diff options
author | thegeorg <thegeorg@yandex-team.com> | 2024-02-19 02:38:52 +0300 |
---|---|---|
committer | thegeorg <thegeorg@yandex-team.com> | 2024-02-19 02:50:43 +0300 |
commit | d96fa07134c06472bfee6718b5cfd1679196fc99 (patch) | |
tree | 31ec344fa9d3ff8dc038692516b6438dfbdb8a2d /contrib/tools/python3/Objects/obmalloc.c | |
parent | 452cf9e068aef7110e35e654c5d47eb80111ef89 (diff) | |
download | ydb-d96fa07134c06472bfee6718b5cfd1679196fc99.tar.gz |
Sync contrib/tools/python3 layout with upstream
* Move src/ subdir contents to the top of the layout
* Rename self-written lib -> lib2 to avoid CaseFolding warning from the VCS
* Regenerate contrib/libs/python proxy-headers accordingly
4ccc62ac1511abcf0fed14ccade38e984e088f1e
Diffstat (limited to 'contrib/tools/python3/Objects/obmalloc.c')
-rw-r--r-- | contrib/tools/python3/Objects/obmalloc.c | 2706 |
1 files changed, 2706 insertions, 0 deletions
diff --git a/contrib/tools/python3/Objects/obmalloc.c b/contrib/tools/python3/Objects/obmalloc.c new file mode 100644 index 0000000000..9620a8fbb4 --- /dev/null +++ b/contrib/tools/python3/Objects/obmalloc.c @@ -0,0 +1,2706 @@ +/* Python's malloc wrappers (see pymem.h) */ + +#include "Python.h" +#include "pycore_code.h" // stats +#include "pycore_pystate.h" // _PyInterpreterState_GET + +#include "pycore_obmalloc.h" +#include "pycore_pymem.h" + +#include <stdlib.h> // malloc() +#include <stdbool.h> + +#undef uint +#define uint pymem_uint + + +/* Defined in tracemalloc.c */ +extern void _PyMem_DumpTraceback(int fd, const void *ptr); + +static void _PyObject_DebugDumpAddress(const void *p); +static void _PyMem_DebugCheckAddress(const char *func, char api_id, const void *p); + + +static void set_up_debug_hooks_domain_unlocked(PyMemAllocatorDomain domain); +static void set_up_debug_hooks_unlocked(void); +static void get_allocator_unlocked(PyMemAllocatorDomain, PyMemAllocatorEx *); +static void set_allocator_unlocked(PyMemAllocatorDomain, PyMemAllocatorEx *); + + +/***************************************/ +/* low-level allocator implementations */ +/***************************************/ + +/* the default raw allocator (wraps malloc) */ + +void * +_PyMem_RawMalloc(void *Py_UNUSED(ctx), size_t size) +{ + /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL + for malloc(0), which would be treated as an error. Some platforms would + return a pointer with no memory behind it, which would break pymalloc. + To solve these problems, allocate an extra byte. */ + if (size == 0) + size = 1; + return malloc(size); +} + +void * +_PyMem_RawCalloc(void *Py_UNUSED(ctx), size_t nelem, size_t elsize) +{ + /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL + for calloc(0, 0), which would be treated as an error. Some platforms + would return a pointer with no memory behind it, which would break + pymalloc. To solve these problems, allocate an extra byte. */ + if (nelem == 0 || elsize == 0) { + nelem = 1; + elsize = 1; + } + return calloc(nelem, elsize); +} + +void * +_PyMem_RawRealloc(void *Py_UNUSED(ctx), void *ptr, size_t size) +{ + if (size == 0) + size = 1; + return realloc(ptr, size); +} + +void +_PyMem_RawFree(void *Py_UNUSED(ctx), void *ptr) +{ + free(ptr); +} + +#define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree} +#define PYRAW_ALLOC MALLOC_ALLOC + +/* the default object allocator */ + +// The actual implementation is further down. + +#ifdef WITH_PYMALLOC +void* _PyObject_Malloc(void *ctx, size_t size); +void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize); +void _PyObject_Free(void *ctx, void *p); +void* _PyObject_Realloc(void *ctx, void *ptr, size_t size); +# define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free} +# define PYOBJ_ALLOC PYMALLOC_ALLOC +#else +# define PYOBJ_ALLOC MALLOC_ALLOC +#endif // WITH_PYMALLOC + +#define PYMEM_ALLOC PYOBJ_ALLOC + +/* the default debug allocators */ + +// The actual implementation is further down. + +void* _PyMem_DebugRawMalloc(void *ctx, size_t size); +void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize); +void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size); +void _PyMem_DebugRawFree(void *ctx, void *ptr); + +void* _PyMem_DebugMalloc(void *ctx, size_t size); +void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize); +void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size); +void _PyMem_DebugFree(void *ctx, void *p); + +#define PYDBGRAW_ALLOC \ + {&_PyRuntime.allocators.debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree} +#define PYDBGMEM_ALLOC \ + {&_PyRuntime.allocators.debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} +#define PYDBGOBJ_ALLOC \ + {&_PyRuntime.allocators.debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} + +/* the low-level virtual memory allocator */ + +#ifdef WITH_PYMALLOC +# ifdef MS_WINDOWS +# include <windows.h> +# elif defined(HAVE_MMAP) +# include <sys/mman.h> +# ifdef MAP_ANONYMOUS +# define ARENAS_USE_MMAP +# endif +# endif +#endif + +void * +_PyMem_ArenaAlloc(void *Py_UNUSED(ctx), size_t size) +{ +#ifdef MS_WINDOWS + return VirtualAlloc(NULL, size, + MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); +#elif defined(ARENAS_USE_MMAP) + void *ptr; + ptr = mmap(NULL, size, PROT_READ|PROT_WRITE, + MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); + if (ptr == MAP_FAILED) + return NULL; + assert(ptr != NULL); + return ptr; +#else + return malloc(size); +#endif +} + +void +_PyMem_ArenaFree(void *Py_UNUSED(ctx), void *ptr, +#if defined(ARENAS_USE_MMAP) + size_t size +#else + size_t Py_UNUSED(size) +#endif +) +{ +#ifdef MS_WINDOWS + VirtualFree(ptr, 0, MEM_RELEASE); +#elif defined(ARENAS_USE_MMAP) + munmap(ptr, size); +#else + free(ptr); +#endif +} + +/*******************************************/ +/* end low-level allocator implementations */ +/*******************************************/ + + +#if defined(__has_feature) /* Clang */ +# if __has_feature(address_sanitizer) /* is ASAN enabled? */ +# define _Py_NO_SANITIZE_ADDRESS \ + __attribute__((no_sanitize("address"))) +# endif +# if __has_feature(thread_sanitizer) /* is TSAN enabled? */ +# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread)) +# endif +# if __has_feature(memory_sanitizer) /* is MSAN enabled? */ +# define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory)) +# endif +#elif defined(__GNUC__) +# if defined(__SANITIZE_ADDRESS__) /* GCC 4.8+, is ASAN enabled? */ +# define _Py_NO_SANITIZE_ADDRESS \ + __attribute__((no_sanitize_address)) +# endif + // TSAN is supported since GCC 5.1, but __SANITIZE_THREAD__ macro + // is provided only since GCC 7. +# if __GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1) +# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread)) +# endif +#endif + +#ifndef _Py_NO_SANITIZE_ADDRESS +# define _Py_NO_SANITIZE_ADDRESS +#endif +#ifndef _Py_NO_SANITIZE_THREAD +# define _Py_NO_SANITIZE_THREAD +#endif +#ifndef _Py_NO_SANITIZE_MEMORY +# define _Py_NO_SANITIZE_MEMORY +#endif + + +#define ALLOCATORS_MUTEX (_PyRuntime.allocators.mutex) +#define _PyMem_Raw (_PyRuntime.allocators.standard.raw) +#define _PyMem (_PyRuntime.allocators.standard.mem) +#define _PyObject (_PyRuntime.allocators.standard.obj) +#define _PyMem_Debug (_PyRuntime.allocators.debug) +#define _PyObject_Arena (_PyRuntime.allocators.obj_arena) + + +/***************************/ +/* managing the allocators */ +/***************************/ + +static int +set_default_allocator_unlocked(PyMemAllocatorDomain domain, int debug, + PyMemAllocatorEx *old_alloc) +{ + if (old_alloc != NULL) { + get_allocator_unlocked(domain, old_alloc); + } + + + PyMemAllocatorEx new_alloc; + switch(domain) + { + case PYMEM_DOMAIN_RAW: + new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC; + break; + case PYMEM_DOMAIN_MEM: + new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC; + break; + case PYMEM_DOMAIN_OBJ: + new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC; + break; + default: + /* unknown domain */ + return -1; + } + set_allocator_unlocked(domain, &new_alloc); + if (debug) { + set_up_debug_hooks_domain_unlocked(domain); + } + return 0; +} + + +#ifdef Py_DEBUG +static const int pydebug = 1; +#else +static const int pydebug = 0; +#endif + +int +_PyMem_SetDefaultAllocator(PyMemAllocatorDomain domain, + PyMemAllocatorEx *old_alloc) +{ + if (ALLOCATORS_MUTEX == NULL) { + /* The runtime must be initializing. */ + return set_default_allocator_unlocked(domain, pydebug, old_alloc); + } + PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); + int res = set_default_allocator_unlocked(domain, pydebug, old_alloc); + PyThread_release_lock(ALLOCATORS_MUTEX); + return res; +} + + +int +_PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator) +{ + if (name == NULL || *name == '\0') { + /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line + nameions): use default memory allocators */ + *allocator = PYMEM_ALLOCATOR_DEFAULT; + } + else if (strcmp(name, "default") == 0) { + *allocator = PYMEM_ALLOCATOR_DEFAULT; + } + else if (strcmp(name, "debug") == 0) { + *allocator = PYMEM_ALLOCATOR_DEBUG; + } +#ifdef WITH_PYMALLOC + else if (strcmp(name, "pymalloc") == 0) { + *allocator = PYMEM_ALLOCATOR_PYMALLOC; + } + else if (strcmp(name, "pymalloc_debug") == 0) { + *allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG; + } +#endif + else if (strcmp(name, "malloc") == 0) { + *allocator = PYMEM_ALLOCATOR_MALLOC; + } + else if (strcmp(name, "malloc_debug") == 0) { + *allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG; + } + else { + /* unknown allocator */ + return -1; + } + return 0; +} + + +static int +set_up_allocators_unlocked(PyMemAllocatorName allocator) +{ + switch (allocator) { + case PYMEM_ALLOCATOR_NOT_SET: + /* do nothing */ + break; + + case PYMEM_ALLOCATOR_DEFAULT: + (void)set_default_allocator_unlocked(PYMEM_DOMAIN_RAW, pydebug, NULL); + (void)set_default_allocator_unlocked(PYMEM_DOMAIN_MEM, pydebug, NULL); + (void)set_default_allocator_unlocked(PYMEM_DOMAIN_OBJ, pydebug, NULL); + break; + + case PYMEM_ALLOCATOR_DEBUG: + (void)set_default_allocator_unlocked(PYMEM_DOMAIN_RAW, 1, NULL); + (void)set_default_allocator_unlocked(PYMEM_DOMAIN_MEM, 1, NULL); + (void)set_default_allocator_unlocked(PYMEM_DOMAIN_OBJ, 1, NULL); + break; + +#ifdef WITH_PYMALLOC + case PYMEM_ALLOCATOR_PYMALLOC: + case PYMEM_ALLOCATOR_PYMALLOC_DEBUG: + { + PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; + set_allocator_unlocked(PYMEM_DOMAIN_RAW, &malloc_alloc); + + PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; + set_allocator_unlocked(PYMEM_DOMAIN_MEM, &pymalloc); + set_allocator_unlocked(PYMEM_DOMAIN_OBJ, &pymalloc); + + if (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG) { + set_up_debug_hooks_unlocked(); + } + break; + } +#endif + + case PYMEM_ALLOCATOR_MALLOC: + case PYMEM_ALLOCATOR_MALLOC_DEBUG: + { + PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; + set_allocator_unlocked(PYMEM_DOMAIN_RAW, &malloc_alloc); + set_allocator_unlocked(PYMEM_DOMAIN_MEM, &malloc_alloc); + set_allocator_unlocked(PYMEM_DOMAIN_OBJ, &malloc_alloc); + + if (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG) { + set_up_debug_hooks_unlocked(); + } + break; + } + + default: + /* unknown allocator */ + return -1; + } + + return 0; +} + +int +_PyMem_SetupAllocators(PyMemAllocatorName allocator) +{ + PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); + int res = set_up_allocators_unlocked(allocator); + PyThread_release_lock(ALLOCATORS_MUTEX); + return res; +} + + +static int +pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b) +{ + return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0); +} + + +static const char* +get_current_allocator_name_unlocked(void) +{ + PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC; +#ifdef WITH_PYMALLOC + PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC; +#endif + + if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && + pymemallocator_eq(&_PyMem, &malloc_alloc) && + pymemallocator_eq(&_PyObject, &malloc_alloc)) + { + return "malloc"; + } +#ifdef WITH_PYMALLOC + if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) && + pymemallocator_eq(&_PyMem, &pymalloc) && + pymemallocator_eq(&_PyObject, &pymalloc)) + { + return "pymalloc"; + } +#endif + + PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC; + PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC; + PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC; + + if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) && + pymemallocator_eq(&_PyMem, &dbg_mem) && + pymemallocator_eq(&_PyObject, &dbg_obj)) + { + /* Debug hooks installed */ + if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && + pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) && + pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc)) + { + return "malloc_debug"; + } +#ifdef WITH_PYMALLOC + if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) && + pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) && + pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc)) + { + return "pymalloc_debug"; + } +#endif + } + return NULL; +} + +const char* +_PyMem_GetCurrentAllocatorName(void) +{ + PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); + const char *name = get_current_allocator_name_unlocked(); + PyThread_release_lock(ALLOCATORS_MUTEX); + return name; +} + + +#ifdef WITH_PYMALLOC +static int +_PyMem_DebugEnabled(void) +{ + return (_PyObject.malloc == _PyMem_DebugMalloc); +} + +static int +_PyMem_PymallocEnabled(void) +{ + if (_PyMem_DebugEnabled()) { + return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc); + } + else { + return (_PyObject.malloc == _PyObject_Malloc); + } +} +#endif + + +static void +set_up_debug_hooks_domain_unlocked(PyMemAllocatorDomain domain) +{ + PyMemAllocatorEx alloc; + + if (domain == PYMEM_DOMAIN_RAW) { + if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) { + return; + } + + get_allocator_unlocked(domain, &_PyMem_Debug.raw.alloc); + alloc.ctx = &_PyMem_Debug.raw; + alloc.malloc = _PyMem_DebugRawMalloc; + alloc.calloc = _PyMem_DebugRawCalloc; + alloc.realloc = _PyMem_DebugRawRealloc; + alloc.free = _PyMem_DebugRawFree; + set_allocator_unlocked(domain, &alloc); + } + else if (domain == PYMEM_DOMAIN_MEM) { + if (_PyMem.malloc == _PyMem_DebugMalloc) { + return; + } + + get_allocator_unlocked(domain, &_PyMem_Debug.mem.alloc); + alloc.ctx = &_PyMem_Debug.mem; + alloc.malloc = _PyMem_DebugMalloc; + alloc.calloc = _PyMem_DebugCalloc; + alloc.realloc = _PyMem_DebugRealloc; + alloc.free = _PyMem_DebugFree; + set_allocator_unlocked(domain, &alloc); + } + else if (domain == PYMEM_DOMAIN_OBJ) { + if (_PyObject.malloc == _PyMem_DebugMalloc) { + return; + } + + get_allocator_unlocked(domain, &_PyMem_Debug.obj.alloc); + alloc.ctx = &_PyMem_Debug.obj; + alloc.malloc = _PyMem_DebugMalloc; + alloc.calloc = _PyMem_DebugCalloc; + alloc.realloc = _PyMem_DebugRealloc; + alloc.free = _PyMem_DebugFree; + set_allocator_unlocked(domain, &alloc); + } +} + + +static void +set_up_debug_hooks_unlocked(void) +{ + set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_RAW); + set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_MEM); + set_up_debug_hooks_domain_unlocked(PYMEM_DOMAIN_OBJ); +} + +void +PyMem_SetupDebugHooks(void) +{ + if (ALLOCATORS_MUTEX == NULL) { + /* The runtime must not be completely initialized yet. */ + set_up_debug_hooks_unlocked(); + return; + } + PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); + set_up_debug_hooks_unlocked(); + PyThread_release_lock(ALLOCATORS_MUTEX); +} + +static void +get_allocator_unlocked(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) +{ + switch(domain) + { + case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break; + case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break; + case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break; + default: + /* unknown domain: set all attributes to NULL */ + allocator->ctx = NULL; + allocator->malloc = NULL; + allocator->calloc = NULL; + allocator->realloc = NULL; + allocator->free = NULL; + } +} + +static void +set_allocator_unlocked(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) +{ + switch(domain) + { + case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break; + case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break; + case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break; + /* ignore unknown domain */ + } +} + +void +PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) +{ + if (ALLOCATORS_MUTEX == NULL) { + /* The runtime must not be completely initialized yet. */ + get_allocator_unlocked(domain, allocator); + return; + } + PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); + get_allocator_unlocked(domain, allocator); + PyThread_release_lock(ALLOCATORS_MUTEX); +} + +void +PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator) +{ + if (ALLOCATORS_MUTEX == NULL) { + /* The runtime must not be completely initialized yet. */ + set_allocator_unlocked(domain, allocator); + return; + } + PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); + set_allocator_unlocked(domain, allocator); + PyThread_release_lock(ALLOCATORS_MUTEX); +} + +void +PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator) +{ + if (ALLOCATORS_MUTEX == NULL) { + /* The runtime must not be completely initialized yet. */ + *allocator = _PyObject_Arena; + return; + } + PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); + *allocator = _PyObject_Arena; + PyThread_release_lock(ALLOCATORS_MUTEX); +} + +void +PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator) +{ + if (ALLOCATORS_MUTEX == NULL) { + /* The runtime must not be completely initialized yet. */ + _PyObject_Arena = *allocator; + return; + } + PyThread_acquire_lock(ALLOCATORS_MUTEX, WAIT_LOCK); + _PyObject_Arena = *allocator; + PyThread_release_lock(ALLOCATORS_MUTEX); +} + + +/* Note that there is a possible, but very unlikely, race in any place + * below where we call one of the allocator functions. We access two + * fields in each case: "malloc", etc. and "ctx". + * + * It is unlikely that the allocator will be changed while one of those + * calls is happening, much less in that very narrow window. + * Furthermore, the likelihood of a race is drastically reduced by the + * fact that the allocator may not be changed after runtime init + * (except with a wrapper). + * + * With the above in mind, we currently don't worry about locking + * around these uses of the runtime-global allocators state. */ + + +/*************************/ +/* the "arena" allocator */ +/*************************/ + +void * +_PyObject_VirtualAlloc(size_t size) +{ + return _PyObject_Arena.alloc(_PyObject_Arena.ctx, size); +} + +void +_PyObject_VirtualFree(void *obj, size_t size) +{ + _PyObject_Arena.free(_PyObject_Arena.ctx, obj, size); +} + + +/***********************/ +/* the "raw" allocator */ +/***********************/ + +void * +PyMem_RawMalloc(size_t size) +{ + /* + * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes. + * Most python internals blindly use a signed Py_ssize_t to track + * things without checking for overflows or negatives. + * As size_t is unsigned, checking for size < 0 is not required. + */ + if (size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size); +} + +void * +PyMem_RawCalloc(size_t nelem, size_t elsize) +{ + /* see PyMem_RawMalloc() */ + if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) + return NULL; + return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize); +} + +void* +PyMem_RawRealloc(void *ptr, size_t new_size) +{ + /* see PyMem_RawMalloc() */ + if (new_size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size); +} + +void PyMem_RawFree(void *ptr) +{ + _PyMem_Raw.free(_PyMem_Raw.ctx, ptr); +} + + +/***********************/ +/* the "mem" allocator */ +/***********************/ + +void * +PyMem_Malloc(size_t size) +{ + /* see PyMem_RawMalloc() */ + if (size > (size_t)PY_SSIZE_T_MAX) + return NULL; + OBJECT_STAT_INC_COND(allocations512, size < 512); + OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094); + OBJECT_STAT_INC_COND(allocations_big, size >= 4094); + OBJECT_STAT_INC(allocations); + return _PyMem.malloc(_PyMem.ctx, size); +} + +void * +PyMem_Calloc(size_t nelem, size_t elsize) +{ + /* see PyMem_RawMalloc() */ + if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) + return NULL; + OBJECT_STAT_INC_COND(allocations512, elsize < 512); + OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094); + OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094); + OBJECT_STAT_INC(allocations); + return _PyMem.calloc(_PyMem.ctx, nelem, elsize); +} + +void * +PyMem_Realloc(void *ptr, size_t new_size) +{ + /* see PyMem_RawMalloc() */ + if (new_size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyMem.realloc(_PyMem.ctx, ptr, new_size); +} + +void +PyMem_Free(void *ptr) +{ + OBJECT_STAT_INC(frees); + _PyMem.free(_PyMem.ctx, ptr); +} + + +/***************************/ +/* pymem utility functions */ +/***************************/ + +wchar_t* +_PyMem_RawWcsdup(const wchar_t *str) +{ + assert(str != NULL); + + size_t len = wcslen(str); + if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) { + return NULL; + } + + size_t size = (len + 1) * sizeof(wchar_t); + wchar_t *str2 = PyMem_RawMalloc(size); + if (str2 == NULL) { + return NULL; + } + + memcpy(str2, str, size); + return str2; +} + +char * +_PyMem_RawStrdup(const char *str) +{ + assert(str != NULL); + size_t size = strlen(str) + 1; + char *copy = PyMem_RawMalloc(size); + if (copy == NULL) { + return NULL; + } + memcpy(copy, str, size); + return copy; +} + +char * +_PyMem_Strdup(const char *str) +{ + assert(str != NULL); + size_t size = strlen(str) + 1; + char *copy = PyMem_Malloc(size); + if (copy == NULL) { + return NULL; + } + memcpy(copy, str, size); + return copy; +} + + +/**************************/ +/* the "object" allocator */ +/**************************/ + +void * +PyObject_Malloc(size_t size) +{ + /* see PyMem_RawMalloc() */ + if (size > (size_t)PY_SSIZE_T_MAX) + return NULL; + OBJECT_STAT_INC_COND(allocations512, size < 512); + OBJECT_STAT_INC_COND(allocations4k, size >= 512 && size < 4094); + OBJECT_STAT_INC_COND(allocations_big, size >= 4094); + OBJECT_STAT_INC(allocations); + return _PyObject.malloc(_PyObject.ctx, size); +} + +void * +PyObject_Calloc(size_t nelem, size_t elsize) +{ + /* see PyMem_RawMalloc() */ + if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize) + return NULL; + OBJECT_STAT_INC_COND(allocations512, elsize < 512); + OBJECT_STAT_INC_COND(allocations4k, elsize >= 512 && elsize < 4094); + OBJECT_STAT_INC_COND(allocations_big, elsize >= 4094); + OBJECT_STAT_INC(allocations); + return _PyObject.calloc(_PyObject.ctx, nelem, elsize); +} + +void * +PyObject_Realloc(void *ptr, size_t new_size) +{ + /* see PyMem_RawMalloc() */ + if (new_size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyObject.realloc(_PyObject.ctx, ptr, new_size); +} + +void +PyObject_Free(void *ptr) +{ + OBJECT_STAT_INC(frees); + _PyObject.free(_PyObject.ctx, ptr); +} + + +/* If we're using GCC, use __builtin_expect() to reduce overhead of + the valgrind checks */ +#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__) +# define UNLIKELY(value) __builtin_expect((value), 0) +# define LIKELY(value) __builtin_expect((value), 1) +#else +# define UNLIKELY(value) (value) +# define LIKELY(value) (value) +#endif + +#ifdef WITH_PYMALLOC + +#ifdef WITH_VALGRIND +#include <valgrind/valgrind.h> + +/* -1 indicates that we haven't checked that we're running on valgrind yet. */ +static int running_on_valgrind = -1; +#endif + +typedef struct _obmalloc_state OMState; + +static inline int +has_own_state(PyInterpreterState *interp) +{ + return (_Py_IsMainInterpreter(interp) || + !(interp->feature_flags & Py_RTFLAGS_USE_MAIN_OBMALLOC) || + _Py_IsMainInterpreterFinalizing(interp)); +} + +static inline OMState * +get_state(void) +{ + PyInterpreterState *interp = _PyInterpreterState_GET(); + if (!has_own_state(interp)) { + interp = _PyInterpreterState_Main(); + } + return &interp->obmalloc; +} + +// These macros all rely on a local "state" variable. +#define usedpools (state->pools.used) +#define allarenas (state->mgmt.arenas) +#define maxarenas (state->mgmt.maxarenas) +#define unused_arena_objects (state->mgmt.unused_arena_objects) +#define usable_arenas (state->mgmt.usable_arenas) +#define nfp2lasta (state->mgmt.nfp2lasta) +#define narenas_currently_allocated (state->mgmt.narenas_currently_allocated) +#define ntimes_arena_allocated (state->mgmt.ntimes_arena_allocated) +#define narenas_highwater (state->mgmt.narenas_highwater) +#define raw_allocated_blocks (state->mgmt.raw_allocated_blocks) + +Py_ssize_t +_PyInterpreterState_GetAllocatedBlocks(PyInterpreterState *interp) +{ +#ifdef Py_DEBUG + assert(has_own_state(interp)); +#else + if (!has_own_state(interp)) { + _Py_FatalErrorFunc(__func__, + "the interpreter doesn't have its own allocator"); + } +#endif + OMState *state = &interp->obmalloc; + + Py_ssize_t n = raw_allocated_blocks; + /* add up allocated blocks for used pools */ + for (uint i = 0; i < maxarenas; ++i) { + /* Skip arenas which are not allocated. */ + if (allarenas[i].address == 0) { + continue; + } + + uintptr_t base = (uintptr_t)_Py_ALIGN_UP(allarenas[i].address, POOL_SIZE); + + /* visit every pool in the arena */ + assert(base <= (uintptr_t) allarenas[i].pool_address); + for (; base < (uintptr_t) allarenas[i].pool_address; base += POOL_SIZE) { + poolp p = (poolp)base; + n += p->ref.count; + } + } + return n; +} + +void +_PyInterpreterState_FinalizeAllocatedBlocks(PyInterpreterState *interp) +{ + if (has_own_state(interp)) { + Py_ssize_t leaked = _PyInterpreterState_GetAllocatedBlocks(interp); + assert(has_own_state(interp) || leaked == 0); + interp->runtime->obmalloc.interpreter_leaks += leaked; + } +} + +static Py_ssize_t get_num_global_allocated_blocks(_PyRuntimeState *); + +/* We preserve the number of blockss leaked during runtime finalization, + so they can be reported if the runtime is initialized again. */ +// XXX We don't lose any information by dropping this, +// so we should consider doing so. +static Py_ssize_t last_final_leaks = 0; + +void +_Py_FinalizeAllocatedBlocks(_PyRuntimeState *runtime) +{ + last_final_leaks = get_num_global_allocated_blocks(runtime); + runtime->obmalloc.interpreter_leaks = 0; +} + +static Py_ssize_t +get_num_global_allocated_blocks(_PyRuntimeState *runtime) +{ + Py_ssize_t total = 0; + if (_PyRuntimeState_GetFinalizing(runtime) != NULL) { + PyInterpreterState *interp = _PyInterpreterState_Main(); + if (interp == NULL) { + /* We are at the very end of runtime finalization. + We can't rely on finalizing->interp since that thread + state is probably already freed, so we don't worry + about it. */ + assert(PyInterpreterState_Head() == NULL); + } + else { + assert(interp != NULL); + /* It is probably the last interpreter but not necessarily. */ + assert(PyInterpreterState_Next(interp) == NULL); + total += _PyInterpreterState_GetAllocatedBlocks(interp); + } + } + else { + HEAD_LOCK(runtime); + PyInterpreterState *interp = PyInterpreterState_Head(); + assert(interp != NULL); +#ifdef Py_DEBUG + int got_main = 0; +#endif + for (; interp != NULL; interp = PyInterpreterState_Next(interp)) { +#ifdef Py_DEBUG + if (_Py_IsMainInterpreter(interp)) { + assert(!got_main); + got_main = 1; + assert(has_own_state(interp)); + } +#endif + if (has_own_state(interp)) { + total += _PyInterpreterState_GetAllocatedBlocks(interp); + } + } + HEAD_UNLOCK(runtime); +#ifdef Py_DEBUG + assert(got_main); +#endif + } + total += runtime->obmalloc.interpreter_leaks; + total += last_final_leaks; + return total; +} + +Py_ssize_t +_Py_GetGlobalAllocatedBlocks(void) +{ + return get_num_global_allocated_blocks(&_PyRuntime); +} + +#if WITH_PYMALLOC_RADIX_TREE +/*==========================================================================*/ +/* radix tree for tracking arena usage. */ + +#define arena_map_root (state->usage.arena_map_root) +#ifdef USE_INTERIOR_NODES +#define arena_map_mid_count (state->usage.arena_map_mid_count) +#define arena_map_bot_count (state->usage.arena_map_bot_count) +#endif + +/* Return a pointer to a bottom tree node, return NULL if it doesn't exist or + * it cannot be created */ +static inline Py_ALWAYS_INLINE arena_map_bot_t * +arena_map_get(OMState *state, pymem_block *p, int create) +{ +#ifdef USE_INTERIOR_NODES + /* sanity check that IGNORE_BITS is correct */ + assert(HIGH_BITS(p) == HIGH_BITS(&arena_map_root)); + int i1 = MAP_TOP_INDEX(p); + if (arena_map_root.ptrs[i1] == NULL) { + if (!create) { + return NULL; + } + arena_map_mid_t *n = PyMem_RawCalloc(1, sizeof(arena_map_mid_t)); + if (n == NULL) { + return NULL; + } + arena_map_root.ptrs[i1] = n; + arena_map_mid_count++; + } + int i2 = MAP_MID_INDEX(p); + if (arena_map_root.ptrs[i1]->ptrs[i2] == NULL) { + if (!create) { + return NULL; + } + arena_map_bot_t *n = PyMem_RawCalloc(1, sizeof(arena_map_bot_t)); + if (n == NULL) { + return NULL; + } + arena_map_root.ptrs[i1]->ptrs[i2] = n; + arena_map_bot_count++; + } + return arena_map_root.ptrs[i1]->ptrs[i2]; +#else + return &arena_map_root; +#endif +} + + +/* The radix tree only tracks arenas. So, for 16 MiB arenas, we throw + * away 24 bits of the address. That reduces the space requirement of + * the tree compared to similar radix tree page-map schemes. In + * exchange for slashing the space requirement, it needs more + * computation to check an address. + * + * Tracking coverage is done by "ideal" arena address. It is easier to + * explain in decimal so let's say that the arena size is 100 bytes. + * Then, ideal addresses are 100, 200, 300, etc. For checking if a + * pointer address is inside an actual arena, we have to check two ideal + * arena addresses. E.g. if pointer is 357, we need to check 200 and + * 300. In the rare case that an arena is aligned in the ideal way + * (e.g. base address of arena is 200) then we only have to check one + * ideal address. + * + * The tree nodes for 200 and 300 both store the address of arena. + * There are two cases: the arena starts at a lower ideal arena and + * extends to this one, or the arena starts in this arena and extends to + * the next ideal arena. The tail_lo and tail_hi members correspond to + * these two cases. + */ + + +/* mark or unmark addresses covered by arena */ +static int +arena_map_mark_used(OMState *state, uintptr_t arena_base, int is_used) +{ + /* sanity check that IGNORE_BITS is correct */ + assert(HIGH_BITS(arena_base) == HIGH_BITS(&arena_map_root)); + arena_map_bot_t *n_hi = arena_map_get( + state, (pymem_block *)arena_base, is_used); + if (n_hi == NULL) { + assert(is_used); /* otherwise node should already exist */ + return 0; /* failed to allocate space for node */ + } + int i3 = MAP_BOT_INDEX((pymem_block *)arena_base); + int32_t tail = (int32_t)(arena_base & ARENA_SIZE_MASK); + if (tail == 0) { + /* is ideal arena address */ + n_hi->arenas[i3].tail_hi = is_used ? -1 : 0; + } + else { + /* arena_base address is not ideal (aligned to arena size) and + * so it potentially covers two MAP_BOT nodes. Get the MAP_BOT node + * for the next arena. Note that it might be in different MAP_TOP + * and MAP_MID nodes as well so we need to call arena_map_get() + * again (do the full tree traversal). + */ + n_hi->arenas[i3].tail_hi = is_used ? tail : 0; + uintptr_t arena_base_next = arena_base + ARENA_SIZE; + /* If arena_base is a legit arena address, so is arena_base_next - 1 + * (last address in arena). If arena_base_next overflows then it + * must overflow to 0. However, that would mean arena_base was + * "ideal" and we should not be in this case. */ + assert(arena_base < arena_base_next); + arena_map_bot_t *n_lo = arena_map_get( + state, (pymem_block *)arena_base_next, is_used); + if (n_lo == NULL) { + assert(is_used); /* otherwise should already exist */ + n_hi->arenas[i3].tail_hi = 0; + return 0; /* failed to allocate space for node */ + } + int i3_next = MAP_BOT_INDEX(arena_base_next); + n_lo->arenas[i3_next].tail_lo = is_used ? tail : 0; + } + return 1; +} + +/* Return true if 'p' is a pointer inside an obmalloc arena. + * _PyObject_Free() calls this so it needs to be very fast. */ +static int +arena_map_is_used(OMState *state, pymem_block *p) +{ + arena_map_bot_t *n = arena_map_get(state, p, 0); + if (n == NULL) { + return 0; + } + int i3 = MAP_BOT_INDEX(p); + /* ARENA_BITS must be < 32 so that the tail is a non-negative int32_t. */ + int32_t hi = n->arenas[i3].tail_hi; + int32_t lo = n->arenas[i3].tail_lo; + int32_t tail = (int32_t)(AS_UINT(p) & ARENA_SIZE_MASK); + return (tail < lo) || (tail >= hi && hi != 0); +} + +/* end of radix tree logic */ +/*==========================================================================*/ +#endif /* WITH_PYMALLOC_RADIX_TREE */ + + +/* Allocate a new arena. If we run out of memory, return NULL. Else + * allocate a new arena, and return the address of an arena_object + * describing the new arena. It's expected that the caller will set + * `usable_arenas` to the return value. + */ +static struct arena_object* +new_arena(OMState *state) +{ + struct arena_object* arenaobj; + uint excess; /* number of bytes above pool alignment */ + void *address; + + int debug_stats = _PyRuntime.obmalloc.dump_debug_stats; + if (debug_stats == -1) { + const char *opt = Py_GETENV("PYTHONMALLOCSTATS"); + debug_stats = (opt != NULL && *opt != '\0'); + _PyRuntime.obmalloc.dump_debug_stats = debug_stats; + } + if (debug_stats) { + _PyObject_DebugMallocStats(stderr); + } + + if (unused_arena_objects == NULL) { + uint i; + uint numarenas; + size_t nbytes; + + /* Double the number of arena objects on each allocation. + * Note that it's possible for `numarenas` to overflow. + */ + numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS; + if (numarenas <= maxarenas) + return NULL; /* overflow */ +#if SIZEOF_SIZE_T <= SIZEOF_INT + if (numarenas > SIZE_MAX / sizeof(*allarenas)) + return NULL; /* overflow */ +#endif + nbytes = numarenas * sizeof(*allarenas); + arenaobj = (struct arena_object *)PyMem_RawRealloc(allarenas, nbytes); + if (arenaobj == NULL) + return NULL; + allarenas = arenaobj; + + /* We might need to fix pointers that were copied. However, + * new_arena only gets called when all the pages in the + * previous arenas are full. Thus, there are *no* pointers + * into the old array. Thus, we don't have to worry about + * invalid pointers. Just to be sure, some asserts: + */ + assert(usable_arenas == NULL); + assert(unused_arena_objects == NULL); + + /* Put the new arenas on the unused_arena_objects list. */ + for (i = maxarenas; i < numarenas; ++i) { + allarenas[i].address = 0; /* mark as unassociated */ + allarenas[i].nextarena = i < numarenas - 1 ? + &allarenas[i+1] : NULL; + } + + /* Update globals. */ + unused_arena_objects = &allarenas[maxarenas]; + maxarenas = numarenas; + } + + /* Take the next available arena object off the head of the list. */ + assert(unused_arena_objects != NULL); + arenaobj = unused_arena_objects; + unused_arena_objects = arenaobj->nextarena; + assert(arenaobj->address == 0); + address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE); +#if WITH_PYMALLOC_RADIX_TREE + if (address != NULL) { + if (!arena_map_mark_used(state, (uintptr_t)address, 1)) { + /* marking arena in radix tree failed, abort */ + _PyObject_Arena.free(_PyObject_Arena.ctx, address, ARENA_SIZE); + address = NULL; + } + } +#endif + if (address == NULL) { + /* The allocation failed: return NULL after putting the + * arenaobj back. + */ + arenaobj->nextarena = unused_arena_objects; + unused_arena_objects = arenaobj; + return NULL; + } + arenaobj->address = (uintptr_t)address; + + ++narenas_currently_allocated; + ++ntimes_arena_allocated; + if (narenas_currently_allocated > narenas_highwater) + narenas_highwater = narenas_currently_allocated; + arenaobj->freepools = NULL; + /* pool_address <- first pool-aligned address in the arena + nfreepools <- number of whole pools that fit after alignment */ + arenaobj->pool_address = (pymem_block*)arenaobj->address; + arenaobj->nfreepools = MAX_POOLS_IN_ARENA; + excess = (uint)(arenaobj->address & POOL_SIZE_MASK); + if (excess != 0) { + --arenaobj->nfreepools; + arenaobj->pool_address += POOL_SIZE - excess; + } + arenaobj->ntotalpools = arenaobj->nfreepools; + + return arenaobj; +} + + + +#if WITH_PYMALLOC_RADIX_TREE +/* Return true if and only if P is an address that was allocated by + pymalloc. When the radix tree is used, 'poolp' is unused. + */ +static bool +address_in_range(OMState *state, void *p, poolp Py_UNUSED(pool)) +{ + return arena_map_is_used(state, p); +} +#else +/* +address_in_range(P, POOL) + +Return true if and only if P is an address that was allocated by pymalloc. +POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P) +(the caller is asked to compute this because the macro expands POOL more than +once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a +variable and pass the latter to the macro; because address_in_range is +called on every alloc/realloc/free, micro-efficiency is important here). + +Tricky: Let B be the arena base address associated with the pool, B = +arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if + + B <= P < B + ARENA_SIZE + +Subtracting B throughout, this is true iff + + 0 <= P-B < ARENA_SIZE + +By using unsigned arithmetic, the "0 <=" half of the test can be skipped. + +Obscure: A PyMem "free memory" function can call the pymalloc free or realloc +before the first arena has been allocated. `arenas` is still NULL in that +case. We're relying on that maxarenas is also 0 in that case, so that +(POOL)->arenaindex < maxarenas must be false, saving us from trying to index +into a NULL arenas. + +Details: given P and POOL, the arena_object corresponding to P is AO = +arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild +stores, etc), POOL is the correct address of P's pool, AO.address is the +correct base address of the pool's arena, and P must be within ARENA_SIZE of +AO.address. In addition, AO.address is not 0 (no arena can start at address 0 +(NULL)). Therefore address_in_range correctly reports that obmalloc +controls P. + +Now suppose obmalloc does not control P (e.g., P was obtained via a direct +call to the system malloc() or realloc()). (POOL)->arenaindex may be anything +in this case -- it may even be uninitialized trash. If the trash arenaindex +is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't +control P. + +Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an +allocated arena, obmalloc controls all the memory in slice AO.address : +AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc, +so P doesn't lie in that slice, so the macro correctly reports that P is not +controlled by obmalloc. + +Finally, if P is not controlled by obmalloc and AO corresponds to an unused +arena_object (one not currently associated with an allocated arena), +AO.address is 0, and the second test in the macro reduces to: + + P < ARENA_SIZE + +If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes +that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part +of the test still passes, and the third clause (AO.address != 0) is necessary +to get the correct result: AO.address is 0 in this case, so the macro +correctly reports that P is not controlled by obmalloc (despite that P lies in +slice AO.address : AO.address + ARENA_SIZE). + +Note: The third (AO.address != 0) clause was added in Python 2.5. Before +2.5, arenas were never free()'ed, and an arenaindex < maxarena always +corresponded to a currently-allocated arena, so the "P is not controlled by +obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case +was impossible. + +Note that the logic is excruciating, and reading up possibly uninitialized +memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex) +creates problems for some memory debuggers. The overwhelming advantage is +that this test determines whether an arbitrary address is controlled by +obmalloc in a small constant time, independent of the number of arenas +obmalloc controls. Since this test is needed at every entry point, it's +extremely desirable that it be this fast. +*/ + +static bool _Py_NO_SANITIZE_ADDRESS + _Py_NO_SANITIZE_THREAD + _Py_NO_SANITIZE_MEMORY +address_in_range(OMState *state, void *p, poolp pool) +{ + // Since address_in_range may be reading from memory which was not allocated + // by Python, it is important that pool->arenaindex is read only once, as + // another thread may be concurrently modifying the value without holding + // the GIL. The following dance forces the compiler to read pool->arenaindex + // only once. + uint arenaindex = *((volatile uint *)&pool->arenaindex); + return arenaindex < maxarenas && + (uintptr_t)p - allarenas[arenaindex].address < ARENA_SIZE && + allarenas[arenaindex].address != 0; +} + +#endif /* !WITH_PYMALLOC_RADIX_TREE */ + +/*==========================================================================*/ + +// Called when freelist is exhausted. Extend the freelist if there is +// space for a block. Otherwise, remove this pool from usedpools. +static void +pymalloc_pool_extend(poolp pool, uint size) +{ + if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) { + /* There is room for another block. */ + pool->freeblock = (pymem_block*)pool + pool->nextoffset; + pool->nextoffset += INDEX2SIZE(size); + *(pymem_block **)(pool->freeblock) = NULL; + return; + } + + /* Pool is full, unlink from used pools. */ + poolp next; + next = pool->nextpool; + pool = pool->prevpool; + next->prevpool = pool; + pool->nextpool = next; +} + +/* called when pymalloc_alloc can not allocate a block from usedpool. + * This function takes new pool and allocate a block from it. + */ +static void* +allocate_from_new_pool(OMState *state, uint size) +{ + /* There isn't a pool of the right size class immediately + * available: use a free pool. + */ + if (UNLIKELY(usable_arenas == NULL)) { + /* No arena has a free pool: allocate a new arena. */ +#ifdef WITH_MEMORY_LIMITS + if (narenas_currently_allocated >= MAX_ARENAS) { + return NULL; + } +#endif + usable_arenas = new_arena(state); + if (usable_arenas == NULL) { + return NULL; + } + usable_arenas->nextarena = usable_arenas->prevarena = NULL; + assert(nfp2lasta[usable_arenas->nfreepools] == NULL); + nfp2lasta[usable_arenas->nfreepools] = usable_arenas; + } + assert(usable_arenas->address != 0); + + /* This arena already had the smallest nfreepools value, so decreasing + * nfreepools doesn't change that, and we don't need to rearrange the + * usable_arenas list. However, if the arena becomes wholly allocated, + * we need to remove its arena_object from usable_arenas. + */ + assert(usable_arenas->nfreepools > 0); + if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) { + /* It's the last of this size, so there won't be any. */ + nfp2lasta[usable_arenas->nfreepools] = NULL; + } + /* If any free pools will remain, it will be the new smallest. */ + if (usable_arenas->nfreepools > 1) { + assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL); + nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas; + } + + /* Try to get a cached free pool. */ + poolp pool = usable_arenas->freepools; + if (LIKELY(pool != NULL)) { + /* Unlink from cached pools. */ + usable_arenas->freepools = pool->nextpool; + usable_arenas->nfreepools--; + if (UNLIKELY(usable_arenas->nfreepools == 0)) { + /* Wholly allocated: remove. */ + assert(usable_arenas->freepools == NULL); + assert(usable_arenas->nextarena == NULL || + usable_arenas->nextarena->prevarena == + usable_arenas); + usable_arenas = usable_arenas->nextarena; + if (usable_arenas != NULL) { + usable_arenas->prevarena = NULL; + assert(usable_arenas->address != 0); + } + } + else { + /* nfreepools > 0: it must be that freepools + * isn't NULL, or that we haven't yet carved + * off all the arena's pools for the first + * time. + */ + assert(usable_arenas->freepools != NULL || + usable_arenas->pool_address <= + (pymem_block*)usable_arenas->address + + ARENA_SIZE - POOL_SIZE); + } + } + else { + /* Carve off a new pool. */ + assert(usable_arenas->nfreepools > 0); + assert(usable_arenas->freepools == NULL); + pool = (poolp)usable_arenas->pool_address; + assert((pymem_block*)pool <= (pymem_block*)usable_arenas->address + + ARENA_SIZE - POOL_SIZE); + pool->arenaindex = (uint)(usable_arenas - allarenas); + assert(&allarenas[pool->arenaindex] == usable_arenas); + pool->szidx = DUMMY_SIZE_IDX; + usable_arenas->pool_address += POOL_SIZE; + --usable_arenas->nfreepools; + + if (usable_arenas->nfreepools == 0) { + assert(usable_arenas->nextarena == NULL || + usable_arenas->nextarena->prevarena == + usable_arenas); + /* Unlink the arena: it is completely allocated. */ + usable_arenas = usable_arenas->nextarena; + if (usable_arenas != NULL) { + usable_arenas->prevarena = NULL; + assert(usable_arenas->address != 0); + } + } + } + + /* Frontlink to used pools. */ + pymem_block *bp; + poolp next = usedpools[size + size]; /* == prev */ + pool->nextpool = next; + pool->prevpool = next; + next->nextpool = pool; + next->prevpool = pool; + pool->ref.count = 1; + if (pool->szidx == size) { + /* Luckily, this pool last contained blocks + * of the same size class, so its header + * and free list are already initialized. + */ + bp = pool->freeblock; + assert(bp != NULL); + pool->freeblock = *(pymem_block **)bp; + return bp; + } + /* + * Initialize the pool header, set up the free list to + * contain just the second block, and return the first + * block. + */ + pool->szidx = size; + size = INDEX2SIZE(size); + bp = (pymem_block *)pool + POOL_OVERHEAD; + pool->nextoffset = POOL_OVERHEAD + (size << 1); + pool->maxnextoffset = POOL_SIZE - size; + pool->freeblock = bp + size; + *(pymem_block **)(pool->freeblock) = NULL; + return bp; +} + +/* pymalloc allocator + + Return a pointer to newly allocated memory if pymalloc allocated memory. + + Return NULL if pymalloc failed to allocate the memory block: on bigger + requests, on error in the code below (as a last chance to serve the request) + or when the max memory limit has been reached. +*/ +static inline void* +pymalloc_alloc(OMState *state, void *Py_UNUSED(ctx), size_t nbytes) +{ +#ifdef WITH_VALGRIND + if (UNLIKELY(running_on_valgrind == -1)) { + running_on_valgrind = RUNNING_ON_VALGRIND; + } + if (UNLIKELY(running_on_valgrind)) { + return NULL; + } +#endif + + if (UNLIKELY(nbytes == 0)) { + return NULL; + } + if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) { + return NULL; + } + + uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT; + poolp pool = usedpools[size + size]; + pymem_block *bp; + + if (LIKELY(pool != pool->nextpool)) { + /* + * There is a used pool for this size class. + * Pick up the head block of its free list. + */ + ++pool->ref.count; + bp = pool->freeblock; + assert(bp != NULL); + + if (UNLIKELY((pool->freeblock = *(pymem_block **)bp) == NULL)) { + // Reached the end of the free list, try to extend it. + pymalloc_pool_extend(pool, size); + } + } + else { + /* There isn't a pool of the right size class immediately + * available: use a free pool. + */ + bp = allocate_from_new_pool(state, size); + } + + return (void *)bp; +} + + +void * +_PyObject_Malloc(void *ctx, size_t nbytes) +{ + OMState *state = get_state(); + void* ptr = pymalloc_alloc(state, ctx, nbytes); + if (LIKELY(ptr != NULL)) { + return ptr; + } + + ptr = PyMem_RawMalloc(nbytes); + if (ptr != NULL) { + raw_allocated_blocks++; + } + return ptr; +} + + +void * +_PyObject_Calloc(void *ctx, size_t nelem, size_t elsize) +{ + assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); + size_t nbytes = nelem * elsize; + + OMState *state = get_state(); + void* ptr = pymalloc_alloc(state, ctx, nbytes); + if (LIKELY(ptr != NULL)) { + memset(ptr, 0, nbytes); + return ptr; + } + + ptr = PyMem_RawCalloc(nelem, elsize); + if (ptr != NULL) { + raw_allocated_blocks++; + } + return ptr; +} + + +static void +insert_to_usedpool(OMState *state, poolp pool) +{ + assert(pool->ref.count > 0); /* else the pool is empty */ + + uint size = pool->szidx; + poolp next = usedpools[size + size]; + poolp prev = next->prevpool; + + /* insert pool before next: prev <-> pool <-> next */ + pool->nextpool = next; + pool->prevpool = prev; + next->prevpool = pool; + prev->nextpool = pool; +} + +static void +insert_to_freepool(OMState *state, poolp pool) +{ + poolp next = pool->nextpool; + poolp prev = pool->prevpool; + next->prevpool = prev; + prev->nextpool = next; + + /* Link the pool to freepools. This is a singly-linked + * list, and pool->prevpool isn't used there. + */ + struct arena_object *ao = &allarenas[pool->arenaindex]; + pool->nextpool = ao->freepools; + ao->freepools = pool; + uint nf = ao->nfreepools; + /* If this is the rightmost arena with this number of free pools, + * nfp2lasta[nf] needs to change. Caution: if nf is 0, there + * are no arenas in usable_arenas with that value. + */ + struct arena_object* lastnf = nfp2lasta[nf]; + assert((nf == 0 && lastnf == NULL) || + (nf > 0 && + lastnf != NULL && + lastnf->nfreepools == nf && + (lastnf->nextarena == NULL || + nf < lastnf->nextarena->nfreepools))); + if (lastnf == ao) { /* it is the rightmost */ + struct arena_object* p = ao->prevarena; + nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL; + } + ao->nfreepools = ++nf; + + /* All the rest is arena management. We just freed + * a pool, and there are 4 cases for arena mgmt: + * 1. If all the pools are free, return the arena to + * the system free(). Except if this is the last + * arena in the list, keep it to avoid thrashing: + * keeping one wholly free arena in the list avoids + * pathological cases where a simple loop would + * otherwise provoke needing to allocate and free an + * arena on every iteration. See bpo-37257. + * 2. If this is the only free pool in the arena, + * add the arena back to the `usable_arenas` list. + * 3. If the "next" arena has a smaller count of free + * pools, we have to "slide this arena right" to + * restore that usable_arenas is sorted in order of + * nfreepools. + * 4. Else there's nothing more to do. + */ + if (nf == ao->ntotalpools && ao->nextarena != NULL) { + /* Case 1. First unlink ao from usable_arenas. + */ + assert(ao->prevarena == NULL || + ao->prevarena->address != 0); + assert(ao ->nextarena == NULL || + ao->nextarena->address != 0); + + /* Fix the pointer in the prevarena, or the + * usable_arenas pointer. + */ + if (ao->prevarena == NULL) { + usable_arenas = ao->nextarena; + assert(usable_arenas == NULL || + usable_arenas->address != 0); + } + else { + assert(ao->prevarena->nextarena == ao); + ao->prevarena->nextarena = + ao->nextarena; + } + /* Fix the pointer in the nextarena. */ + if (ao->nextarena != NULL) { + assert(ao->nextarena->prevarena == ao); + ao->nextarena->prevarena = + ao->prevarena; + } + /* Record that this arena_object slot is + * available to be reused. + */ + ao->nextarena = unused_arena_objects; + unused_arena_objects = ao; + +#if WITH_PYMALLOC_RADIX_TREE + /* mark arena region as not under control of obmalloc */ + arena_map_mark_used(state, ao->address, 0); +#endif + + /* Free the entire arena. */ + _PyObject_Arena.free(_PyObject_Arena.ctx, + (void *)ao->address, ARENA_SIZE); + ao->address = 0; /* mark unassociated */ + --narenas_currently_allocated; + + return; + } + + if (nf == 1) { + /* Case 2. Put ao at the head of + * usable_arenas. Note that because + * ao->nfreepools was 0 before, ao isn't + * currently on the usable_arenas list. + */ + ao->nextarena = usable_arenas; + ao->prevarena = NULL; + if (usable_arenas) + usable_arenas->prevarena = ao; + usable_arenas = ao; + assert(usable_arenas->address != 0); + if (nfp2lasta[1] == NULL) { + nfp2lasta[1] = ao; + } + + return; + } + + /* If this arena is now out of order, we need to keep + * the list sorted. The list is kept sorted so that + * the "most full" arenas are used first, which allows + * the nearly empty arenas to be completely freed. In + * a few un-scientific tests, it seems like this + * approach allowed a lot more memory to be freed. + */ + /* If this is the only arena with nf, record that. */ + if (nfp2lasta[nf] == NULL) { + nfp2lasta[nf] = ao; + } /* else the rightmost with nf doesn't change */ + /* If this was the rightmost of the old size, it remains in place. */ + if (ao == lastnf) { + /* Case 4. Nothing to do. */ + return; + } + /* If ao were the only arena in the list, the last block would have + * gotten us out. + */ + assert(ao->nextarena != NULL); + + /* Case 3: We have to move the arena towards the end of the list, + * because it has more free pools than the arena to its right. It needs + * to move to follow lastnf. + * First unlink ao from usable_arenas. + */ + if (ao->prevarena != NULL) { + /* ao isn't at the head of the list */ + assert(ao->prevarena->nextarena == ao); + ao->prevarena->nextarena = ao->nextarena; + } + else { + /* ao is at the head of the list */ + assert(usable_arenas == ao); + usable_arenas = ao->nextarena; + } + ao->nextarena->prevarena = ao->prevarena; + /* And insert after lastnf. */ + ao->prevarena = lastnf; + ao->nextarena = lastnf->nextarena; + if (ao->nextarena != NULL) { + ao->nextarena->prevarena = ao; + } + lastnf->nextarena = ao; + /* Verify that the swaps worked. */ + assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools); + assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools); + assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao); + assert((usable_arenas == ao && ao->prevarena == NULL) + || ao->prevarena->nextarena == ao); +} + +/* Free a memory block allocated by pymalloc_alloc(). + Return 1 if it was freed. + Return 0 if the block was not allocated by pymalloc_alloc(). */ +static inline int +pymalloc_free(OMState *state, void *Py_UNUSED(ctx), void *p) +{ + assert(p != NULL); + +#ifdef WITH_VALGRIND + if (UNLIKELY(running_on_valgrind > 0)) { + return 0; + } +#endif + + poolp pool = POOL_ADDR(p); + if (UNLIKELY(!address_in_range(state, p, pool))) { + return 0; + } + /* We allocated this address. */ + + /* Link p to the start of the pool's freeblock list. Since + * the pool had at least the p block outstanding, the pool + * wasn't empty (so it's already in a usedpools[] list, or + * was full and is in no list -- it's not in the freeblocks + * list in any case). + */ + assert(pool->ref.count > 0); /* else it was empty */ + pymem_block *lastfree = pool->freeblock; + *(pymem_block **)p = lastfree; + pool->freeblock = (pymem_block *)p; + pool->ref.count--; + + if (UNLIKELY(lastfree == NULL)) { + /* Pool was full, so doesn't currently live in any list: + * link it to the front of the appropriate usedpools[] list. + * This mimics LRU pool usage for new allocations and + * targets optimal filling when several pools contain + * blocks of the same size class. + */ + insert_to_usedpool(state, pool); + return 1; + } + + /* freeblock wasn't NULL, so the pool wasn't full, + * and the pool is in a usedpools[] list. + */ + if (LIKELY(pool->ref.count != 0)) { + /* pool isn't empty: leave it in usedpools */ + return 1; + } + + /* Pool is now empty: unlink from usedpools, and + * link to the front of freepools. This ensures that + * previously freed pools will be allocated later + * (being not referenced, they are perhaps paged out). + */ + insert_to_freepool(state, pool); + return 1; +} + + +void +_PyObject_Free(void *ctx, void *p) +{ + /* PyObject_Free(NULL) has no effect */ + if (p == NULL) { + return; + } + + OMState *state = get_state(); + if (UNLIKELY(!pymalloc_free(state, ctx, p))) { + /* pymalloc didn't allocate this address */ + PyMem_RawFree(p); + raw_allocated_blocks--; + } +} + + +/* pymalloc realloc. + + If nbytes==0, then as the Python docs promise, we do not treat this like + free(p), and return a non-NULL result. + + Return 1 if pymalloc reallocated memory and wrote the new pointer into + newptr_p. + + Return 0 if pymalloc didn't allocated p. */ +static int +pymalloc_realloc(OMState *state, void *ctx, + void **newptr_p, void *p, size_t nbytes) +{ + void *bp; + poolp pool; + size_t size; + + assert(p != NULL); + +#ifdef WITH_VALGRIND + /* Treat running_on_valgrind == -1 the same as 0 */ + if (UNLIKELY(running_on_valgrind > 0)) { + return 0; + } +#endif + + pool = POOL_ADDR(p); + if (!address_in_range(state, p, pool)) { + /* pymalloc is not managing this block. + + If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take + over this block. However, if we do, we need to copy the valid data + from the C-managed block to one of our blocks, and there's no + portable way to know how much of the memory space starting at p is + valid. + + As bug 1185883 pointed out the hard way, it's possible that the + C-managed block is "at the end" of allocated VM space, so that a + memory fault can occur if we try to copy nbytes bytes starting at p. + Instead we punt: let C continue to manage this block. */ + return 0; + } + + /* pymalloc is in charge of this block */ + size = INDEX2SIZE(pool->szidx); + if (nbytes <= size) { + /* The block is staying the same or shrinking. + + If it's shrinking, there's a tradeoff: it costs cycles to copy the + block to a smaller size class, but it wastes memory not to copy it. + + The compromise here is to copy on shrink only if at least 25% of + size can be shaved off. */ + if (4 * nbytes > 3 * size) { + /* It's the same, or shrinking and new/old > 3/4. */ + *newptr_p = p; + return 1; + } + size = nbytes; + } + + bp = _PyObject_Malloc(ctx, nbytes); + if (bp != NULL) { + memcpy(bp, p, size); + _PyObject_Free(ctx, p); + } + *newptr_p = bp; + return 1; +} + + +void * +_PyObject_Realloc(void *ctx, void *ptr, size_t nbytes) +{ + void *ptr2; + + if (ptr == NULL) { + return _PyObject_Malloc(ctx, nbytes); + } + + OMState *state = get_state(); + if (pymalloc_realloc(state, ctx, &ptr2, ptr, nbytes)) { + return ptr2; + } + + return PyMem_RawRealloc(ptr, nbytes); +} + +#else /* ! WITH_PYMALLOC */ + +/*==========================================================================*/ +/* pymalloc not enabled: Redirect the entry points to malloc. These will + * only be used by extensions that are compiled with pymalloc enabled. */ + +Py_ssize_t +_PyInterpreterState_GetAllocatedBlocks(PyInterpreterState *Py_UNUSED(interp)) +{ + return 0; +} + +Py_ssize_t +_Py_GetGlobalAllocatedBlocks(void) +{ + return 0; +} + +void +_PyInterpreterState_FinalizeAllocatedBlocks(PyInterpreterState *Py_UNUSED(interp)) +{ + return; +} + +void +_Py_FinalizeAllocatedBlocks(_PyRuntimeState *Py_UNUSED(runtime)) +{ + return; +} + +#endif /* WITH_PYMALLOC */ + + +/*==========================================================================*/ +/* A x-platform debugging allocator. This doesn't manage memory directly, + * it wraps a real allocator, adding extra debugging info to the memory blocks. + */ + +/* Uncomment this define to add the "serialno" field */ +/* #define PYMEM_DEBUG_SERIALNO */ + +#ifdef PYMEM_DEBUG_SERIALNO +static size_t serialno = 0; /* incremented on each debug {m,re}alloc */ + +/* serialno is always incremented via calling this routine. The point is + * to supply a single place to set a breakpoint. + */ +static void +bumpserialno(void) +{ + ++serialno; +} +#endif + +#define SST SIZEOF_SIZE_T + +#ifdef PYMEM_DEBUG_SERIALNO +# define PYMEM_DEBUG_EXTRA_BYTES 4 * SST +#else +# define PYMEM_DEBUG_EXTRA_BYTES 3 * SST +#endif + +/* Read sizeof(size_t) bytes at p as a big-endian size_t. */ +static size_t +read_size_t(const void *p) +{ + const uint8_t *q = (const uint8_t *)p; + size_t result = *q++; + int i; + + for (i = SST; --i > 0; ++q) + result = (result << 8) | *q; + return result; +} + +/* Write n as a big-endian size_t, MSB at address p, LSB at + * p + sizeof(size_t) - 1. + */ +static void +write_size_t(void *p, size_t n) +{ + uint8_t *q = (uint8_t *)p + SST - 1; + int i; + + for (i = SST; --i >= 0; --q) { + *q = (uint8_t)(n & 0xff); + n >>= 8; + } +} + +/* Let S = sizeof(size_t). The debug malloc asks for 4 * S extra bytes and + fills them with useful stuff, here calling the underlying malloc's result p: + +p[0: S] + Number of bytes originally asked for. This is a size_t, big-endian (easier + to read in a memory dump). +p[S] + API ID. See PEP 445. This is a character, but seems undocumented. +p[S+1: 2*S] + Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads. +p[2*S: 2*S+n] + The requested memory, filled with copies of PYMEM_CLEANBYTE. + Used to catch reference to uninitialized memory. + &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc + handled the request itself. +p[2*S+n: 2*S+n+S] + Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads. +p[2*S+n+S: 2*S+n+2*S] + A serial number, incremented by 1 on each call to _PyMem_DebugMalloc + and _PyMem_DebugRealloc. + This is a big-endian size_t. + If "bad memory" is detected later, the serial number gives an + excellent way to set a breakpoint on the next run, to capture the + instant at which this block was passed out. + +If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks +for 3 * S extra bytes, and omits the last serialno field. +*/ + +static void * +_PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes) +{ + debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; + uint8_t *p; /* base address of malloc'ed pad block */ + uint8_t *data; /* p + 2*SST == pointer to data bytes */ + uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */ + size_t total; /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */ + + if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { + /* integer overflow: can't represent total as a Py_ssize_t */ + return NULL; + } + total = nbytes + PYMEM_DEBUG_EXTRA_BYTES; + + /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN] + ^--- p ^--- data ^--- tail + S: nbytes stored as size_t + I: API identifier (1 byte) + F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after) + C: Clean bytes used later to store actual data + N: Serial number stored as size_t + + If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field + is omitted. */ + + if (use_calloc) { + p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total); + } + else { + p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total); + } + if (p == NULL) { + return NULL; + } + data = p + 2*SST; + +#ifdef PYMEM_DEBUG_SERIALNO + bumpserialno(); +#endif + + /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */ + write_size_t(p, nbytes); + p[SST] = (uint8_t)api->api_id; + memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1); + + if (nbytes > 0 && !use_calloc) { + memset(data, PYMEM_CLEANBYTE, nbytes); + } + + /* at tail, write pad (SST bytes) and serialno (SST bytes) */ + tail = data + nbytes; + memset(tail, PYMEM_FORBIDDENBYTE, SST); +#ifdef PYMEM_DEBUG_SERIALNO + write_size_t(tail + SST, serialno); +#endif + + return data; +} + +void * +_PyMem_DebugRawMalloc(void *ctx, size_t nbytes) +{ + return _PyMem_DebugRawAlloc(0, ctx, nbytes); +} + +void * +_PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize) +{ + size_t nbytes; + assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize); + nbytes = nelem * elsize; + return _PyMem_DebugRawAlloc(1, ctx, nbytes); +} + + +/* The debug free first checks the 2*SST bytes on each end for sanity (in + particular, that the FORBIDDENBYTEs with the api ID are still intact). + Then fills the original bytes with PYMEM_DEADBYTE. + Then calls the underlying free. +*/ +void +_PyMem_DebugRawFree(void *ctx, void *p) +{ + /* PyMem_Free(NULL) has no effect */ + if (p == NULL) { + return; + } + + debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; + uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */ + size_t nbytes; + + _PyMem_DebugCheckAddress(__func__, api->api_id, p); + nbytes = read_size_t(q); + nbytes += PYMEM_DEBUG_EXTRA_BYTES; + memset(q, PYMEM_DEADBYTE, nbytes); + api->alloc.free(api->alloc.ctx, q); +} + + +void * +_PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes) +{ + if (p == NULL) { + return _PyMem_DebugRawAlloc(0, ctx, nbytes); + } + + debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; + uint8_t *head; /* base address of malloc'ed pad block */ + uint8_t *data; /* pointer to data bytes */ + uint8_t *r; + uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */ + size_t total; /* 2 * SST + nbytes + 2 * SST */ + size_t original_nbytes; +#define ERASED_SIZE 64 + uint8_t save[2*ERASED_SIZE]; /* A copy of erased bytes. */ + + _PyMem_DebugCheckAddress(__func__, api->api_id, p); + + data = (uint8_t *)p; + head = data - 2*SST; + original_nbytes = read_size_t(head); + if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { + /* integer overflow: can't represent total as a Py_ssize_t */ + return NULL; + } + total = nbytes + PYMEM_DEBUG_EXTRA_BYTES; + + tail = data + original_nbytes; +#ifdef PYMEM_DEBUG_SERIALNO + size_t block_serialno = read_size_t(tail + SST); +#endif + /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and + ERASED_SIZE bytes at the end as dead and save the copy of erased bytes. + */ + if (original_nbytes <= sizeof(save)) { + memcpy(save, data, original_nbytes); + memset(data - 2 * SST, PYMEM_DEADBYTE, + original_nbytes + PYMEM_DEBUG_EXTRA_BYTES); + } + else { + memcpy(save, data, ERASED_SIZE); + memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST); + memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE); + memset(tail - ERASED_SIZE, PYMEM_DEADBYTE, + ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST); + } + + /* Resize and add decorations. */ + r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total); + if (r == NULL) { + /* if realloc() failed: rewrite header and footer which have + just been erased */ + nbytes = original_nbytes; + } + else { + head = r; +#ifdef PYMEM_DEBUG_SERIALNO + bumpserialno(); + block_serialno = serialno; +#endif + } + data = head + 2*SST; + + write_size_t(head, nbytes); + head[SST] = (uint8_t)api->api_id; + memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1); + + tail = data + nbytes; + memset(tail, PYMEM_FORBIDDENBYTE, SST); +#ifdef PYMEM_DEBUG_SERIALNO + write_size_t(tail + SST, block_serialno); +#endif + + /* Restore saved bytes. */ + if (original_nbytes <= sizeof(save)) { + memcpy(data, save, Py_MIN(nbytes, original_nbytes)); + } + else { + size_t i = original_nbytes - ERASED_SIZE; + memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE)); + if (nbytes > i) { + memcpy(data + i, &save[ERASED_SIZE], + Py_MIN(nbytes - i, ERASED_SIZE)); + } + } + + if (r == NULL) { + return NULL; + } + + if (nbytes > original_nbytes) { + /* growing: mark new extra memory clean */ + memset(data + original_nbytes, PYMEM_CLEANBYTE, + nbytes - original_nbytes); + } + + return data; +} + +static inline void +_PyMem_DebugCheckGIL(const char *func) +{ + if (!PyGILState_Check()) { + _Py_FatalErrorFunc(func, + "Python memory allocator called " + "without holding the GIL"); + } +} + +void * +_PyMem_DebugMalloc(void *ctx, size_t nbytes) +{ + _PyMem_DebugCheckGIL(__func__); + return _PyMem_DebugRawMalloc(ctx, nbytes); +} + +void * +_PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize) +{ + _PyMem_DebugCheckGIL(__func__); + return _PyMem_DebugRawCalloc(ctx, nelem, elsize); +} + + +void +_PyMem_DebugFree(void *ctx, void *ptr) +{ + _PyMem_DebugCheckGIL(__func__); + _PyMem_DebugRawFree(ctx, ptr); +} + + +void * +_PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes) +{ + _PyMem_DebugCheckGIL(__func__); + return _PyMem_DebugRawRealloc(ctx, ptr, nbytes); +} + +/* Check the forbidden bytes on both ends of the memory allocated for p. + * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress, + * and call Py_FatalError to kill the program. + * The API id, is also checked. + */ +static void +_PyMem_DebugCheckAddress(const char *func, char api, const void *p) +{ + assert(p != NULL); + + const uint8_t *q = (const uint8_t *)p; + size_t nbytes; + const uint8_t *tail; + int i; + char id; + + /* Check the API id */ + id = (char)q[-SST]; + if (id != api) { + _PyObject_DebugDumpAddress(p); + _Py_FatalErrorFormat(func, + "bad ID: Allocated using API '%c', " + "verified using API '%c'", + id, api); + } + + /* Check the stuff at the start of p first: if there's underwrite + * corruption, the number-of-bytes field may be nuts, and checking + * the tail could lead to a segfault then. + */ + for (i = SST-1; i >= 1; --i) { + if (*(q-i) != PYMEM_FORBIDDENBYTE) { + _PyObject_DebugDumpAddress(p); + _Py_FatalErrorFunc(func, "bad leading pad byte"); + } + } + + nbytes = read_size_t(q - 2*SST); + tail = q + nbytes; + for (i = 0; i < SST; ++i) { + if (tail[i] != PYMEM_FORBIDDENBYTE) { + _PyObject_DebugDumpAddress(p); + _Py_FatalErrorFunc(func, "bad trailing pad byte"); + } + } +} + +/* Display info to stderr about the memory block at p. */ +static void +_PyObject_DebugDumpAddress(const void *p) +{ + const uint8_t *q = (const uint8_t *)p; + const uint8_t *tail; + size_t nbytes; + int i; + int ok; + char id; + + fprintf(stderr, "Debug memory block at address p=%p:", p); + if (p == NULL) { + fprintf(stderr, "\n"); + return; + } + id = (char)q[-SST]; + fprintf(stderr, " API '%c'\n", id); + + nbytes = read_size_t(q - 2*SST); + fprintf(stderr, " %zu bytes originally requested\n", nbytes); + + /* In case this is nuts, check the leading pad bytes first. */ + fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1); + ok = 1; + for (i = 1; i <= SST-1; ++i) { + if (*(q-i) != PYMEM_FORBIDDENBYTE) { + ok = 0; + break; + } + } + if (ok) + fputs("FORBIDDENBYTE, as expected.\n", stderr); + else { + fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", + PYMEM_FORBIDDENBYTE); + for (i = SST-1; i >= 1; --i) { + const uint8_t byte = *(q-i); + fprintf(stderr, " at p-%d: 0x%02x", i, byte); + if (byte != PYMEM_FORBIDDENBYTE) + fputs(" *** OUCH", stderr); + fputc('\n', stderr); + } + + fputs(" Because memory is corrupted at the start, the " + "count of bytes requested\n" + " may be bogus, and checking the trailing pad " + "bytes may segfault.\n", stderr); + } + + tail = q + nbytes; + fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, (void *)tail); + ok = 1; + for (i = 0; i < SST; ++i) { + if (tail[i] != PYMEM_FORBIDDENBYTE) { + ok = 0; + break; + } + } + if (ok) + fputs("FORBIDDENBYTE, as expected.\n", stderr); + else { + fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", + PYMEM_FORBIDDENBYTE); + for (i = 0; i < SST; ++i) { + const uint8_t byte = tail[i]; + fprintf(stderr, " at tail+%d: 0x%02x", + i, byte); + if (byte != PYMEM_FORBIDDENBYTE) + fputs(" *** OUCH", stderr); + fputc('\n', stderr); + } + } + +#ifdef PYMEM_DEBUG_SERIALNO + size_t serial = read_size_t(tail + SST); + fprintf(stderr, + " The block was made by call #%zu to debug malloc/realloc.\n", + serial); +#endif + + if (nbytes > 0) { + i = 0; + fputs(" Data at p:", stderr); + /* print up to 8 bytes at the start */ + while (q < tail && i < 8) { + fprintf(stderr, " %02x", *q); + ++i; + ++q; + } + /* and up to 8 at the end */ + if (q < tail) { + if (tail - q > 8) { + fputs(" ...", stderr); + q = tail - 8; + } + while (q < tail) { + fprintf(stderr, " %02x", *q); + ++q; + } + } + fputc('\n', stderr); + } + fputc('\n', stderr); + + fflush(stderr); + _PyMem_DumpTraceback(fileno(stderr), p); +} + + +static size_t +printone(FILE *out, const char* msg, size_t value) +{ + int i, k; + char buf[100]; + size_t origvalue = value; + + fputs(msg, out); + for (i = (int)strlen(msg); i < 35; ++i) + fputc(' ', out); + fputc('=', out); + + /* Write the value with commas. */ + i = 22; + buf[i--] = '\0'; + buf[i--] = '\n'; + k = 3; + do { + size_t nextvalue = value / 10; + unsigned int digit = (unsigned int)(value - nextvalue * 10); + value = nextvalue; + buf[i--] = (char)(digit + '0'); + --k; + if (k == 0 && value && i >= 0) { + k = 3; + buf[i--] = ','; + } + } while (value && i >= 0); + + while (i >= 0) + buf[i--] = ' '; + fputs(buf, out); + + return origvalue; +} + +void +_PyDebugAllocatorStats(FILE *out, + const char *block_name, int num_blocks, size_t sizeof_block) +{ + char buf1[128]; + char buf2[128]; + PyOS_snprintf(buf1, sizeof(buf1), + "%d %ss * %zd bytes each", + num_blocks, block_name, sizeof_block); + PyOS_snprintf(buf2, sizeof(buf2), + "%48s ", buf1); + (void)printone(out, buf2, num_blocks * sizeof_block); +} + + +#ifdef WITH_PYMALLOC + +#ifdef Py_DEBUG +/* Is target in the list? The list is traversed via the nextpool pointers. + * The list may be NULL-terminated, or circular. Return 1 if target is in + * list, else 0. + */ +static int +pool_is_in_list(const poolp target, poolp list) +{ + poolp origlist = list; + assert(target != NULL); + if (list == NULL) + return 0; + do { + if (target == list) + return 1; + list = list->nextpool; + } while (list != NULL && list != origlist); + return 0; +} +#endif + +/* Print summary info to "out" about the state of pymalloc's structures. + * In Py_DEBUG mode, also perform some expensive internal consistency + * checks. + * + * Return 0 if the memory debug hooks are not installed or no statistics was + * written into out, return 1 otherwise. + */ +int +_PyObject_DebugMallocStats(FILE *out) +{ + if (!_PyMem_PymallocEnabled()) { + return 0; + } + OMState *state = get_state(); + + uint i; + const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT; + /* # of pools, allocated blocks, and free blocks per class index */ + size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; + size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; + size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; + /* total # of allocated bytes in used and full pools */ + size_t allocated_bytes = 0; + /* total # of available bytes in used pools */ + size_t available_bytes = 0; + /* # of free pools + pools not yet carved out of current arena */ + uint numfreepools = 0; + /* # of bytes for arena alignment padding */ + size_t arena_alignment = 0; + /* # of bytes in used and full pools used for pool_headers */ + size_t pool_header_bytes = 0; + /* # of bytes in used and full pools wasted due to quantization, + * i.e. the necessarily leftover space at the ends of used and + * full pools. + */ + size_t quantization = 0; + /* # of arenas actually allocated. */ + size_t narenas = 0; + /* running total -- should equal narenas * ARENA_SIZE */ + size_t total; + char buf[128]; + + fprintf(out, "Small block threshold = %d, in %u size classes.\n", + SMALL_REQUEST_THRESHOLD, numclasses); + + for (i = 0; i < numclasses; ++i) + numpools[i] = numblocks[i] = numfreeblocks[i] = 0; + + /* Because full pools aren't linked to from anything, it's easiest + * to march over all the arenas. If we're lucky, most of the memory + * will be living in full pools -- would be a shame to miss them. + */ + for (i = 0; i < maxarenas; ++i) { + uintptr_t base = allarenas[i].address; + + /* Skip arenas which are not allocated. */ + if (allarenas[i].address == (uintptr_t)NULL) + continue; + narenas += 1; + + numfreepools += allarenas[i].nfreepools; + + /* round up to pool alignment */ + if (base & (uintptr_t)POOL_SIZE_MASK) { + arena_alignment += POOL_SIZE; + base &= ~(uintptr_t)POOL_SIZE_MASK; + base += POOL_SIZE; + } + + /* visit every pool in the arena */ + assert(base <= (uintptr_t) allarenas[i].pool_address); + for (; base < (uintptr_t) allarenas[i].pool_address; base += POOL_SIZE) { + poolp p = (poolp)base; + const uint sz = p->szidx; + uint freeblocks; + + if (p->ref.count == 0) { + /* currently unused */ +#ifdef Py_DEBUG + assert(pool_is_in_list(p, allarenas[i].freepools)); +#endif + continue; + } + ++numpools[sz]; + numblocks[sz] += p->ref.count; + freeblocks = NUMBLOCKS(sz) - p->ref.count; + numfreeblocks[sz] += freeblocks; +#ifdef Py_DEBUG + if (freeblocks > 0) + assert(pool_is_in_list(p, usedpools[sz + sz])); +#endif + } + } + assert(narenas == narenas_currently_allocated); + + fputc('\n', out); + fputs("class size num pools blocks in use avail blocks\n" + "----- ---- --------- ------------- ------------\n", + out); + + for (i = 0; i < numclasses; ++i) { + size_t p = numpools[i]; + size_t b = numblocks[i]; + size_t f = numfreeblocks[i]; + uint size = INDEX2SIZE(i); + if (p == 0) { + assert(b == 0 && f == 0); + continue; + } + fprintf(out, "%5u %6u %11zu %15zu %13zu\n", + i, size, p, b, f); + allocated_bytes += b * size; + available_bytes += f * size; + pool_header_bytes += p * POOL_OVERHEAD; + quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size); + } + fputc('\n', out); +#ifdef PYMEM_DEBUG_SERIALNO + if (_PyMem_DebugEnabled()) { + (void)printone(out, "# times object malloc called", serialno); + } +#endif + (void)printone(out, "# arenas allocated total", ntimes_arena_allocated); + (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas); + (void)printone(out, "# arenas highwater mark", narenas_highwater); + (void)printone(out, "# arenas allocated current", narenas); + + PyOS_snprintf(buf, sizeof(buf), + "%zu arenas * %d bytes/arena", + narenas, ARENA_SIZE); + (void)printone(out, buf, narenas * ARENA_SIZE); + + fputc('\n', out); + + /* Account for what all of those arena bytes are being used for. */ + total = printone(out, "# bytes in allocated blocks", allocated_bytes); + total += printone(out, "# bytes in available blocks", available_bytes); + + PyOS_snprintf(buf, sizeof(buf), + "%u unused pools * %d bytes", numfreepools, POOL_SIZE); + total += printone(out, buf, (size_t)numfreepools * POOL_SIZE); + + total += printone(out, "# bytes lost to pool headers", pool_header_bytes); + total += printone(out, "# bytes lost to quantization", quantization); + total += printone(out, "# bytes lost to arena alignment", arena_alignment); + (void)printone(out, "Total", total); + assert(narenas * ARENA_SIZE == total); + +#if WITH_PYMALLOC_RADIX_TREE + fputs("\narena map counts\n", out); +#ifdef USE_INTERIOR_NODES + (void)printone(out, "# arena map mid nodes", arena_map_mid_count); + (void)printone(out, "# arena map bot nodes", arena_map_bot_count); + fputc('\n', out); +#endif + total = printone(out, "# bytes lost to arena map root", sizeof(arena_map_root)); +#ifdef USE_INTERIOR_NODES + total += printone(out, "# bytes lost to arena map mid", + sizeof(arena_map_mid_t) * arena_map_mid_count); + total += printone(out, "# bytes lost to arena map bot", + sizeof(arena_map_bot_t) * arena_map_bot_count); + (void)printone(out, "Total", total); +#endif +#endif + + return 1; +} + +#endif /* #ifdef WITH_PYMALLOC */ |