diff options
author | AlexSm <alex@ydb.tech> | 2024-03-05 10:40:59 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-03-05 12:40:59 +0300 |
commit | 1ac13c847b5358faba44dbb638a828e24369467b (patch) | |
tree | 07672b4dd3604ad3dee540a02c6494cb7d10dc3d /contrib/tools/python3/Lib/random.py | |
parent | ffcca3e7f7958ddc6487b91d3df8c01054bd0638 (diff) | |
download | ydb-1ac13c847b5358faba44dbb638a828e24369467b.tar.gz |
Library import 16 (#2433)
Co-authored-by: robot-piglet <robot-piglet@yandex-team.com>
Co-authored-by: deshevoy <deshevoy@yandex-team.com>
Co-authored-by: robot-contrib <robot-contrib@yandex-team.com>
Co-authored-by: thegeorg <thegeorg@yandex-team.com>
Co-authored-by: robot-ya-builder <robot-ya-builder@yandex-team.com>
Co-authored-by: svidyuk <svidyuk@yandex-team.com>
Co-authored-by: shadchin <shadchin@yandex-team.com>
Co-authored-by: robot-ratatosk <robot-ratatosk@yandex-team.com>
Co-authored-by: innokentii <innokentii@yandex-team.com>
Co-authored-by: arkady-e1ppa <arkady-e1ppa@yandex-team.com>
Co-authored-by: snermolaev <snermolaev@yandex-team.com>
Co-authored-by: dimdim11 <dimdim11@yandex-team.com>
Co-authored-by: kickbutt <kickbutt@yandex-team.com>
Co-authored-by: abdullinsaid <abdullinsaid@yandex-team.com>
Co-authored-by: korsunandrei <korsunandrei@yandex-team.com>
Co-authored-by: petrk <petrk@yandex-team.com>
Co-authored-by: miroslav2 <miroslav2@yandex-team.com>
Co-authored-by: serjflint <serjflint@yandex-team.com>
Co-authored-by: akhropov <akhropov@yandex-team.com>
Co-authored-by: prettyboy <prettyboy@yandex-team.com>
Co-authored-by: ilikepugs <ilikepugs@yandex-team.com>
Co-authored-by: hiddenpath <hiddenpath@yandex-team.com>
Co-authored-by: mikhnenko <mikhnenko@yandex-team.com>
Co-authored-by: spreis <spreis@yandex-team.com>
Co-authored-by: andreyshspb <andreyshspb@yandex-team.com>
Co-authored-by: dimaandreev <dimaandreev@yandex-team.com>
Co-authored-by: rashid <rashid@yandex-team.com>
Co-authored-by: robot-ydb-importer <robot-ydb-importer@yandex-team.com>
Co-authored-by: r-vetrov <r-vetrov@yandex-team.com>
Co-authored-by: ypodlesov <ypodlesov@yandex-team.com>
Co-authored-by: zaverden <zaverden@yandex-team.com>
Co-authored-by: vpozdyayev <vpozdyayev@yandex-team.com>
Co-authored-by: robot-cozmo <robot-cozmo@yandex-team.com>
Co-authored-by: v-korovin <v-korovin@yandex-team.com>
Co-authored-by: arikon <arikon@yandex-team.com>
Co-authored-by: khoden <khoden@yandex-team.com>
Co-authored-by: psydmm <psydmm@yandex-team.com>
Co-authored-by: robot-javacom <robot-javacom@yandex-team.com>
Co-authored-by: dtorilov <dtorilov@yandex-team.com>
Co-authored-by: sennikovmv <sennikovmv@yandex-team.com>
Co-authored-by: hcpp <hcpp@ydb.tech>
Diffstat (limited to 'contrib/tools/python3/Lib/random.py')
-rw-r--r-- | contrib/tools/python3/Lib/random.py | 996 |
1 files changed, 996 insertions, 0 deletions
diff --git a/contrib/tools/python3/Lib/random.py b/contrib/tools/python3/Lib/random.py new file mode 100644 index 0000000000..1cfc2ba2f0 --- /dev/null +++ b/contrib/tools/python3/Lib/random.py @@ -0,0 +1,996 @@ +"""Random variable generators. + + bytes + ----- + uniform bytes (values between 0 and 255) + + integers + -------- + uniform within range + + sequences + --------- + pick random element + pick random sample + pick weighted random sample + generate random permutation + + distributions on the real line: + ------------------------------ + uniform + triangular + normal (Gaussian) + lognormal + negative exponential + gamma + beta + pareto + Weibull + + distributions on the circle (angles 0 to 2pi) + --------------------------------------------- + circular uniform + von Mises + + discrete distributions + ---------------------- + binomial + + +General notes on the underlying Mersenne Twister core generator: + +* The period is 2**19937-1. +* It is one of the most extensively tested generators in existence. +* The random() method is implemented in C, executes in a single Python step, + and is, therefore, threadsafe. + +""" + +# Translated by Guido van Rossum from C source provided by +# Adrian Baddeley. Adapted by Raymond Hettinger for use with +# the Mersenne Twister and os.urandom() core generators. + +from warnings import warn as _warn +from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil +from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin +from math import tau as TWOPI, floor as _floor, isfinite as _isfinite +from math import lgamma as _lgamma, fabs as _fabs, log2 as _log2 +from os import urandom as _urandom +from _collections_abc import Sequence as _Sequence +from operator import index as _index +from itertools import accumulate as _accumulate, repeat as _repeat +from bisect import bisect as _bisect +import os as _os +import _random + +try: + # hashlib is pretty heavy to load, try lean internal module first + from _sha2 import sha512 as _sha512 +except ImportError: + # fallback to official implementation + from hashlib import sha512 as _sha512 + +__all__ = [ + "Random", + "SystemRandom", + "betavariate", + "binomialvariate", + "choice", + "choices", + "expovariate", + "gammavariate", + "gauss", + "getrandbits", + "getstate", + "lognormvariate", + "normalvariate", + "paretovariate", + "randbytes", + "randint", + "random", + "randrange", + "sample", + "seed", + "setstate", + "shuffle", + "triangular", + "uniform", + "vonmisesvariate", + "weibullvariate", +] + +NV_MAGICCONST = 4 * _exp(-0.5) / _sqrt(2.0) +LOG4 = _log(4.0) +SG_MAGICCONST = 1.0 + _log(4.5) +BPF = 53 # Number of bits in a float +RECIP_BPF = 2 ** -BPF +_ONE = 1 + + +class Random(_random.Random): + """Random number generator base class used by bound module functions. + + Used to instantiate instances of Random to get generators that don't + share state. + + Class Random can also be subclassed if you want to use a different basic + generator of your own devising: in that case, override the following + methods: random(), seed(), getstate(), and setstate(). + Optionally, implement a getrandbits() method so that randrange() + can cover arbitrarily large ranges. + + """ + + VERSION = 3 # used by getstate/setstate + + def __init__(self, x=None): + """Initialize an instance. + + Optional argument x controls seeding, as for Random.seed(). + """ + + self.seed(x) + self.gauss_next = None + + def seed(self, a=None, version=2): + """Initialize internal state from a seed. + + The only supported seed types are None, int, float, + str, bytes, and bytearray. + + None or no argument seeds from current time or from an operating + system specific randomness source if available. + + If *a* is an int, all bits are used. + + For version 2 (the default), all of the bits are used if *a* is a str, + bytes, or bytearray. For version 1 (provided for reproducing random + sequences from older versions of Python), the algorithm for str and + bytes generates a narrower range of seeds. + + """ + + if version == 1 and isinstance(a, (str, bytes)): + a = a.decode('latin-1') if isinstance(a, bytes) else a + x = ord(a[0]) << 7 if a else 0 + for c in map(ord, a): + x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF + x ^= len(a) + a = -2 if x == -1 else x + + elif version == 2 and isinstance(a, (str, bytes, bytearray)): + if isinstance(a, str): + a = a.encode() + a = int.from_bytes(a + _sha512(a).digest()) + + elif not isinstance(a, (type(None), int, float, str, bytes, bytearray)): + raise TypeError('The only supported seed types are: None,\n' + 'int, float, str, bytes, and bytearray.') + + super().seed(a) + self.gauss_next = None + + def getstate(self): + """Return internal state; can be passed to setstate() later.""" + return self.VERSION, super().getstate(), self.gauss_next + + def setstate(self, state): + """Restore internal state from object returned by getstate().""" + version = state[0] + if version == 3: + version, internalstate, self.gauss_next = state + super().setstate(internalstate) + elif version == 2: + version, internalstate, self.gauss_next = state + # In version 2, the state was saved as signed ints, which causes + # inconsistencies between 32/64-bit systems. The state is + # really unsigned 32-bit ints, so we convert negative ints from + # version 2 to positive longs for version 3. + try: + internalstate = tuple(x % (2 ** 32) for x in internalstate) + except ValueError as e: + raise TypeError from e + super().setstate(internalstate) + else: + raise ValueError("state with version %s passed to " + "Random.setstate() of version %s" % + (version, self.VERSION)) + + + ## ------------------------------------------------------- + ## ---- Methods below this point do not need to be overridden or extended + ## ---- when subclassing for the purpose of using a different core generator. + + + ## -------------------- pickle support ------------------- + + # Issue 17489: Since __reduce__ was defined to fix #759889 this is no + # longer called; we leave it here because it has been here since random was + # rewritten back in 2001 and why risk breaking something. + def __getstate__(self): # for pickle + return self.getstate() + + def __setstate__(self, state): # for pickle + self.setstate(state) + + def __reduce__(self): + return self.__class__, (), self.getstate() + + + ## ---- internal support method for evenly distributed integers ---- + + def __init_subclass__(cls, /, **kwargs): + """Control how subclasses generate random integers. + + The algorithm a subclass can use depends on the random() and/or + getrandbits() implementation available to it and determines + whether it can generate random integers from arbitrarily large + ranges. + """ + + for c in cls.__mro__: + if '_randbelow' in c.__dict__: + # just inherit it + break + if 'getrandbits' in c.__dict__: + cls._randbelow = cls._randbelow_with_getrandbits + break + if 'random' in c.__dict__: + cls._randbelow = cls._randbelow_without_getrandbits + break + + def _randbelow_with_getrandbits(self, n): + "Return a random int in the range [0,n). Defined for n > 0." + + getrandbits = self.getrandbits + k = n.bit_length() + r = getrandbits(k) # 0 <= r < 2**k + while r >= n: + r = getrandbits(k) + return r + + def _randbelow_without_getrandbits(self, n, maxsize=1<<BPF): + """Return a random int in the range [0,n). Defined for n > 0. + + The implementation does not use getrandbits, but only random. + """ + + random = self.random + if n >= maxsize: + _warn("Underlying random() generator does not supply \n" + "enough bits to choose from a population range this large.\n" + "To remove the range limitation, add a getrandbits() method.") + return _floor(random() * n) + rem = maxsize % n + limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0 + r = random() + while r >= limit: + r = random() + return _floor(r * maxsize) % n + + _randbelow = _randbelow_with_getrandbits + + + ## -------------------------------------------------------- + ## ---- Methods below this point generate custom distributions + ## ---- based on the methods defined above. They do not + ## ---- directly touch the underlying generator and only + ## ---- access randomness through the methods: random(), + ## ---- getrandbits(), or _randbelow(). + + + ## -------------------- bytes methods --------------------- + + def randbytes(self, n): + """Generate n random bytes.""" + return self.getrandbits(n * 8).to_bytes(n, 'little') + + + ## -------------------- integer methods ------------------- + + def randrange(self, start, stop=None, step=_ONE): + """Choose a random item from range(stop) or range(start, stop[, step]). + + Roughly equivalent to ``choice(range(start, stop, step))`` but + supports arbitrarily large ranges and is optimized for common cases. + + """ + + # This code is a bit messy to make it fast for the + # common case while still doing adequate error checking. + istart = _index(start) + if stop is None: + # We don't check for "step != 1" because it hasn't been + # type checked and converted to an integer yet. + if step is not _ONE: + raise TypeError("Missing a non-None stop argument") + if istart > 0: + return self._randbelow(istart) + raise ValueError("empty range for randrange()") + + # Stop argument supplied. + istop = _index(stop) + width = istop - istart + istep = _index(step) + # Fast path. + if istep == 1: + if width > 0: + return istart + self._randbelow(width) + raise ValueError(f"empty range in randrange({start}, {stop})") + + # Non-unit step argument supplied. + if istep > 0: + n = (width + istep - 1) // istep + elif istep < 0: + n = (width + istep + 1) // istep + else: + raise ValueError("zero step for randrange()") + if n <= 0: + raise ValueError(f"empty range in randrange({start}, {stop}, {step})") + return istart + istep * self._randbelow(n) + + def randint(self, a, b): + """Return random integer in range [a, b], including both end points. + """ + + return self.randrange(a, b+1) + + + ## -------------------- sequence methods ------------------- + + def choice(self, seq): + """Choose a random element from a non-empty sequence.""" + + # As an accommodation for NumPy, we don't use "if not seq" + # because bool(numpy.array()) raises a ValueError. + if not len(seq): + raise IndexError('Cannot choose from an empty sequence') + return seq[self._randbelow(len(seq))] + + def shuffle(self, x): + """Shuffle list x in place, and return None.""" + + randbelow = self._randbelow + for i in reversed(range(1, len(x))): + # pick an element in x[:i+1] with which to exchange x[i] + j = randbelow(i + 1) + x[i], x[j] = x[j], x[i] + + def sample(self, population, k, *, counts=None): + """Chooses k unique random elements from a population sequence. + + Returns a new list containing elements from the population while + leaving the original population unchanged. The resulting list is + in selection order so that all sub-slices will also be valid random + samples. This allows raffle winners (the sample) to be partitioned + into grand prize and second place winners (the subslices). + + Members of the population need not be hashable or unique. If the + population contains repeats, then each occurrence is a possible + selection in the sample. + + Repeated elements can be specified one at a time or with the optional + counts parameter. For example: + + sample(['red', 'blue'], counts=[4, 2], k=5) + + is equivalent to: + + sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5) + + To choose a sample from a range of integers, use range() for the + population argument. This is especially fast and space efficient + for sampling from a large population: + + sample(range(10000000), 60) + + """ + + # Sampling without replacement entails tracking either potential + # selections (the pool) in a list or previous selections in a set. + + # When the number of selections is small compared to the + # population, then tracking selections is efficient, requiring + # only a small set and an occasional reselection. For + # a larger number of selections, the pool tracking method is + # preferred since the list takes less space than the + # set and it doesn't suffer from frequent reselections. + + # The number of calls to _randbelow() is kept at or near k, the + # theoretical minimum. This is important because running time + # is dominated by _randbelow() and because it extracts the + # least entropy from the underlying random number generators. + + # Memory requirements are kept to the smaller of a k-length + # set or an n-length list. + + # There are other sampling algorithms that do not require + # auxiliary memory, but they were rejected because they made + # too many calls to _randbelow(), making them slower and + # causing them to eat more entropy than necessary. + + if not isinstance(population, _Sequence): + raise TypeError("Population must be a sequence. " + "For dicts or sets, use sorted(d).") + n = len(population) + if counts is not None: + cum_counts = list(_accumulate(counts)) + if len(cum_counts) != n: + raise ValueError('The number of counts does not match the population') + total = cum_counts.pop() + if not isinstance(total, int): + raise TypeError('Counts must be integers') + if total <= 0: + raise ValueError('Total of counts must be greater than zero') + selections = self.sample(range(total), k=k) + bisect = _bisect + return [population[bisect(cum_counts, s)] for s in selections] + randbelow = self._randbelow + if not 0 <= k <= n: + raise ValueError("Sample larger than population or is negative") + result = [None] * k + setsize = 21 # size of a small set minus size of an empty list + if k > 5: + setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets + if n <= setsize: + # An n-length list is smaller than a k-length set. + # Invariant: non-selected at pool[0 : n-i] + pool = list(population) + for i in range(k): + j = randbelow(n - i) + result[i] = pool[j] + pool[j] = pool[n - i - 1] # move non-selected item into vacancy + else: + selected = set() + selected_add = selected.add + for i in range(k): + j = randbelow(n) + while j in selected: + j = randbelow(n) + selected_add(j) + result[i] = population[j] + return result + + def choices(self, population, weights=None, *, cum_weights=None, k=1): + """Return a k sized list of population elements chosen with replacement. + + If the relative weights or cumulative weights are not specified, + the selections are made with equal probability. + + """ + random = self.random + n = len(population) + if cum_weights is None: + if weights is None: + floor = _floor + n += 0.0 # convert to float for a small speed improvement + return [population[floor(random() * n)] for i in _repeat(None, k)] + try: + cum_weights = list(_accumulate(weights)) + except TypeError: + if not isinstance(weights, int): + raise + k = weights + raise TypeError( + f'The number of choices must be a keyword argument: {k=}' + ) from None + elif weights is not None: + raise TypeError('Cannot specify both weights and cumulative weights') + if len(cum_weights) != n: + raise ValueError('The number of weights does not match the population') + total = cum_weights[-1] + 0.0 # convert to float + if total <= 0.0: + raise ValueError('Total of weights must be greater than zero') + if not _isfinite(total): + raise ValueError('Total of weights must be finite') + bisect = _bisect + hi = n - 1 + return [population[bisect(cum_weights, random() * total, 0, hi)] + for i in _repeat(None, k)] + + + ## -------------------- real-valued distributions ------------------- + + def uniform(self, a, b): + """Get a random number in the range [a, b) or [a, b] depending on rounding. + + The mean (expected value) and variance of the random variable are: + + E[X] = (a + b) / 2 + Var[X] = (b - a) ** 2 / 12 + + """ + return a + (b - a) * self.random() + + def triangular(self, low=0.0, high=1.0, mode=None): + """Triangular distribution. + + Continuous distribution bounded by given lower and upper limits, + and having a given mode value in-between. + + http://en.wikipedia.org/wiki/Triangular_distribution + + The mean (expected value) and variance of the random variable are: + + E[X] = (low + high + mode) / 3 + Var[X] = (low**2 + high**2 + mode**2 - low*high - low*mode - high*mode) / 18 + + """ + u = self.random() + try: + c = 0.5 if mode is None else (mode - low) / (high - low) + except ZeroDivisionError: + return low + if u > c: + u = 1.0 - u + c = 1.0 - c + low, high = high, low + return low + (high - low) * _sqrt(u * c) + + def normalvariate(self, mu=0.0, sigma=1.0): + """Normal distribution. + + mu is the mean, and sigma is the standard deviation. + + """ + # Uses Kinderman and Monahan method. Reference: Kinderman, + # A.J. and Monahan, J.F., "Computer generation of random + # variables using the ratio of uniform deviates", ACM Trans + # Math Software, 3, (1977), pp257-260. + + random = self.random + while True: + u1 = random() + u2 = 1.0 - random() + z = NV_MAGICCONST * (u1 - 0.5) / u2 + zz = z * z / 4.0 + if zz <= -_log(u2): + break + return mu + z * sigma + + def gauss(self, mu=0.0, sigma=1.0): + """Gaussian distribution. + + mu is the mean, and sigma is the standard deviation. This is + slightly faster than the normalvariate() function. + + Not thread-safe without a lock around calls. + + """ + # When x and y are two variables from [0, 1), uniformly + # distributed, then + # + # cos(2*pi*x)*sqrt(-2*log(1-y)) + # sin(2*pi*x)*sqrt(-2*log(1-y)) + # + # are two *independent* variables with normal distribution + # (mu = 0, sigma = 1). + # (Lambert Meertens) + # (corrected version; bug discovered by Mike Miller, fixed by LM) + + # Multithreading note: When two threads call this function + # simultaneously, it is possible that they will receive the + # same return value. The window is very small though. To + # avoid this, you have to use a lock around all calls. (I + # didn't want to slow this down in the serial case by using a + # lock here.) + + random = self.random + z = self.gauss_next + self.gauss_next = None + if z is None: + x2pi = random() * TWOPI + g2rad = _sqrt(-2.0 * _log(1.0 - random())) + z = _cos(x2pi) * g2rad + self.gauss_next = _sin(x2pi) * g2rad + + return mu + z * sigma + + def lognormvariate(self, mu, sigma): + """Log normal distribution. + + If you take the natural logarithm of this distribution, you'll get a + normal distribution with mean mu and standard deviation sigma. + mu can have any value, and sigma must be greater than zero. + + """ + return _exp(self.normalvariate(mu, sigma)) + + def expovariate(self, lambd=1.0): + """Exponential distribution. + + lambd is 1.0 divided by the desired mean. It should be + nonzero. (The parameter would be called "lambda", but that is + a reserved word in Python.) Returned values range from 0 to + positive infinity if lambd is positive, and from negative + infinity to 0 if lambd is negative. + + The mean (expected value) and variance of the random variable are: + + E[X] = 1 / lambd + Var[X] = 1 / lambd ** 2 + + """ + # we use 1-random() instead of random() to preclude the + # possibility of taking the log of zero. + + return -_log(1.0 - self.random()) / lambd + + def vonmisesvariate(self, mu, kappa): + """Circular data distribution. + + mu is the mean angle, expressed in radians between 0 and 2*pi, and + kappa is the concentration parameter, which must be greater than or + equal to zero. If kappa is equal to zero, this distribution reduces + to a uniform random angle over the range 0 to 2*pi. + + """ + # Based upon an algorithm published in: Fisher, N.I., + # "Statistical Analysis of Circular Data", Cambridge + # University Press, 1993. + + # Thanks to Magnus Kessler for a correction to the + # implementation of step 4. + + random = self.random + if kappa <= 1e-6: + return TWOPI * random() + + s = 0.5 / kappa + r = s + _sqrt(1.0 + s * s) + + while True: + u1 = random() + z = _cos(_pi * u1) + + d = z / (r + z) + u2 = random() + if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d): + break + + q = 1.0 / r + f = (q + z) / (1.0 + q * z) + u3 = random() + if u3 > 0.5: + theta = (mu + _acos(f)) % TWOPI + else: + theta = (mu - _acos(f)) % TWOPI + + return theta + + def gammavariate(self, alpha, beta): + """Gamma distribution. Not the gamma function! + + Conditions on the parameters are alpha > 0 and beta > 0. + + The probability distribution function is: + + x ** (alpha - 1) * math.exp(-x / beta) + pdf(x) = -------------------------------------- + math.gamma(alpha) * beta ** alpha + + The mean (expected value) and variance of the random variable are: + + E[X] = alpha * beta + Var[X] = alpha * beta ** 2 + + """ + + # Warning: a few older sources define the gamma distribution in terms + # of alpha > -1.0 + if alpha <= 0.0 or beta <= 0.0: + raise ValueError('gammavariate: alpha and beta must be > 0.0') + + random = self.random + if alpha > 1.0: + + # Uses R.C.H. Cheng, "The generation of Gamma + # variables with non-integral shape parameters", + # Applied Statistics, (1977), 26, No. 1, p71-74 + + ainv = _sqrt(2.0 * alpha - 1.0) + bbb = alpha - LOG4 + ccc = alpha + ainv + + while True: + u1 = random() + if not 1e-7 < u1 < 0.9999999: + continue + u2 = 1.0 - random() + v = _log(u1 / (1.0 - u1)) / ainv + x = alpha * _exp(v) + z = u1 * u1 * u2 + r = bbb + ccc * v - x + if r + SG_MAGICCONST - 4.5 * z >= 0.0 or r >= _log(z): + return x * beta + + elif alpha == 1.0: + # expovariate(1/beta) + return -_log(1.0 - random()) * beta + + else: + # alpha is between 0 and 1 (exclusive) + # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle + while True: + u = random() + b = (_e + alpha) / _e + p = b * u + if p <= 1.0: + x = p ** (1.0 / alpha) + else: + x = -_log((b - p) / alpha) + u1 = random() + if p > 1.0: + if u1 <= x ** (alpha - 1.0): + break + elif u1 <= _exp(-x): + break + return x * beta + + def betavariate(self, alpha, beta): + """Beta distribution. + + Conditions on the parameters are alpha > 0 and beta > 0. + Returned values range between 0 and 1. + + The mean (expected value) and variance of the random variable are: + + E[X] = alpha / (alpha + beta) + Var[X] = alpha * beta / ((alpha + beta)**2 * (alpha + beta + 1)) + + """ + ## See + ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html + ## for Ivan Frohne's insightful analysis of why the original implementation: + ## + ## def betavariate(self, alpha, beta): + ## # Discrete Event Simulation in C, pp 87-88. + ## + ## y = self.expovariate(alpha) + ## z = self.expovariate(1.0/beta) + ## return z/(y+z) + ## + ## was dead wrong, and how it probably got that way. + + # This version due to Janne Sinkkonen, and matches all the std + # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution"). + y = self.gammavariate(alpha, 1.0) + if y: + return y / (y + self.gammavariate(beta, 1.0)) + return 0.0 + + def paretovariate(self, alpha): + """Pareto distribution. alpha is the shape parameter.""" + # Jain, pg. 495 + + u = 1.0 - self.random() + return u ** (-1.0 / alpha) + + def weibullvariate(self, alpha, beta): + """Weibull distribution. + + alpha is the scale parameter and beta is the shape parameter. + + """ + # Jain, pg. 499; bug fix courtesy Bill Arms + + u = 1.0 - self.random() + return alpha * (-_log(u)) ** (1.0 / beta) + + + ## -------------------- discrete distributions --------------------- + + def binomialvariate(self, n=1, p=0.5): + """Binomial random variable. + + Gives the number of successes for *n* independent trials + with the probability of success in each trial being *p*: + + sum(random() < p for i in range(n)) + + Returns an integer in the range: 0 <= X <= n + + The mean (expected value) and variance of the random variable are: + + E[X] = n * p + Var[x] = n * p * (1 - p) + + """ + # Error check inputs and handle edge cases + if n < 0: + raise ValueError("n must be non-negative") + if p <= 0.0 or p >= 1.0: + if p == 0.0: + return 0 + if p == 1.0: + return n + raise ValueError("p must be in the range 0.0 <= p <= 1.0") + + random = self.random + + # Fast path for a common case + if n == 1: + return _index(random() < p) + + # Exploit symmetry to establish: p <= 0.5 + if p > 0.5: + return n - self.binomialvariate(n, 1.0 - p) + + if n * p < 10.0: + # BG: Geometric method by Devroye with running time of O(np). + # https://dl.acm.org/doi/pdf/10.1145/42372.42381 + x = y = 0 + c = _log2(1.0 - p) + if not c: + return x + while True: + y += _floor(_log2(random()) / c) + 1 + if y > n: + return x + x += 1 + + # BTRS: Transformed rejection with squeeze method by Wolfgang Hörmann + # https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8407&rep=rep1&type=pdf + assert n*p >= 10.0 and p <= 0.5 + setup_complete = False + + spq = _sqrt(n * p * (1.0 - p)) # Standard deviation of the distribution + b = 1.15 + 2.53 * spq + a = -0.0873 + 0.0248 * b + 0.01 * p + c = n * p + 0.5 + vr = 0.92 - 4.2 / b + + while True: + + u = random() + u -= 0.5 + us = 0.5 - _fabs(u) + k = _floor((2.0 * a / us + b) * u + c) + if k < 0 or k > n: + continue + + # The early-out "squeeze" test substantially reduces + # the number of acceptance condition evaluations. + v = random() + if us >= 0.07 and v <= vr: + return k + + # Acceptance-rejection test. + # Note, the original paper erroneously omits the call to log(v) + # when comparing to the log of the rescaled binomial distribution. + if not setup_complete: + alpha = (2.83 + 5.1 / b) * spq + lpq = _log(p / (1.0 - p)) + m = _floor((n + 1) * p) # Mode of the distribution + h = _lgamma(m + 1) + _lgamma(n - m + 1) + setup_complete = True # Only needs to be done once + v *= alpha / (a / (us * us) + b) + if _log(v) <= h - _lgamma(k + 1) - _lgamma(n - k + 1) + (k - m) * lpq: + return k + + +## ------------------------------------------------------------------ +## --------------- Operating System Random Source ------------------ + + +class SystemRandom(Random): + """Alternate random number generator using sources provided + by the operating system (such as /dev/urandom on Unix or + CryptGenRandom on Windows). + + Not available on all systems (see os.urandom() for details). + + """ + + def random(self): + """Get the next random number in the range 0.0 <= X < 1.0.""" + return (int.from_bytes(_urandom(7)) >> 3) * RECIP_BPF + + def getrandbits(self, k): + """getrandbits(k) -> x. Generates an int with k random bits.""" + if k < 0: + raise ValueError('number of bits must be non-negative') + numbytes = (k + 7) // 8 # bits / 8 and rounded up + x = int.from_bytes(_urandom(numbytes)) + return x >> (numbytes * 8 - k) # trim excess bits + + def randbytes(self, n): + """Generate n random bytes.""" + # os.urandom(n) fails with ValueError for n < 0 + # and returns an empty bytes string for n == 0. + return _urandom(n) + + def seed(self, *args, **kwds): + "Stub method. Not used for a system random number generator." + return None + + def _notimplemented(self, *args, **kwds): + "Method should not be called for a system random number generator." + raise NotImplementedError('System entropy source does not have state.') + getstate = setstate = _notimplemented + + +# ---------------------------------------------------------------------- +# Create one instance, seeded from current time, and export its methods +# as module-level functions. The functions share state across all uses +# (both in the user's code and in the Python libraries), but that's fine +# for most programs and is easier for the casual user than making them +# instantiate their own Random() instance. + +_inst = Random() +seed = _inst.seed +random = _inst.random +uniform = _inst.uniform +triangular = _inst.triangular +randint = _inst.randint +choice = _inst.choice +randrange = _inst.randrange +sample = _inst.sample +shuffle = _inst.shuffle +choices = _inst.choices +normalvariate = _inst.normalvariate +lognormvariate = _inst.lognormvariate +expovariate = _inst.expovariate +vonmisesvariate = _inst.vonmisesvariate +gammavariate = _inst.gammavariate +gauss = _inst.gauss +betavariate = _inst.betavariate +binomialvariate = _inst.binomialvariate +paretovariate = _inst.paretovariate +weibullvariate = _inst.weibullvariate +getstate = _inst.getstate +setstate = _inst.setstate +getrandbits = _inst.getrandbits +randbytes = _inst.randbytes + + +## ------------------------------------------------------ +## ----------------- test program ----------------------- + +def _test_generator(n, func, args): + from statistics import stdev, fmean as mean + from time import perf_counter + + t0 = perf_counter() + data = [func(*args) for i in _repeat(None, n)] + t1 = perf_counter() + + xbar = mean(data) + sigma = stdev(data, xbar) + low = min(data) + high = max(data) + + print(f'{t1 - t0:.3f} sec, {n} times {func.__name__}{args!r}') + print('avg %g, stddev %g, min %g, max %g\n' % (xbar, sigma, low, high)) + + +def _test(N=10_000): + _test_generator(N, random, ()) + _test_generator(N, normalvariate, (0.0, 1.0)) + _test_generator(N, lognormvariate, (0.0, 1.0)) + _test_generator(N, vonmisesvariate, (0.0, 1.0)) + _test_generator(N, binomialvariate, (15, 0.60)) + _test_generator(N, binomialvariate, (100, 0.75)) + _test_generator(N, gammavariate, (0.01, 1.0)) + _test_generator(N, gammavariate, (0.1, 1.0)) + _test_generator(N, gammavariate, (0.1, 2.0)) + _test_generator(N, gammavariate, (0.5, 1.0)) + _test_generator(N, gammavariate, (0.9, 1.0)) + _test_generator(N, gammavariate, (1.0, 1.0)) + _test_generator(N, gammavariate, (2.0, 1.0)) + _test_generator(N, gammavariate, (20.0, 1.0)) + _test_generator(N, gammavariate, (200.0, 1.0)) + _test_generator(N, gauss, (0.0, 1.0)) + _test_generator(N, betavariate, (3.0, 3.0)) + _test_generator(N, triangular, (0.0, 1.0, 1.0 / 3.0)) + + +## ------------------------------------------------------ +## ------------------ fork support --------------------- + +if hasattr(_os, "fork"): + _os.register_at_fork(after_in_child=_inst.seed) + + +if __name__ == '__main__': + _test() |