diff options
author | AlexSm <alex@ydb.tech> | 2024-03-05 10:40:59 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-03-05 12:40:59 +0300 |
commit | 1ac13c847b5358faba44dbb638a828e24369467b (patch) | |
tree | 07672b4dd3604ad3dee540a02c6494cb7d10dc3d /contrib/tools/python3/Modules/cmathmodule.c | |
parent | ffcca3e7f7958ddc6487b91d3df8c01054bd0638 (diff) | |
download | ydb-1ac13c847b5358faba44dbb638a828e24369467b.tar.gz |
Library import 16 (#2433)
Co-authored-by: robot-piglet <robot-piglet@yandex-team.com>
Co-authored-by: deshevoy <deshevoy@yandex-team.com>
Co-authored-by: robot-contrib <robot-contrib@yandex-team.com>
Co-authored-by: thegeorg <thegeorg@yandex-team.com>
Co-authored-by: robot-ya-builder <robot-ya-builder@yandex-team.com>
Co-authored-by: svidyuk <svidyuk@yandex-team.com>
Co-authored-by: shadchin <shadchin@yandex-team.com>
Co-authored-by: robot-ratatosk <robot-ratatosk@yandex-team.com>
Co-authored-by: innokentii <innokentii@yandex-team.com>
Co-authored-by: arkady-e1ppa <arkady-e1ppa@yandex-team.com>
Co-authored-by: snermolaev <snermolaev@yandex-team.com>
Co-authored-by: dimdim11 <dimdim11@yandex-team.com>
Co-authored-by: kickbutt <kickbutt@yandex-team.com>
Co-authored-by: abdullinsaid <abdullinsaid@yandex-team.com>
Co-authored-by: korsunandrei <korsunandrei@yandex-team.com>
Co-authored-by: petrk <petrk@yandex-team.com>
Co-authored-by: miroslav2 <miroslav2@yandex-team.com>
Co-authored-by: serjflint <serjflint@yandex-team.com>
Co-authored-by: akhropov <akhropov@yandex-team.com>
Co-authored-by: prettyboy <prettyboy@yandex-team.com>
Co-authored-by: ilikepugs <ilikepugs@yandex-team.com>
Co-authored-by: hiddenpath <hiddenpath@yandex-team.com>
Co-authored-by: mikhnenko <mikhnenko@yandex-team.com>
Co-authored-by: spreis <spreis@yandex-team.com>
Co-authored-by: andreyshspb <andreyshspb@yandex-team.com>
Co-authored-by: dimaandreev <dimaandreev@yandex-team.com>
Co-authored-by: rashid <rashid@yandex-team.com>
Co-authored-by: robot-ydb-importer <robot-ydb-importer@yandex-team.com>
Co-authored-by: r-vetrov <r-vetrov@yandex-team.com>
Co-authored-by: ypodlesov <ypodlesov@yandex-team.com>
Co-authored-by: zaverden <zaverden@yandex-team.com>
Co-authored-by: vpozdyayev <vpozdyayev@yandex-team.com>
Co-authored-by: robot-cozmo <robot-cozmo@yandex-team.com>
Co-authored-by: v-korovin <v-korovin@yandex-team.com>
Co-authored-by: arikon <arikon@yandex-team.com>
Co-authored-by: khoden <khoden@yandex-team.com>
Co-authored-by: psydmm <psydmm@yandex-team.com>
Co-authored-by: robot-javacom <robot-javacom@yandex-team.com>
Co-authored-by: dtorilov <dtorilov@yandex-team.com>
Co-authored-by: sennikovmv <sennikovmv@yandex-team.com>
Co-authored-by: hcpp <hcpp@ydb.tech>
Diffstat (limited to 'contrib/tools/python3/Modules/cmathmodule.c')
-rw-r--r-- | contrib/tools/python3/Modules/cmathmodule.c | 1381 |
1 files changed, 1381 insertions, 0 deletions
diff --git a/contrib/tools/python3/Modules/cmathmodule.c b/contrib/tools/python3/Modules/cmathmodule.c new file mode 100644 index 0000000000..25491e6558 --- /dev/null +++ b/contrib/tools/python3/Modules/cmathmodule.c @@ -0,0 +1,1381 @@ +/* Complex math module */ + +/* much code borrowed from mathmodule.c */ + +#ifndef Py_BUILD_CORE_BUILTIN +# define Py_BUILD_CORE_MODULE 1 +#endif + +#include "Python.h" +#include "pycore_pymath.h" // _PY_SHORT_FLOAT_REPR +/* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from + float.h. We assume that FLT_RADIX is either 2 or 16. */ +#include <float.h> + +/* For _Py_log1p with workarounds for buggy handling of zeros. */ +#include "_math.h" + +#include "clinic/cmathmodule.c.h" +/*[clinic input] +module cmath +[clinic start generated code]*/ +/*[clinic end generated code: output=da39a3ee5e6b4b0d input=308d6839f4a46333]*/ + +/*[python input] +class Py_complex_protected_converter(Py_complex_converter): + def modify(self): + return 'errno = 0;' + + +class Py_complex_protected_return_converter(CReturnConverter): + type = "Py_complex" + + def render(self, function, data): + self.declare(data) + data.return_conversion.append(""" +if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + goto exit; +} +else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + goto exit; +} +else { + return_value = PyComplex_FromCComplex(_return_value); +} +""".strip()) +[python start generated code]*/ +/*[python end generated code: output=da39a3ee5e6b4b0d input=8b27adb674c08321]*/ + +#if (FLT_RADIX != 2 && FLT_RADIX != 16) +#error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16" +#endif + +#ifndef M_LN2 +#define M_LN2 (0.6931471805599453094) /* natural log of 2 */ +#endif + +#ifndef M_LN10 +#define M_LN10 (2.302585092994045684) /* natural log of 10 */ +#endif + +/* + CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log, + inverse trig and inverse hyperbolic trig functions. Its log is used in the + evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unnecessary + overflow. + */ + +#define CM_LARGE_DOUBLE (DBL_MAX/4.) +#define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE)) +#define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE)) +#define CM_SQRT_DBL_MIN (sqrt(DBL_MIN)) + +/* + CM_SCALE_UP is an odd integer chosen such that multiplication by + 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal. + CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute + square roots accurately when the real and imaginary parts of the argument + are subnormal. +*/ + +#if FLT_RADIX==2 +#define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1) +#elif FLT_RADIX==16 +#define CM_SCALE_UP (4*DBL_MANT_DIG+1) +#endif +#define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2) + + +/* forward declarations */ +static Py_complex cmath_asinh_impl(PyObject *, Py_complex); +static Py_complex cmath_atanh_impl(PyObject *, Py_complex); +static Py_complex cmath_cosh_impl(PyObject *, Py_complex); +static Py_complex cmath_sinh_impl(PyObject *, Py_complex); +static Py_complex cmath_sqrt_impl(PyObject *, Py_complex); +static Py_complex cmath_tanh_impl(PyObject *, Py_complex); +static PyObject * math_error(void); + +/* Code to deal with special values (infinities, NaNs, etc.). */ + +/* special_type takes a double and returns an integer code indicating + the type of the double as follows: +*/ + +enum special_types { + ST_NINF, /* 0, negative infinity */ + ST_NEG, /* 1, negative finite number (nonzero) */ + ST_NZERO, /* 2, -0. */ + ST_PZERO, /* 3, +0. */ + ST_POS, /* 4, positive finite number (nonzero) */ + ST_PINF, /* 5, positive infinity */ + ST_NAN /* 6, Not a Number */ +}; + +static enum special_types +special_type(double d) +{ + if (Py_IS_FINITE(d)) { + if (d != 0) { + if (copysign(1., d) == 1.) + return ST_POS; + else + return ST_NEG; + } + else { + if (copysign(1., d) == 1.) + return ST_PZERO; + else + return ST_NZERO; + } + } + if (Py_IS_NAN(d)) + return ST_NAN; + if (copysign(1., d) == 1.) + return ST_PINF; + else + return ST_NINF; +} + +#define SPECIAL_VALUE(z, table) \ + if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \ + errno = 0; \ + return table[special_type((z).real)] \ + [special_type((z).imag)]; \ + } + +#define P Py_MATH_PI +#define P14 0.25*Py_MATH_PI +#define P12 0.5*Py_MATH_PI +#define P34 0.75*Py_MATH_PI +#define INF Py_HUGE_VAL +#define N Py_NAN +#define U -9.5426319407711027e33 /* unlikely value, used as placeholder */ + +/* First, the C functions that do the real work. Each of the c_* + functions computes and returns the C99 Annex G recommended result + and also sets errno as follows: errno = 0 if no floating-point + exception is associated with the result; errno = EDOM if C99 Annex + G recommends raising divide-by-zero or invalid for this result; and + errno = ERANGE where the overflow floating-point signal should be + raised. +*/ + +static Py_complex acos_special_values[7][7]; + +/*[clinic input] +cmath.acos -> Py_complex_protected + + z: Py_complex_protected + / + +Return the arc cosine of z. +[clinic start generated code]*/ + +static Py_complex +cmath_acos_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=40bd42853fd460ae input=bd6cbd78ae851927]*/ +{ + Py_complex s1, s2, r; + + SPECIAL_VALUE(z, acos_special_values); + + if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { + /* avoid unnecessary overflow for large arguments */ + r.real = atan2(fabs(z.imag), z.real); + /* split into cases to make sure that the branch cut has the + correct continuity on systems with unsigned zeros */ + if (z.real < 0.) { + r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) + + M_LN2*2., z.imag); + } else { + r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) + + M_LN2*2., -z.imag); + } + } else { + s1.real = 1.-z.real; + s1.imag = -z.imag; + s1 = cmath_sqrt_impl(module, s1); + s2.real = 1.+z.real; + s2.imag = z.imag; + s2 = cmath_sqrt_impl(module, s2); + r.real = 2.*atan2(s1.real, s2.real); + r.imag = asinh(s2.real*s1.imag - s2.imag*s1.real); + } + errno = 0; + return r; +} + + +static Py_complex acosh_special_values[7][7]; + +/*[clinic input] +cmath.acosh = cmath.acos + +Return the inverse hyperbolic cosine of z. +[clinic start generated code]*/ + +static Py_complex +cmath_acosh_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=3e2454d4fcf404ca input=3f61bee7d703e53c]*/ +{ + Py_complex s1, s2, r; + + SPECIAL_VALUE(z, acosh_special_values); + + if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { + /* avoid unnecessary overflow for large arguments */ + r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.; + r.imag = atan2(z.imag, z.real); + } else { + s1.real = z.real - 1.; + s1.imag = z.imag; + s1 = cmath_sqrt_impl(module, s1); + s2.real = z.real + 1.; + s2.imag = z.imag; + s2 = cmath_sqrt_impl(module, s2); + r.real = asinh(s1.real*s2.real + s1.imag*s2.imag); + r.imag = 2.*atan2(s1.imag, s2.real); + } + errno = 0; + return r; +} + +/*[clinic input] +cmath.asin = cmath.acos + +Return the arc sine of z. +[clinic start generated code]*/ + +static Py_complex +cmath_asin_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=3b264cd1b16bf4e1 input=be0bf0cfdd5239c5]*/ +{ + /* asin(z) = -i asinh(iz) */ + Py_complex s, r; + s.real = -z.imag; + s.imag = z.real; + s = cmath_asinh_impl(module, s); + r.real = s.imag; + r.imag = -s.real; + return r; +} + + +static Py_complex asinh_special_values[7][7]; + +/*[clinic input] +cmath.asinh = cmath.acos + +Return the inverse hyperbolic sine of z. +[clinic start generated code]*/ + +static Py_complex +cmath_asinh_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=733d8107841a7599 input=5c09448fcfc89a79]*/ +{ + Py_complex s1, s2, r; + + SPECIAL_VALUE(z, asinh_special_values); + + if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { + if (z.imag >= 0.) { + r.real = copysign(log(hypot(z.real/2., z.imag/2.)) + + M_LN2*2., z.real); + } else { + r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) + + M_LN2*2., -z.real); + } + r.imag = atan2(z.imag, fabs(z.real)); + } else { + s1.real = 1.+z.imag; + s1.imag = -z.real; + s1 = cmath_sqrt_impl(module, s1); + s2.real = 1.-z.imag; + s2.imag = z.real; + s2 = cmath_sqrt_impl(module, s2); + r.real = asinh(s1.real*s2.imag-s2.real*s1.imag); + r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag); + } + errno = 0; + return r; +} + + +/*[clinic input] +cmath.atan = cmath.acos + +Return the arc tangent of z. +[clinic start generated code]*/ + +static Py_complex +cmath_atan_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=b6bfc497058acba4 input=3b21ff7d5eac632a]*/ +{ + /* atan(z) = -i atanh(iz) */ + Py_complex s, r; + s.real = -z.imag; + s.imag = z.real; + s = cmath_atanh_impl(module, s); + r.real = s.imag; + r.imag = -s.real; + return r; +} + +/* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow + C99 for atan2(0., 0.). */ +static double +c_atan2(Py_complex z) +{ + if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)) + return Py_NAN; + if (Py_IS_INFINITY(z.imag)) { + if (Py_IS_INFINITY(z.real)) { + if (copysign(1., z.real) == 1.) + /* atan2(+-inf, +inf) == +-pi/4 */ + return copysign(0.25*Py_MATH_PI, z.imag); + else + /* atan2(+-inf, -inf) == +-pi*3/4 */ + return copysign(0.75*Py_MATH_PI, z.imag); + } + /* atan2(+-inf, x) == +-pi/2 for finite x */ + return copysign(0.5*Py_MATH_PI, z.imag); + } + if (Py_IS_INFINITY(z.real) || z.imag == 0.) { + if (copysign(1., z.real) == 1.) + /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ + return copysign(0., z.imag); + else + /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ + return copysign(Py_MATH_PI, z.imag); + } + return atan2(z.imag, z.real); +} + + +static Py_complex atanh_special_values[7][7]; + +/*[clinic input] +cmath.atanh = cmath.acos + +Return the inverse hyperbolic tangent of z. +[clinic start generated code]*/ + +static Py_complex +cmath_atanh_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=e83355f93a989c9e input=2b3fdb82fb34487b]*/ +{ + Py_complex r; + double ay, h; + + SPECIAL_VALUE(z, atanh_special_values); + + /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */ + if (z.real < 0.) { + return _Py_c_neg(cmath_atanh_impl(module, _Py_c_neg(z))); + } + + ay = fabs(z.imag); + if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) { + /* + if abs(z) is large then we use the approximation + atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign + of z.imag) + */ + h = hypot(z.real/2., z.imag/2.); /* safe from overflow */ + r.real = z.real/4./h/h; + /* the two negations in the next line cancel each other out + except when working with unsigned zeros: they're there to + ensure that the branch cut has the correct continuity on + systems that don't support signed zeros */ + r.imag = -copysign(Py_MATH_PI/2., -z.imag); + errno = 0; + } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) { + /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */ + if (ay == 0.) { + r.real = INF; + r.imag = z.imag; + errno = EDOM; + } else { + r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.))); + r.imag = copysign(atan2(2., -ay)/2, z.imag); + errno = 0; + } + } else { + r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.; + r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.; + errno = 0; + } + return r; +} + + +/*[clinic input] +cmath.cos = cmath.acos + +Return the cosine of z. +[clinic start generated code]*/ + +static Py_complex +cmath_cos_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=fd64918d5b3186db input=6022e39b77127ac7]*/ +{ + /* cos(z) = cosh(iz) */ + Py_complex r; + r.real = -z.imag; + r.imag = z.real; + r = cmath_cosh_impl(module, r); + return r; +} + + +/* cosh(infinity + i*y) needs to be dealt with specially */ +static Py_complex cosh_special_values[7][7]; + +/*[clinic input] +cmath.cosh = cmath.acos + +Return the hyperbolic cosine of z. +[clinic start generated code]*/ + +static Py_complex +cmath_cosh_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=2e969047da601bdb input=d6b66339e9cc332b]*/ +{ + Py_complex r; + double x_minus_one; + + /* special treatment for cosh(+/-inf + iy) if y is not a NaN */ + if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { + if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) && + (z.imag != 0.)) { + if (z.real > 0) { + r.real = copysign(INF, cos(z.imag)); + r.imag = copysign(INF, sin(z.imag)); + } + else { + r.real = copysign(INF, cos(z.imag)); + r.imag = -copysign(INF, sin(z.imag)); + } + } + else { + r = cosh_special_values[special_type(z.real)] + [special_type(z.imag)]; + } + /* need to set errno = EDOM if y is +/- infinity and x is not + a NaN */ + if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) + errno = EDOM; + else + errno = 0; + return r; + } + + if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { + /* deal correctly with cases where cosh(z.real) overflows but + cosh(z) does not. */ + x_minus_one = z.real - copysign(1., z.real); + r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E; + r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E; + } else { + r.real = cos(z.imag) * cosh(z.real); + r.imag = sin(z.imag) * sinh(z.real); + } + /* detect overflow, and set errno accordingly */ + if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) + errno = ERANGE; + else + errno = 0; + return r; +} + + +/* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for + finite y */ +static Py_complex exp_special_values[7][7]; + +/*[clinic input] +cmath.exp = cmath.acos + +Return the exponential value e**z. +[clinic start generated code]*/ + +static Py_complex +cmath_exp_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=edcec61fb9dfda6c input=8b9e6cf8a92174c3]*/ +{ + Py_complex r; + double l; + + if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { + if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) + && (z.imag != 0.)) { + if (z.real > 0) { + r.real = copysign(INF, cos(z.imag)); + r.imag = copysign(INF, sin(z.imag)); + } + else { + r.real = copysign(0., cos(z.imag)); + r.imag = copysign(0., sin(z.imag)); + } + } + else { + r = exp_special_values[special_type(z.real)] + [special_type(z.imag)]; + } + /* need to set errno = EDOM if y is +/- infinity and x is not + a NaN and not -infinity */ + if (Py_IS_INFINITY(z.imag) && + (Py_IS_FINITE(z.real) || + (Py_IS_INFINITY(z.real) && z.real > 0))) + errno = EDOM; + else + errno = 0; + return r; + } + + if (z.real > CM_LOG_LARGE_DOUBLE) { + l = exp(z.real-1.); + r.real = l*cos(z.imag)*Py_MATH_E; + r.imag = l*sin(z.imag)*Py_MATH_E; + } else { + l = exp(z.real); + r.real = l*cos(z.imag); + r.imag = l*sin(z.imag); + } + /* detect overflow, and set errno accordingly */ + if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) + errno = ERANGE; + else + errno = 0; + return r; +} + +static Py_complex log_special_values[7][7]; + +static Py_complex +c_log(Py_complex z) +{ + /* + The usual formula for the real part is log(hypot(z.real, z.imag)). + There are four situations where this formula is potentially + problematic: + + (1) the absolute value of z is subnormal. Then hypot is subnormal, + so has fewer than the usual number of bits of accuracy, hence may + have large relative error. This then gives a large absolute error + in the log. This can be solved by rescaling z by a suitable power + of 2. + + (2) the absolute value of z is greater than DBL_MAX (e.g. when both + z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX) + Again, rescaling solves this. + + (3) the absolute value of z is close to 1. In this case it's + difficult to achieve good accuracy, at least in part because a + change of 1ulp in the real or imaginary part of z can result in a + change of billions of ulps in the correctly rounded answer. + + (4) z = 0. The simplest thing to do here is to call the + floating-point log with an argument of 0, and let its behaviour + (returning -infinity, signaling a floating-point exception, setting + errno, or whatever) determine that of c_log. So the usual formula + is fine here. + + */ + + Py_complex r; + double ax, ay, am, an, h; + + SPECIAL_VALUE(z, log_special_values); + + ax = fabs(z.real); + ay = fabs(z.imag); + + if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) { + r.real = log(hypot(ax/2., ay/2.)) + M_LN2; + } else if (ax < DBL_MIN && ay < DBL_MIN) { + if (ax > 0. || ay > 0.) { + /* catch cases where hypot(ax, ay) is subnormal */ + r.real = log(hypot(ldexp(ax, DBL_MANT_DIG), + ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2; + } + else { + /* log(+/-0. +/- 0i) */ + r.real = -INF; + r.imag = atan2(z.imag, z.real); + errno = EDOM; + return r; + } + } else { + h = hypot(ax, ay); + if (0.71 <= h && h <= 1.73) { + am = ax > ay ? ax : ay; /* max(ax, ay) */ + an = ax > ay ? ay : ax; /* min(ax, ay) */ + r.real = m_log1p((am-1)*(am+1)+an*an)/2.; + } else { + r.real = log(h); + } + } + r.imag = atan2(z.imag, z.real); + errno = 0; + return r; +} + + +/*[clinic input] +cmath.log10 = cmath.acos + +Return the base-10 logarithm of z. +[clinic start generated code]*/ + +static Py_complex +cmath_log10_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=2922779a7c38cbe1 input=cff5644f73c1519c]*/ +{ + Py_complex r; + int errno_save; + + r = c_log(z); + errno_save = errno; /* just in case the divisions affect errno */ + r.real = r.real / M_LN10; + r.imag = r.imag / M_LN10; + errno = errno_save; + return r; +} + + +/*[clinic input] +cmath.sin = cmath.acos + +Return the sine of z. +[clinic start generated code]*/ + +static Py_complex +cmath_sin_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=980370d2ff0bb5aa input=2d3519842a8b4b85]*/ +{ + /* sin(z) = -i sin(iz) */ + Py_complex s, r; + s.real = -z.imag; + s.imag = z.real; + s = cmath_sinh_impl(module, s); + r.real = s.imag; + r.imag = -s.real; + return r; +} + + +/* sinh(infinity + i*y) needs to be dealt with specially */ +static Py_complex sinh_special_values[7][7]; + +/*[clinic input] +cmath.sinh = cmath.acos + +Return the hyperbolic sine of z. +[clinic start generated code]*/ + +static Py_complex +cmath_sinh_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=38b0a6cce26f3536 input=d2d3fc8c1ddfd2dd]*/ +{ + Py_complex r; + double x_minus_one; + + /* special treatment for sinh(+/-inf + iy) if y is finite and + nonzero */ + if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { + if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) + && (z.imag != 0.)) { + if (z.real > 0) { + r.real = copysign(INF, cos(z.imag)); + r.imag = copysign(INF, sin(z.imag)); + } + else { + r.real = -copysign(INF, cos(z.imag)); + r.imag = copysign(INF, sin(z.imag)); + } + } + else { + r = sinh_special_values[special_type(z.real)] + [special_type(z.imag)]; + } + /* need to set errno = EDOM if y is +/- infinity and x is not + a NaN */ + if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) + errno = EDOM; + else + errno = 0; + return r; + } + + if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { + x_minus_one = z.real - copysign(1., z.real); + r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E; + r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E; + } else { + r.real = cos(z.imag) * sinh(z.real); + r.imag = sin(z.imag) * cosh(z.real); + } + /* detect overflow, and set errno accordingly */ + if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) + errno = ERANGE; + else + errno = 0; + return r; +} + + +static Py_complex sqrt_special_values[7][7]; + +/*[clinic input] +cmath.sqrt = cmath.acos + +Return the square root of z. +[clinic start generated code]*/ + +static Py_complex +cmath_sqrt_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=b6507b3029c339fc input=7088b166fc9a58c7]*/ +{ + /* + Method: use symmetries to reduce to the case when x = z.real and y + = z.imag are nonnegative. Then the real part of the result is + given by + + s = sqrt((x + hypot(x, y))/2) + + and the imaginary part is + + d = (y/2)/s + + If either x or y is very large then there's a risk of overflow in + computation of the expression x + hypot(x, y). We can avoid this + by rewriting the formula for s as: + + s = 2*sqrt(x/8 + hypot(x/8, y/8)) + + This costs us two extra multiplications/divisions, but avoids the + overhead of checking for x and y large. + + If both x and y are subnormal then hypot(x, y) may also be + subnormal, so will lack full precision. We solve this by rescaling + x and y by a sufficiently large power of 2 to ensure that x and y + are normal. + */ + + + Py_complex r; + double s,d; + double ax, ay; + + SPECIAL_VALUE(z, sqrt_special_values); + + if (z.real == 0. && z.imag == 0.) { + r.real = 0.; + r.imag = z.imag; + return r; + } + + ax = fabs(z.real); + ay = fabs(z.imag); + + if (ax < DBL_MIN && ay < DBL_MIN) { + /* here we catch cases where hypot(ax, ay) is subnormal */ + ax = ldexp(ax, CM_SCALE_UP); + s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))), + CM_SCALE_DOWN); + } else { + ax /= 8.; + s = 2.*sqrt(ax + hypot(ax, ay/8.)); + } + d = ay/(2.*s); + + if (z.real >= 0.) { + r.real = s; + r.imag = copysign(d, z.imag); + } else { + r.real = d; + r.imag = copysign(s, z.imag); + } + errno = 0; + return r; +} + + +/*[clinic input] +cmath.tan = cmath.acos + +Return the tangent of z. +[clinic start generated code]*/ + +static Py_complex +cmath_tan_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=7c5f13158a72eb13 input=fc167e528767888e]*/ +{ + /* tan(z) = -i tanh(iz) */ + Py_complex s, r; + s.real = -z.imag; + s.imag = z.real; + s = cmath_tanh_impl(module, s); + r.real = s.imag; + r.imag = -s.real; + return r; +} + + +/* tanh(infinity + i*y) needs to be dealt with specially */ +static Py_complex tanh_special_values[7][7]; + +/*[clinic input] +cmath.tanh = cmath.acos + +Return the hyperbolic tangent of z. +[clinic start generated code]*/ + +static Py_complex +cmath_tanh_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=36d547ef7aca116c input=22f67f9dc6d29685]*/ +{ + /* Formula: + + tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) / + (1+tan(y)^2 tanh(x)^2) + + To avoid excessive roundoff error, 1-tanh(x)^2 is better computed + as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2 + by 4 exp(-2*x) instead, to avoid possible overflow in the + computation of cosh(x). + + */ + + Py_complex r; + double tx, ty, cx, txty, denom; + + /* special treatment for tanh(+/-inf + iy) if y is finite and + nonzero */ + if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { + if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) + && (z.imag != 0.)) { + if (z.real > 0) { + r.real = 1.0; + r.imag = copysign(0., + 2.*sin(z.imag)*cos(z.imag)); + } + else { + r.real = -1.0; + r.imag = copysign(0., + 2.*sin(z.imag)*cos(z.imag)); + } + } + else { + r = tanh_special_values[special_type(z.real)] + [special_type(z.imag)]; + } + /* need to set errno = EDOM if z.imag is +/-infinity and + z.real is finite */ + if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real)) + errno = EDOM; + else + errno = 0; + return r; + } + + /* danger of overflow in 2.*z.imag !*/ + if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { + r.real = copysign(1., z.real); + r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real)); + } else { + tx = tanh(z.real); + ty = tan(z.imag); + cx = 1./cosh(z.real); + txty = tx*ty; + denom = 1. + txty*txty; + r.real = tx*(1.+ty*ty)/denom; + r.imag = ((ty/denom)*cx)*cx; + } + errno = 0; + return r; +} + + +/*[clinic input] +cmath.log + + z as x: Py_complex + base as y_obj: object = NULL + / + +log(z[, base]) -> the logarithm of z to the given base. + +If the base is not specified, returns the natural logarithm (base e) of z. +[clinic start generated code]*/ + +static PyObject * +cmath_log_impl(PyObject *module, Py_complex x, PyObject *y_obj) +/*[clinic end generated code: output=4effdb7d258e0d94 input=e1f81d4fcfd26497]*/ +{ + Py_complex y; + + errno = 0; + x = c_log(x); + if (y_obj != NULL) { + y = PyComplex_AsCComplex(y_obj); + if (PyErr_Occurred()) { + return NULL; + } + y = c_log(y); + x = _Py_c_quot(x, y); + } + if (errno != 0) + return math_error(); + return PyComplex_FromCComplex(x); +} + + +/* And now the glue to make them available from Python: */ + +static PyObject * +math_error(void) +{ + if (errno == EDOM) + PyErr_SetString(PyExc_ValueError, "math domain error"); + else if (errno == ERANGE) + PyErr_SetString(PyExc_OverflowError, "math range error"); + else /* Unexpected math error */ + PyErr_SetFromErrno(PyExc_ValueError); + return NULL; +} + + +/*[clinic input] +cmath.phase + + z: Py_complex + / + +Return argument, also known as the phase angle, of a complex. +[clinic start generated code]*/ + +static PyObject * +cmath_phase_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=50725086a7bfd253 input=5cf75228ba94b69d]*/ +{ + double phi; + + errno = 0; + phi = c_atan2(z); /* should not cause any exception */ + if (errno != 0) + return math_error(); + else + return PyFloat_FromDouble(phi); +} + +/*[clinic input] +cmath.polar + + z: Py_complex + / + +Convert a complex from rectangular coordinates to polar coordinates. + +r is the distance from 0 and phi the phase angle. +[clinic start generated code]*/ + +static PyObject * +cmath_polar_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=d0a8147c41dbb654 input=26c353574fd1a861]*/ +{ + double r, phi; + + errno = 0; + phi = c_atan2(z); /* should not cause any exception */ + r = _Py_c_abs(z); /* sets errno to ERANGE on overflow */ + if (errno != 0) + return math_error(); + else + return Py_BuildValue("dd", r, phi); +} + +/* + rect() isn't covered by the C99 standard, but it's not too hard to + figure out 'spirit of C99' rules for special value handing: + + rect(x, t) should behave like exp(log(x) + it) for positive-signed x + rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x + rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0) + gives nan +- i0 with the sign of the imaginary part unspecified. + +*/ + +static Py_complex rect_special_values[7][7]; + +/*[clinic input] +cmath.rect + + r: double + phi: double + / + +Convert from polar coordinates to rectangular coordinates. +[clinic start generated code]*/ + +static PyObject * +cmath_rect_impl(PyObject *module, double r, double phi) +/*[clinic end generated code: output=385a0690925df2d5 input=24c5646d147efd69]*/ +{ + Py_complex z; + errno = 0; + + /* deal with special values */ + if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) { + /* if r is +/-infinity and phi is finite but nonzero then + result is (+-INF +-INF i), but we need to compute cos(phi) + and sin(phi) to figure out the signs. */ + if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi) + && (phi != 0.))) { + if (r > 0) { + z.real = copysign(INF, cos(phi)); + z.imag = copysign(INF, sin(phi)); + } + else { + z.real = -copysign(INF, cos(phi)); + z.imag = -copysign(INF, sin(phi)); + } + } + else { + z = rect_special_values[special_type(r)] + [special_type(phi)]; + } + /* need to set errno = EDOM if r is a nonzero number and phi + is infinite */ + if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi)) + errno = EDOM; + else + errno = 0; + } + else if (phi == 0.0) { + /* Workaround for buggy results with phi=-0.0 on OS X 10.8. See + bugs.python.org/issue18513. */ + z.real = r; + z.imag = r * phi; + errno = 0; + } + else { + z.real = r * cos(phi); + z.imag = r * sin(phi); + errno = 0; + } + + if (errno != 0) + return math_error(); + else + return PyComplex_FromCComplex(z); +} + +/*[clinic input] +cmath.isfinite = cmath.polar + +Return True if both the real and imaginary parts of z are finite, else False. +[clinic start generated code]*/ + +static PyObject * +cmath_isfinite_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=ac76611e2c774a36 input=848e7ee701895815]*/ +{ + return PyBool_FromLong(Py_IS_FINITE(z.real) && Py_IS_FINITE(z.imag)); +} + +/*[clinic input] +cmath.isnan = cmath.polar + +Checks if the real or imaginary part of z not a number (NaN). +[clinic start generated code]*/ + +static PyObject * +cmath_isnan_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=e7abf6e0b28beab7 input=71799f5d284c9baf]*/ +{ + return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)); +} + +/*[clinic input] +cmath.isinf = cmath.polar + +Checks if the real or imaginary part of z is infinite. +[clinic start generated code]*/ + +static PyObject * +cmath_isinf_impl(PyObject *module, Py_complex z) +/*[clinic end generated code: output=502a75a79c773469 input=363df155c7181329]*/ +{ + return PyBool_FromLong(Py_IS_INFINITY(z.real) || + Py_IS_INFINITY(z.imag)); +} + +/*[clinic input] +cmath.isclose -> bool + + a: Py_complex + b: Py_complex + * + rel_tol: double = 1e-09 + maximum difference for being considered "close", relative to the + magnitude of the input values + abs_tol: double = 0.0 + maximum difference for being considered "close", regardless of the + magnitude of the input values + +Determine whether two complex numbers are close in value. + +Return True if a is close in value to b, and False otherwise. + +For the values to be considered close, the difference between them must be +smaller than at least one of the tolerances. + +-inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is +not close to anything, even itself. inf and -inf are only close to themselves. +[clinic start generated code]*/ + +static int +cmath_isclose_impl(PyObject *module, Py_complex a, Py_complex b, + double rel_tol, double abs_tol) +/*[clinic end generated code: output=8a2486cc6e0014d1 input=df9636d7de1d4ac3]*/ +{ + double diff; + + /* sanity check on the inputs */ + if (rel_tol < 0.0 || abs_tol < 0.0 ) { + PyErr_SetString(PyExc_ValueError, + "tolerances must be non-negative"); + return -1; + } + + if ( (a.real == b.real) && (a.imag == b.imag) ) { + /* short circuit exact equality -- needed to catch two infinities of + the same sign. And perhaps speeds things up a bit sometimes. + */ + return 1; + } + + /* This catches the case of two infinities of opposite sign, or + one infinity and one finite number. Two infinities of opposite + sign would otherwise have an infinite relative tolerance. + Two infinities of the same sign are caught by the equality check + above. + */ + + if (Py_IS_INFINITY(a.real) || Py_IS_INFINITY(a.imag) || + Py_IS_INFINITY(b.real) || Py_IS_INFINITY(b.imag)) { + return 0; + } + + /* now do the regular computation + this is essentially the "weak" test from the Boost library + */ + + diff = _Py_c_abs(_Py_c_diff(a, b)); + + return (((diff <= rel_tol * _Py_c_abs(b)) || + (diff <= rel_tol * _Py_c_abs(a))) || + (diff <= abs_tol)); +} + +PyDoc_STRVAR(module_doc, +"This module provides access to mathematical functions for complex\n" +"numbers."); + +static PyMethodDef cmath_methods[] = { + CMATH_ACOS_METHODDEF + CMATH_ACOSH_METHODDEF + CMATH_ASIN_METHODDEF + CMATH_ASINH_METHODDEF + CMATH_ATAN_METHODDEF + CMATH_ATANH_METHODDEF + CMATH_COS_METHODDEF + CMATH_COSH_METHODDEF + CMATH_EXP_METHODDEF + CMATH_ISCLOSE_METHODDEF + CMATH_ISFINITE_METHODDEF + CMATH_ISINF_METHODDEF + CMATH_ISNAN_METHODDEF + CMATH_LOG_METHODDEF + CMATH_LOG10_METHODDEF + CMATH_PHASE_METHODDEF + CMATH_POLAR_METHODDEF + CMATH_RECT_METHODDEF + CMATH_SIN_METHODDEF + CMATH_SINH_METHODDEF + CMATH_SQRT_METHODDEF + CMATH_TAN_METHODDEF + CMATH_TANH_METHODDEF + {NULL, NULL} /* sentinel */ +}; + +static int +cmath_exec(PyObject *mod) +{ + if (_PyModule_Add(mod, "pi", PyFloat_FromDouble(Py_MATH_PI)) < 0) { + return -1; + } + if (_PyModule_Add(mod, "e", PyFloat_FromDouble(Py_MATH_E)) < 0) { + return -1; + } + // 2pi + if (_PyModule_Add(mod, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) { + return -1; + } + if (_PyModule_Add(mod, "inf", PyFloat_FromDouble(Py_INFINITY)) < 0) { + return -1; + } + + Py_complex infj = {0.0, Py_INFINITY}; + if (_PyModule_Add(mod, "infj", PyComplex_FromCComplex(infj)) < 0) { + return -1; + } + if (_PyModule_Add(mod, "nan", PyFloat_FromDouble(fabs(Py_NAN))) < 0) { + return -1; + } + Py_complex nanj = {0.0, fabs(Py_NAN)}; + if (_PyModule_Add(mod, "nanj", PyComplex_FromCComplex(nanj)) < 0) { + return -1; + } + + /* initialize special value tables */ + +#define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY } +#define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p; + + INIT_SPECIAL_VALUES(acos_special_values, { + C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF) + C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N) + C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N) + C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N) + C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N) + C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF) + C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N) + }) + + INIT_SPECIAL_VALUES(acosh_special_values, { + C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N) + C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) + C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) + C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(asinh_special_values, { + C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N) + C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N) + C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) + C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) + C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(atanh_special_values, { + C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N) + C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N) + C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N) + C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N) + C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N) + C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N) + C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N) + }) + + INIT_SPECIAL_VALUES(cosh_special_values, { + C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.) + C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(exp_special_values, { + C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(log_special_values, { + C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N) + C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) + C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) + C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(sinh_special_values, { + C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N) + C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(sqrt_special_values, { + C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF) + C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N) + C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N) + C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N) + C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N) + C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N) + C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N) + }) + + INIT_SPECIAL_VALUES(tanh_special_values, { + C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.) + C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(rect_special_values, { + C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.) + C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N) + }) + return 0; +} + +static PyModuleDef_Slot cmath_slots[] = { + {Py_mod_exec, cmath_exec}, + {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED}, + {0, NULL} +}; + +static struct PyModuleDef cmathmodule = { + PyModuleDef_HEAD_INIT, + .m_name = "cmath", + .m_doc = module_doc, + .m_size = 0, + .m_methods = cmath_methods, + .m_slots = cmath_slots +}; + +PyMODINIT_FUNC +PyInit_cmath(void) +{ + return PyModuleDef_Init(&cmathmodule); +} |