diff options
author | thegeorg <[email protected]> | 2024-02-19 02:38:52 +0300 |
---|---|---|
committer | thegeorg <[email protected]> | 2024-02-19 02:50:43 +0300 |
commit | d96fa07134c06472bfee6718b5cfd1679196fc99 (patch) | |
tree | 31ec344fa9d3ff8dc038692516b6438dfbdb8a2d /contrib/tools/python3/Include/cpython/pytime.h | |
parent | 452cf9e068aef7110e35e654c5d47eb80111ef89 (diff) |
Sync contrib/tools/python3 layout with upstream
* Move src/ subdir contents to the top of the layout
* Rename self-written lib -> lib2 to avoid CaseFolding warning from the VCS
* Regenerate contrib/libs/python proxy-headers accordingly
4ccc62ac1511abcf0fed14ccade38e984e088f1e
Diffstat (limited to 'contrib/tools/python3/Include/cpython/pytime.h')
-rw-r--r-- | contrib/tools/python3/Include/cpython/pytime.h | 333 |
1 files changed, 333 insertions, 0 deletions
diff --git a/contrib/tools/python3/Include/cpython/pytime.h b/contrib/tools/python3/Include/cpython/pytime.h new file mode 100644 index 00000000000..6891bd5c03f --- /dev/null +++ b/contrib/tools/python3/Include/cpython/pytime.h @@ -0,0 +1,333 @@ +// The _PyTime_t API is written to use timestamp and timeout values stored in +// various formats and to read clocks. +// +// The _PyTime_t type is an integer to support directly common arithmetic +// operations like t1 + t2. +// +// The _PyTime_t API supports a resolution of 1 nanosecond. The _PyTime_t type +// is signed to support negative timestamps. The supported range is around +// [-292.3 years; +292.3 years]. Using the Unix epoch (January 1st, 1970), the +// supported date range is around [1677-09-21; 2262-04-11]. +// +// Formats: +// +// * seconds +// * seconds as a floating pointer number (C double) +// * milliseconds (10^-3 seconds) +// * microseconds (10^-6 seconds) +// * 100 nanoseconds (10^-7 seconds) +// * nanoseconds (10^-9 seconds) +// * timeval structure, 1 microsecond resolution (10^-6 seconds) +// * timespec structure, 1 nanosecond resolution (10^-9 seconds) +// +// Integer overflows are detected and raise OverflowError. Conversion to a +// resolution worse than 1 nanosecond is rounded correctly with the requested +// rounding mode. There are 4 rounding modes: floor (towards -inf), ceiling +// (towards +inf), half even and up (away from zero). +// +// Some functions clamp the result in the range [_PyTime_MIN; _PyTime_MAX], so +// the caller doesn't have to handle errors and doesn't need to hold the GIL. +// For example, _PyTime_Add(t1, t2) computes t1+t2 and clamp the result on +// overflow. +// +// Clocks: +// +// * System clock +// * Monotonic clock +// * Performance counter +// +// Operations like (t * k / q) with integers are implemented in a way to reduce +// the risk of integer overflow. Such operation is used to convert a clock +// value expressed in ticks with a frequency to _PyTime_t, like +// QueryPerformanceCounter() with QueryPerformanceFrequency(). + +#ifndef Py_LIMITED_API +#ifndef Py_PYTIME_H +#define Py_PYTIME_H + +struct timeval; + +/************************************************************************** +Symbols and macros to supply platform-independent interfaces to time related +functions and constants +**************************************************************************/ +#ifdef __cplusplus +extern "C" { +#endif + +#ifdef __clang__ +struct timeval; +#endif + +/* _PyTime_t: Python timestamp with subsecond precision. It can be used to + store a duration, and so indirectly a date (related to another date, like + UNIX epoch). */ +typedef int64_t _PyTime_t; +// _PyTime_MIN nanoseconds is around -292.3 years +#define _PyTime_MIN INT64_MIN +// _PyTime_MAX nanoseconds is around +292.3 years +#define _PyTime_MAX INT64_MAX +#define _SIZEOF_PYTIME_T 8 + +typedef enum { + /* Round towards minus infinity (-inf). + For example, used to read a clock. */ + _PyTime_ROUND_FLOOR=0, + /* Round towards infinity (+inf). + For example, used for timeout to wait "at least" N seconds. */ + _PyTime_ROUND_CEILING=1, + /* Round to nearest with ties going to nearest even integer. + For example, used to round from a Python float. */ + _PyTime_ROUND_HALF_EVEN=2, + /* Round away from zero + For example, used for timeout. _PyTime_ROUND_CEILING rounds + -1e-9 to 0 milliseconds which causes bpo-31786 issue. + _PyTime_ROUND_UP rounds -1e-9 to -1 millisecond which keeps + the timeout sign as expected. select.poll(timeout) must block + for negative values." */ + _PyTime_ROUND_UP=3, + /* _PyTime_ROUND_TIMEOUT (an alias for _PyTime_ROUND_UP) should be + used for timeouts. */ + _PyTime_ROUND_TIMEOUT = _PyTime_ROUND_UP +} _PyTime_round_t; + + +/* Convert a time_t to a PyLong. */ +PyAPI_FUNC(PyObject *) _PyLong_FromTime_t( + time_t sec); + +/* Convert a PyLong to a time_t. */ +PyAPI_FUNC(time_t) _PyLong_AsTime_t( + PyObject *obj); + +/* Convert a number of seconds, int or float, to time_t. */ +PyAPI_FUNC(int) _PyTime_ObjectToTime_t( + PyObject *obj, + time_t *sec, + _PyTime_round_t); + +/* Convert a number of seconds, int or float, to a timeval structure. + usec is in the range [0; 999999] and rounded towards zero. + For example, -1.2 is converted to (-2, 800000). */ +PyAPI_FUNC(int) _PyTime_ObjectToTimeval( + PyObject *obj, + time_t *sec, + long *usec, + _PyTime_round_t); + +/* Convert a number of seconds, int or float, to a timespec structure. + nsec is in the range [0; 999999999] and rounded towards zero. + For example, -1.2 is converted to (-2, 800000000). */ +PyAPI_FUNC(int) _PyTime_ObjectToTimespec( + PyObject *obj, + time_t *sec, + long *nsec, + _PyTime_round_t); + + +/* Create a timestamp from a number of seconds. */ +PyAPI_FUNC(_PyTime_t) _PyTime_FromSeconds(int seconds); + +/* Macro to create a timestamp from a number of seconds, no integer overflow. + Only use the macro for small values, prefer _PyTime_FromSeconds(). */ +#define _PYTIME_FROMSECONDS(seconds) \ + ((_PyTime_t)(seconds) * (1000 * 1000 * 1000)) + +/* Create a timestamp from a number of nanoseconds. */ +PyAPI_FUNC(_PyTime_t) _PyTime_FromNanoseconds(_PyTime_t ns); + +/* Create a timestamp from a number of microseconds. + * Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow. */ +PyAPI_FUNC(_PyTime_t) _PyTime_FromMicrosecondsClamp(_PyTime_t us); + +/* Create a timestamp from nanoseconds (Python int). */ +PyAPI_FUNC(int) _PyTime_FromNanosecondsObject(_PyTime_t *t, + PyObject *obj); + +/* Convert a number of seconds (Python float or int) to a timestamp. + Raise an exception and return -1 on error, return 0 on success. */ +PyAPI_FUNC(int) _PyTime_FromSecondsObject(_PyTime_t *t, + PyObject *obj, + _PyTime_round_t round); + +/* Convert a number of milliseconds (Python float or int, 10^-3) to a timestamp. + Raise an exception and return -1 on error, return 0 on success. */ +PyAPI_FUNC(int) _PyTime_FromMillisecondsObject(_PyTime_t *t, + PyObject *obj, + _PyTime_round_t round); + +/* Convert a timestamp to a number of seconds as a C double. */ +PyAPI_FUNC(double) _PyTime_AsSecondsDouble(_PyTime_t t); + +/* Convert timestamp to a number of milliseconds (10^-3 seconds). */ +PyAPI_FUNC(_PyTime_t) _PyTime_AsMilliseconds(_PyTime_t t, + _PyTime_round_t round); + +/* Convert timestamp to a number of microseconds (10^-6 seconds). */ +PyAPI_FUNC(_PyTime_t) _PyTime_AsMicroseconds(_PyTime_t t, + _PyTime_round_t round); + +/* Convert timestamp to a number of nanoseconds (10^-9 seconds). */ +PyAPI_FUNC(_PyTime_t) _PyTime_AsNanoseconds(_PyTime_t t); + +#ifdef MS_WINDOWS +// Convert timestamp to a number of 100 nanoseconds (10^-7 seconds). +PyAPI_FUNC(_PyTime_t) _PyTime_As100Nanoseconds(_PyTime_t t, + _PyTime_round_t round); +#endif + +/* Convert timestamp to a number of nanoseconds (10^-9 seconds) as a Python int + object. */ +PyAPI_FUNC(PyObject *) _PyTime_AsNanosecondsObject(_PyTime_t t); + +#ifndef MS_WINDOWS +/* Create a timestamp from a timeval structure. + Raise an exception and return -1 on overflow, return 0 on success. */ +PyAPI_FUNC(int) _PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv); +#endif + +/* Convert a timestamp to a timeval structure (microsecond resolution). + tv_usec is always positive. + Raise an exception and return -1 if the conversion overflowed, + return 0 on success. */ +PyAPI_FUNC(int) _PyTime_AsTimeval(_PyTime_t t, + struct timeval *tv, + _PyTime_round_t round); + +/* Similar to _PyTime_AsTimeval() but don't raise an exception on overflow. + On overflow, clamp tv_sec to _PyTime_t min/max. */ +PyAPI_FUNC(void) _PyTime_AsTimeval_clamp(_PyTime_t t, + struct timeval *tv, + _PyTime_round_t round); + +/* Convert a timestamp to a number of seconds (secs) and microseconds (us). + us is always positive. This function is similar to _PyTime_AsTimeval() + except that secs is always a time_t type, whereas the timeval structure + uses a C long for tv_sec on Windows. + Raise an exception and return -1 if the conversion overflowed, + return 0 on success. */ +PyAPI_FUNC(int) _PyTime_AsTimevalTime_t( + _PyTime_t t, + time_t *secs, + int *us, + _PyTime_round_t round); + +#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE) +/* Create a timestamp from a timespec structure. + Raise an exception and return -1 on overflow, return 0 on success. */ +PyAPI_FUNC(int) _PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts); + +/* Convert a timestamp to a timespec structure (nanosecond resolution). + tv_nsec is always positive. + Raise an exception and return -1 on error, return 0 on success. */ +PyAPI_FUNC(int) _PyTime_AsTimespec(_PyTime_t t, struct timespec *ts); + +/* Similar to _PyTime_AsTimespec() but don't raise an exception on overflow. + On overflow, clamp tv_sec to _PyTime_t min/max. */ +PyAPI_FUNC(void) _PyTime_AsTimespec_clamp(_PyTime_t t, struct timespec *ts); +#endif + + +// Compute t1 + t2. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow. +PyAPI_FUNC(_PyTime_t) _PyTime_Add(_PyTime_t t1, _PyTime_t t2); + +/* Compute ticks * mul / div. + Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow. + The caller must ensure that ((div - 1) * mul) cannot overflow. */ +PyAPI_FUNC(_PyTime_t) _PyTime_MulDiv(_PyTime_t ticks, + _PyTime_t mul, + _PyTime_t div); + +/* Structure used by time.get_clock_info() */ +typedef struct { + const char *implementation; + int monotonic; + int adjustable; + double resolution; +} _Py_clock_info_t; + +/* Get the current time from the system clock. + + If the internal clock fails, silently ignore the error and return 0. + On integer overflow, silently ignore the overflow and clamp the clock to + [_PyTime_MIN; _PyTime_MAX]. + + Use _PyTime_GetSystemClockWithInfo() to check for failure. */ +PyAPI_FUNC(_PyTime_t) _PyTime_GetSystemClock(void); + +/* Get the current time from the system clock. + * On success, set *t and *info (if not NULL), and return 0. + * On error, raise an exception and return -1. + */ +PyAPI_FUNC(int) _PyTime_GetSystemClockWithInfo( + _PyTime_t *t, + _Py_clock_info_t *info); + +/* Get the time of a monotonic clock, i.e. a clock that cannot go backwards. + The clock is not affected by system clock updates. The reference point of + the returned value is undefined, so that only the difference between the + results of consecutive calls is valid. + + If the internal clock fails, silently ignore the error and return 0. + On integer overflow, silently ignore the overflow and clamp the clock to + [_PyTime_MIN; _PyTime_MAX]. + + Use _PyTime_GetMonotonicClockWithInfo() to check for failure. */ +PyAPI_FUNC(_PyTime_t) _PyTime_GetMonotonicClock(void); + +/* Get the time of a monotonic clock, i.e. a clock that cannot go backwards. + The clock is not affected by system clock updates. The reference point of + the returned value is undefined, so that only the difference between the + results of consecutive calls is valid. + + Fill info (if set) with information of the function used to get the time. + + Return 0 on success, raise an exception and return -1 on error. */ +PyAPI_FUNC(int) _PyTime_GetMonotonicClockWithInfo( + _PyTime_t *t, + _Py_clock_info_t *info); + + +/* Converts a timestamp to the Gregorian time, using the local time zone. + Return 0 on success, raise an exception and return -1 on error. */ +PyAPI_FUNC(int) _PyTime_localtime(time_t t, struct tm *tm); + +/* Converts a timestamp to the Gregorian time, assuming UTC. + Return 0 on success, raise an exception and return -1 on error. */ +PyAPI_FUNC(int) _PyTime_gmtime(time_t t, struct tm *tm); + +/* Get the performance counter: clock with the highest available resolution to + measure a short duration. + + If the internal clock fails, silently ignore the error and return 0. + On integer overflow, silently ignore the overflow and clamp the clock to + [_PyTime_MIN; _PyTime_MAX]. + + Use _PyTime_GetPerfCounterWithInfo() to check for failure. */ +PyAPI_FUNC(_PyTime_t) _PyTime_GetPerfCounter(void); + +/* Get the performance counter: clock with the highest available resolution to + measure a short duration. + + Fill info (if set) with information of the function used to get the time. + + Return 0 on success, raise an exception and return -1 on error. */ +PyAPI_FUNC(int) _PyTime_GetPerfCounterWithInfo( + _PyTime_t *t, + _Py_clock_info_t *info); + + +// Create a deadline. +// Pseudo code: _PyTime_GetMonotonicClock() + timeout. +PyAPI_FUNC(_PyTime_t) _PyDeadline_Init(_PyTime_t timeout); + +// Get remaining time from a deadline. +// Pseudo code: deadline - _PyTime_GetMonotonicClock(). +PyAPI_FUNC(_PyTime_t) _PyDeadline_Get(_PyTime_t deadline); + +#ifdef __cplusplus +} +#endif + +#endif /* Py_PYTIME_H */ +#endif /* Py_LIMITED_API */ |