diff options
author | AlexSm <alex@ydb.tech> | 2024-03-05 10:40:59 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-03-05 12:40:59 +0300 |
commit | 1ac13c847b5358faba44dbb638a828e24369467b (patch) | |
tree | 07672b4dd3604ad3dee540a02c6494cb7d10dc3d /contrib/tools/python3/Lib/functools.py | |
parent | ffcca3e7f7958ddc6487b91d3df8c01054bd0638 (diff) | |
download | ydb-1ac13c847b5358faba44dbb638a828e24369467b.tar.gz |
Library import 16 (#2433)
Co-authored-by: robot-piglet <robot-piglet@yandex-team.com>
Co-authored-by: deshevoy <deshevoy@yandex-team.com>
Co-authored-by: robot-contrib <robot-contrib@yandex-team.com>
Co-authored-by: thegeorg <thegeorg@yandex-team.com>
Co-authored-by: robot-ya-builder <robot-ya-builder@yandex-team.com>
Co-authored-by: svidyuk <svidyuk@yandex-team.com>
Co-authored-by: shadchin <shadchin@yandex-team.com>
Co-authored-by: robot-ratatosk <robot-ratatosk@yandex-team.com>
Co-authored-by: innokentii <innokentii@yandex-team.com>
Co-authored-by: arkady-e1ppa <arkady-e1ppa@yandex-team.com>
Co-authored-by: snermolaev <snermolaev@yandex-team.com>
Co-authored-by: dimdim11 <dimdim11@yandex-team.com>
Co-authored-by: kickbutt <kickbutt@yandex-team.com>
Co-authored-by: abdullinsaid <abdullinsaid@yandex-team.com>
Co-authored-by: korsunandrei <korsunandrei@yandex-team.com>
Co-authored-by: petrk <petrk@yandex-team.com>
Co-authored-by: miroslav2 <miroslav2@yandex-team.com>
Co-authored-by: serjflint <serjflint@yandex-team.com>
Co-authored-by: akhropov <akhropov@yandex-team.com>
Co-authored-by: prettyboy <prettyboy@yandex-team.com>
Co-authored-by: ilikepugs <ilikepugs@yandex-team.com>
Co-authored-by: hiddenpath <hiddenpath@yandex-team.com>
Co-authored-by: mikhnenko <mikhnenko@yandex-team.com>
Co-authored-by: spreis <spreis@yandex-team.com>
Co-authored-by: andreyshspb <andreyshspb@yandex-team.com>
Co-authored-by: dimaandreev <dimaandreev@yandex-team.com>
Co-authored-by: rashid <rashid@yandex-team.com>
Co-authored-by: robot-ydb-importer <robot-ydb-importer@yandex-team.com>
Co-authored-by: r-vetrov <r-vetrov@yandex-team.com>
Co-authored-by: ypodlesov <ypodlesov@yandex-team.com>
Co-authored-by: zaverden <zaverden@yandex-team.com>
Co-authored-by: vpozdyayev <vpozdyayev@yandex-team.com>
Co-authored-by: robot-cozmo <robot-cozmo@yandex-team.com>
Co-authored-by: v-korovin <v-korovin@yandex-team.com>
Co-authored-by: arikon <arikon@yandex-team.com>
Co-authored-by: khoden <khoden@yandex-team.com>
Co-authored-by: psydmm <psydmm@yandex-team.com>
Co-authored-by: robot-javacom <robot-javacom@yandex-team.com>
Co-authored-by: dtorilov <dtorilov@yandex-team.com>
Co-authored-by: sennikovmv <sennikovmv@yandex-team.com>
Co-authored-by: hcpp <hcpp@ydb.tech>
Diffstat (limited to 'contrib/tools/python3/Lib/functools.py')
-rw-r--r-- | contrib/tools/python3/Lib/functools.py | 1006 |
1 files changed, 1006 insertions, 0 deletions
diff --git a/contrib/tools/python3/Lib/functools.py b/contrib/tools/python3/Lib/functools.py new file mode 100644 index 0000000000..2ae4290f98 --- /dev/null +++ b/contrib/tools/python3/Lib/functools.py @@ -0,0 +1,1006 @@ +"""functools.py - Tools for working with functions and callable objects +""" +# Python module wrapper for _functools C module +# to allow utilities written in Python to be added +# to the functools module. +# Written by Nick Coghlan <ncoghlan at gmail.com>, +# Raymond Hettinger <python at rcn.com>, +# and Ćukasz Langa <lukasz at langa.pl>. +# Copyright (C) 2006-2013 Python Software Foundation. +# See C source code for _functools credits/copyright + +__all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES', + 'total_ordering', 'cache', 'cmp_to_key', 'lru_cache', 'reduce', + 'partial', 'partialmethod', 'singledispatch', 'singledispatchmethod', + 'cached_property'] + +from abc import get_cache_token +from collections import namedtuple +# import types, weakref # Deferred to single_dispatch() +from reprlib import recursive_repr +from _thread import RLock +from types import GenericAlias + + +################################################################################ +### update_wrapper() and wraps() decorator +################################################################################ + +# update_wrapper() and wraps() are tools to help write +# wrapper functions that can handle naive introspection + +WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__', + '__annotations__', '__type_params__') +WRAPPER_UPDATES = ('__dict__',) +def update_wrapper(wrapper, + wrapped, + assigned = WRAPPER_ASSIGNMENTS, + updated = WRAPPER_UPDATES): + """Update a wrapper function to look like the wrapped function + + wrapper is the function to be updated + wrapped is the original function + assigned is a tuple naming the attributes assigned directly + from the wrapped function to the wrapper function (defaults to + functools.WRAPPER_ASSIGNMENTS) + updated is a tuple naming the attributes of the wrapper that + are updated with the corresponding attribute from the wrapped + function (defaults to functools.WRAPPER_UPDATES) + """ + for attr in assigned: + try: + value = getattr(wrapped, attr) + except AttributeError: + pass + else: + setattr(wrapper, attr, value) + for attr in updated: + getattr(wrapper, attr).update(getattr(wrapped, attr, {})) + # Issue #17482: set __wrapped__ last so we don't inadvertently copy it + # from the wrapped function when updating __dict__ + wrapper.__wrapped__ = wrapped + # Return the wrapper so this can be used as a decorator via partial() + return wrapper + +def wraps(wrapped, + assigned = WRAPPER_ASSIGNMENTS, + updated = WRAPPER_UPDATES): + """Decorator factory to apply update_wrapper() to a wrapper function + + Returns a decorator that invokes update_wrapper() with the decorated + function as the wrapper argument and the arguments to wraps() as the + remaining arguments. Default arguments are as for update_wrapper(). + This is a convenience function to simplify applying partial() to + update_wrapper(). + """ + return partial(update_wrapper, wrapped=wrapped, + assigned=assigned, updated=updated) + + +################################################################################ +### total_ordering class decorator +################################################################################ + +# The total ordering functions all invoke the root magic method directly +# rather than using the corresponding operator. This avoids possible +# infinite recursion that could occur when the operator dispatch logic +# detects a NotImplemented result and then calls a reflected method. + +def _gt_from_lt(self, other): + 'Return a > b. Computed by @total_ordering from (not a < b) and (a != b).' + op_result = type(self).__lt__(self, other) + if op_result is NotImplemented: + return op_result + return not op_result and self != other + +def _le_from_lt(self, other): + 'Return a <= b. Computed by @total_ordering from (a < b) or (a == b).' + op_result = type(self).__lt__(self, other) + if op_result is NotImplemented: + return op_result + return op_result or self == other + +def _ge_from_lt(self, other): + 'Return a >= b. Computed by @total_ordering from (not a < b).' + op_result = type(self).__lt__(self, other) + if op_result is NotImplemented: + return op_result + return not op_result + +def _ge_from_le(self, other): + 'Return a >= b. Computed by @total_ordering from (not a <= b) or (a == b).' + op_result = type(self).__le__(self, other) + if op_result is NotImplemented: + return op_result + return not op_result or self == other + +def _lt_from_le(self, other): + 'Return a < b. Computed by @total_ordering from (a <= b) and (a != b).' + op_result = type(self).__le__(self, other) + if op_result is NotImplemented: + return op_result + return op_result and self != other + +def _gt_from_le(self, other): + 'Return a > b. Computed by @total_ordering from (not a <= b).' + op_result = type(self).__le__(self, other) + if op_result is NotImplemented: + return op_result + return not op_result + +def _lt_from_gt(self, other): + 'Return a < b. Computed by @total_ordering from (not a > b) and (a != b).' + op_result = type(self).__gt__(self, other) + if op_result is NotImplemented: + return op_result + return not op_result and self != other + +def _ge_from_gt(self, other): + 'Return a >= b. Computed by @total_ordering from (a > b) or (a == b).' + op_result = type(self).__gt__(self, other) + if op_result is NotImplemented: + return op_result + return op_result or self == other + +def _le_from_gt(self, other): + 'Return a <= b. Computed by @total_ordering from (not a > b).' + op_result = type(self).__gt__(self, other) + if op_result is NotImplemented: + return op_result + return not op_result + +def _le_from_ge(self, other): + 'Return a <= b. Computed by @total_ordering from (not a >= b) or (a == b).' + op_result = type(self).__ge__(self, other) + if op_result is NotImplemented: + return op_result + return not op_result or self == other + +def _gt_from_ge(self, other): + 'Return a > b. Computed by @total_ordering from (a >= b) and (a != b).' + op_result = type(self).__ge__(self, other) + if op_result is NotImplemented: + return op_result + return op_result and self != other + +def _lt_from_ge(self, other): + 'Return a < b. Computed by @total_ordering from (not a >= b).' + op_result = type(self).__ge__(self, other) + if op_result is NotImplemented: + return op_result + return not op_result + +_convert = { + '__lt__': [('__gt__', _gt_from_lt), + ('__le__', _le_from_lt), + ('__ge__', _ge_from_lt)], + '__le__': [('__ge__', _ge_from_le), + ('__lt__', _lt_from_le), + ('__gt__', _gt_from_le)], + '__gt__': [('__lt__', _lt_from_gt), + ('__ge__', _ge_from_gt), + ('__le__', _le_from_gt)], + '__ge__': [('__le__', _le_from_ge), + ('__gt__', _gt_from_ge), + ('__lt__', _lt_from_ge)] +} + +def total_ordering(cls): + """Class decorator that fills in missing ordering methods""" + # Find user-defined comparisons (not those inherited from object). + roots = {op for op in _convert if getattr(cls, op, None) is not getattr(object, op, None)} + if not roots: + raise ValueError('must define at least one ordering operation: < > <= >=') + root = max(roots) # prefer __lt__ to __le__ to __gt__ to __ge__ + for opname, opfunc in _convert[root]: + if opname not in roots: + opfunc.__name__ = opname + setattr(cls, opname, opfunc) + return cls + + +################################################################################ +### cmp_to_key() function converter +################################################################################ + +def cmp_to_key(mycmp): + """Convert a cmp= function into a key= function""" + class K(object): + __slots__ = ['obj'] + def __init__(self, obj): + self.obj = obj + def __lt__(self, other): + return mycmp(self.obj, other.obj) < 0 + def __gt__(self, other): + return mycmp(self.obj, other.obj) > 0 + def __eq__(self, other): + return mycmp(self.obj, other.obj) == 0 + def __le__(self, other): + return mycmp(self.obj, other.obj) <= 0 + def __ge__(self, other): + return mycmp(self.obj, other.obj) >= 0 + __hash__ = None + return K + +try: + from _functools import cmp_to_key +except ImportError: + pass + + +################################################################################ +### reduce() sequence to a single item +################################################################################ + +_initial_missing = object() + +def reduce(function, sequence, initial=_initial_missing): + """ + reduce(function, iterable[, initial]) -> value + + Apply a function of two arguments cumulatively to the items of a sequence + or iterable, from left to right, so as to reduce the iterable to a single + value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates + ((((1+2)+3)+4)+5). If initial is present, it is placed before the items + of the iterable in the calculation, and serves as a default when the + iterable is empty. + """ + + it = iter(sequence) + + if initial is _initial_missing: + try: + value = next(it) + except StopIteration: + raise TypeError( + "reduce() of empty iterable with no initial value") from None + else: + value = initial + + for element in it: + value = function(value, element) + + return value + +try: + from _functools import reduce +except ImportError: + pass + + +################################################################################ +### partial() argument application +################################################################################ + +# Purely functional, no descriptor behaviour +class partial: + """New function with partial application of the given arguments + and keywords. + """ + + __slots__ = "func", "args", "keywords", "__dict__", "__weakref__" + + def __new__(cls, func, /, *args, **keywords): + if not callable(func): + raise TypeError("the first argument must be callable") + + if hasattr(func, "func"): + args = func.args + args + keywords = {**func.keywords, **keywords} + func = func.func + + self = super(partial, cls).__new__(cls) + + self.func = func + self.args = args + self.keywords = keywords + return self + + def __call__(self, /, *args, **keywords): + keywords = {**self.keywords, **keywords} + return self.func(*self.args, *args, **keywords) + + @recursive_repr() + def __repr__(self): + qualname = type(self).__qualname__ + args = [repr(self.func)] + args.extend(repr(x) for x in self.args) + args.extend(f"{k}={v!r}" for (k, v) in self.keywords.items()) + if type(self).__module__ == "functools": + return f"functools.{qualname}({', '.join(args)})" + return f"{qualname}({', '.join(args)})" + + def __reduce__(self): + return type(self), (self.func,), (self.func, self.args, + self.keywords or None, self.__dict__ or None) + + def __setstate__(self, state): + if not isinstance(state, tuple): + raise TypeError("argument to __setstate__ must be a tuple") + if len(state) != 4: + raise TypeError(f"expected 4 items in state, got {len(state)}") + func, args, kwds, namespace = state + if (not callable(func) or not isinstance(args, tuple) or + (kwds is not None and not isinstance(kwds, dict)) or + (namespace is not None and not isinstance(namespace, dict))): + raise TypeError("invalid partial state") + + args = tuple(args) # just in case it's a subclass + if kwds is None: + kwds = {} + elif type(kwds) is not dict: # XXX does it need to be *exactly* dict? + kwds = dict(kwds) + if namespace is None: + namespace = {} + + self.__dict__ = namespace + self.func = func + self.args = args + self.keywords = kwds + +try: + from _functools import partial +except ImportError: + pass + +# Descriptor version +class partialmethod(object): + """Method descriptor with partial application of the given arguments + and keywords. + + Supports wrapping existing descriptors and handles non-descriptor + callables as instance methods. + """ + + def __init__(self, func, /, *args, **keywords): + if not callable(func) and not hasattr(func, "__get__"): + raise TypeError("{!r} is not callable or a descriptor" + .format(func)) + + # func could be a descriptor like classmethod which isn't callable, + # so we can't inherit from partial (it verifies func is callable) + if isinstance(func, partialmethod): + # flattening is mandatory in order to place cls/self before all + # other arguments + # it's also more efficient since only one function will be called + self.func = func.func + self.args = func.args + args + self.keywords = {**func.keywords, **keywords} + else: + self.func = func + self.args = args + self.keywords = keywords + + def __repr__(self): + args = ", ".join(map(repr, self.args)) + keywords = ", ".join("{}={!r}".format(k, v) + for k, v in self.keywords.items()) + format_string = "{module}.{cls}({func}, {args}, {keywords})" + return format_string.format(module=self.__class__.__module__, + cls=self.__class__.__qualname__, + func=self.func, + args=args, + keywords=keywords) + + def _make_unbound_method(self): + def _method(cls_or_self, /, *args, **keywords): + keywords = {**self.keywords, **keywords} + return self.func(cls_or_self, *self.args, *args, **keywords) + _method.__isabstractmethod__ = self.__isabstractmethod__ + _method._partialmethod = self + return _method + + def __get__(self, obj, cls=None): + get = getattr(self.func, "__get__", None) + result = None + if get is not None: + new_func = get(obj, cls) + if new_func is not self.func: + # Assume __get__ returning something new indicates the + # creation of an appropriate callable + result = partial(new_func, *self.args, **self.keywords) + try: + result.__self__ = new_func.__self__ + except AttributeError: + pass + if result is None: + # If the underlying descriptor didn't do anything, treat this + # like an instance method + result = self._make_unbound_method().__get__(obj, cls) + return result + + @property + def __isabstractmethod__(self): + return getattr(self.func, "__isabstractmethod__", False) + + __class_getitem__ = classmethod(GenericAlias) + + +# Helper functions + +def _unwrap_partial(func): + while isinstance(func, partial): + func = func.func + return func + +################################################################################ +### LRU Cache function decorator +################################################################################ + +_CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"]) + +class _HashedSeq(list): + """ This class guarantees that hash() will be called no more than once + per element. This is important because the lru_cache() will hash + the key multiple times on a cache miss. + + """ + + __slots__ = 'hashvalue' + + def __init__(self, tup, hash=hash): + self[:] = tup + self.hashvalue = hash(tup) + + def __hash__(self): + return self.hashvalue + +def _make_key(args, kwds, typed, + kwd_mark = (object(),), + fasttypes = {int, str}, + tuple=tuple, type=type, len=len): + """Make a cache key from optionally typed positional and keyword arguments + + The key is constructed in a way that is flat as possible rather than + as a nested structure that would take more memory. + + If there is only a single argument and its data type is known to cache + its hash value, then that argument is returned without a wrapper. This + saves space and improves lookup speed. + + """ + # All of code below relies on kwds preserving the order input by the user. + # Formerly, we sorted() the kwds before looping. The new way is *much* + # faster; however, it means that f(x=1, y=2) will now be treated as a + # distinct call from f(y=2, x=1) which will be cached separately. + key = args + if kwds: + key += kwd_mark + for item in kwds.items(): + key += item + if typed: + key += tuple(type(v) for v in args) + if kwds: + key += tuple(type(v) for v in kwds.values()) + elif len(key) == 1 and type(key[0]) in fasttypes: + return key[0] + return _HashedSeq(key) + +def lru_cache(maxsize=128, typed=False): + """Least-recently-used cache decorator. + + If *maxsize* is set to None, the LRU features are disabled and the cache + can grow without bound. + + If *typed* is True, arguments of different types will be cached separately. + For example, f(3.0) and f(3) will be treated as distinct calls with + distinct results. + + Arguments to the cached function must be hashable. + + View the cache statistics named tuple (hits, misses, maxsize, currsize) + with f.cache_info(). Clear the cache and statistics with f.cache_clear(). + Access the underlying function with f.__wrapped__. + + See: https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU) + + """ + + # Users should only access the lru_cache through its public API: + # cache_info, cache_clear, and f.__wrapped__ + # The internals of the lru_cache are encapsulated for thread safety and + # to allow the implementation to change (including a possible C version). + + if isinstance(maxsize, int): + # Negative maxsize is treated as 0 + if maxsize < 0: + maxsize = 0 + elif callable(maxsize) and isinstance(typed, bool): + # The user_function was passed in directly via the maxsize argument + user_function, maxsize = maxsize, 128 + wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo) + wrapper.cache_parameters = lambda : {'maxsize': maxsize, 'typed': typed} + return update_wrapper(wrapper, user_function) + elif maxsize is not None: + raise TypeError( + 'Expected first argument to be an integer, a callable, or None') + + def decorating_function(user_function): + wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo) + wrapper.cache_parameters = lambda : {'maxsize': maxsize, 'typed': typed} + return update_wrapper(wrapper, user_function) + + return decorating_function + +def _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo): + # Constants shared by all lru cache instances: + sentinel = object() # unique object used to signal cache misses + make_key = _make_key # build a key from the function arguments + PREV, NEXT, KEY, RESULT = 0, 1, 2, 3 # names for the link fields + + cache = {} + hits = misses = 0 + full = False + cache_get = cache.get # bound method to lookup a key or return None + cache_len = cache.__len__ # get cache size without calling len() + lock = RLock() # because linkedlist updates aren't threadsafe + root = [] # root of the circular doubly linked list + root[:] = [root, root, None, None] # initialize by pointing to self + + if maxsize == 0: + + def wrapper(*args, **kwds): + # No caching -- just a statistics update + nonlocal misses + misses += 1 + result = user_function(*args, **kwds) + return result + + elif maxsize is None: + + def wrapper(*args, **kwds): + # Simple caching without ordering or size limit + nonlocal hits, misses + key = make_key(args, kwds, typed) + result = cache_get(key, sentinel) + if result is not sentinel: + hits += 1 + return result + misses += 1 + result = user_function(*args, **kwds) + cache[key] = result + return result + + else: + + def wrapper(*args, **kwds): + # Size limited caching that tracks accesses by recency + nonlocal root, hits, misses, full + key = make_key(args, kwds, typed) + with lock: + link = cache_get(key) + if link is not None: + # Move the link to the front of the circular queue + link_prev, link_next, _key, result = link + link_prev[NEXT] = link_next + link_next[PREV] = link_prev + last = root[PREV] + last[NEXT] = root[PREV] = link + link[PREV] = last + link[NEXT] = root + hits += 1 + return result + misses += 1 + result = user_function(*args, **kwds) + with lock: + if key in cache: + # Getting here means that this same key was added to the + # cache while the lock was released. Since the link + # update is already done, we need only return the + # computed result and update the count of misses. + pass + elif full: + # Use the old root to store the new key and result. + oldroot = root + oldroot[KEY] = key + oldroot[RESULT] = result + # Empty the oldest link and make it the new root. + # Keep a reference to the old key and old result to + # prevent their ref counts from going to zero during the + # update. That will prevent potentially arbitrary object + # clean-up code (i.e. __del__) from running while we're + # still adjusting the links. + root = oldroot[NEXT] + oldkey = root[KEY] + oldresult = root[RESULT] + root[KEY] = root[RESULT] = None + # Now update the cache dictionary. + del cache[oldkey] + # Save the potentially reentrant cache[key] assignment + # for last, after the root and links have been put in + # a consistent state. + cache[key] = oldroot + else: + # Put result in a new link at the front of the queue. + last = root[PREV] + link = [last, root, key, result] + last[NEXT] = root[PREV] = cache[key] = link + # Use the cache_len bound method instead of the len() function + # which could potentially be wrapped in an lru_cache itself. + full = (cache_len() >= maxsize) + return result + + def cache_info(): + """Report cache statistics""" + with lock: + return _CacheInfo(hits, misses, maxsize, cache_len()) + + def cache_clear(): + """Clear the cache and cache statistics""" + nonlocal hits, misses, full + with lock: + cache.clear() + root[:] = [root, root, None, None] + hits = misses = 0 + full = False + + wrapper.cache_info = cache_info + wrapper.cache_clear = cache_clear + return wrapper + +try: + from _functools import _lru_cache_wrapper +except ImportError: + pass + + +################################################################################ +### cache -- simplified access to the infinity cache +################################################################################ + +def cache(user_function, /): + 'Simple lightweight unbounded cache. Sometimes called "memoize".' + return lru_cache(maxsize=None)(user_function) + + +################################################################################ +### singledispatch() - single-dispatch generic function decorator +################################################################################ + +def _c3_merge(sequences): + """Merges MROs in *sequences* to a single MRO using the C3 algorithm. + + Adapted from https://www.python.org/download/releases/2.3/mro/. + + """ + result = [] + while True: + sequences = [s for s in sequences if s] # purge empty sequences + if not sequences: + return result + for s1 in sequences: # find merge candidates among seq heads + candidate = s1[0] + for s2 in sequences: + if candidate in s2[1:]: + candidate = None + break # reject the current head, it appears later + else: + break + if candidate is None: + raise RuntimeError("Inconsistent hierarchy") + result.append(candidate) + # remove the chosen candidate + for seq in sequences: + if seq[0] == candidate: + del seq[0] + +def _c3_mro(cls, abcs=None): + """Computes the method resolution order using extended C3 linearization. + + If no *abcs* are given, the algorithm works exactly like the built-in C3 + linearization used for method resolution. + + If given, *abcs* is a list of abstract base classes that should be inserted + into the resulting MRO. Unrelated ABCs are ignored and don't end up in the + result. The algorithm inserts ABCs where their functionality is introduced, + i.e. issubclass(cls, abc) returns True for the class itself but returns + False for all its direct base classes. Implicit ABCs for a given class + (either registered or inferred from the presence of a special method like + __len__) are inserted directly after the last ABC explicitly listed in the + MRO of said class. If two implicit ABCs end up next to each other in the + resulting MRO, their ordering depends on the order of types in *abcs*. + + """ + for i, base in enumerate(reversed(cls.__bases__)): + if hasattr(base, '__abstractmethods__'): + boundary = len(cls.__bases__) - i + break # Bases up to the last explicit ABC are considered first. + else: + boundary = 0 + abcs = list(abcs) if abcs else [] + explicit_bases = list(cls.__bases__[:boundary]) + abstract_bases = [] + other_bases = list(cls.__bases__[boundary:]) + for base in abcs: + if issubclass(cls, base) and not any( + issubclass(b, base) for b in cls.__bases__ + ): + # If *cls* is the class that introduces behaviour described by + # an ABC *base*, insert said ABC to its MRO. + abstract_bases.append(base) + for base in abstract_bases: + abcs.remove(base) + explicit_c3_mros = [_c3_mro(base, abcs=abcs) for base in explicit_bases] + abstract_c3_mros = [_c3_mro(base, abcs=abcs) for base in abstract_bases] + other_c3_mros = [_c3_mro(base, abcs=abcs) for base in other_bases] + return _c3_merge( + [[cls]] + + explicit_c3_mros + abstract_c3_mros + other_c3_mros + + [explicit_bases] + [abstract_bases] + [other_bases] + ) + +def _compose_mro(cls, types): + """Calculates the method resolution order for a given class *cls*. + + Includes relevant abstract base classes (with their respective bases) from + the *types* iterable. Uses a modified C3 linearization algorithm. + + """ + bases = set(cls.__mro__) + # Remove entries which are already present in the __mro__ or unrelated. + def is_related(typ): + return (typ not in bases and hasattr(typ, '__mro__') + and not isinstance(typ, GenericAlias) + and issubclass(cls, typ)) + types = [n for n in types if is_related(n)] + # Remove entries which are strict bases of other entries (they will end up + # in the MRO anyway. + def is_strict_base(typ): + for other in types: + if typ != other and typ in other.__mro__: + return True + return False + types = [n for n in types if not is_strict_base(n)] + # Subclasses of the ABCs in *types* which are also implemented by + # *cls* can be used to stabilize ABC ordering. + type_set = set(types) + mro = [] + for typ in types: + found = [] + for sub in typ.__subclasses__(): + if sub not in bases and issubclass(cls, sub): + found.append([s for s in sub.__mro__ if s in type_set]) + if not found: + mro.append(typ) + continue + # Favor subclasses with the biggest number of useful bases + found.sort(key=len, reverse=True) + for sub in found: + for subcls in sub: + if subcls not in mro: + mro.append(subcls) + return _c3_mro(cls, abcs=mro) + +def _find_impl(cls, registry): + """Returns the best matching implementation from *registry* for type *cls*. + + Where there is no registered implementation for a specific type, its method + resolution order is used to find a more generic implementation. + + Note: if *registry* does not contain an implementation for the base + *object* type, this function may return None. + + """ + mro = _compose_mro(cls, registry.keys()) + match = None + for t in mro: + if match is not None: + # If *match* is an implicit ABC but there is another unrelated, + # equally matching implicit ABC, refuse the temptation to guess. + if (t in registry and t not in cls.__mro__ + and match not in cls.__mro__ + and not issubclass(match, t)): + raise RuntimeError("Ambiguous dispatch: {} or {}".format( + match, t)) + break + if t in registry: + match = t + return registry.get(match) + +def singledispatch(func): + """Single-dispatch generic function decorator. + + Transforms a function into a generic function, which can have different + behaviours depending upon the type of its first argument. The decorated + function acts as the default implementation, and additional + implementations can be registered using the register() attribute of the + generic function. + """ + # There are many programs that use functools without singledispatch, so we + # trade-off making singledispatch marginally slower for the benefit of + # making start-up of such applications slightly faster. + import types, weakref + + registry = {} + dispatch_cache = weakref.WeakKeyDictionary() + cache_token = None + + def dispatch(cls): + """generic_func.dispatch(cls) -> <function implementation> + + Runs the dispatch algorithm to return the best available implementation + for the given *cls* registered on *generic_func*. + + """ + nonlocal cache_token + if cache_token is not None: + current_token = get_cache_token() + if cache_token != current_token: + dispatch_cache.clear() + cache_token = current_token + try: + impl = dispatch_cache[cls] + except KeyError: + try: + impl = registry[cls] + except KeyError: + impl = _find_impl(cls, registry) + dispatch_cache[cls] = impl + return impl + + def _is_union_type(cls): + from typing import get_origin, Union + return get_origin(cls) in {Union, types.UnionType} + + def _is_valid_dispatch_type(cls): + if isinstance(cls, type): + return True + from typing import get_args + return (_is_union_type(cls) and + all(isinstance(arg, type) for arg in get_args(cls))) + + def register(cls, func=None): + """generic_func.register(cls, func) -> func + + Registers a new implementation for the given *cls* on a *generic_func*. + + """ + nonlocal cache_token + if _is_valid_dispatch_type(cls): + if func is None: + return lambda f: register(cls, f) + else: + if func is not None: + raise TypeError( + f"Invalid first argument to `register()`. " + f"{cls!r} is not a class or union type." + ) + ann = getattr(cls, '__annotations__', {}) + if not ann: + raise TypeError( + f"Invalid first argument to `register()`: {cls!r}. " + f"Use either `@register(some_class)` or plain `@register` " + f"on an annotated function." + ) + func = cls + + # only import typing if annotation parsing is necessary + from typing import get_type_hints + argname, cls = next(iter(get_type_hints(func).items())) + if not _is_valid_dispatch_type(cls): + if _is_union_type(cls): + raise TypeError( + f"Invalid annotation for {argname!r}. " + f"{cls!r} not all arguments are classes." + ) + else: + raise TypeError( + f"Invalid annotation for {argname!r}. " + f"{cls!r} is not a class." + ) + + if _is_union_type(cls): + from typing import get_args + + for arg in get_args(cls): + registry[arg] = func + else: + registry[cls] = func + if cache_token is None and hasattr(cls, '__abstractmethods__'): + cache_token = get_cache_token() + dispatch_cache.clear() + return func + + def wrapper(*args, **kw): + if not args: + raise TypeError(f'{funcname} requires at least ' + '1 positional argument') + + return dispatch(args[0].__class__)(*args, **kw) + + funcname = getattr(func, '__name__', 'singledispatch function') + registry[object] = func + wrapper.register = register + wrapper.dispatch = dispatch + wrapper.registry = types.MappingProxyType(registry) + wrapper._clear_cache = dispatch_cache.clear + update_wrapper(wrapper, func) + return wrapper + + +# Descriptor version +class singledispatchmethod: + """Single-dispatch generic method descriptor. + + Supports wrapping existing descriptors and handles non-descriptor + callables as instance methods. + """ + + def __init__(self, func): + if not callable(func) and not hasattr(func, "__get__"): + raise TypeError(f"{func!r} is not callable or a descriptor") + + self.dispatcher = singledispatch(func) + self.func = func + + def register(self, cls, method=None): + """generic_method.register(cls, func) -> func + + Registers a new implementation for the given *cls* on a *generic_method*. + """ + return self.dispatcher.register(cls, func=method) + + def __get__(self, obj, cls=None): + def _method(*args, **kwargs): + method = self.dispatcher.dispatch(args[0].__class__) + return method.__get__(obj, cls)(*args, **kwargs) + + _method.__isabstractmethod__ = self.__isabstractmethod__ + _method.register = self.register + update_wrapper(_method, self.func) + return _method + + @property + def __isabstractmethod__(self): + return getattr(self.func, '__isabstractmethod__', False) + + +################################################################################ +### cached_property() - property result cached as instance attribute +################################################################################ + +_NOT_FOUND = object() + +class cached_property: + def __init__(self, func): + self.func = func + self.attrname = None + self.__doc__ = func.__doc__ + + def __set_name__(self, owner, name): + if self.attrname is None: + self.attrname = name + elif name != self.attrname: + raise TypeError( + "Cannot assign the same cached_property to two different names " + f"({self.attrname!r} and {name!r})." + ) + + def __get__(self, instance, owner=None): + if instance is None: + return self + if self.attrname is None: + raise TypeError( + "Cannot use cached_property instance without calling __set_name__ on it.") + try: + cache = instance.__dict__ + except AttributeError: # not all objects have __dict__ (e.g. class defines slots) + msg = ( + f"No '__dict__' attribute on {type(instance).__name__!r} " + f"instance to cache {self.attrname!r} property." + ) + raise TypeError(msg) from None + val = cache.get(self.attrname, _NOT_FOUND) + if val is _NOT_FOUND: + val = self.func(instance) + try: + cache[self.attrname] = val + except TypeError: + msg = ( + f"The '__dict__' attribute on {type(instance).__name__!r} instance " + f"does not support item assignment for caching {self.attrname!r} property." + ) + raise TypeError(msg) from None + return val + + __class_getitem__ = classmethod(GenericAlias) |