diff options
author | AlexSm <alex@ydb.tech> | 2024-03-05 10:40:59 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-03-05 12:40:59 +0300 |
commit | 1ac13c847b5358faba44dbb638a828e24369467b (patch) | |
tree | 07672b4dd3604ad3dee540a02c6494cb7d10dc3d /contrib/tools/python3/Objects/stringlib/fastsearch.h | |
parent | ffcca3e7f7958ddc6487b91d3df8c01054bd0638 (diff) | |
download | ydb-1ac13c847b5358faba44dbb638a828e24369467b.tar.gz |
Library import 16 (#2433)
Co-authored-by: robot-piglet <robot-piglet@yandex-team.com>
Co-authored-by: deshevoy <deshevoy@yandex-team.com>
Co-authored-by: robot-contrib <robot-contrib@yandex-team.com>
Co-authored-by: thegeorg <thegeorg@yandex-team.com>
Co-authored-by: robot-ya-builder <robot-ya-builder@yandex-team.com>
Co-authored-by: svidyuk <svidyuk@yandex-team.com>
Co-authored-by: shadchin <shadchin@yandex-team.com>
Co-authored-by: robot-ratatosk <robot-ratatosk@yandex-team.com>
Co-authored-by: innokentii <innokentii@yandex-team.com>
Co-authored-by: arkady-e1ppa <arkady-e1ppa@yandex-team.com>
Co-authored-by: snermolaev <snermolaev@yandex-team.com>
Co-authored-by: dimdim11 <dimdim11@yandex-team.com>
Co-authored-by: kickbutt <kickbutt@yandex-team.com>
Co-authored-by: abdullinsaid <abdullinsaid@yandex-team.com>
Co-authored-by: korsunandrei <korsunandrei@yandex-team.com>
Co-authored-by: petrk <petrk@yandex-team.com>
Co-authored-by: miroslav2 <miroslav2@yandex-team.com>
Co-authored-by: serjflint <serjflint@yandex-team.com>
Co-authored-by: akhropov <akhropov@yandex-team.com>
Co-authored-by: prettyboy <prettyboy@yandex-team.com>
Co-authored-by: ilikepugs <ilikepugs@yandex-team.com>
Co-authored-by: hiddenpath <hiddenpath@yandex-team.com>
Co-authored-by: mikhnenko <mikhnenko@yandex-team.com>
Co-authored-by: spreis <spreis@yandex-team.com>
Co-authored-by: andreyshspb <andreyshspb@yandex-team.com>
Co-authored-by: dimaandreev <dimaandreev@yandex-team.com>
Co-authored-by: rashid <rashid@yandex-team.com>
Co-authored-by: robot-ydb-importer <robot-ydb-importer@yandex-team.com>
Co-authored-by: r-vetrov <r-vetrov@yandex-team.com>
Co-authored-by: ypodlesov <ypodlesov@yandex-team.com>
Co-authored-by: zaverden <zaverden@yandex-team.com>
Co-authored-by: vpozdyayev <vpozdyayev@yandex-team.com>
Co-authored-by: robot-cozmo <robot-cozmo@yandex-team.com>
Co-authored-by: v-korovin <v-korovin@yandex-team.com>
Co-authored-by: arikon <arikon@yandex-team.com>
Co-authored-by: khoden <khoden@yandex-team.com>
Co-authored-by: psydmm <psydmm@yandex-team.com>
Co-authored-by: robot-javacom <robot-javacom@yandex-team.com>
Co-authored-by: dtorilov <dtorilov@yandex-team.com>
Co-authored-by: sennikovmv <sennikovmv@yandex-team.com>
Co-authored-by: hcpp <hcpp@ydb.tech>
Diffstat (limited to 'contrib/tools/python3/Objects/stringlib/fastsearch.h')
-rw-r--r-- | contrib/tools/python3/Objects/stringlib/fastsearch.h | 804 |
1 files changed, 804 insertions, 0 deletions
diff --git a/contrib/tools/python3/Objects/stringlib/fastsearch.h b/contrib/tools/python3/Objects/stringlib/fastsearch.h new file mode 100644 index 0000000000..257b7bd678 --- /dev/null +++ b/contrib/tools/python3/Objects/stringlib/fastsearch.h @@ -0,0 +1,804 @@ +/* stringlib: fastsearch implementation */ + +#define STRINGLIB_FASTSEARCH_H + +/* fast search/count implementation, based on a mix between boyer- + moore and horspool, with a few more bells and whistles on the top. + for some more background, see: + https://web.archive.org/web/20201107074620/http://effbot.org/zone/stringlib.htm */ + +/* note: fastsearch may access s[n], which isn't a problem when using + Python's ordinary string types, but may cause problems if you're + using this code in other contexts. also, the count mode returns -1 + if there cannot possibly be a match in the target string, and 0 if + it has actually checked for matches, but didn't find any. callers + beware! */ + +/* If the strings are long enough, use Crochemore and Perrin's Two-Way + algorithm, which has worst-case O(n) runtime and best-case O(n/k). + Also compute a table of shifts to achieve O(n/k) in more cases, + and often (data dependent) deduce larger shifts than pure C&P can + deduce. See stringlib_find_two_way_notes.txt in this folder for a + detailed explanation. */ + +#define FAST_COUNT 0 +#define FAST_SEARCH 1 +#define FAST_RSEARCH 2 + +#if LONG_BIT >= 128 +#define STRINGLIB_BLOOM_WIDTH 128 +#elif LONG_BIT >= 64 +#define STRINGLIB_BLOOM_WIDTH 64 +#elif LONG_BIT >= 32 +#define STRINGLIB_BLOOM_WIDTH 32 +#else +#error "LONG_BIT is smaller than 32" +#endif + +#define STRINGLIB_BLOOM_ADD(mask, ch) \ + ((mask |= (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1))))) +#define STRINGLIB_BLOOM(mask, ch) \ + ((mask & (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1))))) + +#ifdef STRINGLIB_FAST_MEMCHR +# define MEMCHR_CUT_OFF 15 +#else +# define MEMCHR_CUT_OFF 40 +#endif + +Py_LOCAL_INLINE(Py_ssize_t) +STRINGLIB(find_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch) +{ + const STRINGLIB_CHAR *p, *e; + + p = s; + e = s + n; + if (n > MEMCHR_CUT_OFF) { +#ifdef STRINGLIB_FAST_MEMCHR + p = STRINGLIB_FAST_MEMCHR(s, ch, n); + if (p != NULL) + return (p - s); + return -1; +#else + /* use memchr if we can choose a needle without too many likely + false positives */ + const STRINGLIB_CHAR *s1, *e1; + unsigned char needle = ch & 0xff; + /* If looking for a multiple of 256, we'd have too + many false positives looking for the '\0' byte in UCS2 + and UCS4 representations. */ + if (needle != 0) { + do { + void *candidate = memchr(p, needle, + (e - p) * sizeof(STRINGLIB_CHAR)); + if (candidate == NULL) + return -1; + s1 = p; + p = (const STRINGLIB_CHAR *) + _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR)); + if (*p == ch) + return (p - s); + /* False positive */ + p++; + if (p - s1 > MEMCHR_CUT_OFF) + continue; + if (e - p <= MEMCHR_CUT_OFF) + break; + e1 = p + MEMCHR_CUT_OFF; + while (p != e1) { + if (*p == ch) + return (p - s); + p++; + } + } + while (e - p > MEMCHR_CUT_OFF); + } +#endif + } + while (p < e) { + if (*p == ch) + return (p - s); + p++; + } + return -1; +} + +#undef MEMCHR_CUT_OFF + +#if STRINGLIB_SIZEOF_CHAR == 1 +# define MEMRCHR_CUT_OFF 15 +#else +# define MEMRCHR_CUT_OFF 40 +#endif + + +Py_LOCAL_INLINE(Py_ssize_t) +STRINGLIB(rfind_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch) +{ + const STRINGLIB_CHAR *p; +#ifdef HAVE_MEMRCHR + /* memrchr() is a GNU extension, available since glibc 2.1.91. it + doesn't seem as optimized as memchr(), but is still quite + faster than our hand-written loop below. There is no wmemrchr + for 4-byte chars. */ + + if (n > MEMRCHR_CUT_OFF) { +#if STRINGLIB_SIZEOF_CHAR == 1 + p = memrchr(s, ch, n); + if (p != NULL) + return (p - s); + return -1; +#else + /* use memrchr if we can choose a needle without too many likely + false positives */ + const STRINGLIB_CHAR *s1; + Py_ssize_t n1; + unsigned char needle = ch & 0xff; + /* If looking for a multiple of 256, we'd have too + many false positives looking for the '\0' byte in UCS2 + and UCS4 representations. */ + if (needle != 0) { + do { + void *candidate = memrchr(s, needle, + n * sizeof(STRINGLIB_CHAR)); + if (candidate == NULL) + return -1; + n1 = n; + p = (const STRINGLIB_CHAR *) + _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR)); + n = p - s; + if (*p == ch) + return n; + /* False positive */ + if (n1 - n > MEMRCHR_CUT_OFF) + continue; + if (n <= MEMRCHR_CUT_OFF) + break; + s1 = p - MEMRCHR_CUT_OFF; + while (p > s1) { + p--; + if (*p == ch) + return (p - s); + } + n = p - s; + } + while (n > MEMRCHR_CUT_OFF); + } +#endif + } +#endif /* HAVE_MEMRCHR */ + p = s + n; + while (p > s) { + p--; + if (*p == ch) + return (p - s); + } + return -1; +} + +#undef MEMRCHR_CUT_OFF + +/* Change to a 1 to see logging comments walk through the algorithm. */ +#if 0 && STRINGLIB_SIZEOF_CHAR == 1 +# define LOG(...) printf(__VA_ARGS__) +# define LOG_STRING(s, n) printf("\"%.*s\"", (int)(n), s) +# define LOG_LINEUP() do { \ + LOG("> "); LOG_STRING(haystack, len_haystack); LOG("\n> "); \ + LOG("%*s",(int)(window_last - haystack + 1 - len_needle), ""); \ + LOG_STRING(needle, len_needle); LOG("\n"); \ +} while(0) +#else +# define LOG(...) +# define LOG_STRING(s, n) +# define LOG_LINEUP() +#endif + +Py_LOCAL_INLINE(Py_ssize_t) +STRINGLIB(_lex_search)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle, + Py_ssize_t *return_period, int invert_alphabet) +{ + /* Do a lexicographic search. Essentially this: + >>> max(needle[i:] for i in range(len(needle)+1)) + Also find the period of the right half. */ + Py_ssize_t max_suffix = 0; + Py_ssize_t candidate = 1; + Py_ssize_t k = 0; + // The period of the right half. + Py_ssize_t period = 1; + + while (candidate + k < len_needle) { + // each loop increases candidate + k + max_suffix + STRINGLIB_CHAR a = needle[candidate + k]; + STRINGLIB_CHAR b = needle[max_suffix + k]; + // check if the suffix at candidate is better than max_suffix + if (invert_alphabet ? (b < a) : (a < b)) { + // Fell short of max_suffix. + // The next k + 1 characters are non-increasing + // from candidate, so they won't start a maximal suffix. + candidate += k + 1; + k = 0; + // We've ruled out any period smaller than what's + // been scanned since max_suffix. + period = candidate - max_suffix; + } + else if (a == b) { + if (k + 1 != period) { + // Keep scanning the equal strings + k++; + } + else { + // Matched a whole period. + // Start matching the next period. + candidate += period; + k = 0; + } + } + else { + // Did better than max_suffix, so replace it. + max_suffix = candidate; + candidate++; + k = 0; + period = 1; + } + } + *return_period = period; + return max_suffix; +} + +Py_LOCAL_INLINE(Py_ssize_t) +STRINGLIB(_factorize)(const STRINGLIB_CHAR *needle, + Py_ssize_t len_needle, + Py_ssize_t *return_period) +{ + /* Do a "critical factorization", making it so that: + >>> needle = (left := needle[:cut]) + (right := needle[cut:]) + where the "local period" of the cut is maximal. + + The local period of the cut is the minimal length of a string w + such that (left endswith w or w endswith left) + and (right startswith w or w startswith left). + + The Critical Factorization Theorem says that this maximal local + period is the global period of the string. + + Crochemore and Perrin (1991) show that this cut can be computed + as the later of two cuts: one that gives a lexicographically + maximal right half, and one that gives the same with the + with respect to a reversed alphabet-ordering. + + This is what we want to happen: + >>> x = "GCAGAGAG" + >>> cut, period = factorize(x) + >>> x[:cut], (right := x[cut:]) + ('GC', 'AGAGAG') + >>> period # right half period + 2 + >>> right[period:] == right[:-period] + True + + This is how the local period lines up in the above example: + GC | AGAGAG + AGAGAGC = AGAGAGC + The length of this minimal repetition is 7, which is indeed the + period of the original string. */ + + Py_ssize_t cut1, period1, cut2, period2, cut, period; + cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0); + cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1); + + // Take the later cut. + if (cut1 > cut2) { + period = period1; + cut = cut1; + } + else { + period = period2; + cut = cut2; + } + + LOG("split: "); LOG_STRING(needle, cut); + LOG(" + "); LOG_STRING(needle + cut, len_needle - cut); + LOG("\n"); + + *return_period = period; + return cut; +} + + +#define SHIFT_TYPE uint8_t +#define MAX_SHIFT UINT8_MAX + +#define TABLE_SIZE_BITS 6u +#define TABLE_SIZE (1U << TABLE_SIZE_BITS) +#define TABLE_MASK (TABLE_SIZE - 1U) + +typedef struct STRINGLIB(_pre) { + const STRINGLIB_CHAR *needle; + Py_ssize_t len_needle; + Py_ssize_t cut; + Py_ssize_t period; + Py_ssize_t gap; + int is_periodic; + SHIFT_TYPE table[TABLE_SIZE]; +} STRINGLIB(prework); + + +static void +STRINGLIB(_preprocess)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle, + STRINGLIB(prework) *p) +{ + p->needle = needle; + p->len_needle = len_needle; + p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period)); + assert(p->period + p->cut <= len_needle); + p->is_periodic = (0 == memcmp(needle, + needle + p->period, + p->cut * STRINGLIB_SIZEOF_CHAR)); + if (p->is_periodic) { + assert(p->cut <= len_needle/2); + assert(p->cut < p->period); + p->gap = 0; // unused + } + else { + // A lower bound on the period + p->period = Py_MAX(p->cut, len_needle - p->cut) + 1; + // The gap between the last character and the previous + // occurrence of an equivalent character (modulo TABLE_SIZE) + p->gap = len_needle; + STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK; + for (Py_ssize_t i = len_needle - 2; i >= 0; i--) { + STRINGLIB_CHAR x = needle[i] & TABLE_MASK; + if (x == last) { + p->gap = len_needle - 1 - i; + break; + } + } + } + // Fill up a compressed Boyer-Moore "Bad Character" table + Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT); + for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) { + p->table[i] = Py_SAFE_DOWNCAST(not_found_shift, + Py_ssize_t, SHIFT_TYPE); + } + for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) { + SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i, + Py_ssize_t, SHIFT_TYPE); + p->table[needle[i] & TABLE_MASK] = shift; + } +} + +static Py_ssize_t +STRINGLIB(_two_way)(const STRINGLIB_CHAR *haystack, Py_ssize_t len_haystack, + STRINGLIB(prework) *p) +{ + // Crochemore and Perrin's (1991) Two-Way algorithm. + // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260 + const Py_ssize_t len_needle = p->len_needle; + const Py_ssize_t cut = p->cut; + Py_ssize_t period = p->period; + const STRINGLIB_CHAR *const needle = p->needle; + const STRINGLIB_CHAR *window_last = haystack + len_needle - 1; + const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack; + SHIFT_TYPE *table = p->table; + const STRINGLIB_CHAR *window; + LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack); + + if (p->is_periodic) { + LOG("Needle is periodic.\n"); + Py_ssize_t memory = 0; + periodicwindowloop: + while (window_last < haystack_end) { + assert(memory == 0); + for (;;) { + LOG_LINEUP(); + Py_ssize_t shift = table[(*window_last) & TABLE_MASK]; + window_last += shift; + if (shift == 0) { + break; + } + if (window_last >= haystack_end) { + return -1; + } + LOG("Horspool skip\n"); + } + no_shift: + window = window_last - len_needle + 1; + assert((window[len_needle - 1] & TABLE_MASK) == + (needle[len_needle - 1] & TABLE_MASK)); + Py_ssize_t i = Py_MAX(cut, memory); + for (; i < len_needle; i++) { + if (needle[i] != window[i]) { + LOG("Right half does not match.\n"); + window_last += i - cut + 1; + memory = 0; + goto periodicwindowloop; + } + } + for (i = memory; i < cut; i++) { + if (needle[i] != window[i]) { + LOG("Left half does not match.\n"); + window_last += period; + memory = len_needle - period; + if (window_last >= haystack_end) { + return -1; + } + Py_ssize_t shift = table[(*window_last) & TABLE_MASK]; + if (shift) { + // A mismatch has been identified to the right + // of where i will next start, so we can jump + // at least as far as if the mismatch occurred + // on the first comparison. + Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1; + LOG("Skip with Memory.\n"); + memory = 0; + window_last += Py_MAX(shift, mem_jump); + goto periodicwindowloop; + } + goto no_shift; + } + } + LOG("Found a match!\n"); + return window - haystack; + } + } + else { + Py_ssize_t gap = p->gap; + period = Py_MAX(gap, period); + LOG("Needle is not periodic.\n"); + Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap); + windowloop: + while (window_last < haystack_end) { + for (;;) { + LOG_LINEUP(); + Py_ssize_t shift = table[(*window_last) & TABLE_MASK]; + window_last += shift; + if (shift == 0) { + break; + } + if (window_last >= haystack_end) { + return -1; + } + LOG("Horspool skip\n"); + } + window = window_last - len_needle + 1; + assert((window[len_needle - 1] & TABLE_MASK) == + (needle[len_needle - 1] & TABLE_MASK)); + for (Py_ssize_t i = cut; i < gap_jump_end; i++) { + if (needle[i] != window[i]) { + LOG("Early right half mismatch: jump by gap.\n"); + assert(gap >= i - cut + 1); + window_last += gap; + goto windowloop; + } + } + for (Py_ssize_t i = gap_jump_end; i < len_needle; i++) { + if (needle[i] != window[i]) { + LOG("Late right half mismatch.\n"); + assert(i - cut + 1 > gap); + window_last += i - cut + 1; + goto windowloop; + } + } + for (Py_ssize_t i = 0; i < cut; i++) { + if (needle[i] != window[i]) { + LOG("Left half does not match.\n"); + window_last += period; + goto windowloop; + } + } + LOG("Found a match!\n"); + return window - haystack; + } + } + LOG("Not found. Returning -1.\n"); + return -1; +} + + +static Py_ssize_t +STRINGLIB(_two_way_find)(const STRINGLIB_CHAR *haystack, + Py_ssize_t len_haystack, + const STRINGLIB_CHAR *needle, + Py_ssize_t len_needle) +{ + LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack); + STRINGLIB(prework) p; + STRINGLIB(_preprocess)(needle, len_needle, &p); + return STRINGLIB(_two_way)(haystack, len_haystack, &p); +} + + +static Py_ssize_t +STRINGLIB(_two_way_count)(const STRINGLIB_CHAR *haystack, + Py_ssize_t len_haystack, + const STRINGLIB_CHAR *needle, + Py_ssize_t len_needle, + Py_ssize_t maxcount) +{ + LOG("###### Counting \"%s\" in \"%s\".\n", needle, haystack); + STRINGLIB(prework) p; + STRINGLIB(_preprocess)(needle, len_needle, &p); + Py_ssize_t index = 0, count = 0; + while (1) { + Py_ssize_t result; + result = STRINGLIB(_two_way)(haystack + index, + len_haystack - index, &p); + if (result == -1) { + return count; + } + count++; + if (count == maxcount) { + return maxcount; + } + index += result + len_needle; + } + return count; +} + +#undef SHIFT_TYPE +#undef NOT_FOUND +#undef SHIFT_OVERFLOW +#undef TABLE_SIZE_BITS +#undef TABLE_SIZE +#undef TABLE_MASK + +#undef LOG +#undef LOG_STRING +#undef LOG_LINEUP + +static inline Py_ssize_t +STRINGLIB(default_find)(const STRINGLIB_CHAR* s, Py_ssize_t n, + const STRINGLIB_CHAR* p, Py_ssize_t m, + Py_ssize_t maxcount, int mode) +{ + const Py_ssize_t w = n - m; + Py_ssize_t mlast = m - 1, count = 0; + Py_ssize_t gap = mlast; + const STRINGLIB_CHAR last = p[mlast]; + const STRINGLIB_CHAR *const ss = &s[mlast]; + + unsigned long mask = 0; + for (Py_ssize_t i = 0; i < mlast; i++) { + STRINGLIB_BLOOM_ADD(mask, p[i]); + if (p[i] == last) { + gap = mlast - i - 1; + } + } + STRINGLIB_BLOOM_ADD(mask, last); + + for (Py_ssize_t i = 0; i <= w; i++) { + if (ss[i] == last) { + /* candidate match */ + Py_ssize_t j; + for (j = 0; j < mlast; j++) { + if (s[i+j] != p[j]) { + break; + } + } + if (j == mlast) { + /* got a match! */ + if (mode != FAST_COUNT) { + return i; + } + count++; + if (count == maxcount) { + return maxcount; + } + i = i + mlast; + continue; + } + /* miss: check if next character is part of pattern */ + if (!STRINGLIB_BLOOM(mask, ss[i+1])) { + i = i + m; + } + else { + i = i + gap; + } + } + else { + /* skip: check if next character is part of pattern */ + if (!STRINGLIB_BLOOM(mask, ss[i+1])) { + i = i + m; + } + } + } + return mode == FAST_COUNT ? count : -1; +} + + +static Py_ssize_t +STRINGLIB(adaptive_find)(const STRINGLIB_CHAR* s, Py_ssize_t n, + const STRINGLIB_CHAR* p, Py_ssize_t m, + Py_ssize_t maxcount, int mode) +{ + const Py_ssize_t w = n - m; + Py_ssize_t mlast = m - 1, count = 0; + Py_ssize_t gap = mlast; + Py_ssize_t hits = 0, res; + const STRINGLIB_CHAR last = p[mlast]; + const STRINGLIB_CHAR *const ss = &s[mlast]; + + unsigned long mask = 0; + for (Py_ssize_t i = 0; i < mlast; i++) { + STRINGLIB_BLOOM_ADD(mask, p[i]); + if (p[i] == last) { + gap = mlast - i - 1; + } + } + STRINGLIB_BLOOM_ADD(mask, last); + + for (Py_ssize_t i = 0; i <= w; i++) { + if (ss[i] == last) { + /* candidate match */ + Py_ssize_t j; + for (j = 0; j < mlast; j++) { + if (s[i+j] != p[j]) { + break; + } + } + if (j == mlast) { + /* got a match! */ + if (mode != FAST_COUNT) { + return i; + } + count++; + if (count == maxcount) { + return maxcount; + } + i = i + mlast; + continue; + } + hits += j + 1; + if (hits > m / 4 && w - i > 2000) { + if (mode == FAST_SEARCH) { + res = STRINGLIB(_two_way_find)(s + i, n - i, p, m); + return res == -1 ? -1 : res + i; + } + else { + res = STRINGLIB(_two_way_count)(s + i, n - i, p, m, + maxcount - count); + return res + count; + } + } + /* miss: check if next character is part of pattern */ + if (!STRINGLIB_BLOOM(mask, ss[i+1])) { + i = i + m; + } + else { + i = i + gap; + } + } + else { + /* skip: check if next character is part of pattern */ + if (!STRINGLIB_BLOOM(mask, ss[i+1])) { + i = i + m; + } + } + } + return mode == FAST_COUNT ? count : -1; +} + + +static Py_ssize_t +STRINGLIB(default_rfind)(const STRINGLIB_CHAR* s, Py_ssize_t n, + const STRINGLIB_CHAR* p, Py_ssize_t m, + Py_ssize_t maxcount, int mode) +{ + /* create compressed boyer-moore delta 1 table */ + unsigned long mask = 0; + Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m; + + /* process pattern[0] outside the loop */ + STRINGLIB_BLOOM_ADD(mask, p[0]); + /* process pattern[:0:-1] */ + for (i = mlast; i > 0; i--) { + STRINGLIB_BLOOM_ADD(mask, p[i]); + if (p[i] == p[0]) { + skip = i - 1; + } + } + + for (i = w; i >= 0; i--) { + if (s[i] == p[0]) { + /* candidate match */ + for (j = mlast; j > 0; j--) { + if (s[i+j] != p[j]) { + break; + } + } + if (j == 0) { + /* got a match! */ + return i; + } + /* miss: check if previous character is part of pattern */ + if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) { + i = i - m; + } + else { + i = i - skip; + } + } + else { + /* skip: check if previous character is part of pattern */ + if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) { + i = i - m; + } + } + } + return -1; +} + + +static inline Py_ssize_t +STRINGLIB(count_char)(const STRINGLIB_CHAR *s, Py_ssize_t n, + const STRINGLIB_CHAR p0, Py_ssize_t maxcount) +{ + Py_ssize_t i, count = 0; + for (i = 0; i < n; i++) { + if (s[i] == p0) { + count++; + if (count == maxcount) { + return maxcount; + } + } + } + return count; +} + + +Py_LOCAL_INLINE(Py_ssize_t) +FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n, + const STRINGLIB_CHAR* p, Py_ssize_t m, + Py_ssize_t maxcount, int mode) +{ + if (n < m || (mode == FAST_COUNT && maxcount == 0)) { + return -1; + } + + /* look for special cases */ + if (m <= 1) { + if (m <= 0) { + return -1; + } + /* use special case for 1-character strings */ + if (mode == FAST_SEARCH) + return STRINGLIB(find_char)(s, n, p[0]); + else if (mode == FAST_RSEARCH) + return STRINGLIB(rfind_char)(s, n, p[0]); + else { + return STRINGLIB(count_char)(s, n, p[0], maxcount); + } + } + + if (mode != FAST_RSEARCH) { + if (n < 2500 || (m < 100 && n < 30000) || m < 6) { + return STRINGLIB(default_find)(s, n, p, m, maxcount, mode); + } + else if ((m >> 2) * 3 < (n >> 2)) { + /* 33% threshold, but don't overflow. */ + /* For larger problems where the needle isn't a huge + percentage of the size of the haystack, the relatively + expensive O(m) startup cost of the two-way algorithm + will surely pay off. */ + if (mode == FAST_SEARCH) { + return STRINGLIB(_two_way_find)(s, n, p, m); + } + else { + return STRINGLIB(_two_way_count)(s, n, p, m, maxcount); + } + } + else { + /* To ensure that we have good worst-case behavior, + here's an adaptive version of the algorithm, where if + we match O(m) characters without any matches of the + entire needle, then we predict that the startup cost of + the two-way algorithm will probably be worth it. */ + return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode); + } + } + else { + /* FAST_RSEARCH */ + return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode); + } +} + |