aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/Modules/mathmodule.c
diff options
context:
space:
mode:
authorAlexSm <alex@ydb.tech>2024-03-05 10:40:59 +0100
committerGitHub <noreply@github.com>2024-03-05 12:40:59 +0300
commit1ac13c847b5358faba44dbb638a828e24369467b (patch)
tree07672b4dd3604ad3dee540a02c6494cb7d10dc3d /contrib/tools/python3/Modules/mathmodule.c
parentffcca3e7f7958ddc6487b91d3df8c01054bd0638 (diff)
downloadydb-1ac13c847b5358faba44dbb638a828e24369467b.tar.gz
Library import 16 (#2433)
Co-authored-by: robot-piglet <robot-piglet@yandex-team.com> Co-authored-by: deshevoy <deshevoy@yandex-team.com> Co-authored-by: robot-contrib <robot-contrib@yandex-team.com> Co-authored-by: thegeorg <thegeorg@yandex-team.com> Co-authored-by: robot-ya-builder <robot-ya-builder@yandex-team.com> Co-authored-by: svidyuk <svidyuk@yandex-team.com> Co-authored-by: shadchin <shadchin@yandex-team.com> Co-authored-by: robot-ratatosk <robot-ratatosk@yandex-team.com> Co-authored-by: innokentii <innokentii@yandex-team.com> Co-authored-by: arkady-e1ppa <arkady-e1ppa@yandex-team.com> Co-authored-by: snermolaev <snermolaev@yandex-team.com> Co-authored-by: dimdim11 <dimdim11@yandex-team.com> Co-authored-by: kickbutt <kickbutt@yandex-team.com> Co-authored-by: abdullinsaid <abdullinsaid@yandex-team.com> Co-authored-by: korsunandrei <korsunandrei@yandex-team.com> Co-authored-by: petrk <petrk@yandex-team.com> Co-authored-by: miroslav2 <miroslav2@yandex-team.com> Co-authored-by: serjflint <serjflint@yandex-team.com> Co-authored-by: akhropov <akhropov@yandex-team.com> Co-authored-by: prettyboy <prettyboy@yandex-team.com> Co-authored-by: ilikepugs <ilikepugs@yandex-team.com> Co-authored-by: hiddenpath <hiddenpath@yandex-team.com> Co-authored-by: mikhnenko <mikhnenko@yandex-team.com> Co-authored-by: spreis <spreis@yandex-team.com> Co-authored-by: andreyshspb <andreyshspb@yandex-team.com> Co-authored-by: dimaandreev <dimaandreev@yandex-team.com> Co-authored-by: rashid <rashid@yandex-team.com> Co-authored-by: robot-ydb-importer <robot-ydb-importer@yandex-team.com> Co-authored-by: r-vetrov <r-vetrov@yandex-team.com> Co-authored-by: ypodlesov <ypodlesov@yandex-team.com> Co-authored-by: zaverden <zaverden@yandex-team.com> Co-authored-by: vpozdyayev <vpozdyayev@yandex-team.com> Co-authored-by: robot-cozmo <robot-cozmo@yandex-team.com> Co-authored-by: v-korovin <v-korovin@yandex-team.com> Co-authored-by: arikon <arikon@yandex-team.com> Co-authored-by: khoden <khoden@yandex-team.com> Co-authored-by: psydmm <psydmm@yandex-team.com> Co-authored-by: robot-javacom <robot-javacom@yandex-team.com> Co-authored-by: dtorilov <dtorilov@yandex-team.com> Co-authored-by: sennikovmv <sennikovmv@yandex-team.com> Co-authored-by: hcpp <hcpp@ydb.tech>
Diffstat (limited to 'contrib/tools/python3/Modules/mathmodule.c')
-rw-r--r--contrib/tools/python3/Modules/mathmodule.c4160
1 files changed, 4160 insertions, 0 deletions
diff --git a/contrib/tools/python3/Modules/mathmodule.c b/contrib/tools/python3/Modules/mathmodule.c
new file mode 100644
index 0000000000..23fa2b1816
--- /dev/null
+++ b/contrib/tools/python3/Modules/mathmodule.c
@@ -0,0 +1,4160 @@
+/* Math module -- standard C math library functions, pi and e */
+
+/* Here are some comments from Tim Peters, extracted from the
+ discussion attached to http://bugs.python.org/issue1640. They
+ describe the general aims of the math module with respect to
+ special values, IEEE-754 floating-point exceptions, and Python
+ exceptions.
+
+These are the "spirit of 754" rules:
+
+1. If the mathematical result is a real number, but of magnitude too
+large to approximate by a machine float, overflow is signaled and the
+result is an infinity (with the appropriate sign).
+
+2. If the mathematical result is a real number, but of magnitude too
+small to approximate by a machine float, underflow is signaled and the
+result is a zero (with the appropriate sign).
+
+3. At a singularity (a value x such that the limit of f(y) as y
+approaches x exists and is an infinity), "divide by zero" is signaled
+and the result is an infinity (with the appropriate sign). This is
+complicated a little by that the left-side and right-side limits may
+not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
+from the positive or negative directions. In that specific case, the
+sign of the zero determines the result of 1/0.
+
+4. At a point where a function has no defined result in the extended
+reals (i.e., the reals plus an infinity or two), invalid operation is
+signaled and a NaN is returned.
+
+And these are what Python has historically /tried/ to do (but not
+always successfully, as platform libm behavior varies a lot):
+
+For #1, raise OverflowError.
+
+For #2, return a zero (with the appropriate sign if that happens by
+accident ;-)).
+
+For #3 and #4, raise ValueError. It may have made sense to raise
+Python's ZeroDivisionError in #3, but historically that's only been
+raised for division by zero and mod by zero.
+
+*/
+
+/*
+ In general, on an IEEE-754 platform the aim is to follow the C99
+ standard, including Annex 'F', whenever possible. Where the
+ standard recommends raising the 'divide-by-zero' or 'invalid'
+ floating-point exceptions, Python should raise a ValueError. Where
+ the standard recommends raising 'overflow', Python should raise an
+ OverflowError. In all other circumstances a value should be
+ returned.
+ */
+
+#ifndef Py_BUILD_CORE_BUILTIN
+# define Py_BUILD_CORE_MODULE 1
+#endif
+
+#include "Python.h"
+#include "pycore_bitutils.h" // _Py_bit_length()
+#include "pycore_call.h" // _PyObject_CallNoArgs()
+#include "pycore_long.h" // _PyLong_GetZero()
+#include "pycore_moduleobject.h" // _PyModule_GetState()
+#include "pycore_object.h" // _PyObject_LookupSpecial()
+#include "pycore_pymath.h" // _PY_SHORT_FLOAT_REPR
+/* For DBL_EPSILON in _math.h */
+#include <float.h>
+/* For _Py_log1p with workarounds for buggy handling of zeros. */
+#include "_math.h"
+#include <stdbool.h>
+
+#include "clinic/mathmodule.c.h"
+
+/*[clinic input]
+module math
+[clinic start generated code]*/
+/*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/
+
+
+typedef struct {
+ PyObject *str___ceil__;
+ PyObject *str___floor__;
+ PyObject *str___trunc__;
+} math_module_state;
+
+static inline math_module_state*
+get_math_module_state(PyObject *module)
+{
+ void *state = _PyModule_GetState(module);
+ assert(state != NULL);
+ return (math_module_state *)state;
+}
+
+/*
+Double and triple length extended precision algorithms from:
+
+ Accurate Sum and Dot Product
+ by Takeshi Ogita, Siegfried M. Rump, and Shin’Ichi Oishi
+ https://doi.org/10.1137/030601818
+ https://www.tuhh.de/ti3/paper/rump/OgRuOi05.pdf
+
+*/
+
+typedef struct{ double hi; double lo; } DoubleLength;
+
+static DoubleLength
+dl_fast_sum(double a, double b)
+{
+ /* Algorithm 1.1. Compensated summation of two floating point numbers. */
+ assert(fabs(a) >= fabs(b));
+ double x = a + b;
+ double y = (a - x) + b;
+ return (DoubleLength) {x, y};
+}
+
+static DoubleLength
+dl_sum(double a, double b)
+{
+ /* Algorithm 3.1 Error-free transformation of the sum */
+ double x = a + b;
+ double z = x - a;
+ double y = (a - (x - z)) + (b - z);
+ return (DoubleLength) {x, y};
+}
+
+#ifndef UNRELIABLE_FMA
+
+static DoubleLength
+dl_mul(double x, double y)
+{
+ /* Algorithm 3.5. Error-free transformation of a product */
+ double z = x * y;
+ double zz = fma(x, y, -z);
+ return (DoubleLength) {z, zz};
+}
+
+#else
+
+/*
+ The default implementation of dl_mul() depends on the C math library
+ having an accurate fma() function as required by § 7.12.13.1 of the
+ C99 standard.
+
+ The UNRELIABLE_FMA option is provided as a slower but accurate
+ alternative for builds where the fma() function is found wanting.
+ The speed penalty may be modest (17% slower on an Apple M1 Max),
+ so don't hesitate to enable this build option.
+
+ The algorithms are from the T. J. Dekker paper:
+ A Floating-Point Technique for Extending the Available Precision
+ https://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
+*/
+
+static DoubleLength
+dl_split(double x) {
+ // Dekker (5.5) and (5.6).
+ double t = x * 134217729.0; // Veltkamp constant = 2.0 ** 27 + 1
+ double hi = t - (t - x);
+ double lo = x - hi;
+ return (DoubleLength) {hi, lo};
+}
+
+static DoubleLength
+dl_mul(double x, double y)
+{
+ // Dekker (5.12) and mul12()
+ DoubleLength xx = dl_split(x);
+ DoubleLength yy = dl_split(y);
+ double p = xx.hi * yy.hi;
+ double q = xx.hi * yy.lo + xx.lo * yy.hi;
+ double z = p + q;
+ double zz = p - z + q + xx.lo * yy.lo;
+ return (DoubleLength) {z, zz};
+}
+
+#endif
+
+typedef struct { double hi; double lo; double tiny; } TripleLength;
+
+static const TripleLength tl_zero = {0.0, 0.0, 0.0};
+
+static TripleLength
+tl_fma(double x, double y, TripleLength total)
+{
+ /* Algorithm 5.10 with SumKVert for K=3 */
+ DoubleLength pr = dl_mul(x, y);
+ DoubleLength sm = dl_sum(total.hi, pr.hi);
+ DoubleLength r1 = dl_sum(total.lo, pr.lo);
+ DoubleLength r2 = dl_sum(r1.hi, sm.lo);
+ return (TripleLength) {sm.hi, r2.hi, total.tiny + r1.lo + r2.lo};
+}
+
+static double
+tl_to_d(TripleLength total)
+{
+ DoubleLength last = dl_sum(total.lo, total.hi);
+ return total.tiny + last.lo + last.hi;
+}
+
+
+/*
+ sin(pi*x), giving accurate results for all finite x (especially x
+ integral or close to an integer). This is here for use in the
+ reflection formula for the gamma function. It conforms to IEEE
+ 754-2008 for finite arguments, but not for infinities or nans.
+*/
+
+static const double pi = 3.141592653589793238462643383279502884197;
+static const double logpi = 1.144729885849400174143427351353058711647;
+
+/* Version of PyFloat_AsDouble() with in-line fast paths
+ for exact floats and integers. Gives a substantial
+ speed improvement for extracting float arguments.
+*/
+
+#define ASSIGN_DOUBLE(target_var, obj, error_label) \
+ if (PyFloat_CheckExact(obj)) { \
+ target_var = PyFloat_AS_DOUBLE(obj); \
+ } \
+ else if (PyLong_CheckExact(obj)) { \
+ target_var = PyLong_AsDouble(obj); \
+ if (target_var == -1.0 && PyErr_Occurred()) { \
+ goto error_label; \
+ } \
+ } \
+ else { \
+ target_var = PyFloat_AsDouble(obj); \
+ if (target_var == -1.0 && PyErr_Occurred()) { \
+ goto error_label; \
+ } \
+ }
+
+static double
+m_sinpi(double x)
+{
+ double y, r;
+ int n;
+ /* this function should only ever be called for finite arguments */
+ assert(Py_IS_FINITE(x));
+ y = fmod(fabs(x), 2.0);
+ n = (int)round(2.0*y);
+ assert(0 <= n && n <= 4);
+ switch (n) {
+ case 0:
+ r = sin(pi*y);
+ break;
+ case 1:
+ r = cos(pi*(y-0.5));
+ break;
+ case 2:
+ /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
+ -0.0 instead of 0.0 when y == 1.0. */
+ r = sin(pi*(1.0-y));
+ break;
+ case 3:
+ r = -cos(pi*(y-1.5));
+ break;
+ case 4:
+ r = sin(pi*(y-2.0));
+ break;
+ default:
+ Py_UNREACHABLE();
+ }
+ return copysign(1.0, x)*r;
+}
+
+/* Implementation of the real gamma function. Kept here to work around
+ issues (see e.g. gh-70309) with quality of libm's tgamma/lgamma implementations
+ on various platforms (Windows, MacOS). In extensive but non-exhaustive
+ random tests, this function proved accurate to within <= 10 ulps across the
+ entire float domain. Note that accuracy may depend on the quality of the
+ system math functions, the pow function in particular. Special cases
+ follow C99 annex F. The parameters and method are tailored to platforms
+ whose double format is the IEEE 754 binary64 format.
+
+ Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
+ and g=6.024680040776729583740234375; these parameters are amongst those
+ used by the Boost library. Following Boost (again), we re-express the
+ Lanczos sum as a rational function, and compute it that way. The
+ coefficients below were computed independently using MPFR, and have been
+ double-checked against the coefficients in the Boost source code.
+
+ For x < 0.0 we use the reflection formula.
+
+ There's one minor tweak that deserves explanation: Lanczos' formula for
+ Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
+ values, x+g-0.5 can be represented exactly. However, in cases where it
+ can't be represented exactly the small error in x+g-0.5 can be magnified
+ significantly by the pow and exp calls, especially for large x. A cheap
+ correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
+ involved in the computation of x+g-0.5 (that is, e = computed value of
+ x+g-0.5 - exact value of x+g-0.5). Here's the proof:
+
+ Correction factor
+ -----------------
+ Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
+ double, and e is tiny. Then:
+
+ pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
+ = pow(y, x-0.5)/exp(y) * C,
+
+ where the correction_factor C is given by
+
+ C = pow(1-e/y, x-0.5) * exp(e)
+
+ Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
+
+ C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
+
+ But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
+
+ pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
+
+ Note that for accuracy, when computing r*C it's better to do
+
+ r + e*g/y*r;
+
+ than
+
+ r * (1 + e*g/y);
+
+ since the addition in the latter throws away most of the bits of
+ information in e*g/y.
+*/
+
+#define LANCZOS_N 13
+static const double lanczos_g = 6.024680040776729583740234375;
+static const double lanczos_g_minus_half = 5.524680040776729583740234375;
+static const double lanczos_num_coeffs[LANCZOS_N] = {
+ 23531376880.410759688572007674451636754734846804940,
+ 42919803642.649098768957899047001988850926355848959,
+ 35711959237.355668049440185451547166705960488635843,
+ 17921034426.037209699919755754458931112671403265390,
+ 6039542586.3520280050642916443072979210699388420708,
+ 1439720407.3117216736632230727949123939715485786772,
+ 248874557.86205415651146038641322942321632125127801,
+ 31426415.585400194380614231628318205362874684987640,
+ 2876370.6289353724412254090516208496135991145378768,
+ 186056.26539522349504029498971604569928220784236328,
+ 8071.6720023658162106380029022722506138218516325024,
+ 210.82427775157934587250973392071336271166969580291,
+ 2.5066282746310002701649081771338373386264310793408
+};
+
+/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
+static const double lanczos_den_coeffs[LANCZOS_N] = {
+ 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
+ 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
+
+/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
+#define NGAMMA_INTEGRAL 23
+static const double gamma_integral[NGAMMA_INTEGRAL] = {
+ 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
+ 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
+ 1307674368000.0, 20922789888000.0, 355687428096000.0,
+ 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
+ 51090942171709440000.0, 1124000727777607680000.0,
+};
+
+/* Lanczos' sum L_g(x), for positive x */
+
+static double
+lanczos_sum(double x)
+{
+ double num = 0.0, den = 0.0;
+ int i;
+ assert(x > 0.0);
+ /* evaluate the rational function lanczos_sum(x). For large
+ x, the obvious algorithm risks overflow, so we instead
+ rescale the denominator and numerator of the rational
+ function by x**(1-LANCZOS_N) and treat this as a
+ rational function in 1/x. This also reduces the error for
+ larger x values. The choice of cutoff point (5.0 below) is
+ somewhat arbitrary; in tests, smaller cutoff values than
+ this resulted in lower accuracy. */
+ if (x < 5.0) {
+ for (i = LANCZOS_N; --i >= 0; ) {
+ num = num * x + lanczos_num_coeffs[i];
+ den = den * x + lanczos_den_coeffs[i];
+ }
+ }
+ else {
+ for (i = 0; i < LANCZOS_N; i++) {
+ num = num / x + lanczos_num_coeffs[i];
+ den = den / x + lanczos_den_coeffs[i];
+ }
+ }
+ return num/den;
+}
+
+
+static double
+m_tgamma(double x)
+{
+ double absx, r, y, z, sqrtpow;
+
+ /* special cases */
+ if (!Py_IS_FINITE(x)) {
+ if (Py_IS_NAN(x) || x > 0.0)
+ return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
+ else {
+ errno = EDOM;
+ return Py_NAN; /* tgamma(-inf) = nan, invalid */
+ }
+ }
+ if (x == 0.0) {
+ errno = EDOM;
+ /* tgamma(+-0.0) = +-inf, divide-by-zero */
+ return copysign(Py_INFINITY, x);
+ }
+
+ /* integer arguments */
+ if (x == floor(x)) {
+ if (x < 0.0) {
+ errno = EDOM; /* tgamma(n) = nan, invalid for */
+ return Py_NAN; /* negative integers n */
+ }
+ if (x <= NGAMMA_INTEGRAL)
+ return gamma_integral[(int)x - 1];
+ }
+ absx = fabs(x);
+
+ /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
+ if (absx < 1e-20) {
+ r = 1.0/x;
+ if (Py_IS_INFINITY(r))
+ errno = ERANGE;
+ return r;
+ }
+
+ /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
+ x > 200, and underflows to +-0.0 for x < -200, not a negative
+ integer. */
+ if (absx > 200.0) {
+ if (x < 0.0) {
+ return 0.0/m_sinpi(x);
+ }
+ else {
+ errno = ERANGE;
+ return Py_HUGE_VAL;
+ }
+ }
+
+ y = absx + lanczos_g_minus_half;
+ /* compute error in sum */
+ if (absx > lanczos_g_minus_half) {
+ /* note: the correction can be foiled by an optimizing
+ compiler that (incorrectly) thinks that an expression like
+ a + b - a - b can be optimized to 0.0. This shouldn't
+ happen in a standards-conforming compiler. */
+ double q = y - absx;
+ z = q - lanczos_g_minus_half;
+ }
+ else {
+ double q = y - lanczos_g_minus_half;
+ z = q - absx;
+ }
+ z = z * lanczos_g / y;
+ if (x < 0.0) {
+ r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
+ r -= z * r;
+ if (absx < 140.0) {
+ r /= pow(y, absx - 0.5);
+ }
+ else {
+ sqrtpow = pow(y, absx / 2.0 - 0.25);
+ r /= sqrtpow;
+ r /= sqrtpow;
+ }
+ }
+ else {
+ r = lanczos_sum(absx) / exp(y);
+ r += z * r;
+ if (absx < 140.0) {
+ r *= pow(y, absx - 0.5);
+ }
+ else {
+ sqrtpow = pow(y, absx / 2.0 - 0.25);
+ r *= sqrtpow;
+ r *= sqrtpow;
+ }
+ }
+ if (Py_IS_INFINITY(r))
+ errno = ERANGE;
+ return r;
+}
+
+/*
+ lgamma: natural log of the absolute value of the Gamma function.
+ For large arguments, Lanczos' formula works extremely well here.
+*/
+
+static double
+m_lgamma(double x)
+{
+ double r;
+ double absx;
+
+ /* special cases */
+ if (!Py_IS_FINITE(x)) {
+ if (Py_IS_NAN(x))
+ return x; /* lgamma(nan) = nan */
+ else
+ return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
+ }
+
+ /* integer arguments */
+ if (x == floor(x) && x <= 2.0) {
+ if (x <= 0.0) {
+ errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
+ return Py_HUGE_VAL; /* integers n <= 0 */
+ }
+ else {
+ return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
+ }
+ }
+
+ absx = fabs(x);
+ /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
+ if (absx < 1e-20)
+ return -log(absx);
+
+ /* Lanczos' formula. We could save a fraction of a ulp in accuracy by
+ having a second set of numerator coefficients for lanczos_sum that
+ absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
+ subtraction below; it's probably not worth it. */
+ r = log(lanczos_sum(absx)) - lanczos_g;
+ r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
+ if (x < 0.0)
+ /* Use reflection formula to get value for negative x. */
+ r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
+ if (Py_IS_INFINITY(r))
+ errno = ERANGE;
+ return r;
+}
+
+/*
+ wrapper for atan2 that deals directly with special cases before
+ delegating to the platform libm for the remaining cases. This
+ is necessary to get consistent behaviour across platforms.
+ Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
+ always follow C99.
+*/
+
+static double
+m_atan2(double y, double x)
+{
+ if (Py_IS_NAN(x) || Py_IS_NAN(y))
+ return Py_NAN;
+ if (Py_IS_INFINITY(y)) {
+ if (Py_IS_INFINITY(x)) {
+ if (copysign(1., x) == 1.)
+ /* atan2(+-inf, +inf) == +-pi/4 */
+ return copysign(0.25*Py_MATH_PI, y);
+ else
+ /* atan2(+-inf, -inf) == +-pi*3/4 */
+ return copysign(0.75*Py_MATH_PI, y);
+ }
+ /* atan2(+-inf, x) == +-pi/2 for finite x */
+ return copysign(0.5*Py_MATH_PI, y);
+ }
+ if (Py_IS_INFINITY(x) || y == 0.) {
+ if (copysign(1., x) == 1.)
+ /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
+ return copysign(0., y);
+ else
+ /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
+ return copysign(Py_MATH_PI, y);
+ }
+ return atan2(y, x);
+}
+
+
+/* IEEE 754-style remainder operation: x - n*y where n*y is the nearest
+ multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754
+ binary floating-point format, the result is always exact. */
+
+static double
+m_remainder(double x, double y)
+{
+ /* Deal with most common case first. */
+ if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) {
+ double absx, absy, c, m, r;
+
+ if (y == 0.0) {
+ return Py_NAN;
+ }
+
+ absx = fabs(x);
+ absy = fabs(y);
+ m = fmod(absx, absy);
+
+ /*
+ Warning: some subtlety here. What we *want* to know at this point is
+ whether the remainder m is less than, equal to, or greater than half
+ of absy. However, we can't do that comparison directly because we
+ can't be sure that 0.5*absy is representable (the multiplication
+ might incur precision loss due to underflow). So instead we compare
+ m with the complement c = absy - m: m < 0.5*absy if and only if m <
+ c, and so on. The catch is that absy - m might also not be
+ representable, but it turns out that it doesn't matter:
+
+ - if m > 0.5*absy then absy - m is exactly representable, by
+ Sterbenz's lemma, so m > c
+ - if m == 0.5*absy then again absy - m is exactly representable
+ and m == c
+ - if m < 0.5*absy then either (i) 0.5*absy is exactly representable,
+ in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m <
+ c, or (ii) absy is tiny, either subnormal or in the lowest normal
+ binade. Then absy - m is exactly representable and again m < c.
+ */
+
+ c = absy - m;
+ if (m < c) {
+ r = m;
+ }
+ else if (m > c) {
+ r = -c;
+ }
+ else {
+ /*
+ Here absx is exactly halfway between two multiples of absy,
+ and we need to choose the even multiple. x now has the form
+
+ absx = n * absy + m
+
+ for some integer n (recalling that m = 0.5*absy at this point).
+ If n is even we want to return m; if n is odd, we need to
+ return -m.
+
+ So
+
+ 0.5 * (absx - m) = (n/2) * absy
+
+ and now reducing modulo absy gives us:
+
+ | m, if n is odd
+ fmod(0.5 * (absx - m), absy) = |
+ | 0, if n is even
+
+ Now m - 2.0 * fmod(...) gives the desired result: m
+ if n is even, -m if m is odd.
+
+ Note that all steps in fmod(0.5 * (absx - m), absy)
+ will be computed exactly, with no rounding error
+ introduced.
+ */
+ assert(m == c);
+ r = m - 2.0 * fmod(0.5 * (absx - m), absy);
+ }
+ return copysign(1.0, x) * r;
+ }
+
+ /* Special values. */
+ if (Py_IS_NAN(x)) {
+ return x;
+ }
+ if (Py_IS_NAN(y)) {
+ return y;
+ }
+ if (Py_IS_INFINITY(x)) {
+ return Py_NAN;
+ }
+ assert(Py_IS_INFINITY(y));
+ return x;
+}
+
+
+/*
+ Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
+ log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
+ special values directly, passing positive non-special values through to
+ the system log/log10.
+ */
+
+static double
+m_log(double x)
+{
+ if (Py_IS_FINITE(x)) {
+ if (x > 0.0)
+ return log(x);
+ errno = EDOM;
+ if (x == 0.0)
+ return -Py_HUGE_VAL; /* log(0) = -inf */
+ else
+ return Py_NAN; /* log(-ve) = nan */
+ }
+ else if (Py_IS_NAN(x))
+ return x; /* log(nan) = nan */
+ else if (x > 0.0)
+ return x; /* log(inf) = inf */
+ else {
+ errno = EDOM;
+ return Py_NAN; /* log(-inf) = nan */
+ }
+}
+
+/*
+ log2: log to base 2.
+
+ Uses an algorithm that should:
+
+ (a) produce exact results for powers of 2, and
+ (b) give a monotonic log2 (for positive finite floats),
+ assuming that the system log is monotonic.
+*/
+
+static double
+m_log2(double x)
+{
+ if (!Py_IS_FINITE(x)) {
+ if (Py_IS_NAN(x))
+ return x; /* log2(nan) = nan */
+ else if (x > 0.0)
+ return x; /* log2(+inf) = +inf */
+ else {
+ errno = EDOM;
+ return Py_NAN; /* log2(-inf) = nan, invalid-operation */
+ }
+ }
+
+ if (x > 0.0) {
+ return log2(x);
+ }
+ else if (x == 0.0) {
+ errno = EDOM;
+ return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
+ }
+ else {
+ errno = EDOM;
+ return Py_NAN; /* log2(-inf) = nan, invalid-operation */
+ }
+}
+
+static double
+m_log10(double x)
+{
+ if (Py_IS_FINITE(x)) {
+ if (x > 0.0)
+ return log10(x);
+ errno = EDOM;
+ if (x == 0.0)
+ return -Py_HUGE_VAL; /* log10(0) = -inf */
+ else
+ return Py_NAN; /* log10(-ve) = nan */
+ }
+ else if (Py_IS_NAN(x))
+ return x; /* log10(nan) = nan */
+ else if (x > 0.0)
+ return x; /* log10(inf) = inf */
+ else {
+ errno = EDOM;
+ return Py_NAN; /* log10(-inf) = nan */
+ }
+}
+
+
+static PyObject *
+math_gcd(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
+{
+ PyObject *res, *x;
+ Py_ssize_t i;
+
+ if (nargs == 0) {
+ return PyLong_FromLong(0);
+ }
+ res = PyNumber_Index(args[0]);
+ if (res == NULL) {
+ return NULL;
+ }
+ if (nargs == 1) {
+ Py_SETREF(res, PyNumber_Absolute(res));
+ return res;
+ }
+
+ PyObject *one = _PyLong_GetOne(); // borrowed ref
+ for (i = 1; i < nargs; i++) {
+ x = _PyNumber_Index(args[i]);
+ if (x == NULL) {
+ Py_DECREF(res);
+ return NULL;
+ }
+ if (res == one) {
+ /* Fast path: just check arguments.
+ It is okay to use identity comparison here. */
+ Py_DECREF(x);
+ continue;
+ }
+ Py_SETREF(res, _PyLong_GCD(res, x));
+ Py_DECREF(x);
+ if (res == NULL) {
+ return NULL;
+ }
+ }
+ return res;
+}
+
+PyDoc_STRVAR(math_gcd_doc,
+"gcd($module, *integers)\n"
+"--\n"
+"\n"
+"Greatest Common Divisor.");
+
+
+static PyObject *
+long_lcm(PyObject *a, PyObject *b)
+{
+ PyObject *g, *m, *f, *ab;
+
+ if (_PyLong_IsZero((PyLongObject *)a) || _PyLong_IsZero((PyLongObject *)b)) {
+ return PyLong_FromLong(0);
+ }
+ g = _PyLong_GCD(a, b);
+ if (g == NULL) {
+ return NULL;
+ }
+ f = PyNumber_FloorDivide(a, g);
+ Py_DECREF(g);
+ if (f == NULL) {
+ return NULL;
+ }
+ m = PyNumber_Multiply(f, b);
+ Py_DECREF(f);
+ if (m == NULL) {
+ return NULL;
+ }
+ ab = PyNumber_Absolute(m);
+ Py_DECREF(m);
+ return ab;
+}
+
+
+static PyObject *
+math_lcm(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
+{
+ PyObject *res, *x;
+ Py_ssize_t i;
+
+ if (nargs == 0) {
+ return PyLong_FromLong(1);
+ }
+ res = PyNumber_Index(args[0]);
+ if (res == NULL) {
+ return NULL;
+ }
+ if (nargs == 1) {
+ Py_SETREF(res, PyNumber_Absolute(res));
+ return res;
+ }
+
+ PyObject *zero = _PyLong_GetZero(); // borrowed ref
+ for (i = 1; i < nargs; i++) {
+ x = PyNumber_Index(args[i]);
+ if (x == NULL) {
+ Py_DECREF(res);
+ return NULL;
+ }
+ if (res == zero) {
+ /* Fast path: just check arguments.
+ It is okay to use identity comparison here. */
+ Py_DECREF(x);
+ continue;
+ }
+ Py_SETREF(res, long_lcm(res, x));
+ Py_DECREF(x);
+ if (res == NULL) {
+ return NULL;
+ }
+ }
+ return res;
+}
+
+
+PyDoc_STRVAR(math_lcm_doc,
+"lcm($module, *integers)\n"
+"--\n"
+"\n"
+"Least Common Multiple.");
+
+
+/* Call is_error when errno != 0, and where x is the result libm
+ * returned. is_error will usually set up an exception and return
+ * true (1), but may return false (0) without setting up an exception.
+ */
+static int
+is_error(double x)
+{
+ int result = 1; /* presumption of guilt */
+ assert(errno); /* non-zero errno is a precondition for calling */
+ if (errno == EDOM)
+ PyErr_SetString(PyExc_ValueError, "math domain error");
+
+ else if (errno == ERANGE) {
+ /* ANSI C generally requires libm functions to set ERANGE
+ * on overflow, but also generally *allows* them to set
+ * ERANGE on underflow too. There's no consistency about
+ * the latter across platforms.
+ * Alas, C99 never requires that errno be set.
+ * Here we suppress the underflow errors (libm functions
+ * should return a zero on underflow, and +- HUGE_VAL on
+ * overflow, so testing the result for zero suffices to
+ * distinguish the cases).
+ *
+ * On some platforms (Ubuntu/ia64) it seems that errno can be
+ * set to ERANGE for subnormal results that do *not* underflow
+ * to zero. So to be safe, we'll ignore ERANGE whenever the
+ * function result is less than 1.5 in absolute value.
+ *
+ * bpo-46018: Changed to 1.5 to ensure underflows in expm1()
+ * are correctly detected, since the function may underflow
+ * toward -1.0 rather than 0.0.
+ */
+ if (fabs(x) < 1.5)
+ result = 0;
+ else
+ PyErr_SetString(PyExc_OverflowError,
+ "math range error");
+ }
+ else
+ /* Unexpected math error */
+ PyErr_SetFromErrno(PyExc_ValueError);
+ return result;
+}
+
+/*
+ math_1 is used to wrap a libm function f that takes a double
+ argument and returns a double.
+
+ The error reporting follows these rules, which are designed to do
+ the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
+ platforms.
+
+ - a NaN result from non-NaN inputs causes ValueError to be raised
+ - an infinite result from finite inputs causes OverflowError to be
+ raised if can_overflow is 1, or raises ValueError if can_overflow
+ is 0.
+ - if the result is finite and errno == EDOM then ValueError is
+ raised
+ - if the result is finite and nonzero and errno == ERANGE then
+ OverflowError is raised
+
+ The last rule is used to catch overflow on platforms which follow
+ C89 but for which HUGE_VAL is not an infinity.
+
+ For the majority of one-argument functions these rules are enough
+ to ensure that Python's functions behave as specified in 'Annex F'
+ of the C99 standard, with the 'invalid' and 'divide-by-zero'
+ floating-point exceptions mapping to Python's ValueError and the
+ 'overflow' floating-point exception mapping to OverflowError.
+ math_1 only works for functions that don't have singularities *and*
+ the possibility of overflow; fortunately, that covers everything we
+ care about right now.
+*/
+
+static PyObject *
+math_1(PyObject *arg, double (*func) (double), int can_overflow)
+{
+ double x, r;
+ x = PyFloat_AsDouble(arg);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ errno = 0;
+ r = (*func)(x);
+ if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
+ PyErr_SetString(PyExc_ValueError,
+ "math domain error"); /* invalid arg */
+ return NULL;
+ }
+ if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
+ if (can_overflow)
+ PyErr_SetString(PyExc_OverflowError,
+ "math range error"); /* overflow */
+ else
+ PyErr_SetString(PyExc_ValueError,
+ "math domain error"); /* singularity */
+ return NULL;
+ }
+ if (Py_IS_FINITE(r) && errno && is_error(r))
+ /* this branch unnecessary on most platforms */
+ return NULL;
+
+ return PyFloat_FromDouble(r);
+}
+
+/* variant of math_1, to be used when the function being wrapped is known to
+ set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
+ errno = ERANGE for overflow). */
+
+static PyObject *
+math_1a(PyObject *arg, double (*func) (double))
+{
+ double x, r;
+ x = PyFloat_AsDouble(arg);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ errno = 0;
+ r = (*func)(x);
+ if (errno && is_error(r))
+ return NULL;
+ return PyFloat_FromDouble(r);
+}
+
+/*
+ math_2 is used to wrap a libm function f that takes two double
+ arguments and returns a double.
+
+ The error reporting follows these rules, which are designed to do
+ the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
+ platforms.
+
+ - a NaN result from non-NaN inputs causes ValueError to be raised
+ - an infinite result from finite inputs causes OverflowError to be
+ raised.
+ - if the result is finite and errno == EDOM then ValueError is
+ raised
+ - if the result is finite and nonzero and errno == ERANGE then
+ OverflowError is raised
+
+ The last rule is used to catch overflow on platforms which follow
+ C89 but for which HUGE_VAL is not an infinity.
+
+ For most two-argument functions (copysign, fmod, hypot, atan2)
+ these rules are enough to ensure that Python's functions behave as
+ specified in 'Annex F' of the C99 standard, with the 'invalid' and
+ 'divide-by-zero' floating-point exceptions mapping to Python's
+ ValueError and the 'overflow' floating-point exception mapping to
+ OverflowError.
+*/
+
+static PyObject *
+math_2(PyObject *const *args, Py_ssize_t nargs,
+ double (*func) (double, double), const char *funcname)
+{
+ double x, y, r;
+ if (!_PyArg_CheckPositional(funcname, nargs, 2, 2))
+ return NULL;
+ x = PyFloat_AsDouble(args[0]);
+ if (x == -1.0 && PyErr_Occurred()) {
+ return NULL;
+ }
+ y = PyFloat_AsDouble(args[1]);
+ if (y == -1.0 && PyErr_Occurred()) {
+ return NULL;
+ }
+ errno = 0;
+ r = (*func)(x, y);
+ if (Py_IS_NAN(r)) {
+ if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
+ errno = EDOM;
+ else
+ errno = 0;
+ }
+ else if (Py_IS_INFINITY(r)) {
+ if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
+ errno = ERANGE;
+ else
+ errno = 0;
+ }
+ if (errno && is_error(r))
+ return NULL;
+ else
+ return PyFloat_FromDouble(r);
+}
+
+#define FUNC1(funcname, func, can_overflow, docstring) \
+ static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
+ return math_1(args, func, can_overflow); \
+ }\
+ PyDoc_STRVAR(math_##funcname##_doc, docstring);
+
+#define FUNC1A(funcname, func, docstring) \
+ static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
+ return math_1a(args, func); \
+ }\
+ PyDoc_STRVAR(math_##funcname##_doc, docstring);
+
+#define FUNC2(funcname, func, docstring) \
+ static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \
+ return math_2(args, nargs, func, #funcname); \
+ }\
+ PyDoc_STRVAR(math_##funcname##_doc, docstring);
+
+FUNC1(acos, acos, 0,
+ "acos($module, x, /)\n--\n\n"
+ "Return the arc cosine (measured in radians) of x.\n\n"
+ "The result is between 0 and pi.")
+FUNC1(acosh, acosh, 0,
+ "acosh($module, x, /)\n--\n\n"
+ "Return the inverse hyperbolic cosine of x.")
+FUNC1(asin, asin, 0,
+ "asin($module, x, /)\n--\n\n"
+ "Return the arc sine (measured in radians) of x.\n\n"
+ "The result is between -pi/2 and pi/2.")
+FUNC1(asinh, asinh, 0,
+ "asinh($module, x, /)\n--\n\n"
+ "Return the inverse hyperbolic sine of x.")
+FUNC1(atan, atan, 0,
+ "atan($module, x, /)\n--\n\n"
+ "Return the arc tangent (measured in radians) of x.\n\n"
+ "The result is between -pi/2 and pi/2.")
+FUNC2(atan2, m_atan2,
+ "atan2($module, y, x, /)\n--\n\n"
+ "Return the arc tangent (measured in radians) of y/x.\n\n"
+ "Unlike atan(y/x), the signs of both x and y are considered.")
+FUNC1(atanh, atanh, 0,
+ "atanh($module, x, /)\n--\n\n"
+ "Return the inverse hyperbolic tangent of x.")
+FUNC1(cbrt, cbrt, 0,
+ "cbrt($module, x, /)\n--\n\n"
+ "Return the cube root of x.")
+
+/*[clinic input]
+math.ceil
+
+ x as number: object
+ /
+
+Return the ceiling of x as an Integral.
+
+This is the smallest integer >= x.
+[clinic start generated code]*/
+
+static PyObject *
+math_ceil(PyObject *module, PyObject *number)
+/*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/
+{
+
+ if (!PyFloat_CheckExact(number)) {
+ math_module_state *state = get_math_module_state(module);
+ PyObject *method = _PyObject_LookupSpecial(number, state->str___ceil__);
+ if (method != NULL) {
+ PyObject *result = _PyObject_CallNoArgs(method);
+ Py_DECREF(method);
+ return result;
+ }
+ if (PyErr_Occurred())
+ return NULL;
+ }
+ double x = PyFloat_AsDouble(number);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+
+ return PyLong_FromDouble(ceil(x));
+}
+
+FUNC2(copysign, copysign,
+ "copysign($module, x, y, /)\n--\n\n"
+ "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n"
+ "On platforms that support signed zeros, copysign(1.0, -0.0)\n"
+ "returns -1.0.\n")
+FUNC1(cos, cos, 0,
+ "cos($module, x, /)\n--\n\n"
+ "Return the cosine of x (measured in radians).")
+FUNC1(cosh, cosh, 1,
+ "cosh($module, x, /)\n--\n\n"
+ "Return the hyperbolic cosine of x.")
+FUNC1A(erf, erf,
+ "erf($module, x, /)\n--\n\n"
+ "Error function at x.")
+FUNC1A(erfc, erfc,
+ "erfc($module, x, /)\n--\n\n"
+ "Complementary error function at x.")
+FUNC1(exp, exp, 1,
+ "exp($module, x, /)\n--\n\n"
+ "Return e raised to the power of x.")
+FUNC1(exp2, exp2, 1,
+ "exp2($module, x, /)\n--\n\n"
+ "Return 2 raised to the power of x.")
+FUNC1(expm1, expm1, 1,
+ "expm1($module, x, /)\n--\n\n"
+ "Return exp(x)-1.\n\n"
+ "This function avoids the loss of precision involved in the direct "
+ "evaluation of exp(x)-1 for small x.")
+FUNC1(fabs, fabs, 0,
+ "fabs($module, x, /)\n--\n\n"
+ "Return the absolute value of the float x.")
+
+/*[clinic input]
+math.floor
+
+ x as number: object
+ /
+
+Return the floor of x as an Integral.
+
+This is the largest integer <= x.
+[clinic start generated code]*/
+
+static PyObject *
+math_floor(PyObject *module, PyObject *number)
+/*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/
+{
+ double x;
+
+ if (PyFloat_CheckExact(number)) {
+ x = PyFloat_AS_DOUBLE(number);
+ }
+ else
+ {
+ math_module_state *state = get_math_module_state(module);
+ PyObject *method = _PyObject_LookupSpecial(number, state->str___floor__);
+ if (method != NULL) {
+ PyObject *result = _PyObject_CallNoArgs(method);
+ Py_DECREF(method);
+ return result;
+ }
+ if (PyErr_Occurred())
+ return NULL;
+ x = PyFloat_AsDouble(number);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ }
+ return PyLong_FromDouble(floor(x));
+}
+
+FUNC1A(gamma, m_tgamma,
+ "gamma($module, x, /)\n--\n\n"
+ "Gamma function at x.")
+FUNC1A(lgamma, m_lgamma,
+ "lgamma($module, x, /)\n--\n\n"
+ "Natural logarithm of absolute value of Gamma function at x.")
+FUNC1(log1p, m_log1p, 0,
+ "log1p($module, x, /)\n--\n\n"
+ "Return the natural logarithm of 1+x (base e).\n\n"
+ "The result is computed in a way which is accurate for x near zero.")
+FUNC2(remainder, m_remainder,
+ "remainder($module, x, y, /)\n--\n\n"
+ "Difference between x and the closest integer multiple of y.\n\n"
+ "Return x - n*y where n*y is the closest integer multiple of y.\n"
+ "In the case where x is exactly halfway between two multiples of\n"
+ "y, the nearest even value of n is used. The result is always exact.")
+FUNC1(sin, sin, 0,
+ "sin($module, x, /)\n--\n\n"
+ "Return the sine of x (measured in radians).")
+FUNC1(sinh, sinh, 1,
+ "sinh($module, x, /)\n--\n\n"
+ "Return the hyperbolic sine of x.")
+FUNC1(sqrt, sqrt, 0,
+ "sqrt($module, x, /)\n--\n\n"
+ "Return the square root of x.")
+FUNC1(tan, tan, 0,
+ "tan($module, x, /)\n--\n\n"
+ "Return the tangent of x (measured in radians).")
+FUNC1(tanh, tanh, 0,
+ "tanh($module, x, /)\n--\n\n"
+ "Return the hyperbolic tangent of x.")
+
+/* Precision summation function as msum() by Raymond Hettinger in
+ <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
+ enhanced with the exact partials sum and roundoff from Mark
+ Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
+ See those links for more details, proofs and other references.
+
+ Note 1: IEEE 754 floating-point semantics with a rounding mode of
+ roundTiesToEven are assumed.
+
+ Note 2: No provision is made for intermediate overflow handling;
+ therefore, fsum([1e+308, -1e+308, 1e+308]) returns 1e+308 while
+ fsum([1e+308, 1e+308, -1e+308]) raises an OverflowError due to the
+ overflow of the first partial sum.
+
+ Note 3: The algorithm has two potential sources of fragility. First, C
+ permits arithmetic operations on `double`s to be performed in an
+ intermediate format whose range and precision may be greater than those of
+ `double` (see for example C99 §5.2.4.2.2, paragraph 8). This can happen for
+ example on machines using the now largely historical x87 FPUs. In this case,
+ `fsum` can produce incorrect results. If `FLT_EVAL_METHOD` is `0` or `1`, or
+ `FLT_EVAL_METHOD` is `2` and `long double` is identical to `double`, then we
+ should be safe from this source of errors. Second, an aggressively
+ optimizing compiler can re-associate operations so that (for example) the
+ statement `yr = hi - x;` is treated as `yr = (x + y) - x` and then
+ re-associated as `yr = y + (x - x)`, giving `y = yr` and `lo = 0.0`. That
+ re-association would be in violation of the C standard, and should not occur
+ except possibly in the presence of unsafe optimizations (e.g., -ffast-math,
+ -fassociative-math). Such optimizations should be avoided for this module.
+
+ Note 4: The signature of math.fsum() differs from builtins.sum()
+ because the start argument doesn't make sense in the context of
+ accurate summation. Since the partials table is collapsed before
+ returning a result, sum(seq2, start=sum(seq1)) may not equal the
+ accurate result returned by sum(itertools.chain(seq1, seq2)).
+*/
+
+#define NUM_PARTIALS 32 /* initial partials array size, on stack */
+
+/* Extend the partials array p[] by doubling its size. */
+static int /* non-zero on error */
+_fsum_realloc(double **p_ptr, Py_ssize_t n,
+ double *ps, Py_ssize_t *m_ptr)
+{
+ void *v = NULL;
+ Py_ssize_t m = *m_ptr;
+
+ m += m; /* double */
+ if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
+ double *p = *p_ptr;
+ if (p == ps) {
+ v = PyMem_Malloc(sizeof(double) * m);
+ if (v != NULL)
+ memcpy(v, ps, sizeof(double) * n);
+ }
+ else
+ v = PyMem_Realloc(p, sizeof(double) * m);
+ }
+ if (v == NULL) { /* size overflow or no memory */
+ PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
+ return 1;
+ }
+ *p_ptr = (double*) v;
+ *m_ptr = m;
+ return 0;
+}
+
+/* Full precision summation of a sequence of floats.
+
+ def msum(iterable):
+ partials = [] # sorted, non-overlapping partial sums
+ for x in iterable:
+ i = 0
+ for y in partials:
+ if abs(x) < abs(y):
+ x, y = y, x
+ hi = x + y
+ lo = y - (hi - x)
+ if lo:
+ partials[i] = lo
+ i += 1
+ x = hi
+ partials[i:] = [x]
+ return sum_exact(partials)
+
+ Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
+ are exactly equal to x+y. The inner loop applies hi/lo summation to each
+ partial so that the list of partial sums remains exact.
+
+ Sum_exact() adds the partial sums exactly and correctly rounds the final
+ result (using the round-half-to-even rule). The items in partials remain
+ non-zero, non-special, non-overlapping and strictly increasing in
+ magnitude, but possibly not all having the same sign.
+
+ Depends on IEEE 754 arithmetic guarantees and half-even rounding.
+*/
+
+/*[clinic input]
+math.fsum
+
+ seq: object
+ /
+
+Return an accurate floating point sum of values in the iterable seq.
+
+Assumes IEEE-754 floating point arithmetic.
+[clinic start generated code]*/
+
+static PyObject *
+math_fsum(PyObject *module, PyObject *seq)
+/*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/
+{
+ PyObject *item, *iter, *sum = NULL;
+ Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
+ double x, y, t, ps[NUM_PARTIALS], *p = ps;
+ double xsave, special_sum = 0.0, inf_sum = 0.0;
+ double hi, yr, lo = 0.0;
+
+ iter = PyObject_GetIter(seq);
+ if (iter == NULL)
+ return NULL;
+
+ for(;;) { /* for x in iterable */
+ assert(0 <= n && n <= m);
+ assert((m == NUM_PARTIALS && p == ps) ||
+ (m > NUM_PARTIALS && p != NULL));
+
+ item = PyIter_Next(iter);
+ if (item == NULL) {
+ if (PyErr_Occurred())
+ goto _fsum_error;
+ break;
+ }
+ ASSIGN_DOUBLE(x, item, error_with_item);
+ Py_DECREF(item);
+
+ xsave = x;
+ for (i = j = 0; j < n; j++) { /* for y in partials */
+ y = p[j];
+ if (fabs(x) < fabs(y)) {
+ t = x; x = y; y = t;
+ }
+ hi = x + y;
+ yr = hi - x;
+ lo = y - yr;
+ if (lo != 0.0)
+ p[i++] = lo;
+ x = hi;
+ }
+
+ n = i; /* ps[i:] = [x] */
+ if (x != 0.0) {
+ if (! Py_IS_FINITE(x)) {
+ /* a nonfinite x could arise either as
+ a result of intermediate overflow, or
+ as a result of a nan or inf in the
+ summands */
+ if (Py_IS_FINITE(xsave)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "intermediate overflow in fsum");
+ goto _fsum_error;
+ }
+ if (Py_IS_INFINITY(xsave))
+ inf_sum += xsave;
+ special_sum += xsave;
+ /* reset partials */
+ n = 0;
+ }
+ else if (n >= m && _fsum_realloc(&p, n, ps, &m))
+ goto _fsum_error;
+ else
+ p[n++] = x;
+ }
+ }
+
+ if (special_sum != 0.0) {
+ if (Py_IS_NAN(inf_sum))
+ PyErr_SetString(PyExc_ValueError,
+ "-inf + inf in fsum");
+ else
+ sum = PyFloat_FromDouble(special_sum);
+ goto _fsum_error;
+ }
+
+ hi = 0.0;
+ if (n > 0) {
+ hi = p[--n];
+ /* sum_exact(ps, hi) from the top, stop when the sum becomes
+ inexact. */
+ while (n > 0) {
+ x = hi;
+ y = p[--n];
+ assert(fabs(y) < fabs(x));
+ hi = x + y;
+ yr = hi - x;
+ lo = y - yr;
+ if (lo != 0.0)
+ break;
+ }
+ /* Make half-even rounding work across multiple partials.
+ Needed so that sum([1e-16, 1, 1e16]) will round-up the last
+ digit to two instead of down to zero (the 1e-16 makes the 1
+ slightly closer to two). With a potential 1 ULP rounding
+ error fixed-up, math.fsum() can guarantee commutativity. */
+ if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
+ (lo > 0.0 && p[n-1] > 0.0))) {
+ y = lo * 2.0;
+ x = hi + y;
+ yr = x - hi;
+ if (y == yr)
+ hi = x;
+ }
+ }
+ sum = PyFloat_FromDouble(hi);
+
+ _fsum_error:
+ Py_DECREF(iter);
+ if (p != ps)
+ PyMem_Free(p);
+ return sum;
+
+ error_with_item:
+ Py_DECREF(item);
+ goto _fsum_error;
+}
+
+#undef NUM_PARTIALS
+
+
+static unsigned long
+count_set_bits(unsigned long n)
+{
+ unsigned long count = 0;
+ while (n != 0) {
+ ++count;
+ n &= n - 1; /* clear least significant bit */
+ }
+ return count;
+}
+
+/* Integer square root
+
+Given a nonnegative integer `n`, we want to compute the largest integer
+`a` for which `a * a <= n`, or equivalently the integer part of the exact
+square root of `n`.
+
+We use an adaptive-precision pure-integer version of Newton's iteration. Given
+a positive integer `n`, the algorithm produces at each iteration an integer
+approximation `a` to the square root of `n >> s` for some even integer `s`,
+with `s` decreasing as the iterations progress. On the final iteration, `s` is
+zero and we have an approximation to the square root of `n` itself.
+
+At every step, the approximation `a` is strictly within 1.0 of the true square
+root, so we have
+
+ (a - 1)**2 < (n >> s) < (a + 1)**2
+
+After the final iteration, a check-and-correct step is needed to determine
+whether `a` or `a - 1` gives the desired integer square root of `n`.
+
+The algorithm is remarkable in its simplicity. There's no need for a
+per-iteration check-and-correct step, and termination is straightforward: the
+number of iterations is known in advance (it's exactly `floor(log2(log2(n)))`
+for `n > 1`). The only tricky part of the correctness proof is in establishing
+that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one
+iteration to the next. A sketch of the proof of this is given below.
+
+In addition to the proof sketch, a formal, computer-verified proof
+of correctness (using Lean) of an equivalent recursive algorithm can be found
+here:
+
+ https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean
+
+
+Here's Python code equivalent to the C implementation below:
+
+ def isqrt(n):
+ """
+ Return the integer part of the square root of the input.
+ """
+ n = operator.index(n)
+
+ if n < 0:
+ raise ValueError("isqrt() argument must be nonnegative")
+ if n == 0:
+ return 0
+
+ c = (n.bit_length() - 1) // 2
+ a = 1
+ d = 0
+ for s in reversed(range(c.bit_length())):
+ # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2
+ e = d
+ d = c >> s
+ a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
+
+ return a - (a*a > n)
+
+
+Sketch of proof of correctness
+------------------------------
+
+The delicate part of the correctness proof is showing that the loop invariant
+is preserved from one iteration to the next. That is, just before the line
+
+ a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
+
+is executed in the above code, we know that
+
+ (1) (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2.
+
+(since `e` is always the value of `d` from the previous iteration). We must
+prove that after that line is executed, we have
+
+ (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2
+
+To facilitate the proof, we make some changes of notation. Write `m` for
+`n >> 2*(c-d)`, and write `b` for the new value of `a`, so
+
+ b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
+
+or equivalently:
+
+ (2) b = (a << d - e - 1) + (m >> d - e + 1) // a
+
+Then we can rewrite (1) as:
+
+ (3) (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2
+
+and we must show that (b - 1)**2 < m < (b + 1)**2.
+
+From this point on, we switch to mathematical notation, so `/` means exact
+division rather than integer division and `^` is used for exponentiation. We
+use the `√` symbol for the exact square root. In (3), we can remove the
+implicit floor operation to give:
+
+ (4) (a - 1)^2 < m / 4^(d - e) < (a + 1)^2
+
+Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives
+
+ (5) 0 <= | 2^(d-e)a - √m | < 2^(d-e)
+
+Squaring and dividing through by `2^(d-e+1) a` gives
+
+ (6) 0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a
+
+We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the
+right-hand side of (6) with `1`, and now replacing the central
+term `m / (2^(d-e+1) a)` with its floor in (6) gives
+
+ (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1
+
+Or equivalently, from (2):
+
+ (7) -1 < b - √m < 1
+
+and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed
+to prove.
+
+We're not quite done: we still have to prove the inequality `2^(d - e - 1) <=
+a` that was used to get line (7) above. From the definition of `c`, we have
+`4^c <= n`, which implies
+
+ (8) 4^d <= m
+
+also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows
+that `2d - 2e - 1 <= d` and hence that
+
+ (9) 4^(2d - 2e - 1) <= m
+
+Dividing both sides by `4^(d - e)` gives
+
+ (10) 4^(d - e - 1) <= m / 4^(d - e)
+
+But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence
+
+ (11) 4^(d - e - 1) < (a + 1)^2
+
+Now taking square roots of both sides and observing that both `2^(d-e-1)` and
+`a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This
+completes the proof sketch.
+
+*/
+
+/*
+ The _approximate_isqrt_tab table provides approximate square roots for
+ 16-bit integers. For any n in the range 2**14 <= n < 2**16, the value
+
+ a = _approximate_isqrt_tab[(n >> 8) - 64]
+
+ is an approximate square root of n, satisfying (a - 1)**2 < n < (a + 1)**2.
+
+ The table was computed in Python using the expression:
+
+ [min(round(sqrt(256*n + 128)), 255) for n in range(64, 256)]
+*/
+
+static const uint8_t _approximate_isqrt_tab[192] = {
+ 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
+ 140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150,
+ 151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160,
+ 160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169,
+ 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178,
+ 179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186,
+ 187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194,
+ 195, 196, 196, 197, 198, 198, 199, 200, 200, 201, 201, 202,
+ 203, 203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 210,
+ 210, 211, 211, 212, 213, 213, 214, 214, 215, 216, 216, 217,
+ 217, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224,
+ 224, 225, 225, 226, 227, 227, 228, 228, 229, 229, 230, 230,
+ 231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 237, 237,
+ 238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243,
+ 244, 244, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250,
+ 250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, 255,
+};
+
+/* Approximate square root of a large 64-bit integer.
+
+ Given `n` satisfying `2**62 <= n < 2**64`, return `a`
+ satisfying `(a - 1)**2 < n < (a + 1)**2`. */
+
+static inline uint32_t
+_approximate_isqrt(uint64_t n)
+{
+ uint32_t u = _approximate_isqrt_tab[(n >> 56) - 64];
+ u = (u << 7) + (uint32_t)(n >> 41) / u;
+ return (u << 15) + (uint32_t)((n >> 17) / u);
+}
+
+/*[clinic input]
+math.isqrt
+
+ n: object
+ /
+
+Return the integer part of the square root of the input.
+[clinic start generated code]*/
+
+static PyObject *
+math_isqrt(PyObject *module, PyObject *n)
+/*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
+{
+ int a_too_large, c_bit_length;
+ size_t c, d;
+ uint64_t m;
+ uint32_t u;
+ PyObject *a = NULL, *b;
+
+ n = _PyNumber_Index(n);
+ if (n == NULL) {
+ return NULL;
+ }
+
+ if (_PyLong_IsNegative((PyLongObject *)n)) {
+ PyErr_SetString(
+ PyExc_ValueError,
+ "isqrt() argument must be nonnegative");
+ goto error;
+ }
+ if (_PyLong_IsZero((PyLongObject *)n)) {
+ Py_DECREF(n);
+ return PyLong_FromLong(0);
+ }
+
+ /* c = (n.bit_length() - 1) // 2 */
+ c = _PyLong_NumBits(n);
+ if (c == (size_t)(-1)) {
+ goto error;
+ }
+ c = (c - 1U) / 2U;
+
+ /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
+ fast, almost branch-free algorithm. */
+ if (c <= 31U) {
+ int shift = 31 - (int)c;
+ m = (uint64_t)PyLong_AsUnsignedLongLong(n);
+ Py_DECREF(n);
+ if (m == (uint64_t)(-1) && PyErr_Occurred()) {
+ return NULL;
+ }
+ u = _approximate_isqrt(m << 2*shift) >> shift;
+ u -= (uint64_t)u * u > m;
+ return PyLong_FromUnsignedLong(u);
+ }
+
+ /* Slow path: n >= 2**64. We perform the first five iterations in C integer
+ arithmetic, then switch to using Python long integers. */
+
+ /* From n >= 2**64 it follows that c.bit_length() >= 6. */
+ c_bit_length = 6;
+ while ((c >> c_bit_length) > 0U) {
+ ++c_bit_length;
+ }
+
+ /* Initialise d and a. */
+ d = c >> (c_bit_length - 5);
+ b = _PyLong_Rshift(n, 2U*c - 62U);
+ if (b == NULL) {
+ goto error;
+ }
+ m = (uint64_t)PyLong_AsUnsignedLongLong(b);
+ Py_DECREF(b);
+ if (m == (uint64_t)(-1) && PyErr_Occurred()) {
+ goto error;
+ }
+ u = _approximate_isqrt(m) >> (31U - d);
+ a = PyLong_FromUnsignedLong(u);
+ if (a == NULL) {
+ goto error;
+ }
+
+ for (int s = c_bit_length - 6; s >= 0; --s) {
+ PyObject *q;
+ size_t e = d;
+
+ d = c >> s;
+
+ /* q = (n >> 2*c - e - d + 1) // a */
+ q = _PyLong_Rshift(n, 2U*c - d - e + 1U);
+ if (q == NULL) {
+ goto error;
+ }
+ Py_SETREF(q, PyNumber_FloorDivide(q, a));
+ if (q == NULL) {
+ goto error;
+ }
+
+ /* a = (a << d - 1 - e) + q */
+ Py_SETREF(a, _PyLong_Lshift(a, d - 1U - e));
+ if (a == NULL) {
+ Py_DECREF(q);
+ goto error;
+ }
+ Py_SETREF(a, PyNumber_Add(a, q));
+ Py_DECREF(q);
+ if (a == NULL) {
+ goto error;
+ }
+ }
+
+ /* The correct result is either a or a - 1. Figure out which, and
+ decrement a if necessary. */
+
+ /* a_too_large = n < a * a */
+ b = PyNumber_Multiply(a, a);
+ if (b == NULL) {
+ goto error;
+ }
+ a_too_large = PyObject_RichCompareBool(n, b, Py_LT);
+ Py_DECREF(b);
+ if (a_too_large == -1) {
+ goto error;
+ }
+
+ if (a_too_large) {
+ Py_SETREF(a, PyNumber_Subtract(a, _PyLong_GetOne()));
+ }
+ Py_DECREF(n);
+ return a;
+
+ error:
+ Py_XDECREF(a);
+ Py_DECREF(n);
+ return NULL;
+}
+
+/* Divide-and-conquer factorial algorithm
+ *
+ * Based on the formula and pseudo-code provided at:
+ * http://www.luschny.de/math/factorial/binarysplitfact.html
+ *
+ * Faster algorithms exist, but they're more complicated and depend on
+ * a fast prime factorization algorithm.
+ *
+ * Notes on the algorithm
+ * ----------------------
+ *
+ * factorial(n) is written in the form 2**k * m, with m odd. k and m are
+ * computed separately, and then combined using a left shift.
+ *
+ * The function factorial_odd_part computes the odd part m (i.e., the greatest
+ * odd divisor) of factorial(n), using the formula:
+ *
+ * factorial_odd_part(n) =
+ *
+ * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
+ *
+ * Example: factorial_odd_part(20) =
+ *
+ * (1) *
+ * (1) *
+ * (1 * 3 * 5) *
+ * (1 * 3 * 5 * 7 * 9) *
+ * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
+ *
+ * Here i goes from large to small: the first term corresponds to i=4 (any
+ * larger i gives an empty product), and the last term corresponds to i=0.
+ * Each term can be computed from the last by multiplying by the extra odd
+ * numbers required: e.g., to get from the penultimate term to the last one,
+ * we multiply by (11 * 13 * 15 * 17 * 19).
+ *
+ * To see a hint of why this formula works, here are the same numbers as above
+ * but with the even parts (i.e., the appropriate powers of 2) included. For
+ * each subterm in the product for i, we multiply that subterm by 2**i:
+ *
+ * factorial(20) =
+ *
+ * (16) *
+ * (8) *
+ * (4 * 12 * 20) *
+ * (2 * 6 * 10 * 14 * 18) *
+ * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
+ *
+ * The factorial_partial_product function computes the product of all odd j in
+ * range(start, stop) for given start and stop. It's used to compute the
+ * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
+ * operates recursively, repeatedly splitting the range into two roughly equal
+ * pieces until the subranges are small enough to be computed using only C
+ * integer arithmetic.
+ *
+ * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
+ * the factorial) is computed independently in the main math_factorial
+ * function. By standard results, its value is:
+ *
+ * two_valuation = n//2 + n//4 + n//8 + ....
+ *
+ * It can be shown (e.g., by complete induction on n) that two_valuation is
+ * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
+ * '1'-bits in the binary expansion of n.
+ */
+
+/* factorial_partial_product: Compute product(range(start, stop, 2)) using
+ * divide and conquer. Assumes start and stop are odd and stop > start.
+ * max_bits must be >= bit_length(stop - 2). */
+
+static PyObject *
+factorial_partial_product(unsigned long start, unsigned long stop,
+ unsigned long max_bits)
+{
+ unsigned long midpoint, num_operands;
+ PyObject *left = NULL, *right = NULL, *result = NULL;
+
+ /* If the return value will fit an unsigned long, then we can
+ * multiply in a tight, fast loop where each multiply is O(1).
+ * Compute an upper bound on the number of bits required to store
+ * the answer.
+ *
+ * Storing some integer z requires floor(lg(z))+1 bits, which is
+ * conveniently the value returned by bit_length(z). The
+ * product x*y will require at most
+ * bit_length(x) + bit_length(y) bits to store, based
+ * on the idea that lg product = lg x + lg y.
+ *
+ * We know that stop - 2 is the largest number to be multiplied. From
+ * there, we have: bit_length(answer) <= num_operands *
+ * bit_length(stop - 2)
+ */
+
+ num_operands = (stop - start) / 2;
+ /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
+ * unlikely case of an overflow in num_operands * max_bits. */
+ if (num_operands <= 8 * SIZEOF_LONG &&
+ num_operands * max_bits <= 8 * SIZEOF_LONG) {
+ unsigned long j, total;
+ for (total = start, j = start + 2; j < stop; j += 2)
+ total *= j;
+ return PyLong_FromUnsignedLong(total);
+ }
+
+ /* find midpoint of range(start, stop), rounded up to next odd number. */
+ midpoint = (start + num_operands) | 1;
+ left = factorial_partial_product(start, midpoint,
+ _Py_bit_length(midpoint - 2));
+ if (left == NULL)
+ goto error;
+ right = factorial_partial_product(midpoint, stop, max_bits);
+ if (right == NULL)
+ goto error;
+ result = PyNumber_Multiply(left, right);
+
+ error:
+ Py_XDECREF(left);
+ Py_XDECREF(right);
+ return result;
+}
+
+/* factorial_odd_part: compute the odd part of factorial(n). */
+
+static PyObject *
+factorial_odd_part(unsigned long n)
+{
+ long i;
+ unsigned long v, lower, upper;
+ PyObject *partial, *tmp, *inner, *outer;
+
+ inner = PyLong_FromLong(1);
+ if (inner == NULL)
+ return NULL;
+ outer = Py_NewRef(inner);
+
+ upper = 3;
+ for (i = _Py_bit_length(n) - 2; i >= 0; i--) {
+ v = n >> i;
+ if (v <= 2)
+ continue;
+ lower = upper;
+ /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
+ upper = (v + 1) | 1;
+ /* Here inner is the product of all odd integers j in the range (0,
+ n/2**(i+1)]. The factorial_partial_product call below gives the
+ product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
+ partial = factorial_partial_product(lower, upper, _Py_bit_length(upper-2));
+ /* inner *= partial */
+ if (partial == NULL)
+ goto error;
+ tmp = PyNumber_Multiply(inner, partial);
+ Py_DECREF(partial);
+ if (tmp == NULL)
+ goto error;
+ Py_SETREF(inner, tmp);
+ /* Now inner is the product of all odd integers j in the range (0,
+ n/2**i], giving the inner product in the formula above. */
+
+ /* outer *= inner; */
+ tmp = PyNumber_Multiply(outer, inner);
+ if (tmp == NULL)
+ goto error;
+ Py_SETREF(outer, tmp);
+ }
+ Py_DECREF(inner);
+ return outer;
+
+ error:
+ Py_DECREF(outer);
+ Py_DECREF(inner);
+ return NULL;
+}
+
+
+/* Lookup table for small factorial values */
+
+static const unsigned long SmallFactorials[] = {
+ 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
+ 362880, 3628800, 39916800, 479001600,
+#if SIZEOF_LONG >= 8
+ 6227020800, 87178291200, 1307674368000,
+ 20922789888000, 355687428096000, 6402373705728000,
+ 121645100408832000, 2432902008176640000
+#endif
+};
+
+/*[clinic input]
+math.factorial
+
+ n as arg: object
+ /
+
+Find n!.
+
+Raise a ValueError if x is negative or non-integral.
+[clinic start generated code]*/
+
+static PyObject *
+math_factorial(PyObject *module, PyObject *arg)
+/*[clinic end generated code: output=6686f26fae00e9ca input=713fb771677e8c31]*/
+{
+ long x, two_valuation;
+ int overflow;
+ PyObject *result, *odd_part;
+
+ x = PyLong_AsLongAndOverflow(arg, &overflow);
+ if (x == -1 && PyErr_Occurred()) {
+ return NULL;
+ }
+ else if (overflow == 1) {
+ PyErr_Format(PyExc_OverflowError,
+ "factorial() argument should not exceed %ld",
+ LONG_MAX);
+ return NULL;
+ }
+ else if (overflow == -1 || x < 0) {
+ PyErr_SetString(PyExc_ValueError,
+ "factorial() not defined for negative values");
+ return NULL;
+ }
+
+ /* use lookup table if x is small */
+ if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
+ return PyLong_FromUnsignedLong(SmallFactorials[x]);
+
+ /* else express in the form odd_part * 2**two_valuation, and compute as
+ odd_part << two_valuation. */
+ odd_part = factorial_odd_part(x);
+ if (odd_part == NULL)
+ return NULL;
+ two_valuation = x - count_set_bits(x);
+ result = _PyLong_Lshift(odd_part, two_valuation);
+ Py_DECREF(odd_part);
+ return result;
+}
+
+
+/*[clinic input]
+math.trunc
+
+ x: object
+ /
+
+Truncates the Real x to the nearest Integral toward 0.
+
+Uses the __trunc__ magic method.
+[clinic start generated code]*/
+
+static PyObject *
+math_trunc(PyObject *module, PyObject *x)
+/*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/
+{
+ PyObject *trunc, *result;
+
+ if (PyFloat_CheckExact(x)) {
+ return PyFloat_Type.tp_as_number->nb_int(x);
+ }
+
+ if (!_PyType_IsReady(Py_TYPE(x))) {
+ if (PyType_Ready(Py_TYPE(x)) < 0)
+ return NULL;
+ }
+
+ math_module_state *state = get_math_module_state(module);
+ trunc = _PyObject_LookupSpecial(x, state->str___trunc__);
+ if (trunc == NULL) {
+ if (!PyErr_Occurred())
+ PyErr_Format(PyExc_TypeError,
+ "type %.100s doesn't define __trunc__ method",
+ Py_TYPE(x)->tp_name);
+ return NULL;
+ }
+ result = _PyObject_CallNoArgs(trunc);
+ Py_DECREF(trunc);
+ return result;
+}
+
+
+/*[clinic input]
+math.frexp
+
+ x: double
+ /
+
+Return the mantissa and exponent of x, as pair (m, e).
+
+m is a float and e is an int, such that x = m * 2.**e.
+If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
+[clinic start generated code]*/
+
+static PyObject *
+math_frexp_impl(PyObject *module, double x)
+/*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/
+{
+ int i;
+ /* deal with special cases directly, to sidestep platform
+ differences */
+ if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
+ i = 0;
+ }
+ else {
+ x = frexp(x, &i);
+ }
+ return Py_BuildValue("(di)", x, i);
+}
+
+
+/*[clinic input]
+math.ldexp
+
+ x: double
+ i: object
+ /
+
+Return x * (2**i).
+
+This is essentially the inverse of frexp().
+[clinic start generated code]*/
+
+static PyObject *
+math_ldexp_impl(PyObject *module, double x, PyObject *i)
+/*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/
+{
+ double r;
+ long exp;
+ int overflow;
+
+ if (PyLong_Check(i)) {
+ /* on overflow, replace exponent with either LONG_MAX
+ or LONG_MIN, depending on the sign. */
+ exp = PyLong_AsLongAndOverflow(i, &overflow);
+ if (exp == -1 && PyErr_Occurred())
+ return NULL;
+ if (overflow)
+ exp = overflow < 0 ? LONG_MIN : LONG_MAX;
+ }
+ else {
+ PyErr_SetString(PyExc_TypeError,
+ "Expected an int as second argument to ldexp.");
+ return NULL;
+ }
+
+ if (x == 0. || !Py_IS_FINITE(x)) {
+ /* NaNs, zeros and infinities are returned unchanged */
+ r = x;
+ errno = 0;
+ } else if (exp > INT_MAX) {
+ /* overflow */
+ r = copysign(Py_HUGE_VAL, x);
+ errno = ERANGE;
+ } else if (exp < INT_MIN) {
+ /* underflow to +-0 */
+ r = copysign(0., x);
+ errno = 0;
+ } else {
+ errno = 0;
+ r = ldexp(x, (int)exp);
+ if (Py_IS_INFINITY(r))
+ errno = ERANGE;
+ }
+
+ if (errno && is_error(r))
+ return NULL;
+ return PyFloat_FromDouble(r);
+}
+
+
+/*[clinic input]
+math.modf
+
+ x: double
+ /
+
+Return the fractional and integer parts of x.
+
+Both results carry the sign of x and are floats.
+[clinic start generated code]*/
+
+static PyObject *
+math_modf_impl(PyObject *module, double x)
+/*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/
+{
+ double y;
+ /* some platforms don't do the right thing for NaNs and
+ infinities, so we take care of special cases directly. */
+ if (!Py_IS_FINITE(x)) {
+ if (Py_IS_INFINITY(x))
+ return Py_BuildValue("(dd)", copysign(0., x), x);
+ else if (Py_IS_NAN(x))
+ return Py_BuildValue("(dd)", x, x);
+ }
+
+ errno = 0;
+ x = modf(x, &y);
+ return Py_BuildValue("(dd)", x, y);
+}
+
+
+/* A decent logarithm is easy to compute even for huge ints, but libm can't
+ do that by itself -- loghelper can. func is log or log10, and name is
+ "log" or "log10". Note that overflow of the result isn't possible: an int
+ can contain no more than INT_MAX * SHIFT bits, so has value certainly less
+ than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
+ small enough to fit in an IEEE single. log and log10 are even smaller.
+ However, intermediate overflow is possible for an int if the number of bits
+ in that int is larger than PY_SSIZE_T_MAX. */
+
+static PyObject*
+loghelper(PyObject* arg, double (*func)(double))
+{
+ /* If it is int, do it ourselves. */
+ if (PyLong_Check(arg)) {
+ double x, result;
+ Py_ssize_t e;
+
+ /* Negative or zero inputs give a ValueError. */
+ if (!_PyLong_IsPositive((PyLongObject *)arg)) {
+ PyErr_SetString(PyExc_ValueError,
+ "math domain error");
+ return NULL;
+ }
+
+ x = PyLong_AsDouble(arg);
+ if (x == -1.0 && PyErr_Occurred()) {
+ if (!PyErr_ExceptionMatches(PyExc_OverflowError))
+ return NULL;
+ /* Here the conversion to double overflowed, but it's possible
+ to compute the log anyway. Clear the exception and continue. */
+ PyErr_Clear();
+ x = _PyLong_Frexp((PyLongObject *)arg, &e);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
+ result = func(x) + func(2.0) * e;
+ }
+ else
+ /* Successfully converted x to a double. */
+ result = func(x);
+ return PyFloat_FromDouble(result);
+ }
+
+ /* Else let libm handle it by itself. */
+ return math_1(arg, func, 0);
+}
+
+
+/* AC: cannot convert yet, see gh-102839 and gh-89381, waiting
+ for support of multiple signatures */
+static PyObject *
+math_log(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
+{
+ PyObject *num, *den;
+ PyObject *ans;
+
+ if (!_PyArg_CheckPositional("log", nargs, 1, 2))
+ return NULL;
+
+ num = loghelper(args[0], m_log);
+ if (num == NULL || nargs == 1)
+ return num;
+
+ den = loghelper(args[1], m_log);
+ if (den == NULL) {
+ Py_DECREF(num);
+ return NULL;
+ }
+
+ ans = PyNumber_TrueDivide(num, den);
+ Py_DECREF(num);
+ Py_DECREF(den);
+ return ans;
+}
+
+PyDoc_STRVAR(math_log_doc,
+"log(x, [base=math.e])\n\
+Return the logarithm of x to the given base.\n\n\
+If the base is not specified, returns the natural logarithm (base e) of x.");
+
+/*[clinic input]
+math.log2
+
+ x: object
+ /
+
+Return the base 2 logarithm of x.
+[clinic start generated code]*/
+
+static PyObject *
+math_log2(PyObject *module, PyObject *x)
+/*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/
+{
+ return loghelper(x, m_log2);
+}
+
+
+/*[clinic input]
+math.log10
+
+ x: object
+ /
+
+Return the base 10 logarithm of x.
+[clinic start generated code]*/
+
+static PyObject *
+math_log10(PyObject *module, PyObject *x)
+/*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/
+{
+ return loghelper(x, m_log10);
+}
+
+
+/*[clinic input]
+math.fmod
+
+ x: double
+ y: double
+ /
+
+Return fmod(x, y), according to platform C.
+
+x % y may differ.
+[clinic start generated code]*/
+
+static PyObject *
+math_fmod_impl(PyObject *module, double x, double y)
+/*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/
+{
+ double r;
+ /* fmod(x, +/-Inf) returns x for finite x. */
+ if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
+ return PyFloat_FromDouble(x);
+ errno = 0;
+ r = fmod(x, y);
+ if (Py_IS_NAN(r)) {
+ if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
+ errno = EDOM;
+ else
+ errno = 0;
+ }
+ if (errno && is_error(r))
+ return NULL;
+ else
+ return PyFloat_FromDouble(r);
+}
+
+/*
+Given a *vec* of values, compute the vector norm:
+
+ sqrt(sum(x ** 2 for x in vec))
+
+The *max* variable should be equal to the largest fabs(x).
+The *n* variable is the length of *vec*.
+If n==0, then *max* should be 0.0.
+If an infinity is present in the vec, *max* should be INF.
+The *found_nan* variable indicates whether some member of
+the *vec* is a NaN.
+
+To avoid overflow/underflow and to achieve high accuracy giving results
+that are almost always correctly rounded, four techniques are used:
+
+* lossless scaling using a power-of-two scaling factor
+* accurate squaring using Veltkamp-Dekker splitting [1]
+ or an equivalent with an fma() call
+* compensated summation using a variant of the Neumaier algorithm [2]
+* differential correction of the square root [3]
+
+The usual presentation of the Neumaier summation algorithm has an
+expensive branch depending on which operand has the larger
+magnitude. We avoid this cost by arranging the calculation so that
+fabs(csum) is always as large as fabs(x).
+
+To establish the invariant, *csum* is initialized to 1.0 which is
+always larger than x**2 after scaling or after division by *max*.
+After the loop is finished, the initial 1.0 is subtracted out for a
+net zero effect on the final sum. Since *csum* will be greater than
+1.0, the subtraction of 1.0 will not cause fractional digits to be
+dropped from *csum*.
+
+To get the full benefit from compensated summation, the largest
+addend should be in the range: 0.5 <= |x| <= 1.0. Accordingly,
+scaling or division by *max* should not be skipped even if not
+otherwise needed to prevent overflow or loss of precision.
+
+The assertion that hi*hi <= 1.0 is a bit subtle. Each vector element
+gets scaled to a magnitude below 1.0. The Veltkamp-Dekker splitting
+algorithm gives a *hi* value that is correctly rounded to half
+precision. When a value at or below 1.0 is correctly rounded, it
+never goes above 1.0. And when values at or below 1.0 are squared,
+they remain at or below 1.0, thus preserving the summation invariant.
+
+Another interesting assertion is that csum+lo*lo == csum. In the loop,
+each scaled vector element has a magnitude less than 1.0. After the
+Veltkamp split, *lo* has a maximum value of 2**-27. So the maximum
+value of *lo* squared is 2**-54. The value of ulp(1.0)/2.0 is 2**-53.
+Given that csum >= 1.0, we have:
+ lo**2 <= 2**-54 < 2**-53 == 1/2*ulp(1.0) <= ulp(csum)/2
+Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum.
+
+To minimize loss of information during the accumulation of fractional
+values, each term has a separate accumulator. This also breaks up
+sequential dependencies in the inner loop so the CPU can maximize
+floating point throughput. [4] On an Apple M1 Max, hypot(*vec)
+takes only 3.33 µsec when len(vec) == 1000.
+
+The square root differential correction is needed because a
+correctly rounded square root of a correctly rounded sum of
+squares can still be off by as much as one ulp.
+
+The differential correction starts with a value *x* that is
+the difference between the square of *h*, the possibly inaccurately
+rounded square root, and the accurately computed sum of squares.
+The correction is the first order term of the Maclaurin series
+expansion of sqrt(h**2 + x) == h + x/(2*h) + O(x**2). [5]
+
+Essentially, this differential correction is equivalent to one
+refinement step in Newton's divide-and-average square root
+algorithm, effectively doubling the number of accurate bits.
+This technique is used in Dekker's SQRT2 algorithm and again in
+Borges' ALGORITHM 4 and 5.
+
+The hypot() function is faithfully rounded (less than 1 ulp error)
+and usually correctly rounded (within 1/2 ulp). The squaring
+step is exact. The Neumaier summation computes as if in doubled
+precision (106 bits) and has the advantage that its input squares
+are non-negative so that the condition number of the sum is one.
+The square root with a differential correction is likewise computed
+as if in doubled precision.
+
+For n <= 1000, prior to the final addition that rounds the overall
+result, the internal accuracy of "h" together with its correction of
+"x / (2.0 * h)" is at least 100 bits. [6] Also, hypot() was tested
+against a Decimal implementation with prec=300. After 100 million
+trials, no incorrectly rounded examples were found. In addition,
+perfect commutativity (all permutations are exactly equal) was
+verified for 1 billion random inputs with n=5. [7]
+
+References:
+
+1. Veltkamp-Dekker splitting: http://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
+2. Compensated summation: http://www.ti3.tu-harburg.de/paper/rump/Ru08b.pdf
+3. Square root differential correction: https://arxiv.org/pdf/1904.09481.pdf
+4. Data dependency graph: https://bugs.python.org/file49439/hypot.png
+5. https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
+6. Analysis of internal accuracy: https://bugs.python.org/file49484/best_frac.py
+7. Commutativity test: https://bugs.python.org/file49448/test_hypot_commutativity.py
+
+*/
+
+static inline double
+vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
+{
+ double x, h, scale, csum = 1.0, frac1 = 0.0, frac2 = 0.0;
+ DoubleLength pr, sm;
+ int max_e;
+ Py_ssize_t i;
+
+ if (Py_IS_INFINITY(max)) {
+ return max;
+ }
+ if (found_nan) {
+ return Py_NAN;
+ }
+ if (max == 0.0 || n <= 1) {
+ return max;
+ }
+ frexp(max, &max_e);
+ if (max_e < -1023) {
+ /* When max_e < -1023, ldexp(1.0, -max_e) would overflow. */
+ for (i=0 ; i < n ; i++) {
+ vec[i] /= DBL_MIN; // convert subnormals to normals
+ }
+ return DBL_MIN * vector_norm(n, vec, max / DBL_MIN, found_nan);
+ }
+ scale = ldexp(1.0, -max_e);
+ assert(max * scale >= 0.5);
+ assert(max * scale < 1.0);
+ for (i=0 ; i < n ; i++) {
+ x = vec[i];
+ assert(Py_IS_FINITE(x) && fabs(x) <= max);
+ x *= scale; // lossless scaling
+ assert(fabs(x) < 1.0);
+ pr = dl_mul(x, x); // lossless squaring
+ assert(pr.hi <= 1.0);
+ sm = dl_fast_sum(csum, pr.hi); // lossless addition
+ csum = sm.hi;
+ frac1 += pr.lo; // lossy addition
+ frac2 += sm.lo; // lossy addition
+ }
+ h = sqrt(csum - 1.0 + (frac1 + frac2));
+ pr = dl_mul(-h, h);
+ sm = dl_fast_sum(csum, pr.hi);
+ csum = sm.hi;
+ frac1 += pr.lo;
+ frac2 += sm.lo;
+ x = csum - 1.0 + (frac1 + frac2);
+ h += x / (2.0 * h); // differential correction
+ return h / scale;
+}
+
+#define NUM_STACK_ELEMS 16
+
+/*[clinic input]
+math.dist
+
+ p: object
+ q: object
+ /
+
+Return the Euclidean distance between two points p and q.
+
+The points should be specified as sequences (or iterables) of
+coordinates. Both inputs must have the same dimension.
+
+Roughly equivalent to:
+ sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
+[clinic start generated code]*/
+
+static PyObject *
+math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
+/*[clinic end generated code: output=56bd9538d06bbcfe input=74e85e1b6092e68e]*/
+{
+ PyObject *item;
+ double max = 0.0;
+ double x, px, qx, result;
+ Py_ssize_t i, m, n;
+ int found_nan = 0, p_allocated = 0, q_allocated = 0;
+ double diffs_on_stack[NUM_STACK_ELEMS];
+ double *diffs = diffs_on_stack;
+
+ if (!PyTuple_Check(p)) {
+ p = PySequence_Tuple(p);
+ if (p == NULL) {
+ return NULL;
+ }
+ p_allocated = 1;
+ }
+ if (!PyTuple_Check(q)) {
+ q = PySequence_Tuple(q);
+ if (q == NULL) {
+ if (p_allocated) {
+ Py_DECREF(p);
+ }
+ return NULL;
+ }
+ q_allocated = 1;
+ }
+
+ m = PyTuple_GET_SIZE(p);
+ n = PyTuple_GET_SIZE(q);
+ if (m != n) {
+ PyErr_SetString(PyExc_ValueError,
+ "both points must have the same number of dimensions");
+ goto error_exit;
+ }
+ if (n > NUM_STACK_ELEMS) {
+ diffs = (double *) PyObject_Malloc(n * sizeof(double));
+ if (diffs == NULL) {
+ PyErr_NoMemory();
+ goto error_exit;
+ }
+ }
+ for (i=0 ; i<n ; i++) {
+ item = PyTuple_GET_ITEM(p, i);
+ ASSIGN_DOUBLE(px, item, error_exit);
+ item = PyTuple_GET_ITEM(q, i);
+ ASSIGN_DOUBLE(qx, item, error_exit);
+ x = fabs(px - qx);
+ diffs[i] = x;
+ found_nan |= Py_IS_NAN(x);
+ if (x > max) {
+ max = x;
+ }
+ }
+ result = vector_norm(n, diffs, max, found_nan);
+ if (diffs != diffs_on_stack) {
+ PyObject_Free(diffs);
+ }
+ if (p_allocated) {
+ Py_DECREF(p);
+ }
+ if (q_allocated) {
+ Py_DECREF(q);
+ }
+ return PyFloat_FromDouble(result);
+
+ error_exit:
+ if (diffs != diffs_on_stack) {
+ PyObject_Free(diffs);
+ }
+ if (p_allocated) {
+ Py_DECREF(p);
+ }
+ if (q_allocated) {
+ Py_DECREF(q);
+ }
+ return NULL;
+}
+
+/* AC: cannot convert yet, waiting for *args support */
+static PyObject *
+math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
+{
+ Py_ssize_t i;
+ PyObject *item;
+ double max = 0.0;
+ double x, result;
+ int found_nan = 0;
+ double coord_on_stack[NUM_STACK_ELEMS];
+ double *coordinates = coord_on_stack;
+
+ if (nargs > NUM_STACK_ELEMS) {
+ coordinates = (double *) PyObject_Malloc(nargs * sizeof(double));
+ if (coordinates == NULL) {
+ return PyErr_NoMemory();
+ }
+ }
+ for (i = 0; i < nargs; i++) {
+ item = args[i];
+ ASSIGN_DOUBLE(x, item, error_exit);
+ x = fabs(x);
+ coordinates[i] = x;
+ found_nan |= Py_IS_NAN(x);
+ if (x > max) {
+ max = x;
+ }
+ }
+ result = vector_norm(nargs, coordinates, max, found_nan);
+ if (coordinates != coord_on_stack) {
+ PyObject_Free(coordinates);
+ }
+ return PyFloat_FromDouble(result);
+
+ error_exit:
+ if (coordinates != coord_on_stack) {
+ PyObject_Free(coordinates);
+ }
+ return NULL;
+}
+
+#undef NUM_STACK_ELEMS
+
+PyDoc_STRVAR(math_hypot_doc,
+ "hypot(*coordinates) -> value\n\n\
+Multidimensional Euclidean distance from the origin to a point.\n\
+\n\
+Roughly equivalent to:\n\
+ sqrt(sum(x**2 for x in coordinates))\n\
+\n\
+For a two dimensional point (x, y), gives the hypotenuse\n\
+using the Pythagorean theorem: sqrt(x*x + y*y).\n\
+\n\
+For example, the hypotenuse of a 3/4/5 right triangle is:\n\
+\n\
+ >>> hypot(3.0, 4.0)\n\
+ 5.0\n\
+");
+
+/** sumprod() ***************************************************************/
+
+/* Forward declaration */
+static inline int _check_long_mult_overflow(long a, long b);
+
+static inline bool
+long_add_would_overflow(long a, long b)
+{
+ return (a > 0) ? (b > LONG_MAX - a) : (b < LONG_MIN - a);
+}
+
+/*[clinic input]
+math.sumprod
+
+ p: object
+ q: object
+ /
+
+Return the sum of products of values from two iterables p and q.
+
+Roughly equivalent to:
+
+ sum(itertools.starmap(operator.mul, zip(p, q, strict=True)))
+
+For float and mixed int/float inputs, the intermediate products
+and sums are computed with extended precision.
+[clinic start generated code]*/
+
+static PyObject *
+math_sumprod_impl(PyObject *module, PyObject *p, PyObject *q)
+/*[clinic end generated code: output=6722dbfe60664554 input=82be54fe26f87e30]*/
+{
+ PyObject *p_i = NULL, *q_i = NULL, *term_i = NULL, *new_total = NULL;
+ PyObject *p_it, *q_it, *total;
+ iternextfunc p_next, q_next;
+ bool p_stopped = false, q_stopped = false;
+ bool int_path_enabled = true, int_total_in_use = false;
+ bool flt_path_enabled = true, flt_total_in_use = false;
+ long int_total = 0;
+ TripleLength flt_total = tl_zero;
+
+ p_it = PyObject_GetIter(p);
+ if (p_it == NULL) {
+ return NULL;
+ }
+ q_it = PyObject_GetIter(q);
+ if (q_it == NULL) {
+ Py_DECREF(p_it);
+ return NULL;
+ }
+ total = PyLong_FromLong(0);
+ if (total == NULL) {
+ Py_DECREF(p_it);
+ Py_DECREF(q_it);
+ return NULL;
+ }
+ p_next = *Py_TYPE(p_it)->tp_iternext;
+ q_next = *Py_TYPE(q_it)->tp_iternext;
+ while (1) {
+ bool finished;
+
+ assert (p_i == NULL);
+ assert (q_i == NULL);
+ assert (term_i == NULL);
+ assert (new_total == NULL);
+
+ assert (p_it != NULL);
+ assert (q_it != NULL);
+ assert (total != NULL);
+
+ p_i = p_next(p_it);
+ if (p_i == NULL) {
+ if (PyErr_Occurred()) {
+ if (!PyErr_ExceptionMatches(PyExc_StopIteration)) {
+ goto err_exit;
+ }
+ PyErr_Clear();
+ }
+ p_stopped = true;
+ }
+ q_i = q_next(q_it);
+ if (q_i == NULL) {
+ if (PyErr_Occurred()) {
+ if (!PyErr_ExceptionMatches(PyExc_StopIteration)) {
+ goto err_exit;
+ }
+ PyErr_Clear();
+ }
+ q_stopped = true;
+ }
+ if (p_stopped != q_stopped) {
+ PyErr_Format(PyExc_ValueError, "Inputs are not the same length");
+ goto err_exit;
+ }
+ finished = p_stopped & q_stopped;
+
+ if (int_path_enabled) {
+
+ if (!finished && PyLong_CheckExact(p_i) & PyLong_CheckExact(q_i)) {
+ int overflow;
+ long int_p, int_q, int_prod;
+
+ int_p = PyLong_AsLongAndOverflow(p_i, &overflow);
+ if (overflow) {
+ goto finalize_int_path;
+ }
+ int_q = PyLong_AsLongAndOverflow(q_i, &overflow);
+ if (overflow) {
+ goto finalize_int_path;
+ }
+ if (_check_long_mult_overflow(int_p, int_q)) {
+ goto finalize_int_path;
+ }
+ int_prod = int_p * int_q;
+ if (long_add_would_overflow(int_total, int_prod)) {
+ goto finalize_int_path;
+ }
+ int_total += int_prod;
+ int_total_in_use = true;
+ Py_CLEAR(p_i);
+ Py_CLEAR(q_i);
+ continue;
+ }
+
+ finalize_int_path:
+ // We're finished, overflowed, or have a non-int
+ int_path_enabled = false;
+ if (int_total_in_use) {
+ term_i = PyLong_FromLong(int_total);
+ if (term_i == NULL) {
+ goto err_exit;
+ }
+ new_total = PyNumber_Add(total, term_i);
+ if (new_total == NULL) {
+ goto err_exit;
+ }
+ Py_SETREF(total, new_total);
+ new_total = NULL;
+ Py_CLEAR(term_i);
+ int_total = 0; // An ounce of prevention, ...
+ int_total_in_use = false;
+ }
+ }
+
+ if (flt_path_enabled) {
+
+ if (!finished) {
+ double flt_p, flt_q;
+ bool p_type_float = PyFloat_CheckExact(p_i);
+ bool q_type_float = PyFloat_CheckExact(q_i);
+ if (p_type_float && q_type_float) {
+ flt_p = PyFloat_AS_DOUBLE(p_i);
+ flt_q = PyFloat_AS_DOUBLE(q_i);
+ } else if (p_type_float && (PyLong_CheckExact(q_i) || PyBool_Check(q_i))) {
+ /* We care about float/int pairs and int/float pairs because
+ they arise naturally in several use cases such as price
+ times quantity, measurements with integer weights, or
+ data selected by a vector of bools. */
+ flt_p = PyFloat_AS_DOUBLE(p_i);
+ flt_q = PyLong_AsDouble(q_i);
+ if (flt_q == -1.0 && PyErr_Occurred()) {
+ PyErr_Clear();
+ goto finalize_flt_path;
+ }
+ } else if (q_type_float && (PyLong_CheckExact(p_i) || PyBool_Check(p_i))) {
+ flt_q = PyFloat_AS_DOUBLE(q_i);
+ flt_p = PyLong_AsDouble(p_i);
+ if (flt_p == -1.0 && PyErr_Occurred()) {
+ PyErr_Clear();
+ goto finalize_flt_path;
+ }
+ } else {
+ goto finalize_flt_path;
+ }
+ TripleLength new_flt_total = tl_fma(flt_p, flt_q, flt_total);
+ if (isfinite(new_flt_total.hi)) {
+ flt_total = new_flt_total;
+ flt_total_in_use = true;
+ Py_CLEAR(p_i);
+ Py_CLEAR(q_i);
+ continue;
+ }
+ }
+
+ finalize_flt_path:
+ // We're finished, overflowed, have a non-float, or got a non-finite value
+ flt_path_enabled = false;
+ if (flt_total_in_use) {
+ term_i = PyFloat_FromDouble(tl_to_d(flt_total));
+ if (term_i == NULL) {
+ goto err_exit;
+ }
+ new_total = PyNumber_Add(total, term_i);
+ if (new_total == NULL) {
+ goto err_exit;
+ }
+ Py_SETREF(total, new_total);
+ new_total = NULL;
+ Py_CLEAR(term_i);
+ flt_total = tl_zero;
+ flt_total_in_use = false;
+ }
+ }
+
+ assert(!int_total_in_use);
+ assert(!flt_total_in_use);
+ if (finished) {
+ goto normal_exit;
+ }
+ term_i = PyNumber_Multiply(p_i, q_i);
+ if (term_i == NULL) {
+ goto err_exit;
+ }
+ new_total = PyNumber_Add(total, term_i);
+ if (new_total == NULL) {
+ goto err_exit;
+ }
+ Py_SETREF(total, new_total);
+ new_total = NULL;
+ Py_CLEAR(p_i);
+ Py_CLEAR(q_i);
+ Py_CLEAR(term_i);
+ }
+
+ normal_exit:
+ Py_DECREF(p_it);
+ Py_DECREF(q_it);
+ return total;
+
+ err_exit:
+ Py_DECREF(p_it);
+ Py_DECREF(q_it);
+ Py_DECREF(total);
+ Py_XDECREF(p_i);
+ Py_XDECREF(q_i);
+ Py_XDECREF(term_i);
+ Py_XDECREF(new_total);
+ return NULL;
+}
+
+
+/* pow can't use math_2, but needs its own wrapper: the problem is
+ that an infinite result can arise either as a result of overflow
+ (in which case OverflowError should be raised) or as a result of
+ e.g. 0.**-5. (for which ValueError needs to be raised.)
+*/
+
+/*[clinic input]
+math.pow
+
+ x: double
+ y: double
+ /
+
+Return x**y (x to the power of y).
+[clinic start generated code]*/
+
+static PyObject *
+math_pow_impl(PyObject *module, double x, double y)
+/*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
+{
+ double r;
+ int odd_y;
+
+ /* deal directly with IEEE specials, to cope with problems on various
+ platforms whose semantics don't exactly match C99 */
+ r = 0.; /* silence compiler warning */
+ if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
+ errno = 0;
+ if (Py_IS_NAN(x))
+ r = y == 0. ? 1. : x; /* NaN**0 = 1 */
+ else if (Py_IS_NAN(y))
+ r = x == 1. ? 1. : y; /* 1**NaN = 1 */
+ else if (Py_IS_INFINITY(x)) {
+ odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
+ if (y > 0.)
+ r = odd_y ? x : fabs(x);
+ else if (y == 0.)
+ r = 1.;
+ else /* y < 0. */
+ r = odd_y ? copysign(0., x) : 0.;
+ }
+ else if (Py_IS_INFINITY(y)) {
+ if (fabs(x) == 1.0)
+ r = 1.;
+ else if (y > 0. && fabs(x) > 1.0)
+ r = y;
+ else if (y < 0. && fabs(x) < 1.0) {
+ r = -y; /* result is +inf */
+ }
+ else
+ r = 0.;
+ }
+ }
+ else {
+ /* let libm handle finite**finite */
+ errno = 0;
+ r = pow(x, y);
+ /* a NaN result should arise only from (-ve)**(finite
+ non-integer); in this case we want to raise ValueError. */
+ if (!Py_IS_FINITE(r)) {
+ if (Py_IS_NAN(r)) {
+ errno = EDOM;
+ }
+ /*
+ an infinite result here arises either from:
+ (A) (+/-0.)**negative (-> divide-by-zero)
+ (B) overflow of x**y with x and y finite
+ */
+ else if (Py_IS_INFINITY(r)) {
+ if (x == 0.)
+ errno = EDOM;
+ else
+ errno = ERANGE;
+ }
+ }
+ }
+
+ if (errno && is_error(r))
+ return NULL;
+ else
+ return PyFloat_FromDouble(r);
+}
+
+
+static const double degToRad = Py_MATH_PI / 180.0;
+static const double radToDeg = 180.0 / Py_MATH_PI;
+
+/*[clinic input]
+math.degrees
+
+ x: double
+ /
+
+Convert angle x from radians to degrees.
+[clinic start generated code]*/
+
+static PyObject *
+math_degrees_impl(PyObject *module, double x)
+/*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/
+{
+ return PyFloat_FromDouble(x * radToDeg);
+}
+
+
+/*[clinic input]
+math.radians
+
+ x: double
+ /
+
+Convert angle x from degrees to radians.
+[clinic start generated code]*/
+
+static PyObject *
+math_radians_impl(PyObject *module, double x)
+/*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/
+{
+ return PyFloat_FromDouble(x * degToRad);
+}
+
+
+/*[clinic input]
+math.isfinite
+
+ x: double
+ /
+
+Return True if x is neither an infinity nor a NaN, and False otherwise.
+[clinic start generated code]*/
+
+static PyObject *
+math_isfinite_impl(PyObject *module, double x)
+/*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
+{
+ return PyBool_FromLong((long)Py_IS_FINITE(x));
+}
+
+
+/*[clinic input]
+math.isnan
+
+ x: double
+ /
+
+Return True if x is a NaN (not a number), and False otherwise.
+[clinic start generated code]*/
+
+static PyObject *
+math_isnan_impl(PyObject *module, double x)
+/*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
+{
+ return PyBool_FromLong((long)Py_IS_NAN(x));
+}
+
+
+/*[clinic input]
+math.isinf
+
+ x: double
+ /
+
+Return True if x is a positive or negative infinity, and False otherwise.
+[clinic start generated code]*/
+
+static PyObject *
+math_isinf_impl(PyObject *module, double x)
+/*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
+{
+ return PyBool_FromLong((long)Py_IS_INFINITY(x));
+}
+
+
+/*[clinic input]
+math.isclose -> bool
+
+ a: double
+ b: double
+ *
+ rel_tol: double = 1e-09
+ maximum difference for being considered "close", relative to the
+ magnitude of the input values
+ abs_tol: double = 0.0
+ maximum difference for being considered "close", regardless of the
+ magnitude of the input values
+
+Determine whether two floating point numbers are close in value.
+
+Return True if a is close in value to b, and False otherwise.
+
+For the values to be considered close, the difference between them
+must be smaller than at least one of the tolerances.
+
+-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
+is, NaN is not close to anything, even itself. inf and -inf are
+only close to themselves.
+[clinic start generated code]*/
+
+static int
+math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
+ double abs_tol)
+/*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/
+{
+ double diff = 0.0;
+
+ /* sanity check on the inputs */
+ if (rel_tol < 0.0 || abs_tol < 0.0 ) {
+ PyErr_SetString(PyExc_ValueError,
+ "tolerances must be non-negative");
+ return -1;
+ }
+
+ if ( a == b ) {
+ /* short circuit exact equality -- needed to catch two infinities of
+ the same sign. And perhaps speeds things up a bit sometimes.
+ */
+ return 1;
+ }
+
+ /* This catches the case of two infinities of opposite sign, or
+ one infinity and one finite number. Two infinities of opposite
+ sign would otherwise have an infinite relative tolerance.
+ Two infinities of the same sign are caught by the equality check
+ above.
+ */
+
+ if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
+ return 0;
+ }
+
+ /* now do the regular computation
+ this is essentially the "weak" test from the Boost library
+ */
+
+ diff = fabs(b - a);
+
+ return (((diff <= fabs(rel_tol * b)) ||
+ (diff <= fabs(rel_tol * a))) ||
+ (diff <= abs_tol));
+}
+
+static inline int
+_check_long_mult_overflow(long a, long b) {
+
+ /* From Python2's int_mul code:
+
+ Integer overflow checking for * is painful: Python tried a couple ways, but
+ they didn't work on all platforms, or failed in endcases (a product of
+ -sys.maxint-1 has been a particular pain).
+
+ Here's another way:
+
+ The native long product x*y is either exactly right or *way* off, being
+ just the last n bits of the true product, where n is the number of bits
+ in a long (the delivered product is the true product plus i*2**n for
+ some integer i).
+
+ The native double product (double)x * (double)y is subject to three
+ rounding errors: on a sizeof(long)==8 box, each cast to double can lose
+ info, and even on a sizeof(long)==4 box, the multiplication can lose info.
+ But, unlike the native long product, it's not in *range* trouble: even
+ if sizeof(long)==32 (256-bit longs), the product easily fits in the
+ dynamic range of a double. So the leading 50 (or so) bits of the double
+ product are correct.
+
+ We check these two ways against each other, and declare victory if they're
+ approximately the same. Else, because the native long product is the only
+ one that can lose catastrophic amounts of information, it's the native long
+ product that must have overflowed.
+
+ */
+
+ long longprod = (long)((unsigned long)a * b);
+ double doubleprod = (double)a * (double)b;
+ double doubled_longprod = (double)longprod;
+
+ if (doubled_longprod == doubleprod) {
+ return 0;
+ }
+
+ const double diff = doubled_longprod - doubleprod;
+ const double absdiff = diff >= 0.0 ? diff : -diff;
+ const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod;
+
+ if (32.0 * absdiff <= absprod) {
+ return 0;
+ }
+
+ return 1;
+}
+
+/*[clinic input]
+math.prod
+
+ iterable: object
+ /
+ *
+ start: object(c_default="NULL") = 1
+
+Calculate the product of all the elements in the input iterable.
+
+The default start value for the product is 1.
+
+When the iterable is empty, return the start value. This function is
+intended specifically for use with numeric values and may reject
+non-numeric types.
+[clinic start generated code]*/
+
+static PyObject *
+math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
+/*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/
+{
+ PyObject *result = start;
+ PyObject *temp, *item, *iter;
+
+ iter = PyObject_GetIter(iterable);
+ if (iter == NULL) {
+ return NULL;
+ }
+
+ if (result == NULL) {
+ result = _PyLong_GetOne();
+ }
+ Py_INCREF(result);
+#ifndef SLOW_PROD
+ /* Fast paths for integers keeping temporary products in C.
+ * Assumes all inputs are the same type.
+ * If the assumption fails, default to use PyObjects instead.
+ */
+ if (PyLong_CheckExact(result)) {
+ int overflow;
+ long i_result = PyLong_AsLongAndOverflow(result, &overflow);
+ /* If this already overflowed, don't even enter the loop. */
+ if (overflow == 0) {
+ Py_SETREF(result, NULL);
+ }
+ /* Loop over all the items in the iterable until we finish, we overflow
+ * or we found a non integer element */
+ while (result == NULL) {
+ item = PyIter_Next(iter);
+ if (item == NULL) {
+ Py_DECREF(iter);
+ if (PyErr_Occurred()) {
+ return NULL;
+ }
+ return PyLong_FromLong(i_result);
+ }
+ if (PyLong_CheckExact(item)) {
+ long b = PyLong_AsLongAndOverflow(item, &overflow);
+ if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) {
+ long x = i_result * b;
+ i_result = x;
+ Py_DECREF(item);
+ continue;
+ }
+ }
+ /* Either overflowed or is not an int.
+ * Restore real objects and process normally */
+ result = PyLong_FromLong(i_result);
+ if (result == NULL) {
+ Py_DECREF(item);
+ Py_DECREF(iter);
+ return NULL;
+ }
+ temp = PyNumber_Multiply(result, item);
+ Py_DECREF(result);
+ Py_DECREF(item);
+ result = temp;
+ if (result == NULL) {
+ Py_DECREF(iter);
+ return NULL;
+ }
+ }
+ }
+
+ /* Fast paths for floats keeping temporary products in C.
+ * Assumes all inputs are the same type.
+ * If the assumption fails, default to use PyObjects instead.
+ */
+ if (PyFloat_CheckExact(result)) {
+ double f_result = PyFloat_AS_DOUBLE(result);
+ Py_SETREF(result, NULL);
+ while(result == NULL) {
+ item = PyIter_Next(iter);
+ if (item == NULL) {
+ Py_DECREF(iter);
+ if (PyErr_Occurred()) {
+ return NULL;
+ }
+ return PyFloat_FromDouble(f_result);
+ }
+ if (PyFloat_CheckExact(item)) {
+ f_result *= PyFloat_AS_DOUBLE(item);
+ Py_DECREF(item);
+ continue;
+ }
+ if (PyLong_CheckExact(item)) {
+ long value;
+ int overflow;
+ value = PyLong_AsLongAndOverflow(item, &overflow);
+ if (!overflow) {
+ f_result *= (double)value;
+ Py_DECREF(item);
+ continue;
+ }
+ }
+ result = PyFloat_FromDouble(f_result);
+ if (result == NULL) {
+ Py_DECREF(item);
+ Py_DECREF(iter);
+ return NULL;
+ }
+ temp = PyNumber_Multiply(result, item);
+ Py_DECREF(result);
+ Py_DECREF(item);
+ result = temp;
+ if (result == NULL) {
+ Py_DECREF(iter);
+ return NULL;
+ }
+ }
+ }
+#endif
+ /* Consume rest of the iterable (if any) that could not be handled
+ * by specialized functions above.*/
+ for(;;) {
+ item = PyIter_Next(iter);
+ if (item == NULL) {
+ /* error, or end-of-sequence */
+ if (PyErr_Occurred()) {
+ Py_SETREF(result, NULL);
+ }
+ break;
+ }
+ temp = PyNumber_Multiply(result, item);
+ Py_DECREF(result);
+ Py_DECREF(item);
+ result = temp;
+ if (result == NULL)
+ break;
+ }
+ Py_DECREF(iter);
+ return result;
+}
+
+
+/* least significant 64 bits of the odd part of factorial(n), for n in range(128).
+
+Python code to generate the values:
+
+ import math
+
+ for n in range(128):
+ fac = math.factorial(n)
+ fac_odd_part = fac // (fac & -fac)
+ reduced_fac_odd_part = fac_odd_part % (2**64)
+ print(f"{reduced_fac_odd_part:#018x}u")
+*/
+static const uint64_t reduced_factorial_odd_part[] = {
+ 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000003u,
+ 0x0000000000000003u, 0x000000000000000fu, 0x000000000000002du, 0x000000000000013bu,
+ 0x000000000000013bu, 0x0000000000000b13u, 0x000000000000375fu, 0x0000000000026115u,
+ 0x000000000007233fu, 0x00000000005cca33u, 0x0000000002898765u, 0x00000000260eeeebu,
+ 0x00000000260eeeebu, 0x0000000286fddd9bu, 0x00000016beecca73u, 0x000001b02b930689u,
+ 0x00000870d9df20adu, 0x0000b141df4dae31u, 0x00079dd498567c1bu, 0x00af2e19afc5266du,
+ 0x020d8a4d0f4f7347u, 0x335281867ec241efu, 0x9b3093d46fdd5923u, 0x5e1f9767cc5866b1u,
+ 0x92dd23d6966aced7u, 0xa30d0f4f0a196e5bu, 0x8dc3e5a1977d7755u, 0x2ab8ce915831734bu,
+ 0x2ab8ce915831734bu, 0x81d2a0bc5e5fdcabu, 0x9efcac82445da75bu, 0xbc8b95cf58cde171u,
+ 0xa0e8444a1f3cecf9u, 0x4191deb683ce3ffdu, 0xddd3878bc84ebfc7u, 0xcb39a64b83ff3751u,
+ 0xf8203f7993fc1495u, 0xbd2a2a78b35f4bddu, 0x84757be6b6d13921u, 0x3fbbcfc0b524988bu,
+ 0xbd11ed47c8928df9u, 0x3c26b59e41c2f4c5u, 0x677a5137e883fdb3u, 0xff74e943b03b93ddu,
+ 0xfe5ebbcb10b2bb97u, 0xb021f1de3235e7e7u, 0x33509eb2e743a58fu, 0x390f9da41279fb7du,
+ 0xe5cb0154f031c559u, 0x93074695ba4ddb6du, 0x81c471caa636247fu, 0xe1347289b5a1d749u,
+ 0x286f21c3f76ce2ffu, 0x00be84a2173e8ac7u, 0x1595065ca215b88bu, 0xf95877595b018809u,
+ 0x9c2efe3c5516f887u, 0x373294604679382bu, 0xaf1ff7a888adcd35u, 0x18ddf279a2c5800bu,
+ 0x18ddf279a2c5800bu, 0x505a90e2542582cbu, 0x5bacad2cd8d5dc2bu, 0xfe3152bcbff89f41u,
+ 0xe1467e88bf829351u, 0xb8001adb9e31b4d5u, 0x2803ac06a0cbb91fu, 0x1904b5d698805799u,
+ 0xe12a648b5c831461u, 0x3516abbd6160cfa9u, 0xac46d25f12fe036du, 0x78bfa1da906b00efu,
+ 0xf6390338b7f111bdu, 0x0f25f80f538255d9u, 0x4ec8ca55b8db140fu, 0x4ff670740b9b30a1u,
+ 0x8fd032443a07f325u, 0x80dfe7965c83eeb5u, 0xa3dc1714d1213afdu, 0x205b7bbfcdc62007u,
+ 0xa78126bbe140a093u, 0x9de1dc61ca7550cfu, 0x84f0046d01b492c5u, 0x2d91810b945de0f3u,
+ 0xf5408b7f6008aa71u, 0x43707f4863034149u, 0xdac65fb9679279d5u, 0xc48406e7d1114eb7u,
+ 0xa7dc9ed3c88e1271u, 0xfb25b2efdb9cb30du, 0x1bebda0951c4df63u, 0x5c85e975580ee5bdu,
+ 0x1591bc60082cb137u, 0x2c38606318ef25d7u, 0x76ca72f7c5c63e27u, 0xf04a75d17baa0915u,
+ 0x77458175139ae30du, 0x0e6c1330bc1b9421u, 0xdf87d2b5797e8293u, 0xefa5c703e1e68925u,
+ 0x2b6b1b3278b4f6e1u, 0xceee27b382394249u, 0xd74e3829f5dab91du, 0xfdb17989c26b5f1fu,
+ 0xc1b7d18781530845u, 0x7b4436b2105a8561u, 0x7ba7c0418372a7d7u, 0x9dbc5c67feb6c639u,
+ 0x502686d7f6ff6b8fu, 0x6101855406be7a1fu, 0x9956afb5806930e7u, 0xe1f0ee88af40f7c5u,
+ 0x984b057bda5c1151u, 0x9a49819acc13ea05u, 0x8ef0dead0896ef27u, 0x71f7826efe292b21u,
+ 0xad80a480e46986efu, 0x01cdc0ebf5e0c6f7u, 0x6e06f839968f68dbu, 0xdd5943ab56e76139u,
+ 0xcdcf31bf8604c5e7u, 0x7e2b4a847054a1cbu, 0x0ca75697a4d3d0f5u, 0x4703f53ac514a98bu,
+};
+
+/* inverses of reduced_factorial_odd_part values modulo 2**64.
+
+Python code to generate the values:
+
+ import math
+
+ for n in range(128):
+ fac = math.factorial(n)
+ fac_odd_part = fac // (fac & -fac)
+ inverted_fac_odd_part = pow(fac_odd_part, -1, 2**64)
+ print(f"{inverted_fac_odd_part:#018x}u")
+*/
+static const uint64_t inverted_factorial_odd_part[] = {
+ 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0xaaaaaaaaaaaaaaabu,
+ 0xaaaaaaaaaaaaaaabu, 0xeeeeeeeeeeeeeeefu, 0x4fa4fa4fa4fa4fa5u, 0x2ff2ff2ff2ff2ff3u,
+ 0x2ff2ff2ff2ff2ff3u, 0x938cc70553e3771bu, 0xb71c27cddd93e49fu, 0xb38e3229fcdee63du,
+ 0xe684bb63544a4cbfu, 0xc2f684917ca340fbu, 0xf747c9cba417526du, 0xbb26eb51d7bd49c3u,
+ 0xbb26eb51d7bd49c3u, 0xb0a7efb985294093u, 0xbe4b8c69f259eabbu, 0x6854d17ed6dc4fb9u,
+ 0xe1aa904c915f4325u, 0x3b8206df131cead1u, 0x79c6009fea76fe13u, 0xd8c5d381633cd365u,
+ 0x4841f12b21144677u, 0x4a91ff68200b0d0fu, 0x8f9513a58c4f9e8bu, 0x2b3e690621a42251u,
+ 0x4f520f00e03c04e7u, 0x2edf84ee600211d3u, 0xadcaa2764aaacdfdu, 0x161f4f9033f4fe63u,
+ 0x161f4f9033f4fe63u, 0xbada2932ea4d3e03u, 0xcec189f3efaa30d3u, 0xf7475bb68330bf91u,
+ 0x37eb7bf7d5b01549u, 0x46b35660a4e91555u, 0xa567c12d81f151f7u, 0x4c724007bb2071b1u,
+ 0x0f4a0cce58a016bdu, 0xfa21068e66106475u, 0x244ab72b5a318ae1u, 0x366ce67e080d0f23u,
+ 0xd666fdae5dd2a449u, 0xd740ddd0acc06a0du, 0xb050bbbb28e6f97bu, 0x70b003fe890a5c75u,
+ 0xd03aabff83037427u, 0x13ec4ca72c783bd7u, 0x90282c06afdbd96fu, 0x4414ddb9db4a95d5u,
+ 0xa2c68735ae6832e9u, 0xbf72d71455676665u, 0xa8469fab6b759b7fu, 0xc1e55b56e606caf9u,
+ 0x40455630fc4a1cffu, 0x0120a7b0046d16f7u, 0xa7c3553b08faef23u, 0x9f0bfd1b08d48639u,
+ 0xa433ffce9a304d37u, 0xa22ad1d53915c683u, 0xcb6cbc723ba5dd1du, 0x547fb1b8ab9d0ba3u,
+ 0x547fb1b8ab9d0ba3u, 0x8f15a826498852e3u, 0x32e1a03f38880283u, 0x3de4cce63283f0c1u,
+ 0x5dfe6667e4da95b1u, 0xfda6eeeef479e47du, 0xf14de991cc7882dfu, 0xe68db79247630ca9u,
+ 0xa7d6db8207ee8fa1u, 0x255e1f0fcf034499u, 0xc9a8990e43dd7e65u, 0x3279b6f289702e0fu,
+ 0xe7b5905d9b71b195u, 0x03025ba41ff0da69u, 0xb7df3d6d3be55aefu, 0xf89b212ebff2b361u,
+ 0xfe856d095996f0adu, 0xd6e533e9fdf20f9du, 0xf8c0e84a63da3255u, 0xa677876cd91b4db7u,
+ 0x07ed4f97780d7d9bu, 0x90a8705f258db62fu, 0xa41bbb2be31b1c0du, 0x6ec28690b038383bu,
+ 0xdb860c3bb2edd691u, 0x0838286838a980f9u, 0x558417a74b36f77du, 0x71779afc3646ef07u,
+ 0x743cda377ccb6e91u, 0x7fdf9f3fe89153c5u, 0xdc97d25df49b9a4bu, 0x76321a778eb37d95u,
+ 0x7cbb5e27da3bd487u, 0x9cff4ade1a009de7u, 0x70eb166d05c15197u, 0xdcf0460b71d5fe3du,
+ 0x5ac1ee5260b6a3c5u, 0xc922dedfdd78efe1u, 0xe5d381dc3b8eeb9bu, 0xd57e5347bafc6aadu,
+ 0x86939040983acd21u, 0x395b9d69740a4ff9u, 0x1467299c8e43d135u, 0x5fe440fcad975cdfu,
+ 0xcaa9a39794a6ca8du, 0xf61dbd640868dea1u, 0xac09d98d74843be7u, 0x2b103b9e1a6b4809u,
+ 0x2ab92d16960f536fu, 0x6653323d5e3681dfu, 0xefd48c1c0624e2d7u, 0xa496fefe04816f0du,
+ 0x1754a7b07bbdd7b1u, 0x23353c829a3852cdu, 0xbf831261abd59097u, 0x57a8e656df0618e1u,
+ 0x16e9206c3100680fu, 0xadad4c6ee921dac7u, 0x635f2b3860265353u, 0xdd6d0059f44b3d09u,
+ 0xac4dd6b894447dd7u, 0x42ea183eeaa87be3u, 0x15612d1550ee5b5du, 0x226fa19d656cb623u,
+};
+
+/* exponent of the largest power of 2 dividing factorial(n), for n in range(68)
+
+Python code to generate the values:
+
+import math
+
+for n in range(128):
+ fac = math.factorial(n)
+ fac_trailing_zeros = (fac & -fac).bit_length() - 1
+ print(fac_trailing_zeros)
+*/
+
+static const uint8_t factorial_trailing_zeros[] = {
+ 0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11, 11, // 0-15
+ 15, 15, 16, 16, 18, 18, 19, 19, 22, 22, 23, 23, 25, 25, 26, 26, // 16-31
+ 31, 31, 32, 32, 34, 34, 35, 35, 38, 38, 39, 39, 41, 41, 42, 42, // 32-47
+ 46, 46, 47, 47, 49, 49, 50, 50, 53, 53, 54, 54, 56, 56, 57, 57, // 48-63
+ 63, 63, 64, 64, 66, 66, 67, 67, 70, 70, 71, 71, 73, 73, 74, 74, // 64-79
+ 78, 78, 79, 79, 81, 81, 82, 82, 85, 85, 86, 86, 88, 88, 89, 89, // 80-95
+ 94, 94, 95, 95, 97, 97, 98, 98, 101, 101, 102, 102, 104, 104, 105, 105, // 96-111
+ 109, 109, 110, 110, 112, 112, 113, 113, 116, 116, 117, 117, 119, 119, 120, 120, // 112-127
+};
+
+/* Number of permutations and combinations.
+ * P(n, k) = n! / (n-k)!
+ * C(n, k) = P(n, k) / k!
+ */
+
+/* Calculate C(n, k) for n in the 63-bit range. */
+static PyObject *
+perm_comb_small(unsigned long long n, unsigned long long k, int iscomb)
+{
+ if (k == 0) {
+ return PyLong_FromLong(1);
+ }
+
+ /* For small enough n and k the result fits in the 64-bit range and can
+ * be calculated without allocating intermediate PyLong objects. */
+ if (iscomb) {
+ /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)
+ * fits into a uint64_t. Exclude k = 1, because the second fast
+ * path is faster for this case.*/
+ static const unsigned char fast_comb_limits1[] = {
+ 0, 0, 127, 127, 127, 127, 127, 127, // 0-7
+ 127, 127, 127, 127, 127, 127, 127, 127, // 8-15
+ 116, 105, 97, 91, 86, 82, 78, 76, // 16-23
+ 74, 72, 71, 70, 69, 68, 68, 67, // 24-31
+ 67, 67, 67, // 32-34
+ };
+ if (k < Py_ARRAY_LENGTH(fast_comb_limits1) && n <= fast_comb_limits1[k]) {
+ /*
+ comb(n, k) fits into a uint64_t. We compute it as
+
+ comb_odd_part << shift
+
+ where 2**shift is the largest power of two dividing comb(n, k)
+ and comb_odd_part is comb(n, k) >> shift. comb_odd_part can be
+ calculated efficiently via arithmetic modulo 2**64, using three
+ lookups and two uint64_t multiplications.
+ */
+ uint64_t comb_odd_part = reduced_factorial_odd_part[n]
+ * inverted_factorial_odd_part[k]
+ * inverted_factorial_odd_part[n - k];
+ int shift = factorial_trailing_zeros[n]
+ - factorial_trailing_zeros[k]
+ - factorial_trailing_zeros[n - k];
+ return PyLong_FromUnsignedLongLong(comb_odd_part << shift);
+ }
+
+ /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)*k
+ * fits into a long long (which is at least 64 bit). Only contains
+ * items larger than in fast_comb_limits1. */
+ static const unsigned long long fast_comb_limits2[] = {
+ 0, ULLONG_MAX, 4294967296ULL, 3329022, 102570, 13467, 3612, 1449, // 0-7
+ 746, 453, 308, 227, 178, 147, // 8-13
+ };
+ if (k < Py_ARRAY_LENGTH(fast_comb_limits2) && n <= fast_comb_limits2[k]) {
+ /* C(n, k) = C(n, k-1) * (n-k+1) / k */
+ unsigned long long result = n;
+ for (unsigned long long i = 1; i < k;) {
+ result *= --n;
+ result /= ++i;
+ }
+ return PyLong_FromUnsignedLongLong(result);
+ }
+ }
+ else {
+ /* Maps k to the maximal n so that k <= n and P(n, k)
+ * fits into a long long (which is at least 64 bit). */
+ static const unsigned long long fast_perm_limits[] = {
+ 0, ULLONG_MAX, 4294967296ULL, 2642246, 65537, 7133, 1627, 568, // 0-7
+ 259, 142, 88, 61, 45, 36, 30, 26, // 8-15
+ 24, 22, 21, 20, 20, // 16-20
+ };
+ if (k < Py_ARRAY_LENGTH(fast_perm_limits) && n <= fast_perm_limits[k]) {
+ if (n <= 127) {
+ /* P(n, k) fits into a uint64_t. */
+ uint64_t perm_odd_part = reduced_factorial_odd_part[n]
+ * inverted_factorial_odd_part[n - k];
+ int shift = factorial_trailing_zeros[n]
+ - factorial_trailing_zeros[n - k];
+ return PyLong_FromUnsignedLongLong(perm_odd_part << shift);
+ }
+
+ /* P(n, k) = P(n, k-1) * (n-k+1) */
+ unsigned long long result = n;
+ for (unsigned long long i = 1; i < k;) {
+ result *= --n;
+ ++i;
+ }
+ return PyLong_FromUnsignedLongLong(result);
+ }
+ }
+
+ /* For larger n use recursive formulas:
+ *
+ * P(n, k) = P(n, j) * P(n-j, k-j)
+ * C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j)
+ */
+ unsigned long long j = k / 2;
+ PyObject *a, *b;
+ a = perm_comb_small(n, j, iscomb);
+ if (a == NULL) {
+ return NULL;
+ }
+ b = perm_comb_small(n - j, k - j, iscomb);
+ if (b == NULL) {
+ goto error;
+ }
+ Py_SETREF(a, PyNumber_Multiply(a, b));
+ Py_DECREF(b);
+ if (iscomb && a != NULL) {
+ b = perm_comb_small(k, j, 1);
+ if (b == NULL) {
+ goto error;
+ }
+ Py_SETREF(a, PyNumber_FloorDivide(a, b));
+ Py_DECREF(b);
+ }
+ return a;
+
+error:
+ Py_DECREF(a);
+ return NULL;
+}
+
+/* Calculate P(n, k) or C(n, k) using recursive formulas.
+ * It is more efficient than sequential multiplication thanks to
+ * Karatsuba multiplication.
+ */
+static PyObject *
+perm_comb(PyObject *n, unsigned long long k, int iscomb)
+{
+ if (k == 0) {
+ return PyLong_FromLong(1);
+ }
+ if (k == 1) {
+ return Py_NewRef(n);
+ }
+
+ /* P(n, k) = P(n, j) * P(n-j, k-j) */
+ /* C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) */
+ unsigned long long j = k / 2;
+ PyObject *a, *b;
+ a = perm_comb(n, j, iscomb);
+ if (a == NULL) {
+ return NULL;
+ }
+ PyObject *t = PyLong_FromUnsignedLongLong(j);
+ if (t == NULL) {
+ goto error;
+ }
+ n = PyNumber_Subtract(n, t);
+ Py_DECREF(t);
+ if (n == NULL) {
+ goto error;
+ }
+ b = perm_comb(n, k - j, iscomb);
+ Py_DECREF(n);
+ if (b == NULL) {
+ goto error;
+ }
+ Py_SETREF(a, PyNumber_Multiply(a, b));
+ Py_DECREF(b);
+ if (iscomb && a != NULL) {
+ b = perm_comb_small(k, j, 1);
+ if (b == NULL) {
+ goto error;
+ }
+ Py_SETREF(a, PyNumber_FloorDivide(a, b));
+ Py_DECREF(b);
+ }
+ return a;
+
+error:
+ Py_DECREF(a);
+ return NULL;
+}
+
+/*[clinic input]
+math.perm
+
+ n: object
+ k: object = None
+ /
+
+Number of ways to choose k items from n items without repetition and with order.
+
+Evaluates to n! / (n - k)! when k <= n and evaluates
+to zero when k > n.
+
+If k is not specified or is None, then k defaults to n
+and the function returns n!.
+
+Raises TypeError if either of the arguments are not integers.
+Raises ValueError if either of the arguments are negative.
+[clinic start generated code]*/
+
+static PyObject *
+math_perm_impl(PyObject *module, PyObject *n, PyObject *k)
+/*[clinic end generated code: output=e021a25469653e23 input=5311c5a00f359b53]*/
+{
+ PyObject *result = NULL;
+ int overflow, cmp;
+ long long ki, ni;
+
+ if (k == Py_None) {
+ return math_factorial(module, n);
+ }
+ n = PyNumber_Index(n);
+ if (n == NULL) {
+ return NULL;
+ }
+ k = PyNumber_Index(k);
+ if (k == NULL) {
+ Py_DECREF(n);
+ return NULL;
+ }
+ assert(PyLong_CheckExact(n) && PyLong_CheckExact(k));
+
+ if (_PyLong_IsNegative((PyLongObject *)n)) {
+ PyErr_SetString(PyExc_ValueError,
+ "n must be a non-negative integer");
+ goto error;
+ }
+ if (_PyLong_IsNegative((PyLongObject *)k)) {
+ PyErr_SetString(PyExc_ValueError,
+ "k must be a non-negative integer");
+ goto error;
+ }
+
+ cmp = PyObject_RichCompareBool(n, k, Py_LT);
+ if (cmp != 0) {
+ if (cmp > 0) {
+ result = PyLong_FromLong(0);
+ goto done;
+ }
+ goto error;
+ }
+
+ ki = PyLong_AsLongLongAndOverflow(k, &overflow);
+ assert(overflow >= 0 && !PyErr_Occurred());
+ if (overflow > 0) {
+ PyErr_Format(PyExc_OverflowError,
+ "k must not exceed %lld",
+ LLONG_MAX);
+ goto error;
+ }
+ assert(ki >= 0);
+
+ ni = PyLong_AsLongLongAndOverflow(n, &overflow);
+ assert(overflow >= 0 && !PyErr_Occurred());
+ if (!overflow && ki > 1) {
+ assert(ni >= 0);
+ result = perm_comb_small((unsigned long long)ni,
+ (unsigned long long)ki, 0);
+ }
+ else {
+ result = perm_comb(n, (unsigned long long)ki, 0);
+ }
+
+done:
+ Py_DECREF(n);
+ Py_DECREF(k);
+ return result;
+
+error:
+ Py_DECREF(n);
+ Py_DECREF(k);
+ return NULL;
+}
+
+/*[clinic input]
+math.comb
+
+ n: object
+ k: object
+ /
+
+Number of ways to choose k items from n items without repetition and without order.
+
+Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates
+to zero when k > n.
+
+Also called the binomial coefficient because it is equivalent
+to the coefficient of k-th term in polynomial expansion of the
+expression (1 + x)**n.
+
+Raises TypeError if either of the arguments are not integers.
+Raises ValueError if either of the arguments are negative.
+
+[clinic start generated code]*/
+
+static PyObject *
+math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
+/*[clinic end generated code: output=bd2cec8d854f3493 input=9a05315af2518709]*/
+{
+ PyObject *result = NULL, *temp;
+ int overflow, cmp;
+ long long ki, ni;
+
+ n = PyNumber_Index(n);
+ if (n == NULL) {
+ return NULL;
+ }
+ k = PyNumber_Index(k);
+ if (k == NULL) {
+ Py_DECREF(n);
+ return NULL;
+ }
+ assert(PyLong_CheckExact(n) && PyLong_CheckExact(k));
+
+ if (_PyLong_IsNegative((PyLongObject *)n)) {
+ PyErr_SetString(PyExc_ValueError,
+ "n must be a non-negative integer");
+ goto error;
+ }
+ if (_PyLong_IsNegative((PyLongObject *)k)) {
+ PyErr_SetString(PyExc_ValueError,
+ "k must be a non-negative integer");
+ goto error;
+ }
+
+ ni = PyLong_AsLongLongAndOverflow(n, &overflow);
+ assert(overflow >= 0 && !PyErr_Occurred());
+ if (!overflow) {
+ assert(ni >= 0);
+ ki = PyLong_AsLongLongAndOverflow(k, &overflow);
+ assert(overflow >= 0 && !PyErr_Occurred());
+ if (overflow || ki > ni) {
+ result = PyLong_FromLong(0);
+ goto done;
+ }
+ assert(ki >= 0);
+
+ ki = Py_MIN(ki, ni - ki);
+ if (ki > 1) {
+ result = perm_comb_small((unsigned long long)ni,
+ (unsigned long long)ki, 1);
+ goto done;
+ }
+ /* For k == 1 just return the original n in perm_comb(). */
+ }
+ else {
+ /* k = min(k, n - k) */
+ temp = PyNumber_Subtract(n, k);
+ if (temp == NULL) {
+ goto error;
+ }
+ assert(PyLong_Check(temp));
+ if (_PyLong_IsNegative((PyLongObject *)temp)) {
+ Py_DECREF(temp);
+ result = PyLong_FromLong(0);
+ goto done;
+ }
+ cmp = PyObject_RichCompareBool(temp, k, Py_LT);
+ if (cmp > 0) {
+ Py_SETREF(k, temp);
+ }
+ else {
+ Py_DECREF(temp);
+ if (cmp < 0) {
+ goto error;
+ }
+ }
+
+ ki = PyLong_AsLongLongAndOverflow(k, &overflow);
+ assert(overflow >= 0 && !PyErr_Occurred());
+ if (overflow) {
+ PyErr_Format(PyExc_OverflowError,
+ "min(n - k, k) must not exceed %lld",
+ LLONG_MAX);
+ goto error;
+ }
+ assert(ki >= 0);
+ }
+
+ result = perm_comb(n, (unsigned long long)ki, 1);
+
+done:
+ Py_DECREF(n);
+ Py_DECREF(k);
+ return result;
+
+error:
+ Py_DECREF(n);
+ Py_DECREF(k);
+ return NULL;
+}
+
+
+/*[clinic input]
+math.nextafter
+
+ x: double
+ y: double
+ /
+ *
+ steps: object = None
+
+Return the floating-point value the given number of steps after x towards y.
+
+If steps is not specified or is None, it defaults to 1.
+
+Raises a TypeError, if x or y is not a double, or if steps is not an integer.
+Raises ValueError if steps is negative.
+[clinic start generated code]*/
+
+static PyObject *
+math_nextafter_impl(PyObject *module, double x, double y, PyObject *steps)
+/*[clinic end generated code: output=cc6511f02afc099e input=7f2a5842112af2b4]*/
+{
+#if defined(_AIX)
+ if (x == y) {
+ /* On AIX 7.1, libm nextafter(-0.0, +0.0) returns -0.0.
+ Bug fixed in bos.adt.libm 7.2.2.0 by APAR IV95512. */
+ return PyFloat_FromDouble(y);
+ }
+ if (Py_IS_NAN(x)) {
+ return PyFloat_FromDouble(x);
+ }
+ if (Py_IS_NAN(y)) {
+ return PyFloat_FromDouble(y);
+ }
+#endif
+ if (steps == Py_None) {
+ // fast path: we default to one step.
+ return PyFloat_FromDouble(nextafter(x, y));
+ }
+ steps = PyNumber_Index(steps);
+ if (steps == NULL) {
+ return NULL;
+ }
+ assert(PyLong_CheckExact(steps));
+ if (_PyLong_IsNegative((PyLongObject *)steps)) {
+ PyErr_SetString(PyExc_ValueError,
+ "steps must be a non-negative integer");
+ Py_DECREF(steps);
+ return NULL;
+ }
+
+ unsigned long long usteps_ull = PyLong_AsUnsignedLongLong(steps);
+ // Conveniently, uint64_t and double have the same number of bits
+ // on all the platforms we care about.
+ // So if an overflow occurs, we can just use UINT64_MAX.
+ Py_DECREF(steps);
+ if (usteps_ull >= UINT64_MAX) {
+ // This branch includes the case where an error occurred, since
+ // (unsigned long long)(-1) = ULLONG_MAX >= UINT64_MAX. Note that
+ // usteps_ull can be strictly larger than UINT64_MAX on a machine
+ // where unsigned long long has width > 64 bits.
+ if (PyErr_Occurred()) {
+ if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
+ PyErr_Clear();
+ }
+ else {
+ return NULL;
+ }
+ }
+ usteps_ull = UINT64_MAX;
+ }
+ assert(usteps_ull <= UINT64_MAX);
+ uint64_t usteps = (uint64_t)usteps_ull;
+
+ if (usteps == 0) {
+ return PyFloat_FromDouble(x);
+ }
+ if (Py_IS_NAN(x)) {
+ return PyFloat_FromDouble(x);
+ }
+ if (Py_IS_NAN(y)) {
+ return PyFloat_FromDouble(y);
+ }
+
+ // We assume that double and uint64_t have the same endianness.
+ // This is not guaranteed by the C-standard, but it is true for
+ // all platforms we care about. (The most likely form of violation
+ // would be a "mixed-endian" double.)
+ union pun {double f; uint64_t i;};
+ union pun ux = {x}, uy = {y};
+ if (ux.i == uy.i) {
+ return PyFloat_FromDouble(x);
+ }
+
+ const uint64_t sign_bit = 1ULL<<63;
+
+ uint64_t ax = ux.i & ~sign_bit;
+ uint64_t ay = uy.i & ~sign_bit;
+
+ // opposite signs
+ if (((ux.i ^ uy.i) & sign_bit)) {
+ // NOTE: ax + ay can never overflow, because their most significant bit
+ // ain't set.
+ if (ax + ay <= usteps) {
+ return PyFloat_FromDouble(uy.f);
+ // This comparison has to use <, because <= would get +0.0 vs -0.0
+ // wrong.
+ } else if (ax < usteps) {
+ union pun result = {.i = (uy.i & sign_bit) | (usteps - ax)};
+ return PyFloat_FromDouble(result.f);
+ } else {
+ ux.i -= usteps;
+ return PyFloat_FromDouble(ux.f);
+ }
+ // same sign
+ } else if (ax > ay) {
+ if (ax - ay >= usteps) {
+ ux.i -= usteps;
+ return PyFloat_FromDouble(ux.f);
+ } else {
+ return PyFloat_FromDouble(uy.f);
+ }
+ } else {
+ if (ay - ax >= usteps) {
+ ux.i += usteps;
+ return PyFloat_FromDouble(ux.f);
+ } else {
+ return PyFloat_FromDouble(uy.f);
+ }
+ }
+}
+
+
+/*[clinic input]
+math.ulp -> double
+
+ x: double
+ /
+
+Return the value of the least significant bit of the float x.
+[clinic start generated code]*/
+
+static double
+math_ulp_impl(PyObject *module, double x)
+/*[clinic end generated code: output=f5207867a9384dd4 input=31f9bfbbe373fcaa]*/
+{
+ if (Py_IS_NAN(x)) {
+ return x;
+ }
+ x = fabs(x);
+ if (Py_IS_INFINITY(x)) {
+ return x;
+ }
+ double inf = Py_INFINITY;
+ double x2 = nextafter(x, inf);
+ if (Py_IS_INFINITY(x2)) {
+ /* special case: x is the largest positive representable float */
+ x2 = nextafter(x, -inf);
+ return x - x2;
+ }
+ return x2 - x;
+}
+
+static int
+math_exec(PyObject *module)
+{
+
+ math_module_state *state = get_math_module_state(module);
+ state->str___ceil__ = PyUnicode_InternFromString("__ceil__");
+ if (state->str___ceil__ == NULL) {
+ return -1;
+ }
+ state->str___floor__ = PyUnicode_InternFromString("__floor__");
+ if (state->str___floor__ == NULL) {
+ return -1;
+ }
+ state->str___trunc__ = PyUnicode_InternFromString("__trunc__");
+ if (state->str___trunc__ == NULL) {
+ return -1;
+ }
+ if (_PyModule_Add(module, "pi", PyFloat_FromDouble(Py_MATH_PI)) < 0) {
+ return -1;
+ }
+ if (_PyModule_Add(module, "e", PyFloat_FromDouble(Py_MATH_E)) < 0) {
+ return -1;
+ }
+ // 2pi
+ if (_PyModule_Add(module, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) {
+ return -1;
+ }
+ if (_PyModule_Add(module, "inf", PyFloat_FromDouble(Py_INFINITY)) < 0) {
+ return -1;
+ }
+ if (_PyModule_Add(module, "nan", PyFloat_FromDouble(fabs(Py_NAN))) < 0) {
+ return -1;
+ }
+ return 0;
+}
+
+static int
+math_clear(PyObject *module)
+{
+ math_module_state *state = get_math_module_state(module);
+ Py_CLEAR(state->str___ceil__);
+ Py_CLEAR(state->str___floor__);
+ Py_CLEAR(state->str___trunc__);
+ return 0;
+}
+
+static void
+math_free(void *module)
+{
+ math_clear((PyObject *)module);
+}
+
+static PyMethodDef math_methods[] = {
+ {"acos", math_acos, METH_O, math_acos_doc},
+ {"acosh", math_acosh, METH_O, math_acosh_doc},
+ {"asin", math_asin, METH_O, math_asin_doc},
+ {"asinh", math_asinh, METH_O, math_asinh_doc},
+ {"atan", math_atan, METH_O, math_atan_doc},
+ {"atan2", _PyCFunction_CAST(math_atan2), METH_FASTCALL, math_atan2_doc},
+ {"atanh", math_atanh, METH_O, math_atanh_doc},
+ {"cbrt", math_cbrt, METH_O, math_cbrt_doc},
+ MATH_CEIL_METHODDEF
+ {"copysign", _PyCFunction_CAST(math_copysign), METH_FASTCALL, math_copysign_doc},
+ {"cos", math_cos, METH_O, math_cos_doc},
+ {"cosh", math_cosh, METH_O, math_cosh_doc},
+ MATH_DEGREES_METHODDEF
+ MATH_DIST_METHODDEF
+ {"erf", math_erf, METH_O, math_erf_doc},
+ {"erfc", math_erfc, METH_O, math_erfc_doc},
+ {"exp", math_exp, METH_O, math_exp_doc},
+ {"exp2", math_exp2, METH_O, math_exp2_doc},
+ {"expm1", math_expm1, METH_O, math_expm1_doc},
+ {"fabs", math_fabs, METH_O, math_fabs_doc},
+ MATH_FACTORIAL_METHODDEF
+ MATH_FLOOR_METHODDEF
+ MATH_FMOD_METHODDEF
+ MATH_FREXP_METHODDEF
+ MATH_FSUM_METHODDEF
+ {"gamma", math_gamma, METH_O, math_gamma_doc},
+ {"gcd", _PyCFunction_CAST(math_gcd), METH_FASTCALL, math_gcd_doc},
+ {"hypot", _PyCFunction_CAST(math_hypot), METH_FASTCALL, math_hypot_doc},
+ MATH_ISCLOSE_METHODDEF
+ MATH_ISFINITE_METHODDEF
+ MATH_ISINF_METHODDEF
+ MATH_ISNAN_METHODDEF
+ MATH_ISQRT_METHODDEF
+ {"lcm", _PyCFunction_CAST(math_lcm), METH_FASTCALL, math_lcm_doc},
+ MATH_LDEXP_METHODDEF
+ {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
+ {"log", _PyCFunction_CAST(math_log), METH_FASTCALL, math_log_doc},
+ {"log1p", math_log1p, METH_O, math_log1p_doc},
+ MATH_LOG10_METHODDEF
+ MATH_LOG2_METHODDEF
+ MATH_MODF_METHODDEF
+ MATH_POW_METHODDEF
+ MATH_RADIANS_METHODDEF
+ {"remainder", _PyCFunction_CAST(math_remainder), METH_FASTCALL, math_remainder_doc},
+ {"sin", math_sin, METH_O, math_sin_doc},
+ {"sinh", math_sinh, METH_O, math_sinh_doc},
+ {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
+ {"tan", math_tan, METH_O, math_tan_doc},
+ {"tanh", math_tanh, METH_O, math_tanh_doc},
+ MATH_SUMPROD_METHODDEF
+ MATH_TRUNC_METHODDEF
+ MATH_PROD_METHODDEF
+ MATH_PERM_METHODDEF
+ MATH_COMB_METHODDEF
+ MATH_NEXTAFTER_METHODDEF
+ MATH_ULP_METHODDEF
+ {NULL, NULL} /* sentinel */
+};
+
+static PyModuleDef_Slot math_slots[] = {
+ {Py_mod_exec, math_exec},
+ {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
+ {0, NULL}
+};
+
+PyDoc_STRVAR(module_doc,
+"This module provides access to the mathematical functions\n"
+"defined by the C standard.");
+
+static struct PyModuleDef mathmodule = {
+ PyModuleDef_HEAD_INIT,
+ .m_name = "math",
+ .m_doc = module_doc,
+ .m_size = sizeof(math_module_state),
+ .m_methods = math_methods,
+ .m_slots = math_slots,
+ .m_clear = math_clear,
+ .m_free = math_free,
+};
+
+PyMODINIT_FUNC
+PyInit_math(void)
+{
+ return PyModuleDef_Init(&mathmodule);
+}