summaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Lib/fractions.py
diff options
context:
space:
mode:
authororivej <[email protected]>2022-02-10 16:45:01 +0300
committerDaniil Cherednik <[email protected]>2022-02-10 16:45:01 +0300
commit2d37894b1b037cf24231090eda8589bbb44fb6fc (patch)
treebe835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/tools/python3/src/Lib/fractions.py
parent718c552901d703c502ccbefdfc3c9028d608b947 (diff)
Restoring authorship annotation for <[email protected]>. Commit 2 of 2.
Diffstat (limited to 'contrib/tools/python3/src/Lib/fractions.py')
-rw-r--r--contrib/tools/python3/src/Lib/fractions.py1166
1 files changed, 583 insertions, 583 deletions
diff --git a/contrib/tools/python3/src/Lib/fractions.py b/contrib/tools/python3/src/Lib/fractions.py
index 38d05500614..de3e23b7592 100644
--- a/contrib/tools/python3/src/Lib/fractions.py
+++ b/contrib/tools/python3/src/Lib/fractions.py
@@ -1,195 +1,195 @@
-# Originally contributed by Sjoerd Mullender.
-# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
-
-"""Fraction, infinite-precision, real numbers."""
-
-from decimal import Decimal
-import math
-import numbers
-import operator
-import re
-import sys
-
+# Originally contributed by Sjoerd Mullender.
+# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
+
+"""Fraction, infinite-precision, real numbers."""
+
+from decimal import Decimal
+import math
+import numbers
+import operator
+import re
+import sys
+
__all__ = ['Fraction']
-
-
-# Constants related to the hash implementation; hash(x) is based
-# on the reduction of x modulo the prime _PyHASH_MODULUS.
-_PyHASH_MODULUS = sys.hash_info.modulus
-# Value to be used for rationals that reduce to infinity modulo
-# _PyHASH_MODULUS.
-_PyHASH_INF = sys.hash_info.inf
-
-_RATIONAL_FORMAT = re.compile(r"""
- \A\s* # optional whitespace at the start, then
- (?P<sign>[-+]?) # an optional sign, then
- (?=\d|\.\d) # lookahead for digit or .digit
- (?P<num>\d*) # numerator (possibly empty)
- (?: # followed by
- (?:/(?P<denom>\d+))? # an optional denominator
- | # or
- (?:\.(?P<decimal>\d*))? # an optional fractional part
- (?:E(?P<exp>[-+]?\d+))? # and optional exponent
- )
- \s*\Z # and optional whitespace to finish
-""", re.VERBOSE | re.IGNORECASE)
-
-
-class Fraction(numbers.Rational):
- """This class implements rational numbers.
-
- In the two-argument form of the constructor, Fraction(8, 6) will
- produce a rational number equivalent to 4/3. Both arguments must
- be Rational. The numerator defaults to 0 and the denominator
- defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
-
- Fractions can also be constructed from:
-
- - numeric strings similar to those accepted by the
- float constructor (for example, '-2.3' or '1e10')
-
- - strings of the form '123/456'
-
- - float and Decimal instances
-
- - other Rational instances (including integers)
-
- """
-
- __slots__ = ('_numerator', '_denominator')
-
- # We're immutable, so use __new__ not __init__
- def __new__(cls, numerator=0, denominator=None, *, _normalize=True):
- """Constructs a Rational.
-
- Takes a string like '3/2' or '1.5', another Rational instance, a
- numerator/denominator pair, or a float.
-
- Examples
- --------
-
- >>> Fraction(10, -8)
- Fraction(-5, 4)
- >>> Fraction(Fraction(1, 7), 5)
- Fraction(1, 35)
- >>> Fraction(Fraction(1, 7), Fraction(2, 3))
- Fraction(3, 14)
- >>> Fraction('314')
- Fraction(314, 1)
- >>> Fraction('-35/4')
- Fraction(-35, 4)
- >>> Fraction('3.1415') # conversion from numeric string
- Fraction(6283, 2000)
- >>> Fraction('-47e-2') # string may include a decimal exponent
- Fraction(-47, 100)
- >>> Fraction(1.47) # direct construction from float (exact conversion)
- Fraction(6620291452234629, 4503599627370496)
- >>> Fraction(2.25)
- Fraction(9, 4)
- >>> Fraction(Decimal('1.47'))
- Fraction(147, 100)
-
- """
- self = super(Fraction, cls).__new__(cls)
-
- if denominator is None:
- if type(numerator) is int:
- self._numerator = numerator
- self._denominator = 1
- return self
-
- elif isinstance(numerator, numbers.Rational):
- self._numerator = numerator.numerator
- self._denominator = numerator.denominator
- return self
-
- elif isinstance(numerator, (float, Decimal)):
- # Exact conversion
- self._numerator, self._denominator = numerator.as_integer_ratio()
- return self
-
- elif isinstance(numerator, str):
- # Handle construction from strings.
- m = _RATIONAL_FORMAT.match(numerator)
- if m is None:
- raise ValueError('Invalid literal for Fraction: %r' %
- numerator)
- numerator = int(m.group('num') or '0')
- denom = m.group('denom')
- if denom:
- denominator = int(denom)
- else:
- denominator = 1
- decimal = m.group('decimal')
- if decimal:
- scale = 10**len(decimal)
- numerator = numerator * scale + int(decimal)
- denominator *= scale
- exp = m.group('exp')
- if exp:
- exp = int(exp)
- if exp >= 0:
- numerator *= 10**exp
- else:
- denominator *= 10**-exp
- if m.group('sign') == '-':
- numerator = -numerator
-
- else:
- raise TypeError("argument should be a string "
- "or a Rational instance")
-
- elif type(numerator) is int is type(denominator):
- pass # *very* normal case
-
- elif (isinstance(numerator, numbers.Rational) and
- isinstance(denominator, numbers.Rational)):
- numerator, denominator = (
- numerator.numerator * denominator.denominator,
- denominator.numerator * numerator.denominator
- )
- else:
- raise TypeError("both arguments should be "
- "Rational instances")
-
- if denominator == 0:
- raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
- if _normalize:
+
+
+# Constants related to the hash implementation; hash(x) is based
+# on the reduction of x modulo the prime _PyHASH_MODULUS.
+_PyHASH_MODULUS = sys.hash_info.modulus
+# Value to be used for rationals that reduce to infinity modulo
+# _PyHASH_MODULUS.
+_PyHASH_INF = sys.hash_info.inf
+
+_RATIONAL_FORMAT = re.compile(r"""
+ \A\s* # optional whitespace at the start, then
+ (?P<sign>[-+]?) # an optional sign, then
+ (?=\d|\.\d) # lookahead for digit or .digit
+ (?P<num>\d*) # numerator (possibly empty)
+ (?: # followed by
+ (?:/(?P<denom>\d+))? # an optional denominator
+ | # or
+ (?:\.(?P<decimal>\d*))? # an optional fractional part
+ (?:E(?P<exp>[-+]?\d+))? # and optional exponent
+ )
+ \s*\Z # and optional whitespace to finish
+""", re.VERBOSE | re.IGNORECASE)
+
+
+class Fraction(numbers.Rational):
+ """This class implements rational numbers.
+
+ In the two-argument form of the constructor, Fraction(8, 6) will
+ produce a rational number equivalent to 4/3. Both arguments must
+ be Rational. The numerator defaults to 0 and the denominator
+ defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
+
+ Fractions can also be constructed from:
+
+ - numeric strings similar to those accepted by the
+ float constructor (for example, '-2.3' or '1e10')
+
+ - strings of the form '123/456'
+
+ - float and Decimal instances
+
+ - other Rational instances (including integers)
+
+ """
+
+ __slots__ = ('_numerator', '_denominator')
+
+ # We're immutable, so use __new__ not __init__
+ def __new__(cls, numerator=0, denominator=None, *, _normalize=True):
+ """Constructs a Rational.
+
+ Takes a string like '3/2' or '1.5', another Rational instance, a
+ numerator/denominator pair, or a float.
+
+ Examples
+ --------
+
+ >>> Fraction(10, -8)
+ Fraction(-5, 4)
+ >>> Fraction(Fraction(1, 7), 5)
+ Fraction(1, 35)
+ >>> Fraction(Fraction(1, 7), Fraction(2, 3))
+ Fraction(3, 14)
+ >>> Fraction('314')
+ Fraction(314, 1)
+ >>> Fraction('-35/4')
+ Fraction(-35, 4)
+ >>> Fraction('3.1415') # conversion from numeric string
+ Fraction(6283, 2000)
+ >>> Fraction('-47e-2') # string may include a decimal exponent
+ Fraction(-47, 100)
+ >>> Fraction(1.47) # direct construction from float (exact conversion)
+ Fraction(6620291452234629, 4503599627370496)
+ >>> Fraction(2.25)
+ Fraction(9, 4)
+ >>> Fraction(Decimal('1.47'))
+ Fraction(147, 100)
+
+ """
+ self = super(Fraction, cls).__new__(cls)
+
+ if denominator is None:
+ if type(numerator) is int:
+ self._numerator = numerator
+ self._denominator = 1
+ return self
+
+ elif isinstance(numerator, numbers.Rational):
+ self._numerator = numerator.numerator
+ self._denominator = numerator.denominator
+ return self
+
+ elif isinstance(numerator, (float, Decimal)):
+ # Exact conversion
+ self._numerator, self._denominator = numerator.as_integer_ratio()
+ return self
+
+ elif isinstance(numerator, str):
+ # Handle construction from strings.
+ m = _RATIONAL_FORMAT.match(numerator)
+ if m is None:
+ raise ValueError('Invalid literal for Fraction: %r' %
+ numerator)
+ numerator = int(m.group('num') or '0')
+ denom = m.group('denom')
+ if denom:
+ denominator = int(denom)
+ else:
+ denominator = 1
+ decimal = m.group('decimal')
+ if decimal:
+ scale = 10**len(decimal)
+ numerator = numerator * scale + int(decimal)
+ denominator *= scale
+ exp = m.group('exp')
+ if exp:
+ exp = int(exp)
+ if exp >= 0:
+ numerator *= 10**exp
+ else:
+ denominator *= 10**-exp
+ if m.group('sign') == '-':
+ numerator = -numerator
+
+ else:
+ raise TypeError("argument should be a string "
+ "or a Rational instance")
+
+ elif type(numerator) is int is type(denominator):
+ pass # *very* normal case
+
+ elif (isinstance(numerator, numbers.Rational) and
+ isinstance(denominator, numbers.Rational)):
+ numerator, denominator = (
+ numerator.numerator * denominator.denominator,
+ denominator.numerator * numerator.denominator
+ )
+ else:
+ raise TypeError("both arguments should be "
+ "Rational instances")
+
+ if denominator == 0:
+ raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
+ if _normalize:
g = math.gcd(numerator, denominator)
if denominator < 0:
g = -g
- numerator //= g
- denominator //= g
- self._numerator = numerator
- self._denominator = denominator
- return self
-
- @classmethod
- def from_float(cls, f):
- """Converts a finite float to a rational number, exactly.
-
- Beware that Fraction.from_float(0.3) != Fraction(3, 10).
-
- """
- if isinstance(f, numbers.Integral):
- return cls(f)
- elif not isinstance(f, float):
- raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
- (cls.__name__, f, type(f).__name__))
- return cls(*f.as_integer_ratio())
-
- @classmethod
- def from_decimal(cls, dec):
- """Converts a finite Decimal instance to a rational number, exactly."""
- from decimal import Decimal
- if isinstance(dec, numbers.Integral):
- dec = Decimal(int(dec))
- elif not isinstance(dec, Decimal):
- raise TypeError(
- "%s.from_decimal() only takes Decimals, not %r (%s)" %
- (cls.__name__, dec, type(dec).__name__))
- return cls(*dec.as_integer_ratio())
-
+ numerator //= g
+ denominator //= g
+ self._numerator = numerator
+ self._denominator = denominator
+ return self
+
+ @classmethod
+ def from_float(cls, f):
+ """Converts a finite float to a rational number, exactly.
+
+ Beware that Fraction.from_float(0.3) != Fraction(3, 10).
+
+ """
+ if isinstance(f, numbers.Integral):
+ return cls(f)
+ elif not isinstance(f, float):
+ raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
+ (cls.__name__, f, type(f).__name__))
+ return cls(*f.as_integer_ratio())
+
+ @classmethod
+ def from_decimal(cls, dec):
+ """Converts a finite Decimal instance to a rational number, exactly."""
+ from decimal import Decimal
+ if isinstance(dec, numbers.Integral):
+ dec = Decimal(int(dec))
+ elif not isinstance(dec, Decimal):
+ raise TypeError(
+ "%s.from_decimal() only takes Decimals, not %r (%s)" %
+ (cls.__name__, dec, type(dec).__name__))
+ return cls(*dec.as_integer_ratio())
+
def as_integer_ratio(self):
"""Return the integer ratio as a tuple.
@@ -198,349 +198,349 @@ class Fraction(numbers.Rational):
"""
return (self._numerator, self._denominator)
- def limit_denominator(self, max_denominator=1000000):
- """Closest Fraction to self with denominator at most max_denominator.
-
- >>> Fraction('3.141592653589793').limit_denominator(10)
- Fraction(22, 7)
- >>> Fraction('3.141592653589793').limit_denominator(100)
- Fraction(311, 99)
- >>> Fraction(4321, 8765).limit_denominator(10000)
- Fraction(4321, 8765)
-
- """
- # Algorithm notes: For any real number x, define a *best upper
- # approximation* to x to be a rational number p/q such that:
- #
- # (1) p/q >= x, and
- # (2) if p/q > r/s >= x then s > q, for any rational r/s.
- #
- # Define *best lower approximation* similarly. Then it can be
- # proved that a rational number is a best upper or lower
- # approximation to x if, and only if, it is a convergent or
- # semiconvergent of the (unique shortest) continued fraction
- # associated to x.
- #
- # To find a best rational approximation with denominator <= M,
- # we find the best upper and lower approximations with
- # denominator <= M and take whichever of these is closer to x.
- # In the event of a tie, the bound with smaller denominator is
- # chosen. If both denominators are equal (which can happen
- # only when max_denominator == 1 and self is midway between
- # two integers) the lower bound---i.e., the floor of self, is
- # taken.
-
- if max_denominator < 1:
- raise ValueError("max_denominator should be at least 1")
- if self._denominator <= max_denominator:
- return Fraction(self)
-
- p0, q0, p1, q1 = 0, 1, 1, 0
- n, d = self._numerator, self._denominator
- while True:
- a = n//d
- q2 = q0+a*q1
- if q2 > max_denominator:
- break
- p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
- n, d = d, n-a*d
-
- k = (max_denominator-q0)//q1
- bound1 = Fraction(p0+k*p1, q0+k*q1)
- bound2 = Fraction(p1, q1)
- if abs(bound2 - self) <= abs(bound1-self):
- return bound2
- else:
- return bound1
-
- @property
- def numerator(a):
- return a._numerator
-
- @property
- def denominator(a):
- return a._denominator
-
- def __repr__(self):
- """repr(self)"""
- return '%s(%s, %s)' % (self.__class__.__name__,
- self._numerator, self._denominator)
-
- def __str__(self):
- """str(self)"""
- if self._denominator == 1:
- return str(self._numerator)
- else:
- return '%s/%s' % (self._numerator, self._denominator)
-
- def _operator_fallbacks(monomorphic_operator, fallback_operator):
- """Generates forward and reverse operators given a purely-rational
- operator and a function from the operator module.
-
- Use this like:
- __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
-
- In general, we want to implement the arithmetic operations so
- that mixed-mode operations either call an implementation whose
- author knew about the types of both arguments, or convert both
- to the nearest built in type and do the operation there. In
- Fraction, that means that we define __add__ and __radd__ as:
-
- def __add__(self, other):
- # Both types have numerators/denominator attributes,
- # so do the operation directly
- if isinstance(other, (int, Fraction)):
- return Fraction(self.numerator * other.denominator +
- other.numerator * self.denominator,
- self.denominator * other.denominator)
- # float and complex don't have those operations, but we
- # know about those types, so special case them.
- elif isinstance(other, float):
- return float(self) + other
- elif isinstance(other, complex):
- return complex(self) + other
- # Let the other type take over.
- return NotImplemented
-
- def __radd__(self, other):
- # radd handles more types than add because there's
- # nothing left to fall back to.
- if isinstance(other, numbers.Rational):
- return Fraction(self.numerator * other.denominator +
- other.numerator * self.denominator,
- self.denominator * other.denominator)
- elif isinstance(other, Real):
- return float(other) + float(self)
- elif isinstance(other, Complex):
- return complex(other) + complex(self)
- return NotImplemented
-
-
- There are 5 different cases for a mixed-type addition on
- Fraction. I'll refer to all of the above code that doesn't
- refer to Fraction, float, or complex as "boilerplate". 'r'
- will be an instance of Fraction, which is a subtype of
- Rational (r : Fraction <: Rational), and b : B <:
- Complex. The first three involve 'r + b':
-
- 1. If B <: Fraction, int, float, or complex, we handle
- that specially, and all is well.
- 2. If Fraction falls back to the boilerplate code, and it
- were to return a value from __add__, we'd miss the
- possibility that B defines a more intelligent __radd__,
- so the boilerplate should return NotImplemented from
- __add__. In particular, we don't handle Rational
- here, even though we could get an exact answer, in case
- the other type wants to do something special.
- 3. If B <: Fraction, Python tries B.__radd__ before
- Fraction.__add__. This is ok, because it was
- implemented with knowledge of Fraction, so it can
- handle those instances before delegating to Real or
- Complex.
-
- The next two situations describe 'b + r'. We assume that b
- didn't know about Fraction in its implementation, and that it
- uses similar boilerplate code:
-
- 4. If B <: Rational, then __radd_ converts both to the
- builtin rational type (hey look, that's us) and
- proceeds.
- 5. Otherwise, __radd__ tries to find the nearest common
- base ABC, and fall back to its builtin type. Since this
- class doesn't subclass a concrete type, there's no
- implementation to fall back to, so we need to try as
- hard as possible to return an actual value, or the user
- will get a TypeError.
-
- """
- def forward(a, b):
- if isinstance(b, (int, Fraction)):
- return monomorphic_operator(a, b)
- elif isinstance(b, float):
- return fallback_operator(float(a), b)
- elif isinstance(b, complex):
- return fallback_operator(complex(a), b)
- else:
- return NotImplemented
- forward.__name__ = '__' + fallback_operator.__name__ + '__'
- forward.__doc__ = monomorphic_operator.__doc__
-
- def reverse(b, a):
- if isinstance(a, numbers.Rational):
- # Includes ints.
- return monomorphic_operator(a, b)
- elif isinstance(a, numbers.Real):
- return fallback_operator(float(a), float(b))
- elif isinstance(a, numbers.Complex):
- return fallback_operator(complex(a), complex(b))
- else:
- return NotImplemented
- reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
- reverse.__doc__ = monomorphic_operator.__doc__
-
- return forward, reverse
-
- def _add(a, b):
- """a + b"""
- da, db = a.denominator, b.denominator
- return Fraction(a.numerator * db + b.numerator * da,
- da * db)
-
- __add__, __radd__ = _operator_fallbacks(_add, operator.add)
-
- def _sub(a, b):
- """a - b"""
- da, db = a.denominator, b.denominator
- return Fraction(a.numerator * db - b.numerator * da,
- da * db)
-
- __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
-
- def _mul(a, b):
- """a * b"""
- return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
-
- __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
-
- def _div(a, b):
- """a / b"""
- return Fraction(a.numerator * b.denominator,
- a.denominator * b.numerator)
-
- __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
-
+ def limit_denominator(self, max_denominator=1000000):
+ """Closest Fraction to self with denominator at most max_denominator.
+
+ >>> Fraction('3.141592653589793').limit_denominator(10)
+ Fraction(22, 7)
+ >>> Fraction('3.141592653589793').limit_denominator(100)
+ Fraction(311, 99)
+ >>> Fraction(4321, 8765).limit_denominator(10000)
+ Fraction(4321, 8765)
+
+ """
+ # Algorithm notes: For any real number x, define a *best upper
+ # approximation* to x to be a rational number p/q such that:
+ #
+ # (1) p/q >= x, and
+ # (2) if p/q > r/s >= x then s > q, for any rational r/s.
+ #
+ # Define *best lower approximation* similarly. Then it can be
+ # proved that a rational number is a best upper or lower
+ # approximation to x if, and only if, it is a convergent or
+ # semiconvergent of the (unique shortest) continued fraction
+ # associated to x.
+ #
+ # To find a best rational approximation with denominator <= M,
+ # we find the best upper and lower approximations with
+ # denominator <= M and take whichever of these is closer to x.
+ # In the event of a tie, the bound with smaller denominator is
+ # chosen. If both denominators are equal (which can happen
+ # only when max_denominator == 1 and self is midway between
+ # two integers) the lower bound---i.e., the floor of self, is
+ # taken.
+
+ if max_denominator < 1:
+ raise ValueError("max_denominator should be at least 1")
+ if self._denominator <= max_denominator:
+ return Fraction(self)
+
+ p0, q0, p1, q1 = 0, 1, 1, 0
+ n, d = self._numerator, self._denominator
+ while True:
+ a = n//d
+ q2 = q0+a*q1
+ if q2 > max_denominator:
+ break
+ p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
+ n, d = d, n-a*d
+
+ k = (max_denominator-q0)//q1
+ bound1 = Fraction(p0+k*p1, q0+k*q1)
+ bound2 = Fraction(p1, q1)
+ if abs(bound2 - self) <= abs(bound1-self):
+ return bound2
+ else:
+ return bound1
+
+ @property
+ def numerator(a):
+ return a._numerator
+
+ @property
+ def denominator(a):
+ return a._denominator
+
+ def __repr__(self):
+ """repr(self)"""
+ return '%s(%s, %s)' % (self.__class__.__name__,
+ self._numerator, self._denominator)
+
+ def __str__(self):
+ """str(self)"""
+ if self._denominator == 1:
+ return str(self._numerator)
+ else:
+ return '%s/%s' % (self._numerator, self._denominator)
+
+ def _operator_fallbacks(monomorphic_operator, fallback_operator):
+ """Generates forward and reverse operators given a purely-rational
+ operator and a function from the operator module.
+
+ Use this like:
+ __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
+
+ In general, we want to implement the arithmetic operations so
+ that mixed-mode operations either call an implementation whose
+ author knew about the types of both arguments, or convert both
+ to the nearest built in type and do the operation there. In
+ Fraction, that means that we define __add__ and __radd__ as:
+
+ def __add__(self, other):
+ # Both types have numerators/denominator attributes,
+ # so do the operation directly
+ if isinstance(other, (int, Fraction)):
+ return Fraction(self.numerator * other.denominator +
+ other.numerator * self.denominator,
+ self.denominator * other.denominator)
+ # float and complex don't have those operations, but we
+ # know about those types, so special case them.
+ elif isinstance(other, float):
+ return float(self) + other
+ elif isinstance(other, complex):
+ return complex(self) + other
+ # Let the other type take over.
+ return NotImplemented
+
+ def __radd__(self, other):
+ # radd handles more types than add because there's
+ # nothing left to fall back to.
+ if isinstance(other, numbers.Rational):
+ return Fraction(self.numerator * other.denominator +
+ other.numerator * self.denominator,
+ self.denominator * other.denominator)
+ elif isinstance(other, Real):
+ return float(other) + float(self)
+ elif isinstance(other, Complex):
+ return complex(other) + complex(self)
+ return NotImplemented
+
+
+ There are 5 different cases for a mixed-type addition on
+ Fraction. I'll refer to all of the above code that doesn't
+ refer to Fraction, float, or complex as "boilerplate". 'r'
+ will be an instance of Fraction, which is a subtype of
+ Rational (r : Fraction <: Rational), and b : B <:
+ Complex. The first three involve 'r + b':
+
+ 1. If B <: Fraction, int, float, or complex, we handle
+ that specially, and all is well.
+ 2. If Fraction falls back to the boilerplate code, and it
+ were to return a value from __add__, we'd miss the
+ possibility that B defines a more intelligent __radd__,
+ so the boilerplate should return NotImplemented from
+ __add__. In particular, we don't handle Rational
+ here, even though we could get an exact answer, in case
+ the other type wants to do something special.
+ 3. If B <: Fraction, Python tries B.__radd__ before
+ Fraction.__add__. This is ok, because it was
+ implemented with knowledge of Fraction, so it can
+ handle those instances before delegating to Real or
+ Complex.
+
+ The next two situations describe 'b + r'. We assume that b
+ didn't know about Fraction in its implementation, and that it
+ uses similar boilerplate code:
+
+ 4. If B <: Rational, then __radd_ converts both to the
+ builtin rational type (hey look, that's us) and
+ proceeds.
+ 5. Otherwise, __radd__ tries to find the nearest common
+ base ABC, and fall back to its builtin type. Since this
+ class doesn't subclass a concrete type, there's no
+ implementation to fall back to, so we need to try as
+ hard as possible to return an actual value, or the user
+ will get a TypeError.
+
+ """
+ def forward(a, b):
+ if isinstance(b, (int, Fraction)):
+ return monomorphic_operator(a, b)
+ elif isinstance(b, float):
+ return fallback_operator(float(a), b)
+ elif isinstance(b, complex):
+ return fallback_operator(complex(a), b)
+ else:
+ return NotImplemented
+ forward.__name__ = '__' + fallback_operator.__name__ + '__'
+ forward.__doc__ = monomorphic_operator.__doc__
+
+ def reverse(b, a):
+ if isinstance(a, numbers.Rational):
+ # Includes ints.
+ return monomorphic_operator(a, b)
+ elif isinstance(a, numbers.Real):
+ return fallback_operator(float(a), float(b))
+ elif isinstance(a, numbers.Complex):
+ return fallback_operator(complex(a), complex(b))
+ else:
+ return NotImplemented
+ reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
+ reverse.__doc__ = monomorphic_operator.__doc__
+
+ return forward, reverse
+
+ def _add(a, b):
+ """a + b"""
+ da, db = a.denominator, b.denominator
+ return Fraction(a.numerator * db + b.numerator * da,
+ da * db)
+
+ __add__, __radd__ = _operator_fallbacks(_add, operator.add)
+
+ def _sub(a, b):
+ """a - b"""
+ da, db = a.denominator, b.denominator
+ return Fraction(a.numerator * db - b.numerator * da,
+ da * db)
+
+ __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
+
+ def _mul(a, b):
+ """a * b"""
+ return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
+
+ __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
+
+ def _div(a, b):
+ """a / b"""
+ return Fraction(a.numerator * b.denominator,
+ a.denominator * b.numerator)
+
+ __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
+
def _floordiv(a, b):
- """a // b"""
+ """a // b"""
return (a.numerator * b.denominator) // (a.denominator * b.numerator)
-
+
__floordiv__, __rfloordiv__ = _operator_fallbacks(_floordiv, operator.floordiv)
-
+
def _divmod(a, b):
"""(a // b, a % b)"""
da, db = a.denominator, b.denominator
div, n_mod = divmod(a.numerator * db, da * b.numerator)
return div, Fraction(n_mod, da * db)
-
+
__divmod__, __rdivmod__ = _operator_fallbacks(_divmod, divmod)
def _mod(a, b):
- """a % b"""
+ """a % b"""
da, db = a.denominator, b.denominator
return Fraction((a.numerator * db) % (b.numerator * da), da * db)
-
+
__mod__, __rmod__ = _operator_fallbacks(_mod, operator.mod)
- def __pow__(a, b):
- """a ** b
-
- If b is not an integer, the result will be a float or complex
- since roots are generally irrational. If b is an integer, the
- result will be rational.
-
- """
- if isinstance(b, numbers.Rational):
- if b.denominator == 1:
- power = b.numerator
- if power >= 0:
- return Fraction(a._numerator ** power,
- a._denominator ** power,
- _normalize=False)
- elif a._numerator >= 0:
- return Fraction(a._denominator ** -power,
- a._numerator ** -power,
- _normalize=False)
- else:
- return Fraction((-a._denominator) ** -power,
- (-a._numerator) ** -power,
- _normalize=False)
- else:
- # A fractional power will generally produce an
- # irrational number.
- return float(a) ** float(b)
- else:
- return float(a) ** b
-
- def __rpow__(b, a):
- """a ** b"""
- if b._denominator == 1 and b._numerator >= 0:
- # If a is an int, keep it that way if possible.
- return a ** b._numerator
-
- if isinstance(a, numbers.Rational):
- return Fraction(a.numerator, a.denominator) ** b
-
- if b._denominator == 1:
- return a ** b._numerator
-
- return a ** float(b)
-
- def __pos__(a):
- """+a: Coerces a subclass instance to Fraction"""
- return Fraction(a._numerator, a._denominator, _normalize=False)
-
- def __neg__(a):
- """-a"""
- return Fraction(-a._numerator, a._denominator, _normalize=False)
-
- def __abs__(a):
- """abs(a)"""
- return Fraction(abs(a._numerator), a._denominator, _normalize=False)
-
- def __trunc__(a):
- """trunc(a)"""
- if a._numerator < 0:
- return -(-a._numerator // a._denominator)
- else:
- return a._numerator // a._denominator
-
- def __floor__(a):
+ def __pow__(a, b):
+ """a ** b
+
+ If b is not an integer, the result will be a float or complex
+ since roots are generally irrational. If b is an integer, the
+ result will be rational.
+
+ """
+ if isinstance(b, numbers.Rational):
+ if b.denominator == 1:
+ power = b.numerator
+ if power >= 0:
+ return Fraction(a._numerator ** power,
+ a._denominator ** power,
+ _normalize=False)
+ elif a._numerator >= 0:
+ return Fraction(a._denominator ** -power,
+ a._numerator ** -power,
+ _normalize=False)
+ else:
+ return Fraction((-a._denominator) ** -power,
+ (-a._numerator) ** -power,
+ _normalize=False)
+ else:
+ # A fractional power will generally produce an
+ # irrational number.
+ return float(a) ** float(b)
+ else:
+ return float(a) ** b
+
+ def __rpow__(b, a):
+ """a ** b"""
+ if b._denominator == 1 and b._numerator >= 0:
+ # If a is an int, keep it that way if possible.
+ return a ** b._numerator
+
+ if isinstance(a, numbers.Rational):
+ return Fraction(a.numerator, a.denominator) ** b
+
+ if b._denominator == 1:
+ return a ** b._numerator
+
+ return a ** float(b)
+
+ def __pos__(a):
+ """+a: Coerces a subclass instance to Fraction"""
+ return Fraction(a._numerator, a._denominator, _normalize=False)
+
+ def __neg__(a):
+ """-a"""
+ return Fraction(-a._numerator, a._denominator, _normalize=False)
+
+ def __abs__(a):
+ """abs(a)"""
+ return Fraction(abs(a._numerator), a._denominator, _normalize=False)
+
+ def __trunc__(a):
+ """trunc(a)"""
+ if a._numerator < 0:
+ return -(-a._numerator // a._denominator)
+ else:
+ return a._numerator // a._denominator
+
+ def __floor__(a):
"""math.floor(a)"""
- return a.numerator // a.denominator
-
- def __ceil__(a):
+ return a.numerator // a.denominator
+
+ def __ceil__(a):
"""math.ceil(a)"""
- # The negations cleverly convince floordiv to return the ceiling.
- return -(-a.numerator // a.denominator)
-
- def __round__(self, ndigits=None):
+ # The negations cleverly convince floordiv to return the ceiling.
+ return -(-a.numerator // a.denominator)
+
+ def __round__(self, ndigits=None):
"""round(self, ndigits)
-
- Rounds half toward even.
- """
- if ndigits is None:
- floor, remainder = divmod(self.numerator, self.denominator)
- if remainder * 2 < self.denominator:
- return floor
- elif remainder * 2 > self.denominator:
- return floor + 1
- # Deal with the half case:
- elif floor % 2 == 0:
- return floor
- else:
- return floor + 1
- shift = 10**abs(ndigits)
- # See _operator_fallbacks.forward to check that the results of
- # these operations will always be Fraction and therefore have
- # round().
- if ndigits > 0:
- return Fraction(round(self * shift), shift)
- else:
- return Fraction(round(self / shift) * shift)
-
- def __hash__(self):
- """hash(self)"""
-
+
+ Rounds half toward even.
+ """
+ if ndigits is None:
+ floor, remainder = divmod(self.numerator, self.denominator)
+ if remainder * 2 < self.denominator:
+ return floor
+ elif remainder * 2 > self.denominator:
+ return floor + 1
+ # Deal with the half case:
+ elif floor % 2 == 0:
+ return floor
+ else:
+ return floor + 1
+ shift = 10**abs(ndigits)
+ # See _operator_fallbacks.forward to check that the results of
+ # these operations will always be Fraction and therefore have
+ # round().
+ if ndigits > 0:
+ return Fraction(round(self * shift), shift)
+ else:
+ return Fraction(round(self / shift) * shift)
+
+ def __hash__(self):
+ """hash(self)"""
+
# To make sure that the hash of a Fraction agrees with the hash
# of a numerically equal integer, float or Decimal instance, we
# follow the rules for numeric hashes outlined in the
# documentation. (See library docs, 'Built-in Types').
-
+
try:
dinv = pow(self._denominator, -1, _PyHASH_MODULUS)
except ValueError:
# ValueError means there is no modular inverse.
- hash_ = _PyHASH_INF
- else:
+ hash_ = _PyHASH_INF
+ else:
# The general algorithm now specifies that the absolute value of
# the hash is
# (|N| * dinv) % P
@@ -558,84 +558,84 @@ class Fraction(numbers.Rational):
# amount of computation for large |N|.
hash_ = hash(hash(abs(self._numerator)) * dinv)
result = hash_ if self._numerator >= 0 else -hash_
- return -2 if result == -1 else result
-
- def __eq__(a, b):
- """a == b"""
- if type(b) is int:
- return a._numerator == b and a._denominator == 1
- if isinstance(b, numbers.Rational):
- return (a._numerator == b.numerator and
- a._denominator == b.denominator)
- if isinstance(b, numbers.Complex) and b.imag == 0:
- b = b.real
- if isinstance(b, float):
- if math.isnan(b) or math.isinf(b):
- # comparisons with an infinity or nan should behave in
- # the same way for any finite a, so treat a as zero.
- return 0.0 == b
- else:
- return a == a.from_float(b)
- else:
- # Since a doesn't know how to compare with b, let's give b
- # a chance to compare itself with a.
- return NotImplemented
-
- def _richcmp(self, other, op):
- """Helper for comparison operators, for internal use only.
-
- Implement comparison between a Rational instance `self`, and
- either another Rational instance or a float `other`. If
- `other` is not a Rational instance or a float, return
- NotImplemented. `op` should be one of the six standard
- comparison operators.
-
- """
- # convert other to a Rational instance where reasonable.
- if isinstance(other, numbers.Rational):
- return op(self._numerator * other.denominator,
- self._denominator * other.numerator)
- if isinstance(other, float):
- if math.isnan(other) or math.isinf(other):
- return op(0.0, other)
- else:
- return op(self, self.from_float(other))
- else:
- return NotImplemented
-
- def __lt__(a, b):
- """a < b"""
- return a._richcmp(b, operator.lt)
-
- def __gt__(a, b):
- """a > b"""
- return a._richcmp(b, operator.gt)
-
- def __le__(a, b):
- """a <= b"""
- return a._richcmp(b, operator.le)
-
- def __ge__(a, b):
- """a >= b"""
- return a._richcmp(b, operator.ge)
-
- def __bool__(a):
- """a != 0"""
+ return -2 if result == -1 else result
+
+ def __eq__(a, b):
+ """a == b"""
+ if type(b) is int:
+ return a._numerator == b and a._denominator == 1
+ if isinstance(b, numbers.Rational):
+ return (a._numerator == b.numerator and
+ a._denominator == b.denominator)
+ if isinstance(b, numbers.Complex) and b.imag == 0:
+ b = b.real
+ if isinstance(b, float):
+ if math.isnan(b) or math.isinf(b):
+ # comparisons with an infinity or nan should behave in
+ # the same way for any finite a, so treat a as zero.
+ return 0.0 == b
+ else:
+ return a == a.from_float(b)
+ else:
+ # Since a doesn't know how to compare with b, let's give b
+ # a chance to compare itself with a.
+ return NotImplemented
+
+ def _richcmp(self, other, op):
+ """Helper for comparison operators, for internal use only.
+
+ Implement comparison between a Rational instance `self`, and
+ either another Rational instance or a float `other`. If
+ `other` is not a Rational instance or a float, return
+ NotImplemented. `op` should be one of the six standard
+ comparison operators.
+
+ """
+ # convert other to a Rational instance where reasonable.
+ if isinstance(other, numbers.Rational):
+ return op(self._numerator * other.denominator,
+ self._denominator * other.numerator)
+ if isinstance(other, float):
+ if math.isnan(other) or math.isinf(other):
+ return op(0.0, other)
+ else:
+ return op(self, self.from_float(other))
+ else:
+ return NotImplemented
+
+ def __lt__(a, b):
+ """a < b"""
+ return a._richcmp(b, operator.lt)
+
+ def __gt__(a, b):
+ """a > b"""
+ return a._richcmp(b, operator.gt)
+
+ def __le__(a, b):
+ """a <= b"""
+ return a._richcmp(b, operator.le)
+
+ def __ge__(a, b):
+ """a >= b"""
+ return a._richcmp(b, operator.ge)
+
+ def __bool__(a):
+ """a != 0"""
# bpo-39274: Use bool() because (a._numerator != 0) can return an
# object which is not a bool.
return bool(a._numerator)
-
- # support for pickling, copy, and deepcopy
-
- def __reduce__(self):
- return (self.__class__, (str(self),))
-
- def __copy__(self):
- if type(self) == Fraction:
- return self # I'm immutable; therefore I am my own clone
- return self.__class__(self._numerator, self._denominator)
-
- def __deepcopy__(self, memo):
- if type(self) == Fraction:
- return self # My components are also immutable
- return self.__class__(self._numerator, self._denominator)
+
+ # support for pickling, copy, and deepcopy
+
+ def __reduce__(self):
+ return (self.__class__, (str(self),))
+
+ def __copy__(self):
+ if type(self) == Fraction:
+ return self # I'm immutable; therefore I am my own clone
+ return self.__class__(self._numerator, self._denominator)
+
+ def __deepcopy__(self, memo):
+ if type(self) == Fraction:
+ return self # My components are also immutable
+ return self.__class__(self._numerator, self._denominator)