diff options
author | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:24:06 +0300 |
---|---|---|
committer | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:41:34 +0300 |
commit | e0e3e1717e3d33762ce61950504f9637a6e669ed (patch) | |
tree | bca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python/src/Objects/obmalloc.c | |
parent | 38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff) | |
download | ydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz |
add ydb deps
Diffstat (limited to 'contrib/tools/python/src/Objects/obmalloc.c')
-rw-r--r-- | contrib/tools/python/src/Objects/obmalloc.c | 2217 |
1 files changed, 2217 insertions, 0 deletions
diff --git a/contrib/tools/python/src/Objects/obmalloc.c b/contrib/tools/python/src/Objects/obmalloc.c new file mode 100644 index 0000000000..78e974a4c7 --- /dev/null +++ b/contrib/tools/python/src/Objects/obmalloc.c @@ -0,0 +1,2217 @@ +#include "Python.h" + +#ifdef _asan_enabled_ + #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \ + __attribute__((no_address_safety_analysis)) \ + __attribute__ ((noinline)) + #undef WITH_PYMALLOC +#else + #define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS +#endif + +#ifdef _tsan_enabled_ + #define ATTRIBUTE_NO_THREAD_ANALYSIS \ + __attribute__((no_sanitize_thread)) +#else + #define ATTRIBUTE_NO_THREAD_ANALYSIS +#endif + +#ifdef _msan_enabled_ + #define ATTRIBUTE_NO_MEMORY_ANALYSIS \ + __attribute__((no_sanitize_memory)) +#else + #define ATTRIBUTE_NO_MEMORY_ANALYSIS +#endif + +#define ATTRIBUTE_SUPRESS_SANITZER \ + ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \ + ATTRIBUTE_NO_THREAD_ANALYSIS \ + ATTRIBUTE_NO_MEMORY_ANALYSIS + +/* Python's malloc wrappers (see pymem.h) */ + +#ifdef PYMALLOC_DEBUG /* WITH_PYMALLOC && PYMALLOC_DEBUG */ +/* Forward declaration */ +static void* _PyMem_DebugMallocCtx(void *ctx, size_t size); +static void _PyMem_DebugFreeCtx(void *ctx, void *p); +static void* _PyMem_DebugReallocCtx(void *ctx, void *ptr, size_t size); + +static void _PyMem_DebugCheckAddress(char api_id, const void *p); +#endif + +#ifdef WITH_PYMALLOC + +#ifdef MS_WINDOWS +# include <windows.h> +#elif defined(HAVE_MMAP) +# include <sys/mman.h> +# ifdef MAP_ANONYMOUS +# define ARENAS_USE_MMAP +# endif +#endif + +/* Forward declaration */ +static void* _PyObject_Malloc(void *ctx, size_t size); +static void _PyObject_Free(void *ctx, void *p); +static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size); +#endif + + +static void * +_PyMem_RawMalloc(void *ctx, size_t size) +{ + /* PyMem_Malloc(0) means malloc(1). Some systems would return NULL + for malloc(0), which would be treated as an error. Some platforms would + return a pointer with no memory behind it, which would break pymalloc. + To solve these problems, allocate an extra byte. */ + if (size == 0) + size = 1; + return malloc(size); +} + +static void * +_PyMem_RawRealloc(void *ctx, void *ptr, size_t size) +{ + if (size == 0) + size = 1; + return realloc(ptr, size); +} + +static void +_PyMem_RawFree(void *ctx, void *ptr) +{ + free(ptr); +} + +#define PYRAW_FUNCS _PyMem_RawMalloc, _PyMem_RawRealloc, _PyMem_RawFree +#ifdef WITH_PYMALLOC +#define PYOBJECT_FUNCS _PyObject_Malloc, _PyObject_Realloc, _PyObject_Free +#else +#define PYOBJECT_FUNCS PYRAW_FUNCS +#endif + +#ifdef PYMALLOC_DEBUG +typedef struct { + /* We tag each block with an API ID in order to tag API violations */ + char api_id; + PyMemAllocator alloc; +} debug_alloc_api_t; +static struct { + debug_alloc_api_t raw; + debug_alloc_api_t mem; + debug_alloc_api_t obj; +} _PyMem_Debug = { + {'r', {NULL, PYRAW_FUNCS}}, + {'m', {NULL, PYRAW_FUNCS}}, + {'o', {NULL, PYOBJECT_FUNCS}} + }; + +#define PYDEBUG_FUNCS _PyMem_DebugMallocCtx, _PyMem_DebugReallocCtx, _PyMem_DebugFreeCtx +#endif + +static PyMemAllocator _PyMem_Raw = { +#ifdef PYMALLOC_DEBUG + &_PyMem_Debug.raw, PYDEBUG_FUNCS +#else + NULL, PYRAW_FUNCS +#endif + }; + +static PyMemAllocator _PyMem = { +#ifdef PYMALLOC_DEBUG + &_PyMem_Debug.mem, PYDEBUG_FUNCS +#else + NULL, PYRAW_FUNCS +#endif + }; + +static PyMemAllocator _PyObject = { +#ifdef PYMALLOC_DEBUG + &_PyMem_Debug.obj, PYDEBUG_FUNCS +#else + NULL, PYOBJECT_FUNCS +#endif + }; + +#undef PYRAW_FUNCS +#undef PYOBJECT_FUNCS +#undef PYDEBUG_FUNCS + +void +PyMem_SetupDebugHooks(void) +{ +#ifdef PYMALLOC_DEBUG + PyMemAllocator alloc; + + alloc.malloc = _PyMem_DebugMallocCtx; + alloc.realloc = _PyMem_DebugReallocCtx; + alloc.free = _PyMem_DebugFreeCtx; + + if (_PyMem_Raw.malloc != _PyMem_DebugMallocCtx) { + alloc.ctx = &_PyMem_Debug.raw; + PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc); + PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc); + } + + if (_PyMem.malloc != _PyMem_DebugMallocCtx) { + alloc.ctx = &_PyMem_Debug.mem; + PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc); + PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc); + } + + if (_PyObject.malloc != _PyMem_DebugMallocCtx) { + alloc.ctx = &_PyMem_Debug.obj; + PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc); + PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc); + } +#endif +} + +void +PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocator *allocator) +{ + switch(domain) + { + case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break; + case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break; + case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break; + default: + /* unknown domain */ + allocator->ctx = NULL; + allocator->malloc = NULL; + allocator->realloc = NULL; + allocator->free = NULL; + } +} + +void +PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocator *allocator) +{ + switch(domain) + { + case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break; + case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break; + case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break; + /* ignore unknown domain */ + } + +} + +void * +PyMem_RawMalloc(size_t size) +{ + /* + * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes. + * Most python internals blindly use a signed Py_ssize_t to track + * things without checking for overflows or negatives. + * As size_t is unsigned, checking for size < 0 is not required. + */ + if (size > (size_t)PY_SSIZE_T_MAX) + return NULL; + + return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size); +} + +void* +PyMem_RawRealloc(void *ptr, size_t new_size) +{ + /* see PyMem_RawMalloc() */ + if (new_size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size); +} + +void PyMem_RawFree(void *ptr) +{ + _PyMem_Raw.free(_PyMem_Raw.ctx, ptr); +} + +void * +PyMem_Malloc(size_t size) +{ + /* see PyMem_RawMalloc() */ + if (size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyMem.malloc(_PyMem.ctx, size); +} + +void * +PyMem_Realloc(void *ptr, size_t new_size) +{ + /* see PyMem_RawMalloc() */ + if (new_size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyMem.realloc(_PyMem.ctx, ptr, new_size); +} + +void +PyMem_Free(void *ptr) +{ + _PyMem.free(_PyMem.ctx, ptr); +} + +char * +_PyMem_RawStrdup(const char *str) +{ + size_t size; + char *copy; + + size = strlen(str) + 1; + copy = PyMem_RawMalloc(size); + if (copy == NULL) + return NULL; + memcpy(copy, str, size); + return copy; +} + +char * +_PyMem_Strdup(const char *str) +{ + size_t size; + char *copy; + + size = strlen(str) + 1; + copy = PyMem_Malloc(size); + if (copy == NULL) + return NULL; + memcpy(copy, str, size); + return copy; +} + +void * +PyObject_Malloc(size_t size) +{ + /* see PyMem_RawMalloc() */ + if (size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyObject.malloc(_PyObject.ctx, size); +} + +void * +PyObject_Realloc(void *ptr, size_t new_size) +{ + /* see PyMem_RawMalloc() */ + if (new_size > (size_t)PY_SSIZE_T_MAX) + return NULL; + return _PyObject.realloc(_PyObject.ctx, ptr, new_size); +} + +void +PyObject_Free(void *ptr) +{ + _PyObject.free(_PyObject.ctx, ptr); +} + + +#ifdef WITH_PYMALLOC + +#ifdef HAVE_MMAP + #include <sys/mman.h> + #ifdef MAP_ANONYMOUS + #define ARENAS_USE_MMAP + #endif +#endif + +#ifdef WITH_VALGRIND +#include <valgrind/valgrind.h> + +/* If we're using GCC, use __builtin_expect() to reduce overhead of + the valgrind checks */ +#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__) +# define UNLIKELY(value) __builtin_expect((value), 0) +#else +# define UNLIKELY(value) (value) +#endif + +/* -1 indicates that we haven't checked that we're running on valgrind yet. */ +static int running_on_valgrind = -1; +#endif + +/* An object allocator for Python. + + Here is an introduction to the layers of the Python memory architecture, + showing where the object allocator is actually used (layer +2), It is + called for every object allocation and deallocation (PyObject_New/Del), + unless the object-specific allocators implement a proprietary allocation + scheme (ex.: ints use a simple free list). This is also the place where + the cyclic garbage collector operates selectively on container objects. + + + Object-specific allocators + _____ ______ ______ ________ + [ int ] [ dict ] [ list ] ... [ string ] Python core | ++3 | <----- Object-specific memory -----> | <-- Non-object memory --> | + _______________________________ | | + [ Python's object allocator ] | | ++2 | ####### Object memory ####### | <------ Internal buffers ------> | + ______________________________________________________________ | + [ Python's raw memory allocator (PyMem_ API) ] | ++1 | <----- Python memory (under PyMem manager's control) ------> | | + __________________________________________________________________ + [ Underlying general-purpose allocator (ex: C library malloc) ] + 0 | <------ Virtual memory allocated for the python process -------> | + + ========================================================================= + _______________________________________________________________________ + [ OS-specific Virtual Memory Manager (VMM) ] +-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> | + __________________________________ __________________________________ + [ ] [ ] +-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> | + +*/ +/*==========================================================================*/ + +/* A fast, special-purpose memory allocator for small blocks, to be used + on top of a general-purpose malloc -- heavily based on previous art. */ + +/* Vladimir Marangozov -- August 2000 */ + +/* + * "Memory management is where the rubber meets the road -- if we do the wrong + * thing at any level, the results will not be good. And if we don't make the + * levels work well together, we are in serious trouble." (1) + * + * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles, + * "Dynamic Storage Allocation: A Survey and Critical Review", + * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995. + */ + +/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */ + +/*==========================================================================*/ + +/* + * Allocation strategy abstract: + * + * For small requests, the allocator sub-allocates <Big> blocks of memory. + * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the + * system's allocator. + * + * Small requests are grouped in size classes spaced 8 bytes apart, due + * to the required valid alignment of the returned address. Requests of + * a particular size are serviced from memory pools of 4K (one VMM page). + * Pools are fragmented on demand and contain free lists of blocks of one + * particular size class. In other words, there is a fixed-size allocator + * for each size class. Free pools are shared by the different allocators + * thus minimizing the space reserved for a particular size class. + * + * This allocation strategy is a variant of what is known as "simple + * segregated storage based on array of free lists". The main drawback of + * simple segregated storage is that we might end up with lot of reserved + * memory for the different free lists, which degenerate in time. To avoid + * this, we partition each free list in pools and we share dynamically the + * reserved space between all free lists. This technique is quite efficient + * for memory intensive programs which allocate mainly small-sized blocks. + * + * For small requests we have the following table: + * + * Request in bytes Size of allocated block Size class idx + * ---------------------------------------------------------------- + * 1-8 8 0 + * 9-16 16 1 + * 17-24 24 2 + * 25-32 32 3 + * 33-40 40 4 + * 41-48 48 5 + * 49-56 56 6 + * 57-64 64 7 + * 65-72 72 8 + * ... ... ... + * 497-504 504 62 + * 505-512 512 63 + * + * 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying + * allocator. + */ + +/*==========================================================================*/ + +/* + * -- Main tunable settings section -- + */ + +/* + * Alignment of addresses returned to the user. 8-bytes alignment works + * on most current architectures (with 32-bit or 64-bit address busses). + * The alignment value is also used for grouping small requests in size + * classes spaced ALIGNMENT bytes apart. + * + * You shouldn't change this unless you know what you are doing. + */ +#if SIZEOF_VOID_P > 4 +#define ALIGNMENT 16 /* must be 2^N */ +#define ALIGNMENT_SHIFT 4 +#else +#define ALIGNMENT 8 /* must be 2^N */ +#define ALIGNMENT_SHIFT 3 +#endif +#define ALIGNMENT_MASK (ALIGNMENT - 1) + +/* Return the number of bytes in size class I, as a uint. */ +#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT) + +/* + * Max size threshold below which malloc requests are considered to be + * small enough in order to use preallocated memory pools. You can tune + * this value according to your application behaviour and memory needs. + * + * The following invariants must hold: + * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512 + * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT + * + * Note: a size threshold of 512 guarantees that newly created dictionaries + * will be allocated from preallocated memory pools on 64-bit. + * + * Although not required, for better performance and space efficiency, + * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2. + */ +#define SMALL_REQUEST_THRESHOLD 512 +#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT) + +/* + * The system's VMM page size can be obtained on most unices with a + * getpagesize() call or deduced from various header files. To make + * things simpler, we assume that it is 4K, which is OK for most systems. + * It is probably better if this is the native page size, but it doesn't + * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page + * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation + * violation fault. 4K is apparently OK for all the platforms that python + * currently targets. + */ +#define SYSTEM_PAGE_SIZE (4 * 1024) +#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1) + +/* + * Maximum amount of memory managed by the allocator for small requests. + */ +#ifdef WITH_MEMORY_LIMITS +#ifndef SMALL_MEMORY_LIMIT +#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */ +#endif +#endif + +/* + * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned + * on a page boundary. This is a reserved virtual address space for the + * current process (obtained through a malloc()/mmap() call). In no way this + * means that the memory arenas will be used entirely. A malloc(<Big>) is + * usually an address range reservation for <Big> bytes, unless all pages within + * this space are referenced subsequently. So malloc'ing big blocks and not + * using them does not mean "wasting memory". It's an addressable range + * wastage... + * + * Arenas are allocated with mmap() on systems supporting anonymous memory + * mappings to reduce heap fragmentation. + */ +#define ARENA_SIZE (256 << 10) /* 256KiB */ + +#ifdef WITH_MEMORY_LIMITS +#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE) +#endif + +/* + * Size of the pools used for small blocks. Should be a power of 2, + * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k. + */ +#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */ +#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK + +/* + * -- End of tunable settings section -- + */ + +/*==========================================================================*/ + +/* + * Locking + * + * To reduce lock contention, it would probably be better to refine the + * crude function locking with per size class locking. I'm not positive + * however, whether it's worth switching to such locking policy because + * of the performance penalty it might introduce. + * + * The following macros describe the simplest (should also be the fastest) + * lock object on a particular platform and the init/fini/lock/unlock + * operations on it. The locks defined here are not expected to be recursive + * because it is assumed that they will always be called in the order: + * INIT, [LOCK, UNLOCK]*, FINI. + */ + +/* + * Python's threads are serialized, so object malloc locking is disabled. + */ +#define SIMPLELOCK_DECL(lock) /* simple lock declaration */ +#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */ +#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */ +#define SIMPLELOCK_LOCK(lock) /* acquire released lock */ +#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */ + +/* + * Basic types + * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom. + */ +#undef uchar +#define uchar unsigned char /* assuming == 8 bits */ + +#undef uint +#define uint unsigned int /* assuming >= 16 bits */ + +#undef ulong +#define ulong unsigned long /* assuming >= 32 bits */ + +#undef uptr +#define uptr Py_uintptr_t + +/* When you say memory, my mind reasons in terms of (pointers to) blocks */ +typedef uchar block; + +/* Pool for small blocks. */ +struct pool_header { + union { block *_padding; + uint count; } ref; /* number of allocated blocks */ + block *freeblock; /* pool's free list head */ + struct pool_header *nextpool; /* next pool of this size class */ + struct pool_header *prevpool; /* previous pool "" */ + uint arenaindex; /* index into arenas of base adr */ + uint szidx; /* block size class index */ + uint nextoffset; /* bytes to virgin block */ + uint maxnextoffset; /* largest valid nextoffset */ +}; + +typedef struct pool_header *poolp; + +/* Record keeping for arenas. */ +struct arena_object { + /* The address of the arena, as returned by malloc. Note that 0 + * will never be returned by a successful malloc, and is used + * here to mark an arena_object that doesn't correspond to an + * allocated arena. + */ + uptr address; + + /* Pool-aligned pointer to the next pool to be carved off. */ + block* pool_address; + + /* The number of available pools in the arena: free pools + never- + * allocated pools. + */ + uint nfreepools; + + /* The total number of pools in the arena, whether or not available. */ + uint ntotalpools; + + /* Singly-linked list of available pools. */ + struct pool_header* freepools; + + /* Whenever this arena_object is not associated with an allocated + * arena, the nextarena member is used to link all unassociated + * arena_objects in the singly-linked `unused_arena_objects` list. + * The prevarena member is unused in this case. + * + * When this arena_object is associated with an allocated arena + * with at least one available pool, both members are used in the + * doubly-linked `usable_arenas` list, which is maintained in + * increasing order of `nfreepools` values. + * + * Else this arena_object is associated with an allocated arena + * all of whose pools are in use. `nextarena` and `prevarena` + * are both meaningless in this case. + */ + struct arena_object* nextarena; + struct arena_object* prevarena; +}; + +#undef ROUNDUP +#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK) +#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header)) + +#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */ + +/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */ +#define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK)) + +/* Return total number of blocks in pool of size index I, as a uint. */ +#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I)) + +/*==========================================================================*/ + +/* + * This malloc lock + */ +SIMPLELOCK_DECL(_malloc_lock) +#define LOCK() SIMPLELOCK_LOCK(_malloc_lock) +#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock) +#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock) +#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock) + +/* + * Pool table -- headed, circular, doubly-linked lists of partially used pools. + +This is involved. For an index i, usedpools[i+i] is the header for a list of +all partially used pools holding small blocks with "size class idx" i. So +usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size +16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT. + +Pools are carved off an arena's highwater mark (an arena_object's pool_address +member) as needed. Once carved off, a pool is in one of three states forever +after: + +used == partially used, neither empty nor full + At least one block in the pool is currently allocated, and at least one + block in the pool is not currently allocated (note this implies a pool + has room for at least two blocks). + This is a pool's initial state, as a pool is created only when malloc + needs space. + The pool holds blocks of a fixed size, and is in the circular list headed + at usedpools[i] (see above). It's linked to the other used pools of the + same size class via the pool_header's nextpool and prevpool members. + If all but one block is currently allocated, a malloc can cause a + transition to the full state. If all but one block is not currently + allocated, a free can cause a transition to the empty state. + +full == all the pool's blocks are currently allocated + On transition to full, a pool is unlinked from its usedpools[] list. + It's not linked to from anything then anymore, and its nextpool and + prevpool members are meaningless until it transitions back to used. + A free of a block in a full pool puts the pool back in the used state. + Then it's linked in at the front of the appropriate usedpools[] list, so + that the next allocation for its size class will reuse the freed block. + +empty == all the pool's blocks are currently available for allocation + On transition to empty, a pool is unlinked from its usedpools[] list, + and linked to the front of its arena_object's singly-linked freepools list, + via its nextpool member. The prevpool member has no meaning in this case. + Empty pools have no inherent size class: the next time a malloc finds + an empty list in usedpools[], it takes the first pool off of freepools. + If the size class needed happens to be the same as the size class the pool + last had, some pool initialization can be skipped. + + +Block Management + +Blocks within pools are again carved out as needed. pool->freeblock points to +the start of a singly-linked list of free blocks within the pool. When a +block is freed, it's inserted at the front of its pool's freeblock list. Note +that the available blocks in a pool are *not* linked all together when a pool +is initialized. Instead only "the first two" (lowest addresses) blocks are +set up, returning the first such block, and setting pool->freeblock to a +one-block list holding the second such block. This is consistent with that +pymalloc strives at all levels (arena, pool, and block) never to touch a piece +of memory until it's actually needed. + +So long as a pool is in the used state, we're certain there *is* a block +available for allocating, and pool->freeblock is not NULL. If pool->freeblock +points to the end of the free list before we've carved the entire pool into +blocks, that means we simply haven't yet gotten to one of the higher-address +blocks. The offset from the pool_header to the start of "the next" virgin +block is stored in the pool_header nextoffset member, and the largest value +of nextoffset that makes sense is stored in the maxnextoffset member when a +pool is initialized. All the blocks in a pool have been passed out at least +once when and only when nextoffset > maxnextoffset. + + +Major obscurity: While the usedpools vector is declared to have poolp +entries, it doesn't really. It really contains two pointers per (conceptual) +poolp entry, the nextpool and prevpool members of a pool_header. The +excruciating initialization code below fools C so that + + usedpool[i+i] + +"acts like" a genuine poolp, but only so long as you only reference its +nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is +compensating for that a pool_header's nextpool and prevpool members +immediately follow a pool_header's first two members: + + union { block *_padding; + uint count; } ref; + block *freeblock; + +each of which consume sizeof(block *) bytes. So what usedpools[i+i] really +contains is a fudged-up pointer p such that *if* C believes it's a poolp +pointer, then p->nextpool and p->prevpool are both p (meaning that the headed +circular list is empty). + +It's unclear why the usedpools setup is so convoluted. It could be to +minimize the amount of cache required to hold this heavily-referenced table +(which only *needs* the two interpool pointer members of a pool_header). OTOH, +referencing code has to remember to "double the index" and doing so isn't +free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying +on that C doesn't insert any padding anywhere in a pool_header at or before +the prevpool member. +**************************************************************************** */ + +#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *))) +#define PT(x) PTA(x), PTA(x) + +static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = { + PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7) +#if NB_SMALL_SIZE_CLASSES > 8 + , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15) +#if NB_SMALL_SIZE_CLASSES > 16 + , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23) +#if NB_SMALL_SIZE_CLASSES > 24 + , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31) +#if NB_SMALL_SIZE_CLASSES > 32 + , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39) +#if NB_SMALL_SIZE_CLASSES > 40 + , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47) +#if NB_SMALL_SIZE_CLASSES > 48 + , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55) +#if NB_SMALL_SIZE_CLASSES > 56 + , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63) +#if NB_SMALL_SIZE_CLASSES > 64 +#error "NB_SMALL_SIZE_CLASSES should be less than 64" +#endif /* NB_SMALL_SIZE_CLASSES > 64 */ +#endif /* NB_SMALL_SIZE_CLASSES > 56 */ +#endif /* NB_SMALL_SIZE_CLASSES > 48 */ +#endif /* NB_SMALL_SIZE_CLASSES > 40 */ +#endif /* NB_SMALL_SIZE_CLASSES > 32 */ +#endif /* NB_SMALL_SIZE_CLASSES > 24 */ +#endif /* NB_SMALL_SIZE_CLASSES > 16 */ +#endif /* NB_SMALL_SIZE_CLASSES > 8 */ +}; + +/*========================================================================== +Arena management. + +`arenas` is a vector of arena_objects. It contains maxarenas entries, some of +which may not be currently used (== they're arena_objects that aren't +currently associated with an allocated arena). Note that arenas proper are +separately malloc'ed. + +Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5, +we do try to free() arenas, and use some mild heuristic strategies to increase +the likelihood that arenas eventually can be freed. + +unused_arena_objects + + This is a singly-linked list of the arena_objects that are currently not + being used (no arena is associated with them). Objects are taken off the + head of the list in new_arena(), and are pushed on the head of the list in + PyObject_Free() when the arena is empty. Key invariant: an arena_object + is on this list if and only if its .address member is 0. + +usable_arenas + + This is a doubly-linked list of the arena_objects associated with arenas + that have pools available. These pools are either waiting to be reused, + or have not been used before. The list is sorted to have the most- + allocated arenas first (ascending order based on the nfreepools member). + This means that the next allocation will come from a heavily used arena, + which gives the nearly empty arenas a chance to be returned to the system. + In my unscientific tests this dramatically improved the number of arenas + that could be freed. + +Note that an arena_object associated with an arena all of whose pools are +currently in use isn't on either list. +*/ + +/* Array of objects used to track chunks of memory (arenas). */ +static struct arena_object* arenas = NULL; +/* Number of slots currently allocated in the `arenas` vector. */ +static uint maxarenas = 0; + +/* The head of the singly-linked, NULL-terminated list of available + * arena_objects. + */ +static struct arena_object* unused_arena_objects = NULL; + +/* The head of the doubly-linked, NULL-terminated at each end, list of + * arena_objects associated with arenas that have pools available. + */ +static struct arena_object* usable_arenas = NULL; + +/* How many arena_objects do we initially allocate? + * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the + * `arenas` vector. + */ +#define INITIAL_ARENA_OBJECTS 16 + +/* Number of arenas allocated that haven't been free()'d. */ +static size_t narenas_currently_allocated = 0; + +#ifdef PYMALLOC_DEBUG +/* Total number of times malloc() called to allocate an arena. */ +static size_t ntimes_arena_allocated = 0; +/* High water mark (max value ever seen) for narenas_currently_allocated. */ +static size_t narenas_highwater = 0; +#endif + +/* Allocate a new arena. If we run out of memory, return NULL. Else + * allocate a new arena, and return the address of an arena_object + * describing the new arena. It's expected that the caller will set + * `usable_arenas` to the return value. + */ +static struct arena_object* +new_arena(void) +{ + struct arena_object* arenaobj; + uint excess; /* number of bytes above pool alignment */ + void *address; + int err; + +#ifdef PYMALLOC_DEBUG + if (Py_GETENV("PYTHONMALLOCSTATS")) + _PyObject_DebugMallocStats(); +#endif + if (unused_arena_objects == NULL) { + uint i; + uint numarenas; + size_t nbytes; + + /* Double the number of arena objects on each allocation. + * Note that it's possible for `numarenas` to overflow. + */ + numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS; + if (numarenas <= maxarenas) + return NULL; /* overflow */ +#if SIZEOF_SIZE_T <= SIZEOF_INT + if (numarenas > PY_SIZE_MAX / sizeof(*arenas)) + return NULL; /* overflow */ +#endif + nbytes = numarenas * sizeof(*arenas); + arenaobj = (struct arena_object *)PyMem_Realloc(arenas, nbytes); + if (arenaobj == NULL) + return NULL; + arenas = arenaobj; + + /* We might need to fix pointers that were copied. However, + * new_arena only gets called when all the pages in the + * previous arenas are full. Thus, there are *no* pointers + * into the old array. Thus, we don't have to worry about + * invalid pointers. Just to be sure, some asserts: + */ + assert(usable_arenas == NULL); + assert(unused_arena_objects == NULL); + + /* Put the new arenas on the unused_arena_objects list. */ + for (i = maxarenas; i < numarenas; ++i) { + arenas[i].address = 0; /* mark as unassociated */ + arenas[i].nextarena = i < numarenas - 1 ? + &arenas[i+1] : NULL; + } + + /* Update globals. */ + unused_arena_objects = &arenas[maxarenas]; + maxarenas = numarenas; + } + + /* Take the next available arena object off the head of the list. */ + assert(unused_arena_objects != NULL); + arenaobj = unused_arena_objects; + unused_arena_objects = arenaobj->nextarena; + assert(arenaobj->address == 0); +#ifdef ARENAS_USE_MMAP + address = mmap(NULL, ARENA_SIZE, PROT_READ|PROT_WRITE, + MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); + err = (address == MAP_FAILED); +#else + address = malloc(ARENA_SIZE); + err = (address == 0); +#endif + if (err) { + /* The allocation failed: return NULL after putting the + * arenaobj back. + */ + arenaobj->nextarena = unused_arena_objects; + unused_arena_objects = arenaobj; + return NULL; + } + arenaobj->address = (uptr)address; + + ++narenas_currently_allocated; +#ifdef PYMALLOC_DEBUG + ++ntimes_arena_allocated; + if (narenas_currently_allocated > narenas_highwater) + narenas_highwater = narenas_currently_allocated; +#endif + arenaobj->freepools = NULL; + /* pool_address <- first pool-aligned address in the arena + nfreepools <- number of whole pools that fit after alignment */ + arenaobj->pool_address = (block*)arenaobj->address; + arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE; + assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE); + excess = (uint)(arenaobj->address & POOL_SIZE_MASK); + if (excess != 0) { + --arenaobj->nfreepools; + arenaobj->pool_address += POOL_SIZE - excess; + } + arenaobj->ntotalpools = arenaobj->nfreepools; + + return arenaobj; +} + +/* +Py_ADDRESS_IN_RANGE(P, POOL) + +Return true if and only if P is an address that was allocated by pymalloc. +POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P) +(the caller is asked to compute this because the macro expands POOL more than +once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a +variable and pass the latter to the macro; because Py_ADDRESS_IN_RANGE is +called on every alloc/realloc/free, micro-efficiency is important here). + +Tricky: Let B be the arena base address associated with the pool, B = +arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if + + B <= P < B + ARENA_SIZE + +Subtracting B throughout, this is true iff + + 0 <= P-B < ARENA_SIZE + +By using unsigned arithmetic, the "0 <=" half of the test can be skipped. + +Obscure: A PyMem "free memory" function can call the pymalloc free or realloc +before the first arena has been allocated. `arenas` is still NULL in that +case. We're relying on that maxarenas is also 0 in that case, so that +(POOL)->arenaindex < maxarenas must be false, saving us from trying to index +into a NULL arenas. + +Details: given P and POOL, the arena_object corresponding to P is AO = +arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild +stores, etc), POOL is the correct address of P's pool, AO.address is the +correct base address of the pool's arena, and P must be within ARENA_SIZE of +AO.address. In addition, AO.address is not 0 (no arena can start at address 0 +(NULL)). Therefore Py_ADDRESS_IN_RANGE correctly reports that obmalloc +controls P. + +Now suppose obmalloc does not control P (e.g., P was obtained via a direct +call to the system malloc() or realloc()). (POOL)->arenaindex may be anything +in this case -- it may even be uninitialized trash. If the trash arenaindex +is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't +control P. + +Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an +allocated arena, obmalloc controls all the memory in slice AO.address : +AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc, +so P doesn't lie in that slice, so the macro correctly reports that P is not +controlled by obmalloc. + +Finally, if P is not controlled by obmalloc and AO corresponds to an unused +arena_object (one not currently associated with an allocated arena), +AO.address is 0, and the second test in the macro reduces to: + + P < ARENA_SIZE + +If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes +that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part +of the test still passes, and the third clause (AO.address != 0) is necessary +to get the correct result: AO.address is 0 in this case, so the macro +correctly reports that P is not controlled by obmalloc (despite that P lies in +slice AO.address : AO.address + ARENA_SIZE). + +Note: The third (AO.address != 0) clause was added in Python 2.5. Before +2.5, arenas were never free()'ed, and an arenaindex < maxarena always +corresponded to a currently-allocated arena, so the "P is not controlled by +obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case +was impossible. + +Note that the logic is excruciating, and reading up possibly uninitialized +memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex) +creates problems for some memory debuggers. The overwhelming advantage is +that this test determines whether an arbitrary address is controlled by +obmalloc in a small constant time, independent of the number of arenas +obmalloc controls. Since this test is needed at every entry point, it's +extremely desirable that it be this fast. + +Since Py_ADDRESS_IN_RANGE may be reading from memory which was not allocated +by Python, it is important that (POOL)->arenaindex is read only once, as +another thread may be concurrently modifying the value without holding the +GIL. To accomplish this, the arenaindex_temp variable is used to store +(POOL)->arenaindex for the duration of the Py_ADDRESS_IN_RANGE macro's +execution. The caller of the macro is responsible for declaring this +variable. +*/ +#define Py_ADDRESS_IN_RANGE(P, POOL) \ + ((arenaindex_temp = (POOL)->arenaindex) < maxarenas && \ + (uptr)(P) - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE && \ + arenas[arenaindex_temp].address != 0) + + +/* This is only useful when running memory debuggers such as + * Purify or Valgrind. Uncomment to use. + * +#define Py_USING_MEMORY_DEBUGGER + */ + +#ifdef Py_USING_MEMORY_DEBUGGER + +/* Py_ADDRESS_IN_RANGE may access uninitialized memory by design + * This leads to thousands of spurious warnings when using + * Purify or Valgrind. By making a function, we can easily + * suppress the uninitialized memory reads in this one function. + * So we won't ignore real errors elsewhere. + * + * Disable the macro and use a function. + */ + +#undef Py_ADDRESS_IN_RANGE + +#if defined(__GNUC__) && ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) || \ + (__GNUC__ >= 4)) +#define Py_NO_INLINE __attribute__((__noinline__)) +#else +#define Py_NO_INLINE +#endif + +/* Don't make static, to try to ensure this isn't inlined. */ +int Py_ADDRESS_IN_RANGE(void *P, poolp pool) Py_NO_INLINE; +#undef Py_NO_INLINE +#endif + +/*==========================================================================*/ + +/* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct + * from all other currently live pointers. This may not be possible. + */ + +/* + * The basic blocks are ordered by decreasing execution frequency, + * which minimizes the number of jumps in the most common cases, + * improves branching prediction and instruction scheduling (small + * block allocations typically result in a couple of instructions). + * Unless the optimizer reorders everything, being too smart... + */ + +static void * +_PyObject_Malloc(void *ctx, size_t nbytes) +{ + block *bp; + poolp pool; + poolp next; + uint size; + +#ifdef WITH_VALGRIND + if (UNLIKELY(running_on_valgrind == -1)) + running_on_valgrind = RUNNING_ON_VALGRIND; + if (UNLIKELY(running_on_valgrind)) + goto redirect; +#endif + + /* + * This implicitly redirects malloc(0). + */ + if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) { + LOCK(); + /* + * Most frequent paths first + */ + size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT; + pool = usedpools[size + size]; + if (pool != pool->nextpool) { + /* + * There is a used pool for this size class. + * Pick up the head block of its free list. + */ + ++pool->ref.count; + bp = pool->freeblock; + assert(bp != NULL); + if ((pool->freeblock = *(block **)bp) != NULL) { + UNLOCK(); + return (void *)bp; + } + /* + * Reached the end of the free list, try to extend it. + */ + if (pool->nextoffset <= pool->maxnextoffset) { + /* There is room for another block. */ + pool->freeblock = (block*)pool + + pool->nextoffset; + pool->nextoffset += INDEX2SIZE(size); + *(block **)(pool->freeblock) = NULL; + UNLOCK(); + return (void *)bp; + } + /* Pool is full, unlink from used pools. */ + next = pool->nextpool; + pool = pool->prevpool; + next->prevpool = pool; + pool->nextpool = next; + UNLOCK(); + return (void *)bp; + } + + /* There isn't a pool of the right size class immediately + * available: use a free pool. + */ + if (usable_arenas == NULL) { + /* No arena has a free pool: allocate a new arena. */ +#ifdef WITH_MEMORY_LIMITS + if (narenas_currently_allocated >= MAX_ARENAS) { + UNLOCK(); + goto redirect; + } +#endif + usable_arenas = new_arena(); + if (usable_arenas == NULL) { + UNLOCK(); + goto redirect; + } + usable_arenas->nextarena = + usable_arenas->prevarena = NULL; + } + assert(usable_arenas->address != 0); + + /* Try to get a cached free pool. */ + pool = usable_arenas->freepools; + if (pool != NULL) { + /* Unlink from cached pools. */ + usable_arenas->freepools = pool->nextpool; + + /* This arena already had the smallest nfreepools + * value, so decreasing nfreepools doesn't change + * that, and we don't need to rearrange the + * usable_arenas list. However, if the arena has + * become wholly allocated, we need to remove its + * arena_object from usable_arenas. + */ + --usable_arenas->nfreepools; + if (usable_arenas->nfreepools == 0) { + /* Wholly allocated: remove. */ + assert(usable_arenas->freepools == NULL); + assert(usable_arenas->nextarena == NULL || + usable_arenas->nextarena->prevarena == + usable_arenas); + + usable_arenas = usable_arenas->nextarena; + if (usable_arenas != NULL) { + usable_arenas->prevarena = NULL; + assert(usable_arenas->address != 0); + } + } + else { + /* nfreepools > 0: it must be that freepools + * isn't NULL, or that we haven't yet carved + * off all the arena's pools for the first + * time. + */ + assert(usable_arenas->freepools != NULL || + usable_arenas->pool_address <= + (block*)usable_arenas->address + + ARENA_SIZE - POOL_SIZE); + } + init_pool: + /* Frontlink to used pools. */ + next = usedpools[size + size]; /* == prev */ + pool->nextpool = next; + pool->prevpool = next; + next->nextpool = pool; + next->prevpool = pool; + pool->ref.count = 1; + if (pool->szidx == size) { + /* Luckily, this pool last contained blocks + * of the same size class, so its header + * and free list are already initialized. + */ + bp = pool->freeblock; + pool->freeblock = *(block **)bp; + UNLOCK(); + return (void *)bp; + } + /* + * Initialize the pool header, set up the free list to + * contain just the second block, and return the first + * block. + */ + pool->szidx = size; + size = INDEX2SIZE(size); + bp = (block *)pool + POOL_OVERHEAD; + pool->nextoffset = POOL_OVERHEAD + (size << 1); + pool->maxnextoffset = POOL_SIZE - size; + pool->freeblock = bp + size; + *(block **)(pool->freeblock) = NULL; + UNLOCK(); + return (void *)bp; + } + + /* Carve off a new pool. */ + assert(usable_arenas->nfreepools > 0); + assert(usable_arenas->freepools == NULL); + pool = (poolp)usable_arenas->pool_address; + assert((block*)pool <= (block*)usable_arenas->address + + ARENA_SIZE - POOL_SIZE); + pool->arenaindex = usable_arenas - arenas; + assert(&arenas[pool->arenaindex] == usable_arenas); + pool->szidx = DUMMY_SIZE_IDX; + usable_arenas->pool_address += POOL_SIZE; + --usable_arenas->nfreepools; + + if (usable_arenas->nfreepools == 0) { + assert(usable_arenas->nextarena == NULL || + usable_arenas->nextarena->prevarena == + usable_arenas); + /* Unlink the arena: it is completely allocated. */ + usable_arenas = usable_arenas->nextarena; + if (usable_arenas != NULL) { + usable_arenas->prevarena = NULL; + assert(usable_arenas->address != 0); + } + } + + goto init_pool; + } + + /* The small block allocator ends here. */ + +redirect: + /* Redirect the original request to the underlying (libc) allocator. + * We jump here on bigger requests, on error in the code above (as a + * last chance to serve the request) or when the max memory limit + * has been reached. + */ + return PyMem_Malloc(nbytes); +} + +/* free */ + +static void +_PyObject_Free(void *ctx, void *p) +{ + poolp pool; + block *lastfree; + poolp next, prev; + uint size; +#ifndef Py_USING_MEMORY_DEBUGGER + uint arenaindex_temp; +#endif + + if (p == NULL) /* free(NULL) has no effect */ + return; + +#ifdef WITH_VALGRIND + if (UNLIKELY(running_on_valgrind > 0)) + goto redirect; +#endif + + pool = POOL_ADDR(p); + if (Py_ADDRESS_IN_RANGE(p, pool)) { + /* We allocated this address. */ + LOCK(); + /* Link p to the start of the pool's freeblock list. Since + * the pool had at least the p block outstanding, the pool + * wasn't empty (so it's already in a usedpools[] list, or + * was full and is in no list -- it's not in the freeblocks + * list in any case). + */ + assert(pool->ref.count > 0); /* else it was empty */ + *(block **)p = lastfree = pool->freeblock; + pool->freeblock = (block *)p; + if (lastfree) { + struct arena_object* ao; + uint nf; /* ao->nfreepools */ + + /* freeblock wasn't NULL, so the pool wasn't full, + * and the pool is in a usedpools[] list. + */ + if (--pool->ref.count != 0) { + /* pool isn't empty: leave it in usedpools */ + UNLOCK(); + return; + } + /* Pool is now empty: unlink from usedpools, and + * link to the front of freepools. This ensures that + * previously freed pools will be allocated later + * (being not referenced, they are perhaps paged out). + */ + next = pool->nextpool; + prev = pool->prevpool; + next->prevpool = prev; + prev->nextpool = next; + + /* Link the pool to freepools. This is a singly-linked + * list, and pool->prevpool isn't used there. + */ + ao = &arenas[pool->arenaindex]; + pool->nextpool = ao->freepools; + ao->freepools = pool; + nf = ++ao->nfreepools; + + /* All the rest is arena management. We just freed + * a pool, and there are 4 cases for arena mgmt: + * 1. If all the pools are free, return the arena to + * the system free(). + * 2. If this is the only free pool in the arena, + * add the arena back to the `usable_arenas` list. + * 3. If the "next" arena has a smaller count of free + * pools, we have to "slide this arena right" to + * restore that usable_arenas is sorted in order of + * nfreepools. + * 4. Else there's nothing more to do. + */ + if (nf == ao->ntotalpools) { + /* Case 1. First unlink ao from usable_arenas. + */ + assert(ao->prevarena == NULL || + ao->prevarena->address != 0); + assert(ao ->nextarena == NULL || + ao->nextarena->address != 0); + + /* Fix the pointer in the prevarena, or the + * usable_arenas pointer. + */ + if (ao->prevarena == NULL) { + usable_arenas = ao->nextarena; + assert(usable_arenas == NULL || + usable_arenas->address != 0); + } + else { + assert(ao->prevarena->nextarena == ao); + ao->prevarena->nextarena = + ao->nextarena; + } + /* Fix the pointer in the nextarena. */ + if (ao->nextarena != NULL) { + assert(ao->nextarena->prevarena == ao); + ao->nextarena->prevarena = + ao->prevarena; + } + /* Record that this arena_object slot is + * available to be reused. + */ + ao->nextarena = unused_arena_objects; + unused_arena_objects = ao; + + /* Free the entire arena. */ +#ifdef ARENAS_USE_MMAP + munmap((void *)ao->address, ARENA_SIZE); +#else + free((void *)ao->address); +#endif + ao->address = 0; /* mark unassociated */ + --narenas_currently_allocated; + + UNLOCK(); + return; + } + if (nf == 1) { + /* Case 2. Put ao at the head of + * usable_arenas. Note that because + * ao->nfreepools was 0 before, ao isn't + * currently on the usable_arenas list. + */ + ao->nextarena = usable_arenas; + ao->prevarena = NULL; + if (usable_arenas) + usable_arenas->prevarena = ao; + usable_arenas = ao; + assert(usable_arenas->address != 0); + + UNLOCK(); + return; + } + /* If this arena is now out of order, we need to keep + * the list sorted. The list is kept sorted so that + * the "most full" arenas are used first, which allows + * the nearly empty arenas to be completely freed. In + * a few un-scientific tests, it seems like this + * approach allowed a lot more memory to be freed. + */ + if (ao->nextarena == NULL || + nf <= ao->nextarena->nfreepools) { + /* Case 4. Nothing to do. */ + UNLOCK(); + return; + } + /* Case 3: We have to move the arena towards the end + * of the list, because it has more free pools than + * the arena to its right. + * First unlink ao from usable_arenas. + */ + if (ao->prevarena != NULL) { + /* ao isn't at the head of the list */ + assert(ao->prevarena->nextarena == ao); + ao->prevarena->nextarena = ao->nextarena; + } + else { + /* ao is at the head of the list */ + assert(usable_arenas == ao); + usable_arenas = ao->nextarena; + } + ao->nextarena->prevarena = ao->prevarena; + + /* Locate the new insertion point by iterating over + * the list, using our nextarena pointer. + */ + while (ao->nextarena != NULL && + nf > ao->nextarena->nfreepools) { + ao->prevarena = ao->nextarena; + ao->nextarena = ao->nextarena->nextarena; + } + + /* Insert ao at this point. */ + assert(ao->nextarena == NULL || + ao->prevarena == ao->nextarena->prevarena); + assert(ao->prevarena->nextarena == ao->nextarena); + + ao->prevarena->nextarena = ao; + if (ao->nextarena != NULL) + ao->nextarena->prevarena = ao; + + /* Verify that the swaps worked. */ + assert(ao->nextarena == NULL || + nf <= ao->nextarena->nfreepools); + assert(ao->prevarena == NULL || + nf > ao->prevarena->nfreepools); + assert(ao->nextarena == NULL || + ao->nextarena->prevarena == ao); + assert((usable_arenas == ao && + ao->prevarena == NULL) || + ao->prevarena->nextarena == ao); + + UNLOCK(); + return; + } + /* Pool was full, so doesn't currently live in any list: + * link it to the front of the appropriate usedpools[] list. + * This mimics LRU pool usage for new allocations and + * targets optimal filling when several pools contain + * blocks of the same size class. + */ + --pool->ref.count; + assert(pool->ref.count > 0); /* else the pool is empty */ + size = pool->szidx; + next = usedpools[size + size]; + prev = next->prevpool; + /* insert pool before next: prev <-> pool <-> next */ + pool->nextpool = next; + pool->prevpool = prev; + next->prevpool = pool; + prev->nextpool = pool; + UNLOCK(); + return; + } + +#ifdef WITH_VALGRIND +redirect: +#endif + /* We didn't allocate this address. */ + PyMem_Free(p); +} + +/* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0, + * then as the Python docs promise, we do not treat this like free(p), and + * return a non-NULL result. + */ + +static void * +_PyObject_Realloc(void *ctx, void *p, size_t nbytes) +{ + void *bp; + poolp pool; + size_t size; +#ifndef Py_USING_MEMORY_DEBUGGER + uint arenaindex_temp; +#endif + + if (p == NULL) + return _PyObject_Malloc(ctx, nbytes); + +#ifdef WITH_VALGRIND + /* Treat running_on_valgrind == -1 the same as 0 */ + if (UNLIKELY(running_on_valgrind > 0)) + goto redirect; +#endif + + pool = POOL_ADDR(p); + if (Py_ADDRESS_IN_RANGE(p, pool)) { + /* We're in charge of this block */ + size = INDEX2SIZE(pool->szidx); + if (nbytes <= size) { + /* The block is staying the same or shrinking. If + * it's shrinking, there's a tradeoff: it costs + * cycles to copy the block to a smaller size class, + * but it wastes memory not to copy it. The + * compromise here is to copy on shrink only if at + * least 25% of size can be shaved off. + */ + if (4 * nbytes > 3 * size) { + /* It's the same, + * or shrinking and new/old > 3/4. + */ + return p; + } + size = nbytes; + } + bp = _PyObject_Malloc(ctx, nbytes); + if (bp != NULL) { + memcpy(bp, p, size); + _PyObject_Free(ctx, p); + } + return bp; + } +#ifdef WITH_VALGRIND + redirect: +#endif + /* We're not managing this block. If nbytes <= + * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this + * block. However, if we do, we need to copy the valid data from + * the C-managed block to one of our blocks, and there's no portable + * way to know how much of the memory space starting at p is valid. + * As bug 1185883 pointed out the hard way, it's possible that the + * C-managed block is "at the end" of allocated VM space, so that + * a memory fault can occur if we try to copy nbytes bytes starting + * at p. Instead we punt: let C continue to manage this block. + */ + if (nbytes) + return PyMem_Realloc(p, nbytes); + /* C doesn't define the result of realloc(p, 0) (it may or may not + * return NULL then), but Python's docs promise that nbytes==0 never + * returns NULL. We don't pass 0 to realloc(), to avoid that endcase + * to begin with. Even then, we can't be sure that realloc() won't + * return NULL. + */ + bp = PyMem_Realloc(p, 1); + return bp ? bp : p; +} + +#endif /* WITH_PYMALLOC */ + +#ifdef PYMALLOC_DEBUG +/*==========================================================================*/ +/* A x-platform debugging allocator. This doesn't manage memory directly, + * it wraps a real allocator, adding extra debugging info to the memory blocks. + */ + +/* Special bytes broadcast into debug memory blocks at appropriate times. + * Strings of these are unlikely to be valid addresses, floats, ints or + * 7-bit ASCII. + */ +#undef CLEANBYTE +#undef DEADBYTE +#undef FORBIDDENBYTE +#define CLEANBYTE 0xCB /* clean (newly allocated) memory */ +#define DEADBYTE 0xDB /* dead (newly freed) memory */ +#define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */ + +static size_t serialno = 0; /* incremented on each debug {m,re}alloc */ + +/* serialno is always incremented via calling this routine. The point is + * to supply a single place to set a breakpoint. + */ +static void +bumpserialno(void) +{ + ++serialno; +} + +#define SST SIZEOF_SIZE_T + +/* Read sizeof(size_t) bytes at p as a big-endian size_t. */ +static size_t +read_size_t(const void *p) +{ + const uchar *q = (const uchar *)p; + size_t result = *q++; + int i; + + for (i = SST; --i > 0; ++q) + result = (result << 8) | *q; + return result; +} + +/* Write n as a big-endian size_t, MSB at address p, LSB at + * p + sizeof(size_t) - 1. + */ +static void +write_size_t(void *p, size_t n) +{ + uchar *q = (uchar *)p + SST - 1; + int i; + + for (i = SST; --i >= 0; --q) { + *q = (uchar)(n & 0xff); + n >>= 8; + } +} + +#ifdef Py_DEBUG +/* Is target in the list? The list is traversed via the nextpool pointers. + * The list may be NULL-terminated, or circular. Return 1 if target is in + * list, else 0. + */ +static int +pool_is_in_list(const poolp target, poolp list) +{ + poolp origlist = list; + assert(target != NULL); + if (list == NULL) + return 0; + do { + if (target == list) + return 1; + list = list->nextpool; + } while (list != NULL && list != origlist); + return 0; +} + +#else +#define pool_is_in_list(X, Y) 1 + +#endif /* Py_DEBUG */ + +static void * +_PyMem_Malloc(size_t nbytes) +{ + if (nbytes > (size_t)PY_SSIZE_T_MAX) { + return NULL; + } + if (nbytes == 0) { + nbytes = 1; + } + return malloc(nbytes); +} + +static void * +_PyMem_Realloc(void *p, size_t nbytes) +{ + if (nbytes > (size_t)PY_SSIZE_T_MAX) { + return NULL; + } + if (nbytes == 0) { + nbytes = 1; + } + return realloc(p, nbytes); +} + + +static void +_PyMem_Free(void *p) +{ + free(p); +} + + +/* Let S = sizeof(size_t). The debug malloc asks for 4*S extra bytes and + fills them with useful stuff, here calling the underlying malloc's result p: + +p[0: S] + Number of bytes originally asked for. This is a size_t, big-endian (easier + to read in a memory dump). +p[S: 2*S] + Copies of FORBIDDENBYTE. Used to catch under- writes and reads. +p[2*S: 2*S+n] + The requested memory, filled with copies of CLEANBYTE. + Used to catch reference to uninitialized memory. + &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc + handled the request itself. +p[2*S+n: 2*S+n+S] + Copies of FORBIDDENBYTE. Used to catch over- writes and reads. +p[2*S+n+S: 2*S+n+2*S] + A serial number, incremented by 1 on each call to _PyMem_DebugMalloc + and _PyMem_DebugRealloc. + This is a big-endian size_t. + If "bad memory" is detected later, the serial number gives an + excellent way to set a breakpoint on the next run, to capture the + instant at which this block was passed out. +*/ + +static void * +_PyMem_DebugMallocCtx(void *ctx, size_t nbytes) +{ + debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; + uchar *p; /* base address of malloc'ed block */ + uchar *tail; /* p + 2*SST + nbytes == pointer to tail pad bytes */ + size_t total; /* nbytes + 4*SST */ + + bumpserialno(); + total = nbytes + 4*SST; + if (total < nbytes) + /* overflow: can't represent total as a size_t */ + return NULL; + + p = (uchar *)api->alloc.malloc(api->alloc.ctx, total); + if (p == NULL) + return NULL; + + /* at p, write size (SST bytes), api (1 byte), pad (SST-1 bytes) */ + write_size_t(p, nbytes); + p[SST] = (uchar)api->api_id; + memset(p + SST + 1, FORBIDDENBYTE, SST-1); + + if (nbytes > 0) + memset(p + 2*SST, CLEANBYTE, nbytes); + + /* at tail, write pad (SST bytes) and serialno (SST bytes) */ + tail = p + 2*SST + nbytes; + memset(tail, FORBIDDENBYTE, SST); + write_size_t(tail + SST, serialno); + + return p + 2*SST; +} + +/* The debug free first checks the 2*SST bytes on each end for sanity (in + particular, that the FORBIDDENBYTEs with the api ID are still intact). + Then fills the original bytes with DEADBYTE. + Then calls the underlying free. +*/ +static void +_PyMem_DebugFreeCtx(void *ctx, void *p) +{ + debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; + uchar *q = (uchar *)p - 2*SST; /* address returned from malloc */ + size_t nbytes; + + if (p == NULL) + return; + _PyMem_DebugCheckAddress(api->api_id, p); + nbytes = read_size_t(q); + nbytes += 4*SST; + if (nbytes > 0) + memset(q, DEADBYTE, nbytes); + api->alloc.free(api->alloc.ctx, q); +} + +static void * +_PyMem_DebugReallocCtx(void *ctx, void *p, size_t nbytes) +{ + debug_alloc_api_t *api = (debug_alloc_api_t *)ctx; + uchar *q = (uchar *)p, *oldq; + uchar *tail; + size_t total; /* nbytes + 4*SST */ + size_t original_nbytes; + int i; + + if (p == NULL) + return _PyMem_DebugMallocCtx(ctx, nbytes); + + _PyMem_DebugCheckAddress(api->api_id, p); + bumpserialno(); + original_nbytes = read_size_t(q - 2*SST); + total = nbytes + 4*SST; + if (total < nbytes) + /* overflow: can't represent total as a size_t */ + return NULL; + + /* Resize and add decorations. We may get a new pointer here, in which + * case we didn't get the chance to mark the old memory with DEADBYTE, + * but we live with that. + */ + oldq = q; + q = (uchar *)api->alloc.realloc(api->alloc.ctx, q - 2*SST, total); + if (q == NULL) { + if (nbytes <= original_nbytes) { + /* bpo-31626: the memset() above expects that realloc never fails + on shrinking a memory block. */ + Py_FatalError("Shrinking reallocation failed"); + } + return NULL; + } + + if (q == oldq && nbytes <= original_nbytes) { + /* shrinking: mark old extra memory dead */ + memset(q + nbytes, DEADBYTE, original_nbytes - nbytes); + } + + write_size_t(q, nbytes); + assert(q[SST] == (uchar)api->api_id); + for (i = 1; i < SST; ++i) + assert(q[SST + i] == FORBIDDENBYTE); + q += 2*SST; + + tail = q + nbytes; + memset(tail, FORBIDDENBYTE, SST); + write_size_t(tail + SST, serialno); + + if (nbytes > original_nbytes) { + /* growing: mark new extra memory clean */ + memset(q + original_nbytes, CLEANBYTE, + nbytes - original_nbytes); + } + + return q; +} + +/* Check the forbidden bytes on both ends of the memory allocated for p. + * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress, + * and call Py_FatalError to kill the program. + * The API id, is also checked. + */ +static void +_PyMem_DebugCheckAddress(char api, const void *p) +{ + const uchar *q = (const uchar *)p; + char msgbuf[64]; + char *msg; + size_t nbytes; + const uchar *tail; + int i; + char id; + + if (p == NULL) { + msg = "didn't expect a NULL pointer"; + goto error; + } + + /* Check the API id */ + id = (char)q[-SST]; + if (id != api) { + msg = msgbuf; + snprintf(msg, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api); + msgbuf[sizeof(msgbuf)-1] = 0; + goto error; + } + + /* Check the stuff at the start of p first: if there's underwrite + * corruption, the number-of-bytes field may be nuts, and checking + * the tail could lead to a segfault then. + */ + for (i = SST-1; i >= 1; --i) { + if (*(q-i) != FORBIDDENBYTE) { + msg = "bad leading pad byte"; + goto error; + } + } + + nbytes = read_size_t(q - 2*SST); + tail = q + nbytes; + for (i = 0; i < SST; ++i) { + if (tail[i] != FORBIDDENBYTE) { + msg = "bad trailing pad byte"; + goto error; + } + } + + return; + +error: + _PyObject_DebugDumpAddress(p); + Py_FatalError(msg); +} + +/* Display info to stderr about the memory block at p. */ +void +_PyObject_DebugDumpAddress(const void *p) +{ + const uchar *q = (const uchar *)p; + const uchar *tail; + size_t nbytes, serial; + int i; + int ok; + char id; + + fprintf(stderr, "Debug memory block at address p=%p:", p); + if (p == NULL) { + fprintf(stderr, "\n"); + return; + } + id = (char)q[-SST]; + fprintf(stderr, " API '%c'\n", id); + + nbytes = read_size_t(q - 2*SST); + fprintf(stderr, " %" PY_FORMAT_SIZE_T "u bytes originally " + "requested\n", nbytes); + + /* In case this is nuts, check the leading pad bytes first. */ + fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1); + ok = 1; + for (i = 1; i <= SST-1; ++i) { + if (*(q-i) != FORBIDDENBYTE) { + ok = 0; + break; + } + } + if (ok) + fputs("FORBIDDENBYTE, as expected.\n", stderr); + else { + fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", + FORBIDDENBYTE); + for (i = SST-1; i >= 1; --i) { + const uchar byte = *(q-i); + fprintf(stderr, " at p-%d: 0x%02x", i, byte); + if (byte != FORBIDDENBYTE) + fputs(" *** OUCH", stderr); + fputc('\n', stderr); + } + + fputs(" Because memory is corrupted at the start, the " + "count of bytes requested\n" + " may be bogus, and checking the trailing pad " + "bytes may segfault.\n", stderr); + } + + tail = q + nbytes; + fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, tail); + ok = 1; + for (i = 0; i < SST; ++i) { + if (tail[i] != FORBIDDENBYTE) { + ok = 0; + break; + } + } + if (ok) + fputs("FORBIDDENBYTE, as expected.\n", stderr); + else { + fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", + FORBIDDENBYTE); + for (i = 0; i < SST; ++i) { + const uchar byte = tail[i]; + fprintf(stderr, " at tail+%d: 0x%02x", + i, byte); + if (byte != FORBIDDENBYTE) + fputs(" *** OUCH", stderr); + fputc('\n', stderr); + } + } + + serial = read_size_t(tail + SST); + fprintf(stderr, " The block was made by call #%" PY_FORMAT_SIZE_T + "u to debug malloc/realloc.\n", serial); + + if (nbytes > 0) { + i = 0; + fputs(" Data at p:", stderr); + /* print up to 8 bytes at the start */ + while (q < tail && i < 8) { + fprintf(stderr, " %02x", *q); + ++i; + ++q; + } + /* and up to 8 at the end */ + if (q < tail) { + if (tail - q > 8) { + fputs(" ...", stderr); + q = tail - 8; + } + while (q < tail) { + fprintf(stderr, " %02x", *q); + ++q; + } + } + fputc('\n', stderr); + } +} + +static size_t +printone(const char* msg, size_t value) +{ + int i, k; + char buf[100]; + size_t origvalue = value; + + fputs(msg, stderr); + for (i = (int)strlen(msg); i < 35; ++i) + fputc(' ', stderr); + fputc('=', stderr); + + /* Write the value with commas. */ + i = 22; + buf[i--] = '\0'; + buf[i--] = '\n'; + k = 3; + do { + size_t nextvalue = value / 10; + unsigned int digit = (unsigned int)(value - nextvalue * 10); + value = nextvalue; + buf[i--] = (char)(digit + '0'); + --k; + if (k == 0 && value && i >= 0) { + k = 3; + buf[i--] = ','; + } + } while (value && i >= 0); + + while (i >= 0) + buf[i--] = ' '; + fputs(buf, stderr); + + return origvalue; +} + +/* Print summary info to stderr about the state of pymalloc's structures. + * In Py_DEBUG mode, also perform some expensive internal consistency + * checks. + */ +void +_PyObject_DebugMallocStats(void) +{ + uint i; + const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT; + /* # of pools, allocated blocks, and free blocks per class index */ + size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; + size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; + size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; + /* total # of allocated bytes in used and full pools */ + size_t allocated_bytes = 0; + /* total # of available bytes in used pools */ + size_t available_bytes = 0; + /* # of free pools + pools not yet carved out of current arena */ + uint numfreepools = 0; + /* # of bytes for arena alignment padding */ + size_t arena_alignment = 0; + /* # of bytes in used and full pools used for pool_headers */ + size_t pool_header_bytes = 0; + /* # of bytes in used and full pools wasted due to quantization, + * i.e. the necessarily leftover space at the ends of used and + * full pools. + */ + size_t quantization = 0; + /* # of arenas actually allocated. */ + size_t narenas = 0; + /* running total -- should equal narenas * ARENA_SIZE */ + size_t total; + char buf[128]; + + fprintf(stderr, "Small block threshold = %d, in %u size classes.\n", + SMALL_REQUEST_THRESHOLD, numclasses); + + for (i = 0; i < numclasses; ++i) + numpools[i] = numblocks[i] = numfreeblocks[i] = 0; + + /* Because full pools aren't linked to from anything, it's easiest + * to march over all the arenas. If we're lucky, most of the memory + * will be living in full pools -- would be a shame to miss them. + */ + for (i = 0; i < maxarenas; ++i) { + uint j; + uptr base = arenas[i].address; + + /* Skip arenas which are not allocated. */ + if (arenas[i].address == (uptr)NULL) + continue; + narenas += 1; + + numfreepools += arenas[i].nfreepools; + + /* round up to pool alignment */ + if (base & (uptr)POOL_SIZE_MASK) { + arena_alignment += POOL_SIZE; + base &= ~(uptr)POOL_SIZE_MASK; + base += POOL_SIZE; + } + + /* visit every pool in the arena */ + assert(base <= (uptr) arenas[i].pool_address); + for (j = 0; + base < (uptr) arenas[i].pool_address; + ++j, base += POOL_SIZE) { + poolp p = (poolp)base; + const uint sz = p->szidx; + uint freeblocks; + + if (p->ref.count == 0) { + /* currently unused */ + assert(pool_is_in_list(p, arenas[i].freepools)); + continue; + } + ++numpools[sz]; + numblocks[sz] += p->ref.count; + freeblocks = NUMBLOCKS(sz) - p->ref.count; + numfreeblocks[sz] += freeblocks; +#ifdef Py_DEBUG + if (freeblocks > 0) + assert(pool_is_in_list(p, usedpools[sz + sz])); +#endif + } + } + assert(narenas == narenas_currently_allocated); + + fputc('\n', stderr); + fputs("class size num pools blocks in use avail blocks\n" + "----- ---- --------- ------------- ------------\n", + stderr); + + for (i = 0; i < numclasses; ++i) { + size_t p = numpools[i]; + size_t b = numblocks[i]; + size_t f = numfreeblocks[i]; + uint size = INDEX2SIZE(i); + if (p == 0) { + assert(b == 0 && f == 0); + continue; + } + fprintf(stderr, "%5u %6u " + "%11" PY_FORMAT_SIZE_T "u " + "%15" PY_FORMAT_SIZE_T "u " + "%13" PY_FORMAT_SIZE_T "u\n", + i, size, p, b, f); + allocated_bytes += b * size; + available_bytes += f * size; + pool_header_bytes += p * POOL_OVERHEAD; + quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size); + } + fputc('\n', stderr); + (void)printone("# times object malloc called", serialno); + + (void)printone("# arenas allocated total", ntimes_arena_allocated); + (void)printone("# arenas reclaimed", ntimes_arena_allocated - narenas); + (void)printone("# arenas highwater mark", narenas_highwater); + (void)printone("# arenas allocated current", narenas); + + PyOS_snprintf(buf, sizeof(buf), + "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena", + narenas, ARENA_SIZE); + (void)printone(buf, narenas * ARENA_SIZE); + + fputc('\n', stderr); + + total = printone("# bytes in allocated blocks", allocated_bytes); + total += printone("# bytes in available blocks", available_bytes); + + PyOS_snprintf(buf, sizeof(buf), + "%u unused pools * %d bytes", numfreepools, POOL_SIZE); + total += printone(buf, (size_t)numfreepools * POOL_SIZE); + + total += printone("# bytes lost to pool headers", pool_header_bytes); + total += printone("# bytes lost to quantization", quantization); + total += printone("# bytes lost to arena alignment", arena_alignment); + (void)printone("Total", total); +} + +#endif /* PYMALLOC_DEBUG */ + +#ifdef Py_USING_MEMORY_DEBUGGER +/* Make this function last so gcc won't inline it since the definition is + * after the reference. + */ +int +Py_ADDRESS_IN_RANGE(void *P, poolp pool) +{ + uint arenaindex_temp = pool->arenaindex; + + return arenaindex_temp < maxarenas && + (uptr)P - arenas[arenaindex_temp].address < (uptr)ARENA_SIZE && + arenas[arenaindex_temp].address != 0; +} +#endif + + +#if defined(WITH_PYMALLOC) && defined(PYMALLOC_DEBUG) +/* Dummy functions only present to keep the same ABI with the vanilla Python + compiled in debug mode: they are not used in practice. See issue: + https://github.com/vstinner/pytracemalloc/issues/1 */ + +void* _PyMem_DebugMalloc(size_t nbytes) +{ return PyMem_RawMalloc(nbytes); } + +void* _PyMem_DebugRealloc(void *p, size_t nbytes) +{ return PyMem_RawRealloc(p, nbytes); } + +void _PyObject_DebugFree(void *p) +{ return PyObject_Free(p); } + +void* _PyObject_DebugMalloc(size_t nbytes) +{ return PyObject_Malloc(nbytes); } + +void* _PyObject_DebugRealloc(void *p, size_t nbytes) +{ return PyObject_Realloc(p, nbytes); } + +void _PyMem_DebugFree(void *p) +{ PyMem_RawFree(p); } + +void _PyObject_DebugCheckAddress(const void *p) +{} + +void * _PyObject_DebugMallocApi(char api, size_t nbytes) +{ return PyObject_Malloc(nbytes); } + +void * _PyObject_DebugReallocApi(char api, void *p, size_t nbytes) +{ return PyObject_Realloc(p, nbytes); } + +void _PyObject_DebugFreeApi(char api, void *p) +{ return PyObject_Free(p); } + +void _PyObject_DebugCheckAddressApi(char api, const void *p) +{} +#endif |