diff options
author | AlexSm <alex@ydb.tech> | 2024-03-05 10:40:59 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-03-05 12:40:59 +0300 |
commit | 1ac13c847b5358faba44dbb638a828e24369467b (patch) | |
tree | 07672b4dd3604ad3dee540a02c6494cb7d10dc3d /contrib/tools/python3/Lib/fractions.py | |
parent | ffcca3e7f7958ddc6487b91d3df8c01054bd0638 (diff) | |
download | ydb-1ac13c847b5358faba44dbb638a828e24369467b.tar.gz |
Library import 16 (#2433)
Co-authored-by: robot-piglet <robot-piglet@yandex-team.com>
Co-authored-by: deshevoy <deshevoy@yandex-team.com>
Co-authored-by: robot-contrib <robot-contrib@yandex-team.com>
Co-authored-by: thegeorg <thegeorg@yandex-team.com>
Co-authored-by: robot-ya-builder <robot-ya-builder@yandex-team.com>
Co-authored-by: svidyuk <svidyuk@yandex-team.com>
Co-authored-by: shadchin <shadchin@yandex-team.com>
Co-authored-by: robot-ratatosk <robot-ratatosk@yandex-team.com>
Co-authored-by: innokentii <innokentii@yandex-team.com>
Co-authored-by: arkady-e1ppa <arkady-e1ppa@yandex-team.com>
Co-authored-by: snermolaev <snermolaev@yandex-team.com>
Co-authored-by: dimdim11 <dimdim11@yandex-team.com>
Co-authored-by: kickbutt <kickbutt@yandex-team.com>
Co-authored-by: abdullinsaid <abdullinsaid@yandex-team.com>
Co-authored-by: korsunandrei <korsunandrei@yandex-team.com>
Co-authored-by: petrk <petrk@yandex-team.com>
Co-authored-by: miroslav2 <miroslav2@yandex-team.com>
Co-authored-by: serjflint <serjflint@yandex-team.com>
Co-authored-by: akhropov <akhropov@yandex-team.com>
Co-authored-by: prettyboy <prettyboy@yandex-team.com>
Co-authored-by: ilikepugs <ilikepugs@yandex-team.com>
Co-authored-by: hiddenpath <hiddenpath@yandex-team.com>
Co-authored-by: mikhnenko <mikhnenko@yandex-team.com>
Co-authored-by: spreis <spreis@yandex-team.com>
Co-authored-by: andreyshspb <andreyshspb@yandex-team.com>
Co-authored-by: dimaandreev <dimaandreev@yandex-team.com>
Co-authored-by: rashid <rashid@yandex-team.com>
Co-authored-by: robot-ydb-importer <robot-ydb-importer@yandex-team.com>
Co-authored-by: r-vetrov <r-vetrov@yandex-team.com>
Co-authored-by: ypodlesov <ypodlesov@yandex-team.com>
Co-authored-by: zaverden <zaverden@yandex-team.com>
Co-authored-by: vpozdyayev <vpozdyayev@yandex-team.com>
Co-authored-by: robot-cozmo <robot-cozmo@yandex-team.com>
Co-authored-by: v-korovin <v-korovin@yandex-team.com>
Co-authored-by: arikon <arikon@yandex-team.com>
Co-authored-by: khoden <khoden@yandex-team.com>
Co-authored-by: psydmm <psydmm@yandex-team.com>
Co-authored-by: robot-javacom <robot-javacom@yandex-team.com>
Co-authored-by: dtorilov <dtorilov@yandex-team.com>
Co-authored-by: sennikovmv <sennikovmv@yandex-team.com>
Co-authored-by: hcpp <hcpp@ydb.tech>
Diffstat (limited to 'contrib/tools/python3/Lib/fractions.py')
-rw-r--r-- | contrib/tools/python3/Lib/fractions.py | 988 |
1 files changed, 988 insertions, 0 deletions
diff --git a/contrib/tools/python3/Lib/fractions.py b/contrib/tools/python3/Lib/fractions.py new file mode 100644 index 0000000000..88b418fe38 --- /dev/null +++ b/contrib/tools/python3/Lib/fractions.py @@ -0,0 +1,988 @@ +# Originally contributed by Sjoerd Mullender. +# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>. + +"""Fraction, infinite-precision, rational numbers.""" + +from decimal import Decimal +import functools +import math +import numbers +import operator +import re +import sys + +__all__ = ['Fraction'] + + +# Constants related to the hash implementation; hash(x) is based +# on the reduction of x modulo the prime _PyHASH_MODULUS. +_PyHASH_MODULUS = sys.hash_info.modulus +# Value to be used for rationals that reduce to infinity modulo +# _PyHASH_MODULUS. +_PyHASH_INF = sys.hash_info.inf + +@functools.lru_cache(maxsize = 1 << 14) +def _hash_algorithm(numerator, denominator): + + # To make sure that the hash of a Fraction agrees with the hash + # of a numerically equal integer, float or Decimal instance, we + # follow the rules for numeric hashes outlined in the + # documentation. (See library docs, 'Built-in Types'). + + try: + dinv = pow(denominator, -1, _PyHASH_MODULUS) + except ValueError: + # ValueError means there is no modular inverse. + hash_ = _PyHASH_INF + else: + # The general algorithm now specifies that the absolute value of + # the hash is + # (|N| * dinv) % P + # where N is self._numerator and P is _PyHASH_MODULUS. That's + # optimized here in two ways: first, for a non-negative int i, + # hash(i) == i % P, but the int hash implementation doesn't need + # to divide, and is faster than doing % P explicitly. So we do + # hash(|N| * dinv) + # instead. Second, N is unbounded, so its product with dinv may + # be arbitrarily expensive to compute. The final answer is the + # same if we use the bounded |N| % P instead, which can again + # be done with an int hash() call. If 0 <= i < P, hash(i) == i, + # so this nested hash() call wastes a bit of time making a + # redundant copy when |N| < P, but can save an arbitrarily large + # amount of computation for large |N|. + hash_ = hash(hash(abs(numerator)) * dinv) + result = hash_ if numerator >= 0 else -hash_ + return -2 if result == -1 else result + +_RATIONAL_FORMAT = re.compile(r""" + \A\s* # optional whitespace at the start, + (?P<sign>[-+]?) # an optional sign, then + (?=\d|\.\d) # lookahead for digit or .digit + (?P<num>\d*|\d+(_\d+)*) # numerator (possibly empty) + (?: # followed by + (?:\s*/\s*(?P<denom>\d+(_\d+)*))? # an optional denominator + | # or + (?:\.(?P<decimal>\d*|\d+(_\d+)*))? # an optional fractional part + (?:E(?P<exp>[-+]?\d+(_\d+)*))? # and optional exponent + ) + \s*\Z # and optional whitespace to finish +""", re.VERBOSE | re.IGNORECASE) + + +# Helpers for formatting + +def _round_to_exponent(n, d, exponent, no_neg_zero=False): + """Round a rational number to the nearest multiple of a given power of 10. + + Rounds the rational number n/d to the nearest integer multiple of + 10**exponent, rounding to the nearest even integer multiple in the case of + a tie. Returns a pair (sign: bool, significand: int) representing the + rounded value (-1)**sign * significand * 10**exponent. + + If no_neg_zero is true, then the returned sign will always be False when + the significand is zero. Otherwise, the sign reflects the sign of the + input. + + d must be positive, but n and d need not be relatively prime. + """ + if exponent >= 0: + d *= 10**exponent + else: + n *= 10**-exponent + + # The divmod quotient is correct for round-ties-towards-positive-infinity; + # In the case of a tie, we zero out the least significant bit of q. + q, r = divmod(n + (d >> 1), d) + if r == 0 and d & 1 == 0: + q &= -2 + + sign = q < 0 if no_neg_zero else n < 0 + return sign, abs(q) + + +def _round_to_figures(n, d, figures): + """Round a rational number to a given number of significant figures. + + Rounds the rational number n/d to the given number of significant figures + using the round-ties-to-even rule, and returns a triple + (sign: bool, significand: int, exponent: int) representing the rounded + value (-1)**sign * significand * 10**exponent. + + In the special case where n = 0, returns a significand of zero and + an exponent of 1 - figures, for compatibility with formatting. + Otherwise, the returned significand satisfies + 10**(figures - 1) <= significand < 10**figures. + + d must be positive, but n and d need not be relatively prime. + figures must be positive. + """ + # Special case for n == 0. + if n == 0: + return False, 0, 1 - figures + + # Find integer m satisfying 10**(m - 1) <= abs(n)/d <= 10**m. (If abs(n)/d + # is a power of 10, either of the two possible values for m is fine.) + str_n, str_d = str(abs(n)), str(d) + m = len(str_n) - len(str_d) + (str_d <= str_n) + + # Round to a multiple of 10**(m - figures). The significand we get + # satisfies 10**(figures - 1) <= significand <= 10**figures. + exponent = m - figures + sign, significand = _round_to_exponent(n, d, exponent) + + # Adjust in the case where significand == 10**figures, to ensure that + # 10**(figures - 1) <= significand < 10**figures. + if len(str(significand)) == figures + 1: + significand //= 10 + exponent += 1 + + return sign, significand, exponent + + +# Pattern for matching float-style format specifications; +# supports 'e', 'E', 'f', 'F', 'g', 'G' and '%' presentation types. +_FLOAT_FORMAT_SPECIFICATION_MATCHER = re.compile(r""" + (?: + (?P<fill>.)? + (?P<align>[<>=^]) + )? + (?P<sign>[-+ ]?) + (?P<no_neg_zero>z)? + (?P<alt>\#)? + # A '0' that's *not* followed by another digit is parsed as a minimum width + # rather than a zeropad flag. + (?P<zeropad>0(?=[0-9]))? + (?P<minimumwidth>0|[1-9][0-9]*)? + (?P<thousands_sep>[,_])? + (?:\.(?P<precision>0|[1-9][0-9]*))? + (?P<presentation_type>[eEfFgG%]) +""", re.DOTALL | re.VERBOSE).fullmatch + + +class Fraction(numbers.Rational): + """This class implements rational numbers. + + In the two-argument form of the constructor, Fraction(8, 6) will + produce a rational number equivalent to 4/3. Both arguments must + be Rational. The numerator defaults to 0 and the denominator + defaults to 1 so that Fraction(3) == 3 and Fraction() == 0. + + Fractions can also be constructed from: + + - numeric strings similar to those accepted by the + float constructor (for example, '-2.3' or '1e10') + + - strings of the form '123/456' + + - float and Decimal instances + + - other Rational instances (including integers) + + """ + + __slots__ = ('_numerator', '_denominator') + + # We're immutable, so use __new__ not __init__ + def __new__(cls, numerator=0, denominator=None): + """Constructs a Rational. + + Takes a string like '3/2' or '1.5', another Rational instance, a + numerator/denominator pair, or a float. + + Examples + -------- + + >>> Fraction(10, -8) + Fraction(-5, 4) + >>> Fraction(Fraction(1, 7), 5) + Fraction(1, 35) + >>> Fraction(Fraction(1, 7), Fraction(2, 3)) + Fraction(3, 14) + >>> Fraction('314') + Fraction(314, 1) + >>> Fraction('-35/4') + Fraction(-35, 4) + >>> Fraction('3.1415') # conversion from numeric string + Fraction(6283, 2000) + >>> Fraction('-47e-2') # string may include a decimal exponent + Fraction(-47, 100) + >>> Fraction(1.47) # direct construction from float (exact conversion) + Fraction(6620291452234629, 4503599627370496) + >>> Fraction(2.25) + Fraction(9, 4) + >>> Fraction(Decimal('1.47')) + Fraction(147, 100) + + """ + self = super(Fraction, cls).__new__(cls) + + if denominator is None: + if type(numerator) is int: + self._numerator = numerator + self._denominator = 1 + return self + + elif isinstance(numerator, numbers.Rational): + self._numerator = numerator.numerator + self._denominator = numerator.denominator + return self + + elif isinstance(numerator, (float, Decimal)): + # Exact conversion + self._numerator, self._denominator = numerator.as_integer_ratio() + return self + + elif isinstance(numerator, str): + # Handle construction from strings. + m = _RATIONAL_FORMAT.match(numerator) + if m is None: + raise ValueError('Invalid literal for Fraction: %r' % + numerator) + numerator = int(m.group('num') or '0') + denom = m.group('denom') + if denom: + denominator = int(denom) + else: + denominator = 1 + decimal = m.group('decimal') + if decimal: + decimal = decimal.replace('_', '') + scale = 10**len(decimal) + numerator = numerator * scale + int(decimal) + denominator *= scale + exp = m.group('exp') + if exp: + exp = int(exp) + if exp >= 0: + numerator *= 10**exp + else: + denominator *= 10**-exp + if m.group('sign') == '-': + numerator = -numerator + + else: + raise TypeError("argument should be a string " + "or a Rational instance") + + elif type(numerator) is int is type(denominator): + pass # *very* normal case + + elif (isinstance(numerator, numbers.Rational) and + isinstance(denominator, numbers.Rational)): + numerator, denominator = ( + numerator.numerator * denominator.denominator, + denominator.numerator * numerator.denominator + ) + else: + raise TypeError("both arguments should be " + "Rational instances") + + if denominator == 0: + raise ZeroDivisionError('Fraction(%s, 0)' % numerator) + g = math.gcd(numerator, denominator) + if denominator < 0: + g = -g + numerator //= g + denominator //= g + self._numerator = numerator + self._denominator = denominator + return self + + @classmethod + def from_float(cls, f): + """Converts a finite float to a rational number, exactly. + + Beware that Fraction.from_float(0.3) != Fraction(3, 10). + + """ + if isinstance(f, numbers.Integral): + return cls(f) + elif not isinstance(f, float): + raise TypeError("%s.from_float() only takes floats, not %r (%s)" % + (cls.__name__, f, type(f).__name__)) + return cls._from_coprime_ints(*f.as_integer_ratio()) + + @classmethod + def from_decimal(cls, dec): + """Converts a finite Decimal instance to a rational number, exactly.""" + from decimal import Decimal + if isinstance(dec, numbers.Integral): + dec = Decimal(int(dec)) + elif not isinstance(dec, Decimal): + raise TypeError( + "%s.from_decimal() only takes Decimals, not %r (%s)" % + (cls.__name__, dec, type(dec).__name__)) + return cls._from_coprime_ints(*dec.as_integer_ratio()) + + @classmethod + def _from_coprime_ints(cls, numerator, denominator, /): + """Convert a pair of ints to a rational number, for internal use. + + The ratio of integers should be in lowest terms and the denominator + should be positive. + """ + obj = super(Fraction, cls).__new__(cls) + obj._numerator = numerator + obj._denominator = denominator + return obj + + def is_integer(self): + """Return True if the Fraction is an integer.""" + return self._denominator == 1 + + def as_integer_ratio(self): + """Return a pair of integers, whose ratio is equal to the original Fraction. + + The ratio is in lowest terms and has a positive denominator. + """ + return (self._numerator, self._denominator) + + def limit_denominator(self, max_denominator=1000000): + """Closest Fraction to self with denominator at most max_denominator. + + >>> Fraction('3.141592653589793').limit_denominator(10) + Fraction(22, 7) + >>> Fraction('3.141592653589793').limit_denominator(100) + Fraction(311, 99) + >>> Fraction(4321, 8765).limit_denominator(10000) + Fraction(4321, 8765) + + """ + # Algorithm notes: For any real number x, define a *best upper + # approximation* to x to be a rational number p/q such that: + # + # (1) p/q >= x, and + # (2) if p/q > r/s >= x then s > q, for any rational r/s. + # + # Define *best lower approximation* similarly. Then it can be + # proved that a rational number is a best upper or lower + # approximation to x if, and only if, it is a convergent or + # semiconvergent of the (unique shortest) continued fraction + # associated to x. + # + # To find a best rational approximation with denominator <= M, + # we find the best upper and lower approximations with + # denominator <= M and take whichever of these is closer to x. + # In the event of a tie, the bound with smaller denominator is + # chosen. If both denominators are equal (which can happen + # only when max_denominator == 1 and self is midway between + # two integers) the lower bound---i.e., the floor of self, is + # taken. + + if max_denominator < 1: + raise ValueError("max_denominator should be at least 1") + if self._denominator <= max_denominator: + return Fraction(self) + + p0, q0, p1, q1 = 0, 1, 1, 0 + n, d = self._numerator, self._denominator + while True: + a = n//d + q2 = q0+a*q1 + if q2 > max_denominator: + break + p0, q0, p1, q1 = p1, q1, p0+a*p1, q2 + n, d = d, n-a*d + k = (max_denominator-q0)//q1 + + # Determine which of the candidates (p0+k*p1)/(q0+k*q1) and p1/q1 is + # closer to self. The distance between them is 1/(q1*(q0+k*q1)), while + # the distance from p1/q1 to self is d/(q1*self._denominator). So we + # need to compare 2*(q0+k*q1) with self._denominator/d. + if 2*d*(q0+k*q1) <= self._denominator: + return Fraction._from_coprime_ints(p1, q1) + else: + return Fraction._from_coprime_ints(p0+k*p1, q0+k*q1) + + @property + def numerator(a): + return a._numerator + + @property + def denominator(a): + return a._denominator + + def __repr__(self): + """repr(self)""" + return '%s(%s, %s)' % (self.__class__.__name__, + self._numerator, self._denominator) + + def __str__(self): + """str(self)""" + if self._denominator == 1: + return str(self._numerator) + else: + return '%s/%s' % (self._numerator, self._denominator) + + def __format__(self, format_spec, /): + """Format this fraction according to the given format specification.""" + + # Backwards compatiblility with existing formatting. + if not format_spec: + return str(self) + + # Validate and parse the format specifier. + match = _FLOAT_FORMAT_SPECIFICATION_MATCHER(format_spec) + if match is None: + raise ValueError( + f"Invalid format specifier {format_spec!r} " + f"for object of type {type(self).__name__!r}" + ) + elif match["align"] is not None and match["zeropad"] is not None: + # Avoid the temptation to guess. + raise ValueError( + f"Invalid format specifier {format_spec!r} " + f"for object of type {type(self).__name__!r}; " + "can't use explicit alignment when zero-padding" + ) + fill = match["fill"] or " " + align = match["align"] or ">" + pos_sign = "" if match["sign"] == "-" else match["sign"] + no_neg_zero = bool(match["no_neg_zero"]) + alternate_form = bool(match["alt"]) + zeropad = bool(match["zeropad"]) + minimumwidth = int(match["minimumwidth"] or "0") + thousands_sep = match["thousands_sep"] + precision = int(match["precision"] or "6") + presentation_type = match["presentation_type"] + trim_zeros = presentation_type in "gG" and not alternate_form + trim_point = not alternate_form + exponent_indicator = "E" if presentation_type in "EFG" else "e" + + # Round to get the digits we need, figure out where to place the point, + # and decide whether to use scientific notation. 'point_pos' is the + # relative to the _end_ of the digit string: that is, it's the number + # of digits that should follow the point. + if presentation_type in "fF%": + exponent = -precision + if presentation_type == "%": + exponent -= 2 + negative, significand = _round_to_exponent( + self._numerator, self._denominator, exponent, no_neg_zero) + scientific = False + point_pos = precision + else: # presentation_type in "eEgG" + figures = ( + max(precision, 1) + if presentation_type in "gG" + else precision + 1 + ) + negative, significand, exponent = _round_to_figures( + self._numerator, self._denominator, figures) + scientific = ( + presentation_type in "eE" + or exponent > 0 + or exponent + figures <= -4 + ) + point_pos = figures - 1 if scientific else -exponent + + # Get the suffix - the part following the digits, if any. + if presentation_type == "%": + suffix = "%" + elif scientific: + suffix = f"{exponent_indicator}{exponent + point_pos:+03d}" + else: + suffix = "" + + # String of output digits, padded sufficiently with zeros on the left + # so that we'll have at least one digit before the decimal point. + digits = f"{significand:0{point_pos + 1}d}" + + # Before padding, the output has the form f"{sign}{leading}{trailing}", + # where `leading` includes thousands separators if necessary and + # `trailing` includes the decimal separator where appropriate. + sign = "-" if negative else pos_sign + leading = digits[: len(digits) - point_pos] + frac_part = digits[len(digits) - point_pos :] + if trim_zeros: + frac_part = frac_part.rstrip("0") + separator = "" if trim_point and not frac_part else "." + trailing = separator + frac_part + suffix + + # Do zero padding if required. + if zeropad: + min_leading = minimumwidth - len(sign) - len(trailing) + # When adding thousands separators, they'll be added to the + # zero-padded portion too, so we need to compensate. + leading = leading.zfill( + 3 * min_leading // 4 + 1 if thousands_sep else min_leading + ) + + # Insert thousands separators if required. + if thousands_sep: + first_pos = 1 + (len(leading) - 1) % 3 + leading = leading[:first_pos] + "".join( + thousands_sep + leading[pos : pos + 3] + for pos in range(first_pos, len(leading), 3) + ) + + # We now have a sign and a body. Pad with fill character if necessary + # and return. + body = leading + trailing + padding = fill * (minimumwidth - len(sign) - len(body)) + if align == ">": + return padding + sign + body + elif align == "<": + return sign + body + padding + elif align == "^": + half = len(padding) // 2 + return padding[:half] + sign + body + padding[half:] + else: # align == "=" + return sign + padding + body + + def _operator_fallbacks(monomorphic_operator, fallback_operator): + """Generates forward and reverse operators given a purely-rational + operator and a function from the operator module. + + Use this like: + __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) + + In general, we want to implement the arithmetic operations so + that mixed-mode operations either call an implementation whose + author knew about the types of both arguments, or convert both + to the nearest built in type and do the operation there. In + Fraction, that means that we define __add__ and __radd__ as: + + def __add__(self, other): + # Both types have numerators/denominator attributes, + # so do the operation directly + if isinstance(other, (int, Fraction)): + return Fraction(self.numerator * other.denominator + + other.numerator * self.denominator, + self.denominator * other.denominator) + # float and complex don't have those operations, but we + # know about those types, so special case them. + elif isinstance(other, float): + return float(self) + other + elif isinstance(other, complex): + return complex(self) + other + # Let the other type take over. + return NotImplemented + + def __radd__(self, other): + # radd handles more types than add because there's + # nothing left to fall back to. + if isinstance(other, numbers.Rational): + return Fraction(self.numerator * other.denominator + + other.numerator * self.denominator, + self.denominator * other.denominator) + elif isinstance(other, Real): + return float(other) + float(self) + elif isinstance(other, Complex): + return complex(other) + complex(self) + return NotImplemented + + + There are 5 different cases for a mixed-type addition on + Fraction. I'll refer to all of the above code that doesn't + refer to Fraction, float, or complex as "boilerplate". 'r' + will be an instance of Fraction, which is a subtype of + Rational (r : Fraction <: Rational), and b : B <: + Complex. The first three involve 'r + b': + + 1. If B <: Fraction, int, float, or complex, we handle + that specially, and all is well. + 2. If Fraction falls back to the boilerplate code, and it + were to return a value from __add__, we'd miss the + possibility that B defines a more intelligent __radd__, + so the boilerplate should return NotImplemented from + __add__. In particular, we don't handle Rational + here, even though we could get an exact answer, in case + the other type wants to do something special. + 3. If B <: Fraction, Python tries B.__radd__ before + Fraction.__add__. This is ok, because it was + implemented with knowledge of Fraction, so it can + handle those instances before delegating to Real or + Complex. + + The next two situations describe 'b + r'. We assume that b + didn't know about Fraction in its implementation, and that it + uses similar boilerplate code: + + 4. If B <: Rational, then __radd_ converts both to the + builtin rational type (hey look, that's us) and + proceeds. + 5. Otherwise, __radd__ tries to find the nearest common + base ABC, and fall back to its builtin type. Since this + class doesn't subclass a concrete type, there's no + implementation to fall back to, so we need to try as + hard as possible to return an actual value, or the user + will get a TypeError. + + """ + def forward(a, b): + if isinstance(b, Fraction): + return monomorphic_operator(a, b) + elif isinstance(b, int): + return monomorphic_operator(a, Fraction(b)) + elif isinstance(b, float): + return fallback_operator(float(a), b) + elif isinstance(b, complex): + return fallback_operator(complex(a), b) + else: + return NotImplemented + forward.__name__ = '__' + fallback_operator.__name__ + '__' + forward.__doc__ = monomorphic_operator.__doc__ + + def reverse(b, a): + if isinstance(a, numbers.Rational): + # Includes ints. + return monomorphic_operator(Fraction(a), b) + elif isinstance(a, numbers.Real): + return fallback_operator(float(a), float(b)) + elif isinstance(a, numbers.Complex): + return fallback_operator(complex(a), complex(b)) + else: + return NotImplemented + reverse.__name__ = '__r' + fallback_operator.__name__ + '__' + reverse.__doc__ = monomorphic_operator.__doc__ + + return forward, reverse + + # Rational arithmetic algorithms: Knuth, TAOCP, Volume 2, 4.5.1. + # + # Assume input fractions a and b are normalized. + # + # 1) Consider addition/subtraction. + # + # Let g = gcd(da, db). Then + # + # na nb na*db ± nb*da + # a ± b == -- ± -- == ------------- == + # da db da*db + # + # na*(db//g) ± nb*(da//g) t + # == ----------------------- == - + # (da*db)//g d + # + # Now, if g > 1, we're working with smaller integers. + # + # Note, that t, (da//g) and (db//g) are pairwise coprime. + # + # Indeed, (da//g) and (db//g) share no common factors (they were + # removed) and da is coprime with na (since input fractions are + # normalized), hence (da//g) and na are coprime. By symmetry, + # (db//g) and nb are coprime too. Then, + # + # gcd(t, da//g) == gcd(na*(db//g), da//g) == 1 + # gcd(t, db//g) == gcd(nb*(da//g), db//g) == 1 + # + # Above allows us optimize reduction of the result to lowest + # terms. Indeed, + # + # g2 = gcd(t, d) == gcd(t, (da//g)*(db//g)*g) == gcd(t, g) + # + # t//g2 t//g2 + # a ± b == ----------------------- == ---------------- + # (da//g)*(db//g)*(g//g2) (da//g)*(db//g2) + # + # is a normalized fraction. This is useful because the unnormalized + # denominator d could be much larger than g. + # + # We should special-case g == 1 (and g2 == 1), since 60.8% of + # randomly-chosen integers are coprime: + # https://en.wikipedia.org/wiki/Coprime_integers#Probability_of_coprimality + # Note, that g2 == 1 always for fractions, obtained from floats: here + # g is a power of 2 and the unnormalized numerator t is an odd integer. + # + # 2) Consider multiplication + # + # Let g1 = gcd(na, db) and g2 = gcd(nb, da), then + # + # na*nb na*nb (na//g1)*(nb//g2) + # a*b == ----- == ----- == ----------------- + # da*db db*da (db//g1)*(da//g2) + # + # Note, that after divisions we're multiplying smaller integers. + # + # Also, the resulting fraction is normalized, because each of + # two factors in the numerator is coprime to each of the two factors + # in the denominator. + # + # Indeed, pick (na//g1). It's coprime with (da//g2), because input + # fractions are normalized. It's also coprime with (db//g1), because + # common factors are removed by g1 == gcd(na, db). + # + # As for addition/subtraction, we should special-case g1 == 1 + # and g2 == 1 for same reason. That happens also for multiplying + # rationals, obtained from floats. + + def _add(a, b): + """a + b""" + na, da = a._numerator, a._denominator + nb, db = b._numerator, b._denominator + g = math.gcd(da, db) + if g == 1: + return Fraction._from_coprime_ints(na * db + da * nb, da * db) + s = da // g + t = na * (db // g) + nb * s + g2 = math.gcd(t, g) + if g2 == 1: + return Fraction._from_coprime_ints(t, s * db) + return Fraction._from_coprime_ints(t // g2, s * (db // g2)) + + __add__, __radd__ = _operator_fallbacks(_add, operator.add) + + def _sub(a, b): + """a - b""" + na, da = a._numerator, a._denominator + nb, db = b._numerator, b._denominator + g = math.gcd(da, db) + if g == 1: + return Fraction._from_coprime_ints(na * db - da * nb, da * db) + s = da // g + t = na * (db // g) - nb * s + g2 = math.gcd(t, g) + if g2 == 1: + return Fraction._from_coprime_ints(t, s * db) + return Fraction._from_coprime_ints(t // g2, s * (db // g2)) + + __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) + + def _mul(a, b): + """a * b""" + na, da = a._numerator, a._denominator + nb, db = b._numerator, b._denominator + g1 = math.gcd(na, db) + if g1 > 1: + na //= g1 + db //= g1 + g2 = math.gcd(nb, da) + if g2 > 1: + nb //= g2 + da //= g2 + return Fraction._from_coprime_ints(na * nb, db * da) + + __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) + + def _div(a, b): + """a / b""" + # Same as _mul(), with inversed b. + nb, db = b._numerator, b._denominator + if nb == 0: + raise ZeroDivisionError('Fraction(%s, 0)' % db) + na, da = a._numerator, a._denominator + g1 = math.gcd(na, nb) + if g1 > 1: + na //= g1 + nb //= g1 + g2 = math.gcd(db, da) + if g2 > 1: + da //= g2 + db //= g2 + n, d = na * db, nb * da + if d < 0: + n, d = -n, -d + return Fraction._from_coprime_ints(n, d) + + __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) + + def _floordiv(a, b): + """a // b""" + return (a.numerator * b.denominator) // (a.denominator * b.numerator) + + __floordiv__, __rfloordiv__ = _operator_fallbacks(_floordiv, operator.floordiv) + + def _divmod(a, b): + """(a // b, a % b)""" + da, db = a.denominator, b.denominator + div, n_mod = divmod(a.numerator * db, da * b.numerator) + return div, Fraction(n_mod, da * db) + + __divmod__, __rdivmod__ = _operator_fallbacks(_divmod, divmod) + + def _mod(a, b): + """a % b""" + da, db = a.denominator, b.denominator + return Fraction((a.numerator * db) % (b.numerator * da), da * db) + + __mod__, __rmod__ = _operator_fallbacks(_mod, operator.mod) + + def __pow__(a, b): + """a ** b + + If b is not an integer, the result will be a float or complex + since roots are generally irrational. If b is an integer, the + result will be rational. + + """ + if isinstance(b, numbers.Rational): + if b.denominator == 1: + power = b.numerator + if power >= 0: + return Fraction._from_coprime_ints(a._numerator ** power, + a._denominator ** power) + elif a._numerator > 0: + return Fraction._from_coprime_ints(a._denominator ** -power, + a._numerator ** -power) + elif a._numerator == 0: + raise ZeroDivisionError('Fraction(%s, 0)' % + a._denominator ** -power) + else: + return Fraction._from_coprime_ints((-a._denominator) ** -power, + (-a._numerator) ** -power) + else: + # A fractional power will generally produce an + # irrational number. + return float(a) ** float(b) + else: + return float(a) ** b + + def __rpow__(b, a): + """a ** b""" + if b._denominator == 1 and b._numerator >= 0: + # If a is an int, keep it that way if possible. + return a ** b._numerator + + if isinstance(a, numbers.Rational): + return Fraction(a.numerator, a.denominator) ** b + + if b._denominator == 1: + return a ** b._numerator + + return a ** float(b) + + def __pos__(a): + """+a: Coerces a subclass instance to Fraction""" + return Fraction._from_coprime_ints(a._numerator, a._denominator) + + def __neg__(a): + """-a""" + return Fraction._from_coprime_ints(-a._numerator, a._denominator) + + def __abs__(a): + """abs(a)""" + return Fraction._from_coprime_ints(abs(a._numerator), a._denominator) + + def __int__(a, _index=operator.index): + """int(a)""" + if a._numerator < 0: + return _index(-(-a._numerator // a._denominator)) + else: + return _index(a._numerator // a._denominator) + + def __trunc__(a): + """math.trunc(a)""" + if a._numerator < 0: + return -(-a._numerator // a._denominator) + else: + return a._numerator // a._denominator + + def __floor__(a): + """math.floor(a)""" + return a._numerator // a._denominator + + def __ceil__(a): + """math.ceil(a)""" + # The negations cleverly convince floordiv to return the ceiling. + return -(-a._numerator // a._denominator) + + def __round__(self, ndigits=None): + """round(self, ndigits) + + Rounds half toward even. + """ + if ndigits is None: + d = self._denominator + floor, remainder = divmod(self._numerator, d) + if remainder * 2 < d: + return floor + elif remainder * 2 > d: + return floor + 1 + # Deal with the half case: + elif floor % 2 == 0: + return floor + else: + return floor + 1 + shift = 10**abs(ndigits) + # See _operator_fallbacks.forward to check that the results of + # these operations will always be Fraction and therefore have + # round(). + if ndigits > 0: + return Fraction(round(self * shift), shift) + else: + return Fraction(round(self / shift) * shift) + + def __hash__(self): + """hash(self)""" + return _hash_algorithm(self._numerator, self._denominator) + + def __eq__(a, b): + """a == b""" + if type(b) is int: + return a._numerator == b and a._denominator == 1 + if isinstance(b, numbers.Rational): + return (a._numerator == b.numerator and + a._denominator == b.denominator) + if isinstance(b, numbers.Complex) and b.imag == 0: + b = b.real + if isinstance(b, float): + if math.isnan(b) or math.isinf(b): + # comparisons with an infinity or nan should behave in + # the same way for any finite a, so treat a as zero. + return 0.0 == b + else: + return a == a.from_float(b) + else: + # Since a doesn't know how to compare with b, let's give b + # a chance to compare itself with a. + return NotImplemented + + def _richcmp(self, other, op): + """Helper for comparison operators, for internal use only. + + Implement comparison between a Rational instance `self`, and + either another Rational instance or a float `other`. If + `other` is not a Rational instance or a float, return + NotImplemented. `op` should be one of the six standard + comparison operators. + + """ + # convert other to a Rational instance where reasonable. + if isinstance(other, numbers.Rational): + return op(self._numerator * other.denominator, + self._denominator * other.numerator) + if isinstance(other, float): + if math.isnan(other) or math.isinf(other): + return op(0.0, other) + else: + return op(self, self.from_float(other)) + else: + return NotImplemented + + def __lt__(a, b): + """a < b""" + return a._richcmp(b, operator.lt) + + def __gt__(a, b): + """a > b""" + return a._richcmp(b, operator.gt) + + def __le__(a, b): + """a <= b""" + return a._richcmp(b, operator.le) + + def __ge__(a, b): + """a >= b""" + return a._richcmp(b, operator.ge) + + def __bool__(a): + """a != 0""" + # bpo-39274: Use bool() because (a._numerator != 0) can return an + # object which is not a bool. + return bool(a._numerator) + + # support for pickling, copy, and deepcopy + + def __reduce__(self): + return (self.__class__, (self._numerator, self._denominator)) + + def __copy__(self): + if type(self) == Fraction: + return self # I'm immutable; therefore I am my own clone + return self.__class__(self._numerator, self._denominator) + + def __deepcopy__(self, memo): + if type(self) == Fraction: + return self # My components are also immutable + return self.__class__(self._numerator, self._denominator) |