed by adding a real number and an\n'
+ 'imaginary number).\n'
+ '\n'
+ 'Note that numeric literals do not include a sign; a phrase like '
+ '"-1"\n'
'is actually an expression composed of the unary operator ‘"-"’ '
- 'and the\n'
- 'literal "1".\n',
- 'numeric-types': 'Emulating numeric types\n'
- '***********************\n'
- '\n'
- 'The following methods can be defined to emulate numeric '
- 'objects.\n'
- 'Methods corresponding to operations that are not supported '
- 'by the\n'
- 'particular kind of number implemented (e.g., bitwise '
- 'operations for\n'
- 'non-integral numbers) should be left undefined.\n'
- '\n'
- 'object.__add__(self, other)\n'
- 'object.__sub__(self, other)\n'
- 'object.__mul__(self, other)\n'
- 'object.__matmul__(self, other)\n'
- 'object.__truediv__(self, other)\n'
- 'object.__floordiv__(self, other)\n'
- 'object.__mod__(self, other)\n'
- 'object.__divmod__(self, other)\n'
- 'object.__pow__(self, other[, modulo])\n'
- 'object.__lshift__(self, other)\n'
- 'object.__rshift__(self, other)\n'
- 'object.__and__(self, other)\n'
- 'object.__xor__(self, other)\n'
- 'object.__or__(self, other)\n'
- '\n'
- ' These methods are called to implement the binary '
- 'arithmetic\n'
- ' operations ("+", "-", "*", "@", "/", "//", "%", '
- '"divmod()",\n'
- ' "pow()", "**", "<<", ">>", "&", "^", "|"). For '
- 'instance, to\n'
- ' evaluate the expression "x + y", where *x* is an '
- 'instance of a\n'
- ' class that has an "__add__()" method, "x.__add__(y)" is '
- 'called.\n'
- ' The "__divmod__()" method should be the equivalent to '
- 'using\n'
- ' "__floordiv__()" and "__mod__()"; it should not be '
- 'related to\n'
- ' "__truediv__()". Note that "__pow__()" should be '
- 'defined to accept\n'
- ' an optional third argument if the ternary version of the '
- 'built-in\n'
- ' "pow()" function is to be supported.\n'
- '\n'
- ' If one of those methods does not support the operation '
- 'with the\n'
- ' supplied arguments, it should return "NotImplemented".\n'
- '\n'
- 'object.__radd__(self, other)\n'
- 'object.__rsub__(self, other)\n'
- 'object.__rmul__(self, other)\n'
- 'object.__rmatmul__(self, other)\n'
- 'object.__rtruediv__(self, other)\n'
- 'object.__rfloordiv__(self, other)\n'
- 'object.__rmod__(self, other)\n'
- 'object.__rdivmod__(self, other)\n'
+ 'and the\n'
+ 'literal "1".\n',
+ 'numeric-types': 'Emulating numeric types\n'
+ '***********************\n'
+ '\n'
+ 'The following methods can be defined to emulate numeric '
+ 'objects.\n'
+ 'Methods corresponding to operations that are not supported '
+ 'by the\n'
+ 'particular kind of number implemented (e.g., bitwise '
+ 'operations for\n'
+ 'non-integral numbers) should be left undefined.\n'
+ '\n'
+ 'object.__add__(self, other)\n'
+ 'object.__sub__(self, other)\n'
+ 'object.__mul__(self, other)\n'
+ 'object.__matmul__(self, other)\n'
+ 'object.__truediv__(self, other)\n'
+ 'object.__floordiv__(self, other)\n'
+ 'object.__mod__(self, other)\n'
+ 'object.__divmod__(self, other)\n'
+ 'object.__pow__(self, other[, modulo])\n'
+ 'object.__lshift__(self, other)\n'
+ 'object.__rshift__(self, other)\n'
+ 'object.__and__(self, other)\n'
+ 'object.__xor__(self, other)\n'
+ 'object.__or__(self, other)\n'
+ '\n'
+ ' These methods are called to implement the binary '
+ 'arithmetic\n'
+ ' operations ("+", "-", "*", "@", "/", "//", "%", '
+ '"divmod()",\n'
+ ' "pow()", "**", "<<", ">>", "&", "^", "|"). For '
+ 'instance, to\n'
+ ' evaluate the expression "x + y", where *x* is an '
+ 'instance of a\n'
+ ' class that has an "__add__()" method, "x.__add__(y)" is '
+ 'called.\n'
+ ' The "__divmod__()" method should be the equivalent to '
+ 'using\n'
+ ' "__floordiv__()" and "__mod__()"; it should not be '
+ 'related to\n'
+ ' "__truediv__()". Note that "__pow__()" should be '
+ 'defined to accept\n'
+ ' an optional third argument if the ternary version of the '
+ 'built-in\n'
+ ' "pow()" function is to be supported.\n'
+ '\n'
+ ' If one of those methods does not support the operation '
+ 'with the\n'
+ ' supplied arguments, it should return "NotImplemented".\n'
+ '\n'
+ 'object.__radd__(self, other)\n'
+ 'object.__rsub__(self, other)\n'
+ 'object.__rmul__(self, other)\n'
+ 'object.__rmatmul__(self, other)\n'
+ 'object.__rtruediv__(self, other)\n'
+ 'object.__rfloordiv__(self, other)\n'
+ 'object.__rmod__(self, other)\n'
+ 'object.__rdivmod__(self, other)\n'
'object.__rpow__(self, other[, modulo])\n'
- 'object.__rlshift__(self, other)\n'
- 'object.__rrshift__(self, other)\n'
- 'object.__rand__(self, other)\n'
- 'object.__rxor__(self, other)\n'
- 'object.__ror__(self, other)\n'
- '\n'
- ' These methods are called to implement the binary '
- 'arithmetic\n'
- ' operations ("+", "-", "*", "@", "/", "//", "%", '
- '"divmod()",\n'
- ' "pow()", "**", "<<", ">>", "&", "^", "|") with reflected '
- '(swapped)\n'
- ' operands. These functions are only called if the left '
- 'operand does\n'
- ' not support the corresponding operation [3] and the '
- 'operands are of\n'
- ' different types. [4] For instance, to evaluate the '
- 'expression "x -\n'
- ' y", where *y* is an instance of a class that has an '
- '"__rsub__()"\n'
- ' method, "y.__rsub__(x)" is called if "x.__sub__(y)" '
- 'returns\n'
- ' *NotImplemented*.\n'
- '\n'
- ' Note that ternary "pow()" will not try calling '
- '"__rpow__()" (the\n'
- ' coercion rules would become too complicated).\n'
- '\n'
+ 'object.__rlshift__(self, other)\n'
+ 'object.__rrshift__(self, other)\n'
+ 'object.__rand__(self, other)\n'
+ 'object.__rxor__(self, other)\n'
+ 'object.__ror__(self, other)\n'
+ '\n'
+ ' These methods are called to implement the binary '
+ 'arithmetic\n'
+ ' operations ("+", "-", "*", "@", "/", "//", "%", '
+ '"divmod()",\n'
+ ' "pow()", "**", "<<", ">>", "&", "^", "|") with reflected '
+ '(swapped)\n'
+ ' operands. These functions are only called if the left '
+ 'operand does\n'
+ ' not support the corresponding operation [3] and the '
+ 'operands are of\n'
+ ' different types. [4] For instance, to evaluate the '
+ 'expression "x -\n'
+ ' y", where *y* is an instance of a class that has an '
+ '"__rsub__()"\n'
+ ' method, "y.__rsub__(x)" is called if "x.__sub__(y)" '
+ 'returns\n'
+ ' *NotImplemented*.\n'
+ '\n'
+ ' Note that ternary "pow()" will not try calling '
+ '"__rpow__()" (the\n'
+ ' coercion rules would become too complicated).\n'
+ '\n'
' Note:\n'
- '\n'
+ '\n'
' If the right operand’s type is a subclass of the left '
'operand’s\n'
' type and that subclass provides a different '
@@ -7048,48 +7048,48 @@ topics = {'assert': 'The "assert" statement\n'
' allows subclasses to override their ancestors’ '
'operations.\n'
'\n'
- 'object.__iadd__(self, other)\n'
- 'object.__isub__(self, other)\n'
- 'object.__imul__(self, other)\n'
- 'object.__imatmul__(self, other)\n'
- 'object.__itruediv__(self, other)\n'
- 'object.__ifloordiv__(self, other)\n'
- 'object.__imod__(self, other)\n'
- 'object.__ipow__(self, other[, modulo])\n'
- 'object.__ilshift__(self, other)\n'
- 'object.__irshift__(self, other)\n'
- 'object.__iand__(self, other)\n'
- 'object.__ixor__(self, other)\n'
- 'object.__ior__(self, other)\n'
- '\n'
- ' These methods are called to implement the augmented '
- 'arithmetic\n'
- ' assignments ("+=", "-=", "*=", "@=", "/=", "//=", "%=", '
- '"**=",\n'
- ' "<<=", ">>=", "&=", "^=", "|="). These methods should '
- 'attempt to\n'
- ' do the operation in-place (modifying *self*) and return '
- 'the result\n'
- ' (which could be, but does not have to be, *self*). If a '
- 'specific\n'
- ' method is not defined, the augmented assignment falls '
- 'back to the\n'
- ' normal methods. For instance, if *x* is an instance of '
- 'a class\n'
- ' with an "__iadd__()" method, "x += y" is equivalent to '
- '"x =\n'
- ' x.__iadd__(y)" . Otherwise, "x.__add__(y)" and '
- '"y.__radd__(x)" are\n'
- ' considered, as with the evaluation of "x + y". In '
- 'certain\n'
- ' situations, augmented assignment can result in '
- 'unexpected errors\n'
- ' (see Why does a_tuple[i] += [‘item’] raise an exception '
- 'when the\n'
- ' addition works?), but this behavior is in fact part of '
- 'the data\n'
- ' model.\n'
- '\n'
+ 'object.__iadd__(self, other)\n'
+ 'object.__isub__(self, other)\n'
+ 'object.__imul__(self, other)\n'
+ 'object.__imatmul__(self, other)\n'
+ 'object.__itruediv__(self, other)\n'
+ 'object.__ifloordiv__(self, other)\n'
+ 'object.__imod__(self, other)\n'
+ 'object.__ipow__(self, other[, modulo])\n'
+ 'object.__ilshift__(self, other)\n'
+ 'object.__irshift__(self, other)\n'
+ 'object.__iand__(self, other)\n'
+ 'object.__ixor__(self, other)\n'
+ 'object.__ior__(self, other)\n'
+ '\n'
+ ' These methods are called to implement the augmented '
+ 'arithmetic\n'
+ ' assignments ("+=", "-=", "*=", "@=", "/=", "//=", "%=", '
+ '"**=",\n'
+ ' "<<=", ">>=", "&=", "^=", "|="). These methods should '
+ 'attempt to\n'
+ ' do the operation in-place (modifying *self*) and return '
+ 'the result\n'
+ ' (which could be, but does not have to be, *self*). If a '
+ 'specific\n'
+ ' method is not defined, the augmented assignment falls '
+ 'back to the\n'
+ ' normal methods. For instance, if *x* is an instance of '
+ 'a class\n'
+ ' with an "__iadd__()" method, "x += y" is equivalent to '
+ '"x =\n'
+ ' x.__iadd__(y)" . Otherwise, "x.__add__(y)" and '
+ '"y.__radd__(x)" are\n'
+ ' considered, as with the evaluation of "x + y". In '
+ 'certain\n'
+ ' situations, augmented assignment can result in '
+ 'unexpected errors\n'
+ ' (see Why does a_tuple[i] += [‘item’] raise an exception '
+ 'when the\n'
+ ' addition works?), but this behavior is in fact part of '
+ 'the data\n'
+ ' model.\n'
+ '\n'
' Note:\n'
'\n'
' Due to a bug in the dispatching mechanism for "**=", a '
@@ -7100,211 +7100,211 @@ topics = {'assert': 'The "assert" statement\n'
'bug is\n'
' fixed in Python 3.10.\n'
'\n'
- 'object.__neg__(self)\n'
- 'object.__pos__(self)\n'
- 'object.__abs__(self)\n'
- 'object.__invert__(self)\n'
- '\n'
- ' Called to implement the unary arithmetic operations '
- '("-", "+",\n'
- ' "abs()" and "~").\n'
- '\n'
- 'object.__complex__(self)\n'
- 'object.__int__(self)\n'
- 'object.__float__(self)\n'
- '\n'
- ' Called to implement the built-in functions "complex()", '
- '"int()" and\n'
- ' "float()". Should return a value of the appropriate '
- 'type.\n'
- '\n'
- 'object.__index__(self)\n'
- '\n'
- ' Called to implement "operator.index()", and whenever '
- 'Python needs\n'
- ' to losslessly convert the numeric object to an integer '
- 'object (such\n'
- ' as in slicing, or in the built-in "bin()", "hex()" and '
- '"oct()"\n'
- ' functions). Presence of this method indicates that the '
- 'numeric\n'
- ' object is an integer type. Must return an integer.\n'
- '\n'
+ 'object.__neg__(self)\n'
+ 'object.__pos__(self)\n'
+ 'object.__abs__(self)\n'
+ 'object.__invert__(self)\n'
+ '\n'
+ ' Called to implement the unary arithmetic operations '
+ '("-", "+",\n'
+ ' "abs()" and "~").\n'
+ '\n'
+ 'object.__complex__(self)\n'
+ 'object.__int__(self)\n'
+ 'object.__float__(self)\n'
+ '\n'
+ ' Called to implement the built-in functions "complex()", '
+ '"int()" and\n'
+ ' "float()". Should return a value of the appropriate '
+ 'type.\n'
+ '\n'
+ 'object.__index__(self)\n'
+ '\n'
+ ' Called to implement "operator.index()", and whenever '
+ 'Python needs\n'
+ ' to losslessly convert the numeric object to an integer '
+ 'object (such\n'
+ ' as in slicing, or in the built-in "bin()", "hex()" and '
+ '"oct()"\n'
+ ' functions). Presence of this method indicates that the '
+ 'numeric\n'
+ ' object is an integer type. Must return an integer.\n'
+ '\n'
' If "__int__()", "__float__()" and "__complex__()" are '
'not defined\n'
' then corresponding built-in functions "int()", "float()" '
'and\n'
' "complex()" fall back to "__index__()".\n'
- '\n'
- 'object.__round__(self[, ndigits])\n'
- 'object.__trunc__(self)\n'
- 'object.__floor__(self)\n'
- 'object.__ceil__(self)\n'
- '\n'
- ' Called to implement the built-in function "round()" and '
- '"math"\n'
- ' functions "trunc()", "floor()" and "ceil()". Unless '
- '*ndigits* is\n'
- ' passed to "__round__()" all these methods should return '
- 'the value\n'
- ' of the object truncated to an "Integral" (typically an '
- '"int").\n'
- '\n'
+ '\n'
+ 'object.__round__(self[, ndigits])\n'
+ 'object.__trunc__(self)\n'
+ 'object.__floor__(self)\n'
+ 'object.__ceil__(self)\n'
+ '\n'
+ ' Called to implement the built-in function "round()" and '
+ '"math"\n'
+ ' functions "trunc()", "floor()" and "ceil()". Unless '
+ '*ndigits* is\n'
+ ' passed to "__round__()" all these methods should return '
+ 'the value\n'
+ ' of the object truncated to an "Integral" (typically an '
+ '"int").\n'
+ '\n'
' The built-in function "int()" falls back to '
'"__trunc__()" if\n'
' neither "__int__()" nor "__index__()" is defined.\n',
- 'objects': 'Objects, values and types\n'
- '*************************\n'
- '\n'
- '*Objects* are Python’s abstraction for data. All data in a '
- 'Python\n'
- 'program is represented by objects or by relations between '
- 'objects. (In\n'
- 'a sense, and in conformance to Von Neumann’s model of a “stored\n'
+ 'objects': 'Objects, values and types\n'
+ '*************************\n'
+ '\n'
+ '*Objects* are Python’s abstraction for data. All data in a '
+ 'Python\n'
+ 'program is represented by objects or by relations between '
+ 'objects. (In\n'
+ 'a sense, and in conformance to Von Neumann’s model of a “stored\n'
'program computer”, code is also represented by objects.)\n'
- '\n'
- 'Every object has an identity, a type and a value. An object’s\n'
- '*identity* never changes once it has been created; you may think '
- 'of it\n'
- 'as the object’s address in memory. The ‘"is"’ operator compares '
- 'the\n'
- 'identity of two objects; the "id()" function returns an integer\n'
- 'representing its identity.\n'
- '\n'
- '**CPython implementation detail:** For CPython, "id(x)" is the '
- 'memory\n'
- 'address where "x" is stored.\n'
- '\n'
- 'An object’s type determines the operations that the object '
- 'supports\n'
- '(e.g., “does it have a length?”) and also defines the possible '
- 'values\n'
- 'for objects of that type. The "type()" function returns an '
- 'object’s\n'
- 'type (which is an object itself). Like its identity, an '
- 'object’s\n'
- '*type* is also unchangeable. [1]\n'
- '\n'
- 'The *value* of some objects can change. Objects whose value can\n'
- 'change are said to be *mutable*; objects whose value is '
- 'unchangeable\n'
- 'once they are created are called *immutable*. (The value of an\n'
- 'immutable container object that contains a reference to a '
- 'mutable\n'
- 'object can change when the latter’s value is changed; however '
- 'the\n'
- 'container is still considered immutable, because the collection '
- 'of\n'
- 'objects it contains cannot be changed. So, immutability is not\n'
- 'strictly the same as having an unchangeable value, it is more '
- 'subtle.)\n'
- 'An object’s mutability is determined by its type; for instance,\n'
- 'numbers, strings and tuples are immutable, while dictionaries '
- 'and\n'
- 'lists are mutable.\n'
- '\n'
- 'Objects are never explicitly destroyed; however, when they '
- 'become\n'
- 'unreachable they may be garbage-collected. An implementation is\n'
- 'allowed to postpone garbage collection or omit it altogether — it '
- 'is a\n'
- 'matter of implementation quality how garbage collection is\n'
- 'implemented, as long as no objects are collected that are still\n'
- 'reachable.\n'
- '\n'
- '**CPython implementation detail:** CPython currently uses a '
- 'reference-\n'
- 'counting scheme with (optional) delayed detection of cyclically '
- 'linked\n'
- 'garbage, which collects most objects as soon as they become\n'
- 'unreachable, but is not guaranteed to collect garbage containing\n'
- 'circular references. See the documentation of the "gc" module '
- 'for\n'
- 'information on controlling the collection of cyclic garbage. '
- 'Other\n'
- 'implementations act differently and CPython may change. Do not '
- 'depend\n'
- 'on immediate finalization of objects when they become unreachable '
- '(so\n'
- 'you should always close files explicitly).\n'
- '\n'
- 'Note that the use of the implementation’s tracing or debugging\n'
- 'facilities may keep objects alive that would normally be '
- 'collectable.\n'
- 'Also note that catching an exception with a ‘"try"…"except"’ '
- 'statement\n'
- 'may keep objects alive.\n'
- '\n'
- 'Some objects contain references to “external” resources such as '
- 'open\n'
- 'files or windows. It is understood that these resources are '
- 'freed\n'
- 'when the object is garbage-collected, but since garbage '
- 'collection is\n'
- 'not guaranteed to happen, such objects also provide an explicit '
- 'way to\n'
- 'release the external resource, usually a "close()" method. '
- 'Programs\n'
- 'are strongly recommended to explicitly close such objects. The\n'
- '‘"try"…"finally"’ statement and the ‘"with"’ statement provide\n'
- 'convenient ways to do this.\n'
- '\n'
- 'Some objects contain references to other objects; these are '
- 'called\n'
- '*containers*. Examples of containers are tuples, lists and\n'
- 'dictionaries. The references are part of a container’s value. '
- 'In\n'
- 'most cases, when we talk about the value of a container, we imply '
- 'the\n'
- 'values, not the identities of the contained objects; however, '
- 'when we\n'
- 'talk about the mutability of a container, only the identities of '
- 'the\n'
- 'immediately contained objects are implied. So, if an immutable\n'
- 'container (like a tuple) contains a reference to a mutable '
- 'object, its\n'
- 'value changes if that mutable object is changed.\n'
- '\n'
- 'Types affect almost all aspects of object behavior. Even the\n'
- 'importance of object identity is affected in some sense: for '
- 'immutable\n'
- 'types, operations that compute new values may actually return a\n'
- 'reference to any existing object with the same type and value, '
- 'while\n'
- 'for mutable objects this is not allowed. E.g., after "a = 1; b = '
- '1",\n'
- '"a" and "b" may or may not refer to the same object with the '
- 'value\n'
- 'one, depending on the implementation, but after "c = []; d = []", '
- '"c"\n'
- 'and "d" are guaranteed to refer to two different, unique, newly\n'
- 'created empty lists. (Note that "c = d = []" assigns the same '
- 'object\n'
- 'to both "c" and "d".)\n',
- 'operator-summary': 'Operator precedence\n'
- '*******************\n'
- '\n'
- 'The following table summarizes the operator precedence '
- 'in Python, from\n'
+ '\n'
+ 'Every object has an identity, a type and a value. An object’s\n'
+ '*identity* never changes once it has been created; you may think '
+ 'of it\n'
+ 'as the object’s address in memory. The ‘"is"’ operator compares '
+ 'the\n'
+ 'identity of two objects; the "id()" function returns an integer\n'
+ 'representing its identity.\n'
+ '\n'
+ '**CPython implementation detail:** For CPython, "id(x)" is the '
+ 'memory\n'
+ 'address where "x" is stored.\n'
+ '\n'
+ 'An object’s type determines the operations that the object '
+ 'supports\n'
+ '(e.g., “does it have a length?”) and also defines the possible '
+ 'values\n'
+ 'for objects of that type. The "type()" function returns an '
+ 'object’s\n'
+ 'type (which is an object itself). Like its identity, an '
+ 'object’s\n'
+ '*type* is also unchangeable. [1]\n'
+ '\n'
+ 'The *value* of some objects can change. Objects whose value can\n'
+ 'change are said to be *mutable*; objects whose value is '
+ 'unchangeable\n'
+ 'once they are created are called *immutable*. (The value of an\n'
+ 'immutable container object that contains a reference to a '
+ 'mutable\n'
+ 'object can change when the latter’s value is changed; however '
+ 'the\n'
+ 'container is still considered immutable, because the collection '
+ 'of\n'
+ 'objects it contains cannot be changed. So, immutability is not\n'
+ 'strictly the same as having an unchangeable value, it is more '
+ 'subtle.)\n'
+ 'An object’s mutability is determined by its type; for instance,\n'
+ 'numbers, strings and tuples are immutable, while dictionaries '
+ 'and\n'
+ 'lists are mutable.\n'
+ '\n'
+ 'Objects are never explicitly destroyed; however, when they '
+ 'become\n'
+ 'unreachable they may be garbage-collected. An implementation is\n'
+ 'allowed to postpone garbage collection or omit it altogether — it '
+ 'is a\n'
+ 'matter of implementation quality how garbage collection is\n'
+ 'implemented, as long as no objects are collected that are still\n'
+ 'reachable.\n'
+ '\n'
+ '**CPython implementation detail:** CPython currently uses a '
+ 'reference-\n'
+ 'counting scheme with (optional) delayed detection of cyclically '
+ 'linked\n'
+ 'garbage, which collects most objects as soon as they become\n'
+ 'unreachable, but is not guaranteed to collect garbage containing\n'
+ 'circular references. See the documentation of the "gc" module '
+ 'for\n'
+ 'information on controlling the collection of cyclic garbage. '
+ 'Other\n'
+ 'implementations act differently and CPython may change. Do not '
+ 'depend\n'
+ 'on immediate finalization of objects when they become unreachable '
+ '(so\n'
+ 'you should always close files explicitly).\n'
+ '\n'
+ 'Note that the use of the implementation’s tracing or debugging\n'
+ 'facilities may keep objects alive that would normally be '
+ 'collectable.\n'
+ 'Also note that catching an exception with a ‘"try"…"except"’ '
+ 'statement\n'
+ 'may keep objects alive.\n'
+ '\n'
+ 'Some objects contain references to “external” resources such as '
+ 'open\n'
+ 'files or windows. It is understood that these resources are '
+ 'freed\n'
+ 'when the object is garbage-collected, but since garbage '
+ 'collection is\n'
+ 'not guaranteed to happen, such objects also provide an explicit '
+ 'way to\n'
+ 'release the external resource, usually a "close()" method. '
+ 'Programs\n'
+ 'are strongly recommended to explicitly close such objects. The\n'
+ '‘"try"…"finally"’ statement and the ‘"with"’ statement provide\n'
+ 'convenient ways to do this.\n'
+ '\n'
+ 'Some objects contain references to other objects; these are '
+ 'called\n'
+ '*containers*. Examples of containers are tuples, lists and\n'
+ 'dictionaries. The references are part of a container’s value. '
+ 'In\n'
+ 'most cases, when we talk about the value of a container, we imply '
+ 'the\n'
+ 'values, not the identities of the contained objects; however, '
+ 'when we\n'
+ 'talk about the mutability of a container, only the identities of '
+ 'the\n'
+ 'immediately contained objects are implied. So, if an immutable\n'
+ 'container (like a tuple) contains a reference to a mutable '
+ 'object, its\n'
+ 'value changes if that mutable object is changed.\n'
+ '\n'
+ 'Types affect almost all aspects of object behavior. Even the\n'
+ 'importance of object identity is affected in some sense: for '
+ 'immutable\n'
+ 'types, operations that compute new values may actually return a\n'
+ 'reference to any existing object with the same type and value, '
+ 'while\n'
+ 'for mutable objects this is not allowed. E.g., after "a = 1; b = '
+ '1",\n'
+ '"a" and "b" may or may not refer to the same object with the '
+ 'value\n'
+ 'one, depending on the implementation, but after "c = []; d = []", '
+ '"c"\n'
+ 'and "d" are guaranteed to refer to two different, unique, newly\n'
+ 'created empty lists. (Note that "c = d = []" assigns the same '
+ 'object\n'
+ 'to both "c" and "d".)\n',
+ 'operator-summary': 'Operator precedence\n'
+ '*******************\n'
+ '\n'
+ 'The following table summarizes the operator precedence '
+ 'in Python, from\n'
'highest precedence (most binding) to lowest precedence '
'(least\n'
- 'binding). Operators in the same box have the same '
- 'precedence. Unless\n'
- 'the syntax is explicitly given, operators are binary. '
- 'Operators in\n'
- 'the same box group left to right (except for '
- 'exponentiation, which\n'
- 'groups from right to left).\n'
- '\n'
- 'Note that comparisons, membership tests, and identity '
- 'tests, all have\n'
- 'the same precedence and have a left-to-right chaining '
- 'feature as\n'
- 'described in the Comparisons section.\n'
- '\n'
- '+-------------------------------------------------+---------------------------------------+\n'
- '| Operator | '
- 'Description |\n'
+ 'binding). Operators in the same box have the same '
+ 'precedence. Unless\n'
+ 'the syntax is explicitly given, operators are binary. '
+ 'Operators in\n'
+ 'the same box group left to right (except for '
+ 'exponentiation, which\n'
+ 'groups from right to left).\n'
+ '\n'
+ 'Note that comparisons, membership tests, and identity '
+ 'tests, all have\n'
+ 'the same precedence and have a left-to-right chaining '
+ 'feature as\n'
+ 'described in the Comparisons section.\n'
+ '\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
+ '| Operator | '
+ 'Description |\n'
'|=================================================|=======================================|\n'
'| "(expressions...)", "[expressions...]", "{key: | '
'Binding or parenthesized expression, |\n'
@@ -7317,131 +7317,131 @@ topics = {'assert': 'The "assert" statement\n'
'Subscription, slicing, call, |\n'
'| "x(arguments...)", "x.attribute" | '
'attribute reference |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "await" "x" | '
'Await expression |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "**" | '
'Exponentiation [5] |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "+x", "-x", "~x" | '
'Positive, negative, bitwise NOT |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "*", "@", "/", "//", "%" | '
'Multiplication, matrix |\n'
'| | '
'multiplication, division, floor |\n'
'| | '
'division, remainder [6] |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "+", "-" | '
'Addition and subtraction |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "<<", ">>" | '
'Shifts |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "&" | '
'Bitwise AND |\n'
'+-------------------------------------------------+---------------------------------------+\n'
- '| "^" | '
- 'Bitwise XOR |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '| "^" | '
+ 'Bitwise XOR |\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "|" | '
'Bitwise OR |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "in", "not in", "is", "is not", "<", "<=", ">", | '
'Comparisons, including membership |\n'
'| ">=", "!=", "==" | '
'tests and identity tests |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "not" "x" | '
'Boolean NOT |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "and" | '
'Boolean AND |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "or" | '
'Boolean OR |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "if" – "else" | '
'Conditional expression |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| "lambda" | '
'Lambda expression |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
+ '+-------------------------------------------------+---------------------------------------+\n'
'| ":=" | '
'Assignment expression |\n'
- '+-------------------------------------------------+---------------------------------------+\n'
- '\n'
- '-[ Footnotes ]-\n'
- '\n'
- '[1] While "abs(x%y) < abs(y)" is true mathematically, '
+ '+-------------------------------------------------+---------------------------------------+\n'
+ '\n'
+ '-[ Footnotes ]-\n'
+ '\n'
+ '[1] While "abs(x%y) < abs(y)" is true mathematically, '
'for floats it\n'
' may not be true numerically due to roundoff. For '
- 'example, and\n'
- ' assuming a platform on which a Python float is an '
- 'IEEE 754 double-\n'
- ' precision number, in order that "-1e-100 % 1e100" '
- 'have the same\n'
- ' sign as "1e100", the computed result is "-1e-100 + '
- '1e100", which\n'
- ' is numerically exactly equal to "1e100". The '
- 'function\n'
- ' "math.fmod()" returns a result whose sign matches '
- 'the sign of the\n'
- ' first argument instead, and so returns "-1e-100" in '
- 'this case.\n'
- ' Which approach is more appropriate depends on the '
- 'application.\n'
- '\n'
- '[2] If x is very close to an exact integer multiple of '
- 'y, it’s\n'
- ' possible for "x//y" to be one larger than '
- '"(x-x%y)//y" due to\n'
- ' rounding. In such cases, Python returns the latter '
- 'result, in\n'
- ' order to preserve that "divmod(x,y)[0] * y + x % y" '
- 'be very close\n'
- ' to "x".\n'
- '\n'
- '[3] The Unicode standard distinguishes between *code '
- 'points* (e.g.\n'
- ' U+0041) and *abstract characters* (e.g. “LATIN '
- 'CAPITAL LETTER A”).\n'
- ' While most abstract characters in Unicode are only '
- 'represented\n'
- ' using one code point, there is a number of abstract '
- 'characters\n'
- ' that can in addition be represented using a sequence '
- 'of more than\n'
- ' one code point. For example, the abstract character '
- '“LATIN\n'
- ' CAPITAL LETTER C WITH CEDILLA” can be represented as '
- 'a single\n'
- ' *precomposed character* at code position U+00C7, or '
- 'as a sequence\n'
- ' of a *base character* at code position U+0043 (LATIN '
- 'CAPITAL\n'
- ' LETTER C), followed by a *combining character* at '
- 'code position\n'
- ' U+0327 (COMBINING CEDILLA).\n'
- '\n'
- ' The comparison operators on strings compare at the '
- 'level of\n'
- ' Unicode code points. This may be counter-intuitive '
- 'to humans. For\n'
- ' example, ""\\u00C7" == "\\u0043\\u0327"" is "False", '
- 'even though both\n'
- ' strings represent the same abstract character “LATIN '
- 'CAPITAL\n'
- ' LETTER C WITH CEDILLA”.\n'
- '\n'
- ' To compare strings at the level of abstract '
- 'characters (that is,\n'
- ' in a way intuitive to humans), use '
- '"unicodedata.normalize()".\n'
- '\n'
- '[4] Due to automatic garbage-collection, free lists, and '
+ 'example, and\n'
+ ' assuming a platform on which a Python float is an '
+ 'IEEE 754 double-\n'
+ ' precision number, in order that "-1e-100 % 1e100" '
+ 'have the same\n'
+ ' sign as "1e100", the computed result is "-1e-100 + '
+ '1e100", which\n'
+ ' is numerically exactly equal to "1e100". The '
+ 'function\n'
+ ' "math.fmod()" returns a result whose sign matches '
+ 'the sign of the\n'
+ ' first argument instead, and so returns "-1e-100" in '
+ 'this case.\n'
+ ' Which approach is more appropriate depends on the '
+ 'application.\n'
+ '\n'
+ '[2] If x is very close to an exact integer multiple of '
+ 'y, it’s\n'
+ ' possible for "x//y" to be one larger than '
+ '"(x-x%y)//y" due to\n'
+ ' rounding. In such cases, Python returns the latter '
+ 'result, in\n'
+ ' order to preserve that "divmod(x,y)[0] * y + x % y" '
+ 'be very close\n'
+ ' to "x".\n'
+ '\n'
+ '[3] The Unicode standard distinguishes between *code '
+ 'points* (e.g.\n'
+ ' U+0041) and *abstract characters* (e.g. “LATIN '
+ 'CAPITAL LETTER A”).\n'
+ ' While most abstract characters in Unicode are only '
+ 'represented\n'
+ ' using one code point, there is a number of abstract '
+ 'characters\n'
+ ' that can in addition be represented using a sequence '
+ 'of more than\n'
+ ' one code point. For example, the abstract character '
+ '“LATIN\n'
+ ' CAPITAL LETTER C WITH CEDILLA” can be represented as '
+ 'a single\n'
+ ' *precomposed character* at code position U+00C7, or '
+ 'as a sequence\n'
+ ' of a *base character* at code position U+0043 (LATIN '
+ 'CAPITAL\n'
+ ' LETTER C), followed by a *combining character* at '
+ 'code position\n'
+ ' U+0327 (COMBINING CEDILLA).\n'
+ '\n'
+ ' The comparison operators on strings compare at the '
+ 'level of\n'
+ ' Unicode code points. This may be counter-intuitive '
+ 'to humans. For\n'
+ ' example, ""\\u00C7" == "\\u0043\\u0327"" is "False", '
+ 'even though both\n'
+ ' strings represent the same abstract character “LATIN '
+ 'CAPITAL\n'
+ ' LETTER C WITH CEDILLA”.\n'
+ '\n'
+ ' To compare strings at the level of abstract '
+ 'characters (that is,\n'
+ ' in a way intuitive to humans), use '
+ '"unicodedata.normalize()".\n'
+ '\n'
+ '[4] Due to automatic garbage-collection, free lists, and '
'the dynamic\n'
' nature of descriptors, you may notice seemingly '
'unusual behaviour\n'
@@ -7450,7 +7450,7 @@ topics = {'assert': 'The "assert" statement\n'
' comparisons between instance methods, or constants. '
'Check their\n'
' documentation for more info.\n'
- '\n'
+ '\n'
'[5] The power operator "**" binds less tightly than an '
'arithmetic or\n'
' bitwise unary operator on its right, that is, '
@@ -7459,93 +7459,93 @@ topics = {'assert': 'The "assert" statement\n'
'[6] The "%" operator is also used for string formatting; '
'the same\n'
' precedence applies.\n',
- 'pass': 'The "pass" statement\n'
- '********************\n'
- '\n'
- ' pass_stmt ::= "pass"\n'
- '\n'
- '"pass" is a null operation — when it is executed, nothing happens. '
- 'It\n'
- 'is useful as a placeholder when a statement is required '
- 'syntactically,\n'
- 'but no code needs to be executed, for example:\n'
- '\n'
- ' def f(arg): pass # a function that does nothing (yet)\n'
- '\n'
- ' class C: pass # a class with no methods (yet)\n',
- 'power': 'The power operator\n'
- '******************\n'
- '\n'
- 'The power operator binds more tightly than unary operators on its\n'
- 'left; it binds less tightly than unary operators on its right. '
- 'The\n'
- 'syntax is:\n'
- '\n'
- ' power ::= (await_expr | primary) ["**" u_expr]\n'
- '\n'
- 'Thus, in an unparenthesized sequence of power and unary operators, '
- 'the\n'
- 'operators are evaluated from right to left (this does not '
- 'constrain\n'
- 'the evaluation order for the operands): "-1**2" results in "-1".\n'
- '\n'
- 'The power operator has the same semantics as the built-in "pow()"\n'
- 'function, when called with two arguments: it yields its left '
- 'argument\n'
- 'raised to the power of its right argument. The numeric arguments '
- 'are\n'
- 'first converted to a common type, and the result is of that type.\n'
- '\n'
- 'For int operands, the result has the same type as the operands '
- 'unless\n'
- 'the second argument is negative; in that case, all arguments are\n'
- 'converted to float and a float result is delivered. For example,\n'
- '"10**2" returns "100", but "10**-2" returns "0.01".\n'
- '\n'
- 'Raising "0.0" to a negative power results in a '
- '"ZeroDivisionError".\n'
- 'Raising a negative number to a fractional power results in a '
- '"complex"\n'
+ 'pass': 'The "pass" statement\n'
+ '********************\n'
+ '\n'
+ ' pass_stmt ::= "pass"\n'
+ '\n'
+ '"pass" is a null operation — when it is executed, nothing happens. '
+ 'It\n'
+ 'is useful as a placeholder when a statement is required '
+ 'syntactically,\n'
+ 'but no code needs to be executed, for example:\n'
+ '\n'
+ ' def f(arg): pass # a function that does nothing (yet)\n'
+ '\n'
+ ' class C: pass # a class with no methods (yet)\n',
+ 'power': 'The power operator\n'
+ '******************\n'
+ '\n'
+ 'The power operator binds more tightly than unary operators on its\n'
+ 'left; it binds less tightly than unary operators on its right. '
+ 'The\n'
+ 'syntax is:\n'
+ '\n'
+ ' power ::= (await_expr | primary) ["**" u_expr]\n'
+ '\n'
+ 'Thus, in an unparenthesized sequence of power and unary operators, '
+ 'the\n'
+ 'operators are evaluated from right to left (this does not '
+ 'constrain\n'
+ 'the evaluation order for the operands): "-1**2" results in "-1".\n'
+ '\n'
+ 'The power operator has the same semantics as the built-in "pow()"\n'
+ 'function, when called with two arguments: it yields its left '
+ 'argument\n'
+ 'raised to the power of its right argument. The numeric arguments '
+ 'are\n'
+ 'first converted to a common type, and the result is of that type.\n'
+ '\n'
+ 'For int operands, the result has the same type as the operands '
+ 'unless\n'
+ 'the second argument is negative; in that case, all arguments are\n'
+ 'converted to float and a float result is delivered. For example,\n'
+ '"10**2" returns "100", but "10**-2" returns "0.01".\n'
+ '\n'
+ 'Raising "0.0" to a negative power results in a '
+ '"ZeroDivisionError".\n'
+ 'Raising a negative number to a fractional power results in a '
+ '"complex"\n'
'number. (In earlier versions it raised a "ValueError".)\n'
'\n'
'This operation can be customized using the special "__pow__()" '
'method.\n',
- 'raise': 'The "raise" statement\n'
- '*********************\n'
- '\n'
- ' raise_stmt ::= "raise" [expression ["from" expression]]\n'
- '\n'
- 'If no expressions are present, "raise" re-raises the last '
- 'exception\n'
- 'that was active in the current scope. If no exception is active '
- 'in\n'
- 'the current scope, a "RuntimeError" exception is raised indicating\n'
- 'that this is an error.\n'
- '\n'
- 'Otherwise, "raise" evaluates the first expression as the exception\n'
- 'object. It must be either a subclass or an instance of\n'
- '"BaseException". If it is a class, the exception instance will be\n'
- 'obtained when needed by instantiating the class with no arguments.\n'
- '\n'
- 'The *type* of the exception is the exception instance’s class, the\n'
- '*value* is the instance itself.\n'
- '\n'
- 'A traceback object is normally created automatically when an '
- 'exception\n'
- 'is raised and attached to it as the "__traceback__" attribute, '
- 'which\n'
- 'is writable. You can create an exception and set your own traceback '
- 'in\n'
- 'one step using the "with_traceback()" exception method (which '
- 'returns\n'
- 'the same exception instance, with its traceback set to its '
- 'argument),\n'
- 'like so:\n'
- '\n'
- ' raise Exception("foo occurred").with_traceback(tracebackobj)\n'
- '\n'
- 'The "from" clause is used for exception chaining: if given, the '
- 'second\n'
+ 'raise': 'The "raise" statement\n'
+ '*********************\n'
+ '\n'
+ ' raise_stmt ::= "raise" [expression ["from" expression]]\n'
+ '\n'
+ 'If no expressions are present, "raise" re-raises the last '
+ 'exception\n'
+ 'that was active in the current scope. If no exception is active '
+ 'in\n'
+ 'the current scope, a "RuntimeError" exception is raised indicating\n'
+ 'that this is an error.\n'
+ '\n'
+ 'Otherwise, "raise" evaluates the first expression as the exception\n'
+ 'object. It must be either a subclass or an instance of\n'
+ '"BaseException". If it is a class, the exception instance will be\n'
+ 'obtained when needed by instantiating the class with no arguments.\n'
+ '\n'
+ 'The *type* of the exception is the exception instance’s class, the\n'
+ '*value* is the instance itself.\n'
+ '\n'
+ 'A traceback object is normally created automatically when an '
+ 'exception\n'
+ 'is raised and attached to it as the "__traceback__" attribute, '
+ 'which\n'
+ 'is writable. You can create an exception and set your own traceback '
+ 'in\n'
+ 'one step using the "with_traceback()" exception method (which '
+ 'returns\n'
+ 'the same exception instance, with its traceback set to its '
+ 'argument),\n'
+ 'like so:\n'
+ '\n'
+ ' raise Exception("foo occurred").with_traceback(tracebackobj)\n'
+ '\n'
+ 'The "from" clause is used for exception chaining: if given, the '
+ 'second\n'
'*expression* must be another exception class or instance. If the\n'
'second expression is an exception instance, it will be attached to '
'the\n'
@@ -7558,109 +7558,109 @@ topics = {'assert': 'The "assert" statement\n'
'exception as the "__cause__" attribute. If the raised exception is '
'not\n'
'handled, both exceptions will be printed:\n'
- '\n'
- ' >>> try:\n'
- ' ... print(1 / 0)\n'
- ' ... except Exception as exc:\n'
- ' ... raise RuntimeError("Something bad happened") from exc\n'
- ' ...\n'
- ' Traceback (most recent call last):\n'
- ' File "<stdin>", line 2, in <module>\n'
- ' ZeroDivisionError: division by zero\n'
- '\n'
- ' The above exception was the direct cause of the following '
- 'exception:\n'
- '\n'
- ' Traceback (most recent call last):\n'
- ' File "<stdin>", line 4, in <module>\n'
- ' RuntimeError: Something bad happened\n'
- '\n'
- 'A similar mechanism works implicitly if an exception is raised '
- 'inside\n'
- 'an exception handler or a "finally" clause: the previous exception '
- 'is\n'
- 'then attached as the new exception’s "__context__" attribute:\n'
- '\n'
- ' >>> try:\n'
- ' ... print(1 / 0)\n'
- ' ... except:\n'
- ' ... raise RuntimeError("Something bad happened")\n'
- ' ...\n'
- ' Traceback (most recent call last):\n'
- ' File "<stdin>", line 2, in <module>\n'
- ' ZeroDivisionError: division by zero\n'
- '\n'
- ' During handling of the above exception, another exception '
- 'occurred:\n'
- '\n'
- ' Traceback (most recent call last):\n'
- ' File "<stdin>", line 4, in <module>\n'
- ' RuntimeError: Something bad happened\n'
- '\n'
- 'Exception chaining can be explicitly suppressed by specifying '
- '"None"\n'
- 'in the "from" clause:\n'
- '\n'
- ' >>> try:\n'
- ' ... print(1 / 0)\n'
- ' ... except:\n'
- ' ... raise RuntimeError("Something bad happened") from None\n'
- ' ...\n'
- ' Traceback (most recent call last):\n'
- ' File "<stdin>", line 4, in <module>\n'
- ' RuntimeError: Something bad happened\n'
- '\n'
- 'Additional information on exceptions can be found in section\n'
- 'Exceptions, and information about handling exceptions is in '
- 'section\n'
- 'The try statement.\n'
- '\n'
- 'Changed in version 3.3: "None" is now permitted as "Y" in "raise X\n'
- 'from Y".\n'
- '\n'
- 'New in version 3.3: The "__suppress_context__" attribute to '
- 'suppress\n'
- 'automatic display of the exception context.\n',
- 'return': 'The "return" statement\n'
- '**********************\n'
- '\n'
- ' return_stmt ::= "return" [expression_list]\n'
- '\n'
- '"return" may only occur syntactically nested in a function '
- 'definition,\n'
- 'not within a nested class definition.\n'
- '\n'
- 'If an expression list is present, it is evaluated, else "None" is\n'
- 'substituted.\n'
- '\n'
- '"return" leaves the current function call with the expression list '
- '(or\n'
- '"None") as return value.\n'
- '\n'
- 'When "return" passes control out of a "try" statement with a '
- '"finally"\n'
- 'clause, that "finally" clause is executed before really leaving '
- 'the\n'
- 'function.\n'
- '\n'
- 'In a generator function, the "return" statement indicates that '
- 'the\n'
- 'generator is done and will cause "StopIteration" to be raised. '
- 'The\n'
- 'returned value (if any) is used as an argument to construct\n'
- '"StopIteration" and becomes the "StopIteration.value" attribute.\n'
- '\n'
- 'In an asynchronous generator function, an empty "return" '
- 'statement\n'
- 'indicates that the asynchronous generator is done and will cause\n'
- '"StopAsyncIteration" to be raised. A non-empty "return" statement '
- 'is\n'
- 'a syntax error in an asynchronous generator function.\n',
- 'sequence-types': 'Emulating container types\n'
- '*************************\n'
- '\n'
- 'The following methods can be defined to implement '
- 'container objects.\n'
+ '\n'
+ ' >>> try:\n'
+ ' ... print(1 / 0)\n'
+ ' ... except Exception as exc:\n'
+ ' ... raise RuntimeError("Something bad happened") from exc\n'
+ ' ...\n'
+ ' Traceback (most recent call last):\n'
+ ' File "<stdin>", line 2, in <module>\n'
+ ' ZeroDivisionError: division by zero\n'
+ '\n'
+ ' The above exception was the direct cause of the following '
+ 'exception:\n'
+ '\n'
+ ' Traceback (most recent call last):\n'
+ ' File "<stdin>", line 4, in <module>\n'
+ ' RuntimeError: Something bad happened\n'
+ '\n'
+ 'A similar mechanism works implicitly if an exception is raised '
+ 'inside\n'
+ 'an exception handler or a "finally" clause: the previous exception '
+ 'is\n'
+ 'then attached as the new exception’s "__context__" attribute:\n'
+ '\n'
+ ' >>> try:\n'
+ ' ... print(1 / 0)\n'
+ ' ... except:\n'
+ ' ... raise RuntimeError("Something bad happened")\n'
+ ' ...\n'
+ ' Traceback (most recent call last):\n'
+ ' File "<stdin>", line 2, in <module>\n'
+ ' ZeroDivisionError: division by zero\n'
+ '\n'
+ ' During handling of the above exception, another exception '
+ 'occurred:\n'
+ '\n'
+ ' Traceback (most recent call last):\n'
+ ' File "<stdin>", line 4, in <module>\n'
+ ' RuntimeError: Something bad happened\n'
+ '\n'
+ 'Exception chaining can be explicitly suppressed by specifying '
+ '"None"\n'
+ 'in the "from" clause:\n'
+ '\n'
+ ' >>> try:\n'
+ ' ... print(1 / 0)\n'
+ ' ... except:\n'
+ ' ... raise RuntimeError("Something bad happened") from None\n'
+ ' ...\n'
+ ' Traceback (most recent call last):\n'
+ ' File "<stdin>", line 4, in <module>\n'
+ ' RuntimeError: Something bad happened\n'
+ '\n'
+ 'Additional information on exceptions can be found in section\n'
+ 'Exceptions, and information about handling exceptions is in '
+ 'section\n'
+ 'The try statement.\n'
+ '\n'
+ 'Changed in version 3.3: "None" is now permitted as "Y" in "raise X\n'
+ 'from Y".\n'
+ '\n'
+ 'New in version 3.3: The "__suppress_context__" attribute to '
+ 'suppress\n'
+ 'automatic display of the exception context.\n',
+ 'return': 'The "return" statement\n'
+ '**********************\n'
+ '\n'
+ ' return_stmt ::= "return" [expression_list]\n'
+ '\n'
+ '"return" may only occur syntactically nested in a function '
+ 'definition,\n'
+ 'not within a nested class definition.\n'
+ '\n'
+ 'If an expression list is present, it is evaluated, else "None" is\n'
+ 'substituted.\n'
+ '\n'
+ '"return" leaves the current function call with the expression list '
+ '(or\n'
+ '"None") as return value.\n'
+ '\n'
+ 'When "return" passes control out of a "try" statement with a '
+ '"finally"\n'
+ 'clause, that "finally" clause is executed before really leaving '
+ 'the\n'
+ 'function.\n'
+ '\n'
+ 'In a generator function, the "return" statement indicates that '
+ 'the\n'
+ 'generator is done and will cause "StopIteration" to be raised. '
+ 'The\n'
+ 'returned value (if any) is used as an argument to construct\n'
+ '"StopIteration" and becomes the "StopIteration.value" attribute.\n'
+ '\n'
+ 'In an asynchronous generator function, an empty "return" '
+ 'statement\n'
+ 'indicates that the asynchronous generator is done and will cause\n'
+ '"StopAsyncIteration" to be raised. A non-empty "return" statement '
+ 'is\n'
+ 'a syntax error in an asynchronous generator function.\n',
+ 'sequence-types': 'Emulating container types\n'
+ '*************************\n'
+ '\n'
+ 'The following methods can be defined to implement '
+ 'container objects.\n'
'Containers usually are *sequences* (such as "lists" or '
'"tuples") or\n'
'*mappings* (like "dictionaries"), but can represent other '
@@ -7692,9 +7692,9 @@ topics = {'assert': 'The "assert" statement\n'
'"count()", "index()", "extend()", "insert()", "pop()", '
'"remove()",\n'
'"reverse()" and "sort()", like Python standard "list" '
- 'objects.\n'
+ 'objects.\n'
'Finally, sequence types should implement addition '
- '(meaning\n'
+ '(meaning\n'
'concatenation) and multiplication (meaning repetition) by '
'defining the\n'
'methods "__add__()", "__radd__()", "__iadd__()", '
@@ -7708,80 +7708,80 @@ topics = {'assert': 'The "assert" statement\n'
'of the "in" operator; for mappings, "in" should search the '
'mapping’s\n'
'keys; for sequences, it should search through the values. '
- 'It is\n'
+ 'It is\n'
'further recommended that both mappings and sequences '
'implement the\n'
'"__iter__()" method to allow efficient iteration through '
- 'the\n'
+ 'the\n'
'container; for mappings, "__iter__()" should iterate '
'through the\n'
'object’s keys; for sequences, it should iterate through '
'the values.\n'
- '\n'
- 'object.__len__(self)\n'
- '\n'
- ' Called to implement the built-in function "len()". '
- 'Should return\n'
- ' the length of the object, an integer ">=" 0. Also, an '
- 'object that\n'
- ' doesn’t define a "__bool__()" method and whose '
- '"__len__()" method\n'
- ' returns zero is considered to be false in a Boolean '
- 'context.\n'
- '\n'
- ' **CPython implementation detail:** In CPython, the '
- 'length is\n'
- ' required to be at most "sys.maxsize". If the length is '
- 'larger than\n'
- ' "sys.maxsize" some features (such as "len()") may '
- 'raise\n'
- ' "OverflowError". To prevent raising "OverflowError" by '
- 'truth value\n'
- ' testing, an object must define a "__bool__()" method.\n'
- '\n'
- 'object.__length_hint__(self)\n'
- '\n'
- ' Called to implement "operator.length_hint()". Should '
- 'return an\n'
- ' estimated length for the object (which may be greater '
- 'or less than\n'
- ' the actual length). The length must be an integer ">=" '
+ '\n'
+ 'object.__len__(self)\n'
+ '\n'
+ ' Called to implement the built-in function "len()". '
+ 'Should return\n'
+ ' the length of the object, an integer ">=" 0. Also, an '
+ 'object that\n'
+ ' doesn’t define a "__bool__()" method and whose '
+ '"__len__()" method\n'
+ ' returns zero is considered to be false in a Boolean '
+ 'context.\n'
+ '\n'
+ ' **CPython implementation detail:** In CPython, the '
+ 'length is\n'
+ ' required to be at most "sys.maxsize". If the length is '
+ 'larger than\n'
+ ' "sys.maxsize" some features (such as "len()") may '
+ 'raise\n'
+ ' "OverflowError". To prevent raising "OverflowError" by '
+ 'truth value\n'
+ ' testing, an object must define a "__bool__()" method.\n'
+ '\n'
+ 'object.__length_hint__(self)\n'
+ '\n'
+ ' Called to implement "operator.length_hint()". Should '
+ 'return an\n'
+ ' estimated length for the object (which may be greater '
+ 'or less than\n'
+ ' the actual length). The length must be an integer ">=" '
'0. The\n'
' return value may also be "NotImplemented", which is '
'treated the\n'
' same as if the "__length_hint__" method didn’t exist at '
'all. This\n'
- ' method is purely an optimization and is never required '
- 'for\n'
- ' correctness.\n'
- '\n'
- ' New in version 3.4.\n'
- '\n'
+ ' method is purely an optimization and is never required '
+ 'for\n'
+ ' correctness.\n'
+ '\n'
+ ' New in version 3.4.\n'
+ '\n'
'Note:\n'
- '\n'
+ '\n'
' Slicing is done exclusively with the following three '
'methods. A\n'
' call like\n'
'\n'
- ' a[1:2] = b\n'
- '\n'
- ' is translated to\n'
- '\n'
- ' a[slice(1, 2, None)] = b\n'
- '\n'
- ' and so forth. Missing slice items are always filled in '
- 'with "None".\n'
- '\n'
- 'object.__getitem__(self, key)\n'
- '\n'
- ' Called to implement evaluation of "self[key]". For '
+ ' a[1:2] = b\n'
+ '\n'
+ ' is translated to\n'
+ '\n'
+ ' a[slice(1, 2, None)] = b\n'
+ '\n'
+ ' and so forth. Missing slice items are always filled in '
+ 'with "None".\n'
+ '\n'
+ 'object.__getitem__(self, key)\n'
+ '\n'
+ ' Called to implement evaluation of "self[key]". For '
'*sequence*\n'
' types, the accepted keys should be integers and slice '
'objects.\n'
' Note that the special interpretation of negative '
'indexes (if the\n'
' class wishes to emulate a *sequence* type) is up to '
- 'the\n'
+ 'the\n'
' "__getitem__()" method. If *key* is of an inappropriate '
'type,\n'
' "TypeError" may be raised; if of a value outside the '
@@ -7793,15 +7793,15 @@ topics = {'assert': 'The "assert" statement\n'
' *key* is missing (not in the container), "KeyError" '
'should be\n'
' raised.\n'
- '\n'
+ '\n'
' Note:\n'
'\n'
' "for" loops expect that an "IndexError" will be '
- 'raised for\n'
- ' illegal indexes to allow proper detection of the end '
- 'of the\n'
- ' sequence.\n'
- '\n'
+ 'raised for\n'
+ ' illegal indexes to allow proper detection of the end '
+ 'of the\n'
+ ' sequence.\n'
+ '\n'
' Note:\n'
'\n'
' When subscripting a *class*, the special class '
@@ -7811,332 +7811,332 @@ topics = {'assert': 'The "assert" statement\n'
' See __class_getitem__ versus __getitem__ for more '
'details.\n'
'\n'
- 'object.__setitem__(self, key, value)\n'
- '\n'
- ' Called to implement assignment to "self[key]". Same '
- 'note as for\n'
- ' "__getitem__()". This should only be implemented for '
- 'mappings if\n'
- ' the objects support changes to the values for keys, or '
- 'if new keys\n'
- ' can be added, or for sequences if elements can be '
- 'replaced. The\n'
- ' same exceptions should be raised for improper *key* '
- 'values as for\n'
- ' the "__getitem__()" method.\n'
- '\n'
- 'object.__delitem__(self, key)\n'
- '\n'
- ' Called to implement deletion of "self[key]". Same note '
- 'as for\n'
- ' "__getitem__()". This should only be implemented for '
- 'mappings if\n'
- ' the objects support removal of keys, or for sequences '
- 'if elements\n'
- ' can be removed from the sequence. The same exceptions '
- 'should be\n'
- ' raised for improper *key* values as for the '
- '"__getitem__()" method.\n'
- '\n'
- 'object.__missing__(self, key)\n'
- '\n'
- ' Called by "dict"."__getitem__()" to implement '
- '"self[key]" for dict\n'
- ' subclasses when key is not in the dictionary.\n'
- '\n'
- 'object.__iter__(self)\n'
- '\n'
- ' This method is called when an iterator is required for '
- 'a container.\n'
- ' This method should return a new iterator object that '
- 'can iterate\n'
- ' over all the objects in the container. For mappings, '
- 'it should\n'
- ' iterate over the keys of the container.\n'
- '\n'
- ' Iterator objects also need to implement this method; '
- 'they are\n'
- ' required to return themselves. For more information on '
- 'iterator\n'
- ' objects, see Iterator Types.\n'
- '\n'
- 'object.__reversed__(self)\n'
- '\n'
- ' Called (if present) by the "reversed()" built-in to '
- 'implement\n'
- ' reverse iteration. It should return a new iterator '
- 'object that\n'
- ' iterates over all the objects in the container in '
- 'reverse order.\n'
- '\n'
- ' If the "__reversed__()" method is not provided, the '
- '"reversed()"\n'
- ' built-in will fall back to using the sequence protocol '
- '("__len__()"\n'
- ' and "__getitem__()"). Objects that support the '
- 'sequence protocol\n'
- ' should only provide "__reversed__()" if they can '
- 'provide an\n'
- ' implementation that is more efficient than the one '
- 'provided by\n'
- ' "reversed()".\n'
- '\n'
- 'The membership test operators ("in" and "not in") are '
- 'normally\n'
+ 'object.__setitem__(self, key, value)\n'
+ '\n'
+ ' Called to implement assignment to "self[key]". Same '
+ 'note as for\n'
+ ' "__getitem__()". This should only be implemented for '
+ 'mappings if\n'
+ ' the objects support changes to the values for keys, or '
+ 'if new keys\n'
+ ' can be added, or for sequences if elements can be '
+ 'replaced. The\n'
+ ' same exceptions should be raised for improper *key* '
+ 'values as for\n'
+ ' the "__getitem__()" method.\n'
+ '\n'
+ 'object.__delitem__(self, key)\n'
+ '\n'
+ ' Called to implement deletion of "self[key]". Same note '
+ 'as for\n'
+ ' "__getitem__()". This should only be implemented for '
+ 'mappings if\n'
+ ' the objects support removal of keys, or for sequences '
+ 'if elements\n'
+ ' can be removed from the sequence. The same exceptions '
+ 'should be\n'
+ ' raised for improper *key* values as for the '
+ '"__getitem__()" method.\n'
+ '\n'
+ 'object.__missing__(self, key)\n'
+ '\n'
+ ' Called by "dict"."__getitem__()" to implement '
+ '"self[key]" for dict\n'
+ ' subclasses when key is not in the dictionary.\n'
+ '\n'
+ 'object.__iter__(self)\n'
+ '\n'
+ ' This method is called when an iterator is required for '
+ 'a container.\n'
+ ' This method should return a new iterator object that '
+ 'can iterate\n'
+ ' over all the objects in the container. For mappings, '
+ 'it should\n'
+ ' iterate over the keys of the container.\n'
+ '\n'
+ ' Iterator objects also need to implement this method; '
+ 'they are\n'
+ ' required to return themselves. For more information on '
+ 'iterator\n'
+ ' objects, see Iterator Types.\n'
+ '\n'
+ 'object.__reversed__(self)\n'
+ '\n'
+ ' Called (if present) by the "reversed()" built-in to '
+ 'implement\n'
+ ' reverse iteration. It should return a new iterator '
+ 'object that\n'
+ ' iterates over all the objects in the container in '
+ 'reverse order.\n'
+ '\n'
+ ' If the "__reversed__()" method is not provided, the '
+ '"reversed()"\n'
+ ' built-in will fall back to using the sequence protocol '
+ '("__len__()"\n'
+ ' and "__getitem__()"). Objects that support the '
+ 'sequence protocol\n'
+ ' should only provide "__reversed__()" if they can '
+ 'provide an\n'
+ ' implementation that is more efficient than the one '
+ 'provided by\n'
+ ' "reversed()".\n'
+ '\n'
+ 'The membership test operators ("in" and "not in") are '
+ 'normally\n'
'implemented as an iteration through a container. However, '
- 'container\n'
- 'objects can supply the following special method with a '
- 'more efficient\n'
- 'implementation, which also does not require the object be '
+ 'container\n'
+ 'objects can supply the following special method with a '
+ 'more efficient\n'
+ 'implementation, which also does not require the object be '
'iterable.\n'
- '\n'
- 'object.__contains__(self, item)\n'
- '\n'
- ' Called to implement membership test operators. Should '
- 'return true\n'
- ' if *item* is in *self*, false otherwise. For mapping '
- 'objects, this\n'
- ' should consider the keys of the mapping rather than the '
- 'values or\n'
- ' the key-item pairs.\n'
- '\n'
- ' For objects that don’t define "__contains__()", the '
- 'membership test\n'
- ' first tries iteration via "__iter__()", then the old '
- 'sequence\n'
- ' iteration protocol via "__getitem__()", see this '
- 'section in the\n'
- ' language reference.\n',
- 'shifting': 'Shifting operations\n'
- '*******************\n'
- '\n'
- 'The shifting operations have lower priority than the arithmetic\n'
- 'operations:\n'
- '\n'
- ' shift_expr ::= a_expr | shift_expr ("<<" | ">>") a_expr\n'
- '\n'
- 'These operators accept integers as arguments. They shift the '
- 'first\n'
- 'argument to the left or right by the number of bits given by '
- 'the\n'
- 'second argument.\n'
- '\n'
+ '\n'
+ 'object.__contains__(self, item)\n'
+ '\n'
+ ' Called to implement membership test operators. Should '
+ 'return true\n'
+ ' if *item* is in *self*, false otherwise. For mapping '
+ 'objects, this\n'
+ ' should consider the keys of the mapping rather than the '
+ 'values or\n'
+ ' the key-item pairs.\n'
+ '\n'
+ ' For objects that don’t define "__contains__()", the '
+ 'membership test\n'
+ ' first tries iteration via "__iter__()", then the old '
+ 'sequence\n'
+ ' iteration protocol via "__getitem__()", see this '
+ 'section in the\n'
+ ' language reference.\n',
+ 'shifting': 'Shifting operations\n'
+ '*******************\n'
+ '\n'
+ 'The shifting operations have lower priority than the arithmetic\n'
+ 'operations:\n'
+ '\n'
+ ' shift_expr ::= a_expr | shift_expr ("<<" | ">>") a_expr\n'
+ '\n'
+ 'These operators accept integers as arguments. They shift the '
+ 'first\n'
+ 'argument to the left or right by the number of bits given by '
+ 'the\n'
+ 'second argument.\n'
+ '\n'
'This operation can be customized using the special '
'"__lshift__()" and\n'
'"__rshift__()" methods.\n'
'\n'
- 'A right shift by *n* bits is defined as floor division by '
- '"pow(2,n)".\n'
- 'A left shift by *n* bits is defined as multiplication with '
- '"pow(2,n)".\n',
- 'slicings': 'Slicings\n'
- '********\n'
- '\n'
- 'A slicing selects a range of items in a sequence object (e.g., '
- 'a\n'
- 'string, tuple or list). Slicings may be used as expressions or '
- 'as\n'
- 'targets in assignment or "del" statements. The syntax for a '
- 'slicing:\n'
- '\n'
- ' slicing ::= primary "[" slice_list "]"\n'
- ' slice_list ::= slice_item ("," slice_item)* [","]\n'
- ' slice_item ::= expression | proper_slice\n'
- ' proper_slice ::= [lower_bound] ":" [upper_bound] [ ":" '
- '[stride] ]\n'
- ' lower_bound ::= expression\n'
- ' upper_bound ::= expression\n'
- ' stride ::= expression\n'
- '\n'
- 'There is ambiguity in the formal syntax here: anything that '
- 'looks like\n'
- 'an expression list also looks like a slice list, so any '
- 'subscription\n'
- 'can be interpreted as a slicing. Rather than further '
- 'complicating the\n'
- 'syntax, this is disambiguated by defining that in this case the\n'
- 'interpretation as a subscription takes priority over the\n'
- 'interpretation as a slicing (this is the case if the slice list\n'
- 'contains no proper slice).\n'
- '\n'
- 'The semantics for a slicing are as follows. The primary is '
- 'indexed\n'
- '(using the same "__getitem__()" method as normal subscription) '
- 'with a\n'
- 'key that is constructed from the slice list, as follows. If the '
- 'slice\n'
- 'list contains at least one comma, the key is a tuple containing '
- 'the\n'
- 'conversion of the slice items; otherwise, the conversion of the '
- 'lone\n'
- 'slice item is the key. The conversion of a slice item that is '
- 'an\n'
- 'expression is that expression. The conversion of a proper slice '
- 'is a\n'
- 'slice object (see section The standard type hierarchy) whose '
- '"start",\n'
- '"stop" and "step" attributes are the values of the expressions '
- 'given\n'
- 'as lower bound, upper bound and stride, respectively, '
- 'substituting\n'
- '"None" for missing expressions.\n',
- 'specialattrs': 'Special Attributes\n'
- '******************\n'
- '\n'
- 'The implementation adds a few special read-only attributes '
- 'to several\n'
- 'object types, where they are relevant. Some of these are '
- 'not reported\n'
- 'by the "dir()" built-in function.\n'
- '\n'
- 'object.__dict__\n'
- '\n'
- ' A dictionary or other mapping object used to store an '
- 'object’s\n'
- ' (writable) attributes.\n'
- '\n'
- 'instance.__class__\n'
- '\n'
- ' The class to which a class instance belongs.\n'
- '\n'
- 'class.__bases__\n'
- '\n'
- ' The tuple of base classes of a class object.\n'
- '\n'
- 'definition.__name__\n'
- '\n'
- ' The name of the class, function, method, descriptor, or '
- 'generator\n'
- ' instance.\n'
- '\n'
- 'definition.__qualname__\n'
- '\n'
- ' The *qualified name* of the class, function, method, '
- 'descriptor, or\n'
- ' generator instance.\n'
- '\n'
- ' New in version 3.3.\n'
- '\n'
- 'class.__mro__\n'
- '\n'
- ' This attribute is a tuple of classes that are considered '
- 'when\n'
- ' looking for base classes during method resolution.\n'
- '\n'
- 'class.mro()\n'
- '\n'
- ' This method can be overridden by a metaclass to customize '
- 'the\n'
- ' method resolution order for its instances. It is called '
- 'at class\n'
- ' instantiation, and its result is stored in "__mro__".\n'
- '\n'
- 'class.__subclasses__()\n'
- '\n'
- ' Each class keeps a list of weak references to its '
- 'immediate\n'
- ' subclasses. This method returns a list of all those '
- 'references\n'
+ 'A right shift by *n* bits is defined as floor division by '
+ '"pow(2,n)".\n'
+ 'A left shift by *n* bits is defined as multiplication with '
+ '"pow(2,n)".\n',
+ 'slicings': 'Slicings\n'
+ '********\n'
+ '\n'
+ 'A slicing selects a range of items in a sequence object (e.g., '
+ 'a\n'
+ 'string, tuple or list). Slicings may be used as expressions or '
+ 'as\n'
+ 'targets in assignment or "del" statements. The syntax for a '
+ 'slicing:\n'
+ '\n'
+ ' slicing ::= primary "[" slice_list "]"\n'
+ ' slice_list ::= slice_item ("," slice_item)* [","]\n'
+ ' slice_item ::= expression | proper_slice\n'
+ ' proper_slice ::= [lower_bound] ":" [upper_bound] [ ":" '
+ '[stride] ]\n'
+ ' lower_bound ::= expression\n'
+ ' upper_bound ::= expression\n'
+ ' stride ::= expression\n'
+ '\n'
+ 'There is ambiguity in the formal syntax here: anything that '
+ 'looks like\n'
+ 'an expression list also looks like a slice list, so any '
+ 'subscription\n'
+ 'can be interpreted as a slicing. Rather than further '
+ 'complicating the\n'
+ 'syntax, this is disambiguated by defining that in this case the\n'
+ 'interpretation as a subscription takes priority over the\n'
+ 'interpretation as a slicing (this is the case if the slice list\n'
+ 'contains no proper slice).\n'
+ '\n'
+ 'The semantics for a slicing are as follows. The primary is '
+ 'indexed\n'
+ '(using the same "__getitem__()" method as normal subscription) '
+ 'with a\n'
+ 'key that is constructed from the slice list, as follows. If the '
+ 'slice\n'
+ 'list contains at least one comma, the key is a tuple containing '
+ 'the\n'
+ 'conversion of the slice items; otherwise, the conversion of the '
+ 'lone\n'
+ 'slice item is the key. The conversion of a slice item that is '
+ 'an\n'
+ 'expression is that expression. The conversion of a proper slice '
+ 'is a\n'
+ 'slice object (see section The standard type hierarchy) whose '
+ '"start",\n'
+ '"stop" and "step" attributes are the values of the expressions '
+ 'given\n'
+ 'as lower bound, upper bound and stride, respectively, '
+ 'substituting\n'
+ '"None" for missing expressions.\n',
+ 'specialattrs': 'Special Attributes\n'
+ '******************\n'
+ '\n'
+ 'The implementation adds a few special read-only attributes '
+ 'to several\n'
+ 'object types, where they are relevant. Some of these are '
+ 'not reported\n'
+ 'by the "dir()" built-in function.\n'
+ '\n'
+ 'object.__dict__\n'
+ '\n'
+ ' A dictionary or other mapping object used to store an '
+ 'object’s\n'
+ ' (writable) attributes.\n'
+ '\n'
+ 'instance.__class__\n'
+ '\n'
+ ' The class to which a class instance belongs.\n'
+ '\n'
+ 'class.__bases__\n'
+ '\n'
+ ' The tuple of base classes of a class object.\n'
+ '\n'
+ 'definition.__name__\n'
+ '\n'
+ ' The name of the class, function, method, descriptor, or '
+ 'generator\n'
+ ' instance.\n'
+ '\n'
+ 'definition.__qualname__\n'
+ '\n'
+ ' The *qualified name* of the class, function, method, '
+ 'descriptor, or\n'
+ ' generator instance.\n'
+ '\n'
+ ' New in version 3.3.\n'
+ '\n'
+ 'class.__mro__\n'
+ '\n'
+ ' This attribute is a tuple of classes that are considered '
+ 'when\n'
+ ' looking for base classes during method resolution.\n'
+ '\n'
+ 'class.mro()\n'
+ '\n'
+ ' This method can be overridden by a metaclass to customize '
+ 'the\n'
+ ' method resolution order for its instances. It is called '
+ 'at class\n'
+ ' instantiation, and its result is stored in "__mro__".\n'
+ '\n'
+ 'class.__subclasses__()\n'
+ '\n'
+ ' Each class keeps a list of weak references to its '
+ 'immediate\n'
+ ' subclasses. This method returns a list of all those '
+ 'references\n'
' still alive. The list is in definition order. Example:\n'
- '\n'
- ' >>> int.__subclasses__()\n'
- " [<class 'bool'>]\n"
- '\n'
- '-[ Footnotes ]-\n'
- '\n'
- '[1] Additional information on these special methods may be '
+ '\n'
+ ' >>> int.__subclasses__()\n'
+ " [<class 'bool'>]\n"
+ '\n'
+ '-[ Footnotes ]-\n'
+ '\n'
+ '[1] Additional information on these special methods may be '
'found in\n'
' the Python Reference Manual (Basic customization).\n'
- '\n'
- '[2] As a consequence, the list "[1, 2]" is considered equal '
+ '\n'
+ '[2] As a consequence, the list "[1, 2]" is considered equal '
'to "[1.0,\n'
' 2.0]", and similarly for tuples.\n'
- '\n'
- '[3] They must have since the parser can’t tell the type of '
- 'the\n'
- ' operands.\n'
- '\n'
- '[4] Cased characters are those with general category '
+ '\n'
+ '[3] They must have since the parser can’t tell the type of '
+ 'the\n'
+ ' operands.\n'
+ '\n'
+ '[4] Cased characters are those with general category '
'property being\n'
' one of “Lu” (Letter, uppercase), “Ll” (Letter, '
'lowercase), or “Lt”\n'
' (Letter, titlecase).\n'
- '\n'
+ '\n'
'[5] To format only a tuple you should therefore provide a '
'singleton\n'
' tuple whose only element is the tuple to be formatted.\n',
- 'specialnames': 'Special method names\n'
- '********************\n'
- '\n'
- 'A class can implement certain operations that are invoked by '
- 'special\n'
- 'syntax (such as arithmetic operations or subscripting and '
- 'slicing) by\n'
- 'defining methods with special names. This is Python’s '
- 'approach to\n'
- '*operator overloading*, allowing classes to define their own '
- 'behavior\n'
- 'with respect to language operators. For instance, if a '
- 'class defines\n'
- 'a method named "__getitem__()", and "x" is an instance of '
- 'this class,\n'
- 'then "x[i]" is roughly equivalent to "type(x).__getitem__(x, '
- 'i)".\n'
- 'Except where mentioned, attempts to execute an operation '
- 'raise an\n'
- 'exception when no appropriate method is defined (typically\n'
- '"AttributeError" or "TypeError").\n'
- '\n'
- 'Setting a special method to "None" indicates that the '
- 'corresponding\n'
- 'operation is not available. For example, if a class sets '
- '"__iter__()"\n'
- 'to "None", the class is not iterable, so calling "iter()" on '
- 'its\n'
- 'instances will raise a "TypeError" (without falling back to\n'
- '"__getitem__()"). [2]\n'
- '\n'
- 'When implementing a class that emulates any built-in type, '
- 'it is\n'
- 'important that the emulation only be implemented to the '
- 'degree that it\n'
- 'makes sense for the object being modelled. For example, '
- 'some\n'
- 'sequences may work well with retrieval of individual '
- 'elements, but\n'
- 'extracting a slice may not make sense. (One example of this '
- 'is the\n'
- '"NodeList" interface in the W3C’s Document Object Model.)\n'
- '\n'
- '\n'
- 'Basic customization\n'
- '===================\n'
- '\n'
- 'object.__new__(cls[, ...])\n'
- '\n'
- ' Called to create a new instance of class *cls*. '
- '"__new__()" is a\n'
- ' static method (special-cased so you need not declare it '
- 'as such)\n'
- ' that takes the class of which an instance was requested '
- 'as its\n'
- ' first argument. The remaining arguments are those passed '
- 'to the\n'
- ' object constructor expression (the call to the class). '
- 'The return\n'
- ' value of "__new__()" should be the new object instance '
- '(usually an\n'
- ' instance of *cls*).\n'
- '\n'
- ' Typical implementations create a new instance of the '
- 'class by\n'
- ' invoking the superclass’s "__new__()" method using\n'
- ' "super().__new__(cls[, ...])" with appropriate arguments '
- 'and then\n'
- ' modifying the newly-created instance as necessary before '
- 'returning\n'
- ' it.\n'
- '\n'
+ 'specialnames': 'Special method names\n'
+ '********************\n'
+ '\n'
+ 'A class can implement certain operations that are invoked by '
+ 'special\n'
+ 'syntax (such as arithmetic operations or subscripting and '
+ 'slicing) by\n'
+ 'defining methods with special names. This is Python’s '
+ 'approach to\n'
+ '*operator overloading*, allowing classes to define their own '
+ 'behavior\n'
+ 'with respect to language operators. For instance, if a '
+ 'class defines\n'
+ 'a method named "__getitem__()", and "x" is an instance of '
+ 'this class,\n'
+ 'then "x[i]" is roughly equivalent to "type(x).__getitem__(x, '
+ 'i)".\n'
+ 'Except where mentioned, attempts to execute an operation '
+ 'raise an\n'
+ 'exception when no appropriate method is defined (typically\n'
+ '"AttributeError" or "TypeError").\n'
+ '\n'
+ 'Setting a special method to "None" indicates that the '
+ 'corresponding\n'
+ 'operation is not available. For example, if a class sets '
+ '"__iter__()"\n'
+ 'to "None", the class is not iterable, so calling "iter()" on '
+ 'its\n'
+ 'instances will raise a "TypeError" (without falling back to\n'
+ '"__getitem__()"). [2]\n'
+ '\n'
+ 'When implementing a class that emulates any built-in type, '
+ 'it is\n'
+ 'important that the emulation only be implemented to the '
+ 'degree that it\n'
+ 'makes sense for the object being modelled. For example, '
+ 'some\n'
+ 'sequences may work well with retrieval of individual '
+ 'elements, but\n'
+ 'extracting a slice may not make sense. (One example of this '
+ 'is the\n'
+ '"NodeList" interface in the W3C’s Document Object Model.)\n'
+ '\n'
+ '\n'
+ 'Basic customization\n'
+ '===================\n'
+ '\n'
+ 'object.__new__(cls[, ...])\n'
+ '\n'
+ ' Called to create a new instance of class *cls*. '
+ '"__new__()" is a\n'
+ ' static method (special-cased so you need not declare it '
+ 'as such)\n'
+ ' that takes the class of which an instance was requested '
+ 'as its\n'
+ ' first argument. The remaining arguments are those passed '
+ 'to the\n'
+ ' object constructor expression (the call to the class). '
+ 'The return\n'
+ ' value of "__new__()" should be the new object instance '
+ '(usually an\n'
+ ' instance of *cls*).\n'
+ '\n'
+ ' Typical implementations create a new instance of the '
+ 'class by\n'
+ ' invoking the superclass’s "__new__()" method using\n'
+ ' "super().__new__(cls[, ...])" with appropriate arguments '
+ 'and then\n'
+ ' modifying the newly-created instance as necessary before '
+ 'returning\n'
+ ' it.\n'
+ '\n'
' If "__new__()" is invoked during object construction and '
'it returns\n'
' an instance of *cls*, then the new instance’s '
@@ -8146,97 +8146,97 @@ topics = {'assert': 'The "assert" statement\n'
' new instance and the remaining arguments are the same as '
'were\n'
' passed to the object constructor.\n'
- '\n'
- ' If "__new__()" does not return an instance of *cls*, then '
- 'the new\n'
- ' instance’s "__init__()" method will not be invoked.\n'
- '\n'
- ' "__new__()" is intended mainly to allow subclasses of '
- 'immutable\n'
- ' types (like int, str, or tuple) to customize instance '
- 'creation. It\n'
- ' is also commonly overridden in custom metaclasses in '
- 'order to\n'
- ' customize class creation.\n'
- '\n'
- 'object.__init__(self[, ...])\n'
- '\n'
- ' Called after the instance has been created (by '
- '"__new__()"), but\n'
- ' before it is returned to the caller. The arguments are '
- 'those\n'
- ' passed to the class constructor expression. If a base '
- 'class has an\n'
- ' "__init__()" method, the derived class’s "__init__()" '
- 'method, if\n'
- ' any, must explicitly call it to ensure proper '
- 'initialization of the\n'
- ' base class part of the instance; for example:\n'
- ' "super().__init__([args...])".\n'
- '\n'
- ' Because "__new__()" and "__init__()" work together in '
- 'constructing\n'
- ' objects ("__new__()" to create it, and "__init__()" to '
- 'customize\n'
- ' it), no non-"None" value may be returned by "__init__()"; '
- 'doing so\n'
- ' will cause a "TypeError" to be raised at runtime.\n'
- '\n'
- 'object.__del__(self)\n'
- '\n'
- ' Called when the instance is about to be destroyed. This '
- 'is also\n'
- ' called a finalizer or (improperly) a destructor. If a '
- 'base class\n'
- ' has a "__del__()" method, the derived class’s "__del__()" '
- 'method,\n'
- ' if any, must explicitly call it to ensure proper deletion '
- 'of the\n'
- ' base class part of the instance.\n'
- '\n'
- ' It is possible (though not recommended!) for the '
- '"__del__()" method\n'
- ' to postpone destruction of the instance by creating a new '
- 'reference\n'
- ' to it. This is called object *resurrection*. It is\n'
- ' implementation-dependent whether "__del__()" is called a '
- 'second\n'
- ' time when a resurrected object is about to be destroyed; '
- 'the\n'
- ' current *CPython* implementation only calls it once.\n'
- '\n'
- ' It is not guaranteed that "__del__()" methods are called '
- 'for\n'
- ' objects that still exist when the interpreter exits.\n'
- '\n'
+ '\n'
+ ' If "__new__()" does not return an instance of *cls*, then '
+ 'the new\n'
+ ' instance’s "__init__()" method will not be invoked.\n'
+ '\n'
+ ' "__new__()" is intended mainly to allow subclasses of '
+ 'immutable\n'
+ ' types (like int, str, or tuple) to customize instance '
+ 'creation. It\n'
+ ' is also commonly overridden in custom metaclasses in '
+ 'order to\n'
+ ' customize class creation.\n'
+ '\n'
+ 'object.__init__(self[, ...])\n'
+ '\n'
+ ' Called after the instance has been created (by '
+ '"__new__()"), but\n'
+ ' before it is returned to the caller. The arguments are '
+ 'those\n'
+ ' passed to the class constructor expression. If a base '
+ 'class has an\n'
+ ' "__init__()" method, the derived class’s "__init__()" '
+ 'method, if\n'
+ ' any, must explicitly call it to ensure proper '
+ 'initialization of the\n'
+ ' base class part of the instance; for example:\n'
+ ' "super().__init__([args...])".\n'
+ '\n'
+ ' Because "__new__()" and "__init__()" work together in '
+ 'constructing\n'
+ ' objects ("__new__()" to create it, and "__init__()" to '
+ 'customize\n'
+ ' it), no non-"None" value may be returned by "__init__()"; '
+ 'doing so\n'
+ ' will cause a "TypeError" to be raised at runtime.\n'
+ '\n'
+ 'object.__del__(self)\n'
+ '\n'
+ ' Called when the instance is about to be destroyed. This '
+ 'is also\n'
+ ' called a finalizer or (improperly) a destructor. If a '
+ 'base class\n'
+ ' has a "__del__()" method, the derived class’s "__del__()" '
+ 'method,\n'
+ ' if any, must explicitly call it to ensure proper deletion '
+ 'of the\n'
+ ' base class part of the instance.\n'
+ '\n'
+ ' It is possible (though not recommended!) for the '
+ '"__del__()" method\n'
+ ' to postpone destruction of the instance by creating a new '
+ 'reference\n'
+ ' to it. This is called object *resurrection*. It is\n'
+ ' implementation-dependent whether "__del__()" is called a '
+ 'second\n'
+ ' time when a resurrected object is about to be destroyed; '
+ 'the\n'
+ ' current *CPython* implementation only calls it once.\n'
+ '\n'
+ ' It is not guaranteed that "__del__()" methods are called '
+ 'for\n'
+ ' objects that still exist when the interpreter exits.\n'
+ '\n'
' Note:\n'
'\n'
' "del x" doesn’t directly call "x.__del__()" — the '
- 'former\n'
- ' decrements the reference count for "x" by one, and the '
- 'latter is\n'
- ' only called when "x"’s reference count reaches zero.\n'
- '\n'
- ' **CPython implementation detail:** It is possible for a '
- 'reference\n'
- ' cycle to prevent the reference count of an object from '
- 'going to\n'
- ' zero. In this case, the cycle will be later detected and '
- 'deleted\n'
- ' by the *cyclic garbage collector*. A common cause of '
- 'reference\n'
- ' cycles is when an exception has been caught in a local '
- 'variable.\n'
- ' The frame’s locals then reference the exception, which '
- 'references\n'
- ' its own traceback, which references the locals of all '
- 'frames caught\n'
- ' in the traceback.\n'
- '\n'
- ' See also: Documentation for the "gc" module.\n'
- '\n'
+ 'former\n'
+ ' decrements the reference count for "x" by one, and the '
+ 'latter is\n'
+ ' only called when "x"’s reference count reaches zero.\n'
+ '\n'
+ ' **CPython implementation detail:** It is possible for a '
+ 'reference\n'
+ ' cycle to prevent the reference count of an object from '
+ 'going to\n'
+ ' zero. In this case, the cycle will be later detected and '
+ 'deleted\n'
+ ' by the *cyclic garbage collector*. A common cause of '
+ 'reference\n'
+ ' cycles is when an exception has been caught in a local '
+ 'variable.\n'
+ ' The frame’s locals then reference the exception, which '
+ 'references\n'
+ ' its own traceback, which references the locals of all '
+ 'frames caught\n'
+ ' in the traceback.\n'
+ '\n'
+ ' See also: Documentation for the "gc" module.\n'
+ '\n'
' Warning:\n'
- '\n'
+ '\n'
' Due to the precarious circumstances under which '
'"__del__()"\n'
' methods are invoked, exceptions that occur during their '
@@ -8245,17 +8245,17 @@ topics = {'assert': 'The "assert" statement\n'
'instead.\n'
' In particular:\n'
'\n'
- ' * "__del__()" can be invoked when arbitrary code is '
- 'being\n'
- ' executed, including from any arbitrary thread. If '
- '"__del__()"\n'
- ' needs to take a lock or invoke any other blocking '
- 'resource, it\n'
- ' may deadlock as the resource may already be taken by '
- 'the code\n'
- ' that gets interrupted to execute "__del__()".\n'
- '\n'
- ' * "__del__()" can be executed during interpreter '
+ ' * "__del__()" can be invoked when arbitrary code is '
+ 'being\n'
+ ' executed, including from any arbitrary thread. If '
+ '"__del__()"\n'
+ ' needs to take a lock or invoke any other blocking '
+ 'resource, it\n'
+ ' may deadlock as the resource may already be taken by '
+ 'the code\n'
+ ' that gets interrupted to execute "__del__()".\n'
+ '\n'
+ ' * "__del__()" can be executed during interpreter '
'shutdown. As a\n'
' consequence, the global variables it needs to access '
'(including\n'
@@ -8270,124 +8270,124 @@ topics = {'assert': 'The "assert" statement\n'
' may help in assuring that imported modules are still '
'available\n'
' at the time when the "__del__()" method is called.\n'
- '\n'
- 'object.__repr__(self)\n'
- '\n'
- ' Called by the "repr()" built-in function to compute the '
- '“official”\n'
- ' string representation of an object. If at all possible, '
- 'this\n'
- ' should look like a valid Python expression that could be '
- 'used to\n'
- ' recreate an object with the same value (given an '
- 'appropriate\n'
- ' environment). If this is not possible, a string of the '
- 'form\n'
- ' "<...some useful description...>" should be returned. The '
- 'return\n'
- ' value must be a string object. If a class defines '
- '"__repr__()" but\n'
- ' not "__str__()", then "__repr__()" is also used when an '
- '“informal”\n'
- ' string representation of instances of that class is '
- 'required.\n'
- '\n'
- ' This is typically used for debugging, so it is important '
- 'that the\n'
- ' representation is information-rich and unambiguous.\n'
- '\n'
- 'object.__str__(self)\n'
- '\n'
- ' Called by "str(object)" and the built-in functions '
- '"format()" and\n'
- ' "print()" to compute the “informal” or nicely printable '
- 'string\n'
- ' representation of an object. The return value must be a '
- 'string\n'
- ' object.\n'
- '\n'
- ' This method differs from "object.__repr__()" in that '
- 'there is no\n'
- ' expectation that "__str__()" return a valid Python '
- 'expression: a\n'
- ' more convenient or concise representation can be used.\n'
- '\n'
- ' The default implementation defined by the built-in type '
- '"object"\n'
- ' calls "object.__repr__()".\n'
- '\n'
- 'object.__bytes__(self)\n'
- '\n'
- ' Called by bytes to compute a byte-string representation '
- 'of an\n'
- ' object. This should return a "bytes" object.\n'
- '\n'
- 'object.__format__(self, format_spec)\n'
- '\n'
- ' Called by the "format()" built-in function, and by '
- 'extension,\n'
- ' evaluation of formatted string literals and the '
- '"str.format()"\n'
- ' method, to produce a “formatted” string representation of '
- 'an\n'
+ '\n'
+ 'object.__repr__(self)\n'
+ '\n'
+ ' Called by the "repr()" built-in function to compute the '
+ '“official”\n'
+ ' string representation of an object. If at all possible, '
+ 'this\n'
+ ' should look like a valid Python expression that could be '
+ 'used to\n'
+ ' recreate an object with the same value (given an '
+ 'appropriate\n'
+ ' environment). If this is not possible, a string of the '
+ 'form\n'
+ ' "<...some useful description...>" should be returned. The '
+ 'return\n'
+ ' value must be a string object. If a class defines '
+ '"__repr__()" but\n'
+ ' not "__str__()", then "__repr__()" is also used when an '
+ '“informal”\n'
+ ' string representation of instances of that class is '
+ 'required.\n'
+ '\n'
+ ' This is typically used for debugging, so it is important '
+ 'that the\n'
+ ' representation is information-rich and unambiguous.\n'
+ '\n'
+ 'object.__str__(self)\n'
+ '\n'
+ ' Called by "str(object)" and the built-in functions '
+ '"format()" and\n'
+ ' "print()" to compute the “informal” or nicely printable '
+ 'string\n'
+ ' representation of an object. The return value must be a '
+ 'string\n'
+ ' object.\n'
+ '\n'
+ ' This method differs from "object.__repr__()" in that '
+ 'there is no\n'
+ ' expectation that "__str__()" return a valid Python '
+ 'expression: a\n'
+ ' more convenient or concise representation can be used.\n'
+ '\n'
+ ' The default implementation defined by the built-in type '
+ '"object"\n'
+ ' calls "object.__repr__()".\n'
+ '\n'
+ 'object.__bytes__(self)\n'
+ '\n'
+ ' Called by bytes to compute a byte-string representation '
+ 'of an\n'
+ ' object. This should return a "bytes" object.\n'
+ '\n'
+ 'object.__format__(self, format_spec)\n'
+ '\n'
+ ' Called by the "format()" built-in function, and by '
+ 'extension,\n'
+ ' evaluation of formatted string literals and the '
+ '"str.format()"\n'
+ ' method, to produce a “formatted” string representation of '
+ 'an\n'
' object. The *format_spec* argument is a string that '
- 'contains a\n'
- ' description of the formatting options desired. The '
- 'interpretation\n'
+ 'contains a\n'
+ ' description of the formatting options desired. The '
+ 'interpretation\n'
' of the *format_spec* argument is up to the type '
- 'implementing\n'
- ' "__format__()", however most classes will either '
- 'delegate\n'
- ' formatting to one of the built-in types, or use a '
- 'similar\n'
- ' formatting option syntax.\n'
- '\n'
- ' See Format Specification Mini-Language for a description '
- 'of the\n'
- ' standard formatting syntax.\n'
- '\n'
- ' The return value must be a string object.\n'
- '\n'
- ' Changed in version 3.4: The __format__ method of "object" '
- 'itself\n'
- ' raises a "TypeError" if passed any non-empty string.\n'
- '\n'
- ' Changed in version 3.7: "object.__format__(x, \'\')" is '
- 'now\n'
+ 'implementing\n'
+ ' "__format__()", however most classes will either '
+ 'delegate\n'
+ ' formatting to one of the built-in types, or use a '
+ 'similar\n'
+ ' formatting option syntax.\n'
+ '\n'
+ ' See Format Specification Mini-Language for a description '
+ 'of the\n'
+ ' standard formatting syntax.\n'
+ '\n'
+ ' The return value must be a string object.\n'
+ '\n'
+ ' Changed in version 3.4: The __format__ method of "object" '
+ 'itself\n'
+ ' raises a "TypeError" if passed any non-empty string.\n'
+ '\n'
+ ' Changed in version 3.7: "object.__format__(x, \'\')" is '
+ 'now\n'
' equivalent to "str(x)" rather than "format(str(x), '
- '\'\')".\n'
- '\n'
- 'object.__lt__(self, other)\n'
- 'object.__le__(self, other)\n'
- 'object.__eq__(self, other)\n'
- 'object.__ne__(self, other)\n'
- 'object.__gt__(self, other)\n'
- 'object.__ge__(self, other)\n'
- '\n'
- ' These are the so-called “rich comparison” methods. The\n'
- ' correspondence between operator symbols and method names '
- 'is as\n'
- ' follows: "x<y" calls "x.__lt__(y)", "x<=y" calls '
- '"x.__le__(y)",\n'
- ' "x==y" calls "x.__eq__(y)", "x!=y" calls "x.__ne__(y)", '
- '"x>y" calls\n'
- ' "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n'
- '\n'
- ' A rich comparison method may return the singleton '
- '"NotImplemented"\n'
- ' if it does not implement the operation for a given pair '
- 'of\n'
- ' arguments. By convention, "False" and "True" are returned '
- 'for a\n'
- ' successful comparison. However, these methods can return '
- 'any value,\n'
- ' so if the comparison operator is used in a Boolean '
- 'context (e.g.,\n'
- ' in the condition of an "if" statement), Python will call '
- '"bool()"\n'
- ' on the value to determine if the result is true or '
- 'false.\n'
- '\n'
+ '\'\')".\n'
+ '\n'
+ 'object.__lt__(self, other)\n'
+ 'object.__le__(self, other)\n'
+ 'object.__eq__(self, other)\n'
+ 'object.__ne__(self, other)\n'
+ 'object.__gt__(self, other)\n'
+ 'object.__ge__(self, other)\n'
+ '\n'
+ ' These are the so-called “rich comparison” methods. The\n'
+ ' correspondence between operator symbols and method names '
+ 'is as\n'
+ ' follows: "x<y" calls "x.__lt__(y)", "x<=y" calls '
+ '"x.__le__(y)",\n'
+ ' "x==y" calls "x.__eq__(y)", "x!=y" calls "x.__ne__(y)", '
+ '"x>y" calls\n'
+ ' "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n'
+ '\n'
+ ' A rich comparison method may return the singleton '
+ '"NotImplemented"\n'
+ ' if it does not implement the operation for a given pair '
+ 'of\n'
+ ' arguments. By convention, "False" and "True" are returned '
+ 'for a\n'
+ ' successful comparison. However, these methods can return '
+ 'any value,\n'
+ ' so if the comparison operator is used in a Boolean '
+ 'context (e.g.,\n'
+ ' in the condition of an "if" statement), Python will call '
+ '"bool()"\n'
+ ' on the value to determine if the result is true or '
+ 'false.\n'
+ '\n'
' By default, "object" implements "__eq__()" by using "is", '
'returning\n'
' "NotImplemented" in the case of a false comparison: "True '
@@ -8403,55 +8403,55 @@ topics = {'assert': 'The "assert" statement\n'
' "(x<y or x==y)" does not imply "x<=y". To automatically '
'generate\n'
' ordering operations from a single root operation, see\n'
- ' "functools.total_ordering()".\n'
- '\n'
- ' See the paragraph on "__hash__()" for some important '
- 'notes on\n'
- ' creating *hashable* objects which support custom '
- 'comparison\n'
- ' operations and are usable as dictionary keys.\n'
- '\n'
- ' There are no swapped-argument versions of these methods '
- '(to be used\n'
- ' when the left argument does not support the operation but '
- 'the right\n'
- ' argument does); rather, "__lt__()" and "__gt__()" are '
- 'each other’s\n'
- ' reflection, "__le__()" and "__ge__()" are each other’s '
- 'reflection,\n'
- ' and "__eq__()" and "__ne__()" are their own reflection. '
- 'If the\n'
- ' operands are of different types, and right operand’s type '
- 'is a\n'
- ' direct or indirect subclass of the left operand’s type, '
- 'the\n'
- ' reflected method of the right operand has priority, '
- 'otherwise the\n'
- ' left operand’s method has priority. Virtual subclassing '
- 'is not\n'
- ' considered.\n'
- '\n'
- 'object.__hash__(self)\n'
- '\n'
- ' Called by built-in function "hash()" and for operations '
- 'on members\n'
- ' of hashed collections including "set", "frozenset", and '
- '"dict".\n'
- ' "__hash__()" should return an integer. The only required '
- 'property\n'
- ' is that objects which compare equal have the same hash '
- 'value; it is\n'
- ' advised to mix together the hash values of the components '
- 'of the\n'
- ' object that also play a part in comparison of objects by '
- 'packing\n'
- ' them into a tuple and hashing the tuple. Example:\n'
- '\n'
- ' def __hash__(self):\n'
- ' return hash((self.name, self.nick, self.color))\n'
- '\n'
+ ' "functools.total_ordering()".\n'
+ '\n'
+ ' See the paragraph on "__hash__()" for some important '
+ 'notes on\n'
+ ' creating *hashable* objects which support custom '
+ 'comparison\n'
+ ' operations and are usable as dictionary keys.\n'
+ '\n'
+ ' There are no swapped-argument versions of these methods '
+ '(to be used\n'
+ ' when the left argument does not support the operation but '
+ 'the right\n'
+ ' argument does); rather, "__lt__()" and "__gt__()" are '
+ 'each other’s\n'
+ ' reflection, "__le__()" and "__ge__()" are each other’s '
+ 'reflection,\n'
+ ' and "__eq__()" and "__ne__()" are their own reflection. '
+ 'If the\n'
+ ' operands are of different types, and right operand’s type '
+ 'is a\n'
+ ' direct or indirect subclass of the left operand’s type, '
+ 'the\n'
+ ' reflected method of the right operand has priority, '
+ 'otherwise the\n'
+ ' left operand’s method has priority. Virtual subclassing '
+ 'is not\n'
+ ' considered.\n'
+ '\n'
+ 'object.__hash__(self)\n'
+ '\n'
+ ' Called by built-in function "hash()" and for operations '
+ 'on members\n'
+ ' of hashed collections including "set", "frozenset", and '
+ '"dict".\n'
+ ' "__hash__()" should return an integer. The only required '
+ 'property\n'
+ ' is that objects which compare equal have the same hash '
+ 'value; it is\n'
+ ' advised to mix together the hash values of the components '
+ 'of the\n'
+ ' object that also play a part in comparison of objects by '
+ 'packing\n'
+ ' them into a tuple and hashing the tuple. Example:\n'
+ '\n'
+ ' def __hash__(self):\n'
+ ' return hash((self.name, self.nick, self.color))\n'
+ '\n'
' Note:\n'
- '\n'
+ '\n'
' "hash()" truncates the value returned from an object’s '
'custom\n'
' "__hash__()" method to the size of a "Py_ssize_t". '
@@ -8466,60 +8466,60 @@ topics = {'assert': 'The "assert" statement\n'
'"import sys;\n'
' print(sys.hash_info.width)"".\n'
'\n'
- ' If a class does not define an "__eq__()" method it should '
- 'not\n'
- ' define a "__hash__()" operation either; if it defines '
- '"__eq__()"\n'
- ' but not "__hash__()", its instances will not be usable as '
- 'items in\n'
- ' hashable collections. If a class defines mutable objects '
- 'and\n'
- ' implements an "__eq__()" method, it should not implement\n'
- ' "__hash__()", since the implementation of hashable '
- 'collections\n'
- ' requires that a key’s hash value is immutable (if the '
- 'object’s hash\n'
- ' value changes, it will be in the wrong hash bucket).\n'
- '\n'
- ' User-defined classes have "__eq__()" and "__hash__()" '
- 'methods by\n'
- ' default; with them, all objects compare unequal (except '
- 'with\n'
- ' themselves) and "x.__hash__()" returns an appropriate '
- 'value such\n'
- ' that "x == y" implies both that "x is y" and "hash(x) == '
- 'hash(y)".\n'
- '\n'
- ' A class that overrides "__eq__()" and does not define '
- '"__hash__()"\n'
- ' will have its "__hash__()" implicitly set to "None". '
- 'When the\n'
- ' "__hash__()" method of a class is "None", instances of '
- 'the class\n'
- ' will raise an appropriate "TypeError" when a program '
- 'attempts to\n'
- ' retrieve their hash value, and will also be correctly '
- 'identified as\n'
- ' unhashable when checking "isinstance(obj,\n'
- ' collections.abc.Hashable)".\n'
- '\n'
- ' If a class that overrides "__eq__()" needs to retain the\n'
- ' implementation of "__hash__()" from a parent class, the '
- 'interpreter\n'
- ' must be told this explicitly by setting "__hash__ =\n'
- ' <ParentClass>.__hash__".\n'
- '\n'
- ' If a class that does not override "__eq__()" wishes to '
- 'suppress\n'
- ' hash support, it should include "__hash__ = None" in the '
- 'class\n'
- ' definition. A class which defines its own "__hash__()" '
- 'that\n'
- ' explicitly raises a "TypeError" would be incorrectly '
- 'identified as\n'
- ' hashable by an "isinstance(obj, '
- 'collections.abc.Hashable)" call.\n'
- '\n'
+ ' If a class does not define an "__eq__()" method it should '
+ 'not\n'
+ ' define a "__hash__()" operation either; if it defines '
+ '"__eq__()"\n'
+ ' but not "__hash__()", its instances will not be usable as '
+ 'items in\n'
+ ' hashable collections. If a class defines mutable objects '
+ 'and\n'
+ ' implements an "__eq__()" method, it should not implement\n'
+ ' "__hash__()", since the implementation of hashable '
+ 'collections\n'
+ ' requires that a key’s hash value is immutable (if the '
+ 'object’s hash\n'
+ ' value changes, it will be in the wrong hash bucket).\n'
+ '\n'
+ ' User-defined classes have "__eq__()" and "__hash__()" '
+ 'methods by\n'
+ ' default; with them, all objects compare unequal (except '
+ 'with\n'
+ ' themselves) and "x.__hash__()" returns an appropriate '
+ 'value such\n'
+ ' that "x == y" implies both that "x is y" and "hash(x) == '
+ 'hash(y)".\n'
+ '\n'
+ ' A class that overrides "__eq__()" and does not define '
+ '"__hash__()"\n'
+ ' will have its "__hash__()" implicitly set to "None". '
+ 'When the\n'
+ ' "__hash__()" method of a class is "None", instances of '
+ 'the class\n'
+ ' will raise an appropriate "TypeError" when a program '
+ 'attempts to\n'
+ ' retrieve their hash value, and will also be correctly '
+ 'identified as\n'
+ ' unhashable when checking "isinstance(obj,\n'
+ ' collections.abc.Hashable)".\n'
+ '\n'
+ ' If a class that overrides "__eq__()" needs to retain the\n'
+ ' implementation of "__hash__()" from a parent class, the '
+ 'interpreter\n'
+ ' must be told this explicitly by setting "__hash__ =\n'
+ ' <ParentClass>.__hash__".\n'
+ '\n'
+ ' If a class that does not override "__eq__()" wishes to '
+ 'suppress\n'
+ ' hash support, it should include "__hash__ = None" in the '
+ 'class\n'
+ ' definition. A class which defines its own "__hash__()" '
+ 'that\n'
+ ' explicitly raises a "TypeError" would be incorrectly '
+ 'identified as\n'
+ ' hashable by an "isinstance(obj, '
+ 'collections.abc.Hashable)" call.\n'
+ '\n'
' Note:\n'
'\n'
' By default, the "__hash__()" values of str and bytes '
@@ -8536,96 +8536,96 @@ topics = {'assert': 'The "assert" statement\n'
' performance of a dict insertion, O(n^2) complexity. '
'See\n'
' http://www.ocert.org/advisories/ocert-2011-003.html '
- 'for\n'
- ' details.Changing hash values affects the iteration '
- 'order of sets.\n'
- ' Python has never made guarantees about this ordering '
- '(and it\n'
- ' typically varies between 32-bit and 64-bit builds).See '
- 'also\n'
- ' "PYTHONHASHSEED".\n'
- '\n'
- ' Changed in version 3.3: Hash randomization is enabled by '
- 'default.\n'
- '\n'
- 'object.__bool__(self)\n'
- '\n'
- ' Called to implement truth value testing and the built-in '
- 'operation\n'
- ' "bool()"; should return "False" or "True". When this '
- 'method is not\n'
- ' defined, "__len__()" is called, if it is defined, and the '
- 'object is\n'
- ' considered true if its result is nonzero. If a class '
- 'defines\n'
- ' neither "__len__()" nor "__bool__()", all its instances '
- 'are\n'
- ' considered true.\n'
- '\n'
- '\n'
- 'Customizing attribute access\n'
- '============================\n'
- '\n'
- 'The following methods can be defined to customize the '
- 'meaning of\n'
- 'attribute access (use of, assignment to, or deletion of '
- '"x.name") for\n'
- 'class instances.\n'
- '\n'
- 'object.__getattr__(self, name)\n'
- '\n'
- ' Called when the default attribute access fails with an\n'
- ' "AttributeError" (either "__getattribute__()" raises an\n'
- ' "AttributeError" because *name* is not an instance '
- 'attribute or an\n'
- ' attribute in the class tree for "self"; or "__get__()" of '
- 'a *name*\n'
- ' property raises "AttributeError"). This method should '
- 'either\n'
- ' return the (computed) attribute value or raise an '
- '"AttributeError"\n'
- ' exception.\n'
- '\n'
- ' Note that if the attribute is found through the normal '
- 'mechanism,\n'
- ' "__getattr__()" is not called. (This is an intentional '
- 'asymmetry\n'
- ' between "__getattr__()" and "__setattr__()".) This is '
- 'done both for\n'
- ' efficiency reasons and because otherwise "__getattr__()" '
- 'would have\n'
- ' no way to access other attributes of the instance. Note '
- 'that at\n'
- ' least for instance variables, you can fake total control '
- 'by not\n'
- ' inserting any values in the instance attribute dictionary '
- '(but\n'
- ' instead inserting them in another object). See the\n'
- ' "__getattribute__()" method below for a way to actually '
- 'get total\n'
- ' control over attribute access.\n'
- '\n'
- 'object.__getattribute__(self, name)\n'
- '\n'
- ' Called unconditionally to implement attribute accesses '
- 'for\n'
- ' instances of the class. If the class also defines '
- '"__getattr__()",\n'
- ' the latter will not be called unless "__getattribute__()" '
- 'either\n'
- ' calls it explicitly or raises an "AttributeError". This '
- 'method\n'
- ' should return the (computed) attribute value or raise an\n'
- ' "AttributeError" exception. In order to avoid infinite '
- 'recursion in\n'
- ' this method, its implementation should always call the '
- 'base class\n'
- ' method with the same name to access any attributes it '
- 'needs, for\n'
- ' example, "object.__getattribute__(self, name)".\n'
- '\n'
+ 'for\n'
+ ' details.Changing hash values affects the iteration '
+ 'order of sets.\n'
+ ' Python has never made guarantees about this ordering '
+ '(and it\n'
+ ' typically varies between 32-bit and 64-bit builds).See '
+ 'also\n'
+ ' "PYTHONHASHSEED".\n'
+ '\n'
+ ' Changed in version 3.3: Hash randomization is enabled by '
+ 'default.\n'
+ '\n'
+ 'object.__bool__(self)\n'
+ '\n'
+ ' Called to implement truth value testing and the built-in '
+ 'operation\n'
+ ' "bool()"; should return "False" or "True". When this '
+ 'method is not\n'
+ ' defined, "__len__()" is called, if it is defined, and the '
+ 'object is\n'
+ ' considered true if its result is nonzero. If a class '
+ 'defines\n'
+ ' neither "__len__()" nor "__bool__()", all its instances '
+ 'are\n'
+ ' considered true.\n'
+ '\n'
+ '\n'
+ 'Customizing attribute access\n'
+ '============================\n'
+ '\n'
+ 'The following methods can be defined to customize the '
+ 'meaning of\n'
+ 'attribute access (use of, assignment to, or deletion of '
+ '"x.name") for\n'
+ 'class instances.\n'
+ '\n'
+ 'object.__getattr__(self, name)\n'
+ '\n'
+ ' Called when the default attribute access fails with an\n'
+ ' "AttributeError" (either "__getattribute__()" raises an\n'
+ ' "AttributeError" because *name* is not an instance '
+ 'attribute or an\n'
+ ' attribute in the class tree for "self"; or "__get__()" of '
+ 'a *name*\n'
+ ' property raises "AttributeError"). This method should '
+ 'either\n'
+ ' return the (computed) attribute value or raise an '
+ '"AttributeError"\n'
+ ' exception.\n'
+ '\n'
+ ' Note that if the attribute is found through the normal '
+ 'mechanism,\n'
+ ' "__getattr__()" is not called. (This is an intentional '
+ 'asymmetry\n'
+ ' between "__getattr__()" and "__setattr__()".) This is '
+ 'done both for\n'
+ ' efficiency reasons and because otherwise "__getattr__()" '
+ 'would have\n'
+ ' no way to access other attributes of the instance. Note '
+ 'that at\n'
+ ' least for instance variables, you can fake total control '
+ 'by not\n'
+ ' inserting any values in the instance attribute dictionary '
+ '(but\n'
+ ' instead inserting them in another object). See the\n'
+ ' "__getattribute__()" method below for a way to actually '
+ 'get total\n'
+ ' control over attribute access.\n'
+ '\n'
+ 'object.__getattribute__(self, name)\n'
+ '\n'
+ ' Called unconditionally to implement attribute accesses '
+ 'for\n'
+ ' instances of the class. If the class also defines '
+ '"__getattr__()",\n'
+ ' the latter will not be called unless "__getattribute__()" '
+ 'either\n'
+ ' calls it explicitly or raises an "AttributeError". This '
+ 'method\n'
+ ' should return the (computed) attribute value or raise an\n'
+ ' "AttributeError" exception. In order to avoid infinite '
+ 'recursion in\n'
+ ' this method, its implementation should always call the '
+ 'base class\n'
+ ' method with the same name to access any attributes it '
+ 'needs, for\n'
+ ' example, "object.__getattribute__(self, name)".\n'
+ '\n'
' Note:\n'
- '\n'
+ '\n'
' This method may still be bypassed when looking up '
'special methods\n'
' as the result of implicit invocation via language '
@@ -8636,99 +8636,99 @@ topics = {'assert': 'The "assert" statement\n'
'auditing event\n'
' "object.__getattr__" with arguments "obj" and "name".\n'
'\n'
- 'object.__setattr__(self, name, value)\n'
- '\n'
- ' Called when an attribute assignment is attempted. This '
- 'is called\n'
- ' instead of the normal mechanism (i.e. store the value in '
- 'the\n'
- ' instance dictionary). *name* is the attribute name, '
- '*value* is the\n'
- ' value to be assigned to it.\n'
- '\n'
- ' If "__setattr__()" wants to assign to an instance '
- 'attribute, it\n'
- ' should call the base class method with the same name, for '
- 'example,\n'
- ' "object.__setattr__(self, name, value)".\n'
- '\n'
+ 'object.__setattr__(self, name, value)\n'
+ '\n'
+ ' Called when an attribute assignment is attempted. This '
+ 'is called\n'
+ ' instead of the normal mechanism (i.e. store the value in '
+ 'the\n'
+ ' instance dictionary). *name* is the attribute name, '
+ '*value* is the\n'
+ ' value to be assigned to it.\n'
+ '\n'
+ ' If "__setattr__()" wants to assign to an instance '
+ 'attribute, it\n'
+ ' should call the base class method with the same name, for '
+ 'example,\n'
+ ' "object.__setattr__(self, name, value)".\n'
+ '\n'
' For certain sensitive attribute assignments, raises an '
'auditing\n'
' event "object.__setattr__" with arguments "obj", "name", '
'"value".\n'
'\n'
- 'object.__delattr__(self, name)\n'
- '\n'
- ' Like "__setattr__()" but for attribute deletion instead '
- 'of\n'
- ' assignment. This should only be implemented if "del '
- 'obj.name" is\n'
- ' meaningful for the object.\n'
- '\n'
+ 'object.__delattr__(self, name)\n'
+ '\n'
+ ' Like "__setattr__()" but for attribute deletion instead '
+ 'of\n'
+ ' assignment. This should only be implemented if "del '
+ 'obj.name" is\n'
+ ' meaningful for the object.\n'
+ '\n'
' For certain sensitive attribute deletions, raises an '
'auditing event\n'
' "object.__delattr__" with arguments "obj" and "name".\n'
'\n'
- 'object.__dir__(self)\n'
- '\n'
- ' Called when "dir()" is called on the object. A sequence '
- 'must be\n'
- ' returned. "dir()" converts the returned sequence to a '
- 'list and\n'
- ' sorts it.\n'
- '\n'
- '\n'
- 'Customizing module attribute access\n'
- '-----------------------------------\n'
- '\n'
- 'Special names "__getattr__" and "__dir__" can be also used '
- 'to\n'
- 'customize access to module attributes. The "__getattr__" '
- 'function at\n'
- 'the module level should accept one argument which is the '
- 'name of an\n'
- 'attribute and return the computed value or raise an '
- '"AttributeError".\n'
- 'If an attribute is not found on a module object through the '
- 'normal\n'
- 'lookup, i.e. "object.__getattribute__()", then "__getattr__" '
- 'is\n'
- 'searched in the module "__dict__" before raising an '
- '"AttributeError".\n'
- 'If found, it is called with the attribute name and the '
- 'result is\n'
- 'returned.\n'
- '\n'
- 'The "__dir__" function should accept no arguments, and '
+ 'object.__dir__(self)\n'
+ '\n'
+ ' Called when "dir()" is called on the object. A sequence '
+ 'must be\n'
+ ' returned. "dir()" converts the returned sequence to a '
+ 'list and\n'
+ ' sorts it.\n'
+ '\n'
+ '\n'
+ 'Customizing module attribute access\n'
+ '-----------------------------------\n'
+ '\n'
+ 'Special names "__getattr__" and "__dir__" can be also used '
+ 'to\n'
+ 'customize access to module attributes. The "__getattr__" '
+ 'function at\n'
+ 'the module level should accept one argument which is the '
+ 'name of an\n'
+ 'attribute and return the computed value or raise an '
+ '"AttributeError".\n'
+ 'If an attribute is not found on a module object through the '
+ 'normal\n'
+ 'lookup, i.e. "object.__getattribute__()", then "__getattr__" '
+ 'is\n'
+ 'searched in the module "__dict__" before raising an '
+ '"AttributeError".\n'
+ 'If found, it is called with the attribute name and the '
+ 'result is\n'
+ 'returned.\n'
+ '\n'
+ 'The "__dir__" function should accept no arguments, and '
'return a\n'
'sequence of strings that represents the names accessible on '
'module. If\n'
'present, this function overrides the standard "dir()" search '
'on a\n'
- 'module.\n'
- '\n'
- 'For a more fine grained customization of the module behavior '
- '(setting\n'
- 'attributes, properties, etc.), one can set the "__class__" '
- 'attribute\n'
- 'of a module object to a subclass of "types.ModuleType". For '
- 'example:\n'
- '\n'
- ' import sys\n'
- ' from types import ModuleType\n'
- '\n'
- ' class VerboseModule(ModuleType):\n'
- ' def __repr__(self):\n'
- " return f'Verbose {self.__name__}'\n"
- '\n'
- ' def __setattr__(self, attr, value):\n'
- " print(f'Setting {attr}...')\n"
- ' super().__setattr__(attr, value)\n'
- '\n'
- ' sys.modules[__name__].__class__ = VerboseModule\n'
- '\n'
+ 'module.\n'
+ '\n'
+ 'For a more fine grained customization of the module behavior '
+ '(setting\n'
+ 'attributes, properties, etc.), one can set the "__class__" '
+ 'attribute\n'
+ 'of a module object to a subclass of "types.ModuleType". For '
+ 'example:\n'
+ '\n'
+ ' import sys\n'
+ ' from types import ModuleType\n'
+ '\n'
+ ' class VerboseModule(ModuleType):\n'
+ ' def __repr__(self):\n'
+ " return f'Verbose {self.__name__}'\n"
+ '\n'
+ ' def __setattr__(self, attr, value):\n'
+ " print(f'Setting {attr}...')\n"
+ ' super().__setattr__(attr, value)\n'
+ '\n'
+ ' sys.modules[__name__].__class__ = VerboseModule\n'
+ '\n'
'Note:\n'
- '\n'
+ '\n'
' Defining module "__getattr__" and setting module '
'"__class__" only\n'
' affect lookups made using the attribute access syntax – '
@@ -8738,47 +8738,47 @@ topics = {'assert': 'The "assert" statement\n'
' via a reference to the module’s globals dictionary) is '
'unaffected.\n'
'\n'
- 'Changed in version 3.5: "__class__" module attribute is now '
- 'writable.\n'
- '\n'
- 'New in version 3.7: "__getattr__" and "__dir__" module '
- 'attributes.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 562** - Module __getattr__ and __dir__\n'
- ' Describes the "__getattr__" and "__dir__" functions on '
- 'modules.\n'
- '\n'
- '\n'
- 'Implementing Descriptors\n'
- '------------------------\n'
- '\n'
- 'The following methods only apply when an instance of the '
- 'class\n'
- 'containing the method (a so-called *descriptor* class) '
- 'appears in an\n'
- '*owner* class (the descriptor must be in either the owner’s '
- 'class\n'
- 'dictionary or in the class dictionary for one of its '
- 'parents). In the\n'
- 'examples below, “the attribute” refers to the attribute '
- 'whose name is\n'
- 'the key of the property in the owner class’ "__dict__".\n'
- '\n'
+ 'Changed in version 3.5: "__class__" module attribute is now '
+ 'writable.\n'
+ '\n'
+ 'New in version 3.7: "__getattr__" and "__dir__" module '
+ 'attributes.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 562** - Module __getattr__ and __dir__\n'
+ ' Describes the "__getattr__" and "__dir__" functions on '
+ 'modules.\n'
+ '\n'
+ '\n'
+ 'Implementing Descriptors\n'
+ '------------------------\n'
+ '\n'
+ 'The following methods only apply when an instance of the '
+ 'class\n'
+ 'containing the method (a so-called *descriptor* class) '
+ 'appears in an\n'
+ '*owner* class (the descriptor must be in either the owner’s '
+ 'class\n'
+ 'dictionary or in the class dictionary for one of its '
+ 'parents). In the\n'
+ 'examples below, “the attribute” refers to the attribute '
+ 'whose name is\n'
+ 'the key of the property in the owner class’ "__dict__".\n'
+ '\n'
'object.__get__(self, instance, owner=None)\n'
- '\n'
- ' Called to get the attribute of the owner class (class '
- 'attribute\n'
- ' access) or of an instance of that class (instance '
- 'attribute\n'
+ '\n'
+ ' Called to get the attribute of the owner class (class '
+ 'attribute\n'
+ ' access) or of an instance of that class (instance '
+ 'attribute\n'
' access). The optional *owner* argument is the owner '
'class, while\n'
' *instance* is the instance that the attribute was '
'accessed through,\n'
' or "None" when the attribute is accessed through the '
'*owner*.\n'
- '\n'
+ '\n'
' This method should return the computed attribute value or '
'raise an\n'
' "AttributeError" exception.\n'
@@ -8795,30 +8795,30 @@ topics = {'assert': 'The "assert" statement\n'
'arguments\n'
' whether they are required or not.\n'
'\n'
- 'object.__set__(self, instance, value)\n'
- '\n'
- ' Called to set the attribute on an instance *instance* of '
- 'the owner\n'
- ' class to a new value, *value*.\n'
- '\n'
+ 'object.__set__(self, instance, value)\n'
+ '\n'
+ ' Called to set the attribute on an instance *instance* of '
+ 'the owner\n'
+ ' class to a new value, *value*.\n'
+ '\n'
' Note, adding "__set__()" or "__delete__()" changes the '
'kind of\n'
' descriptor to a “data descriptor”. See Invoking '
'Descriptors for\n'
' more details.\n'
'\n'
- 'object.__delete__(self, instance)\n'
- '\n'
- ' Called to delete the attribute on an instance *instance* '
- 'of the\n'
- ' owner class.\n'
- '\n'
- 'object.__set_name__(self, owner, name)\n'
- '\n'
- ' Called at the time the owning class *owner* is created. '
- 'The\n'
- ' descriptor has been assigned to *name*.\n'
- '\n'
+ 'object.__delete__(self, instance)\n'
+ '\n'
+ ' Called to delete the attribute on an instance *instance* '
+ 'of the\n'
+ ' owner class.\n'
+ '\n'
+ 'object.__set_name__(self, owner, name)\n'
+ '\n'
+ ' Called at the time the owning class *owner* is created. '
+ 'The\n'
+ ' descriptor has been assigned to *name*.\n'
+ '\n'
' Note:\n'
'\n'
' "__set_name__()" is only called implicitly as part of '
@@ -8837,100 +8837,100 @@ topics = {'assert': 'The "assert" statement\n'
'\n'
' See Creating the class object for more details.\n'
'\n'
- ' New in version 3.6.\n'
- '\n'
- 'The attribute "__objclass__" is interpreted by the "inspect" '
- 'module as\n'
- 'specifying the class where this object was defined (setting '
- 'this\n'
- 'appropriately can assist in runtime introspection of dynamic '
- 'class\n'
- 'attributes). For callables, it may indicate that an instance '
- 'of the\n'
- 'given type (or a subclass) is expected or required as the '
- 'first\n'
- 'positional argument (for example, CPython sets this '
- 'attribute for\n'
- 'unbound methods that are implemented in C).\n'
- '\n'
- '\n'
- 'Invoking Descriptors\n'
- '--------------------\n'
- '\n'
- 'In general, a descriptor is an object attribute with '
- '“binding\n'
- 'behavior”, one whose attribute access has been overridden by '
- 'methods\n'
- 'in the descriptor protocol: "__get__()", "__set__()", and\n'
- '"__delete__()". If any of those methods are defined for an '
- 'object, it\n'
- 'is said to be a descriptor.\n'
- '\n'
- 'The default behavior for attribute access is to get, set, or '
- 'delete\n'
- 'the attribute from an object’s dictionary. For instance, '
- '"a.x" has a\n'
- 'lookup chain starting with "a.__dict__[\'x\']", then\n'
- '"type(a).__dict__[\'x\']", and continuing through the base '
- 'classes of\n'
- '"type(a)" excluding metaclasses.\n'
- '\n'
- 'However, if the looked-up value is an object defining one of '
- 'the\n'
- 'descriptor methods, then Python may override the default '
- 'behavior and\n'
- 'invoke the descriptor method instead. Where this occurs in '
- 'the\n'
- 'precedence chain depends on which descriptor methods were '
- 'defined and\n'
- 'how they were called.\n'
- '\n'
- 'The starting point for descriptor invocation is a binding, '
- '"a.x". How\n'
- 'the arguments are assembled depends on "a":\n'
- '\n'
- 'Direct Call\n'
- ' The simplest and least common call is when user code '
- 'directly\n'
- ' invokes a descriptor method: "x.__get__(a)".\n'
- '\n'
- 'Instance Binding\n'
- ' If binding to an object instance, "a.x" is transformed '
- 'into the\n'
- ' call: "type(a).__dict__[\'x\'].__get__(a, type(a))".\n'
- '\n'
- 'Class Binding\n'
- ' If binding to a class, "A.x" is transformed into the '
- 'call:\n'
- ' "A.__dict__[\'x\'].__get__(None, A)".\n'
- '\n'
- 'Super Binding\n'
- ' If "a" is an instance of "super", then the binding '
- '"super(B,\n'
- ' obj).m()" searches "obj.__class__.__mro__" for the base '
- 'class "A"\n'
+ ' New in version 3.6.\n'
+ '\n'
+ 'The attribute "__objclass__" is interpreted by the "inspect" '
+ 'module as\n'
+ 'specifying the class where this object was defined (setting '
+ 'this\n'
+ 'appropriately can assist in runtime introspection of dynamic '
+ 'class\n'
+ 'attributes). For callables, it may indicate that an instance '
+ 'of the\n'
+ 'given type (or a subclass) is expected or required as the '
+ 'first\n'
+ 'positional argument (for example, CPython sets this '
+ 'attribute for\n'
+ 'unbound methods that are implemented in C).\n'
+ '\n'
+ '\n'
+ 'Invoking Descriptors\n'
+ '--------------------\n'
+ '\n'
+ 'In general, a descriptor is an object attribute with '
+ '“binding\n'
+ 'behavior”, one whose attribute access has been overridden by '
+ 'methods\n'
+ 'in the descriptor protocol: "__get__()", "__set__()", and\n'
+ '"__delete__()". If any of those methods are defined for an '
+ 'object, it\n'
+ 'is said to be a descriptor.\n'
+ '\n'
+ 'The default behavior for attribute access is to get, set, or '
+ 'delete\n'
+ 'the attribute from an object’s dictionary. For instance, '
+ '"a.x" has a\n'
+ 'lookup chain starting with "a.__dict__[\'x\']", then\n'
+ '"type(a).__dict__[\'x\']", and continuing through the base '
+ 'classes of\n'
+ '"type(a)" excluding metaclasses.\n'
+ '\n'
+ 'However, if the looked-up value is an object defining one of '
+ 'the\n'
+ 'descriptor methods, then Python may override the default '
+ 'behavior and\n'
+ 'invoke the descriptor method instead. Where this occurs in '
+ 'the\n'
+ 'precedence chain depends on which descriptor methods were '
+ 'defined and\n'
+ 'how they were called.\n'
+ '\n'
+ 'The starting point for descriptor invocation is a binding, '
+ '"a.x". How\n'
+ 'the arguments are assembled depends on "a":\n'
+ '\n'
+ 'Direct Call\n'
+ ' The simplest and least common call is when user code '
+ 'directly\n'
+ ' invokes a descriptor method: "x.__get__(a)".\n'
+ '\n'
+ 'Instance Binding\n'
+ ' If binding to an object instance, "a.x" is transformed '
+ 'into the\n'
+ ' call: "type(a).__dict__[\'x\'].__get__(a, type(a))".\n'
+ '\n'
+ 'Class Binding\n'
+ ' If binding to a class, "A.x" is transformed into the '
+ 'call:\n'
+ ' "A.__dict__[\'x\'].__get__(None, A)".\n'
+ '\n'
+ 'Super Binding\n'
+ ' If "a" is an instance of "super", then the binding '
+ '"super(B,\n'
+ ' obj).m()" searches "obj.__class__.__mro__" for the base '
+ 'class "A"\n'
' immediately following "B" and then invokes the descriptor '
- 'with the\n'
- ' call: "A.__dict__[\'m\'].__get__(obj, obj.__class__)".\n'
- '\n'
- 'For instance bindings, the precedence of descriptor '
- 'invocation depends\n'
+ 'with the\n'
+ ' call: "A.__dict__[\'m\'].__get__(obj, obj.__class__)".\n'
+ '\n'
+ 'For instance bindings, the precedence of descriptor '
+ 'invocation depends\n'
'on which descriptor methods are defined. A descriptor can '
'define any\n'
'combination of "__get__()", "__set__()" and "__delete__()". '
'If it\n'
- 'does not define "__get__()", then accessing the attribute '
- 'will return\n'
- 'the descriptor object itself unless there is a value in the '
- 'object’s\n'
- 'instance dictionary. If the descriptor defines "__set__()" '
- 'and/or\n'
- '"__delete__()", it is a data descriptor; if it defines '
- 'neither, it is\n'
- 'a non-data descriptor. Normally, data descriptors define '
- 'both\n'
- '"__get__()" and "__set__()", while non-data descriptors have '
- 'just the\n'
+ 'does not define "__get__()", then accessing the attribute '
+ 'will return\n'
+ 'the descriptor object itself unless there is a value in the '
+ 'object’s\n'
+ 'instance dictionary. If the descriptor defines "__set__()" '
+ 'and/or\n'
+ '"__delete__()", it is a data descriptor; if it defines '
+ 'neither, it is\n'
+ 'a non-data descriptor. Normally, data descriptors define '
+ 'both\n'
+ '"__get__()" and "__set__()", while non-data descriptors have '
+ 'just the\n'
'"__get__()" method. Data descriptors with "__get__()" and '
'"__set__()"\n'
'(and/or "__delete__()") defined always override a '
@@ -8938,7 +8938,7 @@ topics = {'assert': 'The "assert" statement\n'
'instance dictionary. In contrast, non-data descriptors can '
'be\n'
'overridden by instances.\n'
- '\n'
+ '\n'
'Python methods (including those decorated with '
'"@staticmethod" and\n'
'"@classmethod") are implemented as non-data descriptors. '
@@ -8947,70 +8947,70 @@ topics = {'assert': 'The "assert" statement\n'
'individual\n'
'instances to acquire behaviors that differ from other '
'instances of the\n'
- 'same class.\n'
- '\n'
- 'The "property()" function is implemented as a data '
- 'descriptor.\n'
- 'Accordingly, instances cannot override the behavior of a '
- 'property.\n'
- '\n'
- '\n'
- '__slots__\n'
- '---------\n'
- '\n'
- '*__slots__* allow us to explicitly declare data members '
- '(like\n'
+ 'same class.\n'
+ '\n'
+ 'The "property()" function is implemented as a data '
+ 'descriptor.\n'
+ 'Accordingly, instances cannot override the behavior of a '
+ 'property.\n'
+ '\n'
+ '\n'
+ '__slots__\n'
+ '---------\n'
+ '\n'
+ '*__slots__* allow us to explicitly declare data members '
+ '(like\n'
'properties) and deny the creation of "__dict__" and '
- '*__weakref__*\n'
- '(unless explicitly declared in *__slots__* or available in a '
- 'parent.)\n'
- '\n'
+ '*__weakref__*\n'
+ '(unless explicitly declared in *__slots__* or available in a '
+ 'parent.)\n'
+ '\n'
'The space saved over using "__dict__" can be significant. '
- 'Attribute\n'
- 'lookup speed can be significantly improved as well.\n'
- '\n'
- 'object.__slots__\n'
- '\n'
- ' This class variable can be assigned a string, iterable, '
- 'or sequence\n'
- ' of strings with variable names used by instances. '
- '*__slots__*\n'
- ' reserves space for the declared variables and prevents '
- 'the\n'
+ 'Attribute\n'
+ 'lookup speed can be significantly improved as well.\n'
+ '\n'
+ 'object.__slots__\n'
+ '\n'
+ ' This class variable can be assigned a string, iterable, '
+ 'or sequence\n'
+ ' of strings with variable names used by instances. '
+ '*__slots__*\n'
+ ' reserves space for the declared variables and prevents '
+ 'the\n'
' automatic creation of "__dict__" and *__weakref__* for '
- 'each\n'
- ' instance.\n'
- '\n'
- '\n'
- 'Notes on using *__slots__*\n'
- '~~~~~~~~~~~~~~~~~~~~~~~~~~\n'
- '\n'
- '* When inheriting from a class without *__slots__*, the '
+ 'each\n'
+ ' instance.\n'
+ '\n'
+ '\n'
+ 'Notes on using *__slots__*\n'
+ '~~~~~~~~~~~~~~~~~~~~~~~~~~\n'
+ '\n'
+ '* When inheriting from a class without *__slots__*, the '
'"__dict__" and\n'
' *__weakref__* attribute of the instances will always be '
'accessible.\n'
- '\n'
+ '\n'
'* Without a "__dict__" variable, instances cannot be '
- 'assigned new\n'
- ' variables not listed in the *__slots__* definition. '
- 'Attempts to\n'
- ' assign to an unlisted variable name raises '
- '"AttributeError". If\n'
- ' dynamic assignment of new variables is desired, then add\n'
- ' "\'__dict__\'" to the sequence of strings in the '
- '*__slots__*\n'
- ' declaration.\n'
- '\n'
- '* Without a *__weakref__* variable for each instance, '
+ 'assigned new\n'
+ ' variables not listed in the *__slots__* definition. '
+ 'Attempts to\n'
+ ' assign to an unlisted variable name raises '
+ '"AttributeError". If\n'
+ ' dynamic assignment of new variables is desired, then add\n'
+ ' "\'__dict__\'" to the sequence of strings in the '
+ '*__slots__*\n'
+ ' declaration.\n'
+ '\n'
+ '* Without a *__weakref__* variable for each instance, '
'classes defining\n'
' *__slots__* do not support "weak references" to its '
'instances. If\n'
' weak reference support is needed, then add '
'"\'__weakref__\'" to the\n'
' sequence of strings in the *__slots__* declaration.\n'
- '\n'
- '* *__slots__* are implemented at the class level by '
- 'creating\n'
+ '\n'
+ '* *__slots__* are implemented at the class level by '
+ 'creating\n'
' descriptors for each variable name. As a result, class '
'attributes\n'
' cannot be used to set default values for instance '
@@ -9018,8 +9018,8 @@ topics = {'assert': 'The "assert" statement\n'
' by *__slots__*; otherwise, the class attribute would '
'overwrite the\n'
' descriptor assignment.\n'
- '\n'
- '* The action of a *__slots__* declaration is not limited to '
+ '\n'
+ '* The action of a *__slots__* declaration is not limited to '
'the class\n'
' where it is defined. *__slots__* declared in parents are '
'available\n'
@@ -9028,24 +9028,24 @@ topics = {'assert': 'The "assert" statement\n'
' and *__weakref__* unless they also define *__slots__* '
'(which should\n'
' only contain names of any *additional* slots).\n'
- '\n'
- '* If a class defines a slot also defined in a base class, '
+ '\n'
+ '* If a class defines a slot also defined in a base class, '
'the instance\n'
' variable defined by the base class slot is inaccessible '
'(except by\n'
' retrieving its descriptor directly from the base class). '
'This\n'
' renders the meaning of the program undefined. In the '
- 'future, a\n'
- ' check may be added to prevent this.\n'
- '\n'
- '* Nonempty *__slots__* does not work for classes derived '
- 'from\n'
- ' “variable-length” built-in types such as "int", "bytes" '
- 'and "tuple".\n'
- '\n'
+ 'future, a\n'
+ ' check may be added to prevent this.\n'
+ '\n'
+ '* Nonempty *__slots__* does not work for classes derived '
+ 'from\n'
+ ' “variable-length” built-in types such as "int", "bytes" '
+ 'and "tuple".\n'
+ '\n'
'* Any non-string *iterable* may be assigned to *__slots__*.\n'
- '\n'
+ '\n'
'* If a "dictionary" is used to assign *__slots__*, the '
'dictionary keys\n'
' will be used as the slot names. The values of the '
@@ -9056,194 +9056,194 @@ topics = {'assert': 'The "assert" statement\n'
'"help()".\n'
'\n'
'* "__class__" assignment works only if both classes have the '
- 'same\n'
- ' *__slots__*.\n'
- '\n'
- '* Multiple inheritance with multiple slotted parent classes '
- 'can be\n'
- ' used, but only one parent is allowed to have attributes '
- 'created by\n'
- ' slots (the other bases must have empty slot layouts) - '
- 'violations\n'
- ' raise "TypeError".\n'
- '\n'
+ 'same\n'
+ ' *__slots__*.\n'
+ '\n'
+ '* Multiple inheritance with multiple slotted parent classes '
+ 'can be\n'
+ ' used, but only one parent is allowed to have attributes '
+ 'created by\n'
+ ' slots (the other bases must have empty slot layouts) - '
+ 'violations\n'
+ ' raise "TypeError".\n'
+ '\n'
'* If an *iterator* is used for *__slots__* then a '
'*descriptor* is\n'
' created for each of the iterator’s values. However, the '
'*__slots__*\n'
' attribute will be an empty iterator.\n'
- '\n'
'\n'
- 'Customizing class creation\n'
- '==========================\n'
- '\n'
- 'Whenever a class inherits from another class, '
+ '\n'
+ 'Customizing class creation\n'
+ '==========================\n'
+ '\n'
+ 'Whenever a class inherits from another class, '
'"__init_subclass__()" is\n'
- 'called on that class. This way, it is possible to write '
- 'classes which\n'
- 'change the behavior of subclasses. This is closely related '
- 'to class\n'
- 'decorators, but where class decorators only affect the '
- 'specific class\n'
- 'they’re applied to, "__init_subclass__" solely applies to '
- 'future\n'
- 'subclasses of the class defining the method.\n'
- '\n'
- 'classmethod object.__init_subclass__(cls)\n'
- '\n'
- ' This method is called whenever the containing class is '
- 'subclassed.\n'
- ' *cls* is then the new subclass. If defined as a normal '
- 'instance\n'
- ' method, this method is implicitly converted to a class '
- 'method.\n'
- '\n'
- ' Keyword arguments which are given to a new class are '
- 'passed to the\n'
- ' parent’s class "__init_subclass__". For compatibility '
- 'with other\n'
- ' classes using "__init_subclass__", one should take out '
- 'the needed\n'
- ' keyword arguments and pass the others over to the base '
- 'class, as\n'
- ' in:\n'
- '\n'
- ' class Philosopher:\n'
+ 'called on that class. This way, it is possible to write '
+ 'classes which\n'
+ 'change the behavior of subclasses. This is closely related '
+ 'to class\n'
+ 'decorators, but where class decorators only affect the '
+ 'specific class\n'
+ 'they’re applied to, "__init_subclass__" solely applies to '
+ 'future\n'
+ 'subclasses of the class defining the method.\n'
+ '\n'
+ 'classmethod object.__init_subclass__(cls)\n'
+ '\n'
+ ' This method is called whenever the containing class is '
+ 'subclassed.\n'
+ ' *cls* is then the new subclass. If defined as a normal '
+ 'instance\n'
+ ' method, this method is implicitly converted to a class '
+ 'method.\n'
+ '\n'
+ ' Keyword arguments which are given to a new class are '
+ 'passed to the\n'
+ ' parent’s class "__init_subclass__". For compatibility '
+ 'with other\n'
+ ' classes using "__init_subclass__", one should take out '
+ 'the needed\n'
+ ' keyword arguments and pass the others over to the base '
+ 'class, as\n'
+ ' in:\n'
+ '\n'
+ ' class Philosopher:\n'
' def __init_subclass__(cls, /, default_name, '
- '**kwargs):\n'
- ' super().__init_subclass__(**kwargs)\n'
- ' cls.default_name = default_name\n'
- '\n'
- ' class AustralianPhilosopher(Philosopher, '
- 'default_name="Bruce"):\n'
- ' pass\n'
- '\n'
- ' The default implementation "object.__init_subclass__" '
- 'does nothing,\n'
- ' but raises an error if it is called with any arguments.\n'
- '\n'
+ '**kwargs):\n'
+ ' super().__init_subclass__(**kwargs)\n'
+ ' cls.default_name = default_name\n'
+ '\n'
+ ' class AustralianPhilosopher(Philosopher, '
+ 'default_name="Bruce"):\n'
+ ' pass\n'
+ '\n'
+ ' The default implementation "object.__init_subclass__" '
+ 'does nothing,\n'
+ ' but raises an error if it is called with any arguments.\n'
+ '\n'
' Note:\n'
'\n'
' The metaclass hint "metaclass" is consumed by the rest '
'of the\n'
' type machinery, and is never passed to '
- '"__init_subclass__"\n'
- ' implementations. The actual metaclass (rather than the '
- 'explicit\n'
- ' hint) can be accessed as "type(cls)".\n'
- '\n'
- ' New in version 3.6.\n'
- '\n'
- '\n'
- 'Metaclasses\n'
- '-----------\n'
- '\n'
- 'By default, classes are constructed using "type()". The '
- 'class body is\n'
- 'executed in a new namespace and the class name is bound '
- 'locally to the\n'
- 'result of "type(name, bases, namespace)".\n'
- '\n'
- 'The class creation process can be customized by passing the\n'
- '"metaclass" keyword argument in the class definition line, '
- 'or by\n'
- 'inheriting from an existing class that included such an '
- 'argument. In\n'
- 'the following example, both "MyClass" and "MySubclass" are '
- 'instances\n'
- 'of "Meta":\n'
- '\n'
- ' class Meta(type):\n'
- ' pass\n'
- '\n'
- ' class MyClass(metaclass=Meta):\n'
- ' pass\n'
- '\n'
- ' class MySubclass(MyClass):\n'
- ' pass\n'
- '\n'
- 'Any other keyword arguments that are specified in the class '
- 'definition\n'
- 'are passed through to all metaclass operations described '
- 'below.\n'
- '\n'
- 'When a class definition is executed, the following steps '
- 'occur:\n'
- '\n'
+ '"__init_subclass__"\n'
+ ' implementations. The actual metaclass (rather than the '
+ 'explicit\n'
+ ' hint) can be accessed as "type(cls)".\n'
+ '\n'
+ ' New in version 3.6.\n'
+ '\n'
+ '\n'
+ 'Metaclasses\n'
+ '-----------\n'
+ '\n'
+ 'By default, classes are constructed using "type()". The '
+ 'class body is\n'
+ 'executed in a new namespace and the class name is bound '
+ 'locally to the\n'
+ 'result of "type(name, bases, namespace)".\n'
+ '\n'
+ 'The class creation process can be customized by passing the\n'
+ '"metaclass" keyword argument in the class definition line, '
+ 'or by\n'
+ 'inheriting from an existing class that included such an '
+ 'argument. In\n'
+ 'the following example, both "MyClass" and "MySubclass" are '
+ 'instances\n'
+ 'of "Meta":\n'
+ '\n'
+ ' class Meta(type):\n'
+ ' pass\n'
+ '\n'
+ ' class MyClass(metaclass=Meta):\n'
+ ' pass\n'
+ '\n'
+ ' class MySubclass(MyClass):\n'
+ ' pass\n'
+ '\n'
+ 'Any other keyword arguments that are specified in the class '
+ 'definition\n'
+ 'are passed through to all metaclass operations described '
+ 'below.\n'
+ '\n'
+ 'When a class definition is executed, the following steps '
+ 'occur:\n'
+ '\n'
'* MRO entries are resolved;\n'
- '\n'
+ '\n'
'* the appropriate metaclass is determined;\n'
- '\n'
+ '\n'
'* the class namespace is prepared;\n'
- '\n'
+ '\n'
'* the class body is executed;\n'
- '\n'
+ '\n'
'* the class object is created.\n'
- '\n'
- '\n'
- 'Resolving MRO entries\n'
- '---------------------\n'
- '\n'
- 'If a base that appears in class definition is not an '
- 'instance of\n'
- '"type", then an "__mro_entries__" method is searched on it. '
- 'If found,\n'
- 'it is called with the original bases tuple. This method must '
- 'return a\n'
- 'tuple of classes that will be used instead of this base. The '
- 'tuple may\n'
- 'be empty, in such case the original base is ignored.\n'
- '\n'
+ '\n'
+ '\n'
+ 'Resolving MRO entries\n'
+ '---------------------\n'
+ '\n'
+ 'If a base that appears in class definition is not an '
+ 'instance of\n'
+ '"type", then an "__mro_entries__" method is searched on it. '
+ 'If found,\n'
+ 'it is called with the original bases tuple. This method must '
+ 'return a\n'
+ 'tuple of classes that will be used instead of this base. The '
+ 'tuple may\n'
+ 'be empty, in such case the original base is ignored.\n'
+ '\n'
'See also:\n'
- '\n'
+ '\n'
' **PEP 560** - Core support for typing module and generic '
'types\n'
- '\n'
- '\n'
- 'Determining the appropriate metaclass\n'
- '-------------------------------------\n'
- '\n'
- 'The appropriate metaclass for a class definition is '
- 'determined as\n'
- 'follows:\n'
- '\n'
- '* if no bases and no explicit metaclass are given, then '
- '"type()" is\n'
+ '\n'
+ '\n'
+ 'Determining the appropriate metaclass\n'
+ '-------------------------------------\n'
+ '\n'
+ 'The appropriate metaclass for a class definition is '
+ 'determined as\n'
+ 'follows:\n'
+ '\n'
+ '* if no bases and no explicit metaclass are given, then '
+ '"type()" is\n'
' used;\n'
- '\n'
- '* if an explicit metaclass is given and it is *not* an '
- 'instance of\n'
+ '\n'
+ '* if an explicit metaclass is given and it is *not* an '
+ 'instance of\n'
' "type()", then it is used directly as the metaclass;\n'
- '\n'
- '* if an instance of "type()" is given as the explicit '
- 'metaclass, or\n'
- ' bases are defined, then the most derived metaclass is '
+ '\n'
+ '* if an instance of "type()" is given as the explicit '
+ 'metaclass, or\n'
+ ' bases are defined, then the most derived metaclass is '
'used.\n'
- '\n'
- 'The most derived metaclass is selected from the explicitly '
- 'specified\n'
- 'metaclass (if any) and the metaclasses (i.e. "type(cls)") of '
- 'all\n'
- 'specified base classes. The most derived metaclass is one '
- 'which is a\n'
- 'subtype of *all* of these candidate metaclasses. If none of '
- 'the\n'
- 'candidate metaclasses meets that criterion, then the class '
- 'definition\n'
- 'will fail with "TypeError".\n'
- '\n'
- '\n'
- 'Preparing the class namespace\n'
- '-----------------------------\n'
- '\n'
- 'Once the appropriate metaclass has been identified, then the '
- 'class\n'
- 'namespace is prepared. If the metaclass has a "__prepare__" '
- 'attribute,\n'
- 'it is called as "namespace = metaclass.__prepare__(name, '
- 'bases,\n'
- '**kwds)" (where the additional keyword arguments, if any, '
- 'come from\n'
+ '\n'
+ 'The most derived metaclass is selected from the explicitly '
+ 'specified\n'
+ 'metaclass (if any) and the metaclasses (i.e. "type(cls)") of '
+ 'all\n'
+ 'specified base classes. The most derived metaclass is one '
+ 'which is a\n'
+ 'subtype of *all* of these candidate metaclasses. If none of '
+ 'the\n'
+ 'candidate metaclasses meets that criterion, then the class '
+ 'definition\n'
+ 'will fail with "TypeError".\n'
+ '\n'
+ '\n'
+ 'Preparing the class namespace\n'
+ '-----------------------------\n'
+ '\n'
+ 'Once the appropriate metaclass has been identified, then the '
+ 'class\n'
+ 'namespace is prepared. If the metaclass has a "__prepare__" '
+ 'attribute,\n'
+ 'it is called as "namespace = metaclass.__prepare__(name, '
+ 'bases,\n'
+ '**kwds)" (where the additional keyword arguments, if any, '
+ 'come from\n'
'the class definition). The "__prepare__" method should be '
'implemented\n'
'as a "classmethod". The namespace returned by "__prepare__" '
@@ -9251,192 +9251,192 @@ topics = {'assert': 'The "assert" statement\n'
'in to "__new__", but when the final class object is created '
'the\n'
'namespace is copied into a new "dict".\n'
- '\n'
- 'If the metaclass has no "__prepare__" attribute, then the '
- 'class\n'
- 'namespace is initialised as an empty ordered mapping.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 3115** - Metaclasses in Python 3000\n'
- ' Introduced the "__prepare__" namespace hook\n'
- '\n'
- '\n'
- 'Executing the class body\n'
- '------------------------\n'
- '\n'
- 'The class body is executed (approximately) as "exec(body, '
- 'globals(),\n'
- 'namespace)". The key difference from a normal call to '
- '"exec()" is that\n'
- 'lexical scoping allows the class body (including any '
- 'methods) to\n'
- 'reference names from the current and outer scopes when the '
- 'class\n'
- 'definition occurs inside a function.\n'
- '\n'
- 'However, even when the class definition occurs inside the '
- 'function,\n'
- 'methods defined inside the class still cannot see names '
- 'defined at the\n'
- 'class scope. Class variables must be accessed through the '
- 'first\n'
- 'parameter of instance or class methods, or through the '
- 'implicit\n'
- 'lexically scoped "__class__" reference described in the next '
- 'section.\n'
- '\n'
- '\n'
- 'Creating the class object\n'
- '-------------------------\n'
- '\n'
- 'Once the class namespace has been populated by executing the '
- 'class\n'
- 'body, the class object is created by calling '
- '"metaclass(name, bases,\n'
- 'namespace, **kwds)" (the additional keywords passed here are '
- 'the same\n'
- 'as those passed to "__prepare__").\n'
- '\n'
- 'This class object is the one that will be referenced by the '
- 'zero-\n'
- 'argument form of "super()". "__class__" is an implicit '
- 'closure\n'
- 'reference created by the compiler if any methods in a class '
- 'body refer\n'
- 'to either "__class__" or "super". This allows the zero '
- 'argument form\n'
- 'of "super()" to correctly identify the class being defined '
- 'based on\n'
- 'lexical scoping, while the class or instance that was used '
- 'to make the\n'
- 'current call is identified based on the first argument '
- 'passed to the\n'
- 'method.\n'
- '\n'
- '**CPython implementation detail:** In CPython 3.6 and later, '
- 'the\n'
- '"__class__" cell is passed to the metaclass as a '
- '"__classcell__" entry\n'
- 'in the class namespace. If present, this must be propagated '
- 'up to the\n'
- '"type.__new__" call in order for the class to be '
- 'initialised\n'
+ '\n'
+ 'If the metaclass has no "__prepare__" attribute, then the '
+ 'class\n'
+ 'namespace is initialised as an empty ordered mapping.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 3115** - Metaclasses in Python 3000\n'
+ ' Introduced the "__prepare__" namespace hook\n'
+ '\n'
+ '\n'
+ 'Executing the class body\n'
+ '------------------------\n'
+ '\n'
+ 'The class body is executed (approximately) as "exec(body, '
+ 'globals(),\n'
+ 'namespace)". The key difference from a normal call to '
+ '"exec()" is that\n'
+ 'lexical scoping allows the class body (including any '
+ 'methods) to\n'
+ 'reference names from the current and outer scopes when the '
+ 'class\n'
+ 'definition occurs inside a function.\n'
+ '\n'
+ 'However, even when the class definition occurs inside the '
+ 'function,\n'
+ 'methods defined inside the class still cannot see names '
+ 'defined at the\n'
+ 'class scope. Class variables must be accessed through the '
+ 'first\n'
+ 'parameter of instance or class methods, or through the '
+ 'implicit\n'
+ 'lexically scoped "__class__" reference described in the next '
+ 'section.\n'
+ '\n'
+ '\n'
+ 'Creating the class object\n'
+ '-------------------------\n'
+ '\n'
+ 'Once the class namespace has been populated by executing the '
+ 'class\n'
+ 'body, the class object is created by calling '
+ '"metaclass(name, bases,\n'
+ 'namespace, **kwds)" (the additional keywords passed here are '
+ 'the same\n'
+ 'as those passed to "__prepare__").\n'
+ '\n'
+ 'This class object is the one that will be referenced by the '
+ 'zero-\n'
+ 'argument form of "super()". "__class__" is an implicit '
+ 'closure\n'
+ 'reference created by the compiler if any methods in a class '
+ 'body refer\n'
+ 'to either "__class__" or "super". This allows the zero '
+ 'argument form\n'
+ 'of "super()" to correctly identify the class being defined '
+ 'based on\n'
+ 'lexical scoping, while the class or instance that was used '
+ 'to make the\n'
+ 'current call is identified based on the first argument '
+ 'passed to the\n'
+ 'method.\n'
+ '\n'
+ '**CPython implementation detail:** In CPython 3.6 and later, '
+ 'the\n'
+ '"__class__" cell is passed to the metaclass as a '
+ '"__classcell__" entry\n'
+ 'in the class namespace. If present, this must be propagated '
+ 'up to the\n'
+ '"type.__new__" call in order for the class to be '
+ 'initialised\n'
'correctly. Failing to do so will result in a "RuntimeError" '
'in Python\n'
'3.8.\n'
- '\n'
- 'When using the default metaclass "type", or any metaclass '
- 'that\n'
- 'ultimately calls "type.__new__", the following additional\n'
- 'customisation steps are invoked after creating the class '
- 'object:\n'
- '\n'
- '* first, "type.__new__" collects all of the descriptors in '
- 'the class\n'
- ' namespace that define a "__set_name__()" method;\n'
- '\n'
- '* second, all of these "__set_name__" methods are called '
- 'with the\n'
- ' class being defined and the assigned name of that '
- 'particular\n'
+ '\n'
+ 'When using the default metaclass "type", or any metaclass '
+ 'that\n'
+ 'ultimately calls "type.__new__", the following additional\n'
+ 'customisation steps are invoked after creating the class '
+ 'object:\n'
+ '\n'
+ '* first, "type.__new__" collects all of the descriptors in '
+ 'the class\n'
+ ' namespace that define a "__set_name__()" method;\n'
+ '\n'
+ '* second, all of these "__set_name__" methods are called '
+ 'with the\n'
+ ' class being defined and the assigned name of that '
+ 'particular\n'
' descriptor;\n'
- '\n'
- '* finally, the "__init_subclass__()" hook is called on the '
- 'immediate\n'
- ' parent of the new class in its method resolution order.\n'
- '\n'
- 'After the class object is created, it is passed to the '
- 'class\n'
- 'decorators included in the class definition (if any) and the '
- 'resulting\n'
- 'object is bound in the local namespace as the defined '
- 'class.\n'
- '\n'
- 'When a new class is created by "type.__new__", the object '
- 'provided as\n'
- 'the namespace parameter is copied to a new ordered mapping '
- 'and the\n'
- 'original object is discarded. The new copy is wrapped in a '
- 'read-only\n'
- 'proxy, which becomes the "__dict__" attribute of the class '
- 'object.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 3135** - New super\n'
- ' Describes the implicit "__class__" closure reference\n'
- '\n'
- '\n'
- 'Uses for metaclasses\n'
- '--------------------\n'
- '\n'
- 'The potential uses for metaclasses are boundless. Some ideas '
- 'that have\n'
- 'been explored include enum, logging, interface checking, '
- 'automatic\n'
- 'delegation, automatic property creation, proxies, '
- 'frameworks, and\n'
- 'automatic resource locking/synchronization.\n'
- '\n'
- '\n'
- 'Customizing instance and subclass checks\n'
- '========================================\n'
- '\n'
- 'The following methods are used to override the default '
- 'behavior of the\n'
- '"isinstance()" and "issubclass()" built-in functions.\n'
- '\n'
- 'In particular, the metaclass "abc.ABCMeta" implements these '
- 'methods in\n'
- 'order to allow the addition of Abstract Base Classes (ABCs) '
- 'as\n'
- '“virtual base classes” to any class or type (including '
- 'built-in\n'
- 'types), including other ABCs.\n'
- '\n'
- 'class.__instancecheck__(self, instance)\n'
- '\n'
- ' Return true if *instance* should be considered a (direct '
- 'or\n'
- ' indirect) instance of *class*. If defined, called to '
- 'implement\n'
- ' "isinstance(instance, class)".\n'
- '\n'
- 'class.__subclasscheck__(self, subclass)\n'
- '\n'
- ' Return true if *subclass* should be considered a (direct '
- 'or\n'
- ' indirect) subclass of *class*. If defined, called to '
- 'implement\n'
- ' "issubclass(subclass, class)".\n'
- '\n'
- 'Note that these methods are looked up on the type '
- '(metaclass) of a\n'
- 'class. They cannot be defined as class methods in the '
- 'actual class.\n'
- 'This is consistent with the lookup of special methods that '
- 'are called\n'
- 'on instances, only in this case the instance is itself a '
- 'class.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 3119** - Introducing Abstract Base Classes\n'
- ' Includes the specification for customizing '
- '"isinstance()" and\n'
- ' "issubclass()" behavior through "__instancecheck__()" '
- 'and\n'
- ' "__subclasscheck__()", with motivation for this '
- 'functionality in\n'
- ' the context of adding Abstract Base Classes (see the '
- '"abc"\n'
- ' module) to the language.\n'
- '\n'
- '\n'
- 'Emulating generic types\n'
- '=======================\n'
- '\n'
+ '\n'
+ '* finally, the "__init_subclass__()" hook is called on the '
+ 'immediate\n'
+ ' parent of the new class in its method resolution order.\n'
+ '\n'
+ 'After the class object is created, it is passed to the '
+ 'class\n'
+ 'decorators included in the class definition (if any) and the '
+ 'resulting\n'
+ 'object is bound in the local namespace as the defined '
+ 'class.\n'
+ '\n'
+ 'When a new class is created by "type.__new__", the object '
+ 'provided as\n'
+ 'the namespace parameter is copied to a new ordered mapping '
+ 'and the\n'
+ 'original object is discarded. The new copy is wrapped in a '
+ 'read-only\n'
+ 'proxy, which becomes the "__dict__" attribute of the class '
+ 'object.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 3135** - New super\n'
+ ' Describes the implicit "__class__" closure reference\n'
+ '\n'
+ '\n'
+ 'Uses for metaclasses\n'
+ '--------------------\n'
+ '\n'
+ 'The potential uses for metaclasses are boundless. Some ideas '
+ 'that have\n'
+ 'been explored include enum, logging, interface checking, '
+ 'automatic\n'
+ 'delegation, automatic property creation, proxies, '
+ 'frameworks, and\n'
+ 'automatic resource locking/synchronization.\n'
+ '\n'
+ '\n'
+ 'Customizing instance and subclass checks\n'
+ '========================================\n'
+ '\n'
+ 'The following methods are used to override the default '
+ 'behavior of the\n'
+ '"isinstance()" and "issubclass()" built-in functions.\n'
+ '\n'
+ 'In particular, the metaclass "abc.ABCMeta" implements these '
+ 'methods in\n'
+ 'order to allow the addition of Abstract Base Classes (ABCs) '
+ 'as\n'
+ '“virtual base classes” to any class or type (including '
+ 'built-in\n'
+ 'types), including other ABCs.\n'
+ '\n'
+ 'class.__instancecheck__(self, instance)\n'
+ '\n'
+ ' Return true if *instance* should be considered a (direct '
+ 'or\n'
+ ' indirect) instance of *class*. If defined, called to '
+ 'implement\n'
+ ' "isinstance(instance, class)".\n'
+ '\n'
+ 'class.__subclasscheck__(self, subclass)\n'
+ '\n'
+ ' Return true if *subclass* should be considered a (direct '
+ 'or\n'
+ ' indirect) subclass of *class*. If defined, called to '
+ 'implement\n'
+ ' "issubclass(subclass, class)".\n'
+ '\n'
+ 'Note that these methods are looked up on the type '
+ '(metaclass) of a\n'
+ 'class. They cannot be defined as class methods in the '
+ 'actual class.\n'
+ 'This is consistent with the lookup of special methods that '
+ 'are called\n'
+ 'on instances, only in this case the instance is itself a '
+ 'class.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 3119** - Introducing Abstract Base Classes\n'
+ ' Includes the specification for customizing '
+ '"isinstance()" and\n'
+ ' "issubclass()" behavior through "__instancecheck__()" '
+ 'and\n'
+ ' "__subclasscheck__()", with motivation for this '
+ 'functionality in\n'
+ ' the context of adding Abstract Base Classes (see the '
+ '"abc"\n'
+ ' module) to the language.\n'
+ '\n'
+ '\n'
+ 'Emulating generic types\n'
+ '=======================\n'
+ '\n'
'When using *type annotations*, it is often useful to '
'*parameterize* a\n'
'*generic type* using Python’s square-brackets notation. For '
@@ -9444,7 +9444,7 @@ topics = {'assert': 'The "assert" statement\n'
'the annotation "list[int]" might be used to signify a "list" '
'in which\n'
'all the elements are of type "int".\n'
- '\n'
+ '\n'
'See also:\n'
'\n'
' **PEP 484** - Type Hints\n'
@@ -9465,18 +9465,18 @@ topics = {'assert': 'The "assert" statement\n'
'the\n'
'special class method "__class_getitem__()".\n'
'\n'
- 'classmethod object.__class_getitem__(cls, key)\n'
- '\n'
- ' Return an object representing the specialization of a '
- 'generic class\n'
- ' by type arguments found in *key*.\n'
- '\n'
+ 'classmethod object.__class_getitem__(cls, key)\n'
+ '\n'
+ ' Return an object representing the specialization of a '
+ 'generic class\n'
+ ' by type arguments found in *key*.\n'
+ '\n'
' When defined on a class, "__class_getitem__()" is '
'automatically a\n'
' class method. As such, there is no need for it to be '
'decorated with\n'
' "@classmethod" when it is defined.\n'
- '\n'
+ '\n'
'\n'
'The purpose of *__class_getitem__*\n'
'----------------------------------\n'
@@ -9601,7 +9601,7 @@ topics = {'assert': 'The "assert" statement\n'
" <enum 'Menu'>\n"
'\n'
'See also:\n'
- '\n'
+ '\n'
' **PEP 560** - Core Support for typing module and generic '
'types\n'
' Introducing "__class_getitem__()", and outlining when '
@@ -9609,24 +9609,24 @@ topics = {'assert': 'The "assert" statement\n'
' subscription results in "__class_getitem__()" being '
'called\n'
' instead of "__getitem__()"\n'
- '\n'
- '\n'
- 'Emulating callable objects\n'
- '==========================\n'
- '\n'
- 'object.__call__(self[, args...])\n'
- '\n'
- ' Called when the instance is “called” as a function; if '
- 'this method\n'
+ '\n'
+ '\n'
+ 'Emulating callable objects\n'
+ '==========================\n'
+ '\n'
+ 'object.__call__(self[, args...])\n'
+ '\n'
+ ' Called when the instance is “called” as a function; if '
+ 'this method\n'
' is defined, "x(arg1, arg2, ...)" roughly translates to\n'
' "type(x).__call__(x, arg1, ...)".\n'
- '\n'
- '\n'
- 'Emulating container types\n'
- '=========================\n'
- '\n'
- 'The following methods can be defined to implement container '
- 'objects.\n'
+ '\n'
+ '\n'
+ 'Emulating container types\n'
+ '=========================\n'
+ '\n'
+ 'The following methods can be defined to implement container '
+ 'objects.\n'
'Containers usually are *sequences* (such as "lists" or '
'"tuples") or\n'
'*mappings* (like "dictionaries"), but can represent other '
@@ -9676,68 +9676,68 @@ topics = {'assert': 'The "assert" statement\n'
'further recommended that both mappings and sequences '
'implement the\n'
'"__iter__()" method to allow efficient iteration through '
- 'the\n'
+ 'the\n'
'container; for mappings, "__iter__()" should iterate through '
'the\n'
'object’s keys; for sequences, it should iterate through the '
'values.\n'
- '\n'
- 'object.__len__(self)\n'
- '\n'
- ' Called to implement the built-in function "len()". '
- 'Should return\n'
- ' the length of the object, an integer ">=" 0. Also, an '
- 'object that\n'
- ' doesn’t define a "__bool__()" method and whose '
- '"__len__()" method\n'
- ' returns zero is considered to be false in a Boolean '
- 'context.\n'
- '\n'
- ' **CPython implementation detail:** In CPython, the length '
- 'is\n'
- ' required to be at most "sys.maxsize". If the length is '
- 'larger than\n'
- ' "sys.maxsize" some features (such as "len()") may raise\n'
- ' "OverflowError". To prevent raising "OverflowError" by '
- 'truth value\n'
- ' testing, an object must define a "__bool__()" method.\n'
- '\n'
- 'object.__length_hint__(self)\n'
- '\n'
- ' Called to implement "operator.length_hint()". Should '
- 'return an\n'
- ' estimated length for the object (which may be greater or '
- 'less than\n'
- ' the actual length). The length must be an integer ">=" 0. '
+ '\n'
+ 'object.__len__(self)\n'
+ '\n'
+ ' Called to implement the built-in function "len()". '
+ 'Should return\n'
+ ' the length of the object, an integer ">=" 0. Also, an '
+ 'object that\n'
+ ' doesn’t define a "__bool__()" method and whose '
+ '"__len__()" method\n'
+ ' returns zero is considered to be false in a Boolean '
+ 'context.\n'
+ '\n'
+ ' **CPython implementation detail:** In CPython, the length '
+ 'is\n'
+ ' required to be at most "sys.maxsize". If the length is '
+ 'larger than\n'
+ ' "sys.maxsize" some features (such as "len()") may raise\n'
+ ' "OverflowError". To prevent raising "OverflowError" by '
+ 'truth value\n'
+ ' testing, an object must define a "__bool__()" method.\n'
+ '\n'
+ 'object.__length_hint__(self)\n'
+ '\n'
+ ' Called to implement "operator.length_hint()". Should '
+ 'return an\n'
+ ' estimated length for the object (which may be greater or '
+ 'less than\n'
+ ' the actual length). The length must be an integer ">=" 0. '
'The\n'
' return value may also be "NotImplemented", which is '
'treated the\n'
' same as if the "__length_hint__" method didn’t exist at '
'all. This\n'
- ' method is purely an optimization and is never required '
- 'for\n'
- ' correctness.\n'
- '\n'
- ' New in version 3.4.\n'
- '\n'
+ ' method is purely an optimization and is never required '
+ 'for\n'
+ ' correctness.\n'
+ '\n'
+ ' New in version 3.4.\n'
+ '\n'
'Note:\n'
- '\n'
+ '\n'
' Slicing is done exclusively with the following three '
'methods. A\n'
' call like\n'
'\n'
- ' a[1:2] = b\n'
- '\n'
- ' is translated to\n'
- '\n'
- ' a[slice(1, 2, None)] = b\n'
- '\n'
- ' and so forth. Missing slice items are always filled in '
- 'with "None".\n'
- '\n'
- 'object.__getitem__(self, key)\n'
- '\n'
- ' Called to implement evaluation of "self[key]". For '
+ ' a[1:2] = b\n'
+ '\n'
+ ' is translated to\n'
+ '\n'
+ ' a[slice(1, 2, None)] = b\n'
+ '\n'
+ ' and so forth. Missing slice items are always filled in '
+ 'with "None".\n'
+ '\n'
+ 'object.__getitem__(self, key)\n'
+ '\n'
+ ' Called to implement evaluation of "self[key]". For '
'*sequence*\n'
' types, the accepted keys should be integers and slice '
'objects.\n'
@@ -9753,17 +9753,17 @@ topics = {'assert': 'The "assert" statement\n'
' values), "IndexError" should be raised. For *mapping* '
'types, if\n'
' *key* is missing (not in the container), "KeyError" '
- 'should be\n'
+ 'should be\n'
' raised.\n'
- '\n'
+ '\n'
' Note:\n'
'\n'
' "for" loops expect that an "IndexError" will be raised '
'for\n'
- ' illegal indexes to allow proper detection of the end of '
- 'the\n'
- ' sequence.\n'
- '\n'
+ ' illegal indexes to allow proper detection of the end of '
+ 'the\n'
+ ' sequence.\n'
+ '\n'
' Note:\n'
'\n'
' When subscripting a *class*, the special class method\n'
@@ -9772,193 +9772,193 @@ topics = {'assert': 'The "assert" statement\n'
' See __class_getitem__ versus __getitem__ for more '
'details.\n'
'\n'
- 'object.__setitem__(self, key, value)\n'
- '\n'
- ' Called to implement assignment to "self[key]". Same note '
- 'as for\n'
- ' "__getitem__()". This should only be implemented for '
- 'mappings if\n'
- ' the objects support changes to the values for keys, or if '
- 'new keys\n'
- ' can be added, or for sequences if elements can be '
- 'replaced. The\n'
- ' same exceptions should be raised for improper *key* '
- 'values as for\n'
- ' the "__getitem__()" method.\n'
- '\n'
- 'object.__delitem__(self, key)\n'
- '\n'
- ' Called to implement deletion of "self[key]". Same note '
- 'as for\n'
- ' "__getitem__()". This should only be implemented for '
- 'mappings if\n'
- ' the objects support removal of keys, or for sequences if '
- 'elements\n'
- ' can be removed from the sequence. The same exceptions '
- 'should be\n'
- ' raised for improper *key* values as for the '
- '"__getitem__()" method.\n'
- '\n'
- 'object.__missing__(self, key)\n'
- '\n'
- ' Called by "dict"."__getitem__()" to implement "self[key]" '
- 'for dict\n'
- ' subclasses when key is not in the dictionary.\n'
- '\n'
- 'object.__iter__(self)\n'
- '\n'
- ' This method is called when an iterator is required for a '
- 'container.\n'
- ' This method should return a new iterator object that can '
- 'iterate\n'
- ' over all the objects in the container. For mappings, it '
- 'should\n'
- ' iterate over the keys of the container.\n'
- '\n'
- ' Iterator objects also need to implement this method; they '
- 'are\n'
- ' required to return themselves. For more information on '
- 'iterator\n'
- ' objects, see Iterator Types.\n'
- '\n'
- 'object.__reversed__(self)\n'
- '\n'
- ' Called (if present) by the "reversed()" built-in to '
- 'implement\n'
- ' reverse iteration. It should return a new iterator '
- 'object that\n'
- ' iterates over all the objects in the container in reverse '
- 'order.\n'
- '\n'
- ' If the "__reversed__()" method is not provided, the '
- '"reversed()"\n'
- ' built-in will fall back to using the sequence protocol '
- '("__len__()"\n'
- ' and "__getitem__()"). Objects that support the sequence '
- 'protocol\n'
- ' should only provide "__reversed__()" if they can provide '
- 'an\n'
- ' implementation that is more efficient than the one '
- 'provided by\n'
- ' "reversed()".\n'
- '\n'
- 'The membership test operators ("in" and "not in") are '
- 'normally\n'
+ 'object.__setitem__(self, key, value)\n'
+ '\n'
+ ' Called to implement assignment to "self[key]". Same note '
+ 'as for\n'
+ ' "__getitem__()". This should only be implemented for '
+ 'mappings if\n'
+ ' the objects support changes to the values for keys, or if '
+ 'new keys\n'
+ ' can be added, or for sequences if elements can be '
+ 'replaced. The\n'
+ ' same exceptions should be raised for improper *key* '
+ 'values as for\n'
+ ' the "__getitem__()" method.\n'
+ '\n'
+ 'object.__delitem__(self, key)\n'
+ '\n'
+ ' Called to implement deletion of "self[key]". Same note '
+ 'as for\n'
+ ' "__getitem__()". This should only be implemented for '
+ 'mappings if\n'
+ ' the objects support removal of keys, or for sequences if '
+ 'elements\n'
+ ' can be removed from the sequence. The same exceptions '
+ 'should be\n'
+ ' raised for improper *key* values as for the '
+ '"__getitem__()" method.\n'
+ '\n'
+ 'object.__missing__(self, key)\n'
+ '\n'
+ ' Called by "dict"."__getitem__()" to implement "self[key]" '
+ 'for dict\n'
+ ' subclasses when key is not in the dictionary.\n'
+ '\n'
+ 'object.__iter__(self)\n'
+ '\n'
+ ' This method is called when an iterator is required for a '
+ 'container.\n'
+ ' This method should return a new iterator object that can '
+ 'iterate\n'
+ ' over all the objects in the container. For mappings, it '
+ 'should\n'
+ ' iterate over the keys of the container.\n'
+ '\n'
+ ' Iterator objects also need to implement this method; they '
+ 'are\n'
+ ' required to return themselves. For more information on '
+ 'iterator\n'
+ ' objects, see Iterator Types.\n'
+ '\n'
+ 'object.__reversed__(self)\n'
+ '\n'
+ ' Called (if present) by the "reversed()" built-in to '
+ 'implement\n'
+ ' reverse iteration. It should return a new iterator '
+ 'object that\n'
+ ' iterates over all the objects in the container in reverse '
+ 'order.\n'
+ '\n'
+ ' If the "__reversed__()" method is not provided, the '
+ '"reversed()"\n'
+ ' built-in will fall back to using the sequence protocol '
+ '("__len__()"\n'
+ ' and "__getitem__()"). Objects that support the sequence '
+ 'protocol\n'
+ ' should only provide "__reversed__()" if they can provide '
+ 'an\n'
+ ' implementation that is more efficient than the one '
+ 'provided by\n'
+ ' "reversed()".\n'
+ '\n'
+ 'The membership test operators ("in" and "not in") are '
+ 'normally\n'
'implemented as an iteration through a container. However, '
- 'container\n'
- 'objects can supply the following special method with a more '
- 'efficient\n'
+ 'container\n'
+ 'objects can supply the following special method with a more '
+ 'efficient\n'
'implementation, which also does not require the object be '
'iterable.\n'
- '\n'
- 'object.__contains__(self, item)\n'
- '\n'
- ' Called to implement membership test operators. Should '
- 'return true\n'
- ' if *item* is in *self*, false otherwise. For mapping '
- 'objects, this\n'
- ' should consider the keys of the mapping rather than the '
- 'values or\n'
- ' the key-item pairs.\n'
- '\n'
- ' For objects that don’t define "__contains__()", the '
- 'membership test\n'
- ' first tries iteration via "__iter__()", then the old '
- 'sequence\n'
- ' iteration protocol via "__getitem__()", see this section '
- 'in the\n'
- ' language reference.\n'
- '\n'
- '\n'
- 'Emulating numeric types\n'
- '=======================\n'
- '\n'
- 'The following methods can be defined to emulate numeric '
- 'objects.\n'
- 'Methods corresponding to operations that are not supported '
- 'by the\n'
- 'particular kind of number implemented (e.g., bitwise '
- 'operations for\n'
- 'non-integral numbers) should be left undefined.\n'
- '\n'
- 'object.__add__(self, other)\n'
- 'object.__sub__(self, other)\n'
- 'object.__mul__(self, other)\n'
- 'object.__matmul__(self, other)\n'
- 'object.__truediv__(self, other)\n'
- 'object.__floordiv__(self, other)\n'
- 'object.__mod__(self, other)\n'
- 'object.__divmod__(self, other)\n'
- 'object.__pow__(self, other[, modulo])\n'
- 'object.__lshift__(self, other)\n'
- 'object.__rshift__(self, other)\n'
- 'object.__and__(self, other)\n'
- 'object.__xor__(self, other)\n'
- 'object.__or__(self, other)\n'
- '\n'
- ' These methods are called to implement the binary '
- 'arithmetic\n'
- ' operations ("+", "-", "*", "@", "/", "//", "%", '
- '"divmod()",\n'
- ' "pow()", "**", "<<", ">>", "&", "^", "|"). For instance, '
- 'to\n'
- ' evaluate the expression "x + y", where *x* is an instance '
- 'of a\n'
- ' class that has an "__add__()" method, "x.__add__(y)" is '
- 'called.\n'
- ' The "__divmod__()" method should be the equivalent to '
- 'using\n'
- ' "__floordiv__()" and "__mod__()"; it should not be '
- 'related to\n'
- ' "__truediv__()". Note that "__pow__()" should be defined '
- 'to accept\n'
- ' an optional third argument if the ternary version of the '
- 'built-in\n'
- ' "pow()" function is to be supported.\n'
- '\n'
- ' If one of those methods does not support the operation '
- 'with the\n'
- ' supplied arguments, it should return "NotImplemented".\n'
- '\n'
- 'object.__radd__(self, other)\n'
- 'object.__rsub__(self, other)\n'
- 'object.__rmul__(self, other)\n'
- 'object.__rmatmul__(self, other)\n'
- 'object.__rtruediv__(self, other)\n'
- 'object.__rfloordiv__(self, other)\n'
- 'object.__rmod__(self, other)\n'
- 'object.__rdivmod__(self, other)\n'
+ '\n'
+ 'object.__contains__(self, item)\n'
+ '\n'
+ ' Called to implement membership test operators. Should '
+ 'return true\n'
+ ' if *item* is in *self*, false otherwise. For mapping '
+ 'objects, this\n'
+ ' should consider the keys of the mapping rather than the '
+ 'values or\n'
+ ' the key-item pairs.\n'
+ '\n'
+ ' For objects that don’t define "__contains__()", the '
+ 'membership test\n'
+ ' first tries iteration via "__iter__()", then the old '
+ 'sequence\n'
+ ' iteration protocol via "__getitem__()", see this section '
+ 'in the\n'
+ ' language reference.\n'
+ '\n'
+ '\n'
+ 'Emulating numeric types\n'
+ '=======================\n'
+ '\n'
+ 'The following methods can be defined to emulate numeric '
+ 'objects.\n'
+ 'Methods corresponding to operations that are not supported '
+ 'by the\n'
+ 'particular kind of number implemented (e.g., bitwise '
+ 'operations for\n'
+ 'non-integral numbers) should be left undefined.\n'
+ '\n'
+ 'object.__add__(self, other)\n'
+ 'object.__sub__(self, other)\n'
+ 'object.__mul__(self, other)\n'
+ 'object.__matmul__(self, other)\n'
+ 'object.__truediv__(self, other)\n'
+ 'object.__floordiv__(self, other)\n'
+ 'object.__mod__(self, other)\n'
+ 'object.__divmod__(self, other)\n'
+ 'object.__pow__(self, other[, modulo])\n'
+ 'object.__lshift__(self, other)\n'
+ 'object.__rshift__(self, other)\n'
+ 'object.__and__(self, other)\n'
+ 'object.__xor__(self, other)\n'
+ 'object.__or__(self, other)\n'
+ '\n'
+ ' These methods are called to implement the binary '
+ 'arithmetic\n'
+ ' operations ("+", "-", "*", "@", "/", "//", "%", '
+ '"divmod()",\n'
+ ' "pow()", "**", "<<", ">>", "&", "^", "|"). For instance, '
+ 'to\n'
+ ' evaluate the expression "x + y", where *x* is an instance '
+ 'of a\n'
+ ' class that has an "__add__()" method, "x.__add__(y)" is '
+ 'called.\n'
+ ' The "__divmod__()" method should be the equivalent to '
+ 'using\n'
+ ' "__floordiv__()" and "__mod__()"; it should not be '
+ 'related to\n'
+ ' "__truediv__()". Note that "__pow__()" should be defined '
+ 'to accept\n'
+ ' an optional third argument if the ternary version of the '
+ 'built-in\n'
+ ' "pow()" function is to be supported.\n'
+ '\n'
+ ' If one of those methods does not support the operation '
+ 'with the\n'
+ ' supplied arguments, it should return "NotImplemented".\n'
+ '\n'
+ 'object.__radd__(self, other)\n'
+ 'object.__rsub__(self, other)\n'
+ 'object.__rmul__(self, other)\n'
+ 'object.__rmatmul__(self, other)\n'
+ 'object.__rtruediv__(self, other)\n'
+ 'object.__rfloordiv__(self, other)\n'
+ 'object.__rmod__(self, other)\n'
+ 'object.__rdivmod__(self, other)\n'
'object.__rpow__(self, other[, modulo])\n'
- 'object.__rlshift__(self, other)\n'
- 'object.__rrshift__(self, other)\n'
- 'object.__rand__(self, other)\n'
- 'object.__rxor__(self, other)\n'
- 'object.__ror__(self, other)\n'
- '\n'
- ' These methods are called to implement the binary '
- 'arithmetic\n'
- ' operations ("+", "-", "*", "@", "/", "//", "%", '
- '"divmod()",\n'
- ' "pow()", "**", "<<", ">>", "&", "^", "|") with reflected '
- '(swapped)\n'
- ' operands. These functions are only called if the left '
- 'operand does\n'
- ' not support the corresponding operation [3] and the '
- 'operands are of\n'
- ' different types. [4] For instance, to evaluate the '
- 'expression "x -\n'
- ' y", where *y* is an instance of a class that has an '
- '"__rsub__()"\n'
- ' method, "y.__rsub__(x)" is called if "x.__sub__(y)" '
- 'returns\n'
- ' *NotImplemented*.\n'
- '\n'
- ' Note that ternary "pow()" will not try calling '
- '"__rpow__()" (the\n'
- ' coercion rules would become too complicated).\n'
- '\n'
+ 'object.__rlshift__(self, other)\n'
+ 'object.__rrshift__(self, other)\n'
+ 'object.__rand__(self, other)\n'
+ 'object.__rxor__(self, other)\n'
+ 'object.__ror__(self, other)\n'
+ '\n'
+ ' These methods are called to implement the binary '
+ 'arithmetic\n'
+ ' operations ("+", "-", "*", "@", "/", "//", "%", '
+ '"divmod()",\n'
+ ' "pow()", "**", "<<", ">>", "&", "^", "|") with reflected '
+ '(swapped)\n'
+ ' operands. These functions are only called if the left '
+ 'operand does\n'
+ ' not support the corresponding operation [3] and the '
+ 'operands are of\n'
+ ' different types. [4] For instance, to evaluate the '
+ 'expression "x -\n'
+ ' y", where *y* is an instance of a class that has an '
+ '"__rsub__()"\n'
+ ' method, "y.__rsub__(x)" is called if "x.__sub__(y)" '
+ 'returns\n'
+ ' *NotImplemented*.\n'
+ '\n'
+ ' Note that ternary "pow()" will not try calling '
+ '"__rpow__()" (the\n'
+ ' coercion rules would become too complicated).\n'
+ '\n'
' Note:\n'
- '\n'
+ '\n'
' If the right operand’s type is a subclass of the left '
'operand’s\n'
' type and that subclass provides a different '
@@ -9970,48 +9970,48 @@ topics = {'assert': 'The "assert" statement\n'
' allows subclasses to override their ancestors’ '
'operations.\n'
'\n'
- 'object.__iadd__(self, other)\n'
- 'object.__isub__(self, other)\n'
- 'object.__imul__(self, other)\n'
- 'object.__imatmul__(self, other)\n'
- 'object.__itruediv__(self, other)\n'
- 'object.__ifloordiv__(self, other)\n'
- 'object.__imod__(self, other)\n'
- 'object.__ipow__(self, other[, modulo])\n'
- 'object.__ilshift__(self, other)\n'
- 'object.__irshift__(self, other)\n'
- 'object.__iand__(self, other)\n'
- 'object.__ixor__(self, other)\n'
- 'object.__ior__(self, other)\n'
- '\n'
- ' These methods are called to implement the augmented '
- 'arithmetic\n'
- ' assignments ("+=", "-=", "*=", "@=", "/=", "//=", "%=", '
- '"**=",\n'
- ' "<<=", ">>=", "&=", "^=", "|="). These methods should '
- 'attempt to\n'
- ' do the operation in-place (modifying *self*) and return '
- 'the result\n'
- ' (which could be, but does not have to be, *self*). If a '
- 'specific\n'
- ' method is not defined, the augmented assignment falls '
- 'back to the\n'
- ' normal methods. For instance, if *x* is an instance of a '
- 'class\n'
- ' with an "__iadd__()" method, "x += y" is equivalent to "x '
- '=\n'
- ' x.__iadd__(y)" . Otherwise, "x.__add__(y)" and '
- '"y.__radd__(x)" are\n'
- ' considered, as with the evaluation of "x + y". In '
- 'certain\n'
- ' situations, augmented assignment can result in unexpected '
- 'errors\n'
- ' (see Why does a_tuple[i] += [‘item’] raise an exception '
- 'when the\n'
- ' addition works?), but this behavior is in fact part of '
- 'the data\n'
- ' model.\n'
- '\n'
+ 'object.__iadd__(self, other)\n'
+ 'object.__isub__(self, other)\n'
+ 'object.__imul__(self, other)\n'
+ 'object.__imatmul__(self, other)\n'
+ 'object.__itruediv__(self, other)\n'
+ 'object.__ifloordiv__(self, other)\n'
+ 'object.__imod__(self, other)\n'
+ 'object.__ipow__(self, other[, modulo])\n'
+ 'object.__ilshift__(self, other)\n'
+ 'object.__irshift__(self, other)\n'
+ 'object.__iand__(self, other)\n'
+ 'object.__ixor__(self, other)\n'
+ 'object.__ior__(self, other)\n'
+ '\n'
+ ' These methods are called to implement the augmented '
+ 'arithmetic\n'
+ ' assignments ("+=", "-=", "*=", "@=", "/=", "//=", "%=", '
+ '"**=",\n'
+ ' "<<=", ">>=", "&=", "^=", "|="). These methods should '
+ 'attempt to\n'
+ ' do the operation in-place (modifying *self*) and return '
+ 'the result\n'
+ ' (which could be, but does not have to be, *self*). If a '
+ 'specific\n'
+ ' method is not defined, the augmented assignment falls '
+ 'back to the\n'
+ ' normal methods. For instance, if *x* is an instance of a '
+ 'class\n'
+ ' with an "__iadd__()" method, "x += y" is equivalent to "x '
+ '=\n'
+ ' x.__iadd__(y)" . Otherwise, "x.__add__(y)" and '
+ '"y.__radd__(x)" are\n'
+ ' considered, as with the evaluation of "x + y". In '
+ 'certain\n'
+ ' situations, augmented assignment can result in unexpected '
+ 'errors\n'
+ ' (see Why does a_tuple[i] += [‘item’] raise an exception '
+ 'when the\n'
+ ' addition works?), but this behavior is in fact part of '
+ 'the data\n'
+ ' model.\n'
+ '\n'
' Note:\n'
'\n'
' Due to a bug in the dispatching mechanism for "**=", a '
@@ -10022,246 +10022,246 @@ topics = {'assert': 'The "assert" statement\n'
'bug is\n'
' fixed in Python 3.10.\n'
'\n'
- 'object.__neg__(self)\n'
- 'object.__pos__(self)\n'
- 'object.__abs__(self)\n'
- 'object.__invert__(self)\n'
- '\n'
- ' Called to implement the unary arithmetic operations ("-", '
- '"+",\n'
- ' "abs()" and "~").\n'
- '\n'
- 'object.__complex__(self)\n'
- 'object.__int__(self)\n'
- 'object.__float__(self)\n'
- '\n'
- ' Called to implement the built-in functions "complex()", '
- '"int()" and\n'
- ' "float()". Should return a value of the appropriate '
- 'type.\n'
- '\n'
- 'object.__index__(self)\n'
- '\n'
- ' Called to implement "operator.index()", and whenever '
- 'Python needs\n'
- ' to losslessly convert the numeric object to an integer '
- 'object (such\n'
- ' as in slicing, or in the built-in "bin()", "hex()" and '
- '"oct()"\n'
- ' functions). Presence of this method indicates that the '
- 'numeric\n'
- ' object is an integer type. Must return an integer.\n'
- '\n'
+ 'object.__neg__(self)\n'
+ 'object.__pos__(self)\n'
+ 'object.__abs__(self)\n'
+ 'object.__invert__(self)\n'
+ '\n'
+ ' Called to implement the unary arithmetic operations ("-", '
+ '"+",\n'
+ ' "abs()" and "~").\n'
+ '\n'
+ 'object.__complex__(self)\n'
+ 'object.__int__(self)\n'
+ 'object.__float__(self)\n'
+ '\n'
+ ' Called to implement the built-in functions "complex()", '
+ '"int()" and\n'
+ ' "float()". Should return a value of the appropriate '
+ 'type.\n'
+ '\n'
+ 'object.__index__(self)\n'
+ '\n'
+ ' Called to implement "operator.index()", and whenever '
+ 'Python needs\n'
+ ' to losslessly convert the numeric object to an integer '
+ 'object (such\n'
+ ' as in slicing, or in the built-in "bin()", "hex()" and '
+ '"oct()"\n'
+ ' functions). Presence of this method indicates that the '
+ 'numeric\n'
+ ' object is an integer type. Must return an integer.\n'
+ '\n'
' If "__int__()", "__float__()" and "__complex__()" are not '
'defined\n'
' then corresponding built-in functions "int()", "float()" '
'and\n'
' "complex()" fall back to "__index__()".\n'
- '\n'
- 'object.__round__(self[, ndigits])\n'
- 'object.__trunc__(self)\n'
- 'object.__floor__(self)\n'
- 'object.__ceil__(self)\n'
- '\n'
- ' Called to implement the built-in function "round()" and '
- '"math"\n'
- ' functions "trunc()", "floor()" and "ceil()". Unless '
- '*ndigits* is\n'
- ' passed to "__round__()" all these methods should return '
- 'the value\n'
- ' of the object truncated to an "Integral" (typically an '
- '"int").\n'
- '\n'
+ '\n'
+ 'object.__round__(self[, ndigits])\n'
+ 'object.__trunc__(self)\n'
+ 'object.__floor__(self)\n'
+ 'object.__ceil__(self)\n'
+ '\n'
+ ' Called to implement the built-in function "round()" and '
+ '"math"\n'
+ ' functions "trunc()", "floor()" and "ceil()". Unless '
+ '*ndigits* is\n'
+ ' passed to "__round__()" all these methods should return '
+ 'the value\n'
+ ' of the object truncated to an "Integral" (typically an '
+ '"int").\n'
+ '\n'
' The built-in function "int()" falls back to "__trunc__()" '
'if\n'
' neither "__int__()" nor "__index__()" is defined.\n'
- '\n'
- '\n'
- 'With Statement Context Managers\n'
- '===============================\n'
- '\n'
- 'A *context manager* is an object that defines the runtime '
- 'context to\n'
- 'be established when executing a "with" statement. The '
- 'context manager\n'
- 'handles the entry into, and the exit from, the desired '
- 'runtime context\n'
- 'for the execution of the block of code. Context managers '
- 'are normally\n'
- 'invoked using the "with" statement (described in section The '
- 'with\n'
- 'statement), but can also be used by directly invoking their '
- 'methods.\n'
- '\n'
- 'Typical uses of context managers include saving and '
- 'restoring various\n'
- 'kinds of global state, locking and unlocking resources, '
- 'closing opened\n'
- 'files, etc.\n'
- '\n'
- 'For more information on context managers, see Context '
- 'Manager Types.\n'
- '\n'
- 'object.__enter__(self)\n'
- '\n'
- ' Enter the runtime context related to this object. The '
- '"with"\n'
- ' statement will bind this method’s return value to the '
- 'target(s)\n'
- ' specified in the "as" clause of the statement, if any.\n'
- '\n'
- 'object.__exit__(self, exc_type, exc_value, traceback)\n'
- '\n'
- ' Exit the runtime context related to this object. The '
- 'parameters\n'
- ' describe the exception that caused the context to be '
- 'exited. If the\n'
- ' context was exited without an exception, all three '
- 'arguments will\n'
- ' be "None".\n'
- '\n'
- ' If an exception is supplied, and the method wishes to '
- 'suppress the\n'
- ' exception (i.e., prevent it from being propagated), it '
- 'should\n'
- ' return a true value. Otherwise, the exception will be '
- 'processed\n'
- ' normally upon exit from this method.\n'
- '\n'
- ' Note that "__exit__()" methods should not reraise the '
- 'passed-in\n'
- ' exception; this is the caller’s responsibility.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 343** - The “with” statement\n'
- ' The specification, background, and examples for the '
- 'Python "with"\n'
- ' statement.\n'
- '\n'
- '\n'
- 'Special method lookup\n'
- '=====================\n'
- '\n'
- 'For custom classes, implicit invocations of special methods '
- 'are only\n'
- 'guaranteed to work correctly if defined on an object’s type, '
- 'not in\n'
- 'the object’s instance dictionary. That behaviour is the '
- 'reason why\n'
- 'the following code raises an exception:\n'
- '\n'
- ' >>> class C:\n'
- ' ... pass\n'
- ' ...\n'
- ' >>> c = C()\n'
- ' >>> c.__len__ = lambda: 5\n'
- ' >>> len(c)\n'
- ' Traceback (most recent call last):\n'
- ' File "<stdin>", line 1, in <module>\n'
- " TypeError: object of type 'C' has no len()\n"
- '\n'
- 'The rationale behind this behaviour lies with a number of '
- 'special\n'
- 'methods such as "__hash__()" and "__repr__()" that are '
- 'implemented by\n'
- 'all objects, including type objects. If the implicit lookup '
- 'of these\n'
- 'methods used the conventional lookup process, they would '
- 'fail when\n'
- 'invoked on the type object itself:\n'
- '\n'
- ' >>> 1 .__hash__() == hash(1)\n'
- ' True\n'
- ' >>> int.__hash__() == hash(int)\n'
- ' Traceback (most recent call last):\n'
- ' File "<stdin>", line 1, in <module>\n'
- " TypeError: descriptor '__hash__' of 'int' object needs an "
- 'argument\n'
- '\n'
- 'Incorrectly attempting to invoke an unbound method of a '
- 'class in this\n'
- 'way is sometimes referred to as ‘metaclass confusion’, and '
- 'is avoided\n'
- 'by bypassing the instance when looking up special methods:\n'
- '\n'
- ' >>> type(1).__hash__(1) == hash(1)\n'
- ' True\n'
- ' >>> type(int).__hash__(int) == hash(int)\n'
- ' True\n'
- '\n'
- 'In addition to bypassing any instance attributes in the '
- 'interest of\n'
- 'correctness, implicit special method lookup generally also '
- 'bypasses\n'
- 'the "__getattribute__()" method even of the object’s '
- 'metaclass:\n'
- '\n'
- ' >>> class Meta(type):\n'
- ' ... def __getattribute__(*args):\n'
- ' ... print("Metaclass getattribute invoked")\n'
- ' ... return type.__getattribute__(*args)\n'
- ' ...\n'
- ' >>> class C(object, metaclass=Meta):\n'
- ' ... def __len__(self):\n'
- ' ... return 10\n'
- ' ... def __getattribute__(*args):\n'
- ' ... print("Class getattribute invoked")\n'
- ' ... return object.__getattribute__(*args)\n'
- ' ...\n'
- ' >>> c = C()\n'
- ' >>> c.__len__() # Explicit lookup via '
- 'instance\n'
- ' Class getattribute invoked\n'
- ' 10\n'
- ' >>> type(c).__len__(c) # Explicit lookup via '
- 'type\n'
- ' Metaclass getattribute invoked\n'
- ' 10\n'
- ' >>> len(c) # Implicit lookup\n'
- ' 10\n'
- '\n'
- 'Bypassing the "__getattribute__()" machinery in this fashion '
- 'provides\n'
- 'significant scope for speed optimisations within the '
- 'interpreter, at\n'
- 'the cost of some flexibility in the handling of special '
- 'methods (the\n'
- 'special method *must* be set on the class object itself in '
- 'order to be\n'
- 'consistently invoked by the interpreter).\n',
- 'string-methods': 'String Methods\n'
- '**************\n'
- '\n'
- 'Strings implement all of the common sequence operations, '
- 'along with\n'
- 'the additional methods described below.\n'
- '\n'
- 'Strings also support two styles of string formatting, one '
- 'providing a\n'
- 'large degree of flexibility and customization (see '
- '"str.format()",\n'
- 'Format String Syntax and Custom String Formatting) and the '
- 'other based\n'
- 'on C "printf" style formatting that handles a narrower '
- 'range of types\n'
- 'and is slightly harder to use correctly, but is often '
- 'faster for the\n'
- 'cases it can handle (printf-style String Formatting).\n'
- '\n'
- 'The Text Processing Services section of the standard '
- 'library covers a\n'
- 'number of other modules that provide various text related '
- 'utilities\n'
- '(including regular expression support in the "re" '
- 'module).\n'
- '\n'
- 'str.capitalize()\n'
- '\n'
- ' Return a copy of the string with its first character '
- 'capitalized\n'
- ' and the rest lowercased.\n'
- '\n'
+ '\n'
+ '\n'
+ 'With Statement Context Managers\n'
+ '===============================\n'
+ '\n'
+ 'A *context manager* is an object that defines the runtime '
+ 'context to\n'
+ 'be established when executing a "with" statement. The '
+ 'context manager\n'
+ 'handles the entry into, and the exit from, the desired '
+ 'runtime context\n'
+ 'for the execution of the block of code. Context managers '
+ 'are normally\n'
+ 'invoked using the "with" statement (described in section The '
+ 'with\n'
+ 'statement), but can also be used by directly invoking their '
+ 'methods.\n'
+ '\n'
+ 'Typical uses of context managers include saving and '
+ 'restoring various\n'
+ 'kinds of global state, locking and unlocking resources, '
+ 'closing opened\n'
+ 'files, etc.\n'
+ '\n'
+ 'For more information on context managers, see Context '
+ 'Manager Types.\n'
+ '\n'
+ 'object.__enter__(self)\n'
+ '\n'
+ ' Enter the runtime context related to this object. The '
+ '"with"\n'
+ ' statement will bind this method’s return value to the '
+ 'target(s)\n'
+ ' specified in the "as" clause of the statement, if any.\n'
+ '\n'
+ 'object.__exit__(self, exc_type, exc_value, traceback)\n'
+ '\n'
+ ' Exit the runtime context related to this object. The '
+ 'parameters\n'
+ ' describe the exception that caused the context to be '
+ 'exited. If the\n'
+ ' context was exited without an exception, all three '
+ 'arguments will\n'
+ ' be "None".\n'
+ '\n'
+ ' If an exception is supplied, and the method wishes to '
+ 'suppress the\n'
+ ' exception (i.e., prevent it from being propagated), it '
+ 'should\n'
+ ' return a true value. Otherwise, the exception will be '
+ 'processed\n'
+ ' normally upon exit from this method.\n'
+ '\n'
+ ' Note that "__exit__()" methods should not reraise the '
+ 'passed-in\n'
+ ' exception; this is the caller’s responsibility.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 343** - The “with” statement\n'
+ ' The specification, background, and examples for the '
+ 'Python "with"\n'
+ ' statement.\n'
+ '\n'
+ '\n'
+ 'Special method lookup\n'
+ '=====================\n'
+ '\n'
+ 'For custom classes, implicit invocations of special methods '
+ 'are only\n'
+ 'guaranteed to work correctly if defined on an object’s type, '
+ 'not in\n'
+ 'the object’s instance dictionary. That behaviour is the '
+ 'reason why\n'
+ 'the following code raises an exception:\n'
+ '\n'
+ ' >>> class C:\n'
+ ' ... pass\n'
+ ' ...\n'
+ ' >>> c = C()\n'
+ ' >>> c.__len__ = lambda: 5\n'
+ ' >>> len(c)\n'
+ ' Traceback (most recent call last):\n'
+ ' File "<stdin>", line 1, in <module>\n'
+ " TypeError: object of type 'C' has no len()\n"
+ '\n'
+ 'The rationale behind this behaviour lies with a number of '
+ 'special\n'
+ 'methods such as "__hash__()" and "__repr__()" that are '
+ 'implemented by\n'
+ 'all objects, including type objects. If the implicit lookup '
+ 'of these\n'
+ 'methods used the conventional lookup process, they would '
+ 'fail when\n'
+ 'invoked on the type object itself:\n'
+ '\n'
+ ' >>> 1 .__hash__() == hash(1)\n'
+ ' True\n'
+ ' >>> int.__hash__() == hash(int)\n'
+ ' Traceback (most recent call last):\n'
+ ' File "<stdin>", line 1, in <module>\n'
+ " TypeError: descriptor '__hash__' of 'int' object needs an "
+ 'argument\n'
+ '\n'
+ 'Incorrectly attempting to invoke an unbound method of a '
+ 'class in this\n'
+ 'way is sometimes referred to as ‘metaclass confusion’, and '
+ 'is avoided\n'
+ 'by bypassing the instance when looking up special methods:\n'
+ '\n'
+ ' >>> type(1).__hash__(1) == hash(1)\n'
+ ' True\n'
+ ' >>> type(int).__hash__(int) == hash(int)\n'
+ ' True\n'
+ '\n'
+ 'In addition to bypassing any instance attributes in the '
+ 'interest of\n'
+ 'correctness, implicit special method lookup generally also '
+ 'bypasses\n'
+ 'the "__getattribute__()" method even of the object’s '
+ 'metaclass:\n'
+ '\n'
+ ' >>> class Meta(type):\n'
+ ' ... def __getattribute__(*args):\n'
+ ' ... print("Metaclass getattribute invoked")\n'
+ ' ... return type.__getattribute__(*args)\n'
+ ' ...\n'
+ ' >>> class C(object, metaclass=Meta):\n'
+ ' ... def __len__(self):\n'
+ ' ... return 10\n'
+ ' ... def __getattribute__(*args):\n'
+ ' ... print("Class getattribute invoked")\n'
+ ' ... return object.__getattribute__(*args)\n'
+ ' ...\n'
+ ' >>> c = C()\n'
+ ' >>> c.__len__() # Explicit lookup via '
+ 'instance\n'
+ ' Class getattribute invoked\n'
+ ' 10\n'
+ ' >>> type(c).__len__(c) # Explicit lookup via '
+ 'type\n'
+ ' Metaclass getattribute invoked\n'
+ ' 10\n'
+ ' >>> len(c) # Implicit lookup\n'
+ ' 10\n'
+ '\n'
+ 'Bypassing the "__getattribute__()" machinery in this fashion '
+ 'provides\n'
+ 'significant scope for speed optimisations within the '
+ 'interpreter, at\n'
+ 'the cost of some flexibility in the handling of special '
+ 'methods (the\n'
+ 'special method *must* be set on the class object itself in '
+ 'order to be\n'
+ 'consistently invoked by the interpreter).\n',
+ 'string-methods': 'String Methods\n'
+ '**************\n'
+ '\n'
+ 'Strings implement all of the common sequence operations, '
+ 'along with\n'
+ 'the additional methods described below.\n'
+ '\n'
+ 'Strings also support two styles of string formatting, one '
+ 'providing a\n'
+ 'large degree of flexibility and customization (see '
+ '"str.format()",\n'
+ 'Format String Syntax and Custom String Formatting) and the '
+ 'other based\n'
+ 'on C "printf" style formatting that handles a narrower '
+ 'range of types\n'
+ 'and is slightly harder to use correctly, but is often '
+ 'faster for the\n'
+ 'cases it can handle (printf-style String Formatting).\n'
+ '\n'
+ 'The Text Processing Services section of the standard '
+ 'library covers a\n'
+ 'number of other modules that provide various text related '
+ 'utilities\n'
+ '(including regular expression support in the "re" '
+ 'module).\n'
+ '\n'
+ 'str.capitalize()\n'
+ '\n'
+ ' Return a copy of the string with its first character '
+ 'capitalized\n'
+ ' and the rest lowercased.\n'
+ '\n'
' Changed in version 3.8: The first character is now put '
'into\n'
' titlecase rather than uppercase. This means that '
@@ -10270,64 +10270,64 @@ topics = {'assert': 'The "assert" statement\n'
'instead of\n'
' the full character.\n'
'\n'
- 'str.casefold()\n'
- '\n'
- ' Return a casefolded copy of the string. Casefolded '
- 'strings may be\n'
- ' used for caseless matching.\n'
- '\n'
- ' Casefolding is similar to lowercasing but more '
- 'aggressive because\n'
- ' it is intended to remove all case distinctions in a '
- 'string. For\n'
- ' example, the German lowercase letter "\'ß\'" is '
- 'equivalent to ""ss"".\n'
- ' Since it is already lowercase, "lower()" would do '
- 'nothing to "\'ß\'";\n'
- ' "casefold()" converts it to ""ss"".\n'
- '\n'
- ' The casefolding algorithm is described in section 3.13 '
- 'of the\n'
- ' Unicode Standard.\n'
- '\n'
- ' New in version 3.3.\n'
- '\n'
- 'str.center(width[, fillchar])\n'
- '\n'
- ' Return centered in a string of length *width*. Padding '
- 'is done\n'
- ' using the specified *fillchar* (default is an ASCII '
- 'space). The\n'
- ' original string is returned if *width* is less than or '
- 'equal to\n'
- ' "len(s)".\n'
- '\n'
- 'str.count(sub[, start[, end]])\n'
- '\n'
- ' Return the number of non-overlapping occurrences of '
- 'substring *sub*\n'
- ' in the range [*start*, *end*]. Optional arguments '
- '*start* and\n'
- ' *end* are interpreted as in slice notation.\n'
- '\n'
+ 'str.casefold()\n'
+ '\n'
+ ' Return a casefolded copy of the string. Casefolded '
+ 'strings may be\n'
+ ' used for caseless matching.\n'
+ '\n'
+ ' Casefolding is similar to lowercasing but more '
+ 'aggressive because\n'
+ ' it is intended to remove all case distinctions in a '
+ 'string. For\n'
+ ' example, the German lowercase letter "\'ß\'" is '
+ 'equivalent to ""ss"".\n'
+ ' Since it is already lowercase, "lower()" would do '
+ 'nothing to "\'ß\'";\n'
+ ' "casefold()" converts it to ""ss"".\n'
+ '\n'
+ ' The casefolding algorithm is described in section 3.13 '
+ 'of the\n'
+ ' Unicode Standard.\n'
+ '\n'
+ ' New in version 3.3.\n'
+ '\n'
+ 'str.center(width[, fillchar])\n'
+ '\n'
+ ' Return centered in a string of length *width*. Padding '
+ 'is done\n'
+ ' using the specified *fillchar* (default is an ASCII '
+ 'space). The\n'
+ ' original string is returned if *width* is less than or '
+ 'equal to\n'
+ ' "len(s)".\n'
+ '\n'
+ 'str.count(sub[, start[, end]])\n'
+ '\n'
+ ' Return the number of non-overlapping occurrences of '
+ 'substring *sub*\n'
+ ' in the range [*start*, *end*]. Optional arguments '
+ '*start* and\n'
+ ' *end* are interpreted as in slice notation.\n'
+ '\n'
'str.encode(encoding="utf-8", errors="strict")\n'
- '\n'
- ' Return an encoded version of the string as a bytes '
- 'object. Default\n'
- ' encoding is "\'utf-8\'". *errors* may be given to set a '
- 'different\n'
- ' error handling scheme. The default for *errors* is '
- '"\'strict\'",\n'
- ' meaning that encoding errors raise a "UnicodeError". '
- 'Other possible\n'
- ' values are "\'ignore\'", "\'replace\'", '
- '"\'xmlcharrefreplace\'",\n'
- ' "\'backslashreplace\'" and any other name registered '
- 'via\n'
- ' "codecs.register_error()", see section Error Handlers. '
- 'For a list\n'
- ' of possible encodings, see section Standard Encodings.\n'
- '\n'
+ '\n'
+ ' Return an encoded version of the string as a bytes '
+ 'object. Default\n'
+ ' encoding is "\'utf-8\'". *errors* may be given to set a '
+ 'different\n'
+ ' error handling scheme. The default for *errors* is '
+ '"\'strict\'",\n'
+ ' meaning that encoding errors raise a "UnicodeError". '
+ 'Other possible\n'
+ ' values are "\'ignore\'", "\'replace\'", '
+ '"\'xmlcharrefreplace\'",\n'
+ ' "\'backslashreplace\'" and any other name registered '
+ 'via\n'
+ ' "codecs.register_error()", see section Error Handlers. '
+ 'For a list\n'
+ ' of possible encodings, see section Standard Encodings.\n'
+ '\n'
' By default, the *errors* argument is not checked for '
'best\n'
' performances, but only used at the first encoding '
@@ -10335,188 +10335,188 @@ topics = {'assert': 'The "assert" statement\n'
' Python Development Mode, or use a debug build to check '
'*errors*.\n'
'\n'
- ' Changed in version 3.1: Support for keyword arguments '
- 'added.\n'
- '\n'
+ ' Changed in version 3.1: Support for keyword arguments '
+ 'added.\n'
+ '\n'
' Changed in version 3.9: The *errors* is now checked in '
'development\n'
' mode and in debug mode.\n'
'\n'
- 'str.endswith(suffix[, start[, end]])\n'
- '\n'
- ' Return "True" if the string ends with the specified '
- '*suffix*,\n'
- ' otherwise return "False". *suffix* can also be a tuple '
- 'of suffixes\n'
- ' to look for. With optional *start*, test beginning at '
- 'that\n'
- ' position. With optional *end*, stop comparing at that '
- 'position.\n'
- '\n'
- 'str.expandtabs(tabsize=8)\n'
- '\n'
- ' Return a copy of the string where all tab characters '
- 'are replaced\n'
- ' by one or more spaces, depending on the current column '
- 'and the\n'
- ' given tab size. Tab positions occur every *tabsize* '
- 'characters\n'
- ' (default is 8, giving tab positions at columns 0, 8, 16 '
- 'and so on).\n'
- ' To expand the string, the current column is set to zero '
- 'and the\n'
- ' string is examined character by character. If the '
- 'character is a\n'
- ' tab ("\\t"), one or more space characters are inserted '
- 'in the result\n'
- ' until the current column is equal to the next tab '
- 'position. (The\n'
- ' tab character itself is not copied.) If the character '
- 'is a newline\n'
- ' ("\\n") or return ("\\r"), it is copied and the current '
- 'column is\n'
- ' reset to zero. Any other character is copied unchanged '
- 'and the\n'
- ' current column is incremented by one regardless of how '
- 'the\n'
- ' character is represented when printed.\n'
- '\n'
- " >>> '01\\t012\\t0123\\t01234'.expandtabs()\n"
- " '01 012 0123 01234'\n"
- " >>> '01\\t012\\t0123\\t01234'.expandtabs(4)\n"
- " '01 012 0123 01234'\n"
- '\n'
- 'str.find(sub[, start[, end]])\n'
- '\n'
- ' Return the lowest index in the string where substring '
- '*sub* is\n'
- ' found within the slice "s[start:end]". Optional '
- 'arguments *start*\n'
- ' and *end* are interpreted as in slice notation. Return '
- '"-1" if\n'
- ' *sub* is not found.\n'
- '\n'
+ 'str.endswith(suffix[, start[, end]])\n'
+ '\n'
+ ' Return "True" if the string ends with the specified '
+ '*suffix*,\n'
+ ' otherwise return "False". *suffix* can also be a tuple '
+ 'of suffixes\n'
+ ' to look for. With optional *start*, test beginning at '
+ 'that\n'
+ ' position. With optional *end*, stop comparing at that '
+ 'position.\n'
+ '\n'
+ 'str.expandtabs(tabsize=8)\n'
+ '\n'
+ ' Return a copy of the string where all tab characters '
+ 'are replaced\n'
+ ' by one or more spaces, depending on the current column '
+ 'and the\n'
+ ' given tab size. Tab positions occur every *tabsize* '
+ 'characters\n'
+ ' (default is 8, giving tab positions at columns 0, 8, 16 '
+ 'and so on).\n'
+ ' To expand the string, the current column is set to zero '
+ 'and the\n'
+ ' string is examined character by character. If the '
+ 'character is a\n'
+ ' tab ("\\t"), one or more space characters are inserted '
+ 'in the result\n'
+ ' until the current column is equal to the next tab '
+ 'position. (The\n'
+ ' tab character itself is not copied.) If the character '
+ 'is a newline\n'
+ ' ("\\n") or return ("\\r"), it is copied and the current '
+ 'column is\n'
+ ' reset to zero. Any other character is copied unchanged '
+ 'and the\n'
+ ' current column is incremented by one regardless of how '
+ 'the\n'
+ ' character is represented when printed.\n'
+ '\n'
+ " >>> '01\\t012\\t0123\\t01234'.expandtabs()\n"
+ " '01 012 0123 01234'\n"
+ " >>> '01\\t012\\t0123\\t01234'.expandtabs(4)\n"
+ " '01 012 0123 01234'\n"
+ '\n'
+ 'str.find(sub[, start[, end]])\n'
+ '\n'
+ ' Return the lowest index in the string where substring '
+ '*sub* is\n'
+ ' found within the slice "s[start:end]". Optional '
+ 'arguments *start*\n'
+ ' and *end* are interpreted as in slice notation. Return '
+ '"-1" if\n'
+ ' *sub* is not found.\n'
+ '\n'
' Note:\n'
- '\n'
+ '\n'
' The "find()" method should be used only if you need '
'to know the\n'
' position of *sub*. To check if *sub* is a substring '
'or not, use\n'
' the "in" operator:\n'
'\n'
- " >>> 'Py' in 'Python'\n"
- ' True\n'
- '\n'
- 'str.format(*args, **kwargs)\n'
- '\n'
- ' Perform a string formatting operation. The string on '
- 'which this\n'
- ' method is called can contain literal text or '
- 'replacement fields\n'
- ' delimited by braces "{}". Each replacement field '
- 'contains either\n'
- ' the numeric index of a positional argument, or the name '
- 'of a\n'
- ' keyword argument. Returns a copy of the string where '
- 'each\n'
- ' replacement field is replaced with the string value of '
- 'the\n'
- ' corresponding argument.\n'
- '\n'
- ' >>> "The sum of 1 + 2 is {0}".format(1+2)\n'
- " 'The sum of 1 + 2 is 3'\n"
- '\n'
- ' See Format String Syntax for a description of the '
- 'various\n'
- ' formatting options that can be specified in format '
- 'strings.\n'
- '\n'
+ " >>> 'Py' in 'Python'\n"
+ ' True\n'
+ '\n'
+ 'str.format(*args, **kwargs)\n'
+ '\n'
+ ' Perform a string formatting operation. The string on '
+ 'which this\n'
+ ' method is called can contain literal text or '
+ 'replacement fields\n'
+ ' delimited by braces "{}". Each replacement field '
+ 'contains either\n'
+ ' the numeric index of a positional argument, or the name '
+ 'of a\n'
+ ' keyword argument. Returns a copy of the string where '
+ 'each\n'
+ ' replacement field is replaced with the string value of '
+ 'the\n'
+ ' corresponding argument.\n'
+ '\n'
+ ' >>> "The sum of 1 + 2 is {0}".format(1+2)\n'
+ " 'The sum of 1 + 2 is 3'\n"
+ '\n'
+ ' See Format String Syntax for a description of the '
+ 'various\n'
+ ' formatting options that can be specified in format '
+ 'strings.\n'
+ '\n'
' Note:\n'
'\n'
' When formatting a number ("int", "float", "complex",\n'
- ' "decimal.Decimal" and subclasses) with the "n" type '
- '(ex:\n'
- ' "\'{:n}\'.format(1234)"), the function temporarily '
- 'sets the\n'
- ' "LC_CTYPE" locale to the "LC_NUMERIC" locale to '
- 'decode\n'
- ' "decimal_point" and "thousands_sep" fields of '
- '"localeconv()" if\n'
- ' they are non-ASCII or longer than 1 byte, and the '
- '"LC_NUMERIC"\n'
- ' locale is different than the "LC_CTYPE" locale. This '
- 'temporary\n'
- ' change affects other threads.\n'
- '\n'
- ' Changed in version 3.7: When formatting a number with '
- 'the "n" type,\n'
- ' the function sets temporarily the "LC_CTYPE" locale to '
- 'the\n'
- ' "LC_NUMERIC" locale in some cases.\n'
- '\n'
- 'str.format_map(mapping)\n'
- '\n'
- ' Similar to "str.format(**mapping)", except that '
- '"mapping" is used\n'
- ' directly and not copied to a "dict". This is useful if '
- 'for example\n'
- ' "mapping" is a dict subclass:\n'
- '\n'
- ' >>> class Default(dict):\n'
- ' ... def __missing__(self, key):\n'
- ' ... return key\n'
- ' ...\n'
- " >>> '{name} was born in "
- "{country}'.format_map(Default(name='Guido'))\n"
- " 'Guido was born in country'\n"
- '\n'
- ' New in version 3.2.\n'
- '\n'
- 'str.index(sub[, start[, end]])\n'
- '\n'
- ' Like "find()", but raise "ValueError" when the '
- 'substring is not\n'
- ' found.\n'
- '\n'
- 'str.isalnum()\n'
- '\n'
+ ' "decimal.Decimal" and subclasses) with the "n" type '
+ '(ex:\n'
+ ' "\'{:n}\'.format(1234)"), the function temporarily '
+ 'sets the\n'
+ ' "LC_CTYPE" locale to the "LC_NUMERIC" locale to '
+ 'decode\n'
+ ' "decimal_point" and "thousands_sep" fields of '
+ '"localeconv()" if\n'
+ ' they are non-ASCII or longer than 1 byte, and the '
+ '"LC_NUMERIC"\n'
+ ' locale is different than the "LC_CTYPE" locale. This '
+ 'temporary\n'
+ ' change affects other threads.\n'
+ '\n'
+ ' Changed in version 3.7: When formatting a number with '
+ 'the "n" type,\n'
+ ' the function sets temporarily the "LC_CTYPE" locale to '
+ 'the\n'
+ ' "LC_NUMERIC" locale in some cases.\n'
+ '\n'
+ 'str.format_map(mapping)\n'
+ '\n'
+ ' Similar to "str.format(**mapping)", except that '
+ '"mapping" is used\n'
+ ' directly and not copied to a "dict". This is useful if '
+ 'for example\n'
+ ' "mapping" is a dict subclass:\n'
+ '\n'
+ ' >>> class Default(dict):\n'
+ ' ... def __missing__(self, key):\n'
+ ' ... return key\n'
+ ' ...\n'
+ " >>> '{name} was born in "
+ "{country}'.format_map(Default(name='Guido'))\n"
+ " 'Guido was born in country'\n"
+ '\n'
+ ' New in version 3.2.\n'
+ '\n'
+ 'str.index(sub[, start[, end]])\n'
+ '\n'
+ ' Like "find()", but raise "ValueError" when the '
+ 'substring is not\n'
+ ' found.\n'
+ '\n'
+ 'str.isalnum()\n'
+ '\n'
' Return "True" if all characters in the string are '
- 'alphanumeric and\n'
+ 'alphanumeric and\n'
' there is at least one character, "False" otherwise. A '
'character\n'
' "c" is alphanumeric if one of the following returns '
- '"True":\n'
- ' "c.isalpha()", "c.isdecimal()", "c.isdigit()", or '
- '"c.isnumeric()".\n'
- '\n'
- 'str.isalpha()\n'
- '\n'
+ '"True":\n'
+ ' "c.isalpha()", "c.isdecimal()", "c.isdigit()", or '
+ '"c.isnumeric()".\n'
+ '\n'
+ 'str.isalpha()\n'
+ '\n'
' Return "True" if all characters in the string are '
- 'alphabetic and\n'
+ 'alphabetic and\n'
' there is at least one character, "False" otherwise. '
- 'Alphabetic\n'
- ' characters are those characters defined in the Unicode '
- 'character\n'
- ' database as “Letter”, i.e., those with general category '
- 'property\n'
- ' being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note '
- 'that this is\n'
- ' different from the “Alphabetic” property defined in the '
- 'Unicode\n'
- ' Standard.\n'
- '\n'
- 'str.isascii()\n'
- '\n'
+ 'Alphabetic\n'
+ ' characters are those characters defined in the Unicode '
+ 'character\n'
+ ' database as “Letter”, i.e., those with general category '
+ 'property\n'
+ ' being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note '
+ 'that this is\n'
+ ' different from the “Alphabetic” property defined in the '
+ 'Unicode\n'
+ ' Standard.\n'
+ '\n'
+ 'str.isascii()\n'
+ '\n'
' Return "True" if the string is empty or all characters '
'in the\n'
' string are ASCII, "False" otherwise. ASCII characters '
'have code\n'
' points in the range U+0000-U+007F.\n'
- '\n'
- ' New in version 3.7.\n'
- '\n'
- 'str.isdecimal()\n'
- '\n'
+ '\n'
+ ' New in version 3.7.\n'
+ '\n'
+ 'str.isdecimal()\n'
+ '\n'
' Return "True" if all characters in the string are '
'decimal\n'
' characters and there is at least one character, "False" '
@@ -10527,9 +10527,9 @@ topics = {'assert': 'The "assert" statement\n'
'Formally a decimal\n'
' character is a character in the Unicode General '
'Category “Nd”.\n'
- '\n'
- 'str.isdigit()\n'
- '\n'
+ '\n'
+ 'str.isdigit()\n'
+ '\n'
' Return "True" if all characters in the string are '
'digits and there\n'
' is at least one character, "False" otherwise. Digits '
@@ -10543,17 +10543,17 @@ topics = {'assert': 'The "assert" statement\n'
' numbers. Formally, a digit is a character that has the '
'property\n'
' value Numeric_Type=Digit or Numeric_Type=Decimal.\n'
- '\n'
- 'str.isidentifier()\n'
- '\n'
+ '\n'
+ 'str.isidentifier()\n'
+ '\n'
' Return "True" if the string is a valid identifier '
- 'according to the\n'
- ' language definition, section Identifiers and keywords.\n'
- '\n'
+ 'according to the\n'
+ ' language definition, section Identifiers and keywords.\n'
+ '\n'
' Call "keyword.iskeyword()" to test whether string "s" '
'is a reserved\n'
' identifier, such as "def" and "class".\n'
- '\n'
+ '\n'
' Example:\n'
'\n'
' >>> from keyword import iskeyword\n'
@@ -10563,16 +10563,16 @@ topics = {'assert': 'The "assert" statement\n'
" >>> 'def'.isidentifier(), iskeyword('def')\n"
' (True, True)\n'
'\n'
- 'str.islower()\n'
- '\n'
+ 'str.islower()\n'
+ '\n'
' Return "True" if all cased characters [4] in the string '
'are\n'
' lowercase and there is at least one cased character, '
'"False"\n'
' otherwise.\n'
- '\n'
- 'str.isnumeric()\n'
- '\n'
+ '\n'
+ 'str.isnumeric()\n'
+ '\n'
' Return "True" if all characters in the string are '
'numeric\n'
' characters, and there is at least one character, '
@@ -10585,33 +10585,33 @@ topics = {'assert': 'The "assert" statement\n'
'those with\n'
' the property value Numeric_Type=Digit, '
'Numeric_Type=Decimal or\n'
- ' Numeric_Type=Numeric.\n'
- '\n'
- 'str.isprintable()\n'
- '\n'
+ ' Numeric_Type=Numeric.\n'
+ '\n'
+ 'str.isprintable()\n'
+ '\n'
' Return "True" if all characters in the string are '
- 'printable or the\n'
+ 'printable or the\n'
' string is empty, "False" otherwise. Nonprintable '
- 'characters are\n'
- ' those characters defined in the Unicode character '
- 'database as\n'
- ' “Other” or “Separator”, excepting the ASCII space '
- '(0x20) which is\n'
- ' considered printable. (Note that printable characters '
- 'in this\n'
- ' context are those which should not be escaped when '
- '"repr()" is\n'
- ' invoked on a string. It has no bearing on the handling '
- 'of strings\n'
- ' written to "sys.stdout" or "sys.stderr".)\n'
- '\n'
- 'str.isspace()\n'
- '\n'
+ 'characters are\n'
+ ' those characters defined in the Unicode character '
+ 'database as\n'
+ ' “Other” or “Separator”, excepting the ASCII space '
+ '(0x20) which is\n'
+ ' considered printable. (Note that printable characters '
+ 'in this\n'
+ ' context are those which should not be escaped when '
+ '"repr()" is\n'
+ ' invoked on a string. It has no bearing on the handling '
+ 'of strings\n'
+ ' written to "sys.stdout" or "sys.stderr".)\n'
+ '\n'
+ 'str.isspace()\n'
+ '\n'
' Return "True" if there are only whitespace characters '
'in the string\n'
' and there is at least one character, "False" '
'otherwise.\n'
- '\n'
+ '\n'
' A character is *whitespace* if in the Unicode character '
'database\n'
' (see "unicodedata"), either its general category is '
@@ -10620,24 +10620,24 @@ topics = {'assert': 'The "assert" statement\n'
'of "WS",\n'
' "B", or "S".\n'
'\n'
- 'str.istitle()\n'
- '\n'
+ 'str.istitle()\n'
+ '\n'
' Return "True" if the string is a titlecased string and '
- 'there is at\n'
- ' least one character, for example uppercase characters '
- 'may only\n'
- ' follow uncased characters and lowercase characters only '
- 'cased ones.\n'
+ 'there is at\n'
+ ' least one character, for example uppercase characters '
+ 'may only\n'
+ ' follow uncased characters and lowercase characters only '
+ 'cased ones.\n'
' Return "False" otherwise.\n'
- '\n'
- 'str.isupper()\n'
- '\n'
+ '\n'
+ 'str.isupper()\n'
+ '\n'
' Return "True" if all cased characters [4] in the string '
'are\n'
' uppercase and there is at least one cased character, '
'"False"\n'
' otherwise.\n'
- '\n'
+ '\n'
" >>> 'BANANA'.isupper()\n"
' True\n'
" >>> 'banana'.isupper()\n"
@@ -10647,54 +10647,54 @@ topics = {'assert': 'The "assert" statement\n'
" >>> ' '.isupper()\n"
' False\n'
'\n'
- 'str.join(iterable)\n'
- '\n'
- ' Return a string which is the concatenation of the '
- 'strings in\n'
- ' *iterable*. A "TypeError" will be raised if there are '
- 'any non-\n'
- ' string values in *iterable*, including "bytes" '
- 'objects. The\n'
- ' separator between elements is the string providing this '
- 'method.\n'
- '\n'
- 'str.ljust(width[, fillchar])\n'
- '\n'
- ' Return the string left justified in a string of length '
- '*width*.\n'
- ' Padding is done using the specified *fillchar* (default '
- 'is an ASCII\n'
- ' space). The original string is returned if *width* is '
- 'less than or\n'
- ' equal to "len(s)".\n'
- '\n'
- 'str.lower()\n'
- '\n'
- ' Return a copy of the string with all the cased '
- 'characters [4]\n'
- ' converted to lowercase.\n'
- '\n'
- ' The lowercasing algorithm used is described in section '
- '3.13 of the\n'
- ' Unicode Standard.\n'
- '\n'
- 'str.lstrip([chars])\n'
- '\n'
- ' Return a copy of the string with leading characters '
- 'removed. The\n'
- ' *chars* argument is a string specifying the set of '
- 'characters to be\n'
- ' removed. If omitted or "None", the *chars* argument '
- 'defaults to\n'
- ' removing whitespace. The *chars* argument is not a '
- 'prefix; rather,\n'
- ' all combinations of its values are stripped:\n'
- '\n'
- " >>> ' spacious '.lstrip()\n"
- " 'spacious '\n"
- " >>> 'www.example.com'.lstrip('cmowz.')\n"
- " 'example.com'\n"
- '\n'
+ 'str.join(iterable)\n'
+ '\n'
+ ' Return a string which is the concatenation of the '
+ 'strings in\n'
+ ' *iterable*. A "TypeError" will be raised if there are '
+ 'any non-\n'
+ ' string values in *iterable*, including "bytes" '
+ 'objects. The\n'
+ ' separator between elements is the string providing this '
+ 'method.\n'
+ '\n'
+ 'str.ljust(width[, fillchar])\n'
+ '\n'
+ ' Return the string left justified in a string of length '
+ '*width*.\n'
+ ' Padding is done using the specified *fillchar* (default '
+ 'is an ASCII\n'
+ ' space). The original string is returned if *width* is '
+ 'less than or\n'
+ ' equal to "len(s)".\n'
+ '\n'
+ 'str.lower()\n'
+ '\n'
+ ' Return a copy of the string with all the cased '
+ 'characters [4]\n'
+ ' converted to lowercase.\n'
+ '\n'
+ ' The lowercasing algorithm used is described in section '
+ '3.13 of the\n'
+ ' Unicode Standard.\n'
+ '\n'
+ 'str.lstrip([chars])\n'
+ '\n'
+ ' Return a copy of the string with leading characters '
+ 'removed. The\n'
+ ' *chars* argument is a string specifying the set of '
+ 'characters to be\n'
+ ' removed. If omitted or "None", the *chars* argument '
+ 'defaults to\n'
+ ' removing whitespace. The *chars* argument is not a '
+ 'prefix; rather,\n'
+ ' all combinations of its values are stripped:\n'
+ '\n'
+ " >>> ' spacious '.lstrip()\n"
+ " 'spacious '\n"
+ " >>> 'www.example.com'.lstrip('cmowz.')\n"
+ " 'example.com'\n"
+ '\n'
' See "str.removeprefix()" for a method that will remove '
'a single\n'
' prefix string rather than all of a set of characters. '
@@ -10705,42 +10705,42 @@ topics = {'assert': 'The "assert" statement\n'
" >>> 'Arthur: three!'.removeprefix('Arthur: ')\n"
" 'three!'\n"
'\n'
- 'static str.maketrans(x[, y[, z]])\n'
- '\n'
- ' This static method returns a translation table usable '
- 'for\n'
- ' "str.translate()".\n'
- '\n'
- ' If there is only one argument, it must be a dictionary '
- 'mapping\n'
- ' Unicode ordinals (integers) or characters (strings of '
- 'length 1) to\n'
- ' Unicode ordinals, strings (of arbitrary lengths) or '
- '"None".\n'
- ' Character keys will then be converted to ordinals.\n'
- '\n'
- ' If there are two arguments, they must be strings of '
- 'equal length,\n'
- ' and in the resulting dictionary, each character in x '
- 'will be mapped\n'
- ' to the character at the same position in y. If there '
- 'is a third\n'
- ' argument, it must be a string, whose characters will be '
- 'mapped to\n'
- ' "None" in the result.\n'
- '\n'
- 'str.partition(sep)\n'
- '\n'
- ' Split the string at the first occurrence of *sep*, and '
- 'return a\n'
- ' 3-tuple containing the part before the separator, the '
- 'separator\n'
- ' itself, and the part after the separator. If the '
- 'separator is not\n'
- ' found, return a 3-tuple containing the string itself, '
- 'followed by\n'
- ' two empty strings.\n'
- '\n'
+ 'static str.maketrans(x[, y[, z]])\n'
+ '\n'
+ ' This static method returns a translation table usable '
+ 'for\n'
+ ' "str.translate()".\n'
+ '\n'
+ ' If there is only one argument, it must be a dictionary '
+ 'mapping\n'
+ ' Unicode ordinals (integers) or characters (strings of '
+ 'length 1) to\n'
+ ' Unicode ordinals, strings (of arbitrary lengths) or '
+ '"None".\n'
+ ' Character keys will then be converted to ordinals.\n'
+ '\n'
+ ' If there are two arguments, they must be strings of '
+ 'equal length,\n'
+ ' and in the resulting dictionary, each character in x '
+ 'will be mapped\n'
+ ' to the character at the same position in y. If there '
+ 'is a third\n'
+ ' argument, it must be a string, whose characters will be '
+ 'mapped to\n'
+ ' "None" in the result.\n'
+ '\n'
+ 'str.partition(sep)\n'
+ '\n'
+ ' Split the string at the first occurrence of *sep*, and '
+ 'return a\n'
+ ' 3-tuple containing the part before the separator, the '
+ 'separator\n'
+ ' itself, and the part after the separator. If the '
+ 'separator is not\n'
+ ' found, return a 3-tuple containing the string itself, '
+ 'followed by\n'
+ ' two empty strings.\n'
+ '\n'
'str.removeprefix(prefix, /)\n'
'\n'
' If the string starts with the *prefix* string, return\n'
@@ -10770,83 +10770,83 @@ topics = {'assert': 'The "assert" statement\n'
'\n'
' New in version 3.9.\n'
'\n'
- 'str.replace(old, new[, count])\n'
- '\n'
- ' Return a copy of the string with all occurrences of '
- 'substring *old*\n'
- ' replaced by *new*. If the optional argument *count* is '
- 'given, only\n'
- ' the first *count* occurrences are replaced.\n'
- '\n'
- 'str.rfind(sub[, start[, end]])\n'
- '\n'
- ' Return the highest index in the string where substring '
- '*sub* is\n'
- ' found, such that *sub* is contained within '
- '"s[start:end]".\n'
- ' Optional arguments *start* and *end* are interpreted as '
- 'in slice\n'
- ' notation. Return "-1" on failure.\n'
- '\n'
- 'str.rindex(sub[, start[, end]])\n'
- '\n'
- ' Like "rfind()" but raises "ValueError" when the '
- 'substring *sub* is\n'
- ' not found.\n'
- '\n'
- 'str.rjust(width[, fillchar])\n'
- '\n'
- ' Return the string right justified in a string of length '
- '*width*.\n'
- ' Padding is done using the specified *fillchar* (default '
- 'is an ASCII\n'
- ' space). The original string is returned if *width* is '
- 'less than or\n'
- ' equal to "len(s)".\n'
- '\n'
- 'str.rpartition(sep)\n'
- '\n'
- ' Split the string at the last occurrence of *sep*, and '
- 'return a\n'
- ' 3-tuple containing the part before the separator, the '
- 'separator\n'
- ' itself, and the part after the separator. If the '
- 'separator is not\n'
- ' found, return a 3-tuple containing two empty strings, '
- 'followed by\n'
- ' the string itself.\n'
- '\n'
+ 'str.replace(old, new[, count])\n'
+ '\n'
+ ' Return a copy of the string with all occurrences of '
+ 'substring *old*\n'
+ ' replaced by *new*. If the optional argument *count* is '
+ 'given, only\n'
+ ' the first *count* occurrences are replaced.\n'
+ '\n'
+ 'str.rfind(sub[, start[, end]])\n'
+ '\n'
+ ' Return the highest index in the string where substring '
+ '*sub* is\n'
+ ' found, such that *sub* is contained within '
+ '"s[start:end]".\n'
+ ' Optional arguments *start* and *end* are interpreted as '
+ 'in slice\n'
+ ' notation. Return "-1" on failure.\n'
+ '\n'
+ 'str.rindex(sub[, start[, end]])\n'
+ '\n'
+ ' Like "rfind()" but raises "ValueError" when the '
+ 'substring *sub* is\n'
+ ' not found.\n'
+ '\n'
+ 'str.rjust(width[, fillchar])\n'
+ '\n'
+ ' Return the string right justified in a string of length '
+ '*width*.\n'
+ ' Padding is done using the specified *fillchar* (default '
+ 'is an ASCII\n'
+ ' space). The original string is returned if *width* is '
+ 'less than or\n'
+ ' equal to "len(s)".\n'
+ '\n'
+ 'str.rpartition(sep)\n'
+ '\n'
+ ' Split the string at the last occurrence of *sep*, and '
+ 'return a\n'
+ ' 3-tuple containing the part before the separator, the '
+ 'separator\n'
+ ' itself, and the part after the separator. If the '
+ 'separator is not\n'
+ ' found, return a 3-tuple containing two empty strings, '
+ 'followed by\n'
+ ' the string itself.\n'
+ '\n'
'str.rsplit(sep=None, maxsplit=-1)\n'
- '\n'
- ' Return a list of the words in the string, using *sep* '
- 'as the\n'
- ' delimiter string. If *maxsplit* is given, at most '
- '*maxsplit* splits\n'
- ' are done, the *rightmost* ones. If *sep* is not '
- 'specified or\n'
- ' "None", any whitespace string is a separator. Except '
- 'for splitting\n'
- ' from the right, "rsplit()" behaves like "split()" which '
- 'is\n'
- ' described in detail below.\n'
- '\n'
- 'str.rstrip([chars])\n'
- '\n'
- ' Return a copy of the string with trailing characters '
- 'removed. The\n'
- ' *chars* argument is a string specifying the set of '
- 'characters to be\n'
- ' removed. If omitted or "None", the *chars* argument '
- 'defaults to\n'
- ' removing whitespace. The *chars* argument is not a '
- 'suffix; rather,\n'
- ' all combinations of its values are stripped:\n'
- '\n'
- " >>> ' spacious '.rstrip()\n"
- " ' spacious'\n"
- " >>> 'mississippi'.rstrip('ipz')\n"
- " 'mississ'\n"
- '\n'
+ '\n'
+ ' Return a list of the words in the string, using *sep* '
+ 'as the\n'
+ ' delimiter string. If *maxsplit* is given, at most '
+ '*maxsplit* splits\n'
+ ' are done, the *rightmost* ones. If *sep* is not '
+ 'specified or\n'
+ ' "None", any whitespace string is a separator. Except '
+ 'for splitting\n'
+ ' from the right, "rsplit()" behaves like "split()" which '
+ 'is\n'
+ ' described in detail below.\n'
+ '\n'
+ 'str.rstrip([chars])\n'
+ '\n'
+ ' Return a copy of the string with trailing characters '
+ 'removed. The\n'
+ ' *chars* argument is a string specifying the set of '
+ 'characters to be\n'
+ ' removed. If omitted or "None", the *chars* argument '
+ 'defaults to\n'
+ ' removing whitespace. The *chars* argument is not a '
+ 'suffix; rather,\n'
+ ' all combinations of its values are stripped:\n'
+ '\n'
+ " >>> ' spacious '.rstrip()\n"
+ " ' spacious'\n"
+ " >>> 'mississippi'.rstrip('ipz')\n"
+ " 'mississ'\n"
+ '\n'
' See "str.removesuffix()" for a method that will remove '
'a single\n'
' suffix string rather than all of a set of characters. '
@@ -10858,595 +10858,595 @@ topics = {'assert': 'The "assert" statement\n'
" 'Monty'\n"
'\n'
'str.split(sep=None, maxsplit=-1)\n'
- '\n'
- ' Return a list of the words in the string, using *sep* '
- 'as the\n'
- ' delimiter string. If *maxsplit* is given, at most '
- '*maxsplit*\n'
- ' splits are done (thus, the list will have at most '
- '"maxsplit+1"\n'
- ' elements). If *maxsplit* is not specified or "-1", '
- 'then there is\n'
- ' no limit on the number of splits (all possible splits '
- 'are made).\n'
- '\n'
- ' If *sep* is given, consecutive delimiters are not '
- 'grouped together\n'
- ' and are deemed to delimit empty strings (for example,\n'
- ' "\'1,,2\'.split(\',\')" returns "[\'1\', \'\', '
- '\'2\']"). The *sep* argument\n'
- ' may consist of multiple characters (for example,\n'
- ' "\'1<>2<>3\'.split(\'<>\')" returns "[\'1\', \'2\', '
- '\'3\']"). Splitting an\n'
- ' empty string with a specified separator returns '
- '"[\'\']".\n'
- '\n'
- ' For example:\n'
- '\n'
- " >>> '1,2,3'.split(',')\n"
- " ['1', '2', '3']\n"
- " >>> '1,2,3'.split(',', maxsplit=1)\n"
- " ['1', '2,3']\n"
- " >>> '1,2,,3,'.split(',')\n"
- " ['1', '2', '', '3', '']\n"
- '\n'
- ' If *sep* is not specified or is "None", a different '
- 'splitting\n'
- ' algorithm is applied: runs of consecutive whitespace '
- 'are regarded\n'
- ' as a single separator, and the result will contain no '
- 'empty strings\n'
- ' at the start or end if the string has leading or '
- 'trailing\n'
- ' whitespace. Consequently, splitting an empty string or '
- 'a string\n'
- ' consisting of just whitespace with a "None" separator '
- 'returns "[]".\n'
- '\n'
- ' For example:\n'
- '\n'
- " >>> '1 2 3'.split()\n"
- " ['1', '2', '3']\n"
- " >>> '1 2 3'.split(maxsplit=1)\n"
- " ['1', '2 3']\n"
- " >>> ' 1 2 3 '.split()\n"
- " ['1', '2', '3']\n"
- '\n'
+ '\n'
+ ' Return a list of the words in the string, using *sep* '
+ 'as the\n'
+ ' delimiter string. If *maxsplit* is given, at most '
+ '*maxsplit*\n'
+ ' splits are done (thus, the list will have at most '
+ '"maxsplit+1"\n'
+ ' elements). If *maxsplit* is not specified or "-1", '
+ 'then there is\n'
+ ' no limit on the number of splits (all possible splits '
+ 'are made).\n'
+ '\n'
+ ' If *sep* is given, consecutive delimiters are not '
+ 'grouped together\n'
+ ' and are deemed to delimit empty strings (for example,\n'
+ ' "\'1,,2\'.split(\',\')" returns "[\'1\', \'\', '
+ '\'2\']"). The *sep* argument\n'
+ ' may consist of multiple characters (for example,\n'
+ ' "\'1<>2<>3\'.split(\'<>\')" returns "[\'1\', \'2\', '
+ '\'3\']"). Splitting an\n'
+ ' empty string with a specified separator returns '
+ '"[\'\']".\n'
+ '\n'
+ ' For example:\n'
+ '\n'
+ " >>> '1,2,3'.split(',')\n"
+ " ['1', '2', '3']\n"
+ " >>> '1,2,3'.split(',', maxsplit=1)\n"
+ " ['1', '2,3']\n"
+ " >>> '1,2,,3,'.split(',')\n"
+ " ['1', '2', '', '3', '']\n"
+ '\n'
+ ' If *sep* is not specified or is "None", a different '
+ 'splitting\n'
+ ' algorithm is applied: runs of consecutive whitespace '
+ 'are regarded\n'
+ ' as a single separator, and the result will contain no '
+ 'empty strings\n'
+ ' at the start or end if the string has leading or '
+ 'trailing\n'
+ ' whitespace. Consequently, splitting an empty string or '
+ 'a string\n'
+ ' consisting of just whitespace with a "None" separator '
+ 'returns "[]".\n'
+ '\n'
+ ' For example:\n'
+ '\n'
+ " >>> '1 2 3'.split()\n"
+ " ['1', '2', '3']\n"
+ " >>> '1 2 3'.split(maxsplit=1)\n"
+ " ['1', '2 3']\n"
+ " >>> ' 1 2 3 '.split()\n"
+ " ['1', '2', '3']\n"
+ '\n'
'str.splitlines(keepends=False)\n'
- '\n'
- ' Return a list of the lines in the string, breaking at '
- 'line\n'
- ' boundaries. Line breaks are not included in the '
- 'resulting list\n'
- ' unless *keepends* is given and true.\n'
- '\n'
- ' This method splits on the following line boundaries. '
- 'In\n'
- ' particular, the boundaries are a superset of *universal '
- 'newlines*.\n'
- '\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- ' | Representation | '
- 'Description |\n'
- ' '
+ '\n'
+ ' Return a list of the lines in the string, breaking at '
+ 'line\n'
+ ' boundaries. Line breaks are not included in the '
+ 'resulting list\n'
+ ' unless *keepends* is given and true.\n'
+ '\n'
+ ' This method splits on the following line boundaries. '
+ 'In\n'
+ ' particular, the boundaries are a superset of *universal '
+ 'newlines*.\n'
+ '\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ ' | Representation | '
+ 'Description |\n'
+ ' '
'|=========================|===============================|\n'
- ' | "\\n" | Line '
- 'Feed |\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- ' | "\\r" | Carriage '
- 'Return |\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- ' | "\\r\\n" | Carriage Return + Line '
- 'Feed |\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- ' | "\\v" or "\\x0b" | Line '
- 'Tabulation |\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- ' | "\\f" or "\\x0c" | Form '
- 'Feed |\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- ' | "\\x1c" | File '
- 'Separator |\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- ' | "\\x1d" | Group '
- 'Separator |\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- ' | "\\x1e" | Record '
- 'Separator |\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- ' | "\\x85" | Next Line (C1 Control '
- 'Code) |\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- ' | "\\u2028" | Line '
- 'Separator |\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- ' | "\\u2029" | Paragraph '
- 'Separator |\n'
- ' '
- '+-------------------------+-------------------------------+\n'
- '\n'
- ' Changed in version 3.2: "\\v" and "\\f" added to list '
- 'of line\n'
- ' boundaries.\n'
- '\n'
- ' For example:\n'
- '\n'
- " >>> 'ab c\\n\\nde fg\\rkl\\r\\n'.splitlines()\n"
- " ['ab c', '', 'de fg', 'kl']\n"
- " >>> 'ab c\\n\\nde "
- "fg\\rkl\\r\\n'.splitlines(keepends=True)\n"
- " ['ab c\\n', '\\n', 'de fg\\r', 'kl\\r\\n']\n"
- '\n'
- ' Unlike "split()" when a delimiter string *sep* is '
- 'given, this\n'
- ' method returns an empty list for the empty string, and '
- 'a terminal\n'
- ' line break does not result in an extra line:\n'
- '\n'
- ' >>> "".splitlines()\n'
- ' []\n'
- ' >>> "One line\\n".splitlines()\n'
- " ['One line']\n"
- '\n'
- ' For comparison, "split(\'\\n\')" gives:\n'
- '\n'
- " >>> ''.split('\\n')\n"
- " ['']\n"
- " >>> 'Two lines\\n'.split('\\n')\n"
- " ['Two lines', '']\n"
- '\n'
- 'str.startswith(prefix[, start[, end]])\n'
- '\n'
- ' Return "True" if string starts with the *prefix*, '
- 'otherwise return\n'
- ' "False". *prefix* can also be a tuple of prefixes to '
- 'look for.\n'
- ' With optional *start*, test string beginning at that '
- 'position.\n'
- ' With optional *end*, stop comparing string at that '
- 'position.\n'
- '\n'
- 'str.strip([chars])\n'
- '\n'
- ' Return a copy of the string with the leading and '
- 'trailing\n'
- ' characters removed. The *chars* argument is a string '
- 'specifying the\n'
- ' set of characters to be removed. If omitted or "None", '
- 'the *chars*\n'
- ' argument defaults to removing whitespace. The *chars* '
- 'argument is\n'
- ' not a prefix or suffix; rather, all combinations of its '
- 'values are\n'
- ' stripped:\n'
- '\n'
- " >>> ' spacious '.strip()\n"
- " 'spacious'\n"
- " >>> 'www.example.com'.strip('cmowz.')\n"
- " 'example'\n"
- '\n'
- ' The outermost leading and trailing *chars* argument '
- 'values are\n'
- ' stripped from the string. Characters are removed from '
- 'the leading\n'
- ' end until reaching a string character that is not '
- 'contained in the\n'
- ' set of characters in *chars*. A similar action takes '
- 'place on the\n'
- ' trailing end. For example:\n'
- '\n'
- " >>> comment_string = '#....... Section 3.2.1 Issue "
- "#32 .......'\n"
- " >>> comment_string.strip('.#! ')\n"
- " 'Section 3.2.1 Issue #32'\n"
- '\n'
- 'str.swapcase()\n'
- '\n'
- ' Return a copy of the string with uppercase characters '
- 'converted to\n'
- ' lowercase and vice versa. Note that it is not '
- 'necessarily true that\n'
- ' "s.swapcase().swapcase() == s".\n'
- '\n'
- 'str.title()\n'
- '\n'
- ' Return a titlecased version of the string where words '
- 'start with an\n'
- ' uppercase character and the remaining characters are '
- 'lowercase.\n'
- '\n'
- ' For example:\n'
- '\n'
- " >>> 'Hello world'.title()\n"
- " 'Hello World'\n"
- '\n'
- ' The algorithm uses a simple language-independent '
- 'definition of a\n'
- ' word as groups of consecutive letters. The definition '
- 'works in\n'
- ' many contexts but it means that apostrophes in '
- 'contractions and\n'
- ' possessives form word boundaries, which may not be the '
- 'desired\n'
- ' result:\n'
- '\n'
- ' >>> "they\'re bill\'s friends from the UK".title()\n'
- ' "They\'Re Bill\'S Friends From The Uk"\n'
- '\n'
- ' A workaround for apostrophes can be constructed using '
- 'regular\n'
- ' expressions:\n'
- '\n'
- ' >>> import re\n'
- ' >>> def titlecase(s):\n'
- ' ... return re.sub(r"[A-Za-z]+(\'[A-Za-z]+)?",\n'
- ' ... lambda mo: '
+ ' | "\\n" | Line '
+ 'Feed |\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ ' | "\\r" | Carriage '
+ 'Return |\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ ' | "\\r\\n" | Carriage Return + Line '
+ 'Feed |\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ ' | "\\v" or "\\x0b" | Line '
+ 'Tabulation |\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ ' | "\\f" or "\\x0c" | Form '
+ 'Feed |\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ ' | "\\x1c" | File '
+ 'Separator |\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ ' | "\\x1d" | Group '
+ 'Separator |\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ ' | "\\x1e" | Record '
+ 'Separator |\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ ' | "\\x85" | Next Line (C1 Control '
+ 'Code) |\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ ' | "\\u2028" | Line '
+ 'Separator |\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ ' | "\\u2029" | Paragraph '
+ 'Separator |\n'
+ ' '
+ '+-------------------------+-------------------------------+\n'
+ '\n'
+ ' Changed in version 3.2: "\\v" and "\\f" added to list '
+ 'of line\n'
+ ' boundaries.\n'
+ '\n'
+ ' For example:\n'
+ '\n'
+ " >>> 'ab c\\n\\nde fg\\rkl\\r\\n'.splitlines()\n"
+ " ['ab c', '', 'de fg', 'kl']\n"
+ " >>> 'ab c\\n\\nde "
+ "fg\\rkl\\r\\n'.splitlines(keepends=True)\n"
+ " ['ab c\\n', '\\n', 'de fg\\r', 'kl\\r\\n']\n"
+ '\n'
+ ' Unlike "split()" when a delimiter string *sep* is '
+ 'given, this\n'
+ ' method returns an empty list for the empty string, and '
+ 'a terminal\n'
+ ' line break does not result in an extra line:\n'
+ '\n'
+ ' >>> "".splitlines()\n'
+ ' []\n'
+ ' >>> "One line\\n".splitlines()\n'
+ " ['One line']\n"
+ '\n'
+ ' For comparison, "split(\'\\n\')" gives:\n'
+ '\n'
+ " >>> ''.split('\\n')\n"
+ " ['']\n"
+ " >>> 'Two lines\\n'.split('\\n')\n"
+ " ['Two lines', '']\n"
+ '\n'
+ 'str.startswith(prefix[, start[, end]])\n'
+ '\n'
+ ' Return "True" if string starts with the *prefix*, '
+ 'otherwise return\n'
+ ' "False". *prefix* can also be a tuple of prefixes to '
+ 'look for.\n'
+ ' With optional *start*, test string beginning at that '
+ 'position.\n'
+ ' With optional *end*, stop comparing string at that '
+ 'position.\n'
+ '\n'
+ 'str.strip([chars])\n'
+ '\n'
+ ' Return a copy of the string with the leading and '
+ 'trailing\n'
+ ' characters removed. The *chars* argument is a string '
+ 'specifying the\n'
+ ' set of characters to be removed. If omitted or "None", '
+ 'the *chars*\n'
+ ' argument defaults to removing whitespace. The *chars* '
+ 'argument is\n'
+ ' not a prefix or suffix; rather, all combinations of its '
+ 'values are\n'
+ ' stripped:\n'
+ '\n'
+ " >>> ' spacious '.strip()\n"
+ " 'spacious'\n"
+ " >>> 'www.example.com'.strip('cmowz.')\n"
+ " 'example'\n"
+ '\n'
+ ' The outermost leading and trailing *chars* argument '
+ 'values are\n'
+ ' stripped from the string. Characters are removed from '
+ 'the leading\n'
+ ' end until reaching a string character that is not '
+ 'contained in the\n'
+ ' set of characters in *chars*. A similar action takes '
+ 'place on the\n'
+ ' trailing end. For example:\n'
+ '\n'
+ " >>> comment_string = '#....... Section 3.2.1 Issue "
+ "#32 .......'\n"
+ " >>> comment_string.strip('.#! ')\n"
+ " 'Section 3.2.1 Issue #32'\n"
+ '\n'
+ 'str.swapcase()\n'
+ '\n'
+ ' Return a copy of the string with uppercase characters '
+ 'converted to\n'
+ ' lowercase and vice versa. Note that it is not '
+ 'necessarily true that\n'
+ ' "s.swapcase().swapcase() == s".\n'
+ '\n'
+ 'str.title()\n'
+ '\n'
+ ' Return a titlecased version of the string where words '
+ 'start with an\n'
+ ' uppercase character and the remaining characters are '
+ 'lowercase.\n'
+ '\n'
+ ' For example:\n'
+ '\n'
+ " >>> 'Hello world'.title()\n"
+ " 'Hello World'\n"
+ '\n'
+ ' The algorithm uses a simple language-independent '
+ 'definition of a\n'
+ ' word as groups of consecutive letters. The definition '
+ 'works in\n'
+ ' many contexts but it means that apostrophes in '
+ 'contractions and\n'
+ ' possessives form word boundaries, which may not be the '
+ 'desired\n'
+ ' result:\n'
+ '\n'
+ ' >>> "they\'re bill\'s friends from the UK".title()\n'
+ ' "They\'Re Bill\'S Friends From The Uk"\n'
+ '\n'
+ ' A workaround for apostrophes can be constructed using '
+ 'regular\n'
+ ' expressions:\n'
+ '\n'
+ ' >>> import re\n'
+ ' >>> def titlecase(s):\n'
+ ' ... return re.sub(r"[A-Za-z]+(\'[A-Za-z]+)?",\n'
+ ' ... lambda mo: '
'mo.group(0).capitalize(),\n'
- ' ... s)\n'
- ' ...\n'
- ' >>> titlecase("they\'re bill\'s friends.")\n'
- ' "They\'re Bill\'s Friends."\n'
- '\n'
- 'str.translate(table)\n'
- '\n'
- ' Return a copy of the string in which each character has '
- 'been mapped\n'
- ' through the given translation table. The table must be '
- 'an object\n'
- ' that implements indexing via "__getitem__()", typically '
- 'a *mapping*\n'
- ' or *sequence*. When indexed by a Unicode ordinal (an '
- 'integer), the\n'
- ' table object can do any of the following: return a '
- 'Unicode ordinal\n'
- ' or a string, to map the character to one or more other '
- 'characters;\n'
- ' return "None", to delete the character from the return '
- 'string; or\n'
- ' raise a "LookupError" exception, to map the character '
- 'to itself.\n'
- '\n'
- ' You can use "str.maketrans()" to create a translation '
- 'map from\n'
- ' character-to-character mappings in different formats.\n'
- '\n'
- ' See also the "codecs" module for a more flexible '
- 'approach to custom\n'
- ' character mappings.\n'
- '\n'
- 'str.upper()\n'
- '\n'
- ' Return a copy of the string with all the cased '
- 'characters [4]\n'
- ' converted to uppercase. Note that '
- '"s.upper().isupper()" might be\n'
- ' "False" if "s" contains uncased characters or if the '
- 'Unicode\n'
- ' category of the resulting character(s) is not “Lu” '
- '(Letter,\n'
- ' uppercase), but e.g. “Lt” (Letter, titlecase).\n'
- '\n'
- ' The uppercasing algorithm used is described in section '
- '3.13 of the\n'
- ' Unicode Standard.\n'
- '\n'
- 'str.zfill(width)\n'
- '\n'
- ' Return a copy of the string left filled with ASCII '
- '"\'0\'" digits to\n'
- ' make a string of length *width*. A leading sign prefix\n'
- ' ("\'+\'"/"\'-\'") is handled by inserting the padding '
- '*after* the sign\n'
- ' character rather than before. The original string is '
- 'returned if\n'
- ' *width* is less than or equal to "len(s)".\n'
- '\n'
- ' For example:\n'
- '\n'
- ' >>> "42".zfill(5)\n'
- " '00042'\n"
- ' >>> "-42".zfill(5)\n'
- " '-0042'\n",
- 'strings': 'String and Bytes literals\n'
- '*************************\n'
- '\n'
- 'String literals are described by the following lexical '
- 'definitions:\n'
- '\n'
- ' stringliteral ::= [stringprefix](shortstring | longstring)\n'
- ' stringprefix ::= "r" | "u" | "R" | "U" | "f" | "F"\n'
- ' | "fr" | "Fr" | "fR" | "FR" | "rf" | "rF" | '
- '"Rf" | "RF"\n'
- ' shortstring ::= "\'" shortstringitem* "\'" | \'"\' '
- 'shortstringitem* \'"\'\n'
- ' longstring ::= "\'\'\'" longstringitem* "\'\'\'" | '
- '\'"""\' longstringitem* \'"""\'\n'
- ' shortstringitem ::= shortstringchar | stringescapeseq\n'
- ' longstringitem ::= longstringchar | stringescapeseq\n'
- ' shortstringchar ::= <any source character except "\\" or '
- 'newline or the quote>\n'
- ' longstringchar ::= <any source character except "\\">\n'
- ' stringescapeseq ::= "\\" <any source character>\n'
- '\n'
- ' bytesliteral ::= bytesprefix(shortbytes | longbytes)\n'
- ' bytesprefix ::= "b" | "B" | "br" | "Br" | "bR" | "BR" | '
- '"rb" | "rB" | "Rb" | "RB"\n'
- ' shortbytes ::= "\'" shortbytesitem* "\'" | \'"\' '
- 'shortbytesitem* \'"\'\n'
- ' longbytes ::= "\'\'\'" longbytesitem* "\'\'\'" | \'"""\' '
- 'longbytesitem* \'"""\'\n'
- ' shortbytesitem ::= shortbyteschar | bytesescapeseq\n'
- ' longbytesitem ::= longbyteschar | bytesescapeseq\n'
- ' shortbyteschar ::= <any ASCII character except "\\" or newline '
- 'or the quote>\n'
- ' longbyteschar ::= <any ASCII character except "\\">\n'
- ' bytesescapeseq ::= "\\" <any ASCII character>\n'
- '\n'
- 'One syntactic restriction not indicated by these productions is '
- 'that\n'
- 'whitespace is not allowed between the "stringprefix" or '
- '"bytesprefix"\n'
- 'and the rest of the literal. The source character set is defined '
- 'by\n'
- 'the encoding declaration; it is UTF-8 if no encoding declaration '
- 'is\n'
- 'given in the source file; see section Encoding declarations.\n'
- '\n'
- 'In plain English: Both types of literals can be enclosed in '
- 'matching\n'
- 'single quotes ("\'") or double quotes ("""). They can also be '
- 'enclosed\n'
- 'in matching groups of three single or double quotes (these are\n'
- 'generally referred to as *triple-quoted strings*). The '
- 'backslash\n'
- '("\\") character is used to escape characters that otherwise have '
- 'a\n'
- 'special meaning, such as newline, backslash itself, or the quote\n'
- 'character.\n'
- '\n'
- 'Bytes literals are always prefixed with "\'b\'" or "\'B\'"; they '
- 'produce\n'
- 'an instance of the "bytes" type instead of the "str" type. They '
- 'may\n'
- 'only contain ASCII characters; bytes with a numeric value of 128 '
- 'or\n'
- 'greater must be expressed with escapes.\n'
- '\n'
- 'Both string and bytes literals may optionally be prefixed with a\n'
- 'letter "\'r\'" or "\'R\'"; such strings are called *raw strings* '
- 'and treat\n'
- 'backslashes as literal characters. As a result, in string '
- 'literals,\n'
- '"\'\\U\'" and "\'\\u\'" escapes in raw strings are not treated '
- 'specially.\n'
- 'Given that Python 2.x’s raw unicode literals behave differently '
- 'than\n'
- 'Python 3.x’s the "\'ur\'" syntax is not supported.\n'
- '\n'
- 'New in version 3.3: The "\'rb\'" prefix of raw bytes literals has '
- 'been\n'
- 'added as a synonym of "\'br\'".\n'
- '\n'
- 'New in version 3.3: Support for the unicode legacy literal\n'
- '("u\'value\'") was reintroduced to simplify the maintenance of '
- 'dual\n'
- 'Python 2.x and 3.x codebases. See **PEP 414** for more '
- 'information.\n'
- '\n'
- 'A string literal with "\'f\'" or "\'F\'" in its prefix is a '
- '*formatted\n'
- 'string literal*; see Formatted string literals. The "\'f\'" may '
- 'be\n'
- 'combined with "\'r\'", but not with "\'b\'" or "\'u\'", therefore '
- 'raw\n'
- 'formatted strings are possible, but formatted bytes literals are '
- 'not.\n'
- '\n'
- 'In triple-quoted literals, unescaped newlines and quotes are '
- 'allowed\n'
- '(and are retained), except that three unescaped quotes in a row\n'
- 'terminate the literal. (A “quote” is the character used to open '
- 'the\n'
- 'literal, i.e. either "\'" or """.)\n'
- '\n'
- 'Unless an "\'r\'" or "\'R\'" prefix is present, escape sequences '
- 'in string\n'
- 'and bytes literals are interpreted according to rules similar to '
- 'those\n'
- 'used by Standard C. The recognized escape sequences are:\n'
- '\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| Escape Sequence | Meaning | Notes '
- '|\n'
+ ' ... s)\n'
+ ' ...\n'
+ ' >>> titlecase("they\'re bill\'s friends.")\n'
+ ' "They\'re Bill\'s Friends."\n'
+ '\n'
+ 'str.translate(table)\n'
+ '\n'
+ ' Return a copy of the string in which each character has '
+ 'been mapped\n'
+ ' through the given translation table. The table must be '
+ 'an object\n'
+ ' that implements indexing via "__getitem__()", typically '
+ 'a *mapping*\n'
+ ' or *sequence*. When indexed by a Unicode ordinal (an '
+ 'integer), the\n'
+ ' table object can do any of the following: return a '
+ 'Unicode ordinal\n'
+ ' or a string, to map the character to one or more other '
+ 'characters;\n'
+ ' return "None", to delete the character from the return '
+ 'string; or\n'
+ ' raise a "LookupError" exception, to map the character '
+ 'to itself.\n'
+ '\n'
+ ' You can use "str.maketrans()" to create a translation '
+ 'map from\n'
+ ' character-to-character mappings in different formats.\n'
+ '\n'
+ ' See also the "codecs" module for a more flexible '
+ 'approach to custom\n'
+ ' character mappings.\n'
+ '\n'
+ 'str.upper()\n'
+ '\n'
+ ' Return a copy of the string with all the cased '
+ 'characters [4]\n'
+ ' converted to uppercase. Note that '
+ '"s.upper().isupper()" might be\n'
+ ' "False" if "s" contains uncased characters or if the '
+ 'Unicode\n'
+ ' category of the resulting character(s) is not “Lu” '
+ '(Letter,\n'
+ ' uppercase), but e.g. “Lt” (Letter, titlecase).\n'
+ '\n'
+ ' The uppercasing algorithm used is described in section '
+ '3.13 of the\n'
+ ' Unicode Standard.\n'
+ '\n'
+ 'str.zfill(width)\n'
+ '\n'
+ ' Return a copy of the string left filled with ASCII '
+ '"\'0\'" digits to\n'
+ ' make a string of length *width*. A leading sign prefix\n'
+ ' ("\'+\'"/"\'-\'") is handled by inserting the padding '
+ '*after* the sign\n'
+ ' character rather than before. The original string is '
+ 'returned if\n'
+ ' *width* is less than or equal to "len(s)".\n'
+ '\n'
+ ' For example:\n'
+ '\n'
+ ' >>> "42".zfill(5)\n'
+ " '00042'\n"
+ ' >>> "-42".zfill(5)\n'
+ " '-0042'\n",
+ 'strings': 'String and Bytes literals\n'
+ '*************************\n'
+ '\n'
+ 'String literals are described by the following lexical '
+ 'definitions:\n'
+ '\n'
+ ' stringliteral ::= [stringprefix](shortstring | longstring)\n'
+ ' stringprefix ::= "r" | "u" | "R" | "U" | "f" | "F"\n'
+ ' | "fr" | "Fr" | "fR" | "FR" | "rf" | "rF" | '
+ '"Rf" | "RF"\n'
+ ' shortstring ::= "\'" shortstringitem* "\'" | \'"\' '
+ 'shortstringitem* \'"\'\n'
+ ' longstring ::= "\'\'\'" longstringitem* "\'\'\'" | '
+ '\'"""\' longstringitem* \'"""\'\n'
+ ' shortstringitem ::= shortstringchar | stringescapeseq\n'
+ ' longstringitem ::= longstringchar | stringescapeseq\n'
+ ' shortstringchar ::= <any source character except "\\" or '
+ 'newline or the quote>\n'
+ ' longstringchar ::= <any source character except "\\">\n'
+ ' stringescapeseq ::= "\\" <any source character>\n'
+ '\n'
+ ' bytesliteral ::= bytesprefix(shortbytes | longbytes)\n'
+ ' bytesprefix ::= "b" | "B" | "br" | "Br" | "bR" | "BR" | '
+ '"rb" | "rB" | "Rb" | "RB"\n'
+ ' shortbytes ::= "\'" shortbytesitem* "\'" | \'"\' '
+ 'shortbytesitem* \'"\'\n'
+ ' longbytes ::= "\'\'\'" longbytesitem* "\'\'\'" | \'"""\' '
+ 'longbytesitem* \'"""\'\n'
+ ' shortbytesitem ::= shortbyteschar | bytesescapeseq\n'
+ ' longbytesitem ::= longbyteschar | bytesescapeseq\n'
+ ' shortbyteschar ::= <any ASCII character except "\\" or newline '
+ 'or the quote>\n'
+ ' longbyteschar ::= <any ASCII character except "\\">\n'
+ ' bytesescapeseq ::= "\\" <any ASCII character>\n'
+ '\n'
+ 'One syntactic restriction not indicated by these productions is '
+ 'that\n'
+ 'whitespace is not allowed between the "stringprefix" or '
+ '"bytesprefix"\n'
+ 'and the rest of the literal. The source character set is defined '
+ 'by\n'
+ 'the encoding declaration; it is UTF-8 if no encoding declaration '
+ 'is\n'
+ 'given in the source file; see section Encoding declarations.\n'
+ '\n'
+ 'In plain English: Both types of literals can be enclosed in '
+ 'matching\n'
+ 'single quotes ("\'") or double quotes ("""). They can also be '
+ 'enclosed\n'
+ 'in matching groups of three single or double quotes (these are\n'
+ 'generally referred to as *triple-quoted strings*). The '
+ 'backslash\n'
+ '("\\") character is used to escape characters that otherwise have '
+ 'a\n'
+ 'special meaning, such as newline, backslash itself, or the quote\n'
+ 'character.\n'
+ '\n'
+ 'Bytes literals are always prefixed with "\'b\'" or "\'B\'"; they '
+ 'produce\n'
+ 'an instance of the "bytes" type instead of the "str" type. They '
+ 'may\n'
+ 'only contain ASCII characters; bytes with a numeric value of 128 '
+ 'or\n'
+ 'greater must be expressed with escapes.\n'
+ '\n'
+ 'Both string and bytes literals may optionally be prefixed with a\n'
+ 'letter "\'r\'" or "\'R\'"; such strings are called *raw strings* '
+ 'and treat\n'
+ 'backslashes as literal characters. As a result, in string '
+ 'literals,\n'
+ '"\'\\U\'" and "\'\\u\'" escapes in raw strings are not treated '
+ 'specially.\n'
+ 'Given that Python 2.x’s raw unicode literals behave differently '
+ 'than\n'
+ 'Python 3.x’s the "\'ur\'" syntax is not supported.\n'
+ '\n'
+ 'New in version 3.3: The "\'rb\'" prefix of raw bytes literals has '
+ 'been\n'
+ 'added as a synonym of "\'br\'".\n'
+ '\n'
+ 'New in version 3.3: Support for the unicode legacy literal\n'
+ '("u\'value\'") was reintroduced to simplify the maintenance of '
+ 'dual\n'
+ 'Python 2.x and 3.x codebases. See **PEP 414** for more '
+ 'information.\n'
+ '\n'
+ 'A string literal with "\'f\'" or "\'F\'" in its prefix is a '
+ '*formatted\n'
+ 'string literal*; see Formatted string literals. The "\'f\'" may '
+ 'be\n'
+ 'combined with "\'r\'", but not with "\'b\'" or "\'u\'", therefore '
+ 'raw\n'
+ 'formatted strings are possible, but formatted bytes literals are '
+ 'not.\n'
+ '\n'
+ 'In triple-quoted literals, unescaped newlines and quotes are '
+ 'allowed\n'
+ '(and are retained), except that three unescaped quotes in a row\n'
+ 'terminate the literal. (A “quote” is the character used to open '
+ 'the\n'
+ 'literal, i.e. either "\'" or """.)\n'
+ '\n'
+ 'Unless an "\'r\'" or "\'R\'" prefix is present, escape sequences '
+ 'in string\n'
+ 'and bytes literals are interpreted according to rules similar to '
+ 'those\n'
+ 'used by Standard C. The recognized escape sequences are:\n'
+ '\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| Escape Sequence | Meaning | Notes '
+ '|\n'
'|===================|===================================|=========|\n'
- '| "\\newline" | Backslash and newline ignored '
- '| |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\\\" | Backslash ("\\") '
- '| |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\\'" | Single quote ("\'") '
- '| |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\"" | Double quote (""") '
- '| |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\a" | ASCII Bell (BEL) '
- '| |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\b" | ASCII Backspace (BS) '
- '| |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\f" | ASCII Formfeed (FF) '
- '| |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\n" | ASCII Linefeed (LF) '
- '| |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\r" | ASCII Carriage Return (CR) '
- '| |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\t" | ASCII Horizontal Tab (TAB) '
- '| |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\v" | ASCII Vertical Tab (VT) '
- '| |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\ooo" | Character with octal value *ooo* | '
- '(1,3) |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\xhh" | Character with hex value *hh* | '
- '(2,3) |\n'
- '+-------------------+-----------------------------------+---------+\n'
- '\n'
- 'Escape sequences only recognized in string literals are:\n'
- '\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| Escape Sequence | Meaning | Notes '
- '|\n'
+ '| "\\newline" | Backslash and newline ignored '
+ '| |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\\\" | Backslash ("\\") '
+ '| |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\\'" | Single quote ("\'") '
+ '| |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\"" | Double quote (""") '
+ '| |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\a" | ASCII Bell (BEL) '
+ '| |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\b" | ASCII Backspace (BS) '
+ '| |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\f" | ASCII Formfeed (FF) '
+ '| |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\n" | ASCII Linefeed (LF) '
+ '| |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\r" | ASCII Carriage Return (CR) '
+ '| |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\t" | ASCII Horizontal Tab (TAB) '
+ '| |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\v" | ASCII Vertical Tab (VT) '
+ '| |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\ooo" | Character with octal value *ooo* | '
+ '(1,3) |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\xhh" | Character with hex value *hh* | '
+ '(2,3) |\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '\n'
+ 'Escape sequences only recognized in string literals are:\n'
+ '\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| Escape Sequence | Meaning | Notes '
+ '|\n'
'|===================|===================================|=========|\n'
- '| "\\N{name}" | Character named *name* in the | '
- '(4) |\n'
- '| | Unicode database | '
- '|\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\uxxxx" | Character with 16-bit hex value | '
- '(5) |\n'
- '| | *xxxx* | '
- '|\n'
- '+-------------------+-----------------------------------+---------+\n'
- '| "\\Uxxxxxxxx" | Character with 32-bit hex value | '
- '(6) |\n'
- '| | *xxxxxxxx* | '
- '|\n'
- '+-------------------+-----------------------------------+---------+\n'
- '\n'
- 'Notes:\n'
- '\n'
- '1. As in Standard C, up to three octal digits are accepted.\n'
- '\n'
- '2. Unlike in Standard C, exactly two hex digits are required.\n'
- '\n'
+ '| "\\N{name}" | Character named *name* in the | '
+ '(4) |\n'
+ '| | Unicode database | '
+ '|\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\uxxxx" | Character with 16-bit hex value | '
+ '(5) |\n'
+ '| | *xxxx* | '
+ '|\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '| "\\Uxxxxxxxx" | Character with 32-bit hex value | '
+ '(6) |\n'
+ '| | *xxxxxxxx* | '
+ '|\n'
+ '+-------------------+-----------------------------------+---------+\n'
+ '\n'
+ 'Notes:\n'
+ '\n'
+ '1. As in Standard C, up to three octal digits are accepted.\n'
+ '\n'
+ '2. Unlike in Standard C, exactly two hex digits are required.\n'
+ '\n'
'3. In a bytes literal, hexadecimal and octal escapes denote the '
'byte\n'
' with the given value. In a string literal, these escapes '
'denote a\n'
' Unicode character with the given value.\n'
- '\n'
- '4. Changed in version 3.3: Support for name aliases [1] has been\n'
- ' added.\n'
- '\n'
- '5. Exactly four hex digits are required.\n'
- '\n'
+ '\n'
+ '4. Changed in version 3.3: Support for name aliases [1] has been\n'
+ ' added.\n'
+ '\n'
+ '5. Exactly four hex digits are required.\n'
+ '\n'
'6. Any Unicode character can be encoded this way. Exactly eight '
'hex\n'
' digits are required.\n'
- '\n'
- 'Unlike Standard C, all unrecognized escape sequences are left in '
- 'the\n'
- 'string unchanged, i.e., *the backslash is left in the result*. '
- '(This\n'
- 'behavior is useful when debugging: if an escape sequence is '
- 'mistyped,\n'
- 'the resulting output is more easily recognized as broken.) It is '
- 'also\n'
- 'important to note that the escape sequences only recognized in '
- 'string\n'
- 'literals fall into the category of unrecognized escapes for '
- 'bytes\n'
- 'literals.\n'
- '\n'
- ' Changed in version 3.6: Unrecognized escape sequences produce '
- 'a\n'
+ '\n'
+ 'Unlike Standard C, all unrecognized escape sequences are left in '
+ 'the\n'
+ 'string unchanged, i.e., *the backslash is left in the result*. '
+ '(This\n'
+ 'behavior is useful when debugging: if an escape sequence is '
+ 'mistyped,\n'
+ 'the resulting output is more easily recognized as broken.) It is '
+ 'also\n'
+ 'important to note that the escape sequences only recognized in '
+ 'string\n'
+ 'literals fall into the category of unrecognized escapes for '
+ 'bytes\n'
+ 'literals.\n'
+ '\n'
+ ' Changed in version 3.6: Unrecognized escape sequences produce '
+ 'a\n'
' "DeprecationWarning". In a future Python version they will be '
'a\n'
' "SyntaxWarning" and eventually a "SyntaxError".\n'
- '\n'
- 'Even in a raw literal, quotes can be escaped with a backslash, '
- 'but the\n'
- 'backslash remains in the result; for example, "r"\\""" is a '
- 'valid\n'
- 'string literal consisting of two characters: a backslash and a '
- 'double\n'
- 'quote; "r"\\"" is not a valid string literal (even a raw string '
- 'cannot\n'
- 'end in an odd number of backslashes). Specifically, *a raw '
- 'literal\n'
- 'cannot end in a single backslash* (since the backslash would '
- 'escape\n'
- 'the following quote character). Note also that a single '
- 'backslash\n'
- 'followed by a newline is interpreted as those two characters as '
- 'part\n'
- 'of the literal, *not* as a line continuation.\n',
- 'subscriptions': 'Subscriptions\n'
- '*************\n'
- '\n'
+ '\n'
+ 'Even in a raw literal, quotes can be escaped with a backslash, '
+ 'but the\n'
+ 'backslash remains in the result; for example, "r"\\""" is a '
+ 'valid\n'
+ 'string literal consisting of two characters: a backslash and a '
+ 'double\n'
+ 'quote; "r"\\"" is not a valid string literal (even a raw string '
+ 'cannot\n'
+ 'end in an odd number of backslashes). Specifically, *a raw '
+ 'literal\n'
+ 'cannot end in a single backslash* (since the backslash would '
+ 'escape\n'
+ 'the following quote character). Note also that a single '
+ 'backslash\n'
+ 'followed by a newline is interpreted as those two characters as '
+ 'part\n'
+ 'of the literal, *not* as a line continuation.\n',
+ 'subscriptions': 'Subscriptions\n'
+ '*************\n'
+ '\n'
'Subscription of a sequence (string, tuple or list) or '
'mapping\n'
'(dictionary) object usually selects an item from the '
'collection:\n'
- '\n'
- ' subscription ::= primary "[" expression_list "]"\n'
- '\n'
- 'The primary must evaluate to an object that supports '
- 'subscription\n'
- '(lists or dictionaries for example). User-defined objects '
- 'can support\n'
- 'subscription by defining a "__getitem__()" method.\n'
- '\n'
- 'For built-in objects, there are two types of objects that '
- 'support\n'
- 'subscription:\n'
- '\n'
- 'If the primary is a mapping, the expression list must '
- 'evaluate to an\n'
- 'object whose value is one of the keys of the mapping, and '
- 'the\n'
- 'subscription selects the value in the mapping that '
- 'corresponds to that\n'
- 'key. (The expression list is a tuple except if it has '
- 'exactly one\n'
- 'item.)\n'
- '\n'
- 'If the primary is a sequence, the expression list must '
- 'evaluate to an\n'
- 'integer or a slice (as discussed in the following '
- 'section).\n'
- '\n'
- 'The formal syntax makes no special provision for negative '
- 'indices in\n'
- 'sequences; however, built-in sequences all provide a '
- '"__getitem__()"\n'
- 'method that interprets negative indices by adding the '
- 'length of the\n'
- 'sequence to the index (so that "x[-1]" selects the last '
- 'item of "x").\n'
- 'The resulting value must be a nonnegative integer less than '
- 'the number\n'
- 'of items in the sequence, and the subscription selects the '
- 'item whose\n'
- 'index is that value (counting from zero). Since the support '
- 'for\n'
- 'negative indices and slicing occurs in the object’s '
- '"__getitem__()"\n'
- 'method, subclasses overriding this method will need to '
- 'explicitly add\n'
- 'that support.\n'
- '\n'
- 'A string’s items are characters. A character is not a '
- 'separate data\n'
+ '\n'
+ ' subscription ::= primary "[" expression_list "]"\n'
+ '\n'
+ 'The primary must evaluate to an object that supports '
+ 'subscription\n'
+ '(lists or dictionaries for example). User-defined objects '
+ 'can support\n'
+ 'subscription by defining a "__getitem__()" method.\n'
+ '\n'
+ 'For built-in objects, there are two types of objects that '
+ 'support\n'
+ 'subscription:\n'
+ '\n'
+ 'If the primary is a mapping, the expression list must '
+ 'evaluate to an\n'
+ 'object whose value is one of the keys of the mapping, and '
+ 'the\n'
+ 'subscription selects the value in the mapping that '
+ 'corresponds to that\n'
+ 'key. (The expression list is a tuple except if it has '
+ 'exactly one\n'
+ 'item.)\n'
+ '\n'
+ 'If the primary is a sequence, the expression list must '
+ 'evaluate to an\n'
+ 'integer or a slice (as discussed in the following '
+ 'section).\n'
+ '\n'
+ 'The formal syntax makes no special provision for negative '
+ 'indices in\n'
+ 'sequences; however, built-in sequences all provide a '
+ '"__getitem__()"\n'
+ 'method that interprets negative indices by adding the '
+ 'length of the\n'
+ 'sequence to the index (so that "x[-1]" selects the last '
+ 'item of "x").\n'
+ 'The resulting value must be a nonnegative integer less than '
+ 'the number\n'
+ 'of items in the sequence, and the subscription selects the '
+ 'item whose\n'
+ 'index is that value (counting from zero). Since the support '
+ 'for\n'
+ 'negative indices and slicing occurs in the object’s '
+ '"__getitem__()"\n'
+ 'method, subclasses overriding this method will need to '
+ 'explicitly add\n'
+ 'that support.\n'
+ '\n'
+ 'A string’s items are characters. A character is not a '
+ 'separate data\n'
'type but a string of exactly one character.\n'
'\n'
'Subscription of certain *classes* or *types* creates a '
@@ -11454,228 +11454,228 @@ topics = {'assert': 'The "assert" statement\n'
'In this case, user-defined classes can support subscription '
'by\n'
'providing a "__class_getitem__()" classmethod.\n',
- 'truth': 'Truth Value Testing\n'
- '*******************\n'
- '\n'
- 'Any object can be tested for truth value, for use in an "if" or\n'
- '"while" condition or as operand of the Boolean operations below.\n'
- '\n'
- 'By default, an object is considered true unless its class defines\n'
- 'either a "__bool__()" method that returns "False" or a "__len__()"\n'
- 'method that returns zero, when called with the object. [1] Here '
- 'are\n'
- 'most of the built-in objects considered false:\n'
- '\n'
- '* constants defined to be false: "None" and "False".\n'
- '\n'
- '* zero of any numeric type: "0", "0.0", "0j", "Decimal(0)",\n'
- ' "Fraction(0, 1)"\n'
- '\n'
- '* empty sequences and collections: "\'\'", "()", "[]", "{}", '
- '"set()",\n'
- ' "range(0)"\n'
- '\n'
- 'Operations and built-in functions that have a Boolean result '
- 'always\n'
- 'return "0" or "False" for false and "1" or "True" for true, unless\n'
- 'otherwise stated. (Important exception: the Boolean operations '
- '"or"\n'
- 'and "and" always return one of their operands.)\n',
- 'try': 'The "try" statement\n'
- '*******************\n'
- '\n'
- 'The "try" statement specifies exception handlers and/or cleanup code\n'
- 'for a group of statements:\n'
- '\n'
- ' try_stmt ::= try1_stmt | try2_stmt\n'
- ' try1_stmt ::= "try" ":" suite\n'
- ' ("except" [expression ["as" identifier]] ":" '
- 'suite)+\n'
- ' ["else" ":" suite]\n'
- ' ["finally" ":" suite]\n'
- ' try2_stmt ::= "try" ":" suite\n'
- ' "finally" ":" suite\n'
- '\n'
- 'The "except" clause(s) specify one or more exception handlers. When '
- 'no\n'
- 'exception occurs in the "try" clause, no exception handler is\n'
- 'executed. When an exception occurs in the "try" suite, a search for '
- 'an\n'
- 'exception handler is started. This search inspects the except '
- 'clauses\n'
- 'in turn until one is found that matches the exception. An '
- 'expression-\n'
- 'less except clause, if present, must be last; it matches any\n'
- 'exception. For an except clause with an expression, that expression\n'
- 'is evaluated, and the clause matches the exception if the resulting\n'
- 'object is “compatible” with the exception. An object is compatible\n'
- 'with an exception if it is the class or a base class of the '
- 'exception\n'
+ 'truth': 'Truth Value Testing\n'
+ '*******************\n'
+ '\n'
+ 'Any object can be tested for truth value, for use in an "if" or\n'
+ '"while" condition or as operand of the Boolean operations below.\n'
+ '\n'
+ 'By default, an object is considered true unless its class defines\n'
+ 'either a "__bool__()" method that returns "False" or a "__len__()"\n'
+ 'method that returns zero, when called with the object. [1] Here '
+ 'are\n'
+ 'most of the built-in objects considered false:\n'
+ '\n'
+ '* constants defined to be false: "None" and "False".\n'
+ '\n'
+ '* zero of any numeric type: "0", "0.0", "0j", "Decimal(0)",\n'
+ ' "Fraction(0, 1)"\n'
+ '\n'
+ '* empty sequences and collections: "\'\'", "()", "[]", "{}", '
+ '"set()",\n'
+ ' "range(0)"\n'
+ '\n'
+ 'Operations and built-in functions that have a Boolean result '
+ 'always\n'
+ 'return "0" or "False" for false and "1" or "True" for true, unless\n'
+ 'otherwise stated. (Important exception: the Boolean operations '
+ '"or"\n'
+ 'and "and" always return one of their operands.)\n',
+ 'try': 'The "try" statement\n'
+ '*******************\n'
+ '\n'
+ 'The "try" statement specifies exception handlers and/or cleanup code\n'
+ 'for a group of statements:\n'
+ '\n'
+ ' try_stmt ::= try1_stmt | try2_stmt\n'
+ ' try1_stmt ::= "try" ":" suite\n'
+ ' ("except" [expression ["as" identifier]] ":" '
+ 'suite)+\n'
+ ' ["else" ":" suite]\n'
+ ' ["finally" ":" suite]\n'
+ ' try2_stmt ::= "try" ":" suite\n'
+ ' "finally" ":" suite\n'
+ '\n'
+ 'The "except" clause(s) specify one or more exception handlers. When '
+ 'no\n'
+ 'exception occurs in the "try" clause, no exception handler is\n'
+ 'executed. When an exception occurs in the "try" suite, a search for '
+ 'an\n'
+ 'exception handler is started. This search inspects the except '
+ 'clauses\n'
+ 'in turn until one is found that matches the exception. An '
+ 'expression-\n'
+ 'less except clause, if present, must be last; it matches any\n'
+ 'exception. For an except clause with an expression, that expression\n'
+ 'is evaluated, and the clause matches the exception if the resulting\n'
+ 'object is “compatible” with the exception. An object is compatible\n'
+ 'with an exception if it is the class or a base class of the '
+ 'exception\n'
'object, or a tuple containing an item that is the class or a base\n'
'class of the exception object.\n'
- '\n'
- 'If no except clause matches the exception, the search for an '
- 'exception\n'
- 'handler continues in the surrounding code and on the invocation '
- 'stack.\n'
- '[1]\n'
- '\n'
- 'If the evaluation of an expression in the header of an except clause\n'
- 'raises an exception, the original search for a handler is canceled '
- 'and\n'
- 'a search starts for the new exception in the surrounding code and on\n'
- 'the call stack (it is treated as if the entire "try" statement '
- 'raised\n'
- 'the exception).\n'
- '\n'
- 'When a matching except clause is found, the exception is assigned to\n'
- 'the target specified after the "as" keyword in that except clause, '
- 'if\n'
- 'present, and the except clause’s suite is executed. All except\n'
- 'clauses must have an executable block. When the end of this block '
- 'is\n'
- 'reached, execution continues normally after the entire try '
- 'statement.\n'
- '(This means that if two nested handlers exist for the same '
- 'exception,\n'
- 'and the exception occurs in the try clause of the inner handler, the\n'
- 'outer handler will not handle the exception.)\n'
- '\n'
- 'When an exception has been assigned using "as target", it is cleared\n'
- 'at the end of the except clause. This is as if\n'
- '\n'
- ' except E as N:\n'
- ' foo\n'
- '\n'
- 'was translated to\n'
- '\n'
- ' except E as N:\n'
- ' try:\n'
- ' foo\n'
- ' finally:\n'
- ' del N\n'
- '\n'
- 'This means the exception must be assigned to a different name to be\n'
- 'able to refer to it after the except clause. Exceptions are cleared\n'
- 'because with the traceback attached to them, they form a reference\n'
- 'cycle with the stack frame, keeping all locals in that frame alive\n'
- 'until the next garbage collection occurs.\n'
- '\n'
- 'Before an except clause’s suite is executed, details about the\n'
- 'exception are stored in the "sys" module and can be accessed via\n'
- '"sys.exc_info()". "sys.exc_info()" returns a 3-tuple consisting of '
- 'the\n'
- 'exception class, the exception instance and a traceback object (see\n'
- 'section The standard type hierarchy) identifying the point in the\n'
- 'program where the exception occurred. "sys.exc_info()" values are\n'
- 'restored to their previous values (before the call) when returning\n'
- 'from a function that handled an exception.\n'
- '\n'
- 'The optional "else" clause is executed if the control flow leaves '
- 'the\n'
- '"try" suite, no exception was raised, and no "return", "continue", '
- 'or\n'
- '"break" statement was executed. Exceptions in the "else" clause are\n'
- 'not handled by the preceding "except" clauses.\n'
- '\n'
- 'If "finally" is present, it specifies a ‘cleanup’ handler. The '
- '"try"\n'
- 'clause is executed, including any "except" and "else" clauses. If '
- 'an\n'
- 'exception occurs in any of the clauses and is not handled, the\n'
- 'exception is temporarily saved. The "finally" clause is executed. '
- 'If\n'
- 'there is a saved exception it is re-raised at the end of the '
- '"finally"\n'
- 'clause. If the "finally" clause raises another exception, the saved\n'
- 'exception is set as the context of the new exception. If the '
- '"finally"\n'
+ '\n'
+ 'If no except clause matches the exception, the search for an '
+ 'exception\n'
+ 'handler continues in the surrounding code and on the invocation '
+ 'stack.\n'
+ '[1]\n'
+ '\n'
+ 'If the evaluation of an expression in the header of an except clause\n'
+ 'raises an exception, the original search for a handler is canceled '
+ 'and\n'
+ 'a search starts for the new exception in the surrounding code and on\n'
+ 'the call stack (it is treated as if the entire "try" statement '
+ 'raised\n'
+ 'the exception).\n'
+ '\n'
+ 'When a matching except clause is found, the exception is assigned to\n'
+ 'the target specified after the "as" keyword in that except clause, '
+ 'if\n'
+ 'present, and the except clause’s suite is executed. All except\n'
+ 'clauses must have an executable block. When the end of this block '
+ 'is\n'
+ 'reached, execution continues normally after the entire try '
+ 'statement.\n'
+ '(This means that if two nested handlers exist for the same '
+ 'exception,\n'
+ 'and the exception occurs in the try clause of the inner handler, the\n'
+ 'outer handler will not handle the exception.)\n'
+ '\n'
+ 'When an exception has been assigned using "as target", it is cleared\n'
+ 'at the end of the except clause. This is as if\n'
+ '\n'
+ ' except E as N:\n'
+ ' foo\n'
+ '\n'
+ 'was translated to\n'
+ '\n'
+ ' except E as N:\n'
+ ' try:\n'
+ ' foo\n'
+ ' finally:\n'
+ ' del N\n'
+ '\n'
+ 'This means the exception must be assigned to a different name to be\n'
+ 'able to refer to it after the except clause. Exceptions are cleared\n'
+ 'because with the traceback attached to them, they form a reference\n'
+ 'cycle with the stack frame, keeping all locals in that frame alive\n'
+ 'until the next garbage collection occurs.\n'
+ '\n'
+ 'Before an except clause’s suite is executed, details about the\n'
+ 'exception are stored in the "sys" module and can be accessed via\n'
+ '"sys.exc_info()". "sys.exc_info()" returns a 3-tuple consisting of '
+ 'the\n'
+ 'exception class, the exception instance and a traceback object (see\n'
+ 'section The standard type hierarchy) identifying the point in the\n'
+ 'program where the exception occurred. "sys.exc_info()" values are\n'
+ 'restored to their previous values (before the call) when returning\n'
+ 'from a function that handled an exception.\n'
+ '\n'
+ 'The optional "else" clause is executed if the control flow leaves '
+ 'the\n'
+ '"try" suite, no exception was raised, and no "return", "continue", '
+ 'or\n'
+ '"break" statement was executed. Exceptions in the "else" clause are\n'
+ 'not handled by the preceding "except" clauses.\n'
+ '\n'
+ 'If "finally" is present, it specifies a ‘cleanup’ handler. The '
+ '"try"\n'
+ 'clause is executed, including any "except" and "else" clauses. If '
+ 'an\n'
+ 'exception occurs in any of the clauses and is not handled, the\n'
+ 'exception is temporarily saved. The "finally" clause is executed. '
+ 'If\n'
+ 'there is a saved exception it is re-raised at the end of the '
+ '"finally"\n'
+ 'clause. If the "finally" clause raises another exception, the saved\n'
+ 'exception is set as the context of the new exception. If the '
+ '"finally"\n'
'clause executes a "return", "break" or "continue" statement, the '
'saved\n'
'exception is discarded:\n'
- '\n'
- ' >>> def f():\n'
- ' ... try:\n'
- ' ... 1/0\n'
- ' ... finally:\n'
- ' ... return 42\n'
- ' ...\n'
- ' >>> f()\n'
- ' 42\n'
- '\n'
- 'The exception information is not available to the program during\n'
- 'execution of the "finally" clause.\n'
- '\n'
- 'When a "return", "break" or "continue" statement is executed in the\n'
- '"try" suite of a "try"…"finally" statement, the "finally" clause is\n'
+ '\n'
+ ' >>> def f():\n'
+ ' ... try:\n'
+ ' ... 1/0\n'
+ ' ... finally:\n'
+ ' ... return 42\n'
+ ' ...\n'
+ ' >>> f()\n'
+ ' 42\n'
+ '\n'
+ 'The exception information is not available to the program during\n'
+ 'execution of the "finally" clause.\n'
+ '\n'
+ 'When a "return", "break" or "continue" statement is executed in the\n'
+ '"try" suite of a "try"…"finally" statement, the "finally" clause is\n'
'also executed ‘on the way out.’\n'
- '\n'
- 'The return value of a function is determined by the last "return"\n'
- 'statement executed. Since the "finally" clause always executes, a\n'
- '"return" statement executed in the "finally" clause will always be '
- 'the\n'
- 'last one executed:\n'
- '\n'
- ' >>> def foo():\n'
- ' ... try:\n'
- " ... return 'try'\n"
- ' ... finally:\n'
- " ... return 'finally'\n"
- ' ...\n'
- ' >>> foo()\n'
- " 'finally'\n"
- '\n'
- 'Additional information on exceptions can be found in section\n'
- 'Exceptions, and information on using the "raise" statement to '
- 'generate\n'
+ '\n'
+ 'The return value of a function is determined by the last "return"\n'
+ 'statement executed. Since the "finally" clause always executes, a\n'
+ '"return" statement executed in the "finally" clause will always be '
+ 'the\n'
+ 'last one executed:\n'
+ '\n'
+ ' >>> def foo():\n'
+ ' ... try:\n'
+ " ... return 'try'\n"
+ ' ... finally:\n'
+ " ... return 'finally'\n"
+ ' ...\n'
+ ' >>> foo()\n'
+ " 'finally'\n"
+ '\n'
+ 'Additional information on exceptions can be found in section\n'
+ 'Exceptions, and information on using the "raise" statement to '
+ 'generate\n'
'exceptions may be found in section The raise statement.\n'
'\n'
'Changed in version 3.8: Prior to Python 3.8, a "continue" statement\n'
'was illegal in the "finally" clause due to a problem with the\n'
'implementation.\n',
- 'types': 'The standard type hierarchy\n'
- '***************************\n'
- '\n'
- 'Below is a list of the types that are built into Python. '
- 'Extension\n'
- 'modules (written in C, Java, or other languages, depending on the\n'
- 'implementation) can define additional types. Future versions of\n'
- 'Python may add types to the type hierarchy (e.g., rational '
- 'numbers,\n'
- 'efficiently stored arrays of integers, etc.), although such '
- 'additions\n'
- 'will often be provided via the standard library instead.\n'
- '\n'
- 'Some of the type descriptions below contain a paragraph listing\n'
- '‘special attributes.’ These are attributes that provide access to '
- 'the\n'
- 'implementation and are not intended for general use. Their '
- 'definition\n'
- 'may change in the future.\n'
- '\n'
- 'None\n'
- ' This type has a single value. There is a single object with '
- 'this\n'
- ' value. This object is accessed through the built-in name "None". '
- 'It\n'
- ' is used to signify the absence of a value in many situations, '
- 'e.g.,\n'
- ' it is returned from functions that don’t explicitly return\n'
- ' anything. Its truth value is false.\n'
- '\n'
- 'NotImplemented\n'
- ' This type has a single value. There is a single object with '
- 'this\n'
- ' value. This object is accessed through the built-in name\n'
- ' "NotImplemented". Numeric methods and rich comparison methods\n'
- ' should return this value if they do not implement the operation '
- 'for\n'
- ' the operands provided. (The interpreter will then try the\n'
- ' reflected operation, or some other fallback, depending on the\n'
+ 'types': 'The standard type hierarchy\n'
+ '***************************\n'
+ '\n'
+ 'Below is a list of the types that are built into Python. '
+ 'Extension\n'
+ 'modules (written in C, Java, or other languages, depending on the\n'
+ 'implementation) can define additional types. Future versions of\n'
+ 'Python may add types to the type hierarchy (e.g., rational '
+ 'numbers,\n'
+ 'efficiently stored arrays of integers, etc.), although such '
+ 'additions\n'
+ 'will often be provided via the standard library instead.\n'
+ '\n'
+ 'Some of the type descriptions below contain a paragraph listing\n'
+ '‘special attributes.’ These are attributes that provide access to '
+ 'the\n'
+ 'implementation and are not intended for general use. Their '
+ 'definition\n'
+ 'may change in the future.\n'
+ '\n'
+ 'None\n'
+ ' This type has a single value. There is a single object with '
+ 'this\n'
+ ' value. This object is accessed through the built-in name "None". '
+ 'It\n'
+ ' is used to signify the absence of a value in many situations, '
+ 'e.g.,\n'
+ ' it is returned from functions that don’t explicitly return\n'
+ ' anything. Its truth value is false.\n'
+ '\n'
+ 'NotImplemented\n'
+ ' This type has a single value. There is a single object with '
+ 'this\n'
+ ' value. This object is accessed through the built-in name\n'
+ ' "NotImplemented". Numeric methods and rich comparison methods\n'
+ ' should return this value if they do not implement the operation '
+ 'for\n'
+ ' the operands provided. (The interpreter will then try the\n'
+ ' reflected operation, or some other fallback, depending on the\n'
' operator.) It should not be evaluated in a boolean context.\n'
- '\n'
- ' See Implementing the arithmetic operations for more details.\n'
- '\n'
+ '\n'
+ ' See Implementing the arithmetic operations for more details.\n'
+ '\n'
' Changed in version 3.9: Evaluating "NotImplemented" in a '
'boolean\n'
' context is deprecated. While it currently evaluates as true, it\n'
@@ -11683,23 +11683,23 @@ topics = {'assert': 'The "assert" statement\n'
'a\n'
' future version of Python.\n'
'\n'
- 'Ellipsis\n'
- ' This type has a single value. There is a single object with '
- 'this\n'
- ' value. This object is accessed through the literal "..." or the\n'
- ' built-in name "Ellipsis". Its truth value is true.\n'
- '\n'
- '"numbers.Number"\n'
- ' These are created by numeric literals and returned as results '
- 'by\n'
- ' arithmetic operators and arithmetic built-in functions. '
- 'Numeric\n'
- ' objects are immutable; once created their value never changes.\n'
- ' Python numbers are of course strongly related to mathematical\n'
- ' numbers, but subject to the limitations of numerical '
- 'representation\n'
- ' in computers.\n'
- '\n'
+ 'Ellipsis\n'
+ ' This type has a single value. There is a single object with '
+ 'this\n'
+ ' value. This object is accessed through the literal "..." or the\n'
+ ' built-in name "Ellipsis". Its truth value is true.\n'
+ '\n'
+ '"numbers.Number"\n'
+ ' These are created by numeric literals and returned as results '
+ 'by\n'
+ ' arithmetic operators and arithmetic built-in functions. '
+ 'Numeric\n'
+ ' objects are immutable; once created their value never changes.\n'
+ ' Python numbers are of course strongly related to mathematical\n'
+ ' numbers, but subject to the limitations of numerical '
+ 'representation\n'
+ ' in computers.\n'
+ '\n'
' The string representations of the numeric classes, computed by\n'
' "__repr__()" and "__str__()", have the following properties:\n'
'\n'
@@ -11721,246 +11721,246 @@ topics = {'assert': 'The "assert" statement\n'
'\n'
' * A sign is shown only when the number is negative.\n'
'\n'
- ' Python distinguishes between integers, floating point numbers, '
- 'and\n'
- ' complex numbers:\n'
- '\n'
- ' "numbers.Integral"\n'
- ' These represent elements from the mathematical set of '
- 'integers\n'
- ' (positive and negative).\n'
- '\n'
- ' There are two types of integers:\n'
- '\n'
- ' Integers ("int")\n'
- ' These represent numbers in an unlimited range, subject to\n'
- ' available (virtual) memory only. For the purpose of '
- 'shift\n'
- ' and mask operations, a binary representation is assumed, '
- 'and\n'
- ' negative numbers are represented in a variant of 2’s\n'
- ' complement which gives the illusion of an infinite string '
- 'of\n'
- ' sign bits extending to the left.\n'
- '\n'
- ' Booleans ("bool")\n'
- ' These represent the truth values False and True. The two\n'
- ' objects representing the values "False" and "True" are '
- 'the\n'
- ' only Boolean objects. The Boolean type is a subtype of '
- 'the\n'
- ' integer type, and Boolean values behave like the values 0 '
- 'and\n'
- ' 1, respectively, in almost all contexts, the exception '
- 'being\n'
- ' that when converted to a string, the strings ""False"" or\n'
- ' ""True"" are returned, respectively.\n'
- '\n'
- ' The rules for integer representation are intended to give '
- 'the\n'
- ' most meaningful interpretation of shift and mask operations\n'
- ' involving negative integers.\n'
- '\n'
- ' "numbers.Real" ("float")\n'
- ' These represent machine-level double precision floating '
- 'point\n'
- ' numbers. You are at the mercy of the underlying machine\n'
- ' architecture (and C or Java implementation) for the accepted\n'
- ' range and handling of overflow. Python does not support '
- 'single-\n'
- ' precision floating point numbers; the savings in processor '
- 'and\n'
- ' memory usage that are usually the reason for using these are\n'
- ' dwarfed by the overhead of using objects in Python, so there '
- 'is\n'
- ' no reason to complicate the language with two kinds of '
- 'floating\n'
- ' point numbers.\n'
- '\n'
- ' "numbers.Complex" ("complex")\n'
- ' These represent complex numbers as a pair of machine-level\n'
- ' double precision floating point numbers. The same caveats '
- 'apply\n'
- ' as for floating point numbers. The real and imaginary parts '
- 'of a\n'
- ' complex number "z" can be retrieved through the read-only\n'
- ' attributes "z.real" and "z.imag".\n'
- '\n'
- 'Sequences\n'
- ' These represent finite ordered sets indexed by non-negative\n'
- ' numbers. The built-in function "len()" returns the number of '
- 'items\n'
- ' of a sequence. When the length of a sequence is *n*, the index '
- 'set\n'
- ' contains the numbers 0, 1, …, *n*-1. Item *i* of sequence *a* '
- 'is\n'
- ' selected by "a[i]".\n'
- '\n'
- ' Sequences also support slicing: "a[i:j]" selects all items with\n'
- ' index *k* such that *i* "<=" *k* "<" *j*. When used as an\n'
- ' expression, a slice is a sequence of the same type. This '
- 'implies\n'
- ' that the index set is renumbered so that it starts at 0.\n'
- '\n'
- ' Some sequences also support “extended slicing” with a third '
- '“step”\n'
- ' parameter: "a[i:j:k]" selects all items of *a* with index *x* '
- 'where\n'
- ' "x = i + n*k", *n* ">=" "0" and *i* "<=" *x* "<" *j*.\n'
- '\n'
- ' Sequences are distinguished according to their mutability:\n'
- '\n'
- ' Immutable sequences\n'
- ' An object of an immutable sequence type cannot change once it '
- 'is\n'
- ' created. (If the object contains references to other '
- 'objects,\n'
- ' these other objects may be mutable and may be changed; '
- 'however,\n'
- ' the collection of objects directly referenced by an '
- 'immutable\n'
- ' object cannot change.)\n'
- '\n'
- ' The following types are immutable sequences:\n'
- '\n'
- ' Strings\n'
- ' A string is a sequence of values that represent Unicode '
- 'code\n'
- ' points. All the code points in the range "U+0000 - '
- 'U+10FFFF"\n'
- ' can be represented in a string. Python doesn’t have a '
+ ' Python distinguishes between integers, floating point numbers, '
+ 'and\n'
+ ' complex numbers:\n'
+ '\n'
+ ' "numbers.Integral"\n'
+ ' These represent elements from the mathematical set of '
+ 'integers\n'
+ ' (positive and negative).\n'
+ '\n'
+ ' There are two types of integers:\n'
+ '\n'
+ ' Integers ("int")\n'
+ ' These represent numbers in an unlimited range, subject to\n'
+ ' available (virtual) memory only. For the purpose of '
+ 'shift\n'
+ ' and mask operations, a binary representation is assumed, '
+ 'and\n'
+ ' negative numbers are represented in a variant of 2’s\n'
+ ' complement which gives the illusion of an infinite string '
+ 'of\n'
+ ' sign bits extending to the left.\n'
+ '\n'
+ ' Booleans ("bool")\n'
+ ' These represent the truth values False and True. The two\n'
+ ' objects representing the values "False" and "True" are '
+ 'the\n'
+ ' only Boolean objects. The Boolean type is a subtype of '
+ 'the\n'
+ ' integer type, and Boolean values behave like the values 0 '
+ 'and\n'
+ ' 1, respectively, in almost all contexts, the exception '
+ 'being\n'
+ ' that when converted to a string, the strings ""False"" or\n'
+ ' ""True"" are returned, respectively.\n'
+ '\n'
+ ' The rules for integer representation are intended to give '
+ 'the\n'
+ ' most meaningful interpretation of shift and mask operations\n'
+ ' involving negative integers.\n'
+ '\n'
+ ' "numbers.Real" ("float")\n'
+ ' These represent machine-level double precision floating '
+ 'point\n'
+ ' numbers. You are at the mercy of the underlying machine\n'
+ ' architecture (and C or Java implementation) for the accepted\n'
+ ' range and handling of overflow. Python does not support '
+ 'single-\n'
+ ' precision floating point numbers; the savings in processor '
+ 'and\n'
+ ' memory usage that are usually the reason for using these are\n'
+ ' dwarfed by the overhead of using objects in Python, so there '
+ 'is\n'
+ ' no reason to complicate the language with two kinds of '
+ 'floating\n'
+ ' point numbers.\n'
+ '\n'
+ ' "numbers.Complex" ("complex")\n'
+ ' These represent complex numbers as a pair of machine-level\n'
+ ' double precision floating point numbers. The same caveats '
+ 'apply\n'
+ ' as for floating point numbers. The real and imaginary parts '
+ 'of a\n'
+ ' complex number "z" can be retrieved through the read-only\n'
+ ' attributes "z.real" and "z.imag".\n'
+ '\n'
+ 'Sequences\n'
+ ' These represent finite ordered sets indexed by non-negative\n'
+ ' numbers. The built-in function "len()" returns the number of '
+ 'items\n'
+ ' of a sequence. When the length of a sequence is *n*, the index '
+ 'set\n'
+ ' contains the numbers 0, 1, …, *n*-1. Item *i* of sequence *a* '
+ 'is\n'
+ ' selected by "a[i]".\n'
+ '\n'
+ ' Sequences also support slicing: "a[i:j]" selects all items with\n'
+ ' index *k* such that *i* "<=" *k* "<" *j*. When used as an\n'
+ ' expression, a slice is a sequence of the same type. This '
+ 'implies\n'
+ ' that the index set is renumbered so that it starts at 0.\n'
+ '\n'
+ ' Some sequences also support “extended slicing” with a third '
+ '“step”\n'
+ ' parameter: "a[i:j:k]" selects all items of *a* with index *x* '
+ 'where\n'
+ ' "x = i + n*k", *n* ">=" "0" and *i* "<=" *x* "<" *j*.\n'
+ '\n'
+ ' Sequences are distinguished according to their mutability:\n'
+ '\n'
+ ' Immutable sequences\n'
+ ' An object of an immutable sequence type cannot change once it '
+ 'is\n'
+ ' created. (If the object contains references to other '
+ 'objects,\n'
+ ' these other objects may be mutable and may be changed; '
+ 'however,\n'
+ ' the collection of objects directly referenced by an '
+ 'immutable\n'
+ ' object cannot change.)\n'
+ '\n'
+ ' The following types are immutable sequences:\n'
+ '\n'
+ ' Strings\n'
+ ' A string is a sequence of values that represent Unicode '
+ 'code\n'
+ ' points. All the code points in the range "U+0000 - '
+ 'U+10FFFF"\n'
+ ' can be represented in a string. Python doesn’t have a '
'"char"\n'
- ' type; instead, every code point in the string is '
- 'represented\n'
- ' as a string object with length "1". The built-in '
- 'function\n'
- ' "ord()" converts a code point from its string form to an\n'
- ' integer in the range "0 - 10FFFF"; "chr()" converts an\n'
- ' integer in the range "0 - 10FFFF" to the corresponding '
- 'length\n'
- ' "1" string object. "str.encode()" can be used to convert '
- 'a\n'
- ' "str" to "bytes" using the given text encoding, and\n'
- ' "bytes.decode()" can be used to achieve the opposite.\n'
- '\n'
- ' Tuples\n'
- ' The items of a tuple are arbitrary Python objects. Tuples '
- 'of\n'
- ' two or more items are formed by comma-separated lists of\n'
- ' expressions. A tuple of one item (a ‘singleton’) can be\n'
- ' formed by affixing a comma to an expression (an expression '
- 'by\n'
- ' itself does not create a tuple, since parentheses must be\n'
- ' usable for grouping of expressions). An empty tuple can '
- 'be\n'
- ' formed by an empty pair of parentheses.\n'
- '\n'
- ' Bytes\n'
- ' A bytes object is an immutable array. The items are '
- '8-bit\n'
- ' bytes, represented by integers in the range 0 <= x < 256.\n'
- ' Bytes literals (like "b\'abc\'") and the built-in '
- '"bytes()"\n'
- ' constructor can be used to create bytes objects. Also, '
- 'bytes\n'
- ' objects can be decoded to strings via the "decode()" '
- 'method.\n'
- '\n'
- ' Mutable sequences\n'
- ' Mutable sequences can be changed after they are created. '
- 'The\n'
- ' subscription and slicing notations can be used as the target '
- 'of\n'
- ' assignment and "del" (delete) statements.\n'
- '\n'
- ' There are currently two intrinsic mutable sequence types:\n'
- '\n'
- ' Lists\n'
- ' The items of a list are arbitrary Python objects. Lists '
- 'are\n'
- ' formed by placing a comma-separated list of expressions '
- 'in\n'
- ' square brackets. (Note that there are no special cases '
- 'needed\n'
- ' to form lists of length 0 or 1.)\n'
- '\n'
- ' Byte Arrays\n'
- ' A bytearray object is a mutable array. They are created '
- 'by\n'
- ' the built-in "bytearray()" constructor. Aside from being\n'
- ' mutable (and hence unhashable), byte arrays otherwise '
- 'provide\n'
- ' the same interface and functionality as immutable "bytes"\n'
- ' objects.\n'
- '\n'
- ' The extension module "array" provides an additional example '
- 'of a\n'
- ' mutable sequence type, as does the "collections" module.\n'
- '\n'
- 'Set types\n'
- ' These represent unordered, finite sets of unique, immutable\n'
- ' objects. As such, they cannot be indexed by any subscript. '
- 'However,\n'
- ' they can be iterated over, and the built-in function "len()"\n'
- ' returns the number of items in a set. Common uses for sets are '
- 'fast\n'
- ' membership testing, removing duplicates from a sequence, and\n'
- ' computing mathematical operations such as intersection, union,\n'
- ' difference, and symmetric difference.\n'
- '\n'
- ' For set elements, the same immutability rules apply as for\n'
- ' dictionary keys. Note that numeric types obey the normal rules '
- 'for\n'
- ' numeric comparison: if two numbers compare equal (e.g., "1" and\n'
- ' "1.0"), only one of them can be contained in a set.\n'
- '\n'
- ' There are currently two intrinsic set types:\n'
- '\n'
- ' Sets\n'
- ' These represent a mutable set. They are created by the '
- 'built-in\n'
- ' "set()" constructor and can be modified afterwards by '
- 'several\n'
- ' methods, such as "add()".\n'
- '\n'
- ' Frozen sets\n'
- ' These represent an immutable set. They are created by the\n'
- ' built-in "frozenset()" constructor. As a frozenset is '
- 'immutable\n'
- ' and *hashable*, it can be used again as an element of '
- 'another\n'
- ' set, or as a dictionary key.\n'
- '\n'
- 'Mappings\n'
- ' These represent finite sets of objects indexed by arbitrary '
- 'index\n'
- ' sets. The subscript notation "a[k]" selects the item indexed by '
- '"k"\n'
- ' from the mapping "a"; this can be used in expressions and as '
- 'the\n'
- ' target of assignments or "del" statements. The built-in '
- 'function\n'
- ' "len()" returns the number of items in a mapping.\n'
- '\n'
- ' There is currently a single intrinsic mapping type:\n'
- '\n'
- ' Dictionaries\n'
- ' These represent finite sets of objects indexed by nearly\n'
- ' arbitrary values. The only types of values not acceptable '
- 'as\n'
- ' keys are values containing lists or dictionaries or other\n'
- ' mutable types that are compared by value rather than by '
- 'object\n'
- ' identity, the reason being that the efficient implementation '
- 'of\n'
- ' dictionaries requires a key’s hash value to remain constant.\n'
- ' Numeric types used for keys obey the normal rules for '
- 'numeric\n'
- ' comparison: if two numbers compare equal (e.g., "1" and '
- '"1.0")\n'
- ' then they can be used interchangeably to index the same\n'
- ' dictionary entry.\n'
- '\n'
+ ' type; instead, every code point in the string is '
+ 'represented\n'
+ ' as a string object with length "1". The built-in '
+ 'function\n'
+ ' "ord()" converts a code point from its string form to an\n'
+ ' integer in the range "0 - 10FFFF"; "chr()" converts an\n'
+ ' integer in the range "0 - 10FFFF" to the corresponding '
+ 'length\n'
+ ' "1" string object. "str.encode()" can be used to convert '
+ 'a\n'
+ ' "str" to "bytes" using the given text encoding, and\n'
+ ' "bytes.decode()" can be used to achieve the opposite.\n'
+ '\n'
+ ' Tuples\n'
+ ' The items of a tuple are arbitrary Python objects. Tuples '
+ 'of\n'
+ ' two or more items are formed by comma-separated lists of\n'
+ ' expressions. A tuple of one item (a ‘singleton’) can be\n'
+ ' formed by affixing a comma to an expression (an expression '
+ 'by\n'
+ ' itself does not create a tuple, since parentheses must be\n'
+ ' usable for grouping of expressions). An empty tuple can '
+ 'be\n'
+ ' formed by an empty pair of parentheses.\n'
+ '\n'
+ ' Bytes\n'
+ ' A bytes object is an immutable array. The items are '
+ '8-bit\n'
+ ' bytes, represented by integers in the range 0 <= x < 256.\n'
+ ' Bytes literals (like "b\'abc\'") and the built-in '
+ '"bytes()"\n'
+ ' constructor can be used to create bytes objects. Also, '
+ 'bytes\n'
+ ' objects can be decoded to strings via the "decode()" '
+ 'method.\n'
+ '\n'
+ ' Mutable sequences\n'
+ ' Mutable sequences can be changed after they are created. '
+ 'The\n'
+ ' subscription and slicing notations can be used as the target '
+ 'of\n'
+ ' assignment and "del" (delete) statements.\n'
+ '\n'
+ ' There are currently two intrinsic mutable sequence types:\n'
+ '\n'
+ ' Lists\n'
+ ' The items of a list are arbitrary Python objects. Lists '
+ 'are\n'
+ ' formed by placing a comma-separated list of expressions '
+ 'in\n'
+ ' square brackets. (Note that there are no special cases '
+ 'needed\n'
+ ' to form lists of length 0 or 1.)\n'
+ '\n'
+ ' Byte Arrays\n'
+ ' A bytearray object is a mutable array. They are created '
+ 'by\n'
+ ' the built-in "bytearray()" constructor. Aside from being\n'
+ ' mutable (and hence unhashable), byte arrays otherwise '
+ 'provide\n'
+ ' the same interface and functionality as immutable "bytes"\n'
+ ' objects.\n'
+ '\n'
+ ' The extension module "array" provides an additional example '
+ 'of a\n'
+ ' mutable sequence type, as does the "collections" module.\n'
+ '\n'
+ 'Set types\n'
+ ' These represent unordered, finite sets of unique, immutable\n'
+ ' objects. As such, they cannot be indexed by any subscript. '
+ 'However,\n'
+ ' they can be iterated over, and the built-in function "len()"\n'
+ ' returns the number of items in a set. Common uses for sets are '
+ 'fast\n'
+ ' membership testing, removing duplicates from a sequence, and\n'
+ ' computing mathematical operations such as intersection, union,\n'
+ ' difference, and symmetric difference.\n'
+ '\n'
+ ' For set elements, the same immutability rules apply as for\n'
+ ' dictionary keys. Note that numeric types obey the normal rules '
+ 'for\n'
+ ' numeric comparison: if two numbers compare equal (e.g., "1" and\n'
+ ' "1.0"), only one of them can be contained in a set.\n'
+ '\n'
+ ' There are currently two intrinsic set types:\n'
+ '\n'
+ ' Sets\n'
+ ' These represent a mutable set. They are created by the '
+ 'built-in\n'
+ ' "set()" constructor and can be modified afterwards by '
+ 'several\n'
+ ' methods, such as "add()".\n'
+ '\n'
+ ' Frozen sets\n'
+ ' These represent an immutable set. They are created by the\n'
+ ' built-in "frozenset()" constructor. As a frozenset is '
+ 'immutable\n'
+ ' and *hashable*, it can be used again as an element of '
+ 'another\n'
+ ' set, or as a dictionary key.\n'
+ '\n'
+ 'Mappings\n'
+ ' These represent finite sets of objects indexed by arbitrary '
+ 'index\n'
+ ' sets. The subscript notation "a[k]" selects the item indexed by '
+ '"k"\n'
+ ' from the mapping "a"; this can be used in expressions and as '
+ 'the\n'
+ ' target of assignments or "del" statements. The built-in '
+ 'function\n'
+ ' "len()" returns the number of items in a mapping.\n'
+ '\n'
+ ' There is currently a single intrinsic mapping type:\n'
+ '\n'
+ ' Dictionaries\n'
+ ' These represent finite sets of objects indexed by nearly\n'
+ ' arbitrary values. The only types of values not acceptable '
+ 'as\n'
+ ' keys are values containing lists or dictionaries or other\n'
+ ' mutable types that are compared by value rather than by '
+ 'object\n'
+ ' identity, the reason being that the efficient implementation '
+ 'of\n'
+ ' dictionaries requires a key’s hash value to remain constant.\n'
+ ' Numeric types used for keys obey the normal rules for '
+ 'numeric\n'
+ ' comparison: if two numbers compare equal (e.g., "1" and '
+ '"1.0")\n'
+ ' then they can be used interchangeably to index the same\n'
+ ' dictionary entry.\n'
+ '\n'
' Dictionaries preserve insertion order, meaning that keys will '
'be\n'
' produced in the same order they were added sequentially over '
@@ -11971,14 +11971,14 @@ topics = {'assert': 'The "assert" statement\n'
'the\n'
' end instead of keeping its old place.\n'
'\n'
- ' Dictionaries are mutable; they can be created by the "{...}"\n'
- ' notation (see section Dictionary displays).\n'
- '\n'
- ' The extension modules "dbm.ndbm" and "dbm.gnu" provide\n'
- ' additional examples of mapping types, as does the '
- '"collections"\n'
- ' module.\n'
- '\n'
+ ' Dictionaries are mutable; they can be created by the "{...}"\n'
+ ' notation (see section Dictionary displays).\n'
+ '\n'
+ ' The extension modules "dbm.ndbm" and "dbm.gnu" provide\n'
+ ' additional examples of mapping types, as does the '
+ '"collections"\n'
+ ' module.\n'
+ '\n'
' Changed in version 3.7: Dictionaries did not preserve '
'insertion\n'
' order in versions of Python before 3.6. In CPython 3.6,\n'
@@ -11986,501 +11986,501 @@ topics = {'assert': 'The "assert" statement\n'
' implementation detail at that time rather than a language\n'
' guarantee.\n'
'\n'
- 'Callable types\n'
- ' These are the types to which the function call operation (see\n'
- ' section Calls) can be applied:\n'
- '\n'
- ' User-defined functions\n'
- ' A user-defined function object is created by a function\n'
- ' definition (see section Function definitions). It should be\n'
- ' called with an argument list containing the same number of '
- 'items\n'
- ' as the function’s formal parameter list.\n'
- '\n'
- ' Special attributes:\n'
- '\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
- ' | Attribute | Meaning '
- '| |\n'
- ' '
+ 'Callable types\n'
+ ' These are the types to which the function call operation (see\n'
+ ' section Calls) can be applied:\n'
+ '\n'
+ ' User-defined functions\n'
+ ' A user-defined function object is created by a function\n'
+ ' definition (see section Function definitions). It should be\n'
+ ' called with an argument list containing the same number of '
+ 'items\n'
+ ' as the function’s formal parameter list.\n'
+ '\n'
+ ' Special attributes:\n'
+ '\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
+ ' | Attribute | Meaning '
+ '| |\n'
+ ' '
'|===========================|=================================|=============|\n'
- ' | "__doc__" | The function’s documentation '
- '| Writable |\n'
- ' | | string, or "None" if '
- '| |\n'
- ' | | unavailable; not inherited by '
- '| |\n'
+ ' | "__doc__" | The function’s documentation '
+ '| Writable |\n'
+ ' | | string, or "None" if '
+ '| |\n'
+ ' | | unavailable; not inherited by '
+ '| |\n'
' | | subclasses. '
- '| |\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
+ '| |\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
' | "__name__" | The function’s name. '
- '| Writable |\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
+ '| Writable |\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
' | "__qualname__" | The function’s *qualified '
- '| Writable |\n'
+ '| Writable |\n'
' | | name*. New in version 3.3. '
- '| |\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
- ' | "__module__" | The name of the module the '
- '| Writable |\n'
- ' | | function was defined in, or '
- '| |\n'
- ' | | "None" if unavailable. '
- '| |\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
- ' | "__defaults__" | A tuple containing default '
- '| Writable |\n'
- ' | | argument values for those '
- '| |\n'
- ' | | arguments that have defaults, '
- '| |\n'
- ' | | or "None" if no arguments have '
- '| |\n'
+ '| |\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
+ ' | "__module__" | The name of the module the '
+ '| Writable |\n'
+ ' | | function was defined in, or '
+ '| |\n'
+ ' | | "None" if unavailable. '
+ '| |\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
+ ' | "__defaults__" | A tuple containing default '
+ '| Writable |\n'
+ ' | | argument values for those '
+ '| |\n'
+ ' | | arguments that have defaults, '
+ '| |\n'
+ ' | | or "None" if no arguments have '
+ '| |\n'
' | | a default value. '
- '| |\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
- ' | "__code__" | The code object representing '
- '| Writable |\n'
- ' | | the compiled function body. '
- '| |\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
- ' | "__globals__" | A reference to the dictionary '
- '| Read-only |\n'
- ' | | that holds the function’s '
- '| |\n'
- ' | | global variables — the global '
- '| |\n'
- ' | | namespace of the module in '
- '| |\n'
- ' | | which the function was defined. '
- '| |\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
- ' | "__dict__" | The namespace supporting '
- '| Writable |\n'
- ' | | arbitrary function attributes. '
- '| |\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
- ' | "__closure__" | "None" or a tuple of cells that '
- '| Read-only |\n'
- ' | | contain bindings for the '
- '| |\n'
- ' | | function’s free variables. See '
- '| |\n'
- ' | | below for information on the '
- '| |\n'
- ' | | "cell_contents" attribute. '
- '| |\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
- ' | "__annotations__" | A dict containing annotations '
- '| Writable |\n'
- ' | | of parameters. The keys of the '
- '| |\n'
- ' | | dict are the parameter names, '
- '| |\n'
- ' | | and "\'return\'" for the '
- 'return | |\n'
- ' | | annotation, if provided. '
- '| |\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
- ' | "__kwdefaults__" | A dict containing defaults for '
- '| Writable |\n'
- ' | | keyword-only parameters. '
- '| |\n'
- ' '
- '+---------------------------+---------------------------------+-------------+\n'
- '\n'
- ' Most of the attributes labelled “Writable” check the type of '
- 'the\n'
- ' assigned value.\n'
- '\n'
- ' Function objects also support getting and setting arbitrary\n'
- ' attributes, which can be used, for example, to attach '
- 'metadata\n'
- ' to functions. Regular attribute dot-notation is used to get '
- 'and\n'
- ' set such attributes. *Note that the current implementation '
- 'only\n'
- ' supports function attributes on user-defined functions. '
- 'Function\n'
- ' attributes on built-in functions may be supported in the\n'
- ' future.*\n'
- '\n'
- ' A cell object has the attribute "cell_contents". This can be\n'
- ' used to get the value of the cell, as well as set the value.\n'
- '\n'
- ' Additional information about a function’s definition can be\n'
- ' retrieved from its code object; see the description of '
- 'internal\n'
+ '| |\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
+ ' | "__code__" | The code object representing '
+ '| Writable |\n'
+ ' | | the compiled function body. '
+ '| |\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
+ ' | "__globals__" | A reference to the dictionary '
+ '| Read-only |\n'
+ ' | | that holds the function’s '
+ '| |\n'
+ ' | | global variables — the global '
+ '| |\n'
+ ' | | namespace of the module in '
+ '| |\n'
+ ' | | which the function was defined. '
+ '| |\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
+ ' | "__dict__" | The namespace supporting '
+ '| Writable |\n'
+ ' | | arbitrary function attributes. '
+ '| |\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
+ ' | "__closure__" | "None" or a tuple of cells that '
+ '| Read-only |\n'
+ ' | | contain bindings for the '
+ '| |\n'
+ ' | | function’s free variables. See '
+ '| |\n'
+ ' | | below for information on the '
+ '| |\n'
+ ' | | "cell_contents" attribute. '
+ '| |\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
+ ' | "__annotations__" | A dict containing annotations '
+ '| Writable |\n'
+ ' | | of parameters. The keys of the '
+ '| |\n'
+ ' | | dict are the parameter names, '
+ '| |\n'
+ ' | | and "\'return\'" for the '
+ 'return | |\n'
+ ' | | annotation, if provided. '
+ '| |\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
+ ' | "__kwdefaults__" | A dict containing defaults for '
+ '| Writable |\n'
+ ' | | keyword-only parameters. '
+ '| |\n'
+ ' '
+ '+---------------------------+---------------------------------+-------------+\n'
+ '\n'
+ ' Most of the attributes labelled “Writable” check the type of '
+ 'the\n'
+ ' assigned value.\n'
+ '\n'
+ ' Function objects also support getting and setting arbitrary\n'
+ ' attributes, which can be used, for example, to attach '
+ 'metadata\n'
+ ' to functions. Regular attribute dot-notation is used to get '
+ 'and\n'
+ ' set such attributes. *Note that the current implementation '
+ 'only\n'
+ ' supports function attributes on user-defined functions. '
+ 'Function\n'
+ ' attributes on built-in functions may be supported in the\n'
+ ' future.*\n'
+ '\n'
+ ' A cell object has the attribute "cell_contents". This can be\n'
+ ' used to get the value of the cell, as well as set the value.\n'
+ '\n'
+ ' Additional information about a function’s definition can be\n'
+ ' retrieved from its code object; see the description of '
+ 'internal\n'
' types below. The "cell" type can be accessed in the "types"\n'
' module.\n'
- '\n'
- ' Instance methods\n'
- ' An instance method object combines a class, a class instance '
- 'and\n'
- ' any callable object (normally a user-defined function).\n'
- '\n'
- ' Special read-only attributes: "__self__" is the class '
- 'instance\n'
- ' object, "__func__" is the function object; "__doc__" is the\n'
- ' method’s documentation (same as "__func__.__doc__"); '
- '"__name__"\n'
- ' is the method name (same as "__func__.__name__"); '
- '"__module__"\n'
- ' is the name of the module the method was defined in, or '
- '"None"\n'
- ' if unavailable.\n'
- '\n'
- ' Methods also support accessing (but not setting) the '
- 'arbitrary\n'
- ' function attributes on the underlying function object.\n'
- '\n'
- ' User-defined method objects may be created when getting an\n'
- ' attribute of a class (perhaps via an instance of that class), '
- 'if\n'
- ' that attribute is a user-defined function object or a class\n'
- ' method object.\n'
- '\n'
- ' When an instance method object is created by retrieving a '
- 'user-\n'
- ' defined function object from a class via one of its '
- 'instances,\n'
- ' its "__self__" attribute is the instance, and the method '
- 'object\n'
- ' is said to be bound. The new method’s "__func__" attribute '
- 'is\n'
- ' the original function object.\n'
- '\n'
- ' When an instance method object is created by retrieving a '
- 'class\n'
- ' method object from a class or instance, its "__self__" '
- 'attribute\n'
- ' is the class itself, and its "__func__" attribute is the\n'
- ' function object underlying the class method.\n'
- '\n'
- ' When an instance method object is called, the underlying\n'
- ' function ("__func__") is called, inserting the class '
- 'instance\n'
- ' ("__self__") in front of the argument list. For instance, '
- 'when\n'
- ' "C" is a class which contains a definition for a function '
- '"f()",\n'
- ' and "x" is an instance of "C", calling "x.f(1)" is equivalent '
- 'to\n'
- ' calling "C.f(x, 1)".\n'
- '\n'
- ' When an instance method object is derived from a class '
- 'method\n'
- ' object, the “class instance” stored in "__self__" will '
- 'actually\n'
- ' be the class itself, so that calling either "x.f(1)" or '
- '"C.f(1)"\n'
- ' is equivalent to calling "f(C,1)" where "f" is the '
- 'underlying\n'
- ' function.\n'
- '\n'
- ' Note that the transformation from function object to '
- 'instance\n'
- ' method object happens each time the attribute is retrieved '
- 'from\n'
- ' the instance. In some cases, a fruitful optimization is to\n'
- ' assign the attribute to a local variable and call that local\n'
- ' variable. Also notice that this transformation only happens '
- 'for\n'
- ' user-defined functions; other callable objects (and all non-\n'
- ' callable objects) are retrieved without transformation. It '
- 'is\n'
- ' also important to note that user-defined functions which are\n'
- ' attributes of a class instance are not converted to bound\n'
- ' methods; this *only* happens when the function is an '
- 'attribute\n'
- ' of the class.\n'
- '\n'
- ' Generator functions\n'
- ' A function or method which uses the "yield" statement (see\n'
- ' section The yield statement) is called a *generator '
- 'function*.\n'
- ' Such a function, when called, always returns an iterator '
- 'object\n'
- ' which can be used to execute the body of the function: '
- 'calling\n'
- ' the iterator’s "iterator.__next__()" method will cause the\n'
- ' function to execute until it provides a value using the '
- '"yield"\n'
- ' statement. When the function executes a "return" statement '
- 'or\n'
- ' falls off the end, a "StopIteration" exception is raised and '
- 'the\n'
- ' iterator will have reached the end of the set of values to '
- 'be\n'
- ' returned.\n'
- '\n'
- ' Coroutine functions\n'
- ' A function or method which is defined using "async def" is\n'
- ' called a *coroutine function*. Such a function, when '
- 'called,\n'
- ' returns a *coroutine* object. It may contain "await"\n'
- ' expressions, as well as "async with" and "async for" '
- 'statements.\n'
- ' See also the Coroutine Objects section.\n'
- '\n'
- ' Asynchronous generator functions\n'
- ' A function or method which is defined using "async def" and\n'
- ' which uses the "yield" statement is called a *asynchronous\n'
- ' generator function*. Such a function, when called, returns '
- 'an\n'
- ' asynchronous iterator object which can be used in an "async '
- 'for"\n'
- ' statement to execute the body of the function.\n'
- '\n'
+ '\n'
+ ' Instance methods\n'
+ ' An instance method object combines a class, a class instance '
+ 'and\n'
+ ' any callable object (normally a user-defined function).\n'
+ '\n'
+ ' Special read-only attributes: "__self__" is the class '
+ 'instance\n'
+ ' object, "__func__" is the function object; "__doc__" is the\n'
+ ' method’s documentation (same as "__func__.__doc__"); '
+ '"__name__"\n'
+ ' is the method name (same as "__func__.__name__"); '
+ '"__module__"\n'
+ ' is the name of the module the method was defined in, or '
+ '"None"\n'
+ ' if unavailable.\n'
+ '\n'
+ ' Methods also support accessing (but not setting) the '
+ 'arbitrary\n'
+ ' function attributes on the underlying function object.\n'
+ '\n'
+ ' User-defined method objects may be created when getting an\n'
+ ' attribute of a class (perhaps via an instance of that class), '
+ 'if\n'
+ ' that attribute is a user-defined function object or a class\n'
+ ' method object.\n'
+ '\n'
+ ' When an instance method object is created by retrieving a '
+ 'user-\n'
+ ' defined function object from a class via one of its '
+ 'instances,\n'
+ ' its "__self__" attribute is the instance, and the method '
+ 'object\n'
+ ' is said to be bound. The new method’s "__func__" attribute '
+ 'is\n'
+ ' the original function object.\n'
+ '\n'
+ ' When an instance method object is created by retrieving a '
+ 'class\n'
+ ' method object from a class or instance, its "__self__" '
+ 'attribute\n'
+ ' is the class itself, and its "__func__" attribute is the\n'
+ ' function object underlying the class method.\n'
+ '\n'
+ ' When an instance method object is called, the underlying\n'
+ ' function ("__func__") is called, inserting the class '
+ 'instance\n'
+ ' ("__self__") in front of the argument list. For instance, '
+ 'when\n'
+ ' "C" is a class which contains a definition for a function '
+ '"f()",\n'
+ ' and "x" is an instance of "C", calling "x.f(1)" is equivalent '
+ 'to\n'
+ ' calling "C.f(x, 1)".\n'
+ '\n'
+ ' When an instance method object is derived from a class '
+ 'method\n'
+ ' object, the “class instance” stored in "__self__" will '
+ 'actually\n'
+ ' be the class itself, so that calling either "x.f(1)" or '
+ '"C.f(1)"\n'
+ ' is equivalent to calling "f(C,1)" where "f" is the '
+ 'underlying\n'
+ ' function.\n'
+ '\n'
+ ' Note that the transformation from function object to '
+ 'instance\n'
+ ' method object happens each time the attribute is retrieved '
+ 'from\n'
+ ' the instance. In some cases, a fruitful optimization is to\n'
+ ' assign the attribute to a local variable and call that local\n'
+ ' variable. Also notice that this transformation only happens '
+ 'for\n'
+ ' user-defined functions; other callable objects (and all non-\n'
+ ' callable objects) are retrieved without transformation. It '
+ 'is\n'
+ ' also important to note that user-defined functions which are\n'
+ ' attributes of a class instance are not converted to bound\n'
+ ' methods; this *only* happens when the function is an '
+ 'attribute\n'
+ ' of the class.\n'
+ '\n'
+ ' Generator functions\n'
+ ' A function or method which uses the "yield" statement (see\n'
+ ' section The yield statement) is called a *generator '
+ 'function*.\n'
+ ' Such a function, when called, always returns an iterator '
+ 'object\n'
+ ' which can be used to execute the body of the function: '
+ 'calling\n'
+ ' the iterator’s "iterator.__next__()" method will cause the\n'
+ ' function to execute until it provides a value using the '
+ '"yield"\n'
+ ' statement. When the function executes a "return" statement '
+ 'or\n'
+ ' falls off the end, a "StopIteration" exception is raised and '
+ 'the\n'
+ ' iterator will have reached the end of the set of values to '
+ 'be\n'
+ ' returned.\n'
+ '\n'
+ ' Coroutine functions\n'
+ ' A function or method which is defined using "async def" is\n'
+ ' called a *coroutine function*. Such a function, when '
+ 'called,\n'
+ ' returns a *coroutine* object. It may contain "await"\n'
+ ' expressions, as well as "async with" and "async for" '
+ 'statements.\n'
+ ' See also the Coroutine Objects section.\n'
+ '\n'
+ ' Asynchronous generator functions\n'
+ ' A function or method which is defined using "async def" and\n'
+ ' which uses the "yield" statement is called a *asynchronous\n'
+ ' generator function*. Such a function, when called, returns '
+ 'an\n'
+ ' asynchronous iterator object which can be used in an "async '
+ 'for"\n'
+ ' statement to execute the body of the function.\n'
+ '\n'
' Calling the asynchronous iterator’s "aiterator.__anext__" '
'method\n'
' will return an *awaitable* which when awaited will execute '
'until\n'
' it provides a value using the "yield" expression. When the\n'
' function executes an empty "return" statement or falls off '
- 'the\n'
+ 'the\n'
' end, a "StopAsyncIteration" exception is raised and the\n'
- ' asynchronous iterator will have reached the end of the set '
- 'of\n'
- ' values to be yielded.\n'
- '\n'
- ' Built-in functions\n'
- ' A built-in function object is a wrapper around a C function.\n'
- ' Examples of built-in functions are "len()" and "math.sin()"\n'
- ' ("math" is a standard built-in module). The number and type '
- 'of\n'
- ' the arguments are determined by the C function. Special '
- 'read-\n'
- ' only attributes: "__doc__" is the function’s documentation\n'
- ' string, or "None" if unavailable; "__name__" is the '
- 'function’s\n'
- ' name; "__self__" is set to "None" (but see the next item);\n'
- ' "__module__" is the name of the module the function was '
- 'defined\n'
- ' in or "None" if unavailable.\n'
- '\n'
- ' Built-in methods\n'
- ' This is really a different disguise of a built-in function, '
- 'this\n'
- ' time containing an object passed to the C function as an\n'
- ' implicit extra argument. An example of a built-in method is\n'
- ' "alist.append()", assuming *alist* is a list object. In this\n'
- ' case, the special read-only attribute "__self__" is set to '
- 'the\n'
- ' object denoted by *alist*.\n'
- '\n'
- ' Classes\n'
- ' Classes are callable. These objects normally act as '
- 'factories\n'
- ' for new instances of themselves, but variations are possible '
- 'for\n'
- ' class types that override "__new__()". The arguments of the\n'
- ' call are passed to "__new__()" and, in the typical case, to\n'
- ' "__init__()" to initialize the new instance.\n'
- '\n'
- ' Class Instances\n'
- ' Instances of arbitrary classes can be made callable by '
- 'defining\n'
- ' a "__call__()" method in their class.\n'
- '\n'
- 'Modules\n'
- ' Modules are a basic organizational unit of Python code, and are\n'
- ' created by the import system as invoked either by the "import"\n'
- ' statement, or by calling functions such as\n'
- ' "importlib.import_module()" and built-in "__import__()". A '
- 'module\n'
- ' object has a namespace implemented by a dictionary object (this '
- 'is\n'
- ' the dictionary referenced by the "__globals__" attribute of\n'
- ' functions defined in the module). Attribute references are\n'
- ' translated to lookups in this dictionary, e.g., "m.x" is '
- 'equivalent\n'
- ' to "m.__dict__["x"]". A module object does not contain the code\n'
- ' object used to initialize the module (since it isn’t needed '
- 'once\n'
- ' the initialization is done).\n'
- '\n'
- ' Attribute assignment updates the module’s namespace dictionary,\n'
- ' e.g., "m.x = 1" is equivalent to "m.__dict__["x"] = 1".\n'
- '\n'
- ' Predefined (writable) attributes: "__name__" is the module’s '
- 'name;\n'
- ' "__doc__" is the module’s documentation string, or "None" if\n'
- ' unavailable; "__annotations__" (optional) is a dictionary\n'
- ' containing *variable annotations* collected during module body\n'
- ' execution; "__file__" is the pathname of the file from which '
- 'the\n'
- ' module was loaded, if it was loaded from a file. The "__file__"\n'
- ' attribute may be missing for certain types of modules, such as '
- 'C\n'
- ' modules that are statically linked into the interpreter; for\n'
- ' extension modules loaded dynamically from a shared library, it '
- 'is\n'
- ' the pathname of the shared library file.\n'
- '\n'
- ' Special read-only attribute: "__dict__" is the module’s '
- 'namespace\n'
- ' as a dictionary object.\n'
- '\n'
- ' **CPython implementation detail:** Because of the way CPython\n'
- ' clears module dictionaries, the module dictionary will be '
- 'cleared\n'
- ' when the module falls out of scope even if the dictionary still '
- 'has\n'
- ' live references. To avoid this, copy the dictionary or keep '
- 'the\n'
- ' module around while using its dictionary directly.\n'
- '\n'
- 'Custom classes\n'
- ' Custom class types are typically created by class definitions '
- '(see\n'
- ' section Class definitions). A class has a namespace implemented '
- 'by\n'
- ' a dictionary object. Class attribute references are translated '
- 'to\n'
- ' lookups in this dictionary, e.g., "C.x" is translated to\n'
- ' "C.__dict__["x"]" (although there are a number of hooks which '
- 'allow\n'
- ' for other means of locating attributes). When the attribute name '
- 'is\n'
- ' not found there, the attribute search continues in the base\n'
- ' classes. This search of the base classes uses the C3 method\n'
- ' resolution order which behaves correctly even in the presence '
- 'of\n'
- ' ‘diamond’ inheritance structures where there are multiple\n'
- ' inheritance paths leading back to a common ancestor. Additional\n'
- ' details on the C3 MRO used by Python can be found in the\n'
- ' documentation accompanying the 2.3 release at\n'
- ' https://www.python.org/download/releases/2.3/mro/.\n'
- '\n'
- ' When a class attribute reference (for class "C", say) would '
- 'yield a\n'
- ' class method object, it is transformed into an instance method\n'
- ' object whose "__self__" attribute is "C". When it would yield '
- 'a\n'
- ' static method object, it is transformed into the object wrapped '
- 'by\n'
- ' the static method object. See section Implementing Descriptors '
- 'for\n'
- ' another way in which attributes retrieved from a class may '
- 'differ\n'
- ' from those actually contained in its "__dict__".\n'
- '\n'
- ' Class attribute assignments update the class’s dictionary, '
- 'never\n'
- ' the dictionary of a base class.\n'
- '\n'
- ' A class object can be called (see above) to yield a class '
- 'instance\n'
- ' (see below).\n'
- '\n'
- ' Special attributes: "__name__" is the class name; "__module__" '
- 'is\n'
- ' the module name in which the class was defined; "__dict__" is '
- 'the\n'
- ' dictionary containing the class’s namespace; "__bases__" is a '
- 'tuple\n'
- ' containing the base classes, in the order of their occurrence '
- 'in\n'
- ' the base class list; "__doc__" is the class’s documentation '
- 'string,\n'
- ' or "None" if undefined; "__annotations__" (optional) is a\n'
- ' dictionary containing *variable annotations* collected during '
- 'class\n'
- ' body execution.\n'
- '\n'
- 'Class instances\n'
- ' A class instance is created by calling a class object (see '
- 'above).\n'
- ' A class instance has a namespace implemented as a dictionary '
- 'which\n'
- ' is the first place in which attribute references are searched.\n'
- ' When an attribute is not found there, and the instance’s class '
- 'has\n'
- ' an attribute by that name, the search continues with the class\n'
- ' attributes. If a class attribute is found that is a '
- 'user-defined\n'
- ' function object, it is transformed into an instance method '
- 'object\n'
- ' whose "__self__" attribute is the instance. Static method and\n'
- ' class method objects are also transformed; see above under\n'
- ' “Classes”. See section Implementing Descriptors for another way '
- 'in\n'
- ' which attributes of a class retrieved via its instances may '
- 'differ\n'
- ' from the objects actually stored in the class’s "__dict__". If '
- 'no\n'
- ' class attribute is found, and the object’s class has a\n'
- ' "__getattr__()" method, that is called to satisfy the lookup.\n'
- '\n'
- ' Attribute assignments and deletions update the instance’s\n'
- ' dictionary, never a class’s dictionary. If the class has a\n'
- ' "__setattr__()" or "__delattr__()" method, this is called '
- 'instead\n'
- ' of updating the instance dictionary directly.\n'
- '\n'
- ' Class instances can pretend to be numbers, sequences, or '
- 'mappings\n'
- ' if they have methods with certain special names. See section\n'
- ' Special method names.\n'
- '\n'
- ' Special attributes: "__dict__" is the attribute dictionary;\n'
- ' "__class__" is the instance’s class.\n'
- '\n'
- 'I/O objects (also known as file objects)\n'
- ' A *file object* represents an open file. Various shortcuts are\n'
- ' available to create file objects: the "open()" built-in '
- 'function,\n'
- ' and also "os.popen()", "os.fdopen()", and the "makefile()" '
- 'method\n'
- ' of socket objects (and perhaps by other functions or methods\n'
- ' provided by extension modules).\n'
- '\n'
- ' The objects "sys.stdin", "sys.stdout" and "sys.stderr" are\n'
- ' initialized to file objects corresponding to the interpreter’s\n'
- ' standard input, output and error streams; they are all open in '
- 'text\n'
- ' mode and therefore follow the interface defined by the\n'
- ' "io.TextIOBase" abstract class.\n'
- '\n'
- 'Internal types\n'
- ' A few types used internally by the interpreter are exposed to '
- 'the\n'
- ' user. Their definitions may change with future versions of the\n'
- ' interpreter, but they are mentioned here for completeness.\n'
- '\n'
- ' Code objects\n'
- ' Code objects represent *byte-compiled* executable Python '
- 'code,\n'
- ' or *bytecode*. The difference between a code object and a\n'
- ' function object is that the function object contains an '
- 'explicit\n'
- ' reference to the function’s globals (the module in which it '
- 'was\n'
- ' defined), while a code object contains no context; also the\n'
- ' default argument values are stored in the function object, '
- 'not\n'
- ' in the code object (because they represent values calculated '
- 'at\n'
- ' run-time). Unlike function objects, code objects are '
- 'immutable\n'
- ' and contain no references (directly or indirectly) to '
- 'mutable\n'
- ' objects.\n'
- '\n'
- ' Special read-only attributes: "co_name" gives the function '
- 'name;\n'
+ ' asynchronous iterator will have reached the end of the set '
+ 'of\n'
+ ' values to be yielded.\n'
+ '\n'
+ ' Built-in functions\n'
+ ' A built-in function object is a wrapper around a C function.\n'
+ ' Examples of built-in functions are "len()" and "math.sin()"\n'
+ ' ("math" is a standard built-in module). The number and type '
+ 'of\n'
+ ' the arguments are determined by the C function. Special '
+ 'read-\n'
+ ' only attributes: "__doc__" is the function’s documentation\n'
+ ' string, or "None" if unavailable; "__name__" is the '
+ 'function’s\n'
+ ' name; "__self__" is set to "None" (but see the next item);\n'
+ ' "__module__" is the name of the module the function was '
+ 'defined\n'
+ ' in or "None" if unavailable.\n'
+ '\n'
+ ' Built-in methods\n'
+ ' This is really a different disguise of a built-in function, '
+ 'this\n'
+ ' time containing an object passed to the C function as an\n'
+ ' implicit extra argument. An example of a built-in method is\n'
+ ' "alist.append()", assuming *alist* is a list object. In this\n'
+ ' case, the special read-only attribute "__self__" is set to '
+ 'the\n'
+ ' object denoted by *alist*.\n'
+ '\n'
+ ' Classes\n'
+ ' Classes are callable. These objects normally act as '
+ 'factories\n'
+ ' for new instances of themselves, but variations are possible '
+ 'for\n'
+ ' class types that override "__new__()". The arguments of the\n'
+ ' call are passed to "__new__()" and, in the typical case, to\n'
+ ' "__init__()" to initialize the new instance.\n'
+ '\n'
+ ' Class Instances\n'
+ ' Instances of arbitrary classes can be made callable by '
+ 'defining\n'
+ ' a "__call__()" method in their class.\n'
+ '\n'
+ 'Modules\n'
+ ' Modules are a basic organizational unit of Python code, and are\n'
+ ' created by the import system as invoked either by the "import"\n'
+ ' statement, or by calling functions such as\n'
+ ' "importlib.import_module()" and built-in "__import__()". A '
+ 'module\n'
+ ' object has a namespace implemented by a dictionary object (this '
+ 'is\n'
+ ' the dictionary referenced by the "__globals__" attribute of\n'
+ ' functions defined in the module). Attribute references are\n'
+ ' translated to lookups in this dictionary, e.g., "m.x" is '
+ 'equivalent\n'
+ ' to "m.__dict__["x"]". A module object does not contain the code\n'
+ ' object used to initialize the module (since it isn’t needed '
+ 'once\n'
+ ' the initialization is done).\n'
+ '\n'
+ ' Attribute assignment updates the module’s namespace dictionary,\n'
+ ' e.g., "m.x = 1" is equivalent to "m.__dict__["x"] = 1".\n'
+ '\n'
+ ' Predefined (writable) attributes: "__name__" is the module’s '
+ 'name;\n'
+ ' "__doc__" is the module’s documentation string, or "None" if\n'
+ ' unavailable; "__annotations__" (optional) is a dictionary\n'
+ ' containing *variable annotations* collected during module body\n'
+ ' execution; "__file__" is the pathname of the file from which '
+ 'the\n'
+ ' module was loaded, if it was loaded from a file. The "__file__"\n'
+ ' attribute may be missing for certain types of modules, such as '
+ 'C\n'
+ ' modules that are statically linked into the interpreter; for\n'
+ ' extension modules loaded dynamically from a shared library, it '
+ 'is\n'
+ ' the pathname of the shared library file.\n'
+ '\n'
+ ' Special read-only attribute: "__dict__" is the module’s '
+ 'namespace\n'
+ ' as a dictionary object.\n'
+ '\n'
+ ' **CPython implementation detail:** Because of the way CPython\n'
+ ' clears module dictionaries, the module dictionary will be '
+ 'cleared\n'
+ ' when the module falls out of scope even if the dictionary still '
+ 'has\n'
+ ' live references. To avoid this, copy the dictionary or keep '
+ 'the\n'
+ ' module around while using its dictionary directly.\n'
+ '\n'
+ 'Custom classes\n'
+ ' Custom class types are typically created by class definitions '
+ '(see\n'
+ ' section Class definitions). A class has a namespace implemented '
+ 'by\n'
+ ' a dictionary object. Class attribute references are translated '
+ 'to\n'
+ ' lookups in this dictionary, e.g., "C.x" is translated to\n'
+ ' "C.__dict__["x"]" (although there are a number of hooks which '
+ 'allow\n'
+ ' for other means of locating attributes). When the attribute name '
+ 'is\n'
+ ' not found there, the attribute search continues in the base\n'
+ ' classes. This search of the base classes uses the C3 method\n'
+ ' resolution order which behaves correctly even in the presence '
+ 'of\n'
+ ' ‘diamond’ inheritance structures where there are multiple\n'
+ ' inheritance paths leading back to a common ancestor. Additional\n'
+ ' details on the C3 MRO used by Python can be found in the\n'
+ ' documentation accompanying the 2.3 release at\n'
+ ' https://www.python.org/download/releases/2.3/mro/.\n'
+ '\n'
+ ' When a class attribute reference (for class "C", say) would '
+ 'yield a\n'
+ ' class method object, it is transformed into an instance method\n'
+ ' object whose "__self__" attribute is "C". When it would yield '
+ 'a\n'
+ ' static method object, it is transformed into the object wrapped '
+ 'by\n'
+ ' the static method object. See section Implementing Descriptors '
+ 'for\n'
+ ' another way in which attributes retrieved from a class may '
+ 'differ\n'
+ ' from those actually contained in its "__dict__".\n'
+ '\n'
+ ' Class attribute assignments update the class’s dictionary, '
+ 'never\n'
+ ' the dictionary of a base class.\n'
+ '\n'
+ ' A class object can be called (see above) to yield a class '
+ 'instance\n'
+ ' (see below).\n'
+ '\n'
+ ' Special attributes: "__name__" is the class name; "__module__" '
+ 'is\n'
+ ' the module name in which the class was defined; "__dict__" is '
+ 'the\n'
+ ' dictionary containing the class’s namespace; "__bases__" is a '
+ 'tuple\n'
+ ' containing the base classes, in the order of their occurrence '
+ 'in\n'
+ ' the base class list; "__doc__" is the class’s documentation '
+ 'string,\n'
+ ' or "None" if undefined; "__annotations__" (optional) is a\n'
+ ' dictionary containing *variable annotations* collected during '
+ 'class\n'
+ ' body execution.\n'
+ '\n'
+ 'Class instances\n'
+ ' A class instance is created by calling a class object (see '
+ 'above).\n'
+ ' A class instance has a namespace implemented as a dictionary '
+ 'which\n'
+ ' is the first place in which attribute references are searched.\n'
+ ' When an attribute is not found there, and the instance’s class '
+ 'has\n'
+ ' an attribute by that name, the search continues with the class\n'
+ ' attributes. If a class attribute is found that is a '
+ 'user-defined\n'
+ ' function object, it is transformed into an instance method '
+ 'object\n'
+ ' whose "__self__" attribute is the instance. Static method and\n'
+ ' class method objects are also transformed; see above under\n'
+ ' “Classes”. See section Implementing Descriptors for another way '
+ 'in\n'
+ ' which attributes of a class retrieved via its instances may '
+ 'differ\n'
+ ' from the objects actually stored in the class’s "__dict__". If '
+ 'no\n'
+ ' class attribute is found, and the object’s class has a\n'
+ ' "__getattr__()" method, that is called to satisfy the lookup.\n'
+ '\n'
+ ' Attribute assignments and deletions update the instance’s\n'
+ ' dictionary, never a class’s dictionary. If the class has a\n'
+ ' "__setattr__()" or "__delattr__()" method, this is called '
+ 'instead\n'
+ ' of updating the instance dictionary directly.\n'
+ '\n'
+ ' Class instances can pretend to be numbers, sequences, or '
+ 'mappings\n'
+ ' if they have methods with certain special names. See section\n'
+ ' Special method names.\n'
+ '\n'
+ ' Special attributes: "__dict__" is the attribute dictionary;\n'
+ ' "__class__" is the instance’s class.\n'
+ '\n'
+ 'I/O objects (also known as file objects)\n'
+ ' A *file object* represents an open file. Various shortcuts are\n'
+ ' available to create file objects: the "open()" built-in '
+ 'function,\n'
+ ' and also "os.popen()", "os.fdopen()", and the "makefile()" '
+ 'method\n'
+ ' of socket objects (and perhaps by other functions or methods\n'
+ ' provided by extension modules).\n'
+ '\n'
+ ' The objects "sys.stdin", "sys.stdout" and "sys.stderr" are\n'
+ ' initialized to file objects corresponding to the interpreter’s\n'
+ ' standard input, output and error streams; they are all open in '
+ 'text\n'
+ ' mode and therefore follow the interface defined by the\n'
+ ' "io.TextIOBase" abstract class.\n'
+ '\n'
+ 'Internal types\n'
+ ' A few types used internally by the interpreter are exposed to '
+ 'the\n'
+ ' user. Their definitions may change with future versions of the\n'
+ ' interpreter, but they are mentioned here for completeness.\n'
+ '\n'
+ ' Code objects\n'
+ ' Code objects represent *byte-compiled* executable Python '
+ 'code,\n'
+ ' or *bytecode*. The difference between a code object and a\n'
+ ' function object is that the function object contains an '
+ 'explicit\n'
+ ' reference to the function’s globals (the module in which it '
+ 'was\n'
+ ' defined), while a code object contains no context; also the\n'
+ ' default argument values are stored in the function object, '
+ 'not\n'
+ ' in the code object (because they represent values calculated '
+ 'at\n'
+ ' run-time). Unlike function objects, code objects are '
+ 'immutable\n'
+ ' and contain no references (directly or indirectly) to '
+ 'mutable\n'
+ ' objects.\n'
+ '\n'
+ ' Special read-only attributes: "co_name" gives the function '
+ 'name;\n'
' "co_argcount" is the total number of positional arguments\n'
' (including positional-only arguments and arguments with '
'default\n'
@@ -12489,7 +12489,7 @@ topics = {'assert': 'The "assert" statement\n'
' arguments (including arguments with default values);\n'
' "co_kwonlyargcount" is the number of keyword-only arguments\n'
' (including arguments with default values); "co_nlocals" is '
- 'the\n'
+ 'the\n'
' number of local variables used by the function (including\n'
' arguments); "co_varnames" is a tuple containing the names of '
'the\n'
@@ -12512,272 +12512,272 @@ topics = {'assert': 'The "assert" statement\n'
' size; "co_flags" is an integer encoding a number of flags '
'for\n'
' the interpreter.\n'
- '\n'
- ' The following flag bits are defined for "co_flags": bit '
- '"0x04"\n'
- ' is set if the function uses the "*arguments" syntax to accept '
- 'an\n'
- ' arbitrary number of positional arguments; bit "0x08" is set '
- 'if\n'
- ' the function uses the "**keywords" syntax to accept '
- 'arbitrary\n'
- ' keyword arguments; bit "0x20" is set if the function is a\n'
- ' generator.\n'
- '\n'
- ' Future feature declarations ("from __future__ import '
- 'division")\n'
- ' also use bits in "co_flags" to indicate whether a code '
- 'object\n'
- ' was compiled with a particular feature enabled: bit "0x2000" '
- 'is\n'
- ' set if the function was compiled with future division '
- 'enabled;\n'
- ' bits "0x10" and "0x1000" were used in earlier versions of\n'
- ' Python.\n'
- '\n'
- ' Other bits in "co_flags" are reserved for internal use.\n'
- '\n'
- ' If a code object represents a function, the first item in\n'
- ' "co_consts" is the documentation string of the function, or\n'
- ' "None" if undefined.\n'
- '\n'
- ' Frame objects\n'
- ' Frame objects represent execution frames. They may occur in\n'
- ' traceback objects (see below), and are also passed to '
- 'registered\n'
- ' trace functions.\n'
- '\n'
- ' Special read-only attributes: "f_back" is to the previous '
- 'stack\n'
- ' frame (towards the caller), or "None" if this is the bottom\n'
- ' stack frame; "f_code" is the code object being executed in '
- 'this\n'
- ' frame; "f_locals" is the dictionary used to look up local\n'
- ' variables; "f_globals" is used for global variables;\n'
- ' "f_builtins" is used for built-in (intrinsic) names; '
- '"f_lasti"\n'
- ' gives the precise instruction (this is an index into the\n'
- ' bytecode string of the code object).\n'
- '\n'
+ '\n'
+ ' The following flag bits are defined for "co_flags": bit '
+ '"0x04"\n'
+ ' is set if the function uses the "*arguments" syntax to accept '
+ 'an\n'
+ ' arbitrary number of positional arguments; bit "0x08" is set '
+ 'if\n'
+ ' the function uses the "**keywords" syntax to accept '
+ 'arbitrary\n'
+ ' keyword arguments; bit "0x20" is set if the function is a\n'
+ ' generator.\n'
+ '\n'
+ ' Future feature declarations ("from __future__ import '
+ 'division")\n'
+ ' also use bits in "co_flags" to indicate whether a code '
+ 'object\n'
+ ' was compiled with a particular feature enabled: bit "0x2000" '
+ 'is\n'
+ ' set if the function was compiled with future division '
+ 'enabled;\n'
+ ' bits "0x10" and "0x1000" were used in earlier versions of\n'
+ ' Python.\n'
+ '\n'
+ ' Other bits in "co_flags" are reserved for internal use.\n'
+ '\n'
+ ' If a code object represents a function, the first item in\n'
+ ' "co_consts" is the documentation string of the function, or\n'
+ ' "None" if undefined.\n'
+ '\n'
+ ' Frame objects\n'
+ ' Frame objects represent execution frames. They may occur in\n'
+ ' traceback objects (see below), and are also passed to '
+ 'registered\n'
+ ' trace functions.\n'
+ '\n'
+ ' Special read-only attributes: "f_back" is to the previous '
+ 'stack\n'
+ ' frame (towards the caller), or "None" if this is the bottom\n'
+ ' stack frame; "f_code" is the code object being executed in '
+ 'this\n'
+ ' frame; "f_locals" is the dictionary used to look up local\n'
+ ' variables; "f_globals" is used for global variables;\n'
+ ' "f_builtins" is used for built-in (intrinsic) names; '
+ '"f_lasti"\n'
+ ' gives the precise instruction (this is an index into the\n'
+ ' bytecode string of the code object).\n'
+ '\n'
' Accessing "f_code" raises an auditing event '
'"object.__getattr__"\n'
' with arguments "obj" and ""f_code"".\n'
'\n'
- ' Special writable attributes: "f_trace", if not "None", is a\n'
- ' function called for various events during code execution '
- '(this\n'
- ' is used by the debugger). Normally an event is triggered for\n'
- ' each new source line - this can be disabled by setting\n'
- ' "f_trace_lines" to "False".\n'
- '\n'
- ' Implementations *may* allow per-opcode events to be requested '
- 'by\n'
- ' setting "f_trace_opcodes" to "True". Note that this may lead '
- 'to\n'
- ' undefined interpreter behaviour if exceptions raised by the\n'
- ' trace function escape to the function being traced.\n'
- '\n'
- ' "f_lineno" is the current line number of the frame — writing '
- 'to\n'
- ' this from within a trace function jumps to the given line '
- '(only\n'
- ' for the bottom-most frame). A debugger can implement a Jump\n'
- ' command (aka Set Next Statement) by writing to f_lineno.\n'
- '\n'
- ' Frame objects support one method:\n'
- '\n'
- ' frame.clear()\n'
- '\n'
- ' This method clears all references to local variables held '
- 'by\n'
- ' the frame. Also, if the frame belonged to a generator, '
- 'the\n'
- ' generator is finalized. This helps break reference '
- 'cycles\n'
- ' involving frame objects (for example when catching an\n'
- ' exception and storing its traceback for later use).\n'
- '\n'
- ' "RuntimeError" is raised if the frame is currently '
- 'executing.\n'
- '\n'
- ' New in version 3.4.\n'
- '\n'
- ' Traceback objects\n'
- ' Traceback objects represent a stack trace of an exception. '
- 'A\n'
- ' traceback object is implicitly created when an exception '
- 'occurs,\n'
- ' and may also be explicitly created by calling\n'
- ' "types.TracebackType".\n'
- '\n'
- ' For implicitly created tracebacks, when the search for an\n'
- ' exception handler unwinds the execution stack, at each '
- 'unwound\n'
- ' level a traceback object is inserted in front of the current\n'
- ' traceback. When an exception handler is entered, the stack\n'
- ' trace is made available to the program. (See section The try\n'
- ' statement.) It is accessible as the third item of the tuple\n'
- ' returned by "sys.exc_info()", and as the "__traceback__"\n'
- ' attribute of the caught exception.\n'
- '\n'
- ' When the program contains no suitable handler, the stack '
- 'trace\n'
- ' is written (nicely formatted) to the standard error stream; '
- 'if\n'
- ' the interpreter is interactive, it is also made available to '
- 'the\n'
- ' user as "sys.last_traceback".\n'
- '\n'
- ' For explicitly created tracebacks, it is up to the creator '
- 'of\n'
- ' the traceback to determine how the "tb_next" attributes '
- 'should\n'
- ' be linked to form a full stack trace.\n'
- '\n'
- ' Special read-only attributes: "tb_frame" points to the '
- 'execution\n'
- ' frame of the current level; "tb_lineno" gives the line '
- 'number\n'
- ' where the exception occurred; "tb_lasti" indicates the '
- 'precise\n'
- ' instruction. The line number and last instruction in the\n'
- ' traceback may differ from the line number of its frame object '
- 'if\n'
- ' the exception occurred in a "try" statement with no matching\n'
- ' except clause or with a finally clause.\n'
- '\n'
+ ' Special writable attributes: "f_trace", if not "None", is a\n'
+ ' function called for various events during code execution '
+ '(this\n'
+ ' is used by the debugger). Normally an event is triggered for\n'
+ ' each new source line - this can be disabled by setting\n'
+ ' "f_trace_lines" to "False".\n'
+ '\n'
+ ' Implementations *may* allow per-opcode events to be requested '
+ 'by\n'
+ ' setting "f_trace_opcodes" to "True". Note that this may lead '
+ 'to\n'
+ ' undefined interpreter behaviour if exceptions raised by the\n'
+ ' trace function escape to the function being traced.\n'
+ '\n'
+ ' "f_lineno" is the current line number of the frame — writing '
+ 'to\n'
+ ' this from within a trace function jumps to the given line '
+ '(only\n'
+ ' for the bottom-most frame). A debugger can implement a Jump\n'
+ ' command (aka Set Next Statement) by writing to f_lineno.\n'
+ '\n'
+ ' Frame objects support one method:\n'
+ '\n'
+ ' frame.clear()\n'
+ '\n'
+ ' This method clears all references to local variables held '
+ 'by\n'
+ ' the frame. Also, if the frame belonged to a generator, '
+ 'the\n'
+ ' generator is finalized. This helps break reference '
+ 'cycles\n'
+ ' involving frame objects (for example when catching an\n'
+ ' exception and storing its traceback for later use).\n'
+ '\n'
+ ' "RuntimeError" is raised if the frame is currently '
+ 'executing.\n'
+ '\n'
+ ' New in version 3.4.\n'
+ '\n'
+ ' Traceback objects\n'
+ ' Traceback objects represent a stack trace of an exception. '
+ 'A\n'
+ ' traceback object is implicitly created when an exception '
+ 'occurs,\n'
+ ' and may also be explicitly created by calling\n'
+ ' "types.TracebackType".\n'
+ '\n'
+ ' For implicitly created tracebacks, when the search for an\n'
+ ' exception handler unwinds the execution stack, at each '
+ 'unwound\n'
+ ' level a traceback object is inserted in front of the current\n'
+ ' traceback. When an exception handler is entered, the stack\n'
+ ' trace is made available to the program. (See section The try\n'
+ ' statement.) It is accessible as the third item of the tuple\n'
+ ' returned by "sys.exc_info()", and as the "__traceback__"\n'
+ ' attribute of the caught exception.\n'
+ '\n'
+ ' When the program contains no suitable handler, the stack '
+ 'trace\n'
+ ' is written (nicely formatted) to the standard error stream; '
+ 'if\n'
+ ' the interpreter is interactive, it is also made available to '
+ 'the\n'
+ ' user as "sys.last_traceback".\n'
+ '\n'
+ ' For explicitly created tracebacks, it is up to the creator '
+ 'of\n'
+ ' the traceback to determine how the "tb_next" attributes '
+ 'should\n'
+ ' be linked to form a full stack trace.\n'
+ '\n'
+ ' Special read-only attributes: "tb_frame" points to the '
+ 'execution\n'
+ ' frame of the current level; "tb_lineno" gives the line '
+ 'number\n'
+ ' where the exception occurred; "tb_lasti" indicates the '
+ 'precise\n'
+ ' instruction. The line number and last instruction in the\n'
+ ' traceback may differ from the line number of its frame object '
+ 'if\n'
+ ' the exception occurred in a "try" statement with no matching\n'
+ ' except clause or with a finally clause.\n'
+ '\n'
' Accessing "tb_frame" raises an auditing event\n'
' "object.__getattr__" with arguments "obj" and ""tb_frame"".\n'
'\n'
- ' Special writable attribute: "tb_next" is the next level in '
- 'the\n'
- ' stack trace (towards the frame where the exception occurred), '
- 'or\n'
- ' "None" if there is no next level.\n'
- '\n'
- ' Changed in version 3.7: Traceback objects can now be '
- 'explicitly\n'
- ' instantiated from Python code, and the "tb_next" attribute '
- 'of\n'
- ' existing instances can be updated.\n'
- '\n'
- ' Slice objects\n'
- ' Slice objects are used to represent slices for '
- '"__getitem__()"\n'
- ' methods. They are also created by the built-in "slice()"\n'
- ' function.\n'
- '\n'
- ' Special read-only attributes: "start" is the lower bound; '
- '"stop"\n'
- ' is the upper bound; "step" is the step value; each is "None" '
- 'if\n'
- ' omitted. These attributes can have any type.\n'
- '\n'
- ' Slice objects support one method:\n'
- '\n'
- ' slice.indices(self, length)\n'
- '\n'
- ' This method takes a single integer argument *length* and\n'
- ' computes information about the slice that the slice '
- 'object\n'
- ' would describe if applied to a sequence of *length* '
- 'items.\n'
- ' It returns a tuple of three integers; respectively these '
- 'are\n'
- ' the *start* and *stop* indices and the *step* or stride\n'
- ' length of the slice. Missing or out-of-bounds indices are\n'
- ' handled in a manner consistent with regular slices.\n'
- '\n'
- ' Static method objects\n'
- ' Static method objects provide a way of defeating the\n'
- ' transformation of function objects to method objects '
- 'described\n'
- ' above. A static method object is a wrapper around any other\n'
- ' object, usually a user-defined method object. When a static\n'
- ' method object is retrieved from a class or a class instance, '
- 'the\n'
- ' object actually returned is the wrapped object, which is not\n'
- ' subject to any further transformation. Static method objects '
- 'are\n'
- ' not themselves callable, although the objects they wrap '
- 'usually\n'
- ' are. Static method objects are created by the built-in\n'
- ' "staticmethod()" constructor.\n'
- '\n'
- ' Class method objects\n'
- ' A class method object, like a static method object, is a '
- 'wrapper\n'
- ' around another object that alters the way in which that '
- 'object\n'
- ' is retrieved from classes and class instances. The behaviour '
- 'of\n'
- ' class method objects upon such retrieval is described above,\n'
- ' under “User-defined methods”. Class method objects are '
- 'created\n'
- ' by the built-in "classmethod()" constructor.\n',
- 'typesfunctions': 'Functions\n'
- '*********\n'
- '\n'
- 'Function objects are created by function definitions. The '
- 'only\n'
- 'operation on a function object is to call it: '
- '"func(argument-list)".\n'
- '\n'
- 'There are really two flavors of function objects: built-in '
- 'functions\n'
- 'and user-defined functions. Both support the same '
- 'operation (to call\n'
- 'the function), but the implementation is different, hence '
- 'the\n'
- 'different object types.\n'
- '\n'
- 'See Function definitions for more information.\n',
- 'typesmapping': 'Mapping Types — "dict"\n'
- '**********************\n'
- '\n'
- 'A *mapping* object maps *hashable* values to arbitrary '
- 'objects.\n'
- 'Mappings are mutable objects. There is currently only one '
- 'standard\n'
- 'mapping type, the *dictionary*. (For other containers see '
- 'the built-\n'
- 'in "list", "set", and "tuple" classes, and the "collections" '
- 'module.)\n'
- '\n'
- 'A dictionary’s keys are *almost* arbitrary values. Values '
- 'that are\n'
- 'not *hashable*, that is, values containing lists, '
- 'dictionaries or\n'
- 'other mutable types (that are compared by value rather than '
- 'by object\n'
- 'identity) may not be used as keys. Numeric types used for '
- 'keys obey\n'
- 'the normal rules for numeric comparison: if two numbers '
- 'compare equal\n'
- '(such as "1" and "1.0") then they can be used '
- 'interchangeably to index\n'
- 'the same dictionary entry. (Note however, that since '
- 'computers store\n'
- 'floating-point numbers as approximations it is usually '
- 'unwise to use\n'
- 'them as dictionary keys.)\n'
- '\n'
- 'Dictionaries can be created by placing a comma-separated '
- 'list of "key:\n'
- 'value" pairs within braces, for example: "{\'jack\': 4098, '
- "'sjoerd':\n"
- '4127}" or "{4098: \'jack\', 4127: \'sjoerd\'}", or by the '
- '"dict"\n'
- 'constructor.\n'
- '\n'
+ ' Special writable attribute: "tb_next" is the next level in '
+ 'the\n'
+ ' stack trace (towards the frame where the exception occurred), '
+ 'or\n'
+ ' "None" if there is no next level.\n'
+ '\n'
+ ' Changed in version 3.7: Traceback objects can now be '
+ 'explicitly\n'
+ ' instantiated from Python code, and the "tb_next" attribute '
+ 'of\n'
+ ' existing instances can be updated.\n'
+ '\n'
+ ' Slice objects\n'
+ ' Slice objects are used to represent slices for '
+ '"__getitem__()"\n'
+ ' methods. They are also created by the built-in "slice()"\n'
+ ' function.\n'
+ '\n'
+ ' Special read-only attributes: "start" is the lower bound; '
+ '"stop"\n'
+ ' is the upper bound; "step" is the step value; each is "None" '
+ 'if\n'
+ ' omitted. These attributes can have any type.\n'
+ '\n'
+ ' Slice objects support one method:\n'
+ '\n'
+ ' slice.indices(self, length)\n'
+ '\n'
+ ' This method takes a single integer argument *length* and\n'
+ ' computes information about the slice that the slice '
+ 'object\n'
+ ' would describe if applied to a sequence of *length* '
+ 'items.\n'
+ ' It returns a tuple of three integers; respectively these '
+ 'are\n'
+ ' the *start* and *stop* indices and the *step* or stride\n'
+ ' length of the slice. Missing or out-of-bounds indices are\n'
+ ' handled in a manner consistent with regular slices.\n'
+ '\n'
+ ' Static method objects\n'
+ ' Static method objects provide a way of defeating the\n'
+ ' transformation of function objects to method objects '
+ 'described\n'
+ ' above. A static method object is a wrapper around any other\n'
+ ' object, usually a user-defined method object. When a static\n'
+ ' method object is retrieved from a class or a class instance, '
+ 'the\n'
+ ' object actually returned is the wrapped object, which is not\n'
+ ' subject to any further transformation. Static method objects '
+ 'are\n'
+ ' not themselves callable, although the objects they wrap '
+ 'usually\n'
+ ' are. Static method objects are created by the built-in\n'
+ ' "staticmethod()" constructor.\n'
+ '\n'
+ ' Class method objects\n'
+ ' A class method object, like a static method object, is a '
+ 'wrapper\n'
+ ' around another object that alters the way in which that '
+ 'object\n'
+ ' is retrieved from classes and class instances. The behaviour '
+ 'of\n'
+ ' class method objects upon such retrieval is described above,\n'
+ ' under “User-defined methods”. Class method objects are '
+ 'created\n'
+ ' by the built-in "classmethod()" constructor.\n',
+ 'typesfunctions': 'Functions\n'
+ '*********\n'
+ '\n'
+ 'Function objects are created by function definitions. The '
+ 'only\n'
+ 'operation on a function object is to call it: '
+ '"func(argument-list)".\n'
+ '\n'
+ 'There are really two flavors of function objects: built-in '
+ 'functions\n'
+ 'and user-defined functions. Both support the same '
+ 'operation (to call\n'
+ 'the function), but the implementation is different, hence '
+ 'the\n'
+ 'different object types.\n'
+ '\n'
+ 'See Function definitions for more information.\n',
+ 'typesmapping': 'Mapping Types — "dict"\n'
+ '**********************\n'
+ '\n'
+ 'A *mapping* object maps *hashable* values to arbitrary '
+ 'objects.\n'
+ 'Mappings are mutable objects. There is currently only one '
+ 'standard\n'
+ 'mapping type, the *dictionary*. (For other containers see '
+ 'the built-\n'
+ 'in "list", "set", and "tuple" classes, and the "collections" '
+ 'module.)\n'
+ '\n'
+ 'A dictionary’s keys are *almost* arbitrary values. Values '
+ 'that are\n'
+ 'not *hashable*, that is, values containing lists, '
+ 'dictionaries or\n'
+ 'other mutable types (that are compared by value rather than '
+ 'by object\n'
+ 'identity) may not be used as keys. Numeric types used for '
+ 'keys obey\n'
+ 'the normal rules for numeric comparison: if two numbers '
+ 'compare equal\n'
+ '(such as "1" and "1.0") then they can be used '
+ 'interchangeably to index\n'
+ 'the same dictionary entry. (Note however, that since '
+ 'computers store\n'
+ 'floating-point numbers as approximations it is usually '
+ 'unwise to use\n'
+ 'them as dictionary keys.)\n'
+ '\n'
+ 'Dictionaries can be created by placing a comma-separated '
+ 'list of "key:\n'
+ 'value" pairs within braces, for example: "{\'jack\': 4098, '
+ "'sjoerd':\n"
+ '4127}" or "{4098: \'jack\', 4127: \'sjoerd\'}", or by the '
+ '"dict"\n'
+ 'constructor.\n'
+ '\n'
'class dict(**kwargs)\n'
'class dict(mapping, **kwargs)\n'
'class dict(iterable, **kwargs)\n'
- '\n'
- ' Return a new dictionary initialized from an optional '
- 'positional\n'
- ' argument and a possibly empty set of keyword arguments.\n'
- '\n'
+ '\n'
+ ' Return a new dictionary initialized from an optional '
+ 'positional\n'
+ ' argument and a possibly empty set of keyword arguments.\n'
+ '\n'
' Dictionaries can be created by several means:\n'
'\n'
' * Use a comma-separated list of "key: value" pairs within '
@@ -12793,142 +12793,142 @@ topics = {'assert': 'The "assert" statement\n'
"100), ('bar',\n"
' 200)])", "dict(foo=100, bar=200)"\n'
'\n'
- ' If no positional argument is given, an empty dictionary '
- 'is created.\n'
- ' If a positional argument is given and it is a mapping '
- 'object, a\n'
- ' dictionary is created with the same key-value pairs as '
- 'the mapping\n'
- ' object. Otherwise, the positional argument must be an '
- '*iterable*\n'
- ' object. Each item in the iterable must itself be an '
- 'iterable with\n'
- ' exactly two objects. The first object of each item '
- 'becomes a key\n'
- ' in the new dictionary, and the second object the '
- 'corresponding\n'
- ' value. If a key occurs more than once, the last value '
- 'for that key\n'
- ' becomes the corresponding value in the new dictionary.\n'
- '\n'
- ' If keyword arguments are given, the keyword arguments and '
- 'their\n'
- ' values are added to the dictionary created from the '
- 'positional\n'
- ' argument. If a key being added is already present, the '
- 'value from\n'
- ' the keyword argument replaces the value from the '
- 'positional\n'
- ' argument.\n'
- '\n'
- ' To illustrate, the following examples all return a '
- 'dictionary equal\n'
- ' to "{"one": 1, "two": 2, "three": 3}":\n'
- '\n'
- ' >>> a = dict(one=1, two=2, three=3)\n'
- " >>> b = {'one': 1, 'two': 2, 'three': 3}\n"
- " >>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))\n"
- " >>> d = dict([('two', 2), ('one', 1), ('three', 3)])\n"
- " >>> e = dict({'three': 3, 'one': 1, 'two': 2})\n"
+ ' If no positional argument is given, an empty dictionary '
+ 'is created.\n'
+ ' If a positional argument is given and it is a mapping '
+ 'object, a\n'
+ ' dictionary is created with the same key-value pairs as '
+ 'the mapping\n'
+ ' object. Otherwise, the positional argument must be an '
+ '*iterable*\n'
+ ' object. Each item in the iterable must itself be an '
+ 'iterable with\n'
+ ' exactly two objects. The first object of each item '
+ 'becomes a key\n'
+ ' in the new dictionary, and the second object the '
+ 'corresponding\n'
+ ' value. If a key occurs more than once, the last value '
+ 'for that key\n'
+ ' becomes the corresponding value in the new dictionary.\n'
+ '\n'
+ ' If keyword arguments are given, the keyword arguments and '
+ 'their\n'
+ ' values are added to the dictionary created from the '
+ 'positional\n'
+ ' argument. If a key being added is already present, the '
+ 'value from\n'
+ ' the keyword argument replaces the value from the '
+ 'positional\n'
+ ' argument.\n'
+ '\n'
+ ' To illustrate, the following examples all return a '
+ 'dictionary equal\n'
+ ' to "{"one": 1, "two": 2, "three": 3}":\n'
+ '\n'
+ ' >>> a = dict(one=1, two=2, three=3)\n'
+ " >>> b = {'one': 1, 'two': 2, 'three': 3}\n"
+ " >>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))\n"
+ " >>> d = dict([('two', 2), ('one', 1), ('three', 3)])\n"
+ " >>> e = dict({'three': 3, 'one': 1, 'two': 2})\n"
" >>> f = dict({'one': 1, 'three': 3}, two=2)\n"
' >>> a == b == c == d == e == f\n'
- ' True\n'
- '\n'
- ' Providing keyword arguments as in the first example only '
- 'works for\n'
- ' keys that are valid Python identifiers. Otherwise, any '
- 'valid keys\n'
- ' can be used.\n'
- '\n'
- ' These are the operations that dictionaries support (and '
- 'therefore,\n'
- ' custom mapping types should support too):\n'
- '\n'
+ ' True\n'
+ '\n'
+ ' Providing keyword arguments as in the first example only '
+ 'works for\n'
+ ' keys that are valid Python identifiers. Otherwise, any '
+ 'valid keys\n'
+ ' can be used.\n'
+ '\n'
+ ' These are the operations that dictionaries support (and '
+ 'therefore,\n'
+ ' custom mapping types should support too):\n'
+ '\n'
' list(d)\n'
'\n'
' Return a list of all the keys used in the dictionary '
'*d*.\n'
'\n'
- ' len(d)\n'
- '\n'
- ' Return the number of items in the dictionary *d*.\n'
- '\n'
- ' d[key]\n'
- '\n'
- ' Return the item of *d* with key *key*. Raises a '
- '"KeyError" if\n'
- ' *key* is not in the map.\n'
- '\n'
- ' If a subclass of dict defines a method "__missing__()" '
- 'and *key*\n'
- ' is not present, the "d[key]" operation calls that '
- 'method with\n'
- ' the key *key* as argument. The "d[key]" operation '
- 'then returns\n'
- ' or raises whatever is returned or raised by the\n'
- ' "__missing__(key)" call. No other operations or '
- 'methods invoke\n'
- ' "__missing__()". If "__missing__()" is not defined, '
- '"KeyError"\n'
- ' is raised. "__missing__()" must be a method; it cannot '
- 'be an\n'
- ' instance variable:\n'
- '\n'
- ' >>> class Counter(dict):\n'
- ' ... def __missing__(self, key):\n'
- ' ... return 0\n'
- ' >>> c = Counter()\n'
- " >>> c['red']\n"
- ' 0\n'
- " >>> c['red'] += 1\n"
- " >>> c['red']\n"
- ' 1\n'
- '\n'
- ' The example above shows part of the implementation of\n'
- ' "collections.Counter". A different "__missing__" '
- 'method is used\n'
- ' by "collections.defaultdict".\n'
- '\n'
- ' d[key] = value\n'
- '\n'
- ' Set "d[key]" to *value*.\n'
- '\n'
- ' del d[key]\n'
- '\n'
- ' Remove "d[key]" from *d*. Raises a "KeyError" if '
- '*key* is not\n'
- ' in the map.\n'
- '\n'
- ' key in d\n'
- '\n'
- ' Return "True" if *d* has a key *key*, else "False".\n'
- '\n'
- ' key not in d\n'
- '\n'
- ' Equivalent to "not key in d".\n'
- '\n'
- ' iter(d)\n'
- '\n'
- ' Return an iterator over the keys of the dictionary. '
- 'This is a\n'
- ' shortcut for "iter(d.keys())".\n'
- '\n'
- ' clear()\n'
- '\n'
- ' Remove all items from the dictionary.\n'
- '\n'
- ' copy()\n'
- '\n'
- ' Return a shallow copy of the dictionary.\n'
- '\n'
- ' classmethod fromkeys(iterable[, value])\n'
- '\n'
- ' Create a new dictionary with keys from *iterable* and '
- 'values set\n'
- ' to *value*.\n'
- '\n'
- ' "fromkeys()" is a class method that returns a new '
- 'dictionary.\n'
+ ' len(d)\n'
+ '\n'
+ ' Return the number of items in the dictionary *d*.\n'
+ '\n'
+ ' d[key]\n'
+ '\n'
+ ' Return the item of *d* with key *key*. Raises a '
+ '"KeyError" if\n'
+ ' *key* is not in the map.\n'
+ '\n'
+ ' If a subclass of dict defines a method "__missing__()" '
+ 'and *key*\n'
+ ' is not present, the "d[key]" operation calls that '
+ 'method with\n'
+ ' the key *key* as argument. The "d[key]" operation '
+ 'then returns\n'
+ ' or raises whatever is returned or raised by the\n'
+ ' "__missing__(key)" call. No other operations or '
+ 'methods invoke\n'
+ ' "__missing__()". If "__missing__()" is not defined, '
+ '"KeyError"\n'
+ ' is raised. "__missing__()" must be a method; it cannot '
+ 'be an\n'
+ ' instance variable:\n'
+ '\n'
+ ' >>> class Counter(dict):\n'
+ ' ... def __missing__(self, key):\n'
+ ' ... return 0\n'
+ ' >>> c = Counter()\n'
+ " >>> c['red']\n"
+ ' 0\n'
+ " >>> c['red'] += 1\n"
+ " >>> c['red']\n"
+ ' 1\n'
+ '\n'
+ ' The example above shows part of the implementation of\n'
+ ' "collections.Counter". A different "__missing__" '
+ 'method is used\n'
+ ' by "collections.defaultdict".\n'
+ '\n'
+ ' d[key] = value\n'
+ '\n'
+ ' Set "d[key]" to *value*.\n'
+ '\n'
+ ' del d[key]\n'
+ '\n'
+ ' Remove "d[key]" from *d*. Raises a "KeyError" if '
+ '*key* is not\n'
+ ' in the map.\n'
+ '\n'
+ ' key in d\n'
+ '\n'
+ ' Return "True" if *d* has a key *key*, else "False".\n'
+ '\n'
+ ' key not in d\n'
+ '\n'
+ ' Equivalent to "not key in d".\n'
+ '\n'
+ ' iter(d)\n'
+ '\n'
+ ' Return an iterator over the keys of the dictionary. '
+ 'This is a\n'
+ ' shortcut for "iter(d.keys())".\n'
+ '\n'
+ ' clear()\n'
+ '\n'
+ ' Remove all items from the dictionary.\n'
+ '\n'
+ ' copy()\n'
+ '\n'
+ ' Return a shallow copy of the dictionary.\n'
+ '\n'
+ ' classmethod fromkeys(iterable[, value])\n'
+ '\n'
+ ' Create a new dictionary with keys from *iterable* and '
+ 'values set\n'
+ ' to *value*.\n'
+ '\n'
+ ' "fromkeys()" is a class method that returns a new '
+ 'dictionary.\n'
' *value* defaults to "None". All of the values refer '
'to just a\n'
' single instance, so it generally doesn’t make sense '
@@ -12936,51 +12936,51 @@ topics = {'assert': 'The "assert" statement\n'
' to be a mutable object such as an empty list. To get '
'distinct\n'
' values, use a dict comprehension instead.\n'
- '\n'
- ' get(key[, default])\n'
- '\n'
- ' Return the value for *key* if *key* is in the '
- 'dictionary, else\n'
- ' *default*. If *default* is not given, it defaults to '
- '"None", so\n'
- ' that this method never raises a "KeyError".\n'
- '\n'
- ' items()\n'
- '\n'
- ' Return a new view of the dictionary’s items ("(key, '
- 'value)"\n'
- ' pairs). See the documentation of view objects.\n'
- '\n'
- ' keys()\n'
- '\n'
- ' Return a new view of the dictionary’s keys. See the\n'
- ' documentation of view objects.\n'
- '\n'
- ' pop(key[, default])\n'
- '\n'
- ' If *key* is in the dictionary, remove it and return '
- 'its value,\n'
- ' else return *default*. If *default* is not given and '
- '*key* is\n'
- ' not in the dictionary, a "KeyError" is raised.\n'
- '\n'
- ' popitem()\n'
- '\n'
- ' Remove and return a "(key, value)" pair from the '
- 'dictionary.\n'
- ' Pairs are returned in LIFO (last-in, first-out) '
- 'order.\n'
- '\n'
- ' "popitem()" is useful to destructively iterate over a\n'
- ' dictionary, as often used in set algorithms. If the '
- 'dictionary\n'
- ' is empty, calling "popitem()" raises a "KeyError".\n'
- '\n'
- ' Changed in version 3.7: LIFO order is now guaranteed. '
- 'In prior\n'
- ' versions, "popitem()" would return an arbitrary '
- 'key/value pair.\n'
- '\n'
+ '\n'
+ ' get(key[, default])\n'
+ '\n'
+ ' Return the value for *key* if *key* is in the '
+ 'dictionary, else\n'
+ ' *default*. If *default* is not given, it defaults to '
+ '"None", so\n'
+ ' that this method never raises a "KeyError".\n'
+ '\n'
+ ' items()\n'
+ '\n'
+ ' Return a new view of the dictionary’s items ("(key, '
+ 'value)"\n'
+ ' pairs). See the documentation of view objects.\n'
+ '\n'
+ ' keys()\n'
+ '\n'
+ ' Return a new view of the dictionary’s keys. See the\n'
+ ' documentation of view objects.\n'
+ '\n'
+ ' pop(key[, default])\n'
+ '\n'
+ ' If *key* is in the dictionary, remove it and return '
+ 'its value,\n'
+ ' else return *default*. If *default* is not given and '
+ '*key* is\n'
+ ' not in the dictionary, a "KeyError" is raised.\n'
+ '\n'
+ ' popitem()\n'
+ '\n'
+ ' Remove and return a "(key, value)" pair from the '
+ 'dictionary.\n'
+ ' Pairs are returned in LIFO (last-in, first-out) '
+ 'order.\n'
+ '\n'
+ ' "popitem()" is useful to destructively iterate over a\n'
+ ' dictionary, as often used in set algorithms. If the '
+ 'dictionary\n'
+ ' is empty, calling "popitem()" raises a "KeyError".\n'
+ '\n'
+ ' Changed in version 3.7: LIFO order is now guaranteed. '
+ 'In prior\n'
+ ' versions, "popitem()" would return an arbitrary '
+ 'key/value pair.\n'
+ '\n'
' reversed(d)\n'
'\n'
' Return a reverse iterator over the keys of the '
@@ -12989,36 +12989,36 @@ topics = {'assert': 'The "assert" statement\n'
'\n'
' New in version 3.8.\n'
'\n'
- ' setdefault(key[, default])\n'
- '\n'
- ' If *key* is in the dictionary, return its value. If '
- 'not, insert\n'
- ' *key* with a value of *default* and return *default*. '
- '*default*\n'
- ' defaults to "None".\n'
- '\n'
- ' update([other])\n'
- '\n'
- ' Update the dictionary with the key/value pairs from '
- '*other*,\n'
- ' overwriting existing keys. Return "None".\n'
- '\n'
- ' "update()" accepts either another dictionary object or '
- 'an\n'
- ' iterable of key/value pairs (as tuples or other '
- 'iterables of\n'
- ' length two). If keyword arguments are specified, the '
- 'dictionary\n'
- ' is then updated with those key/value pairs: '
- '"d.update(red=1,\n'
- ' blue=2)".\n'
- '\n'
- ' values()\n'
- '\n'
- ' Return a new view of the dictionary’s values. See '
- 'the\n'
- ' documentation of view objects.\n'
- '\n'
+ ' setdefault(key[, default])\n'
+ '\n'
+ ' If *key* is in the dictionary, return its value. If '
+ 'not, insert\n'
+ ' *key* with a value of *default* and return *default*. '
+ '*default*\n'
+ ' defaults to "None".\n'
+ '\n'
+ ' update([other])\n'
+ '\n'
+ ' Update the dictionary with the key/value pairs from '
+ '*other*,\n'
+ ' overwriting existing keys. Return "None".\n'
+ '\n'
+ ' "update()" accepts either another dictionary object or '
+ 'an\n'
+ ' iterable of key/value pairs (as tuples or other '
+ 'iterables of\n'
+ ' length two). If keyword arguments are specified, the '
+ 'dictionary\n'
+ ' is then updated with those key/value pairs: '
+ '"d.update(red=1,\n'
+ ' blue=2)".\n'
+ '\n'
+ ' values()\n'
+ '\n'
+ ' Return a new view of the dictionary’s values. See '
+ 'the\n'
+ ' documentation of view objects.\n'
+ '\n'
' An equality comparison between one "dict.values()" '
'view and\n'
' another will always return "False". This also applies '
@@ -13052,39 +13052,39 @@ topics = {'assert': 'The "assert" statement\n'
'\n'
' New in version 3.9.\n'
'\n'
- ' Dictionaries compare equal if and only if they have the '
- 'same "(key,\n'
+ ' Dictionaries compare equal if and only if they have the '
+ 'same "(key,\n'
' value)" pairs (regardless of ordering). Order comparisons '
'(‘<’,\n'
' ‘<=’, ‘>=’, ‘>’) raise "TypeError".\n'
- '\n'
- ' Dictionaries preserve insertion order. Note that '
- 'updating a key\n'
- ' does not affect the order. Keys added after deletion are '
- 'inserted\n'
- ' at the end.\n'
- '\n'
- ' >>> d = {"one": 1, "two": 2, "three": 3, "four": 4}\n'
- ' >>> d\n'
- " {'one': 1, 'two': 2, 'three': 3, 'four': 4}\n"
- ' >>> list(d)\n'
- " ['one', 'two', 'three', 'four']\n"
- ' >>> list(d.values())\n'
- ' [1, 2, 3, 4]\n'
- ' >>> d["one"] = 42\n'
- ' >>> d\n'
- " {'one': 42, 'two': 2, 'three': 3, 'four': 4}\n"
- ' >>> del d["two"]\n'
- ' >>> d["two"] = None\n'
- ' >>> d\n'
- " {'one': 42, 'three': 3, 'four': 4, 'two': None}\n"
- '\n'
- ' Changed in version 3.7: Dictionary order is guaranteed to '
- 'be\n'
- ' insertion order. This behavior was an implementation '
- 'detail of\n'
- ' CPython from 3.6.\n'
- '\n'
+ '\n'
+ ' Dictionaries preserve insertion order. Note that '
+ 'updating a key\n'
+ ' does not affect the order. Keys added after deletion are '
+ 'inserted\n'
+ ' at the end.\n'
+ '\n'
+ ' >>> d = {"one": 1, "two": 2, "three": 3, "four": 4}\n'
+ ' >>> d\n'
+ " {'one': 1, 'two': 2, 'three': 3, 'four': 4}\n"
+ ' >>> list(d)\n'
+ " ['one', 'two', 'three', 'four']\n"
+ ' >>> list(d.values())\n'
+ ' [1, 2, 3, 4]\n'
+ ' >>> d["one"] = 42\n'
+ ' >>> d\n'
+ " {'one': 42, 'two': 2, 'three': 3, 'four': 4}\n"
+ ' >>> del d["two"]\n'
+ ' >>> d["two"] = None\n'
+ ' >>> d\n'
+ " {'one': 42, 'three': 3, 'four': 4, 'two': None}\n"
+ '\n'
+ ' Changed in version 3.7: Dictionary order is guaranteed to '
+ 'be\n'
+ ' insertion order. This behavior was an implementation '
+ 'detail of\n'
+ ' CPython from 3.6.\n'
+ '\n'
' Dictionaries and dictionary views are reversible.\n'
'\n'
' >>> d = {"one": 1, "two": 2, "three": 3, "four": 4}\n'
@@ -13100,61 +13100,61 @@ topics = {'assert': 'The "assert" statement\n'
' Changed in version 3.8: Dictionaries are now reversible.\n'
'\n'
'See also:\n'
- '\n'
+ '\n'
' "types.MappingProxyType" can be used to create a read-only '
'view of a\n'
' "dict".\n'
- '\n'
- '\n'
- 'Dictionary view objects\n'
- '=======================\n'
- '\n'
- 'The objects returned by "dict.keys()", "dict.values()" and\n'
- '"dict.items()" are *view objects*. They provide a dynamic '
- 'view on the\n'
- 'dictionary’s entries, which means that when the dictionary '
- 'changes,\n'
- 'the view reflects these changes.\n'
- '\n'
- 'Dictionary views can be iterated over to yield their '
- 'respective data,\n'
- 'and support membership tests:\n'
- '\n'
- 'len(dictview)\n'
- '\n'
- ' Return the number of entries in the dictionary.\n'
- '\n'
- 'iter(dictview)\n'
- '\n'
- ' Return an iterator over the keys, values or items '
- '(represented as\n'
- ' tuples of "(key, value)") in the dictionary.\n'
- '\n'
- ' Keys and values are iterated over in insertion order. '
- 'This allows\n'
- ' the creation of "(value, key)" pairs using "zip()": '
- '"pairs =\n'
- ' zip(d.values(), d.keys())". Another way to create the '
- 'same list is\n'
- ' "pairs = [(v, k) for (k, v) in d.items()]".\n'
- '\n'
- ' Iterating views while adding or deleting entries in the '
- 'dictionary\n'
- ' may raise a "RuntimeError" or fail to iterate over all '
- 'entries.\n'
- '\n'
- ' Changed in version 3.7: Dictionary order is guaranteed to '
- 'be\n'
- ' insertion order.\n'
- '\n'
- 'x in dictview\n'
- '\n'
- ' Return "True" if *x* is in the underlying dictionary’s '
- 'keys, values\n'
- ' or items (in the latter case, *x* should be a "(key, '
- 'value)"\n'
- ' tuple).\n'
- '\n'
+ '\n'
+ '\n'
+ 'Dictionary view objects\n'
+ '=======================\n'
+ '\n'
+ 'The objects returned by "dict.keys()", "dict.values()" and\n'
+ '"dict.items()" are *view objects*. They provide a dynamic '
+ 'view on the\n'
+ 'dictionary’s entries, which means that when the dictionary '
+ 'changes,\n'
+ 'the view reflects these changes.\n'
+ '\n'
+ 'Dictionary views can be iterated over to yield their '
+ 'respective data,\n'
+ 'and support membership tests:\n'
+ '\n'
+ 'len(dictview)\n'
+ '\n'
+ ' Return the number of entries in the dictionary.\n'
+ '\n'
+ 'iter(dictview)\n'
+ '\n'
+ ' Return an iterator over the keys, values or items '
+ '(represented as\n'
+ ' tuples of "(key, value)") in the dictionary.\n'
+ '\n'
+ ' Keys and values are iterated over in insertion order. '
+ 'This allows\n'
+ ' the creation of "(value, key)" pairs using "zip()": '
+ '"pairs =\n'
+ ' zip(d.values(), d.keys())". Another way to create the '
+ 'same list is\n'
+ ' "pairs = [(v, k) for (k, v) in d.items()]".\n'
+ '\n'
+ ' Iterating views while adding or deleting entries in the '
+ 'dictionary\n'
+ ' may raise a "RuntimeError" or fail to iterate over all '
+ 'entries.\n'
+ '\n'
+ ' Changed in version 3.7: Dictionary order is guaranteed to '
+ 'be\n'
+ ' insertion order.\n'
+ '\n'
+ 'x in dictview\n'
+ '\n'
+ ' Return "True" if *x* is in the underlying dictionary’s '
+ 'keys, values\n'
+ ' or items (in the latter case, *x* should be a "(key, '
+ 'value)"\n'
+ ' tuple).\n'
+ '\n'
'reversed(dictview)\n'
'\n'
' Return a reverse iterator over the keys, values or items '
@@ -13166,327 +13166,327 @@ topics = {'assert': 'The "assert" statement\n'
' Changed in version 3.8: Dictionary views are now '
'reversible.\n'
'\n'
- 'Keys views are set-like since their entries are unique and '
- 'hashable.\n'
- 'If all values are hashable, so that "(key, value)" pairs are '
- 'unique\n'
- 'and hashable, then the items view is also set-like. (Values '
- 'views are\n'
- 'not treated as set-like since the entries are generally not '
- 'unique.)\n'
- 'For set-like views, all of the operations defined for the '
- 'abstract\n'
- 'base class "collections.abc.Set" are available (for example, '
- '"==",\n'
- '"<", or "^").\n'
- '\n'
- 'An example of dictionary view usage:\n'
- '\n'
- " >>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, "
- "'spam': 500}\n"
- ' >>> keys = dishes.keys()\n'
- ' >>> values = dishes.values()\n'
- '\n'
- ' >>> # iteration\n'
- ' >>> n = 0\n'
- ' >>> for val in values:\n'
- ' ... n += val\n'
- ' >>> print(n)\n'
- ' 504\n'
- '\n'
- ' >>> # keys and values are iterated over in the same order '
- '(insertion order)\n'
- ' >>> list(keys)\n'
- " ['eggs', 'sausage', 'bacon', 'spam']\n"
- ' >>> list(values)\n'
- ' [2, 1, 1, 500]\n'
- '\n'
- ' >>> # view objects are dynamic and reflect dict changes\n'
- " >>> del dishes['eggs']\n"
- " >>> del dishes['sausage']\n"
- ' >>> list(keys)\n'
- " ['bacon', 'spam']\n"
- '\n'
- ' >>> # set operations\n'
- " >>> keys & {'eggs', 'bacon', 'salad'}\n"
- " {'bacon'}\n"
- " >>> keys ^ {'sausage', 'juice'}\n"
- " {'juice', 'sausage', 'bacon', 'spam'}\n",
- 'typesmethods': 'Methods\n'
- '*******\n'
- '\n'
- 'Methods are functions that are called using the attribute '
- 'notation.\n'
- 'There are two flavors: built-in methods (such as "append()" '
- 'on lists)\n'
- 'and class instance methods. Built-in methods are described '
- 'with the\n'
- 'types that support them.\n'
- '\n'
- 'If you access a method (a function defined in a class '
- 'namespace)\n'
- 'through an instance, you get a special object: a *bound '
- 'method* (also\n'
- 'called *instance method*) object. When called, it will add '
- 'the "self"\n'
- 'argument to the argument list. Bound methods have two '
- 'special read-\n'
- 'only attributes: "m.__self__" is the object on which the '
- 'method\n'
- 'operates, and "m.__func__" is the function implementing the '
- 'method.\n'
- 'Calling "m(arg-1, arg-2, ..., arg-n)" is completely '
- 'equivalent to\n'
- 'calling "m.__func__(m.__self__, arg-1, arg-2, ..., arg-n)".\n'
- '\n'
- 'Like function objects, bound method objects support getting '
- 'arbitrary\n'
- 'attributes. However, since method attributes are actually '
- 'stored on\n'
- 'the underlying function object ("meth.__func__"), setting '
- 'method\n'
- 'attributes on bound methods is disallowed. Attempting to '
- 'set an\n'
- 'attribute on a method results in an "AttributeError" being '
- 'raised. In\n'
- 'order to set a method attribute, you need to explicitly set '
- 'it on the\n'
- 'underlying function object:\n'
- '\n'
- ' >>> class C:\n'
- ' ... def method(self):\n'
- ' ... pass\n'
- ' ...\n'
- ' >>> c = C()\n'
- " >>> c.method.whoami = 'my name is method' # can't set on "
- 'the method\n'
- ' Traceback (most recent call last):\n'
- ' File "<stdin>", line 1, in <module>\n'
- " AttributeError: 'method' object has no attribute "
- "'whoami'\n"
- " >>> c.method.__func__.whoami = 'my name is method'\n"
- ' >>> c.method.whoami\n'
- " 'my name is method'\n"
- '\n'
- 'See The standard type hierarchy for more information.\n',
- 'typesmodules': 'Modules\n'
- '*******\n'
- '\n'
- 'The only special operation on a module is attribute access: '
- '"m.name",\n'
- 'where *m* is a module and *name* accesses a name defined in '
- '*m*’s\n'
- 'symbol table. Module attributes can be assigned to. (Note '
- 'that the\n'
- '"import" statement is not, strictly speaking, an operation '
- 'on a module\n'
- 'object; "import foo" does not require a module object named '
- '*foo* to\n'
- 'exist, rather it requires an (external) *definition* for a '
- 'module\n'
- 'named *foo* somewhere.)\n'
- '\n'
- 'A special attribute of every module is "__dict__". This is '
- 'the\n'
- 'dictionary containing the module’s symbol table. Modifying '
- 'this\n'
- 'dictionary will actually change the module’s symbol table, '
- 'but direct\n'
- 'assignment to the "__dict__" attribute is not possible (you '
- 'can write\n'
- '"m.__dict__[\'a\'] = 1", which defines "m.a" to be "1", but '
- 'you can’t\n'
- 'write "m.__dict__ = {}"). Modifying "__dict__" directly is '
- 'not\n'
- 'recommended.\n'
- '\n'
- 'Modules built into the interpreter are written like this: '
- '"<module\n'
- '\'sys\' (built-in)>". If loaded from a file, they are '
- 'written as\n'
- '"<module \'os\' from '
- '\'/usr/local/lib/pythonX.Y/os.pyc\'>".\n',
- 'typesseq': 'Sequence Types — "list", "tuple", "range"\n'
- '*****************************************\n'
- '\n'
- 'There are three basic sequence types: lists, tuples, and range\n'
- 'objects. Additional sequence types tailored for processing of '
- 'binary\n'
- 'data and text strings are described in dedicated sections.\n'
- '\n'
- '\n'
- 'Common Sequence Operations\n'
- '==========================\n'
- '\n'
- 'The operations in the following table are supported by most '
- 'sequence\n'
- 'types, both mutable and immutable. The '
- '"collections.abc.Sequence" ABC\n'
- 'is provided to make it easier to correctly implement these '
- 'operations\n'
- 'on custom sequence types.\n'
- '\n'
- 'This table lists the sequence operations sorted in ascending '
- 'priority.\n'
- 'In the table, *s* and *t* are sequences of the same type, *n*, '
- '*i*,\n'
- '*j* and *k* are integers and *x* is an arbitrary object that '
- 'meets any\n'
- 'type and value restrictions imposed by *s*.\n'
- '\n'
- 'The "in" and "not in" operations have the same priorities as '
- 'the\n'
- 'comparison operations. The "+" (concatenation) and "*" '
- '(repetition)\n'
- 'operations have the same priority as the corresponding numeric\n'
- 'operations. [3]\n'
- '\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| Operation | Result '
- '| Notes |\n'
+ 'Keys views are set-like since their entries are unique and '
+ 'hashable.\n'
+ 'If all values are hashable, so that "(key, value)" pairs are '
+ 'unique\n'
+ 'and hashable, then the items view is also set-like. (Values '
+ 'views are\n'
+ 'not treated as set-like since the entries are generally not '
+ 'unique.)\n'
+ 'For set-like views, all of the operations defined for the '
+ 'abstract\n'
+ 'base class "collections.abc.Set" are available (for example, '
+ '"==",\n'
+ '"<", or "^").\n'
+ '\n'
+ 'An example of dictionary view usage:\n'
+ '\n'
+ " >>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, "
+ "'spam': 500}\n"
+ ' >>> keys = dishes.keys()\n'
+ ' >>> values = dishes.values()\n'
+ '\n'
+ ' >>> # iteration\n'
+ ' >>> n = 0\n'
+ ' >>> for val in values:\n'
+ ' ... n += val\n'
+ ' >>> print(n)\n'
+ ' 504\n'
+ '\n'
+ ' >>> # keys and values are iterated over in the same order '
+ '(insertion order)\n'
+ ' >>> list(keys)\n'
+ " ['eggs', 'sausage', 'bacon', 'spam']\n"
+ ' >>> list(values)\n'
+ ' [2, 1, 1, 500]\n'
+ '\n'
+ ' >>> # view objects are dynamic and reflect dict changes\n'
+ " >>> del dishes['eggs']\n"
+ " >>> del dishes['sausage']\n"
+ ' >>> list(keys)\n'
+ " ['bacon', 'spam']\n"
+ '\n'
+ ' >>> # set operations\n'
+ " >>> keys & {'eggs', 'bacon', 'salad'}\n"
+ " {'bacon'}\n"
+ " >>> keys ^ {'sausage', 'juice'}\n"
+ " {'juice', 'sausage', 'bacon', 'spam'}\n",
+ 'typesmethods': 'Methods\n'
+ '*******\n'
+ '\n'
+ 'Methods are functions that are called using the attribute '
+ 'notation.\n'
+ 'There are two flavors: built-in methods (such as "append()" '
+ 'on lists)\n'
+ 'and class instance methods. Built-in methods are described '
+ 'with the\n'
+ 'types that support them.\n'
+ '\n'
+ 'If you access a method (a function defined in a class '
+ 'namespace)\n'
+ 'through an instance, you get a special object: a *bound '
+ 'method* (also\n'
+ 'called *instance method*) object. When called, it will add '
+ 'the "self"\n'
+ 'argument to the argument list. Bound methods have two '
+ 'special read-\n'
+ 'only attributes: "m.__self__" is the object on which the '
+ 'method\n'
+ 'operates, and "m.__func__" is the function implementing the '
+ 'method.\n'
+ 'Calling "m(arg-1, arg-2, ..., arg-n)" is completely '
+ 'equivalent to\n'
+ 'calling "m.__func__(m.__self__, arg-1, arg-2, ..., arg-n)".\n'
+ '\n'
+ 'Like function objects, bound method objects support getting '
+ 'arbitrary\n'
+ 'attributes. However, since method attributes are actually '
+ 'stored on\n'
+ 'the underlying function object ("meth.__func__"), setting '
+ 'method\n'
+ 'attributes on bound methods is disallowed. Attempting to '
+ 'set an\n'
+ 'attribute on a method results in an "AttributeError" being '
+ 'raised. In\n'
+ 'order to set a method attribute, you need to explicitly set '
+ 'it on the\n'
+ 'underlying function object:\n'
+ '\n'
+ ' >>> class C:\n'
+ ' ... def method(self):\n'
+ ' ... pass\n'
+ ' ...\n'
+ ' >>> c = C()\n'
+ " >>> c.method.whoami = 'my name is method' # can't set on "
+ 'the method\n'
+ ' Traceback (most recent call last):\n'
+ ' File "<stdin>", line 1, in <module>\n'
+ " AttributeError: 'method' object has no attribute "
+ "'whoami'\n"
+ " >>> c.method.__func__.whoami = 'my name is method'\n"
+ ' >>> c.method.whoami\n'
+ " 'my name is method'\n"
+ '\n'
+ 'See The standard type hierarchy for more information.\n',
+ 'typesmodules': 'Modules\n'
+ '*******\n'
+ '\n'
+ 'The only special operation on a module is attribute access: '
+ '"m.name",\n'
+ 'where *m* is a module and *name* accesses a name defined in '
+ '*m*’s\n'
+ 'symbol table. Module attributes can be assigned to. (Note '
+ 'that the\n'
+ '"import" statement is not, strictly speaking, an operation '
+ 'on a module\n'
+ 'object; "import foo" does not require a module object named '
+ '*foo* to\n'
+ 'exist, rather it requires an (external) *definition* for a '
+ 'module\n'
+ 'named *foo* somewhere.)\n'
+ '\n'
+ 'A special attribute of every module is "__dict__". This is '
+ 'the\n'
+ 'dictionary containing the module’s symbol table. Modifying '
+ 'this\n'
+ 'dictionary will actually change the module’s symbol table, '
+ 'but direct\n'
+ 'assignment to the "__dict__" attribute is not possible (you '
+ 'can write\n'
+ '"m.__dict__[\'a\'] = 1", which defines "m.a" to be "1", but '
+ 'you can’t\n'
+ 'write "m.__dict__ = {}"). Modifying "__dict__" directly is '
+ 'not\n'
+ 'recommended.\n'
+ '\n'
+ 'Modules built into the interpreter are written like this: '
+ '"<module\n'
+ '\'sys\' (built-in)>". If loaded from a file, they are '
+ 'written as\n'
+ '"<module \'os\' from '
+ '\'/usr/local/lib/pythonX.Y/os.pyc\'>".\n',
+ 'typesseq': 'Sequence Types — "list", "tuple", "range"\n'
+ '*****************************************\n'
+ '\n'
+ 'There are three basic sequence types: lists, tuples, and range\n'
+ 'objects. Additional sequence types tailored for processing of '
+ 'binary\n'
+ 'data and text strings are described in dedicated sections.\n'
+ '\n'
+ '\n'
+ 'Common Sequence Operations\n'
+ '==========================\n'
+ '\n'
+ 'The operations in the following table are supported by most '
+ 'sequence\n'
+ 'types, both mutable and immutable. The '
+ '"collections.abc.Sequence" ABC\n'
+ 'is provided to make it easier to correctly implement these '
+ 'operations\n'
+ 'on custom sequence types.\n'
+ '\n'
+ 'This table lists the sequence operations sorted in ascending '
+ 'priority.\n'
+ 'In the table, *s* and *t* are sequences of the same type, *n*, '
+ '*i*,\n'
+ '*j* and *k* are integers and *x* is an arbitrary object that '
+ 'meets any\n'
+ 'type and value restrictions imposed by *s*.\n'
+ '\n'
+ 'The "in" and "not in" operations have the same priorities as '
+ 'the\n'
+ 'comparison operations. The "+" (concatenation) and "*" '
+ '(repetition)\n'
+ 'operations have the same priority as the corresponding numeric\n'
+ 'operations. [3]\n'
+ '\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| Operation | Result '
+ '| Notes |\n'
'|============================|==================================|============|\n'
- '| "x in s" | "True" if an item of *s* is '
- '| (1) |\n'
- '| | equal to *x*, else "False" '
- '| |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| "x not in s" | "False" if an item of *s* is '
- '| (1) |\n'
- '| | equal to *x*, else "True" '
- '| |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| "s + t" | the concatenation of *s* and *t* '
- '| (6)(7) |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| "s * n" or "n * s" | equivalent to adding *s* to '
- '| (2)(7) |\n'
- '| | itself *n* times '
- '| |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| "s[i]" | *i*th item of *s*, origin 0 '
- '| (3) |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| "s[i:j]" | slice of *s* from *i* to *j* '
- '| (3)(4) |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| "s[i:j:k]" | slice of *s* from *i* to *j* '
- '| (3)(5) |\n'
- '| | with step *k* '
- '| |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| "len(s)" | length of *s* '
- '| |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| "min(s)" | smallest item of *s* '
- '| |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| "max(s)" | largest item of *s* '
- '| |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| "s.index(x[, i[, j]])" | index of the first occurrence of '
- '| (8) |\n'
- '| | *x* in *s* (at or after index '
- '| |\n'
- '| | *i* and before index *j*) '
- '| |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '| "s.count(x)" | total number of occurrences of '
- '| |\n'
- '| | *x* in *s* '
- '| |\n'
- '+----------------------------+----------------------------------+------------+\n'
- '\n'
- 'Sequences of the same type also support comparisons. In '
- 'particular,\n'
- 'tuples and lists are compared lexicographically by comparing\n'
- 'corresponding elements. This means that to compare equal, every\n'
- 'element must compare equal and the two sequences must be of the '
- 'same\n'
- 'type and have the same length. (For full details see '
- 'Comparisons in\n'
- 'the language reference.)\n'
- '\n'
- 'Notes:\n'
- '\n'
- '1. While the "in" and "not in" operations are used only for '
- 'simple\n'
- ' containment testing in the general case, some specialised '
- 'sequences\n'
- ' (such as "str", "bytes" and "bytearray") also use them for\n'
- ' subsequence testing:\n'
- '\n'
- ' >>> "gg" in "eggs"\n'
- ' True\n'
- '\n'
- '2. Values of *n* less than "0" are treated as "0" (which yields '
- 'an\n'
- ' empty sequence of the same type as *s*). Note that items in '
- 'the\n'
- ' sequence *s* are not copied; they are referenced multiple '
- 'times.\n'
- ' This often haunts new Python programmers; consider:\n'
- '\n'
- ' >>> lists = [[]] * 3\n'
- ' >>> lists\n'
- ' [[], [], []]\n'
- ' >>> lists[0].append(3)\n'
- ' >>> lists\n'
- ' [[3], [3], [3]]\n'
- '\n'
- ' What has happened is that "[[]]" is a one-element list '
- 'containing\n'
- ' an empty list, so all three elements of "[[]] * 3" are '
- 'references\n'
- ' to this single empty list. Modifying any of the elements of\n'
- ' "lists" modifies this single list. You can create a list of\n'
- ' different lists this way:\n'
- '\n'
- ' >>> lists = [[] for i in range(3)]\n'
- ' >>> lists[0].append(3)\n'
- ' >>> lists[1].append(5)\n'
- ' >>> lists[2].append(7)\n'
- ' >>> lists\n'
- ' [[3], [5], [7]]\n'
- '\n'
- ' Further explanation is available in the FAQ entry How do I '
- 'create a\n'
- ' multidimensional list?.\n'
- '\n'
- '3. If *i* or *j* is negative, the index is relative to the end '
- 'of\n'
- ' sequence *s*: "len(s) + i" or "len(s) + j" is substituted. '
- 'But\n'
- ' note that "-0" is still "0".\n'
- '\n'
- '4. The slice of *s* from *i* to *j* is defined as the sequence '
- 'of\n'
- ' items with index *k* such that "i <= k < j". If *i* or *j* '
- 'is\n'
- ' greater than "len(s)", use "len(s)". If *i* is omitted or '
- '"None",\n'
- ' use "0". If *j* is omitted or "None", use "len(s)". If *i* '
- 'is\n'
- ' greater than or equal to *j*, the slice is empty.\n'
- '\n'
- '5. The slice of *s* from *i* to *j* with step *k* is defined as '
- 'the\n'
- ' sequence of items with index "x = i + n*k" such that "0 <= n '
- '<\n'
- ' (j-i)/k". In other words, the indices are "i", "i+k", '
- '"i+2*k",\n'
- ' "i+3*k" and so on, stopping when *j* is reached (but never\n'
- ' including *j*). When *k* is positive, *i* and *j* are '
- 'reduced to\n'
- ' "len(s)" if they are greater. When *k* is negative, *i* and '
- '*j* are\n'
- ' reduced to "len(s) - 1" if they are greater. If *i* or *j* '
- 'are\n'
- ' omitted or "None", they become “end” values (which end '
- 'depends on\n'
- ' the sign of *k*). Note, *k* cannot be zero. If *k* is '
- '"None", it\n'
- ' is treated like "1".\n'
- '\n'
+ '| "x in s" | "True" if an item of *s* is '
+ '| (1) |\n'
+ '| | equal to *x*, else "False" '
+ '| |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| "x not in s" | "False" if an item of *s* is '
+ '| (1) |\n'
+ '| | equal to *x*, else "True" '
+ '| |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| "s + t" | the concatenation of *s* and *t* '
+ '| (6)(7) |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| "s * n" or "n * s" | equivalent to adding *s* to '
+ '| (2)(7) |\n'
+ '| | itself *n* times '
+ '| |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| "s[i]" | *i*th item of *s*, origin 0 '
+ '| (3) |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| "s[i:j]" | slice of *s* from *i* to *j* '
+ '| (3)(4) |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| "s[i:j:k]" | slice of *s* from *i* to *j* '
+ '| (3)(5) |\n'
+ '| | with step *k* '
+ '| |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| "len(s)" | length of *s* '
+ '| |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| "min(s)" | smallest item of *s* '
+ '| |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| "max(s)" | largest item of *s* '
+ '| |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| "s.index(x[, i[, j]])" | index of the first occurrence of '
+ '| (8) |\n'
+ '| | *x* in *s* (at or after index '
+ '| |\n'
+ '| | *i* and before index *j*) '
+ '| |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '| "s.count(x)" | total number of occurrences of '
+ '| |\n'
+ '| | *x* in *s* '
+ '| |\n'
+ '+----------------------------+----------------------------------+------------+\n'
+ '\n'
+ 'Sequences of the same type also support comparisons. In '
+ 'particular,\n'
+ 'tuples and lists are compared lexicographically by comparing\n'
+ 'corresponding elements. This means that to compare equal, every\n'
+ 'element must compare equal and the two sequences must be of the '
+ 'same\n'
+ 'type and have the same length. (For full details see '
+ 'Comparisons in\n'
+ 'the language reference.)\n'
+ '\n'
+ 'Notes:\n'
+ '\n'
+ '1. While the "in" and "not in" operations are used only for '
+ 'simple\n'
+ ' containment testing in the general case, some specialised '
+ 'sequences\n'
+ ' (such as "str", "bytes" and "bytearray") also use them for\n'
+ ' subsequence testing:\n'
+ '\n'
+ ' >>> "gg" in "eggs"\n'
+ ' True\n'
+ '\n'
+ '2. Values of *n* less than "0" are treated as "0" (which yields '
+ 'an\n'
+ ' empty sequence of the same type as *s*). Note that items in '
+ 'the\n'
+ ' sequence *s* are not copied; they are referenced multiple '
+ 'times.\n'
+ ' This often haunts new Python programmers; consider:\n'
+ '\n'
+ ' >>> lists = [[]] * 3\n'
+ ' >>> lists\n'
+ ' [[], [], []]\n'
+ ' >>> lists[0].append(3)\n'
+ ' >>> lists\n'
+ ' [[3], [3], [3]]\n'
+ '\n'
+ ' What has happened is that "[[]]" is a one-element list '
+ 'containing\n'
+ ' an empty list, so all three elements of "[[]] * 3" are '
+ 'references\n'
+ ' to this single empty list. Modifying any of the elements of\n'
+ ' "lists" modifies this single list. You can create a list of\n'
+ ' different lists this way:\n'
+ '\n'
+ ' >>> lists = [[] for i in range(3)]\n'
+ ' >>> lists[0].append(3)\n'
+ ' >>> lists[1].append(5)\n'
+ ' >>> lists[2].append(7)\n'
+ ' >>> lists\n'
+ ' [[3], [5], [7]]\n'
+ '\n'
+ ' Further explanation is available in the FAQ entry How do I '
+ 'create a\n'
+ ' multidimensional list?.\n'
+ '\n'
+ '3. If *i* or *j* is negative, the index is relative to the end '
+ 'of\n'
+ ' sequence *s*: "len(s) + i" or "len(s) + j" is substituted. '
+ 'But\n'
+ ' note that "-0" is still "0".\n'
+ '\n'
+ '4. The slice of *s* from *i* to *j* is defined as the sequence '
+ 'of\n'
+ ' items with index *k* such that "i <= k < j". If *i* or *j* '
+ 'is\n'
+ ' greater than "len(s)", use "len(s)". If *i* is omitted or '
+ '"None",\n'
+ ' use "0". If *j* is omitted or "None", use "len(s)". If *i* '
+ 'is\n'
+ ' greater than or equal to *j*, the slice is empty.\n'
+ '\n'
+ '5. The slice of *s* from *i* to *j* with step *k* is defined as '
+ 'the\n'
+ ' sequence of items with index "x = i + n*k" such that "0 <= n '
+ '<\n'
+ ' (j-i)/k". In other words, the indices are "i", "i+k", '
+ '"i+2*k",\n'
+ ' "i+3*k" and so on, stopping when *j* is reached (but never\n'
+ ' including *j*). When *k* is positive, *i* and *j* are '
+ 'reduced to\n'
+ ' "len(s)" if they are greater. When *k* is negative, *i* and '
+ '*j* are\n'
+ ' reduced to "len(s) - 1" if they are greater. If *i* or *j* '
+ 'are\n'
+ ' omitted or "None", they become “end” values (which end '
+ 'depends on\n'
+ ' the sign of *k*). Note, *k* cannot be zero. If *k* is '
+ '"None", it\n'
+ ' is treated like "1".\n'
+ '\n'
'6. Concatenating immutable sequences always results in a new '
'object.\n'
' This means that building up a sequence by repeated '
@@ -13495,29 +13495,29 @@ topics = {'assert': 'The "assert" statement\n'
'length.\n'
' To get a linear runtime cost, you must switch to one of the\n'
' alternatives below:\n'
- '\n'
- ' * if concatenating "str" objects, you can build a list and '
- 'use\n'
- ' "str.join()" at the end or else write to an "io.StringIO"\n'
- ' instance and retrieve its value when complete\n'
- '\n'
- ' * if concatenating "bytes" objects, you can similarly use\n'
- ' "bytes.join()" or "io.BytesIO", or you can do in-place\n'
- ' concatenation with a "bytearray" object. "bytearray" '
- 'objects are\n'
- ' mutable and have an efficient overallocation mechanism\n'
- '\n'
- ' * if concatenating "tuple" objects, extend a "list" instead\n'
- '\n'
- ' * for other types, investigate the relevant class '
- 'documentation\n'
- '\n'
+ '\n'
+ ' * if concatenating "str" objects, you can build a list and '
+ 'use\n'
+ ' "str.join()" at the end or else write to an "io.StringIO"\n'
+ ' instance and retrieve its value when complete\n'
+ '\n'
+ ' * if concatenating "bytes" objects, you can similarly use\n'
+ ' "bytes.join()" or "io.BytesIO", or you can do in-place\n'
+ ' concatenation with a "bytearray" object. "bytearray" '
+ 'objects are\n'
+ ' mutable and have an efficient overallocation mechanism\n'
+ '\n'
+ ' * if concatenating "tuple" objects, extend a "list" instead\n'
+ '\n'
+ ' * for other types, investigate the relevant class '
+ 'documentation\n'
+ '\n'
'7. Some sequence types (such as "range") only support item '
'sequences\n'
' that follow specific patterns, and hence don’t support '
- 'sequence\n'
+ 'sequence\n'
' concatenation or repetition.\n'
- '\n'
+ '\n'
'8. "index" raises "ValueError" when *x* is not found in *s*. Not '
'all\n'
' implementations support passing the additional arguments *i* '
@@ -13531,744 +13531,744 @@ topics = {'assert': 'The "assert" statement\n'
' returned index being relative to the start of the sequence '
'rather\n'
' than the start of the slice.\n'
- '\n'
- '\n'
- 'Immutable Sequence Types\n'
- '========================\n'
- '\n'
- 'The only operation that immutable sequence types generally '
- 'implement\n'
- 'that is not also implemented by mutable sequence types is '
- 'support for\n'
- 'the "hash()" built-in.\n'
- '\n'
- 'This support allows immutable sequences, such as "tuple" '
- 'instances, to\n'
- 'be used as "dict" keys and stored in "set" and "frozenset" '
- 'instances.\n'
- '\n'
- 'Attempting to hash an immutable sequence that contains '
- 'unhashable\n'
- 'values will result in "TypeError".\n'
- '\n'
- '\n'
- 'Mutable Sequence Types\n'
- '======================\n'
- '\n'
- 'The operations in the following table are defined on mutable '
- 'sequence\n'
- 'types. The "collections.abc.MutableSequence" ABC is provided to '
- 'make\n'
- 'it easier to correctly implement these operations on custom '
- 'sequence\n'
- 'types.\n'
- '\n'
- 'In the table *s* is an instance of a mutable sequence type, *t* '
- 'is any\n'
- 'iterable object and *x* is an arbitrary object that meets any '
- 'type and\n'
- 'value restrictions imposed by *s* (for example, "bytearray" '
- 'only\n'
- 'accepts integers that meet the value restriction "0 <= x <= '
- '255").\n'
- '\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| Operation | '
- 'Result | Notes |\n'
+ '\n'
+ '\n'
+ 'Immutable Sequence Types\n'
+ '========================\n'
+ '\n'
+ 'The only operation that immutable sequence types generally '
+ 'implement\n'
+ 'that is not also implemented by mutable sequence types is '
+ 'support for\n'
+ 'the "hash()" built-in.\n'
+ '\n'
+ 'This support allows immutable sequences, such as "tuple" '
+ 'instances, to\n'
+ 'be used as "dict" keys and stored in "set" and "frozenset" '
+ 'instances.\n'
+ '\n'
+ 'Attempting to hash an immutable sequence that contains '
+ 'unhashable\n'
+ 'values will result in "TypeError".\n'
+ '\n'
+ '\n'
+ 'Mutable Sequence Types\n'
+ '======================\n'
+ '\n'
+ 'The operations in the following table are defined on mutable '
+ 'sequence\n'
+ 'types. The "collections.abc.MutableSequence" ABC is provided to '
+ 'make\n'
+ 'it easier to correctly implement these operations on custom '
+ 'sequence\n'
+ 'types.\n'
+ '\n'
+ 'In the table *s* is an instance of a mutable sequence type, *t* '
+ 'is any\n'
+ 'iterable object and *x* is an arbitrary object that meets any '
+ 'type and\n'
+ 'value restrictions imposed by *s* (for example, "bytearray" '
+ 'only\n'
+ 'accepts integers that meet the value restriction "0 <= x <= '
+ '255").\n'
+ '\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| Operation | '
+ 'Result | Notes |\n'
'|================================|==================================|=======================|\n'
- '| "s[i] = x" | item *i* of *s* is replaced '
- 'by | |\n'
- '| | '
- '*x* | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s[i:j] = t" | slice of *s* from *i* to *j* '
- 'is | |\n'
- '| | replaced by the contents of '
- 'the | |\n'
- '| | iterable '
- '*t* | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "del s[i:j]" | same as "s[i:j] = '
- '[]" | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s[i:j:k] = t" | the elements of "s[i:j:k]" '
- 'are | (1) |\n'
- '| | replaced by those of '
- '*t* | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "del s[i:j:k]" | removes the elements '
- 'of | |\n'
- '| | "s[i:j:k]" from the '
- 'list | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.append(x)" | appends *x* to the end of '
- 'the | |\n'
- '| | sequence (same '
- 'as | |\n'
- '| | "s[len(s):len(s)] = '
- '[x]") | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.clear()" | removes all items from *s* '
- '(same | (5) |\n'
- '| | as "del '
- 's[:]") | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.copy()" | creates a shallow copy of '
- '*s* | (5) |\n'
- '| | (same as '
- '"s[:]") | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.extend(t)" or "s += t" | extends *s* with the contents '
- 'of | |\n'
- '| | *t* (for the most part the '
- 'same | |\n'
- '| | as "s[len(s):len(s)] = '
- 't") | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s *= n" | updates *s* with its '
- 'contents | (6) |\n'
- '| | repeated *n* '
- 'times | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.insert(i, x)" | inserts *x* into *s* at '
- 'the | |\n'
- '| | index given by *i* (same '
- 'as | |\n'
- '| | "s[i:i] = '
- '[x]") | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s[i] = x" | item *i* of *s* is replaced '
+ 'by | |\n'
+ '| | '
+ '*x* | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s[i:j] = t" | slice of *s* from *i* to *j* '
+ 'is | |\n'
+ '| | replaced by the contents of '
+ 'the | |\n'
+ '| | iterable '
+ '*t* | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "del s[i:j]" | same as "s[i:j] = '
+ '[]" | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s[i:j:k] = t" | the elements of "s[i:j:k]" '
+ 'are | (1) |\n'
+ '| | replaced by those of '
+ '*t* | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "del s[i:j:k]" | removes the elements '
+ 'of | |\n'
+ '| | "s[i:j:k]" from the '
+ 'list | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.append(x)" | appends *x* to the end of '
+ 'the | |\n'
+ '| | sequence (same '
+ 'as | |\n'
+ '| | "s[len(s):len(s)] = '
+ '[x]") | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.clear()" | removes all items from *s* '
+ '(same | (5) |\n'
+ '| | as "del '
+ 's[:]") | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.copy()" | creates a shallow copy of '
+ '*s* | (5) |\n'
+ '| | (same as '
+ '"s[:]") | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.extend(t)" or "s += t" | extends *s* with the contents '
+ 'of | |\n'
+ '| | *t* (for the most part the '
+ 'same | |\n'
+ '| | as "s[len(s):len(s)] = '
+ 't") | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s *= n" | updates *s* with its '
+ 'contents | (6) |\n'
+ '| | repeated *n* '
+ 'times | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.insert(i, x)" | inserts *x* into *s* at '
+ 'the | |\n'
+ '| | index given by *i* (same '
+ 'as | |\n'
+ '| | "s[i:i] = '
+ '[x]") | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.pop()" or "s.pop(i)" | retrieves the item at *i* '
- 'and | (2) |\n'
- '| | also removes it from '
- '*s* | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.remove(x)" | remove the first item from '
- '*s* | (3) |\n'
- '| | where "s[i]" is equal to '
- '*x* | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.reverse()" | reverses the items of *s* '
- 'in | (4) |\n'
- '| | '
- 'place | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '\n'
- 'Notes:\n'
- '\n'
- '1. *t* must have the same length as the slice it is replacing.\n'
- '\n'
- '2. The optional argument *i* defaults to "-1", so that by '
+ 'and | (2) |\n'
+ '| | also removes it from '
+ '*s* | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.remove(x)" | remove the first item from '
+ '*s* | (3) |\n'
+ '| | where "s[i]" is equal to '
+ '*x* | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.reverse()" | reverses the items of *s* '
+ 'in | (4) |\n'
+ '| | '
+ 'place | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '\n'
+ 'Notes:\n'
+ '\n'
+ '1. *t* must have the same length as the slice it is replacing.\n'
+ '\n'
+ '2. The optional argument *i* defaults to "-1", so that by '
'default the\n'
' last item is removed and returned.\n'
- '\n'
+ '\n'
'3. "remove()" raises "ValueError" when *x* is not found in *s*.\n'
- '\n'
+ '\n'
'4. The "reverse()" method modifies the sequence in place for '
'economy\n'
' of space when reversing a large sequence. To remind users '
'that it\n'
' operates by side effect, it does not return the reversed '
'sequence.\n'
- '\n'
- '5. "clear()" and "copy()" are included for consistency with the\n'
- ' interfaces of mutable containers that don’t support slicing\n'
+ '\n'
+ '5. "clear()" and "copy()" are included for consistency with the\n'
+ ' interfaces of mutable containers that don’t support slicing\n'
' operations (such as "dict" and "set"). "copy()" is not part '
'of the\n'
' "collections.abc.MutableSequence" ABC, but most concrete '
'mutable\n'
' sequence classes provide it.\n'
- '\n'
- ' New in version 3.3: "clear()" and "copy()" methods.\n'
- '\n'
- '6. The value *n* is an integer, or an object implementing\n'
- ' "__index__()". Zero and negative values of *n* clear the '
- 'sequence.\n'
- ' Items in the sequence are not copied; they are referenced '
- 'multiple\n'
- ' times, as explained for "s * n" under Common Sequence '
- 'Operations.\n'
- '\n'
- '\n'
- 'Lists\n'
- '=====\n'
- '\n'
- 'Lists are mutable sequences, typically used to store collections '
- 'of\n'
- 'homogeneous items (where the precise degree of similarity will '
- 'vary by\n'
- 'application).\n'
- '\n'
- 'class list([iterable])\n'
- '\n'
- ' Lists may be constructed in several ways:\n'
- '\n'
- ' * Using a pair of square brackets to denote the empty list: '
- '"[]"\n'
- '\n'
+ '\n'
+ ' New in version 3.3: "clear()" and "copy()" methods.\n'
+ '\n'
+ '6. The value *n* is an integer, or an object implementing\n'
+ ' "__index__()". Zero and negative values of *n* clear the '
+ 'sequence.\n'
+ ' Items in the sequence are not copied; they are referenced '
+ 'multiple\n'
+ ' times, as explained for "s * n" under Common Sequence '
+ 'Operations.\n'
+ '\n'
+ '\n'
+ 'Lists\n'
+ '=====\n'
+ '\n'
+ 'Lists are mutable sequences, typically used to store collections '
+ 'of\n'
+ 'homogeneous items (where the precise degree of similarity will '
+ 'vary by\n'
+ 'application).\n'
+ '\n'
+ 'class list([iterable])\n'
+ '\n'
+ ' Lists may be constructed in several ways:\n'
+ '\n'
+ ' * Using a pair of square brackets to denote the empty list: '
+ '"[]"\n'
+ '\n'
' * Using square brackets, separating items with commas: "[a]", '
'"[a,\n'
' b, c]"\n'
- '\n'
- ' * Using a list comprehension: "[x for x in iterable]"\n'
- '\n'
- ' * Using the type constructor: "list()" or "list(iterable)"\n'
- '\n'
- ' The constructor builds a list whose items are the same and in '
- 'the\n'
- ' same order as *iterable*’s items. *iterable* may be either '
- 'a\n'
- ' sequence, a container that supports iteration, or an '
- 'iterator\n'
- ' object. If *iterable* is already a list, a copy is made and\n'
- ' returned, similar to "iterable[:]". For example, '
- '"list(\'abc\')"\n'
- ' returns "[\'a\', \'b\', \'c\']" and "list( (1, 2, 3) )" '
- 'returns "[1, 2,\n'
- ' 3]". If no argument is given, the constructor creates a new '
- 'empty\n'
- ' list, "[]".\n'
- '\n'
- ' Many other operations also produce lists, including the '
- '"sorted()"\n'
- ' built-in.\n'
- '\n'
- ' Lists implement all of the common and mutable sequence '
- 'operations.\n'
- ' Lists also provide the following additional method:\n'
- '\n'
- ' sort(*, key=None, reverse=False)\n'
- '\n'
- ' This method sorts the list in place, using only "<" '
- 'comparisons\n'
- ' between items. Exceptions are not suppressed - if any '
- 'comparison\n'
- ' operations fail, the entire sort operation will fail (and '
- 'the\n'
- ' list will likely be left in a partially modified state).\n'
- '\n'
- ' "sort()" accepts two arguments that can only be passed by\n'
- ' keyword (keyword-only arguments):\n'
- '\n'
- ' *key* specifies a function of one argument that is used '
- 'to\n'
- ' extract a comparison key from each list element (for '
- 'example,\n'
- ' "key=str.lower"). The key corresponding to each item in '
- 'the list\n'
- ' is calculated once and then used for the entire sorting '
- 'process.\n'
- ' The default value of "None" means that list items are '
- 'sorted\n'
- ' directly without calculating a separate key value.\n'
- '\n'
- ' The "functools.cmp_to_key()" utility is available to '
- 'convert a\n'
- ' 2.x style *cmp* function to a *key* function.\n'
- '\n'
- ' *reverse* is a boolean value. If set to "True", then the '
- 'list\n'
- ' elements are sorted as if each comparison were reversed.\n'
- '\n'
- ' This method modifies the sequence in place for economy of '
- 'space\n'
- ' when sorting a large sequence. To remind users that it '
- 'operates\n'
- ' by side effect, it does not return the sorted sequence '
- '(use\n'
- ' "sorted()" to explicitly request a new sorted list '
- 'instance).\n'
- '\n'
- ' The "sort()" method is guaranteed to be stable. A sort '
- 'is\n'
- ' stable if it guarantees not to change the relative order '
- 'of\n'
- ' elements that compare equal — this is helpful for sorting '
- 'in\n'
- ' multiple passes (for example, sort by department, then by '
- 'salary\n'
- ' grade).\n'
- '\n'
+ '\n'
+ ' * Using a list comprehension: "[x for x in iterable]"\n'
+ '\n'
+ ' * Using the type constructor: "list()" or "list(iterable)"\n'
+ '\n'
+ ' The constructor builds a list whose items are the same and in '
+ 'the\n'
+ ' same order as *iterable*’s items. *iterable* may be either '
+ 'a\n'
+ ' sequence, a container that supports iteration, or an '
+ 'iterator\n'
+ ' object. If *iterable* is already a list, a copy is made and\n'
+ ' returned, similar to "iterable[:]". For example, '
+ '"list(\'abc\')"\n'
+ ' returns "[\'a\', \'b\', \'c\']" and "list( (1, 2, 3) )" '
+ 'returns "[1, 2,\n'
+ ' 3]". If no argument is given, the constructor creates a new '
+ 'empty\n'
+ ' list, "[]".\n'
+ '\n'
+ ' Many other operations also produce lists, including the '
+ '"sorted()"\n'
+ ' built-in.\n'
+ '\n'
+ ' Lists implement all of the common and mutable sequence '
+ 'operations.\n'
+ ' Lists also provide the following additional method:\n'
+ '\n'
+ ' sort(*, key=None, reverse=False)\n'
+ '\n'
+ ' This method sorts the list in place, using only "<" '
+ 'comparisons\n'
+ ' between items. Exceptions are not suppressed - if any '
+ 'comparison\n'
+ ' operations fail, the entire sort operation will fail (and '
+ 'the\n'
+ ' list will likely be left in a partially modified state).\n'
+ '\n'
+ ' "sort()" accepts two arguments that can only be passed by\n'
+ ' keyword (keyword-only arguments):\n'
+ '\n'
+ ' *key* specifies a function of one argument that is used '
+ 'to\n'
+ ' extract a comparison key from each list element (for '
+ 'example,\n'
+ ' "key=str.lower"). The key corresponding to each item in '
+ 'the list\n'
+ ' is calculated once and then used for the entire sorting '
+ 'process.\n'
+ ' The default value of "None" means that list items are '
+ 'sorted\n'
+ ' directly without calculating a separate key value.\n'
+ '\n'
+ ' The "functools.cmp_to_key()" utility is available to '
+ 'convert a\n'
+ ' 2.x style *cmp* function to a *key* function.\n'
+ '\n'
+ ' *reverse* is a boolean value. If set to "True", then the '
+ 'list\n'
+ ' elements are sorted as if each comparison were reversed.\n'
+ '\n'
+ ' This method modifies the sequence in place for economy of '
+ 'space\n'
+ ' when sorting a large sequence. To remind users that it '
+ 'operates\n'
+ ' by side effect, it does not return the sorted sequence '
+ '(use\n'
+ ' "sorted()" to explicitly request a new sorted list '
+ 'instance).\n'
+ '\n'
+ ' The "sort()" method is guaranteed to be stable. A sort '
+ 'is\n'
+ ' stable if it guarantees not to change the relative order '
+ 'of\n'
+ ' elements that compare equal — this is helpful for sorting '
+ 'in\n'
+ ' multiple passes (for example, sort by department, then by '
+ 'salary\n'
+ ' grade).\n'
+ '\n'
' For sorting examples and a brief sorting tutorial, see '
'Sorting\n'
' HOW TO.\n'
'\n'
- ' **CPython implementation detail:** While a list is being '
- 'sorted,\n'
- ' the effect of attempting to mutate, or even inspect, the '
- 'list is\n'
- ' undefined. The C implementation of Python makes the list '
- 'appear\n'
- ' empty for the duration, and raises "ValueError" if it can '
- 'detect\n'
- ' that the list has been mutated during a sort.\n'
- '\n'
- '\n'
- 'Tuples\n'
- '======\n'
- '\n'
- 'Tuples are immutable sequences, typically used to store '
- 'collections of\n'
- 'heterogeneous data (such as the 2-tuples produced by the '
- '"enumerate()"\n'
- 'built-in). Tuples are also used for cases where an immutable '
- 'sequence\n'
- 'of homogeneous data is needed (such as allowing storage in a '
- '"set" or\n'
- '"dict" instance).\n'
- '\n'
- 'class tuple([iterable])\n'
- '\n'
- ' Tuples may be constructed in a number of ways:\n'
- '\n'
- ' * Using a pair of parentheses to denote the empty tuple: '
- '"()"\n'
- '\n'
- ' * Using a trailing comma for a singleton tuple: "a," or '
- '"(a,)"\n'
- '\n'
- ' * Separating items with commas: "a, b, c" or "(a, b, c)"\n'
- '\n'
- ' * Using the "tuple()" built-in: "tuple()" or '
- '"tuple(iterable)"\n'
- '\n'
- ' The constructor builds a tuple whose items are the same and '
- 'in the\n'
- ' same order as *iterable*’s items. *iterable* may be either '
- 'a\n'
- ' sequence, a container that supports iteration, or an '
- 'iterator\n'
- ' object. If *iterable* is already a tuple, it is returned\n'
- ' unchanged. For example, "tuple(\'abc\')" returns "(\'a\', '
- '\'b\', \'c\')"\n'
- ' and "tuple( [1, 2, 3] )" returns "(1, 2, 3)". If no argument '
- 'is\n'
- ' given, the constructor creates a new empty tuple, "()".\n'
- '\n'
- ' Note that it is actually the comma which makes a tuple, not '
- 'the\n'
- ' parentheses. The parentheses are optional, except in the '
- 'empty\n'
- ' tuple case, or when they are needed to avoid syntactic '
- 'ambiguity.\n'
- ' For example, "f(a, b, c)" is a function call with three '
- 'arguments,\n'
- ' while "f((a, b, c))" is a function call with a 3-tuple as the '
- 'sole\n'
- ' argument.\n'
- '\n'
- ' Tuples implement all of the common sequence operations.\n'
- '\n'
- 'For heterogeneous collections of data where access by name is '
- 'clearer\n'
- 'than access by index, "collections.namedtuple()" may be a more\n'
- 'appropriate choice than a simple tuple object.\n'
- '\n'
- '\n'
- 'Ranges\n'
- '======\n'
- '\n'
- 'The "range" type represents an immutable sequence of numbers and '
- 'is\n'
- 'commonly used for looping a specific number of times in "for" '
- 'loops.\n'
- '\n'
- 'class range(stop)\n'
- 'class range(start, stop[, step])\n'
- '\n'
- ' The arguments to the range constructor must be integers '
- '(either\n'
+ ' **CPython implementation detail:** While a list is being '
+ 'sorted,\n'
+ ' the effect of attempting to mutate, or even inspect, the '
+ 'list is\n'
+ ' undefined. The C implementation of Python makes the list '
+ 'appear\n'
+ ' empty for the duration, and raises "ValueError" if it can '
+ 'detect\n'
+ ' that the list has been mutated during a sort.\n'
+ '\n'
+ '\n'
+ 'Tuples\n'
+ '======\n'
+ '\n'
+ 'Tuples are immutable sequences, typically used to store '
+ 'collections of\n'
+ 'heterogeneous data (such as the 2-tuples produced by the '
+ '"enumerate()"\n'
+ 'built-in). Tuples are also used for cases where an immutable '
+ 'sequence\n'
+ 'of homogeneous data is needed (such as allowing storage in a '
+ '"set" or\n'
+ '"dict" instance).\n'
+ '\n'
+ 'class tuple([iterable])\n'
+ '\n'
+ ' Tuples may be constructed in a number of ways:\n'
+ '\n'
+ ' * Using a pair of parentheses to denote the empty tuple: '
+ '"()"\n'
+ '\n'
+ ' * Using a trailing comma for a singleton tuple: "a," or '
+ '"(a,)"\n'
+ '\n'
+ ' * Separating items with commas: "a, b, c" or "(a, b, c)"\n'
+ '\n'
+ ' * Using the "tuple()" built-in: "tuple()" or '
+ '"tuple(iterable)"\n'
+ '\n'
+ ' The constructor builds a tuple whose items are the same and '
+ 'in the\n'
+ ' same order as *iterable*’s items. *iterable* may be either '
+ 'a\n'
+ ' sequence, a container that supports iteration, or an '
+ 'iterator\n'
+ ' object. If *iterable* is already a tuple, it is returned\n'
+ ' unchanged. For example, "tuple(\'abc\')" returns "(\'a\', '
+ '\'b\', \'c\')"\n'
+ ' and "tuple( [1, 2, 3] )" returns "(1, 2, 3)". If no argument '
+ 'is\n'
+ ' given, the constructor creates a new empty tuple, "()".\n'
+ '\n'
+ ' Note that it is actually the comma which makes a tuple, not '
+ 'the\n'
+ ' parentheses. The parentheses are optional, except in the '
+ 'empty\n'
+ ' tuple case, or when they are needed to avoid syntactic '
+ 'ambiguity.\n'
+ ' For example, "f(a, b, c)" is a function call with three '
+ 'arguments,\n'
+ ' while "f((a, b, c))" is a function call with a 3-tuple as the '
+ 'sole\n'
+ ' argument.\n'
+ '\n'
+ ' Tuples implement all of the common sequence operations.\n'
+ '\n'
+ 'For heterogeneous collections of data where access by name is '
+ 'clearer\n'
+ 'than access by index, "collections.namedtuple()" may be a more\n'
+ 'appropriate choice than a simple tuple object.\n'
+ '\n'
+ '\n'
+ 'Ranges\n'
+ '======\n'
+ '\n'
+ 'The "range" type represents an immutable sequence of numbers and '
+ 'is\n'
+ 'commonly used for looping a specific number of times in "for" '
+ 'loops.\n'
+ '\n'
+ 'class range(stop)\n'
+ 'class range(start, stop[, step])\n'
+ '\n'
+ ' The arguments to the range constructor must be integers '
+ '(either\n'
' built-in "int" or any object that implements the '
'"__index__()"\n'
- ' special method). If the *step* argument is omitted, it '
- 'defaults to\n'
- ' "1". If the *start* argument is omitted, it defaults to "0". '
- 'If\n'
- ' *step* is zero, "ValueError" is raised.\n'
- '\n'
- ' For a positive *step*, the contents of a range "r" are '
- 'determined\n'
- ' by the formula "r[i] = start + step*i" where "i >= 0" and '
- '"r[i] <\n'
- ' stop".\n'
- '\n'
- ' For a negative *step*, the contents of the range are still\n'
- ' determined by the formula "r[i] = start + step*i", but the\n'
- ' constraints are "i >= 0" and "r[i] > stop".\n'
- '\n'
- ' A range object will be empty if "r[0]" does not meet the '
- 'value\n'
- ' constraint. Ranges do support negative indices, but these '
- 'are\n'
- ' interpreted as indexing from the end of the sequence '
- 'determined by\n'
- ' the positive indices.\n'
- '\n'
- ' Ranges containing absolute values larger than "sys.maxsize" '
- 'are\n'
- ' permitted but some features (such as "len()") may raise\n'
- ' "OverflowError".\n'
- '\n'
- ' Range examples:\n'
- '\n'
- ' >>> list(range(10))\n'
- ' [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n'
- ' >>> list(range(1, 11))\n'
- ' [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n'
- ' >>> list(range(0, 30, 5))\n'
- ' [0, 5, 10, 15, 20, 25]\n'
- ' >>> list(range(0, 10, 3))\n'
- ' [0, 3, 6, 9]\n'
- ' >>> list(range(0, -10, -1))\n'
- ' [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]\n'
- ' >>> list(range(0))\n'
- ' []\n'
- ' >>> list(range(1, 0))\n'
- ' []\n'
- '\n'
- ' Ranges implement all of the common sequence operations '
- 'except\n'
- ' concatenation and repetition (due to the fact that range '
- 'objects\n'
- ' can only represent sequences that follow a strict pattern '
- 'and\n'
- ' repetition and concatenation will usually violate that '
- 'pattern).\n'
- '\n'
- ' start\n'
- '\n'
- ' The value of the *start* parameter (or "0" if the '
- 'parameter was\n'
- ' not supplied)\n'
- '\n'
- ' stop\n'
- '\n'
- ' The value of the *stop* parameter\n'
- '\n'
- ' step\n'
- '\n'
- ' The value of the *step* parameter (or "1" if the parameter '
- 'was\n'
- ' not supplied)\n'
- '\n'
- 'The advantage of the "range" type over a regular "list" or '
- '"tuple" is\n'
- 'that a "range" object will always take the same (small) amount '
- 'of\n'
- 'memory, no matter the size of the range it represents (as it '
- 'only\n'
- 'stores the "start", "stop" and "step" values, calculating '
- 'individual\n'
- 'items and subranges as needed).\n'
- '\n'
- 'Range objects implement the "collections.abc.Sequence" ABC, and\n'
- 'provide features such as containment tests, element index '
- 'lookup,\n'
- 'slicing and support for negative indices (see Sequence Types — '
- 'list,\n'
- 'tuple, range):\n'
- '\n'
- '>>> r = range(0, 20, 2)\n'
- '>>> r\n'
- 'range(0, 20, 2)\n'
- '>>> 11 in r\n'
- 'False\n'
- '>>> 10 in r\n'
- 'True\n'
- '>>> r.index(10)\n'
- '5\n'
- '>>> r[5]\n'
- '10\n'
- '>>> r[:5]\n'
- 'range(0, 10, 2)\n'
- '>>> r[-1]\n'
- '18\n'
- '\n'
- 'Testing range objects for equality with "==" and "!=" compares '
- 'them as\n'
- 'sequences. That is, two range objects are considered equal if '
- 'they\n'
- 'represent the same sequence of values. (Note that two range '
- 'objects\n'
- 'that compare equal might have different "start", "stop" and '
- '"step"\n'
- 'attributes, for example "range(0) == range(2, 1, 3)" or '
- '"range(0, 3,\n'
- '2) == range(0, 4, 2)".)\n'
- '\n'
- 'Changed in version 3.2: Implement the Sequence ABC. Support '
- 'slicing\n'
- 'and negative indices. Test "int" objects for membership in '
- 'constant\n'
- 'time instead of iterating through all items.\n'
- '\n'
- 'Changed in version 3.3: Define ‘==’ and ‘!=’ to compare range '
- 'objects\n'
- 'based on the sequence of values they define (instead of '
- 'comparing\n'
- 'based on object identity).\n'
- '\n'
- 'New in version 3.3: The "start", "stop" and "step" attributes.\n'
- '\n'
- 'See also:\n'
- '\n'
+ ' special method). If the *step* argument is omitted, it '
+ 'defaults to\n'
+ ' "1". If the *start* argument is omitted, it defaults to "0". '
+ 'If\n'
+ ' *step* is zero, "ValueError" is raised.\n'
+ '\n'
+ ' For a positive *step*, the contents of a range "r" are '
+ 'determined\n'
+ ' by the formula "r[i] = start + step*i" where "i >= 0" and '
+ '"r[i] <\n'
+ ' stop".\n'
+ '\n'
+ ' For a negative *step*, the contents of the range are still\n'
+ ' determined by the formula "r[i] = start + step*i", but the\n'
+ ' constraints are "i >= 0" and "r[i] > stop".\n'
+ '\n'
+ ' A range object will be empty if "r[0]" does not meet the '
+ 'value\n'
+ ' constraint. Ranges do support negative indices, but these '
+ 'are\n'
+ ' interpreted as indexing from the end of the sequence '
+ 'determined by\n'
+ ' the positive indices.\n'
+ '\n'
+ ' Ranges containing absolute values larger than "sys.maxsize" '
+ 'are\n'
+ ' permitted but some features (such as "len()") may raise\n'
+ ' "OverflowError".\n'
+ '\n'
+ ' Range examples:\n'
+ '\n'
+ ' >>> list(range(10))\n'
+ ' [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n'
+ ' >>> list(range(1, 11))\n'
+ ' [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n'
+ ' >>> list(range(0, 30, 5))\n'
+ ' [0, 5, 10, 15, 20, 25]\n'
+ ' >>> list(range(0, 10, 3))\n'
+ ' [0, 3, 6, 9]\n'
+ ' >>> list(range(0, -10, -1))\n'
+ ' [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]\n'
+ ' >>> list(range(0))\n'
+ ' []\n'
+ ' >>> list(range(1, 0))\n'
+ ' []\n'
+ '\n'
+ ' Ranges implement all of the common sequence operations '
+ 'except\n'
+ ' concatenation and repetition (due to the fact that range '
+ 'objects\n'
+ ' can only represent sequences that follow a strict pattern '
+ 'and\n'
+ ' repetition and concatenation will usually violate that '
+ 'pattern).\n'
+ '\n'
+ ' start\n'
+ '\n'
+ ' The value of the *start* parameter (or "0" if the '
+ 'parameter was\n'
+ ' not supplied)\n'
+ '\n'
+ ' stop\n'
+ '\n'
+ ' The value of the *stop* parameter\n'
+ '\n'
+ ' step\n'
+ '\n'
+ ' The value of the *step* parameter (or "1" if the parameter '
+ 'was\n'
+ ' not supplied)\n'
+ '\n'
+ 'The advantage of the "range" type over a regular "list" or '
+ '"tuple" is\n'
+ 'that a "range" object will always take the same (small) amount '
+ 'of\n'
+ 'memory, no matter the size of the range it represents (as it '
+ 'only\n'
+ 'stores the "start", "stop" and "step" values, calculating '
+ 'individual\n'
+ 'items and subranges as needed).\n'
+ '\n'
+ 'Range objects implement the "collections.abc.Sequence" ABC, and\n'
+ 'provide features such as containment tests, element index '
+ 'lookup,\n'
+ 'slicing and support for negative indices (see Sequence Types — '
+ 'list,\n'
+ 'tuple, range):\n'
+ '\n'
+ '>>> r = range(0, 20, 2)\n'
+ '>>> r\n'
+ 'range(0, 20, 2)\n'
+ '>>> 11 in r\n'
+ 'False\n'
+ '>>> 10 in r\n'
+ 'True\n'
+ '>>> r.index(10)\n'
+ '5\n'
+ '>>> r[5]\n'
+ '10\n'
+ '>>> r[:5]\n'
+ 'range(0, 10, 2)\n'
+ '>>> r[-1]\n'
+ '18\n'
+ '\n'
+ 'Testing range objects for equality with "==" and "!=" compares '
+ 'them as\n'
+ 'sequences. That is, two range objects are considered equal if '
+ 'they\n'
+ 'represent the same sequence of values. (Note that two range '
+ 'objects\n'
+ 'that compare equal might have different "start", "stop" and '
+ '"step"\n'
+ 'attributes, for example "range(0) == range(2, 1, 3)" or '
+ '"range(0, 3,\n'
+ '2) == range(0, 4, 2)".)\n'
+ '\n'
+ 'Changed in version 3.2: Implement the Sequence ABC. Support '
+ 'slicing\n'
+ 'and negative indices. Test "int" objects for membership in '
+ 'constant\n'
+ 'time instead of iterating through all items.\n'
+ '\n'
+ 'Changed in version 3.3: Define ‘==’ and ‘!=’ to compare range '
+ 'objects\n'
+ 'based on the sequence of values they define (instead of '
+ 'comparing\n'
+ 'based on object identity).\n'
+ '\n'
+ 'New in version 3.3: The "start", "stop" and "step" attributes.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
' * The linspace recipe shows how to implement a lazy version of '
'range\n'
' suitable for floating point applications.\n',
- 'typesseq-mutable': 'Mutable Sequence Types\n'
- '**********************\n'
- '\n'
- 'The operations in the following table are defined on '
- 'mutable sequence\n'
- 'types. The "collections.abc.MutableSequence" ABC is '
- 'provided to make\n'
- 'it easier to correctly implement these operations on '
- 'custom sequence\n'
- 'types.\n'
- '\n'
- 'In the table *s* is an instance of a mutable sequence '
- 'type, *t* is any\n'
- 'iterable object and *x* is an arbitrary object that '
- 'meets any type and\n'
- 'value restrictions imposed by *s* (for example, '
- '"bytearray" only\n'
- 'accepts integers that meet the value restriction "0 <= x '
- '<= 255").\n'
- '\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| Operation | '
- 'Result | Notes '
- '|\n'
+ 'typesseq-mutable': 'Mutable Sequence Types\n'
+ '**********************\n'
+ '\n'
+ 'The operations in the following table are defined on '
+ 'mutable sequence\n'
+ 'types. The "collections.abc.MutableSequence" ABC is '
+ 'provided to make\n'
+ 'it easier to correctly implement these operations on '
+ 'custom sequence\n'
+ 'types.\n'
+ '\n'
+ 'In the table *s* is an instance of a mutable sequence '
+ 'type, *t* is any\n'
+ 'iterable object and *x* is an arbitrary object that '
+ 'meets any type and\n'
+ 'value restrictions imposed by *s* (for example, '
+ '"bytearray" only\n'
+ 'accepts integers that meet the value restriction "0 <= x '
+ '<= 255").\n'
+ '\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| Operation | '
+ 'Result | Notes '
+ '|\n'
'|================================|==================================|=======================|\n'
- '| "s[i] = x" | item *i* of *s* is '
- 'replaced by | |\n'
- '| | '
- '*x* | '
- '|\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s[i:j] = t" | slice of *s* from *i* '
- 'to *j* is | |\n'
- '| | replaced by the '
- 'contents of the | |\n'
- '| | iterable '
- '*t* | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "del s[i:j]" | same as "s[i:j] = '
- '[]" | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s[i:j:k] = t" | the elements of '
- '"s[i:j:k]" are | (1) |\n'
- '| | replaced by those of '
- '*t* | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "del s[i:j:k]" | removes the elements '
- 'of | |\n'
- '| | "s[i:j:k]" from the '
- 'list | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.append(x)" | appends *x* to the '
- 'end of the | |\n'
- '| | sequence (same '
- 'as | |\n'
- '| | "s[len(s):len(s)] = '
- '[x]") | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.clear()" | removes all items '
- 'from *s* (same | (5) |\n'
- '| | as "del '
- 's[:]") | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.copy()" | creates a shallow '
- 'copy of *s* | (5) |\n'
- '| | (same as '
- '"s[:]") | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.extend(t)" or "s += t" | extends *s* with the '
- 'contents of | |\n'
- '| | *t* (for the most '
- 'part the same | |\n'
- '| | as "s[len(s):len(s)] '
- '= t") | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s *= n" | updates *s* with its '
- 'contents | (6) |\n'
- '| | repeated *n* '
- 'times | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.insert(i, x)" | inserts *x* into *s* '
- 'at the | |\n'
- '| | index given by *i* '
- '(same as | |\n'
- '| | "s[i:i] = '
- '[x]") | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s[i] = x" | item *i* of *s* is '
+ 'replaced by | |\n'
+ '| | '
+ '*x* | '
+ '|\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s[i:j] = t" | slice of *s* from *i* '
+ 'to *j* is | |\n'
+ '| | replaced by the '
+ 'contents of the | |\n'
+ '| | iterable '
+ '*t* | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "del s[i:j]" | same as "s[i:j] = '
+ '[]" | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s[i:j:k] = t" | the elements of '
+ '"s[i:j:k]" are | (1) |\n'
+ '| | replaced by those of '
+ '*t* | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "del s[i:j:k]" | removes the elements '
+ 'of | |\n'
+ '| | "s[i:j:k]" from the '
+ 'list | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.append(x)" | appends *x* to the '
+ 'end of the | |\n'
+ '| | sequence (same '
+ 'as | |\n'
+ '| | "s[len(s):len(s)] = '
+ '[x]") | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.clear()" | removes all items '
+ 'from *s* (same | (5) |\n'
+ '| | as "del '
+ 's[:]") | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.copy()" | creates a shallow '
+ 'copy of *s* | (5) |\n'
+ '| | (same as '
+ '"s[:]") | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.extend(t)" or "s += t" | extends *s* with the '
+ 'contents of | |\n'
+ '| | *t* (for the most '
+ 'part the same | |\n'
+ '| | as "s[len(s):len(s)] '
+ '= t") | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s *= n" | updates *s* with its '
+ 'contents | (6) |\n'
+ '| | repeated *n* '
+ 'times | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.insert(i, x)" | inserts *x* into *s* '
+ 'at the | |\n'
+ '| | index given by *i* '
+ '(same as | |\n'
+ '| | "s[i:i] = '
+ '[x]") | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
'| "s.pop()" or "s.pop(i)" | retrieves the item at '
- '*i* and | (2) |\n'
- '| | also removes it from '
- '*s* | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.remove(x)" | remove the first item '
- 'from *s* | (3) |\n'
- '| | where "s[i]" is equal '
- 'to *x* | |\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '| "s.reverse()" | reverses the items of '
- '*s* in | (4) |\n'
- '| | '
- 'place | '
- '|\n'
- '+--------------------------------+----------------------------------+-----------------------+\n'
- '\n'
- 'Notes:\n'
- '\n'
- '1. *t* must have the same length as the slice it is '
- 'replacing.\n'
- '\n'
- '2. The optional argument *i* defaults to "-1", so that '
+ '*i* and | (2) |\n'
+ '| | also removes it from '
+ '*s* | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.remove(x)" | remove the first item '
+ 'from *s* | (3) |\n'
+ '| | where "s[i]" is equal '
+ 'to *x* | |\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '| "s.reverse()" | reverses the items of '
+ '*s* in | (4) |\n'
+ '| | '
+ 'place | '
+ '|\n'
+ '+--------------------------------+----------------------------------+-----------------------+\n'
+ '\n'
+ 'Notes:\n'
+ '\n'
+ '1. *t* must have the same length as the slice it is '
+ 'replacing.\n'
+ '\n'
+ '2. The optional argument *i* defaults to "-1", so that '
'by default the\n'
' last item is removed and returned.\n'
- '\n'
+ '\n'
'3. "remove()" raises "ValueError" when *x* is not found '
'in *s*.\n'
- '\n'
- '4. The "reverse()" method modifies the sequence in place '
+ '\n'
+ '4. The "reverse()" method modifies the sequence in place '
'for economy\n'
' of space when reversing a large sequence. To remind '
'users that it\n'
' operates by side effect, it does not return the '
'reversed sequence.\n'
- '\n'
- '5. "clear()" and "copy()" are included for consistency '
- 'with the\n'
- ' interfaces of mutable containers that don’t support '
- 'slicing\n'
+ '\n'
+ '5. "clear()" and "copy()" are included for consistency '
+ 'with the\n'
+ ' interfaces of mutable containers that don’t support '
+ 'slicing\n'
' operations (such as "dict" and "set"). "copy()" is '
'not part of the\n'
' "collections.abc.MutableSequence" ABC, but most '
'concrete mutable\n'
' sequence classes provide it.\n'
- '\n'
- ' New in version 3.3: "clear()" and "copy()" methods.\n'
- '\n'
- '6. The value *n* is an integer, or an object '
- 'implementing\n'
- ' "__index__()". Zero and negative values of *n* clear '
- 'the sequence.\n'
- ' Items in the sequence are not copied; they are '
- 'referenced multiple\n'
- ' times, as explained for "s * n" under Common Sequence '
- 'Operations.\n',
- 'unary': 'Unary arithmetic and bitwise operations\n'
- '***************************************\n'
- '\n'
- 'All unary arithmetic and bitwise operations have the same '
- 'priority:\n'
- '\n'
- ' u_expr ::= power | "-" u_expr | "+" u_expr | "~" u_expr\n'
- '\n'
- 'The unary "-" (minus) operator yields the negation of its numeric\n'
+ '\n'
+ ' New in version 3.3: "clear()" and "copy()" methods.\n'
+ '\n'
+ '6. The value *n* is an integer, or an object '
+ 'implementing\n'
+ ' "__index__()". Zero and negative values of *n* clear '
+ 'the sequence.\n'
+ ' Items in the sequence are not copied; they are '
+ 'referenced multiple\n'
+ ' times, as explained for "s * n" under Common Sequence '
+ 'Operations.\n',
+ 'unary': 'Unary arithmetic and bitwise operations\n'
+ '***************************************\n'
+ '\n'
+ 'All unary arithmetic and bitwise operations have the same '
+ 'priority:\n'
+ '\n'
+ ' u_expr ::= power | "-" u_expr | "+" u_expr | "~" u_expr\n'
+ '\n'
+ 'The unary "-" (minus) operator yields the negation of its numeric\n'
'argument; the operation can be overridden with the "__neg__()" '
'special\n'
'method.\n'
- '\n'
- 'The unary "+" (plus) operator yields its numeric argument '
+ '\n'
+ 'The unary "+" (plus) operator yields its numeric argument '
'unchanged;\n'
'the operation can be overridden with the "__pos__()" special '
'method.\n'
- '\n'
- 'The unary "~" (invert) operator yields the bitwise inversion of '
- 'its\n'
- 'integer argument. The bitwise inversion of "x" is defined as\n'
+ '\n'
+ 'The unary "~" (invert) operator yields the bitwise inversion of '
+ 'its\n'
+ 'integer argument. The bitwise inversion of "x" is defined as\n'
'"-(x+1)". It only applies to integral numbers or to custom '
'objects\n'
'that override the "__invert__()" special method.\n'
- '\n'
- 'In all three cases, if the argument does not have the proper type, '
- 'a\n'
- '"TypeError" exception is raised.\n',
- 'while': 'The "while" statement\n'
- '*********************\n'
- '\n'
- 'The "while" statement is used for repeated execution as long as an\n'
- 'expression is true:\n'
- '\n'
+ '\n'
+ 'In all three cases, if the argument does not have the proper type, '
+ 'a\n'
+ '"TypeError" exception is raised.\n',
+ 'while': 'The "while" statement\n'
+ '*********************\n'
+ '\n'
+ 'The "while" statement is used for repeated execution as long as an\n'
+ 'expression is true:\n'
+ '\n'
' while_stmt ::= "while" assignment_expression ":" suite\n'
- ' ["else" ":" suite]\n'
- '\n'
- 'This repeatedly tests the expression and, if it is true, executes '
- 'the\n'
- 'first suite; if the expression is false (which may be the first '
- 'time\n'
- 'it is tested) the suite of the "else" clause, if present, is '
- 'executed\n'
- 'and the loop terminates.\n'
- '\n'
- 'A "break" statement executed in the first suite terminates the '
- 'loop\n'
- 'without executing the "else" clause’s suite. A "continue" '
- 'statement\n'
- 'executed in the first suite skips the rest of the suite and goes '
- 'back\n'
- 'to testing the expression.\n',
- 'with': 'The "with" statement\n'
- '********************\n'
- '\n'
- 'The "with" statement is used to wrap the execution of a block with\n'
- 'methods defined by a context manager (see section With Statement\n'
- 'Context Managers). This allows common "try"…"except"…"finally" '
- 'usage\n'
- 'patterns to be encapsulated for convenient reuse.\n'
- '\n'
- ' with_stmt ::= "with" with_item ("," with_item)* ":" suite\n'
- ' with_item ::= expression ["as" target]\n'
- '\n'
- 'The execution of the "with" statement with one “item” proceeds as\n'
- 'follows:\n'
- '\n'
+ ' ["else" ":" suite]\n'
+ '\n'
+ 'This repeatedly tests the expression and, if it is true, executes '
+ 'the\n'
+ 'first suite; if the expression is false (which may be the first '
+ 'time\n'
+ 'it is tested) the suite of the "else" clause, if present, is '
+ 'executed\n'
+ 'and the loop terminates.\n'
+ '\n'
+ 'A "break" statement executed in the first suite terminates the '
+ 'loop\n'
+ 'without executing the "else" clause’s suite. A "continue" '
+ 'statement\n'
+ 'executed in the first suite skips the rest of the suite and goes '
+ 'back\n'
+ 'to testing the expression.\n',
+ 'with': 'The "with" statement\n'
+ '********************\n'
+ '\n'
+ 'The "with" statement is used to wrap the execution of a block with\n'
+ 'methods defined by a context manager (see section With Statement\n'
+ 'Context Managers). This allows common "try"…"except"…"finally" '
+ 'usage\n'
+ 'patterns to be encapsulated for convenient reuse.\n'
+ '\n'
+ ' with_stmt ::= "with" with_item ("," with_item)* ":" suite\n'
+ ' with_item ::= expression ["as" target]\n'
+ '\n'
+ 'The execution of the "with" statement with one “item” proceeds as\n'
+ 'follows:\n'
+ '\n'
'1. The context expression (the expression given in the "with_item") '
'is\n'
' evaluated to obtain a context manager.\n'
- '\n'
+ '\n'
'2. The context manager’s "__enter__()" is loaded for later use.\n'
- '\n'
+ '\n'
'3. The context manager’s "__exit__()" is loaded for later use.\n'
- '\n'
+ '\n'
'4. The context manager’s "__enter__()" method is invoked.\n'
'\n'
'5. If a target was included in the "with" statement, the return '
'value\n'
' from "__enter__()" is assigned to it.\n'
- '\n'
+ '\n'
' Note:\n'
'\n'
' The "with" statement guarantees that if the "__enter__()" '
'method\n'
' returns without an error, then "__exit__()" will always be\n'
- ' called. Thus, if an error occurs during the assignment to the\n'
- ' target list, it will be treated the same as an error occurring\n'
- ' within the suite would be. See step 6 below.\n'
- '\n'
+ ' called. Thus, if an error occurs during the assignment to the\n'
+ ' target list, it will be treated the same as an error occurring\n'
+ ' within the suite would be. See step 6 below.\n'
+ '\n'
'6. The suite is executed.\n'
- '\n'
+ '\n'
'7. The context manager’s "__exit__()" method is invoked. If an\n'
- ' exception caused the suite to be exited, its type, value, and\n'
- ' traceback are passed as arguments to "__exit__()". Otherwise, '
- 'three\n'
- ' "None" arguments are supplied.\n'
- '\n'
- ' If the suite was exited due to an exception, and the return '
- 'value\n'
- ' from the "__exit__()" method was false, the exception is '
- 'reraised.\n'
- ' If the return value was true, the exception is suppressed, and\n'
- ' execution continues with the statement following the "with"\n'
- ' statement.\n'
- '\n'
- ' If the suite was exited for any reason other than an exception, '
- 'the\n'
- ' return value from "__exit__()" is ignored, and execution '
- 'proceeds\n'
- ' at the normal location for the kind of exit that was taken.\n'
- '\n'
+ ' exception caused the suite to be exited, its type, value, and\n'
+ ' traceback are passed as arguments to "__exit__()". Otherwise, '
+ 'three\n'
+ ' "None" arguments are supplied.\n'
+ '\n'
+ ' If the suite was exited due to an exception, and the return '
+ 'value\n'
+ ' from the "__exit__()" method was false, the exception is '
+ 'reraised.\n'
+ ' If the return value was true, the exception is suppressed, and\n'
+ ' execution continues with the statement following the "with"\n'
+ ' statement.\n'
+ '\n'
+ ' If the suite was exited for any reason other than an exception, '
+ 'the\n'
+ ' return value from "__exit__()" is ignored, and execution '
+ 'proceeds\n'
+ ' at the normal location for the kind of exit that was taken.\n'
+ '\n'
'The following code:\n'
'\n'
' with EXPRESSION as TARGET:\n'
@@ -14293,54 +14293,54 @@ topics = {'assert': 'The "assert" statement\n'
' if not hit_except:\n'
' exit(manager, None, None, None)\n'
'\n'
- 'With more than one item, the context managers are processed as if\n'
- 'multiple "with" statements were nested:\n'
- '\n'
- ' with A() as a, B() as b:\n'
+ 'With more than one item, the context managers are processed as if\n'
+ 'multiple "with" statements were nested:\n'
+ '\n'
+ ' with A() as a, B() as b:\n'
' SUITE\n'
- '\n'
+ '\n'
'is semantically equivalent to:\n'
- '\n'
- ' with A() as a:\n'
- ' with B() as b:\n'
+ '\n'
+ ' with A() as a:\n'
+ ' with B() as b:\n'
' SUITE\n'
- '\n'
- 'Changed in version 3.1: Support for multiple context expressions.\n'
- '\n'
- 'See also:\n'
- '\n'
- ' **PEP 343** - The “with” statement\n'
- ' The specification, background, and examples for the Python '
- '"with"\n'
- ' statement.\n',
- 'yield': 'The "yield" statement\n'
- '*********************\n'
- '\n'
- ' yield_stmt ::= yield_expression\n'
- '\n'
- 'A "yield" statement is semantically equivalent to a yield '
- 'expression.\n'
- 'The yield statement can be used to omit the parentheses that would\n'
- 'otherwise be required in the equivalent yield expression '
- 'statement.\n'
- 'For example, the yield statements\n'
- '\n'
- ' yield <expr>\n'
- ' yield from <expr>\n'
- '\n'
- 'are equivalent to the yield expression statements\n'
- '\n'
- ' (yield <expr>)\n'
- ' (yield from <expr>)\n'
- '\n'
- 'Yield expressions and statements are only used when defining a\n'
- '*generator* function, and are only used in the body of the '
- 'generator\n'
- 'function. Using yield in a function definition is sufficient to '
- 'cause\n'
- 'that definition to create a generator function instead of a normal\n'
- 'function.\n'
- '\n'
- 'For full details of "yield" semantics, refer to the Yield '
- 'expressions\n'
- 'section.\n'}
+ '\n'
+ 'Changed in version 3.1: Support for multiple context expressions.\n'
+ '\n'
+ 'See also:\n'
+ '\n'
+ ' **PEP 343** - The “with” statement\n'
+ ' The specification, background, and examples for the Python '
+ '"with"\n'
+ ' statement.\n',
+ 'yield': 'The "yield" statement\n'
+ '*********************\n'
+ '\n'
+ ' yield_stmt ::= yield_expression\n'
+ '\n'
+ 'A "yield" statement is semantically equivalent to a yield '
+ 'expression.\n'
+ 'The yield statement can be used to omit the parentheses that would\n'
+ 'otherwise be required in the equivalent yield expression '
+ 'statement.\n'
+ 'For example, the yield statements\n'
+ '\n'
+ ' yield <expr>\n'
+ ' yield from <expr>\n'
+ '\n'
+ 'are equivalent to the yield expression statements\n'
+ '\n'
+ ' (yield <expr>)\n'
+ ' (yield from <expr>)\n'
+ '\n'
+ 'Yield expressions and statements are only used when defining a\n'
+ '*generator* function, and are only used in the body of the '
+ 'generator\n'
+ 'function. Using yield in a function definition is sufficient to '
+ 'cause\n'
+ 'that definition to create a generator function instead of a normal\n'
+ 'function.\n'
+ '\n'
+ 'For full details of "yield" semantics, refer to the Yield '
+ 'expressions\n'
+ 'section.\n'}