diff options
| author | shadchin <[email protected]> | 2022-04-18 12:39:32 +0300 |
|---|---|---|
| committer | shadchin <[email protected]> | 2022-04-18 12:39:32 +0300 |
| commit | d4be68e361f4258cf0848fc70018dfe37a2acc24 (patch) | |
| tree | 153e294cd97ac8b5d7a989612704a0c1f58e8ad4 /contrib/tools/python3/src/Lib/fractions.py | |
| parent | 260c02f5ccf242d9d9b8a873afaf6588c00237d6 (diff) | |
IGNIETFERRO-1816 Update Python 3 from 3.9.12 to 3.10.4
ref:9f96be6d02ee8044fdd6f124b799b270c20ce641
Diffstat (limited to 'contrib/tools/python3/src/Lib/fractions.py')
| -rw-r--r-- | contrib/tools/python3/src/Lib/fractions.py | 125 |
1 files changed, 116 insertions, 9 deletions
diff --git a/contrib/tools/python3/src/Lib/fractions.py b/contrib/tools/python3/src/Lib/fractions.py index de3e23b7592..96047beb454 100644 --- a/contrib/tools/python3/src/Lib/fractions.py +++ b/contrib/tools/python3/src/Lib/fractions.py @@ -380,32 +380,139 @@ class Fraction(numbers.Rational): return forward, reverse + # Rational arithmetic algorithms: Knuth, TAOCP, Volume 2, 4.5.1. + # + # Assume input fractions a and b are normalized. + # + # 1) Consider addition/subtraction. + # + # Let g = gcd(da, db). Then + # + # na nb na*db ± nb*da + # a ± b == -- ± -- == ------------- == + # da db da*db + # + # na*(db//g) ± nb*(da//g) t + # == ----------------------- == - + # (da*db)//g d + # + # Now, if g > 1, we're working with smaller integers. + # + # Note, that t, (da//g) and (db//g) are pairwise coprime. + # + # Indeed, (da//g) and (db//g) share no common factors (they were + # removed) and da is coprime with na (since input fractions are + # normalized), hence (da//g) and na are coprime. By symmetry, + # (db//g) and nb are coprime too. Then, + # + # gcd(t, da//g) == gcd(na*(db//g), da//g) == 1 + # gcd(t, db//g) == gcd(nb*(da//g), db//g) == 1 + # + # Above allows us optimize reduction of the result to lowest + # terms. Indeed, + # + # g2 = gcd(t, d) == gcd(t, (da//g)*(db//g)*g) == gcd(t, g) + # + # t//g2 t//g2 + # a ± b == ----------------------- == ---------------- + # (da//g)*(db//g)*(g//g2) (da//g)*(db//g2) + # + # is a normalized fraction. This is useful because the unnormalized + # denominator d could be much larger than g. + # + # We should special-case g == 1 (and g2 == 1), since 60.8% of + # randomly-chosen integers are coprime: + # https://en.wikipedia.org/wiki/Coprime_integers#Probability_of_coprimality + # Note, that g2 == 1 always for fractions, obtained from floats: here + # g is a power of 2 and the unnormalized numerator t is an odd integer. + # + # 2) Consider multiplication + # + # Let g1 = gcd(na, db) and g2 = gcd(nb, da), then + # + # na*nb na*nb (na//g1)*(nb//g2) + # a*b == ----- == ----- == ----------------- + # da*db db*da (db//g1)*(da//g2) + # + # Note, that after divisions we're multiplying smaller integers. + # + # Also, the resulting fraction is normalized, because each of + # two factors in the numerator is coprime to each of the two factors + # in the denominator. + # + # Indeed, pick (na//g1). It's coprime with (da//g2), because input + # fractions are normalized. It's also coprime with (db//g1), because + # common factors are removed by g1 == gcd(na, db). + # + # As for addition/subtraction, we should special-case g1 == 1 + # and g2 == 1 for same reason. That happens also for multiplying + # rationals, obtained from floats. + def _add(a, b): """a + b""" - da, db = a.denominator, b.denominator - return Fraction(a.numerator * db + b.numerator * da, - da * db) + na, da = a.numerator, a.denominator + nb, db = b.numerator, b.denominator + g = math.gcd(da, db) + if g == 1: + return Fraction(na * db + da * nb, da * db, _normalize=False) + s = da // g + t = na * (db // g) + nb * s + g2 = math.gcd(t, g) + if g2 == 1: + return Fraction(t, s * db, _normalize=False) + return Fraction(t // g2, s * (db // g2), _normalize=False) __add__, __radd__ = _operator_fallbacks(_add, operator.add) def _sub(a, b): """a - b""" - da, db = a.denominator, b.denominator - return Fraction(a.numerator * db - b.numerator * da, - da * db) + na, da = a.numerator, a.denominator + nb, db = b.numerator, b.denominator + g = math.gcd(da, db) + if g == 1: + return Fraction(na * db - da * nb, da * db, _normalize=False) + s = da // g + t = na * (db // g) - nb * s + g2 = math.gcd(t, g) + if g2 == 1: + return Fraction(t, s * db, _normalize=False) + return Fraction(t // g2, s * (db // g2), _normalize=False) __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) def _mul(a, b): """a * b""" - return Fraction(a.numerator * b.numerator, a.denominator * b.denominator) + na, da = a.numerator, a.denominator + nb, db = b.numerator, b.denominator + g1 = math.gcd(na, db) + if g1 > 1: + na //= g1 + db //= g1 + g2 = math.gcd(nb, da) + if g2 > 1: + nb //= g2 + da //= g2 + return Fraction(na * nb, db * da, _normalize=False) __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) def _div(a, b): """a / b""" - return Fraction(a.numerator * b.denominator, - a.denominator * b.numerator) + # Same as _mul(), with inversed b. + na, da = a.numerator, a.denominator + nb, db = b.numerator, b.denominator + g1 = math.gcd(na, nb) + if g1 > 1: + na //= g1 + nb //= g1 + g2 = math.gcd(db, da) + if g2 > 1: + da //= g2 + db //= g2 + n, d = na * db, nb * da + if d < 0: + n, d = -n, -d + return Fraction(n, d, _normalize=False) __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) |
