aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/Objects/stringlib/fastsearch.h
diff options
context:
space:
mode:
authorAlexSm <alex@ydb.tech>2024-03-05 10:40:59 +0100
committerGitHub <noreply@github.com>2024-03-05 12:40:59 +0300
commit1ac13c847b5358faba44dbb638a828e24369467b (patch)
tree07672b4dd3604ad3dee540a02c6494cb7d10dc3d /contrib/tools/python3/Objects/stringlib/fastsearch.h
parentffcca3e7f7958ddc6487b91d3df8c01054bd0638 (diff)
downloadydb-1ac13c847b5358faba44dbb638a828e24369467b.tar.gz
Library import 16 (#2433)
Co-authored-by: robot-piglet <robot-piglet@yandex-team.com> Co-authored-by: deshevoy <deshevoy@yandex-team.com> Co-authored-by: robot-contrib <robot-contrib@yandex-team.com> Co-authored-by: thegeorg <thegeorg@yandex-team.com> Co-authored-by: robot-ya-builder <robot-ya-builder@yandex-team.com> Co-authored-by: svidyuk <svidyuk@yandex-team.com> Co-authored-by: shadchin <shadchin@yandex-team.com> Co-authored-by: robot-ratatosk <robot-ratatosk@yandex-team.com> Co-authored-by: innokentii <innokentii@yandex-team.com> Co-authored-by: arkady-e1ppa <arkady-e1ppa@yandex-team.com> Co-authored-by: snermolaev <snermolaev@yandex-team.com> Co-authored-by: dimdim11 <dimdim11@yandex-team.com> Co-authored-by: kickbutt <kickbutt@yandex-team.com> Co-authored-by: abdullinsaid <abdullinsaid@yandex-team.com> Co-authored-by: korsunandrei <korsunandrei@yandex-team.com> Co-authored-by: petrk <petrk@yandex-team.com> Co-authored-by: miroslav2 <miroslav2@yandex-team.com> Co-authored-by: serjflint <serjflint@yandex-team.com> Co-authored-by: akhropov <akhropov@yandex-team.com> Co-authored-by: prettyboy <prettyboy@yandex-team.com> Co-authored-by: ilikepugs <ilikepugs@yandex-team.com> Co-authored-by: hiddenpath <hiddenpath@yandex-team.com> Co-authored-by: mikhnenko <mikhnenko@yandex-team.com> Co-authored-by: spreis <spreis@yandex-team.com> Co-authored-by: andreyshspb <andreyshspb@yandex-team.com> Co-authored-by: dimaandreev <dimaandreev@yandex-team.com> Co-authored-by: rashid <rashid@yandex-team.com> Co-authored-by: robot-ydb-importer <robot-ydb-importer@yandex-team.com> Co-authored-by: r-vetrov <r-vetrov@yandex-team.com> Co-authored-by: ypodlesov <ypodlesov@yandex-team.com> Co-authored-by: zaverden <zaverden@yandex-team.com> Co-authored-by: vpozdyayev <vpozdyayev@yandex-team.com> Co-authored-by: robot-cozmo <robot-cozmo@yandex-team.com> Co-authored-by: v-korovin <v-korovin@yandex-team.com> Co-authored-by: arikon <arikon@yandex-team.com> Co-authored-by: khoden <khoden@yandex-team.com> Co-authored-by: psydmm <psydmm@yandex-team.com> Co-authored-by: robot-javacom <robot-javacom@yandex-team.com> Co-authored-by: dtorilov <dtorilov@yandex-team.com> Co-authored-by: sennikovmv <sennikovmv@yandex-team.com> Co-authored-by: hcpp <hcpp@ydb.tech>
Diffstat (limited to 'contrib/tools/python3/Objects/stringlib/fastsearch.h')
-rw-r--r--contrib/tools/python3/Objects/stringlib/fastsearch.h804
1 files changed, 804 insertions, 0 deletions
diff --git a/contrib/tools/python3/Objects/stringlib/fastsearch.h b/contrib/tools/python3/Objects/stringlib/fastsearch.h
new file mode 100644
index 0000000000..257b7bd678
--- /dev/null
+++ b/contrib/tools/python3/Objects/stringlib/fastsearch.h
@@ -0,0 +1,804 @@
+/* stringlib: fastsearch implementation */
+
+#define STRINGLIB_FASTSEARCH_H
+
+/* fast search/count implementation, based on a mix between boyer-
+ moore and horspool, with a few more bells and whistles on the top.
+ for some more background, see:
+ https://web.archive.org/web/20201107074620/http://effbot.org/zone/stringlib.htm */
+
+/* note: fastsearch may access s[n], which isn't a problem when using
+ Python's ordinary string types, but may cause problems if you're
+ using this code in other contexts. also, the count mode returns -1
+ if there cannot possibly be a match in the target string, and 0 if
+ it has actually checked for matches, but didn't find any. callers
+ beware! */
+
+/* If the strings are long enough, use Crochemore and Perrin's Two-Way
+ algorithm, which has worst-case O(n) runtime and best-case O(n/k).
+ Also compute a table of shifts to achieve O(n/k) in more cases,
+ and often (data dependent) deduce larger shifts than pure C&P can
+ deduce. See stringlib_find_two_way_notes.txt in this folder for a
+ detailed explanation. */
+
+#define FAST_COUNT 0
+#define FAST_SEARCH 1
+#define FAST_RSEARCH 2
+
+#if LONG_BIT >= 128
+#define STRINGLIB_BLOOM_WIDTH 128
+#elif LONG_BIT >= 64
+#define STRINGLIB_BLOOM_WIDTH 64
+#elif LONG_BIT >= 32
+#define STRINGLIB_BLOOM_WIDTH 32
+#else
+#error "LONG_BIT is smaller than 32"
+#endif
+
+#define STRINGLIB_BLOOM_ADD(mask, ch) \
+ ((mask |= (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
+#define STRINGLIB_BLOOM(mask, ch) \
+ ((mask & (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
+
+#ifdef STRINGLIB_FAST_MEMCHR
+# define MEMCHR_CUT_OFF 15
+#else
+# define MEMCHR_CUT_OFF 40
+#endif
+
+Py_LOCAL_INLINE(Py_ssize_t)
+STRINGLIB(find_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
+{
+ const STRINGLIB_CHAR *p, *e;
+
+ p = s;
+ e = s + n;
+ if (n > MEMCHR_CUT_OFF) {
+#ifdef STRINGLIB_FAST_MEMCHR
+ p = STRINGLIB_FAST_MEMCHR(s, ch, n);
+ if (p != NULL)
+ return (p - s);
+ return -1;
+#else
+ /* use memchr if we can choose a needle without too many likely
+ false positives */
+ const STRINGLIB_CHAR *s1, *e1;
+ unsigned char needle = ch & 0xff;
+ /* If looking for a multiple of 256, we'd have too
+ many false positives looking for the '\0' byte in UCS2
+ and UCS4 representations. */
+ if (needle != 0) {
+ do {
+ void *candidate = memchr(p, needle,
+ (e - p) * sizeof(STRINGLIB_CHAR));
+ if (candidate == NULL)
+ return -1;
+ s1 = p;
+ p = (const STRINGLIB_CHAR *)
+ _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
+ if (*p == ch)
+ return (p - s);
+ /* False positive */
+ p++;
+ if (p - s1 > MEMCHR_CUT_OFF)
+ continue;
+ if (e - p <= MEMCHR_CUT_OFF)
+ break;
+ e1 = p + MEMCHR_CUT_OFF;
+ while (p != e1) {
+ if (*p == ch)
+ return (p - s);
+ p++;
+ }
+ }
+ while (e - p > MEMCHR_CUT_OFF);
+ }
+#endif
+ }
+ while (p < e) {
+ if (*p == ch)
+ return (p - s);
+ p++;
+ }
+ return -1;
+}
+
+#undef MEMCHR_CUT_OFF
+
+#if STRINGLIB_SIZEOF_CHAR == 1
+# define MEMRCHR_CUT_OFF 15
+#else
+# define MEMRCHR_CUT_OFF 40
+#endif
+
+
+Py_LOCAL_INLINE(Py_ssize_t)
+STRINGLIB(rfind_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
+{
+ const STRINGLIB_CHAR *p;
+#ifdef HAVE_MEMRCHR
+ /* memrchr() is a GNU extension, available since glibc 2.1.91. it
+ doesn't seem as optimized as memchr(), but is still quite
+ faster than our hand-written loop below. There is no wmemrchr
+ for 4-byte chars. */
+
+ if (n > MEMRCHR_CUT_OFF) {
+#if STRINGLIB_SIZEOF_CHAR == 1
+ p = memrchr(s, ch, n);
+ if (p != NULL)
+ return (p - s);
+ return -1;
+#else
+ /* use memrchr if we can choose a needle without too many likely
+ false positives */
+ const STRINGLIB_CHAR *s1;
+ Py_ssize_t n1;
+ unsigned char needle = ch & 0xff;
+ /* If looking for a multiple of 256, we'd have too
+ many false positives looking for the '\0' byte in UCS2
+ and UCS4 representations. */
+ if (needle != 0) {
+ do {
+ void *candidate = memrchr(s, needle,
+ n * sizeof(STRINGLIB_CHAR));
+ if (candidate == NULL)
+ return -1;
+ n1 = n;
+ p = (const STRINGLIB_CHAR *)
+ _Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
+ n = p - s;
+ if (*p == ch)
+ return n;
+ /* False positive */
+ if (n1 - n > MEMRCHR_CUT_OFF)
+ continue;
+ if (n <= MEMRCHR_CUT_OFF)
+ break;
+ s1 = p - MEMRCHR_CUT_OFF;
+ while (p > s1) {
+ p--;
+ if (*p == ch)
+ return (p - s);
+ }
+ n = p - s;
+ }
+ while (n > MEMRCHR_CUT_OFF);
+ }
+#endif
+ }
+#endif /* HAVE_MEMRCHR */
+ p = s + n;
+ while (p > s) {
+ p--;
+ if (*p == ch)
+ return (p - s);
+ }
+ return -1;
+}
+
+#undef MEMRCHR_CUT_OFF
+
+/* Change to a 1 to see logging comments walk through the algorithm. */
+#if 0 && STRINGLIB_SIZEOF_CHAR == 1
+# define LOG(...) printf(__VA_ARGS__)
+# define LOG_STRING(s, n) printf("\"%.*s\"", (int)(n), s)
+# define LOG_LINEUP() do { \
+ LOG("> "); LOG_STRING(haystack, len_haystack); LOG("\n> "); \
+ LOG("%*s",(int)(window_last - haystack + 1 - len_needle), ""); \
+ LOG_STRING(needle, len_needle); LOG("\n"); \
+} while(0)
+#else
+# define LOG(...)
+# define LOG_STRING(s, n)
+# define LOG_LINEUP()
+#endif
+
+Py_LOCAL_INLINE(Py_ssize_t)
+STRINGLIB(_lex_search)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
+ Py_ssize_t *return_period, int invert_alphabet)
+{
+ /* Do a lexicographic search. Essentially this:
+ >>> max(needle[i:] for i in range(len(needle)+1))
+ Also find the period of the right half. */
+ Py_ssize_t max_suffix = 0;
+ Py_ssize_t candidate = 1;
+ Py_ssize_t k = 0;
+ // The period of the right half.
+ Py_ssize_t period = 1;
+
+ while (candidate + k < len_needle) {
+ // each loop increases candidate + k + max_suffix
+ STRINGLIB_CHAR a = needle[candidate + k];
+ STRINGLIB_CHAR b = needle[max_suffix + k];
+ // check if the suffix at candidate is better than max_suffix
+ if (invert_alphabet ? (b < a) : (a < b)) {
+ // Fell short of max_suffix.
+ // The next k + 1 characters are non-increasing
+ // from candidate, so they won't start a maximal suffix.
+ candidate += k + 1;
+ k = 0;
+ // We've ruled out any period smaller than what's
+ // been scanned since max_suffix.
+ period = candidate - max_suffix;
+ }
+ else if (a == b) {
+ if (k + 1 != period) {
+ // Keep scanning the equal strings
+ k++;
+ }
+ else {
+ // Matched a whole period.
+ // Start matching the next period.
+ candidate += period;
+ k = 0;
+ }
+ }
+ else {
+ // Did better than max_suffix, so replace it.
+ max_suffix = candidate;
+ candidate++;
+ k = 0;
+ period = 1;
+ }
+ }
+ *return_period = period;
+ return max_suffix;
+}
+
+Py_LOCAL_INLINE(Py_ssize_t)
+STRINGLIB(_factorize)(const STRINGLIB_CHAR *needle,
+ Py_ssize_t len_needle,
+ Py_ssize_t *return_period)
+{
+ /* Do a "critical factorization", making it so that:
+ >>> needle = (left := needle[:cut]) + (right := needle[cut:])
+ where the "local period" of the cut is maximal.
+
+ The local period of the cut is the minimal length of a string w
+ such that (left endswith w or w endswith left)
+ and (right startswith w or w startswith left).
+
+ The Critical Factorization Theorem says that this maximal local
+ period is the global period of the string.
+
+ Crochemore and Perrin (1991) show that this cut can be computed
+ as the later of two cuts: one that gives a lexicographically
+ maximal right half, and one that gives the same with the
+ with respect to a reversed alphabet-ordering.
+
+ This is what we want to happen:
+ >>> x = "GCAGAGAG"
+ >>> cut, period = factorize(x)
+ >>> x[:cut], (right := x[cut:])
+ ('GC', 'AGAGAG')
+ >>> period # right half period
+ 2
+ >>> right[period:] == right[:-period]
+ True
+
+ This is how the local period lines up in the above example:
+ GC | AGAGAG
+ AGAGAGC = AGAGAGC
+ The length of this minimal repetition is 7, which is indeed the
+ period of the original string. */
+
+ Py_ssize_t cut1, period1, cut2, period2, cut, period;
+ cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
+ cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
+
+ // Take the later cut.
+ if (cut1 > cut2) {
+ period = period1;
+ cut = cut1;
+ }
+ else {
+ period = period2;
+ cut = cut2;
+ }
+
+ LOG("split: "); LOG_STRING(needle, cut);
+ LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
+ LOG("\n");
+
+ *return_period = period;
+ return cut;
+}
+
+
+#define SHIFT_TYPE uint8_t
+#define MAX_SHIFT UINT8_MAX
+
+#define TABLE_SIZE_BITS 6u
+#define TABLE_SIZE (1U << TABLE_SIZE_BITS)
+#define TABLE_MASK (TABLE_SIZE - 1U)
+
+typedef struct STRINGLIB(_pre) {
+ const STRINGLIB_CHAR *needle;
+ Py_ssize_t len_needle;
+ Py_ssize_t cut;
+ Py_ssize_t period;
+ Py_ssize_t gap;
+ int is_periodic;
+ SHIFT_TYPE table[TABLE_SIZE];
+} STRINGLIB(prework);
+
+
+static void
+STRINGLIB(_preprocess)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
+ STRINGLIB(prework) *p)
+{
+ p->needle = needle;
+ p->len_needle = len_needle;
+ p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
+ assert(p->period + p->cut <= len_needle);
+ p->is_periodic = (0 == memcmp(needle,
+ needle + p->period,
+ p->cut * STRINGLIB_SIZEOF_CHAR));
+ if (p->is_periodic) {
+ assert(p->cut <= len_needle/2);
+ assert(p->cut < p->period);
+ p->gap = 0; // unused
+ }
+ else {
+ // A lower bound on the period
+ p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
+ // The gap between the last character and the previous
+ // occurrence of an equivalent character (modulo TABLE_SIZE)
+ p->gap = len_needle;
+ STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
+ for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
+ STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
+ if (x == last) {
+ p->gap = len_needle - 1 - i;
+ break;
+ }
+ }
+ }
+ // Fill up a compressed Boyer-Moore "Bad Character" table
+ Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
+ for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
+ p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
+ Py_ssize_t, SHIFT_TYPE);
+ }
+ for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
+ SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
+ Py_ssize_t, SHIFT_TYPE);
+ p->table[needle[i] & TABLE_MASK] = shift;
+ }
+}
+
+static Py_ssize_t
+STRINGLIB(_two_way)(const STRINGLIB_CHAR *haystack, Py_ssize_t len_haystack,
+ STRINGLIB(prework) *p)
+{
+ // Crochemore and Perrin's (1991) Two-Way algorithm.
+ // See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
+ const Py_ssize_t len_needle = p->len_needle;
+ const Py_ssize_t cut = p->cut;
+ Py_ssize_t period = p->period;
+ const STRINGLIB_CHAR *const needle = p->needle;
+ const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
+ const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
+ SHIFT_TYPE *table = p->table;
+ const STRINGLIB_CHAR *window;
+ LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
+
+ if (p->is_periodic) {
+ LOG("Needle is periodic.\n");
+ Py_ssize_t memory = 0;
+ periodicwindowloop:
+ while (window_last < haystack_end) {
+ assert(memory == 0);
+ for (;;) {
+ LOG_LINEUP();
+ Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
+ window_last += shift;
+ if (shift == 0) {
+ break;
+ }
+ if (window_last >= haystack_end) {
+ return -1;
+ }
+ LOG("Horspool skip\n");
+ }
+ no_shift:
+ window = window_last - len_needle + 1;
+ assert((window[len_needle - 1] & TABLE_MASK) ==
+ (needle[len_needle - 1] & TABLE_MASK));
+ Py_ssize_t i = Py_MAX(cut, memory);
+ for (; i < len_needle; i++) {
+ if (needle[i] != window[i]) {
+ LOG("Right half does not match.\n");
+ window_last += i - cut + 1;
+ memory = 0;
+ goto periodicwindowloop;
+ }
+ }
+ for (i = memory; i < cut; i++) {
+ if (needle[i] != window[i]) {
+ LOG("Left half does not match.\n");
+ window_last += period;
+ memory = len_needle - period;
+ if (window_last >= haystack_end) {
+ return -1;
+ }
+ Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
+ if (shift) {
+ // A mismatch has been identified to the right
+ // of where i will next start, so we can jump
+ // at least as far as if the mismatch occurred
+ // on the first comparison.
+ Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
+ LOG("Skip with Memory.\n");
+ memory = 0;
+ window_last += Py_MAX(shift, mem_jump);
+ goto periodicwindowloop;
+ }
+ goto no_shift;
+ }
+ }
+ LOG("Found a match!\n");
+ return window - haystack;
+ }
+ }
+ else {
+ Py_ssize_t gap = p->gap;
+ period = Py_MAX(gap, period);
+ LOG("Needle is not periodic.\n");
+ Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
+ windowloop:
+ while (window_last < haystack_end) {
+ for (;;) {
+ LOG_LINEUP();
+ Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
+ window_last += shift;
+ if (shift == 0) {
+ break;
+ }
+ if (window_last >= haystack_end) {
+ return -1;
+ }
+ LOG("Horspool skip\n");
+ }
+ window = window_last - len_needle + 1;
+ assert((window[len_needle - 1] & TABLE_MASK) ==
+ (needle[len_needle - 1] & TABLE_MASK));
+ for (Py_ssize_t i = cut; i < gap_jump_end; i++) {
+ if (needle[i] != window[i]) {
+ LOG("Early right half mismatch: jump by gap.\n");
+ assert(gap >= i - cut + 1);
+ window_last += gap;
+ goto windowloop;
+ }
+ }
+ for (Py_ssize_t i = gap_jump_end; i < len_needle; i++) {
+ if (needle[i] != window[i]) {
+ LOG("Late right half mismatch.\n");
+ assert(i - cut + 1 > gap);
+ window_last += i - cut + 1;
+ goto windowloop;
+ }
+ }
+ for (Py_ssize_t i = 0; i < cut; i++) {
+ if (needle[i] != window[i]) {
+ LOG("Left half does not match.\n");
+ window_last += period;
+ goto windowloop;
+ }
+ }
+ LOG("Found a match!\n");
+ return window - haystack;
+ }
+ }
+ LOG("Not found. Returning -1.\n");
+ return -1;
+}
+
+
+static Py_ssize_t
+STRINGLIB(_two_way_find)(const STRINGLIB_CHAR *haystack,
+ Py_ssize_t len_haystack,
+ const STRINGLIB_CHAR *needle,
+ Py_ssize_t len_needle)
+{
+ LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
+ STRINGLIB(prework) p;
+ STRINGLIB(_preprocess)(needle, len_needle, &p);
+ return STRINGLIB(_two_way)(haystack, len_haystack, &p);
+}
+
+
+static Py_ssize_t
+STRINGLIB(_two_way_count)(const STRINGLIB_CHAR *haystack,
+ Py_ssize_t len_haystack,
+ const STRINGLIB_CHAR *needle,
+ Py_ssize_t len_needle,
+ Py_ssize_t maxcount)
+{
+ LOG("###### Counting \"%s\" in \"%s\".\n", needle, haystack);
+ STRINGLIB(prework) p;
+ STRINGLIB(_preprocess)(needle, len_needle, &p);
+ Py_ssize_t index = 0, count = 0;
+ while (1) {
+ Py_ssize_t result;
+ result = STRINGLIB(_two_way)(haystack + index,
+ len_haystack - index, &p);
+ if (result == -1) {
+ return count;
+ }
+ count++;
+ if (count == maxcount) {
+ return maxcount;
+ }
+ index += result + len_needle;
+ }
+ return count;
+}
+
+#undef SHIFT_TYPE
+#undef NOT_FOUND
+#undef SHIFT_OVERFLOW
+#undef TABLE_SIZE_BITS
+#undef TABLE_SIZE
+#undef TABLE_MASK
+
+#undef LOG
+#undef LOG_STRING
+#undef LOG_LINEUP
+
+static inline Py_ssize_t
+STRINGLIB(default_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
+ const STRINGLIB_CHAR* p, Py_ssize_t m,
+ Py_ssize_t maxcount, int mode)
+{
+ const Py_ssize_t w = n - m;
+ Py_ssize_t mlast = m - 1, count = 0;
+ Py_ssize_t gap = mlast;
+ const STRINGLIB_CHAR last = p[mlast];
+ const STRINGLIB_CHAR *const ss = &s[mlast];
+
+ unsigned long mask = 0;
+ for (Py_ssize_t i = 0; i < mlast; i++) {
+ STRINGLIB_BLOOM_ADD(mask, p[i]);
+ if (p[i] == last) {
+ gap = mlast - i - 1;
+ }
+ }
+ STRINGLIB_BLOOM_ADD(mask, last);
+
+ for (Py_ssize_t i = 0; i <= w; i++) {
+ if (ss[i] == last) {
+ /* candidate match */
+ Py_ssize_t j;
+ for (j = 0; j < mlast; j++) {
+ if (s[i+j] != p[j]) {
+ break;
+ }
+ }
+ if (j == mlast) {
+ /* got a match! */
+ if (mode != FAST_COUNT) {
+ return i;
+ }
+ count++;
+ if (count == maxcount) {
+ return maxcount;
+ }
+ i = i + mlast;
+ continue;
+ }
+ /* miss: check if next character is part of pattern */
+ if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
+ i = i + m;
+ }
+ else {
+ i = i + gap;
+ }
+ }
+ else {
+ /* skip: check if next character is part of pattern */
+ if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
+ i = i + m;
+ }
+ }
+ }
+ return mode == FAST_COUNT ? count : -1;
+}
+
+
+static Py_ssize_t
+STRINGLIB(adaptive_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
+ const STRINGLIB_CHAR* p, Py_ssize_t m,
+ Py_ssize_t maxcount, int mode)
+{
+ const Py_ssize_t w = n - m;
+ Py_ssize_t mlast = m - 1, count = 0;
+ Py_ssize_t gap = mlast;
+ Py_ssize_t hits = 0, res;
+ const STRINGLIB_CHAR last = p[mlast];
+ const STRINGLIB_CHAR *const ss = &s[mlast];
+
+ unsigned long mask = 0;
+ for (Py_ssize_t i = 0; i < mlast; i++) {
+ STRINGLIB_BLOOM_ADD(mask, p[i]);
+ if (p[i] == last) {
+ gap = mlast - i - 1;
+ }
+ }
+ STRINGLIB_BLOOM_ADD(mask, last);
+
+ for (Py_ssize_t i = 0; i <= w; i++) {
+ if (ss[i] == last) {
+ /* candidate match */
+ Py_ssize_t j;
+ for (j = 0; j < mlast; j++) {
+ if (s[i+j] != p[j]) {
+ break;
+ }
+ }
+ if (j == mlast) {
+ /* got a match! */
+ if (mode != FAST_COUNT) {
+ return i;
+ }
+ count++;
+ if (count == maxcount) {
+ return maxcount;
+ }
+ i = i + mlast;
+ continue;
+ }
+ hits += j + 1;
+ if (hits > m / 4 && w - i > 2000) {
+ if (mode == FAST_SEARCH) {
+ res = STRINGLIB(_two_way_find)(s + i, n - i, p, m);
+ return res == -1 ? -1 : res + i;
+ }
+ else {
+ res = STRINGLIB(_two_way_count)(s + i, n - i, p, m,
+ maxcount - count);
+ return res + count;
+ }
+ }
+ /* miss: check if next character is part of pattern */
+ if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
+ i = i + m;
+ }
+ else {
+ i = i + gap;
+ }
+ }
+ else {
+ /* skip: check if next character is part of pattern */
+ if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
+ i = i + m;
+ }
+ }
+ }
+ return mode == FAST_COUNT ? count : -1;
+}
+
+
+static Py_ssize_t
+STRINGLIB(default_rfind)(const STRINGLIB_CHAR* s, Py_ssize_t n,
+ const STRINGLIB_CHAR* p, Py_ssize_t m,
+ Py_ssize_t maxcount, int mode)
+{
+ /* create compressed boyer-moore delta 1 table */
+ unsigned long mask = 0;
+ Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
+
+ /* process pattern[0] outside the loop */
+ STRINGLIB_BLOOM_ADD(mask, p[0]);
+ /* process pattern[:0:-1] */
+ for (i = mlast; i > 0; i--) {
+ STRINGLIB_BLOOM_ADD(mask, p[i]);
+ if (p[i] == p[0]) {
+ skip = i - 1;
+ }
+ }
+
+ for (i = w; i >= 0; i--) {
+ if (s[i] == p[0]) {
+ /* candidate match */
+ for (j = mlast; j > 0; j--) {
+ if (s[i+j] != p[j]) {
+ break;
+ }
+ }
+ if (j == 0) {
+ /* got a match! */
+ return i;
+ }
+ /* miss: check if previous character is part of pattern */
+ if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
+ i = i - m;
+ }
+ else {
+ i = i - skip;
+ }
+ }
+ else {
+ /* skip: check if previous character is part of pattern */
+ if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
+ i = i - m;
+ }
+ }
+ }
+ return -1;
+}
+
+
+static inline Py_ssize_t
+STRINGLIB(count_char)(const STRINGLIB_CHAR *s, Py_ssize_t n,
+ const STRINGLIB_CHAR p0, Py_ssize_t maxcount)
+{
+ Py_ssize_t i, count = 0;
+ for (i = 0; i < n; i++) {
+ if (s[i] == p0) {
+ count++;
+ if (count == maxcount) {
+ return maxcount;
+ }
+ }
+ }
+ return count;
+}
+
+
+Py_LOCAL_INLINE(Py_ssize_t)
+FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n,
+ const STRINGLIB_CHAR* p, Py_ssize_t m,
+ Py_ssize_t maxcount, int mode)
+{
+ if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
+ return -1;
+ }
+
+ /* look for special cases */
+ if (m <= 1) {
+ if (m <= 0) {
+ return -1;
+ }
+ /* use special case for 1-character strings */
+ if (mode == FAST_SEARCH)
+ return STRINGLIB(find_char)(s, n, p[0]);
+ else if (mode == FAST_RSEARCH)
+ return STRINGLIB(rfind_char)(s, n, p[0]);
+ else {
+ return STRINGLIB(count_char)(s, n, p[0], maxcount);
+ }
+ }
+
+ if (mode != FAST_RSEARCH) {
+ if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
+ return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
+ }
+ else if ((m >> 2) * 3 < (n >> 2)) {
+ /* 33% threshold, but don't overflow. */
+ /* For larger problems where the needle isn't a huge
+ percentage of the size of the haystack, the relatively
+ expensive O(m) startup cost of the two-way algorithm
+ will surely pay off. */
+ if (mode == FAST_SEARCH) {
+ return STRINGLIB(_two_way_find)(s, n, p, m);
+ }
+ else {
+ return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
+ }
+ }
+ else {
+ /* To ensure that we have good worst-case behavior,
+ here's an adaptive version of the algorithm, where if
+ we match O(m) characters without any matches of the
+ entire needle, then we predict that the startup cost of
+ the two-way algorithm will probably be worth it. */
+ return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
+ }
+ }
+ else {
+ /* FAST_RSEARCH */
+ return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
+ }
+}
+