diff options
author | thegeorg <thegeorg@yandex-team.com> | 2024-02-19 02:38:52 +0300 |
---|---|---|
committer | thegeorg <thegeorg@yandex-team.com> | 2024-02-19 02:50:43 +0300 |
commit | d96fa07134c06472bfee6718b5cfd1679196fc99 (patch) | |
tree | 31ec344fa9d3ff8dc038692516b6438dfbdb8a2d /contrib/tools/python3/Lib/asyncio/locks.py | |
parent | 452cf9e068aef7110e35e654c5d47eb80111ef89 (diff) | |
download | ydb-d96fa07134c06472bfee6718b5cfd1679196fc99.tar.gz |
Sync contrib/tools/python3 layout with upstream
* Move src/ subdir contents to the top of the layout
* Rename self-written lib -> lib2 to avoid CaseFolding warning from the VCS
* Regenerate contrib/libs/python proxy-headers accordingly
4ccc62ac1511abcf0fed14ccade38e984e088f1e
Diffstat (limited to 'contrib/tools/python3/Lib/asyncio/locks.py')
-rw-r--r-- | contrib/tools/python3/Lib/asyncio/locks.py | 586 |
1 files changed, 586 insertions, 0 deletions
diff --git a/contrib/tools/python3/Lib/asyncio/locks.py b/contrib/tools/python3/Lib/asyncio/locks.py new file mode 100644 index 0000000000..ce5d8d5bfb --- /dev/null +++ b/contrib/tools/python3/Lib/asyncio/locks.py @@ -0,0 +1,586 @@ +"""Synchronization primitives.""" + +__all__ = ('Lock', 'Event', 'Condition', 'Semaphore', + 'BoundedSemaphore', 'Barrier') + +import collections +import enum + +from . import exceptions +from . import mixins + +class _ContextManagerMixin: + async def __aenter__(self): + await self.acquire() + # We have no use for the "as ..." clause in the with + # statement for locks. + return None + + async def __aexit__(self, exc_type, exc, tb): + self.release() + + +class Lock(_ContextManagerMixin, mixins._LoopBoundMixin): + """Primitive lock objects. + + A primitive lock is a synchronization primitive that is not owned + by a particular coroutine when locked. A primitive lock is in one + of two states, 'locked' or 'unlocked'. + + It is created in the unlocked state. It has two basic methods, + acquire() and release(). When the state is unlocked, acquire() + changes the state to locked and returns immediately. When the + state is locked, acquire() blocks until a call to release() in + another coroutine changes it to unlocked, then the acquire() call + resets it to locked and returns. The release() method should only + be called in the locked state; it changes the state to unlocked + and returns immediately. If an attempt is made to release an + unlocked lock, a RuntimeError will be raised. + + When more than one coroutine is blocked in acquire() waiting for + the state to turn to unlocked, only one coroutine proceeds when a + release() call resets the state to unlocked; first coroutine which + is blocked in acquire() is being processed. + + acquire() is a coroutine and should be called with 'await'. + + Locks also support the asynchronous context management protocol. + 'async with lock' statement should be used. + + Usage: + + lock = Lock() + ... + await lock.acquire() + try: + ... + finally: + lock.release() + + Context manager usage: + + lock = Lock() + ... + async with lock: + ... + + Lock objects can be tested for locking state: + + if not lock.locked(): + await lock.acquire() + else: + # lock is acquired + ... + + """ + + def __init__(self): + self._waiters = None + self._locked = False + + def __repr__(self): + res = super().__repr__() + extra = 'locked' if self._locked else 'unlocked' + if self._waiters: + extra = f'{extra}, waiters:{len(self._waiters)}' + return f'<{res[1:-1]} [{extra}]>' + + def locked(self): + """Return True if lock is acquired.""" + return self._locked + + async def acquire(self): + """Acquire a lock. + + This method blocks until the lock is unlocked, then sets it to + locked and returns True. + """ + if (not self._locked and (self._waiters is None or + all(w.cancelled() for w in self._waiters))): + self._locked = True + return True + + if self._waiters is None: + self._waiters = collections.deque() + fut = self._get_loop().create_future() + self._waiters.append(fut) + + # Finally block should be called before the CancelledError + # handling as we don't want CancelledError to call + # _wake_up_first() and attempt to wake up itself. + try: + try: + await fut + finally: + self._waiters.remove(fut) + except exceptions.CancelledError: + if not self._locked: + self._wake_up_first() + raise + + self._locked = True + return True + + def release(self): + """Release a lock. + + When the lock is locked, reset it to unlocked, and return. + If any other coroutines are blocked waiting for the lock to become + unlocked, allow exactly one of them to proceed. + + When invoked on an unlocked lock, a RuntimeError is raised. + + There is no return value. + """ + if self._locked: + self._locked = False + self._wake_up_first() + else: + raise RuntimeError('Lock is not acquired.') + + def _wake_up_first(self): + """Wake up the first waiter if it isn't done.""" + if not self._waiters: + return + try: + fut = next(iter(self._waiters)) + except StopIteration: + return + + # .done() necessarily means that a waiter will wake up later on and + # either take the lock, or, if it was cancelled and lock wasn't + # taken already, will hit this again and wake up a new waiter. + if not fut.done(): + fut.set_result(True) + + +class Event(mixins._LoopBoundMixin): + """Asynchronous equivalent to threading.Event. + + Class implementing event objects. An event manages a flag that can be set + to true with the set() method and reset to false with the clear() method. + The wait() method blocks until the flag is true. The flag is initially + false. + """ + + def __init__(self): + self._waiters = collections.deque() + self._value = False + + def __repr__(self): + res = super().__repr__() + extra = 'set' if self._value else 'unset' + if self._waiters: + extra = f'{extra}, waiters:{len(self._waiters)}' + return f'<{res[1:-1]} [{extra}]>' + + def is_set(self): + """Return True if and only if the internal flag is true.""" + return self._value + + def set(self): + """Set the internal flag to true. All coroutines waiting for it to + become true are awakened. Coroutine that call wait() once the flag is + true will not block at all. + """ + if not self._value: + self._value = True + + for fut in self._waiters: + if not fut.done(): + fut.set_result(True) + + def clear(self): + """Reset the internal flag to false. Subsequently, coroutines calling + wait() will block until set() is called to set the internal flag + to true again.""" + self._value = False + + async def wait(self): + """Block until the internal flag is true. + + If the internal flag is true on entry, return True + immediately. Otherwise, block until another coroutine calls + set() to set the flag to true, then return True. + """ + if self._value: + return True + + fut = self._get_loop().create_future() + self._waiters.append(fut) + try: + await fut + return True + finally: + self._waiters.remove(fut) + + +class Condition(_ContextManagerMixin, mixins._LoopBoundMixin): + """Asynchronous equivalent to threading.Condition. + + This class implements condition variable objects. A condition variable + allows one or more coroutines to wait until they are notified by another + coroutine. + + A new Lock object is created and used as the underlying lock. + """ + + def __init__(self, lock=None): + if lock is None: + lock = Lock() + + self._lock = lock + # Export the lock's locked(), acquire() and release() methods. + self.locked = lock.locked + self.acquire = lock.acquire + self.release = lock.release + + self._waiters = collections.deque() + + def __repr__(self): + res = super().__repr__() + extra = 'locked' if self.locked() else 'unlocked' + if self._waiters: + extra = f'{extra}, waiters:{len(self._waiters)}' + return f'<{res[1:-1]} [{extra}]>' + + async def wait(self): + """Wait until notified. + + If the calling coroutine has not acquired the lock when this + method is called, a RuntimeError is raised. + + This method releases the underlying lock, and then blocks + until it is awakened by a notify() or notify_all() call for + the same condition variable in another coroutine. Once + awakened, it re-acquires the lock and returns True. + """ + if not self.locked(): + raise RuntimeError('cannot wait on un-acquired lock') + + self.release() + try: + fut = self._get_loop().create_future() + self._waiters.append(fut) + try: + await fut + return True + finally: + self._waiters.remove(fut) + + finally: + # Must reacquire lock even if wait is cancelled + cancelled = False + while True: + try: + await self.acquire() + break + except exceptions.CancelledError: + cancelled = True + + if cancelled: + raise exceptions.CancelledError + + async def wait_for(self, predicate): + """Wait until a predicate becomes true. + + The predicate should be a callable which result will be + interpreted as a boolean value. The final predicate value is + the return value. + """ + result = predicate() + while not result: + await self.wait() + result = predicate() + return result + + def notify(self, n=1): + """By default, wake up one coroutine waiting on this condition, if any. + If the calling coroutine has not acquired the lock when this method + is called, a RuntimeError is raised. + + This method wakes up at most n of the coroutines waiting for the + condition variable; it is a no-op if no coroutines are waiting. + + Note: an awakened coroutine does not actually return from its + wait() call until it can reacquire the lock. Since notify() does + not release the lock, its caller should. + """ + if not self.locked(): + raise RuntimeError('cannot notify on un-acquired lock') + + idx = 0 + for fut in self._waiters: + if idx >= n: + break + + if not fut.done(): + idx += 1 + fut.set_result(False) + + def notify_all(self): + """Wake up all threads waiting on this condition. This method acts + like notify(), but wakes up all waiting threads instead of one. If the + calling thread has not acquired the lock when this method is called, + a RuntimeError is raised. + """ + self.notify(len(self._waiters)) + + +class Semaphore(_ContextManagerMixin, mixins._LoopBoundMixin): + """A Semaphore implementation. + + A semaphore manages an internal counter which is decremented by each + acquire() call and incremented by each release() call. The counter + can never go below zero; when acquire() finds that it is zero, it blocks, + waiting until some other thread calls release(). + + Semaphores also support the context management protocol. + + The optional argument gives the initial value for the internal + counter; it defaults to 1. If the value given is less than 0, + ValueError is raised. + """ + + def __init__(self, value=1): + if value < 0: + raise ValueError("Semaphore initial value must be >= 0") + self._waiters = None + self._value = value + + def __repr__(self): + res = super().__repr__() + extra = 'locked' if self.locked() else f'unlocked, value:{self._value}' + if self._waiters: + extra = f'{extra}, waiters:{len(self._waiters)}' + return f'<{res[1:-1]} [{extra}]>' + + def locked(self): + """Returns True if semaphore cannot be acquired immediately.""" + return self._value == 0 or ( + any(not w.cancelled() for w in (self._waiters or ()))) + + async def acquire(self): + """Acquire a semaphore. + + If the internal counter is larger than zero on entry, + decrement it by one and return True immediately. If it is + zero on entry, block, waiting until some other coroutine has + called release() to make it larger than 0, and then return + True. + """ + if not self.locked(): + self._value -= 1 + return True + + if self._waiters is None: + self._waiters = collections.deque() + fut = self._get_loop().create_future() + self._waiters.append(fut) + + # Finally block should be called before the CancelledError + # handling as we don't want CancelledError to call + # _wake_up_first() and attempt to wake up itself. + try: + try: + await fut + finally: + self._waiters.remove(fut) + except exceptions.CancelledError: + if not fut.cancelled(): + self._value += 1 + self._wake_up_next() + raise + + if self._value > 0: + self._wake_up_next() + return True + + def release(self): + """Release a semaphore, incrementing the internal counter by one. + + When it was zero on entry and another coroutine is waiting for it to + become larger than zero again, wake up that coroutine. + """ + self._value += 1 + self._wake_up_next() + + def _wake_up_next(self): + """Wake up the first waiter that isn't done.""" + if not self._waiters: + return + + for fut in self._waiters: + if not fut.done(): + self._value -= 1 + fut.set_result(True) + return + + +class BoundedSemaphore(Semaphore): + """A bounded semaphore implementation. + + This raises ValueError in release() if it would increase the value + above the initial value. + """ + + def __init__(self, value=1): + self._bound_value = value + super().__init__(value) + + def release(self): + if self._value >= self._bound_value: + raise ValueError('BoundedSemaphore released too many times') + super().release() + + + +class _BarrierState(enum.Enum): + FILLING = 'filling' + DRAINING = 'draining' + RESETTING = 'resetting' + BROKEN = 'broken' + + +class Barrier(mixins._LoopBoundMixin): + """Asyncio equivalent to threading.Barrier + + Implements a Barrier primitive. + Useful for synchronizing a fixed number of tasks at known synchronization + points. Tasks block on 'wait()' and are simultaneously awoken once they + have all made their call. + """ + + def __init__(self, parties): + """Create a barrier, initialised to 'parties' tasks.""" + if parties < 1: + raise ValueError('parties must be > 0') + + self._cond = Condition() # notify all tasks when state changes + + self._parties = parties + self._state = _BarrierState.FILLING + self._count = 0 # count tasks in Barrier + + def __repr__(self): + res = super().__repr__() + extra = f'{self._state.value}' + if not self.broken: + extra += f', waiters:{self.n_waiting}/{self.parties}' + return f'<{res[1:-1]} [{extra}]>' + + async def __aenter__(self): + # wait for the barrier reaches the parties number + # when start draining release and return index of waited task + return await self.wait() + + async def __aexit__(self, *args): + pass + + async def wait(self): + """Wait for the barrier. + + When the specified number of tasks have started waiting, they are all + simultaneously awoken. + Returns an unique and individual index number from 0 to 'parties-1'. + """ + async with self._cond: + await self._block() # Block while the barrier drains or resets. + try: + index = self._count + self._count += 1 + if index + 1 == self._parties: + # We release the barrier + await self._release() + else: + await self._wait() + return index + finally: + self._count -= 1 + # Wake up any tasks waiting for barrier to drain. + self._exit() + + async def _block(self): + # Block until the barrier is ready for us, + # or raise an exception if it is broken. + # + # It is draining or resetting, wait until done + # unless a CancelledError occurs + await self._cond.wait_for( + lambda: self._state not in ( + _BarrierState.DRAINING, _BarrierState.RESETTING + ) + ) + + # see if the barrier is in a broken state + if self._state is _BarrierState.BROKEN: + raise exceptions.BrokenBarrierError("Barrier aborted") + + async def _release(self): + # Release the tasks waiting in the barrier. + + # Enter draining state. + # Next waiting tasks will be blocked until the end of draining. + self._state = _BarrierState.DRAINING + self._cond.notify_all() + + async def _wait(self): + # Wait in the barrier until we are released. Raise an exception + # if the barrier is reset or broken. + + # wait for end of filling + # unless a CancelledError occurs + await self._cond.wait_for(lambda: self._state is not _BarrierState.FILLING) + + if self._state in (_BarrierState.BROKEN, _BarrierState.RESETTING): + raise exceptions.BrokenBarrierError("Abort or reset of barrier") + + def _exit(self): + # If we are the last tasks to exit the barrier, signal any tasks + # waiting for the barrier to drain. + if self._count == 0: + if self._state in (_BarrierState.RESETTING, _BarrierState.DRAINING): + self._state = _BarrierState.FILLING + self._cond.notify_all() + + async def reset(self): + """Reset the barrier to the initial state. + + Any tasks currently waiting will get the BrokenBarrier exception + raised. + """ + async with self._cond: + if self._count > 0: + if self._state is not _BarrierState.RESETTING: + #reset the barrier, waking up tasks + self._state = _BarrierState.RESETTING + else: + self._state = _BarrierState.FILLING + self._cond.notify_all() + + async def abort(self): + """Place the barrier into a 'broken' state. + + Useful in case of error. Any currently waiting tasks and tasks + attempting to 'wait()' will have BrokenBarrierError raised. + """ + async with self._cond: + self._state = _BarrierState.BROKEN + self._cond.notify_all() + + @property + def parties(self): + """Return the number of tasks required to trip the barrier.""" + return self._parties + + @property + def n_waiting(self): + """Return the number of tasks currently waiting at the barrier.""" + if self._state is _BarrierState.FILLING: + return self._count + return 0 + + @property + def broken(self): + """Return True if the barrier is in a broken state.""" + return self._state is _BarrierState.BROKEN |