aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/Lib/random.py
diff options
context:
space:
mode:
authorAlexSm <alex@ydb.tech>2024-03-05 10:40:59 +0100
committerGitHub <noreply@github.com>2024-03-05 12:40:59 +0300
commit1ac13c847b5358faba44dbb638a828e24369467b (patch)
tree07672b4dd3604ad3dee540a02c6494cb7d10dc3d /contrib/tools/python3/Lib/random.py
parentffcca3e7f7958ddc6487b91d3df8c01054bd0638 (diff)
downloadydb-1ac13c847b5358faba44dbb638a828e24369467b.tar.gz
Library import 16 (#2433)
Co-authored-by: robot-piglet <robot-piglet@yandex-team.com> Co-authored-by: deshevoy <deshevoy@yandex-team.com> Co-authored-by: robot-contrib <robot-contrib@yandex-team.com> Co-authored-by: thegeorg <thegeorg@yandex-team.com> Co-authored-by: robot-ya-builder <robot-ya-builder@yandex-team.com> Co-authored-by: svidyuk <svidyuk@yandex-team.com> Co-authored-by: shadchin <shadchin@yandex-team.com> Co-authored-by: robot-ratatosk <robot-ratatosk@yandex-team.com> Co-authored-by: innokentii <innokentii@yandex-team.com> Co-authored-by: arkady-e1ppa <arkady-e1ppa@yandex-team.com> Co-authored-by: snermolaev <snermolaev@yandex-team.com> Co-authored-by: dimdim11 <dimdim11@yandex-team.com> Co-authored-by: kickbutt <kickbutt@yandex-team.com> Co-authored-by: abdullinsaid <abdullinsaid@yandex-team.com> Co-authored-by: korsunandrei <korsunandrei@yandex-team.com> Co-authored-by: petrk <petrk@yandex-team.com> Co-authored-by: miroslav2 <miroslav2@yandex-team.com> Co-authored-by: serjflint <serjflint@yandex-team.com> Co-authored-by: akhropov <akhropov@yandex-team.com> Co-authored-by: prettyboy <prettyboy@yandex-team.com> Co-authored-by: ilikepugs <ilikepugs@yandex-team.com> Co-authored-by: hiddenpath <hiddenpath@yandex-team.com> Co-authored-by: mikhnenko <mikhnenko@yandex-team.com> Co-authored-by: spreis <spreis@yandex-team.com> Co-authored-by: andreyshspb <andreyshspb@yandex-team.com> Co-authored-by: dimaandreev <dimaandreev@yandex-team.com> Co-authored-by: rashid <rashid@yandex-team.com> Co-authored-by: robot-ydb-importer <robot-ydb-importer@yandex-team.com> Co-authored-by: r-vetrov <r-vetrov@yandex-team.com> Co-authored-by: ypodlesov <ypodlesov@yandex-team.com> Co-authored-by: zaverden <zaverden@yandex-team.com> Co-authored-by: vpozdyayev <vpozdyayev@yandex-team.com> Co-authored-by: robot-cozmo <robot-cozmo@yandex-team.com> Co-authored-by: v-korovin <v-korovin@yandex-team.com> Co-authored-by: arikon <arikon@yandex-team.com> Co-authored-by: khoden <khoden@yandex-team.com> Co-authored-by: psydmm <psydmm@yandex-team.com> Co-authored-by: robot-javacom <robot-javacom@yandex-team.com> Co-authored-by: dtorilov <dtorilov@yandex-team.com> Co-authored-by: sennikovmv <sennikovmv@yandex-team.com> Co-authored-by: hcpp <hcpp@ydb.tech>
Diffstat (limited to 'contrib/tools/python3/Lib/random.py')
-rw-r--r--contrib/tools/python3/Lib/random.py996
1 files changed, 996 insertions, 0 deletions
diff --git a/contrib/tools/python3/Lib/random.py b/contrib/tools/python3/Lib/random.py
new file mode 100644
index 0000000000..1cfc2ba2f0
--- /dev/null
+++ b/contrib/tools/python3/Lib/random.py
@@ -0,0 +1,996 @@
+"""Random variable generators.
+
+ bytes
+ -----
+ uniform bytes (values between 0 and 255)
+
+ integers
+ --------
+ uniform within range
+
+ sequences
+ ---------
+ pick random element
+ pick random sample
+ pick weighted random sample
+ generate random permutation
+
+ distributions on the real line:
+ ------------------------------
+ uniform
+ triangular
+ normal (Gaussian)
+ lognormal
+ negative exponential
+ gamma
+ beta
+ pareto
+ Weibull
+
+ distributions on the circle (angles 0 to 2pi)
+ ---------------------------------------------
+ circular uniform
+ von Mises
+
+ discrete distributions
+ ----------------------
+ binomial
+
+
+General notes on the underlying Mersenne Twister core generator:
+
+* The period is 2**19937-1.
+* It is one of the most extensively tested generators in existence.
+* The random() method is implemented in C, executes in a single Python step,
+ and is, therefore, threadsafe.
+
+"""
+
+# Translated by Guido van Rossum from C source provided by
+# Adrian Baddeley. Adapted by Raymond Hettinger for use with
+# the Mersenne Twister and os.urandom() core generators.
+
+from warnings import warn as _warn
+from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
+from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
+from math import tau as TWOPI, floor as _floor, isfinite as _isfinite
+from math import lgamma as _lgamma, fabs as _fabs, log2 as _log2
+from os import urandom as _urandom
+from _collections_abc import Sequence as _Sequence
+from operator import index as _index
+from itertools import accumulate as _accumulate, repeat as _repeat
+from bisect import bisect as _bisect
+import os as _os
+import _random
+
+try:
+ # hashlib is pretty heavy to load, try lean internal module first
+ from _sha2 import sha512 as _sha512
+except ImportError:
+ # fallback to official implementation
+ from hashlib import sha512 as _sha512
+
+__all__ = [
+ "Random",
+ "SystemRandom",
+ "betavariate",
+ "binomialvariate",
+ "choice",
+ "choices",
+ "expovariate",
+ "gammavariate",
+ "gauss",
+ "getrandbits",
+ "getstate",
+ "lognormvariate",
+ "normalvariate",
+ "paretovariate",
+ "randbytes",
+ "randint",
+ "random",
+ "randrange",
+ "sample",
+ "seed",
+ "setstate",
+ "shuffle",
+ "triangular",
+ "uniform",
+ "vonmisesvariate",
+ "weibullvariate",
+]
+
+NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2.0)
+LOG4 = _log(4.0)
+SG_MAGICCONST = 1.0 + _log(4.5)
+BPF = 53 # Number of bits in a float
+RECIP_BPF = 2 ** -BPF
+_ONE = 1
+
+
+class Random(_random.Random):
+ """Random number generator base class used by bound module functions.
+
+ Used to instantiate instances of Random to get generators that don't
+ share state.
+
+ Class Random can also be subclassed if you want to use a different basic
+ generator of your own devising: in that case, override the following
+ methods: random(), seed(), getstate(), and setstate().
+ Optionally, implement a getrandbits() method so that randrange()
+ can cover arbitrarily large ranges.
+
+ """
+
+ VERSION = 3 # used by getstate/setstate
+
+ def __init__(self, x=None):
+ """Initialize an instance.
+
+ Optional argument x controls seeding, as for Random.seed().
+ """
+
+ self.seed(x)
+ self.gauss_next = None
+
+ def seed(self, a=None, version=2):
+ """Initialize internal state from a seed.
+
+ The only supported seed types are None, int, float,
+ str, bytes, and bytearray.
+
+ None or no argument seeds from current time or from an operating
+ system specific randomness source if available.
+
+ If *a* is an int, all bits are used.
+
+ For version 2 (the default), all of the bits are used if *a* is a str,
+ bytes, or bytearray. For version 1 (provided for reproducing random
+ sequences from older versions of Python), the algorithm for str and
+ bytes generates a narrower range of seeds.
+
+ """
+
+ if version == 1 and isinstance(a, (str, bytes)):
+ a = a.decode('latin-1') if isinstance(a, bytes) else a
+ x = ord(a[0]) << 7 if a else 0
+ for c in map(ord, a):
+ x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF
+ x ^= len(a)
+ a = -2 if x == -1 else x
+
+ elif version == 2 and isinstance(a, (str, bytes, bytearray)):
+ if isinstance(a, str):
+ a = a.encode()
+ a = int.from_bytes(a + _sha512(a).digest())
+
+ elif not isinstance(a, (type(None), int, float, str, bytes, bytearray)):
+ raise TypeError('The only supported seed types are: None,\n'
+ 'int, float, str, bytes, and bytearray.')
+
+ super().seed(a)
+ self.gauss_next = None
+
+ def getstate(self):
+ """Return internal state; can be passed to setstate() later."""
+ return self.VERSION, super().getstate(), self.gauss_next
+
+ def setstate(self, state):
+ """Restore internal state from object returned by getstate()."""
+ version = state[0]
+ if version == 3:
+ version, internalstate, self.gauss_next = state
+ super().setstate(internalstate)
+ elif version == 2:
+ version, internalstate, self.gauss_next = state
+ # In version 2, the state was saved as signed ints, which causes
+ # inconsistencies between 32/64-bit systems. The state is
+ # really unsigned 32-bit ints, so we convert negative ints from
+ # version 2 to positive longs for version 3.
+ try:
+ internalstate = tuple(x % (2 ** 32) for x in internalstate)
+ except ValueError as e:
+ raise TypeError from e
+ super().setstate(internalstate)
+ else:
+ raise ValueError("state with version %s passed to "
+ "Random.setstate() of version %s" %
+ (version, self.VERSION))
+
+
+ ## -------------------------------------------------------
+ ## ---- Methods below this point do not need to be overridden or extended
+ ## ---- when subclassing for the purpose of using a different core generator.
+
+
+ ## -------------------- pickle support -------------------
+
+ # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
+ # longer called; we leave it here because it has been here since random was
+ # rewritten back in 2001 and why risk breaking something.
+ def __getstate__(self): # for pickle
+ return self.getstate()
+
+ def __setstate__(self, state): # for pickle
+ self.setstate(state)
+
+ def __reduce__(self):
+ return self.__class__, (), self.getstate()
+
+
+ ## ---- internal support method for evenly distributed integers ----
+
+ def __init_subclass__(cls, /, **kwargs):
+ """Control how subclasses generate random integers.
+
+ The algorithm a subclass can use depends on the random() and/or
+ getrandbits() implementation available to it and determines
+ whether it can generate random integers from arbitrarily large
+ ranges.
+ """
+
+ for c in cls.__mro__:
+ if '_randbelow' in c.__dict__:
+ # just inherit it
+ break
+ if 'getrandbits' in c.__dict__:
+ cls._randbelow = cls._randbelow_with_getrandbits
+ break
+ if 'random' in c.__dict__:
+ cls._randbelow = cls._randbelow_without_getrandbits
+ break
+
+ def _randbelow_with_getrandbits(self, n):
+ "Return a random int in the range [0,n). Defined for n > 0."
+
+ getrandbits = self.getrandbits
+ k = n.bit_length()
+ r = getrandbits(k) # 0 <= r < 2**k
+ while r >= n:
+ r = getrandbits(k)
+ return r
+
+ def _randbelow_without_getrandbits(self, n, maxsize=1<<BPF):
+ """Return a random int in the range [0,n). Defined for n > 0.
+
+ The implementation does not use getrandbits, but only random.
+ """
+
+ random = self.random
+ if n >= maxsize:
+ _warn("Underlying random() generator does not supply \n"
+ "enough bits to choose from a population range this large.\n"
+ "To remove the range limitation, add a getrandbits() method.")
+ return _floor(random() * n)
+ rem = maxsize % n
+ limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
+ r = random()
+ while r >= limit:
+ r = random()
+ return _floor(r * maxsize) % n
+
+ _randbelow = _randbelow_with_getrandbits
+
+
+ ## --------------------------------------------------------
+ ## ---- Methods below this point generate custom distributions
+ ## ---- based on the methods defined above. They do not
+ ## ---- directly touch the underlying generator and only
+ ## ---- access randomness through the methods: random(),
+ ## ---- getrandbits(), or _randbelow().
+
+
+ ## -------------------- bytes methods ---------------------
+
+ def randbytes(self, n):
+ """Generate n random bytes."""
+ return self.getrandbits(n * 8).to_bytes(n, 'little')
+
+
+ ## -------------------- integer methods -------------------
+
+ def randrange(self, start, stop=None, step=_ONE):
+ """Choose a random item from range(stop) or range(start, stop[, step]).
+
+ Roughly equivalent to ``choice(range(start, stop, step))`` but
+ supports arbitrarily large ranges and is optimized for common cases.
+
+ """
+
+ # This code is a bit messy to make it fast for the
+ # common case while still doing adequate error checking.
+ istart = _index(start)
+ if stop is None:
+ # We don't check for "step != 1" because it hasn't been
+ # type checked and converted to an integer yet.
+ if step is not _ONE:
+ raise TypeError("Missing a non-None stop argument")
+ if istart > 0:
+ return self._randbelow(istart)
+ raise ValueError("empty range for randrange()")
+
+ # Stop argument supplied.
+ istop = _index(stop)
+ width = istop - istart
+ istep = _index(step)
+ # Fast path.
+ if istep == 1:
+ if width > 0:
+ return istart + self._randbelow(width)
+ raise ValueError(f"empty range in randrange({start}, {stop})")
+
+ # Non-unit step argument supplied.
+ if istep > 0:
+ n = (width + istep - 1) // istep
+ elif istep < 0:
+ n = (width + istep + 1) // istep
+ else:
+ raise ValueError("zero step for randrange()")
+ if n <= 0:
+ raise ValueError(f"empty range in randrange({start}, {stop}, {step})")
+ return istart + istep * self._randbelow(n)
+
+ def randint(self, a, b):
+ """Return random integer in range [a, b], including both end points.
+ """
+
+ return self.randrange(a, b+1)
+
+
+ ## -------------------- sequence methods -------------------
+
+ def choice(self, seq):
+ """Choose a random element from a non-empty sequence."""
+
+ # As an accommodation for NumPy, we don't use "if not seq"
+ # because bool(numpy.array()) raises a ValueError.
+ if not len(seq):
+ raise IndexError('Cannot choose from an empty sequence')
+ return seq[self._randbelow(len(seq))]
+
+ def shuffle(self, x):
+ """Shuffle list x in place, and return None."""
+
+ randbelow = self._randbelow
+ for i in reversed(range(1, len(x))):
+ # pick an element in x[:i+1] with which to exchange x[i]
+ j = randbelow(i + 1)
+ x[i], x[j] = x[j], x[i]
+
+ def sample(self, population, k, *, counts=None):
+ """Chooses k unique random elements from a population sequence.
+
+ Returns a new list containing elements from the population while
+ leaving the original population unchanged. The resulting list is
+ in selection order so that all sub-slices will also be valid random
+ samples. This allows raffle winners (the sample) to be partitioned
+ into grand prize and second place winners (the subslices).
+
+ Members of the population need not be hashable or unique. If the
+ population contains repeats, then each occurrence is a possible
+ selection in the sample.
+
+ Repeated elements can be specified one at a time or with the optional
+ counts parameter. For example:
+
+ sample(['red', 'blue'], counts=[4, 2], k=5)
+
+ is equivalent to:
+
+ sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5)
+
+ To choose a sample from a range of integers, use range() for the
+ population argument. This is especially fast and space efficient
+ for sampling from a large population:
+
+ sample(range(10000000), 60)
+
+ """
+
+ # Sampling without replacement entails tracking either potential
+ # selections (the pool) in a list or previous selections in a set.
+
+ # When the number of selections is small compared to the
+ # population, then tracking selections is efficient, requiring
+ # only a small set and an occasional reselection. For
+ # a larger number of selections, the pool tracking method is
+ # preferred since the list takes less space than the
+ # set and it doesn't suffer from frequent reselections.
+
+ # The number of calls to _randbelow() is kept at or near k, the
+ # theoretical minimum. This is important because running time
+ # is dominated by _randbelow() and because it extracts the
+ # least entropy from the underlying random number generators.
+
+ # Memory requirements are kept to the smaller of a k-length
+ # set or an n-length list.
+
+ # There are other sampling algorithms that do not require
+ # auxiliary memory, but they were rejected because they made
+ # too many calls to _randbelow(), making them slower and
+ # causing them to eat more entropy than necessary.
+
+ if not isinstance(population, _Sequence):
+ raise TypeError("Population must be a sequence. "
+ "For dicts or sets, use sorted(d).")
+ n = len(population)
+ if counts is not None:
+ cum_counts = list(_accumulate(counts))
+ if len(cum_counts) != n:
+ raise ValueError('The number of counts does not match the population')
+ total = cum_counts.pop()
+ if not isinstance(total, int):
+ raise TypeError('Counts must be integers')
+ if total <= 0:
+ raise ValueError('Total of counts must be greater than zero')
+ selections = self.sample(range(total), k=k)
+ bisect = _bisect
+ return [population[bisect(cum_counts, s)] for s in selections]
+ randbelow = self._randbelow
+ if not 0 <= k <= n:
+ raise ValueError("Sample larger than population or is negative")
+ result = [None] * k
+ setsize = 21 # size of a small set minus size of an empty list
+ if k > 5:
+ setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
+ if n <= setsize:
+ # An n-length list is smaller than a k-length set.
+ # Invariant: non-selected at pool[0 : n-i]
+ pool = list(population)
+ for i in range(k):
+ j = randbelow(n - i)
+ result[i] = pool[j]
+ pool[j] = pool[n - i - 1] # move non-selected item into vacancy
+ else:
+ selected = set()
+ selected_add = selected.add
+ for i in range(k):
+ j = randbelow(n)
+ while j in selected:
+ j = randbelow(n)
+ selected_add(j)
+ result[i] = population[j]
+ return result
+
+ def choices(self, population, weights=None, *, cum_weights=None, k=1):
+ """Return a k sized list of population elements chosen with replacement.
+
+ If the relative weights or cumulative weights are not specified,
+ the selections are made with equal probability.
+
+ """
+ random = self.random
+ n = len(population)
+ if cum_weights is None:
+ if weights is None:
+ floor = _floor
+ n += 0.0 # convert to float for a small speed improvement
+ return [population[floor(random() * n)] for i in _repeat(None, k)]
+ try:
+ cum_weights = list(_accumulate(weights))
+ except TypeError:
+ if not isinstance(weights, int):
+ raise
+ k = weights
+ raise TypeError(
+ f'The number of choices must be a keyword argument: {k=}'
+ ) from None
+ elif weights is not None:
+ raise TypeError('Cannot specify both weights and cumulative weights')
+ if len(cum_weights) != n:
+ raise ValueError('The number of weights does not match the population')
+ total = cum_weights[-1] + 0.0 # convert to float
+ if total <= 0.0:
+ raise ValueError('Total of weights must be greater than zero')
+ if not _isfinite(total):
+ raise ValueError('Total of weights must be finite')
+ bisect = _bisect
+ hi = n - 1
+ return [population[bisect(cum_weights, random() * total, 0, hi)]
+ for i in _repeat(None, k)]
+
+
+ ## -------------------- real-valued distributions -------------------
+
+ def uniform(self, a, b):
+ """Get a random number in the range [a, b) or [a, b] depending on rounding.
+
+ The mean (expected value) and variance of the random variable are:
+
+ E[X] = (a + b) / 2
+ Var[X] = (b - a) ** 2 / 12
+
+ """
+ return a + (b - a) * self.random()
+
+ def triangular(self, low=0.0, high=1.0, mode=None):
+ """Triangular distribution.
+
+ Continuous distribution bounded by given lower and upper limits,
+ and having a given mode value in-between.
+
+ http://en.wikipedia.org/wiki/Triangular_distribution
+
+ The mean (expected value) and variance of the random variable are:
+
+ E[X] = (low + high + mode) / 3
+ Var[X] = (low**2 + high**2 + mode**2 - low*high - low*mode - high*mode) / 18
+
+ """
+ u = self.random()
+ try:
+ c = 0.5 if mode is None else (mode - low) / (high - low)
+ except ZeroDivisionError:
+ return low
+ if u > c:
+ u = 1.0 - u
+ c = 1.0 - c
+ low, high = high, low
+ return low + (high - low) * _sqrt(u * c)
+
+ def normalvariate(self, mu=0.0, sigma=1.0):
+ """Normal distribution.
+
+ mu is the mean, and sigma is the standard deviation.
+
+ """
+ # Uses Kinderman and Monahan method. Reference: Kinderman,
+ # A.J. and Monahan, J.F., "Computer generation of random
+ # variables using the ratio of uniform deviates", ACM Trans
+ # Math Software, 3, (1977), pp257-260.
+
+ random = self.random
+ while True:
+ u1 = random()
+ u2 = 1.0 - random()
+ z = NV_MAGICCONST * (u1 - 0.5) / u2
+ zz = z * z / 4.0
+ if zz <= -_log(u2):
+ break
+ return mu + z * sigma
+
+ def gauss(self, mu=0.0, sigma=1.0):
+ """Gaussian distribution.
+
+ mu is the mean, and sigma is the standard deviation. This is
+ slightly faster than the normalvariate() function.
+
+ Not thread-safe without a lock around calls.
+
+ """
+ # When x and y are two variables from [0, 1), uniformly
+ # distributed, then
+ #
+ # cos(2*pi*x)*sqrt(-2*log(1-y))
+ # sin(2*pi*x)*sqrt(-2*log(1-y))
+ #
+ # are two *independent* variables with normal distribution
+ # (mu = 0, sigma = 1).
+ # (Lambert Meertens)
+ # (corrected version; bug discovered by Mike Miller, fixed by LM)
+
+ # Multithreading note: When two threads call this function
+ # simultaneously, it is possible that they will receive the
+ # same return value. The window is very small though. To
+ # avoid this, you have to use a lock around all calls. (I
+ # didn't want to slow this down in the serial case by using a
+ # lock here.)
+
+ random = self.random
+ z = self.gauss_next
+ self.gauss_next = None
+ if z is None:
+ x2pi = random() * TWOPI
+ g2rad = _sqrt(-2.0 * _log(1.0 - random()))
+ z = _cos(x2pi) * g2rad
+ self.gauss_next = _sin(x2pi) * g2rad
+
+ return mu + z * sigma
+
+ def lognormvariate(self, mu, sigma):
+ """Log normal distribution.
+
+ If you take the natural logarithm of this distribution, you'll get a
+ normal distribution with mean mu and standard deviation sigma.
+ mu can have any value, and sigma must be greater than zero.
+
+ """
+ return _exp(self.normalvariate(mu, sigma))
+
+ def expovariate(self, lambd=1.0):
+ """Exponential distribution.
+
+ lambd is 1.0 divided by the desired mean. It should be
+ nonzero. (The parameter would be called "lambda", but that is
+ a reserved word in Python.) Returned values range from 0 to
+ positive infinity if lambd is positive, and from negative
+ infinity to 0 if lambd is negative.
+
+ The mean (expected value) and variance of the random variable are:
+
+ E[X] = 1 / lambd
+ Var[X] = 1 / lambd ** 2
+
+ """
+ # we use 1-random() instead of random() to preclude the
+ # possibility of taking the log of zero.
+
+ return -_log(1.0 - self.random()) / lambd
+
+ def vonmisesvariate(self, mu, kappa):
+ """Circular data distribution.
+
+ mu is the mean angle, expressed in radians between 0 and 2*pi, and
+ kappa is the concentration parameter, which must be greater than or
+ equal to zero. If kappa is equal to zero, this distribution reduces
+ to a uniform random angle over the range 0 to 2*pi.
+
+ """
+ # Based upon an algorithm published in: Fisher, N.I.,
+ # "Statistical Analysis of Circular Data", Cambridge
+ # University Press, 1993.
+
+ # Thanks to Magnus Kessler for a correction to the
+ # implementation of step 4.
+
+ random = self.random
+ if kappa <= 1e-6:
+ return TWOPI * random()
+
+ s = 0.5 / kappa
+ r = s + _sqrt(1.0 + s * s)
+
+ while True:
+ u1 = random()
+ z = _cos(_pi * u1)
+
+ d = z / (r + z)
+ u2 = random()
+ if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
+ break
+
+ q = 1.0 / r
+ f = (q + z) / (1.0 + q * z)
+ u3 = random()
+ if u3 > 0.5:
+ theta = (mu + _acos(f)) % TWOPI
+ else:
+ theta = (mu - _acos(f)) % TWOPI
+
+ return theta
+
+ def gammavariate(self, alpha, beta):
+ """Gamma distribution. Not the gamma function!
+
+ Conditions on the parameters are alpha > 0 and beta > 0.
+
+ The probability distribution function is:
+
+ x ** (alpha - 1) * math.exp(-x / beta)
+ pdf(x) = --------------------------------------
+ math.gamma(alpha) * beta ** alpha
+
+ The mean (expected value) and variance of the random variable are:
+
+ E[X] = alpha * beta
+ Var[X] = alpha * beta ** 2
+
+ """
+
+ # Warning: a few older sources define the gamma distribution in terms
+ # of alpha > -1.0
+ if alpha <= 0.0 or beta <= 0.0:
+ raise ValueError('gammavariate: alpha and beta must be > 0.0')
+
+ random = self.random
+ if alpha > 1.0:
+
+ # Uses R.C.H. Cheng, "The generation of Gamma
+ # variables with non-integral shape parameters",
+ # Applied Statistics, (1977), 26, No. 1, p71-74
+
+ ainv = _sqrt(2.0 * alpha - 1.0)
+ bbb = alpha - LOG4
+ ccc = alpha + ainv
+
+ while True:
+ u1 = random()
+ if not 1e-7 < u1 < 0.9999999:
+ continue
+ u2 = 1.0 - random()
+ v = _log(u1 / (1.0 - u1)) / ainv
+ x = alpha * _exp(v)
+ z = u1 * u1 * u2
+ r = bbb + ccc * v - x
+ if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z):
+ return x * beta
+
+ elif alpha == 1.0:
+ # expovariate(1/beta)
+ return -_log(1.0 - random()) * beta
+
+ else:
+ # alpha is between 0 and 1 (exclusive)
+ # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
+ while True:
+ u = random()
+ b = (_e + alpha) / _e
+ p = b * u
+ if p <= 1.0:
+ x = p ** (1.0 / alpha)
+ else:
+ x = -_log((b - p) / alpha)
+ u1 = random()
+ if p > 1.0:
+ if u1 <= x ** (alpha - 1.0):
+ break
+ elif u1 <= _exp(-x):
+ break
+ return x * beta
+
+ def betavariate(self, alpha, beta):
+ """Beta distribution.
+
+ Conditions on the parameters are alpha > 0 and beta > 0.
+ Returned values range between 0 and 1.
+
+ The mean (expected value) and variance of the random variable are:
+
+ E[X] = alpha / (alpha + beta)
+ Var[X] = alpha * beta / ((alpha + beta)**2 * (alpha + beta + 1))
+
+ """
+ ## See
+ ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
+ ## for Ivan Frohne's insightful analysis of why the original implementation:
+ ##
+ ## def betavariate(self, alpha, beta):
+ ## # Discrete Event Simulation in C, pp 87-88.
+ ##
+ ## y = self.expovariate(alpha)
+ ## z = self.expovariate(1.0/beta)
+ ## return z/(y+z)
+ ##
+ ## was dead wrong, and how it probably got that way.
+
+ # This version due to Janne Sinkkonen, and matches all the std
+ # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
+ y = self.gammavariate(alpha, 1.0)
+ if y:
+ return y / (y + self.gammavariate(beta, 1.0))
+ return 0.0
+
+ def paretovariate(self, alpha):
+ """Pareto distribution. alpha is the shape parameter."""
+ # Jain, pg. 495
+
+ u = 1.0 - self.random()
+ return u ** (-1.0 / alpha)
+
+ def weibullvariate(self, alpha, beta):
+ """Weibull distribution.
+
+ alpha is the scale parameter and beta is the shape parameter.
+
+ """
+ # Jain, pg. 499; bug fix courtesy Bill Arms
+
+ u = 1.0 - self.random()
+ return alpha * (-_log(u)) ** (1.0 / beta)
+
+
+ ## -------------------- discrete distributions ---------------------
+
+ def binomialvariate(self, n=1, p=0.5):
+ """Binomial random variable.
+
+ Gives the number of successes for *n* independent trials
+ with the probability of success in each trial being *p*:
+
+ sum(random() < p for i in range(n))
+
+ Returns an integer in the range: 0 <= X <= n
+
+ The mean (expected value) and variance of the random variable are:
+
+ E[X] = n * p
+ Var[x] = n * p * (1 - p)
+
+ """
+ # Error check inputs and handle edge cases
+ if n < 0:
+ raise ValueError("n must be non-negative")
+ if p <= 0.0 or p >= 1.0:
+ if p == 0.0:
+ return 0
+ if p == 1.0:
+ return n
+ raise ValueError("p must be in the range 0.0 <= p <= 1.0")
+
+ random = self.random
+
+ # Fast path for a common case
+ if n == 1:
+ return _index(random() < p)
+
+ # Exploit symmetry to establish: p <= 0.5
+ if p > 0.5:
+ return n - self.binomialvariate(n, 1.0 - p)
+
+ if n * p < 10.0:
+ # BG: Geometric method by Devroye with running time of O(np).
+ # https://dl.acm.org/doi/pdf/10.1145/42372.42381
+ x = y = 0
+ c = _log2(1.0 - p)
+ if not c:
+ return x
+ while True:
+ y += _floor(_log2(random()) / c) + 1
+ if y > n:
+ return x
+ x += 1
+
+ # BTRS: Transformed rejection with squeeze method by Wolfgang Hörmann
+ # https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8407&rep=rep1&type=pdf
+ assert n*p >= 10.0 and p <= 0.5
+ setup_complete = False
+
+ spq = _sqrt(n * p * (1.0 - p)) # Standard deviation of the distribution
+ b = 1.15 + 2.53 * spq
+ a = -0.0873 + 0.0248 * b + 0.01 * p
+ c = n * p + 0.5
+ vr = 0.92 - 4.2 / b
+
+ while True:
+
+ u = random()
+ u -= 0.5
+ us = 0.5 - _fabs(u)
+ k = _floor((2.0 * a / us + b) * u + c)
+ if k < 0 or k > n:
+ continue
+
+ # The early-out "squeeze" test substantially reduces
+ # the number of acceptance condition evaluations.
+ v = random()
+ if us >= 0.07 and v <= vr:
+ return k
+
+ # Acceptance-rejection test.
+ # Note, the original paper erroneously omits the call to log(v)
+ # when comparing to the log of the rescaled binomial distribution.
+ if not setup_complete:
+ alpha = (2.83 + 5.1 / b) * spq
+ lpq = _log(p / (1.0 - p))
+ m = _floor((n + 1) * p) # Mode of the distribution
+ h = _lgamma(m + 1) + _lgamma(n - m + 1)
+ setup_complete = True # Only needs to be done once
+ v *= alpha / (a / (us * us) + b)
+ if _log(v) <= h - _lgamma(k + 1) - _lgamma(n - k + 1) + (k - m) * lpq:
+ return k
+
+
+## ------------------------------------------------------------------
+## --------------- Operating System Random Source ------------------
+
+
+class SystemRandom(Random):
+ """Alternate random number generator using sources provided
+ by the operating system (such as /dev/urandom on Unix or
+ CryptGenRandom on Windows).
+
+ Not available on all systems (see os.urandom() for details).
+
+ """
+
+ def random(self):
+ """Get the next random number in the range 0.0 <= X < 1.0."""
+ return (int.from_bytes(_urandom(7)) >> 3) * RECIP_BPF
+
+ def getrandbits(self, k):
+ """getrandbits(k) -> x. Generates an int with k random bits."""
+ if k < 0:
+ raise ValueError('number of bits must be non-negative')
+ numbytes = (k + 7) // 8 # bits / 8 and rounded up
+ x = int.from_bytes(_urandom(numbytes))
+ return x >> (numbytes * 8 - k) # trim excess bits
+
+ def randbytes(self, n):
+ """Generate n random bytes."""
+ # os.urandom(n) fails with ValueError for n < 0
+ # and returns an empty bytes string for n == 0.
+ return _urandom(n)
+
+ def seed(self, *args, **kwds):
+ "Stub method. Not used for a system random number generator."
+ return None
+
+ def _notimplemented(self, *args, **kwds):
+ "Method should not be called for a system random number generator."
+ raise NotImplementedError('System entropy source does not have state.')
+ getstate = setstate = _notimplemented
+
+
+# ----------------------------------------------------------------------
+# Create one instance, seeded from current time, and export its methods
+# as module-level functions. The functions share state across all uses
+# (both in the user's code and in the Python libraries), but that's fine
+# for most programs and is easier for the casual user than making them
+# instantiate their own Random() instance.
+
+_inst = Random()
+seed = _inst.seed
+random = _inst.random
+uniform = _inst.uniform
+triangular = _inst.triangular
+randint = _inst.randint
+choice = _inst.choice
+randrange = _inst.randrange
+sample = _inst.sample
+shuffle = _inst.shuffle
+choices = _inst.choices
+normalvariate = _inst.normalvariate
+lognormvariate = _inst.lognormvariate
+expovariate = _inst.expovariate
+vonmisesvariate = _inst.vonmisesvariate
+gammavariate = _inst.gammavariate
+gauss = _inst.gauss
+betavariate = _inst.betavariate
+binomialvariate = _inst.binomialvariate
+paretovariate = _inst.paretovariate
+weibullvariate = _inst.weibullvariate
+getstate = _inst.getstate
+setstate = _inst.setstate
+getrandbits = _inst.getrandbits
+randbytes = _inst.randbytes
+
+
+## ------------------------------------------------------
+## ----------------- test program -----------------------
+
+def _test_generator(n, func, args):
+ from statistics import stdev, fmean as mean
+ from time import perf_counter
+
+ t0 = perf_counter()
+ data = [func(*args) for i in _repeat(None, n)]
+ t1 = perf_counter()
+
+ xbar = mean(data)
+ sigma = stdev(data, xbar)
+ low = min(data)
+ high = max(data)
+
+ print(f'{t1 - t0:.3f} sec, {n} times {func.__name__}{args!r}')
+ print('avg %g, stddev %g, min %g, max %g\n' % (xbar, sigma, low, high))
+
+
+def _test(N=10_000):
+ _test_generator(N, random, ())
+ _test_generator(N, normalvariate, (0.0, 1.0))
+ _test_generator(N, lognormvariate, (0.0, 1.0))
+ _test_generator(N, vonmisesvariate, (0.0, 1.0))
+ _test_generator(N, binomialvariate, (15, 0.60))
+ _test_generator(N, binomialvariate, (100, 0.75))
+ _test_generator(N, gammavariate, (0.01, 1.0))
+ _test_generator(N, gammavariate, (0.1, 1.0))
+ _test_generator(N, gammavariate, (0.1, 2.0))
+ _test_generator(N, gammavariate, (0.5, 1.0))
+ _test_generator(N, gammavariate, (0.9, 1.0))
+ _test_generator(N, gammavariate, (1.0, 1.0))
+ _test_generator(N, gammavariate, (2.0, 1.0))
+ _test_generator(N, gammavariate, (20.0, 1.0))
+ _test_generator(N, gammavariate, (200.0, 1.0))
+ _test_generator(N, gauss, (0.0, 1.0))
+ _test_generator(N, betavariate, (3.0, 3.0))
+ _test_generator(N, triangular, (0.0, 1.0, 1.0 / 3.0))
+
+
+## ------------------------------------------------------
+## ------------------ fork support ---------------------
+
+if hasattr(_os, "fork"):
+ _os.register_at_fork(after_in_child=_inst.seed)
+
+
+if __name__ == '__main__':
+ _test()