aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/Lib/fractions.py
diff options
context:
space:
mode:
authorAlexSm <alex@ydb.tech>2024-03-05 10:40:59 +0100
committerGitHub <noreply@github.com>2024-03-05 12:40:59 +0300
commit1ac13c847b5358faba44dbb638a828e24369467b (patch)
tree07672b4dd3604ad3dee540a02c6494cb7d10dc3d /contrib/tools/python3/Lib/fractions.py
parentffcca3e7f7958ddc6487b91d3df8c01054bd0638 (diff)
downloadydb-1ac13c847b5358faba44dbb638a828e24369467b.tar.gz
Library import 16 (#2433)
Co-authored-by: robot-piglet <robot-piglet@yandex-team.com> Co-authored-by: deshevoy <deshevoy@yandex-team.com> Co-authored-by: robot-contrib <robot-contrib@yandex-team.com> Co-authored-by: thegeorg <thegeorg@yandex-team.com> Co-authored-by: robot-ya-builder <robot-ya-builder@yandex-team.com> Co-authored-by: svidyuk <svidyuk@yandex-team.com> Co-authored-by: shadchin <shadchin@yandex-team.com> Co-authored-by: robot-ratatosk <robot-ratatosk@yandex-team.com> Co-authored-by: innokentii <innokentii@yandex-team.com> Co-authored-by: arkady-e1ppa <arkady-e1ppa@yandex-team.com> Co-authored-by: snermolaev <snermolaev@yandex-team.com> Co-authored-by: dimdim11 <dimdim11@yandex-team.com> Co-authored-by: kickbutt <kickbutt@yandex-team.com> Co-authored-by: abdullinsaid <abdullinsaid@yandex-team.com> Co-authored-by: korsunandrei <korsunandrei@yandex-team.com> Co-authored-by: petrk <petrk@yandex-team.com> Co-authored-by: miroslav2 <miroslav2@yandex-team.com> Co-authored-by: serjflint <serjflint@yandex-team.com> Co-authored-by: akhropov <akhropov@yandex-team.com> Co-authored-by: prettyboy <prettyboy@yandex-team.com> Co-authored-by: ilikepugs <ilikepugs@yandex-team.com> Co-authored-by: hiddenpath <hiddenpath@yandex-team.com> Co-authored-by: mikhnenko <mikhnenko@yandex-team.com> Co-authored-by: spreis <spreis@yandex-team.com> Co-authored-by: andreyshspb <andreyshspb@yandex-team.com> Co-authored-by: dimaandreev <dimaandreev@yandex-team.com> Co-authored-by: rashid <rashid@yandex-team.com> Co-authored-by: robot-ydb-importer <robot-ydb-importer@yandex-team.com> Co-authored-by: r-vetrov <r-vetrov@yandex-team.com> Co-authored-by: ypodlesov <ypodlesov@yandex-team.com> Co-authored-by: zaverden <zaverden@yandex-team.com> Co-authored-by: vpozdyayev <vpozdyayev@yandex-team.com> Co-authored-by: robot-cozmo <robot-cozmo@yandex-team.com> Co-authored-by: v-korovin <v-korovin@yandex-team.com> Co-authored-by: arikon <arikon@yandex-team.com> Co-authored-by: khoden <khoden@yandex-team.com> Co-authored-by: psydmm <psydmm@yandex-team.com> Co-authored-by: robot-javacom <robot-javacom@yandex-team.com> Co-authored-by: dtorilov <dtorilov@yandex-team.com> Co-authored-by: sennikovmv <sennikovmv@yandex-team.com> Co-authored-by: hcpp <hcpp@ydb.tech>
Diffstat (limited to 'contrib/tools/python3/Lib/fractions.py')
-rw-r--r--contrib/tools/python3/Lib/fractions.py988
1 files changed, 988 insertions, 0 deletions
diff --git a/contrib/tools/python3/Lib/fractions.py b/contrib/tools/python3/Lib/fractions.py
new file mode 100644
index 0000000000..88b418fe38
--- /dev/null
+++ b/contrib/tools/python3/Lib/fractions.py
@@ -0,0 +1,988 @@
+# Originally contributed by Sjoerd Mullender.
+# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
+
+"""Fraction, infinite-precision, rational numbers."""
+
+from decimal import Decimal
+import functools
+import math
+import numbers
+import operator
+import re
+import sys
+
+__all__ = ['Fraction']
+
+
+# Constants related to the hash implementation; hash(x) is based
+# on the reduction of x modulo the prime _PyHASH_MODULUS.
+_PyHASH_MODULUS = sys.hash_info.modulus
+# Value to be used for rationals that reduce to infinity modulo
+# _PyHASH_MODULUS.
+_PyHASH_INF = sys.hash_info.inf
+
+@functools.lru_cache(maxsize = 1 << 14)
+def _hash_algorithm(numerator, denominator):
+
+ # To make sure that the hash of a Fraction agrees with the hash
+ # of a numerically equal integer, float or Decimal instance, we
+ # follow the rules for numeric hashes outlined in the
+ # documentation. (See library docs, 'Built-in Types').
+
+ try:
+ dinv = pow(denominator, -1, _PyHASH_MODULUS)
+ except ValueError:
+ # ValueError means there is no modular inverse.
+ hash_ = _PyHASH_INF
+ else:
+ # The general algorithm now specifies that the absolute value of
+ # the hash is
+ # (|N| * dinv) % P
+ # where N is self._numerator and P is _PyHASH_MODULUS. That's
+ # optimized here in two ways: first, for a non-negative int i,
+ # hash(i) == i % P, but the int hash implementation doesn't need
+ # to divide, and is faster than doing % P explicitly. So we do
+ # hash(|N| * dinv)
+ # instead. Second, N is unbounded, so its product with dinv may
+ # be arbitrarily expensive to compute. The final answer is the
+ # same if we use the bounded |N| % P instead, which can again
+ # be done with an int hash() call. If 0 <= i < P, hash(i) == i,
+ # so this nested hash() call wastes a bit of time making a
+ # redundant copy when |N| < P, but can save an arbitrarily large
+ # amount of computation for large |N|.
+ hash_ = hash(hash(abs(numerator)) * dinv)
+ result = hash_ if numerator >= 0 else -hash_
+ return -2 if result == -1 else result
+
+_RATIONAL_FORMAT = re.compile(r"""
+ \A\s* # optional whitespace at the start,
+ (?P<sign>[-+]?) # an optional sign, then
+ (?=\d|\.\d) # lookahead for digit or .digit
+ (?P<num>\d*|\d+(_\d+)*) # numerator (possibly empty)
+ (?: # followed by
+ (?:\s*/\s*(?P<denom>\d+(_\d+)*))? # an optional denominator
+ | # or
+ (?:\.(?P<decimal>\d*|\d+(_\d+)*))? # an optional fractional part
+ (?:E(?P<exp>[-+]?\d+(_\d+)*))? # and optional exponent
+ )
+ \s*\Z # and optional whitespace to finish
+""", re.VERBOSE | re.IGNORECASE)
+
+
+# Helpers for formatting
+
+def _round_to_exponent(n, d, exponent, no_neg_zero=False):
+ """Round a rational number to the nearest multiple of a given power of 10.
+
+ Rounds the rational number n/d to the nearest integer multiple of
+ 10**exponent, rounding to the nearest even integer multiple in the case of
+ a tie. Returns a pair (sign: bool, significand: int) representing the
+ rounded value (-1)**sign * significand * 10**exponent.
+
+ If no_neg_zero is true, then the returned sign will always be False when
+ the significand is zero. Otherwise, the sign reflects the sign of the
+ input.
+
+ d must be positive, but n and d need not be relatively prime.
+ """
+ if exponent >= 0:
+ d *= 10**exponent
+ else:
+ n *= 10**-exponent
+
+ # The divmod quotient is correct for round-ties-towards-positive-infinity;
+ # In the case of a tie, we zero out the least significant bit of q.
+ q, r = divmod(n + (d >> 1), d)
+ if r == 0 and d & 1 == 0:
+ q &= -2
+
+ sign = q < 0 if no_neg_zero else n < 0
+ return sign, abs(q)
+
+
+def _round_to_figures(n, d, figures):
+ """Round a rational number to a given number of significant figures.
+
+ Rounds the rational number n/d to the given number of significant figures
+ using the round-ties-to-even rule, and returns a triple
+ (sign: bool, significand: int, exponent: int) representing the rounded
+ value (-1)**sign * significand * 10**exponent.
+
+ In the special case where n = 0, returns a significand of zero and
+ an exponent of 1 - figures, for compatibility with formatting.
+ Otherwise, the returned significand satisfies
+ 10**(figures - 1) <= significand < 10**figures.
+
+ d must be positive, but n and d need not be relatively prime.
+ figures must be positive.
+ """
+ # Special case for n == 0.
+ if n == 0:
+ return False, 0, 1 - figures
+
+ # Find integer m satisfying 10**(m - 1) <= abs(n)/d <= 10**m. (If abs(n)/d
+ # is a power of 10, either of the two possible values for m is fine.)
+ str_n, str_d = str(abs(n)), str(d)
+ m = len(str_n) - len(str_d) + (str_d <= str_n)
+
+ # Round to a multiple of 10**(m - figures). The significand we get
+ # satisfies 10**(figures - 1) <= significand <= 10**figures.
+ exponent = m - figures
+ sign, significand = _round_to_exponent(n, d, exponent)
+
+ # Adjust in the case where significand == 10**figures, to ensure that
+ # 10**(figures - 1) <= significand < 10**figures.
+ if len(str(significand)) == figures + 1:
+ significand //= 10
+ exponent += 1
+
+ return sign, significand, exponent
+
+
+# Pattern for matching float-style format specifications;
+# supports 'e', 'E', 'f', 'F', 'g', 'G' and '%' presentation types.
+_FLOAT_FORMAT_SPECIFICATION_MATCHER = re.compile(r"""
+ (?:
+ (?P<fill>.)?
+ (?P<align>[<>=^])
+ )?
+ (?P<sign>[-+ ]?)
+ (?P<no_neg_zero>z)?
+ (?P<alt>\#)?
+ # A '0' that's *not* followed by another digit is parsed as a minimum width
+ # rather than a zeropad flag.
+ (?P<zeropad>0(?=[0-9]))?
+ (?P<minimumwidth>0|[1-9][0-9]*)?
+ (?P<thousands_sep>[,_])?
+ (?:\.(?P<precision>0|[1-9][0-9]*))?
+ (?P<presentation_type>[eEfFgG%])
+""", re.DOTALL | re.VERBOSE).fullmatch
+
+
+class Fraction(numbers.Rational):
+ """This class implements rational numbers.
+
+ In the two-argument form of the constructor, Fraction(8, 6) will
+ produce a rational number equivalent to 4/3. Both arguments must
+ be Rational. The numerator defaults to 0 and the denominator
+ defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
+
+ Fractions can also be constructed from:
+
+ - numeric strings similar to those accepted by the
+ float constructor (for example, '-2.3' or '1e10')
+
+ - strings of the form '123/456'
+
+ - float and Decimal instances
+
+ - other Rational instances (including integers)
+
+ """
+
+ __slots__ = ('_numerator', '_denominator')
+
+ # We're immutable, so use __new__ not __init__
+ def __new__(cls, numerator=0, denominator=None):
+ """Constructs a Rational.
+
+ Takes a string like '3/2' or '1.5', another Rational instance, a
+ numerator/denominator pair, or a float.
+
+ Examples
+ --------
+
+ >>> Fraction(10, -8)
+ Fraction(-5, 4)
+ >>> Fraction(Fraction(1, 7), 5)
+ Fraction(1, 35)
+ >>> Fraction(Fraction(1, 7), Fraction(2, 3))
+ Fraction(3, 14)
+ >>> Fraction('314')
+ Fraction(314, 1)
+ >>> Fraction('-35/4')
+ Fraction(-35, 4)
+ >>> Fraction('3.1415') # conversion from numeric string
+ Fraction(6283, 2000)
+ >>> Fraction('-47e-2') # string may include a decimal exponent
+ Fraction(-47, 100)
+ >>> Fraction(1.47) # direct construction from float (exact conversion)
+ Fraction(6620291452234629, 4503599627370496)
+ >>> Fraction(2.25)
+ Fraction(9, 4)
+ >>> Fraction(Decimal('1.47'))
+ Fraction(147, 100)
+
+ """
+ self = super(Fraction, cls).__new__(cls)
+
+ if denominator is None:
+ if type(numerator) is int:
+ self._numerator = numerator
+ self._denominator = 1
+ return self
+
+ elif isinstance(numerator, numbers.Rational):
+ self._numerator = numerator.numerator
+ self._denominator = numerator.denominator
+ return self
+
+ elif isinstance(numerator, (float, Decimal)):
+ # Exact conversion
+ self._numerator, self._denominator = numerator.as_integer_ratio()
+ return self
+
+ elif isinstance(numerator, str):
+ # Handle construction from strings.
+ m = _RATIONAL_FORMAT.match(numerator)
+ if m is None:
+ raise ValueError('Invalid literal for Fraction: %r' %
+ numerator)
+ numerator = int(m.group('num') or '0')
+ denom = m.group('denom')
+ if denom:
+ denominator = int(denom)
+ else:
+ denominator = 1
+ decimal = m.group('decimal')
+ if decimal:
+ decimal = decimal.replace('_', '')
+ scale = 10**len(decimal)
+ numerator = numerator * scale + int(decimal)
+ denominator *= scale
+ exp = m.group('exp')
+ if exp:
+ exp = int(exp)
+ if exp >= 0:
+ numerator *= 10**exp
+ else:
+ denominator *= 10**-exp
+ if m.group('sign') == '-':
+ numerator = -numerator
+
+ else:
+ raise TypeError("argument should be a string "
+ "or a Rational instance")
+
+ elif type(numerator) is int is type(denominator):
+ pass # *very* normal case
+
+ elif (isinstance(numerator, numbers.Rational) and
+ isinstance(denominator, numbers.Rational)):
+ numerator, denominator = (
+ numerator.numerator * denominator.denominator,
+ denominator.numerator * numerator.denominator
+ )
+ else:
+ raise TypeError("both arguments should be "
+ "Rational instances")
+
+ if denominator == 0:
+ raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
+ g = math.gcd(numerator, denominator)
+ if denominator < 0:
+ g = -g
+ numerator //= g
+ denominator //= g
+ self._numerator = numerator
+ self._denominator = denominator
+ return self
+
+ @classmethod
+ def from_float(cls, f):
+ """Converts a finite float to a rational number, exactly.
+
+ Beware that Fraction.from_float(0.3) != Fraction(3, 10).
+
+ """
+ if isinstance(f, numbers.Integral):
+ return cls(f)
+ elif not isinstance(f, float):
+ raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
+ (cls.__name__, f, type(f).__name__))
+ return cls._from_coprime_ints(*f.as_integer_ratio())
+
+ @classmethod
+ def from_decimal(cls, dec):
+ """Converts a finite Decimal instance to a rational number, exactly."""
+ from decimal import Decimal
+ if isinstance(dec, numbers.Integral):
+ dec = Decimal(int(dec))
+ elif not isinstance(dec, Decimal):
+ raise TypeError(
+ "%s.from_decimal() only takes Decimals, not %r (%s)" %
+ (cls.__name__, dec, type(dec).__name__))
+ return cls._from_coprime_ints(*dec.as_integer_ratio())
+
+ @classmethod
+ def _from_coprime_ints(cls, numerator, denominator, /):
+ """Convert a pair of ints to a rational number, for internal use.
+
+ The ratio of integers should be in lowest terms and the denominator
+ should be positive.
+ """
+ obj = super(Fraction, cls).__new__(cls)
+ obj._numerator = numerator
+ obj._denominator = denominator
+ return obj
+
+ def is_integer(self):
+ """Return True if the Fraction is an integer."""
+ return self._denominator == 1
+
+ def as_integer_ratio(self):
+ """Return a pair of integers, whose ratio is equal to the original Fraction.
+
+ The ratio is in lowest terms and has a positive denominator.
+ """
+ return (self._numerator, self._denominator)
+
+ def limit_denominator(self, max_denominator=1000000):
+ """Closest Fraction to self with denominator at most max_denominator.
+
+ >>> Fraction('3.141592653589793').limit_denominator(10)
+ Fraction(22, 7)
+ >>> Fraction('3.141592653589793').limit_denominator(100)
+ Fraction(311, 99)
+ >>> Fraction(4321, 8765).limit_denominator(10000)
+ Fraction(4321, 8765)
+
+ """
+ # Algorithm notes: For any real number x, define a *best upper
+ # approximation* to x to be a rational number p/q such that:
+ #
+ # (1) p/q >= x, and
+ # (2) if p/q > r/s >= x then s > q, for any rational r/s.
+ #
+ # Define *best lower approximation* similarly. Then it can be
+ # proved that a rational number is a best upper or lower
+ # approximation to x if, and only if, it is a convergent or
+ # semiconvergent of the (unique shortest) continued fraction
+ # associated to x.
+ #
+ # To find a best rational approximation with denominator <= M,
+ # we find the best upper and lower approximations with
+ # denominator <= M and take whichever of these is closer to x.
+ # In the event of a tie, the bound with smaller denominator is
+ # chosen. If both denominators are equal (which can happen
+ # only when max_denominator == 1 and self is midway between
+ # two integers) the lower bound---i.e., the floor of self, is
+ # taken.
+
+ if max_denominator < 1:
+ raise ValueError("max_denominator should be at least 1")
+ if self._denominator <= max_denominator:
+ return Fraction(self)
+
+ p0, q0, p1, q1 = 0, 1, 1, 0
+ n, d = self._numerator, self._denominator
+ while True:
+ a = n//d
+ q2 = q0+a*q1
+ if q2 > max_denominator:
+ break
+ p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
+ n, d = d, n-a*d
+ k = (max_denominator-q0)//q1
+
+ # Determine which of the candidates (p0+k*p1)/(q0+k*q1) and p1/q1 is
+ # closer to self. The distance between them is 1/(q1*(q0+k*q1)), while
+ # the distance from p1/q1 to self is d/(q1*self._denominator). So we
+ # need to compare 2*(q0+k*q1) with self._denominator/d.
+ if 2*d*(q0+k*q1) <= self._denominator:
+ return Fraction._from_coprime_ints(p1, q1)
+ else:
+ return Fraction._from_coprime_ints(p0+k*p1, q0+k*q1)
+
+ @property
+ def numerator(a):
+ return a._numerator
+
+ @property
+ def denominator(a):
+ return a._denominator
+
+ def __repr__(self):
+ """repr(self)"""
+ return '%s(%s, %s)' % (self.__class__.__name__,
+ self._numerator, self._denominator)
+
+ def __str__(self):
+ """str(self)"""
+ if self._denominator == 1:
+ return str(self._numerator)
+ else:
+ return '%s/%s' % (self._numerator, self._denominator)
+
+ def __format__(self, format_spec, /):
+ """Format this fraction according to the given format specification."""
+
+ # Backwards compatiblility with existing formatting.
+ if not format_spec:
+ return str(self)
+
+ # Validate and parse the format specifier.
+ match = _FLOAT_FORMAT_SPECIFICATION_MATCHER(format_spec)
+ if match is None:
+ raise ValueError(
+ f"Invalid format specifier {format_spec!r} "
+ f"for object of type {type(self).__name__!r}"
+ )
+ elif match["align"] is not None and match["zeropad"] is not None:
+ # Avoid the temptation to guess.
+ raise ValueError(
+ f"Invalid format specifier {format_spec!r} "
+ f"for object of type {type(self).__name__!r}; "
+ "can't use explicit alignment when zero-padding"
+ )
+ fill = match["fill"] or " "
+ align = match["align"] or ">"
+ pos_sign = "" if match["sign"] == "-" else match["sign"]
+ no_neg_zero = bool(match["no_neg_zero"])
+ alternate_form = bool(match["alt"])
+ zeropad = bool(match["zeropad"])
+ minimumwidth = int(match["minimumwidth"] or "0")
+ thousands_sep = match["thousands_sep"]
+ precision = int(match["precision"] or "6")
+ presentation_type = match["presentation_type"]
+ trim_zeros = presentation_type in "gG" and not alternate_form
+ trim_point = not alternate_form
+ exponent_indicator = "E" if presentation_type in "EFG" else "e"
+
+ # Round to get the digits we need, figure out where to place the point,
+ # and decide whether to use scientific notation. 'point_pos' is the
+ # relative to the _end_ of the digit string: that is, it's the number
+ # of digits that should follow the point.
+ if presentation_type in "fF%":
+ exponent = -precision
+ if presentation_type == "%":
+ exponent -= 2
+ negative, significand = _round_to_exponent(
+ self._numerator, self._denominator, exponent, no_neg_zero)
+ scientific = False
+ point_pos = precision
+ else: # presentation_type in "eEgG"
+ figures = (
+ max(precision, 1)
+ if presentation_type in "gG"
+ else precision + 1
+ )
+ negative, significand, exponent = _round_to_figures(
+ self._numerator, self._denominator, figures)
+ scientific = (
+ presentation_type in "eE"
+ or exponent > 0
+ or exponent + figures <= -4
+ )
+ point_pos = figures - 1 if scientific else -exponent
+
+ # Get the suffix - the part following the digits, if any.
+ if presentation_type == "%":
+ suffix = "%"
+ elif scientific:
+ suffix = f"{exponent_indicator}{exponent + point_pos:+03d}"
+ else:
+ suffix = ""
+
+ # String of output digits, padded sufficiently with zeros on the left
+ # so that we'll have at least one digit before the decimal point.
+ digits = f"{significand:0{point_pos + 1}d}"
+
+ # Before padding, the output has the form f"{sign}{leading}{trailing}",
+ # where `leading` includes thousands separators if necessary and
+ # `trailing` includes the decimal separator where appropriate.
+ sign = "-" if negative else pos_sign
+ leading = digits[: len(digits) - point_pos]
+ frac_part = digits[len(digits) - point_pos :]
+ if trim_zeros:
+ frac_part = frac_part.rstrip("0")
+ separator = "" if trim_point and not frac_part else "."
+ trailing = separator + frac_part + suffix
+
+ # Do zero padding if required.
+ if zeropad:
+ min_leading = minimumwidth - len(sign) - len(trailing)
+ # When adding thousands separators, they'll be added to the
+ # zero-padded portion too, so we need to compensate.
+ leading = leading.zfill(
+ 3 * min_leading // 4 + 1 if thousands_sep else min_leading
+ )
+
+ # Insert thousands separators if required.
+ if thousands_sep:
+ first_pos = 1 + (len(leading) - 1) % 3
+ leading = leading[:first_pos] + "".join(
+ thousands_sep + leading[pos : pos + 3]
+ for pos in range(first_pos, len(leading), 3)
+ )
+
+ # We now have a sign and a body. Pad with fill character if necessary
+ # and return.
+ body = leading + trailing
+ padding = fill * (minimumwidth - len(sign) - len(body))
+ if align == ">":
+ return padding + sign + body
+ elif align == "<":
+ return sign + body + padding
+ elif align == "^":
+ half = len(padding) // 2
+ return padding[:half] + sign + body + padding[half:]
+ else: # align == "="
+ return sign + padding + body
+
+ def _operator_fallbacks(monomorphic_operator, fallback_operator):
+ """Generates forward and reverse operators given a purely-rational
+ operator and a function from the operator module.
+
+ Use this like:
+ __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
+
+ In general, we want to implement the arithmetic operations so
+ that mixed-mode operations either call an implementation whose
+ author knew about the types of both arguments, or convert both
+ to the nearest built in type and do the operation there. In
+ Fraction, that means that we define __add__ and __radd__ as:
+
+ def __add__(self, other):
+ # Both types have numerators/denominator attributes,
+ # so do the operation directly
+ if isinstance(other, (int, Fraction)):
+ return Fraction(self.numerator * other.denominator +
+ other.numerator * self.denominator,
+ self.denominator * other.denominator)
+ # float and complex don't have those operations, but we
+ # know about those types, so special case them.
+ elif isinstance(other, float):
+ return float(self) + other
+ elif isinstance(other, complex):
+ return complex(self) + other
+ # Let the other type take over.
+ return NotImplemented
+
+ def __radd__(self, other):
+ # radd handles more types than add because there's
+ # nothing left to fall back to.
+ if isinstance(other, numbers.Rational):
+ return Fraction(self.numerator * other.denominator +
+ other.numerator * self.denominator,
+ self.denominator * other.denominator)
+ elif isinstance(other, Real):
+ return float(other) + float(self)
+ elif isinstance(other, Complex):
+ return complex(other) + complex(self)
+ return NotImplemented
+
+
+ There are 5 different cases for a mixed-type addition on
+ Fraction. I'll refer to all of the above code that doesn't
+ refer to Fraction, float, or complex as "boilerplate". 'r'
+ will be an instance of Fraction, which is a subtype of
+ Rational (r : Fraction <: Rational), and b : B <:
+ Complex. The first three involve 'r + b':
+
+ 1. If B <: Fraction, int, float, or complex, we handle
+ that specially, and all is well.
+ 2. If Fraction falls back to the boilerplate code, and it
+ were to return a value from __add__, we'd miss the
+ possibility that B defines a more intelligent __radd__,
+ so the boilerplate should return NotImplemented from
+ __add__. In particular, we don't handle Rational
+ here, even though we could get an exact answer, in case
+ the other type wants to do something special.
+ 3. If B <: Fraction, Python tries B.__radd__ before
+ Fraction.__add__. This is ok, because it was
+ implemented with knowledge of Fraction, so it can
+ handle those instances before delegating to Real or
+ Complex.
+
+ The next two situations describe 'b + r'. We assume that b
+ didn't know about Fraction in its implementation, and that it
+ uses similar boilerplate code:
+
+ 4. If B <: Rational, then __radd_ converts both to the
+ builtin rational type (hey look, that's us) and
+ proceeds.
+ 5. Otherwise, __radd__ tries to find the nearest common
+ base ABC, and fall back to its builtin type. Since this
+ class doesn't subclass a concrete type, there's no
+ implementation to fall back to, so we need to try as
+ hard as possible to return an actual value, or the user
+ will get a TypeError.
+
+ """
+ def forward(a, b):
+ if isinstance(b, Fraction):
+ return monomorphic_operator(a, b)
+ elif isinstance(b, int):
+ return monomorphic_operator(a, Fraction(b))
+ elif isinstance(b, float):
+ return fallback_operator(float(a), b)
+ elif isinstance(b, complex):
+ return fallback_operator(complex(a), b)
+ else:
+ return NotImplemented
+ forward.__name__ = '__' + fallback_operator.__name__ + '__'
+ forward.__doc__ = monomorphic_operator.__doc__
+
+ def reverse(b, a):
+ if isinstance(a, numbers.Rational):
+ # Includes ints.
+ return monomorphic_operator(Fraction(a), b)
+ elif isinstance(a, numbers.Real):
+ return fallback_operator(float(a), float(b))
+ elif isinstance(a, numbers.Complex):
+ return fallback_operator(complex(a), complex(b))
+ else:
+ return NotImplemented
+ reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
+ reverse.__doc__ = monomorphic_operator.__doc__
+
+ return forward, reverse
+
+ # Rational arithmetic algorithms: Knuth, TAOCP, Volume 2, 4.5.1.
+ #
+ # Assume input fractions a and b are normalized.
+ #
+ # 1) Consider addition/subtraction.
+ #
+ # Let g = gcd(da, db). Then
+ #
+ # na nb na*db ± nb*da
+ # a ± b == -- ± -- == ------------- ==
+ # da db da*db
+ #
+ # na*(db//g) ± nb*(da//g) t
+ # == ----------------------- == -
+ # (da*db)//g d
+ #
+ # Now, if g > 1, we're working with smaller integers.
+ #
+ # Note, that t, (da//g) and (db//g) are pairwise coprime.
+ #
+ # Indeed, (da//g) and (db//g) share no common factors (they were
+ # removed) and da is coprime with na (since input fractions are
+ # normalized), hence (da//g) and na are coprime. By symmetry,
+ # (db//g) and nb are coprime too. Then,
+ #
+ # gcd(t, da//g) == gcd(na*(db//g), da//g) == 1
+ # gcd(t, db//g) == gcd(nb*(da//g), db//g) == 1
+ #
+ # Above allows us optimize reduction of the result to lowest
+ # terms. Indeed,
+ #
+ # g2 = gcd(t, d) == gcd(t, (da//g)*(db//g)*g) == gcd(t, g)
+ #
+ # t//g2 t//g2
+ # a ± b == ----------------------- == ----------------
+ # (da//g)*(db//g)*(g//g2) (da//g)*(db//g2)
+ #
+ # is a normalized fraction. This is useful because the unnormalized
+ # denominator d could be much larger than g.
+ #
+ # We should special-case g == 1 (and g2 == 1), since 60.8% of
+ # randomly-chosen integers are coprime:
+ # https://en.wikipedia.org/wiki/Coprime_integers#Probability_of_coprimality
+ # Note, that g2 == 1 always for fractions, obtained from floats: here
+ # g is a power of 2 and the unnormalized numerator t is an odd integer.
+ #
+ # 2) Consider multiplication
+ #
+ # Let g1 = gcd(na, db) and g2 = gcd(nb, da), then
+ #
+ # na*nb na*nb (na//g1)*(nb//g2)
+ # a*b == ----- == ----- == -----------------
+ # da*db db*da (db//g1)*(da//g2)
+ #
+ # Note, that after divisions we're multiplying smaller integers.
+ #
+ # Also, the resulting fraction is normalized, because each of
+ # two factors in the numerator is coprime to each of the two factors
+ # in the denominator.
+ #
+ # Indeed, pick (na//g1). It's coprime with (da//g2), because input
+ # fractions are normalized. It's also coprime with (db//g1), because
+ # common factors are removed by g1 == gcd(na, db).
+ #
+ # As for addition/subtraction, we should special-case g1 == 1
+ # and g2 == 1 for same reason. That happens also for multiplying
+ # rationals, obtained from floats.
+
+ def _add(a, b):
+ """a + b"""
+ na, da = a._numerator, a._denominator
+ nb, db = b._numerator, b._denominator
+ g = math.gcd(da, db)
+ if g == 1:
+ return Fraction._from_coprime_ints(na * db + da * nb, da * db)
+ s = da // g
+ t = na * (db // g) + nb * s
+ g2 = math.gcd(t, g)
+ if g2 == 1:
+ return Fraction._from_coprime_ints(t, s * db)
+ return Fraction._from_coprime_ints(t // g2, s * (db // g2))
+
+ __add__, __radd__ = _operator_fallbacks(_add, operator.add)
+
+ def _sub(a, b):
+ """a - b"""
+ na, da = a._numerator, a._denominator
+ nb, db = b._numerator, b._denominator
+ g = math.gcd(da, db)
+ if g == 1:
+ return Fraction._from_coprime_ints(na * db - da * nb, da * db)
+ s = da // g
+ t = na * (db // g) - nb * s
+ g2 = math.gcd(t, g)
+ if g2 == 1:
+ return Fraction._from_coprime_ints(t, s * db)
+ return Fraction._from_coprime_ints(t // g2, s * (db // g2))
+
+ __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
+
+ def _mul(a, b):
+ """a * b"""
+ na, da = a._numerator, a._denominator
+ nb, db = b._numerator, b._denominator
+ g1 = math.gcd(na, db)
+ if g1 > 1:
+ na //= g1
+ db //= g1
+ g2 = math.gcd(nb, da)
+ if g2 > 1:
+ nb //= g2
+ da //= g2
+ return Fraction._from_coprime_ints(na * nb, db * da)
+
+ __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
+
+ def _div(a, b):
+ """a / b"""
+ # Same as _mul(), with inversed b.
+ nb, db = b._numerator, b._denominator
+ if nb == 0:
+ raise ZeroDivisionError('Fraction(%s, 0)' % db)
+ na, da = a._numerator, a._denominator
+ g1 = math.gcd(na, nb)
+ if g1 > 1:
+ na //= g1
+ nb //= g1
+ g2 = math.gcd(db, da)
+ if g2 > 1:
+ da //= g2
+ db //= g2
+ n, d = na * db, nb * da
+ if d < 0:
+ n, d = -n, -d
+ return Fraction._from_coprime_ints(n, d)
+
+ __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
+
+ def _floordiv(a, b):
+ """a // b"""
+ return (a.numerator * b.denominator) // (a.denominator * b.numerator)
+
+ __floordiv__, __rfloordiv__ = _operator_fallbacks(_floordiv, operator.floordiv)
+
+ def _divmod(a, b):
+ """(a // b, a % b)"""
+ da, db = a.denominator, b.denominator
+ div, n_mod = divmod(a.numerator * db, da * b.numerator)
+ return div, Fraction(n_mod, da * db)
+
+ __divmod__, __rdivmod__ = _operator_fallbacks(_divmod, divmod)
+
+ def _mod(a, b):
+ """a % b"""
+ da, db = a.denominator, b.denominator
+ return Fraction((a.numerator * db) % (b.numerator * da), da * db)
+
+ __mod__, __rmod__ = _operator_fallbacks(_mod, operator.mod)
+
+ def __pow__(a, b):
+ """a ** b
+
+ If b is not an integer, the result will be a float or complex
+ since roots are generally irrational. If b is an integer, the
+ result will be rational.
+
+ """
+ if isinstance(b, numbers.Rational):
+ if b.denominator == 1:
+ power = b.numerator
+ if power >= 0:
+ return Fraction._from_coprime_ints(a._numerator ** power,
+ a._denominator ** power)
+ elif a._numerator > 0:
+ return Fraction._from_coprime_ints(a._denominator ** -power,
+ a._numerator ** -power)
+ elif a._numerator == 0:
+ raise ZeroDivisionError('Fraction(%s, 0)' %
+ a._denominator ** -power)
+ else:
+ return Fraction._from_coprime_ints((-a._denominator) ** -power,
+ (-a._numerator) ** -power)
+ else:
+ # A fractional power will generally produce an
+ # irrational number.
+ return float(a) ** float(b)
+ else:
+ return float(a) ** b
+
+ def __rpow__(b, a):
+ """a ** b"""
+ if b._denominator == 1 and b._numerator >= 0:
+ # If a is an int, keep it that way if possible.
+ return a ** b._numerator
+
+ if isinstance(a, numbers.Rational):
+ return Fraction(a.numerator, a.denominator) ** b
+
+ if b._denominator == 1:
+ return a ** b._numerator
+
+ return a ** float(b)
+
+ def __pos__(a):
+ """+a: Coerces a subclass instance to Fraction"""
+ return Fraction._from_coprime_ints(a._numerator, a._denominator)
+
+ def __neg__(a):
+ """-a"""
+ return Fraction._from_coprime_ints(-a._numerator, a._denominator)
+
+ def __abs__(a):
+ """abs(a)"""
+ return Fraction._from_coprime_ints(abs(a._numerator), a._denominator)
+
+ def __int__(a, _index=operator.index):
+ """int(a)"""
+ if a._numerator < 0:
+ return _index(-(-a._numerator // a._denominator))
+ else:
+ return _index(a._numerator // a._denominator)
+
+ def __trunc__(a):
+ """math.trunc(a)"""
+ if a._numerator < 0:
+ return -(-a._numerator // a._denominator)
+ else:
+ return a._numerator // a._denominator
+
+ def __floor__(a):
+ """math.floor(a)"""
+ return a._numerator // a._denominator
+
+ def __ceil__(a):
+ """math.ceil(a)"""
+ # The negations cleverly convince floordiv to return the ceiling.
+ return -(-a._numerator // a._denominator)
+
+ def __round__(self, ndigits=None):
+ """round(self, ndigits)
+
+ Rounds half toward even.
+ """
+ if ndigits is None:
+ d = self._denominator
+ floor, remainder = divmod(self._numerator, d)
+ if remainder * 2 < d:
+ return floor
+ elif remainder * 2 > d:
+ return floor + 1
+ # Deal with the half case:
+ elif floor % 2 == 0:
+ return floor
+ else:
+ return floor + 1
+ shift = 10**abs(ndigits)
+ # See _operator_fallbacks.forward to check that the results of
+ # these operations will always be Fraction and therefore have
+ # round().
+ if ndigits > 0:
+ return Fraction(round(self * shift), shift)
+ else:
+ return Fraction(round(self / shift) * shift)
+
+ def __hash__(self):
+ """hash(self)"""
+ return _hash_algorithm(self._numerator, self._denominator)
+
+ def __eq__(a, b):
+ """a == b"""
+ if type(b) is int:
+ return a._numerator == b and a._denominator == 1
+ if isinstance(b, numbers.Rational):
+ return (a._numerator == b.numerator and
+ a._denominator == b.denominator)
+ if isinstance(b, numbers.Complex) and b.imag == 0:
+ b = b.real
+ if isinstance(b, float):
+ if math.isnan(b) or math.isinf(b):
+ # comparisons with an infinity or nan should behave in
+ # the same way for any finite a, so treat a as zero.
+ return 0.0 == b
+ else:
+ return a == a.from_float(b)
+ else:
+ # Since a doesn't know how to compare with b, let's give b
+ # a chance to compare itself with a.
+ return NotImplemented
+
+ def _richcmp(self, other, op):
+ """Helper for comparison operators, for internal use only.
+
+ Implement comparison between a Rational instance `self`, and
+ either another Rational instance or a float `other`. If
+ `other` is not a Rational instance or a float, return
+ NotImplemented. `op` should be one of the six standard
+ comparison operators.
+
+ """
+ # convert other to a Rational instance where reasonable.
+ if isinstance(other, numbers.Rational):
+ return op(self._numerator * other.denominator,
+ self._denominator * other.numerator)
+ if isinstance(other, float):
+ if math.isnan(other) or math.isinf(other):
+ return op(0.0, other)
+ else:
+ return op(self, self.from_float(other))
+ else:
+ return NotImplemented
+
+ def __lt__(a, b):
+ """a < b"""
+ return a._richcmp(b, operator.lt)
+
+ def __gt__(a, b):
+ """a > b"""
+ return a._richcmp(b, operator.gt)
+
+ def __le__(a, b):
+ """a <= b"""
+ return a._richcmp(b, operator.le)
+
+ def __ge__(a, b):
+ """a >= b"""
+ return a._richcmp(b, operator.ge)
+
+ def __bool__(a):
+ """a != 0"""
+ # bpo-39274: Use bool() because (a._numerator != 0) can return an
+ # object which is not a bool.
+ return bool(a._numerator)
+
+ # support for pickling, copy, and deepcopy
+
+ def __reduce__(self):
+ return (self.__class__, (self._numerator, self._denominator))
+
+ def __copy__(self):
+ if type(self) == Fraction:
+ return self # I'm immutable; therefore I am my own clone
+ return self.__class__(self._numerator, self._denominator)
+
+ def __deepcopy__(self, memo):
+ if type(self) == Fraction:
+ return self # My components are also immutable
+ return self.__class__(self._numerator, self._denominator)