diff options
author | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:24:06 +0300 |
---|---|---|
committer | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:41:34 +0300 |
commit | e0e3e1717e3d33762ce61950504f9637a6e669ed (patch) | |
tree | bca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python/src/Objects/object.c | |
parent | 38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff) | |
download | ydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz |
add ydb deps
Diffstat (limited to 'contrib/tools/python/src/Objects/object.c')
-rw-r--r-- | contrib/tools/python/src/Objects/object.c | 2497 |
1 files changed, 2497 insertions, 0 deletions
diff --git a/contrib/tools/python/src/Objects/object.c b/contrib/tools/python/src/Objects/object.c new file mode 100644 index 0000000000..ca04cc192c --- /dev/null +++ b/contrib/tools/python/src/Objects/object.c @@ -0,0 +1,2497 @@ + +/* Generic object operations; and implementation of None (NoObject) */ + +#include "Python.h" +#include "frameobject.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#ifdef Py_REF_DEBUG +Py_ssize_t _Py_RefTotal; + +Py_ssize_t +_Py_GetRefTotal(void) +{ + PyObject *o; + Py_ssize_t total = _Py_RefTotal; + /* ignore the references to the dummy object of the dicts and sets + because they are not reliable and not useful (now that the + hash table code is well-tested) */ + o = _PyDict_Dummy(); + if (o != NULL) + total -= o->ob_refcnt; + o = _PySet_Dummy(); + if (o != NULL) + total -= o->ob_refcnt; + return total; +} +#endif /* Py_REF_DEBUG */ + +int Py_DivisionWarningFlag; +int Py_Py3kWarningFlag; + +/* Object allocation routines used by NEWOBJ and NEWVAROBJ macros. + These are used by the individual routines for object creation. + Do not call them otherwise, they do not initialize the object! */ + +#ifdef Py_TRACE_REFS +/* Head of circular doubly-linked list of all objects. These are linked + * together via the _ob_prev and _ob_next members of a PyObject, which + * exist only in a Py_TRACE_REFS build. + */ +static PyObject refchain = {&refchain, &refchain}; + +/* Insert op at the front of the list of all objects. If force is true, + * op is added even if _ob_prev and _ob_next are non-NULL already. If + * force is false amd _ob_prev or _ob_next are non-NULL, do nothing. + * force should be true if and only if op points to freshly allocated, + * uninitialized memory, or you've unlinked op from the list and are + * relinking it into the front. + * Note that objects are normally added to the list via _Py_NewReference, + * which is called by PyObject_Init. Not all objects are initialized that + * way, though; exceptions include statically allocated type objects, and + * statically allocated singletons (like Py_True and Py_None). + */ +void +_Py_AddToAllObjects(PyObject *op, int force) +{ +#ifdef Py_DEBUG + if (!force) { + /* If it's initialized memory, op must be in or out of + * the list unambiguously. + */ + assert((op->_ob_prev == NULL) == (op->_ob_next == NULL)); + } +#endif + if (force || op->_ob_prev == NULL) { + op->_ob_next = refchain._ob_next; + op->_ob_prev = &refchain; + refchain._ob_next->_ob_prev = op; + refchain._ob_next = op; + } +} +#endif /* Py_TRACE_REFS */ + +#ifdef COUNT_ALLOCS +static PyTypeObject *type_list; +/* All types are added to type_list, at least when + they get one object created. That makes them + immortal, which unfortunately contributes to + garbage itself. If unlist_types_without_objects + is set, they will be removed from the type_list + once the last object is deallocated. */ +static int unlist_types_without_objects; +extern Py_ssize_t tuple_zero_allocs, fast_tuple_allocs; +extern Py_ssize_t quick_int_allocs, quick_neg_int_allocs; +extern Py_ssize_t null_strings, one_strings; +void +dump_counts(FILE* f) +{ + PyTypeObject *tp; + + for (tp = type_list; tp; tp = tp->tp_next) + fprintf(f, "%s alloc'd: %" PY_FORMAT_SIZE_T "d, " + "freed: %" PY_FORMAT_SIZE_T "d, " + "max in use: %" PY_FORMAT_SIZE_T "d\n", + tp->tp_name, tp->tp_allocs, tp->tp_frees, + tp->tp_maxalloc); + fprintf(f, "fast tuple allocs: %" PY_FORMAT_SIZE_T "d, " + "empty: %" PY_FORMAT_SIZE_T "d\n", + fast_tuple_allocs, tuple_zero_allocs); + fprintf(f, "fast int allocs: pos: %" PY_FORMAT_SIZE_T "d, " + "neg: %" PY_FORMAT_SIZE_T "d\n", + quick_int_allocs, quick_neg_int_allocs); + fprintf(f, "null strings: %" PY_FORMAT_SIZE_T "d, " + "1-strings: %" PY_FORMAT_SIZE_T "d\n", + null_strings, one_strings); +} + +PyObject * +get_counts(void) +{ + PyTypeObject *tp; + PyObject *result; + PyObject *v; + + result = PyList_New(0); + if (result == NULL) + return NULL; + for (tp = type_list; tp; tp = tp->tp_next) { + v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs, + tp->tp_frees, tp->tp_maxalloc); + if (v == NULL) { + Py_DECREF(result); + return NULL; + } + if (PyList_Append(result, v) < 0) { + Py_DECREF(v); + Py_DECREF(result); + return NULL; + } + Py_DECREF(v); + } + return result; +} + +void +inc_count(PyTypeObject *tp) +{ + if (tp->tp_next == NULL && tp->tp_prev == NULL) { + /* first time; insert in linked list */ + if (tp->tp_next != NULL) /* sanity check */ + Py_FatalError("XXX inc_count sanity check"); + if (type_list) + type_list->tp_prev = tp; + tp->tp_next = type_list; + /* Note that as of Python 2.2, heap-allocated type objects + * can go away, but this code requires that they stay alive + * until program exit. That's why we're careful with + * refcounts here. type_list gets a new reference to tp, + * while ownership of the reference type_list used to hold + * (if any) was transferred to tp->tp_next in the line above. + * tp is thus effectively immortal after this. + */ + Py_INCREF(tp); + type_list = tp; +#ifdef Py_TRACE_REFS + /* Also insert in the doubly-linked list of all objects, + * if not already there. + */ + _Py_AddToAllObjects((PyObject *)tp, 0); +#endif + } + tp->tp_allocs++; + if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc) + tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees; +} + +void dec_count(PyTypeObject *tp) +{ + tp->tp_frees++; + if (unlist_types_without_objects && + tp->tp_allocs == tp->tp_frees) { + /* unlink the type from type_list */ + if (tp->tp_prev) + tp->tp_prev->tp_next = tp->tp_next; + else + type_list = tp->tp_next; + if (tp->tp_next) + tp->tp_next->tp_prev = tp->tp_prev; + tp->tp_next = tp->tp_prev = NULL; + Py_DECREF(tp); + } +} + +#endif + +#ifdef Py_REF_DEBUG +/* Log a fatal error; doesn't return. */ +void +_Py_NegativeRefcount(const char *fname, int lineno, PyObject *op) +{ + char buf[300]; + + PyOS_snprintf(buf, sizeof(buf), + "%s:%i object at %p has negative ref count " + "%" PY_FORMAT_SIZE_T "d", + fname, lineno, op, op->ob_refcnt); + Py_FatalError(buf); +} + +#endif /* Py_REF_DEBUG */ + +void +Py_IncRef(PyObject *o) +{ + Py_XINCREF(o); +} + +void +Py_DecRef(PyObject *o) +{ + Py_XDECREF(o); +} + +PyObject * +PyObject_Init(PyObject *op, PyTypeObject *tp) +{ + if (op == NULL) + return PyErr_NoMemory(); + /* Any changes should be reflected in PyObject_INIT (objimpl.h) */ + Py_TYPE(op) = tp; + _Py_NewReference(op); + return op; +} + +PyVarObject * +PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size) +{ + if (op == NULL) + return (PyVarObject *) PyErr_NoMemory(); + /* Any changes should be reflected in PyObject_INIT_VAR */ + op->ob_size = size; + Py_TYPE(op) = tp; + _Py_NewReference((PyObject *)op); + return op; +} + +PyObject * +_PyObject_New(PyTypeObject *tp) +{ + PyObject *op; + op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp)); + if (op == NULL) + return PyErr_NoMemory(); + return PyObject_INIT(op, tp); +} + +PyVarObject * +_PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems) +{ + PyVarObject *op; + const size_t size = _PyObject_VAR_SIZE(tp, nitems); + op = (PyVarObject *) PyObject_MALLOC(size); + if (op == NULL) + return (PyVarObject *)PyErr_NoMemory(); + return PyObject_INIT_VAR(op, tp, nitems); +} + +/* for binary compatibility with 2.2 */ +#undef _PyObject_Del +void +_PyObject_Del(PyObject *op) +{ + PyObject_FREE(op); +} + +/* Implementation of PyObject_Print with recursion checking */ +static int +internal_print(PyObject *op, FILE *fp, int flags, int nesting) +{ + int ret = 0; + if (nesting > 10) { + PyErr_SetString(PyExc_RuntimeError, "print recursion"); + return -1; + } + if (PyErr_CheckSignals()) + return -1; +#ifdef USE_STACKCHECK + if (PyOS_CheckStack()) { + PyErr_SetString(PyExc_MemoryError, "stack overflow"); + return -1; + } +#endif + clearerr(fp); /* Clear any previous error condition */ + if (op == NULL) { + Py_BEGIN_ALLOW_THREADS + fprintf(fp, "<nil>"); + Py_END_ALLOW_THREADS + } + else { + if (op->ob_refcnt <= 0) + /* XXX(twouters) cast refcount to long until %zd is + universally available */ + Py_BEGIN_ALLOW_THREADS + fprintf(fp, "<refcnt %ld at %p>", + (long)op->ob_refcnt, op); + Py_END_ALLOW_THREADS + else if (Py_TYPE(op)->tp_print == NULL) { + PyObject *s; + if (flags & Py_PRINT_RAW) + s = PyObject_Str(op); + else + s = PyObject_Repr(op); + if (s == NULL) + ret = -1; + else { + ret = internal_print(s, fp, Py_PRINT_RAW, + nesting+1); + } + Py_XDECREF(s); + } + else + ret = (*Py_TYPE(op)->tp_print)(op, fp, flags); + } + if (ret == 0) { + if (ferror(fp)) { + PyErr_SetFromErrno(PyExc_IOError); + clearerr(fp); + ret = -1; + } + } + return ret; +} + +int +PyObject_Print(PyObject *op, FILE *fp, int flags) +{ + return internal_print(op, fp, flags, 0); +} + + +/* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */ +void _PyObject_Dump(PyObject* op) +{ + if (op == NULL) + fprintf(stderr, "NULL\n"); + else { +#ifdef WITH_THREAD + PyGILState_STATE gil; +#endif + fprintf(stderr, "object : "); +#ifdef WITH_THREAD + gil = PyGILState_Ensure(); +#endif + (void)PyObject_Print(op, stderr, 0); +#ifdef WITH_THREAD + PyGILState_Release(gil); +#endif + /* XXX(twouters) cast refcount to long until %zd is + universally available */ + fprintf(stderr, "\n" + "type : %s\n" + "refcount: %ld\n" + "address : %p\n", + Py_TYPE(op)==NULL ? "NULL" : Py_TYPE(op)->tp_name, + (long)op->ob_refcnt, + op); + } +} + +PyObject * +PyObject_Repr(PyObject *v) +{ + if (PyErr_CheckSignals()) + return NULL; +#ifdef USE_STACKCHECK + if (PyOS_CheckStack()) { + PyErr_SetString(PyExc_MemoryError, "stack overflow"); + return NULL; + } +#endif + if (v == NULL) + return PyString_FromString("<NULL>"); + else if (Py_TYPE(v)->tp_repr == NULL) + return PyString_FromFormat("<%s object at %p>", + Py_TYPE(v)->tp_name, v); + else { + PyObject *res; + /* It is possible for a type to have a tp_repr representation that + loops infinitely. */ + if (Py_EnterRecursiveCall(" while getting the repr of an object")) + return NULL; + res = (*Py_TYPE(v)->tp_repr)(v); + Py_LeaveRecursiveCall(); + if (res == NULL) + return NULL; +#ifdef Py_USING_UNICODE + if (PyUnicode_Check(res)) { + PyObject* str; + str = PyUnicode_AsEncodedString(res, NULL, NULL); + Py_DECREF(res); + if (str) + res = str; + else + return NULL; + } +#endif + if (!PyString_Check(res)) { + PyErr_Format(PyExc_TypeError, + "__repr__ returned non-string (type %.200s)", + Py_TYPE(res)->tp_name); + Py_DECREF(res); + return NULL; + } + return res; + } +} + +PyObject * +_PyObject_Str(PyObject *v) +{ + PyObject *res; + int type_ok; + if (v == NULL) + return PyString_FromString("<NULL>"); + if (PyString_CheckExact(v)) { + Py_INCREF(v); + return v; + } +#ifdef Py_USING_UNICODE + if (PyUnicode_CheckExact(v)) { + Py_INCREF(v); + return v; + } +#endif + if (Py_TYPE(v)->tp_str == NULL) + return PyObject_Repr(v); + + /* It is possible for a type to have a tp_str representation that loops + infinitely. */ + if (Py_EnterRecursiveCall(" while getting the str of an object")) + return NULL; + res = (*Py_TYPE(v)->tp_str)(v); + Py_LeaveRecursiveCall(); + if (res == NULL) + return NULL; + type_ok = PyString_Check(res); +#ifdef Py_USING_UNICODE + type_ok = type_ok || PyUnicode_Check(res); +#endif + if (!type_ok) { + PyErr_Format(PyExc_TypeError, + "__str__ returned non-string (type %.200s)", + Py_TYPE(res)->tp_name); + Py_DECREF(res); + return NULL; + } + return res; +} + +PyObject * +PyObject_Str(PyObject *v) +{ + PyObject *res = _PyObject_Str(v); + if (res == NULL) + return NULL; +#ifdef Py_USING_UNICODE + if (PyUnicode_Check(res)) { + PyObject* str; + str = PyUnicode_AsEncodedString(res, NULL, NULL); + Py_DECREF(res); + if (str) + res = str; + else + return NULL; + } +#endif + assert(PyString_Check(res)); + return res; +} + +#ifdef Py_USING_UNICODE +PyObject * +PyObject_Unicode(PyObject *v) +{ + PyObject *res; + PyObject *func; + PyObject *str; + int unicode_method_found = 0; + static PyObject *unicodestr = NULL; + + if (v == NULL) { + res = PyString_FromString("<NULL>"); + if (res == NULL) + return NULL; + str = PyUnicode_FromEncodedObject(res, NULL, "strict"); + Py_DECREF(res); + return str; + } else if (PyUnicode_CheckExact(v)) { + Py_INCREF(v); + return v; + } + + if (PyInstance_Check(v)) { + /* We're an instance of a classic class */ + /* Try __unicode__ from the instance -- alas we have no type */ + if (!unicodestr) { + unicodestr = PyString_InternFromString("__unicode__"); + if (!unicodestr) + return NULL; + } + func = PyObject_GetAttr(v, unicodestr); + if (func != NULL) { + unicode_method_found = 1; + res = PyObject_CallFunctionObjArgs(func, NULL); + Py_DECREF(func); + } + else { + PyErr_Clear(); + } + } + else { + /* Not a classic class instance, try __unicode__. */ + func = _PyObject_LookupSpecial(v, "__unicode__", &unicodestr); + if (func != NULL) { + unicode_method_found = 1; + res = PyObject_CallFunctionObjArgs(func, NULL); + Py_DECREF(func); + } + else if (PyErr_Occurred()) + return NULL; + } + + /* Didn't find __unicode__ */ + if (!unicode_method_found) { + if (PyUnicode_Check(v)) { + /* For a Unicode subtype that's didn't overwrite __unicode__, + return a true Unicode object with the same data. */ + return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v), + PyUnicode_GET_SIZE(v)); + } + if (PyString_CheckExact(v)) { + Py_INCREF(v); + res = v; + } + else { + if (Py_TYPE(v)->tp_str != NULL) + res = (*Py_TYPE(v)->tp_str)(v); + else + res = PyObject_Repr(v); + } + } + + if (res == NULL) + return NULL; + if (!PyUnicode_Check(res)) { + str = PyUnicode_FromEncodedObject(res, NULL, "strict"); + Py_DECREF(res); + res = str; + } + return res; +} +#endif + + +/* Helper to warn about deprecated tp_compare return values. Return: + -2 for an exception; + -1 if v < w; + 0 if v == w; + 1 if v > w. + (This function cannot return 2.) +*/ +static int +adjust_tp_compare(int c) +{ + if (PyErr_Occurred()) { + if (c != -1 && c != -2) { + PyObject *t, *v, *tb; + PyErr_Fetch(&t, &v, &tb); + if (PyErr_Warn(PyExc_RuntimeWarning, + "tp_compare didn't return -1 or -2 " + "for exception") < 0) { + Py_XDECREF(t); + Py_XDECREF(v); + Py_XDECREF(tb); + } + else + PyErr_Restore(t, v, tb); + } + return -2; + } + else if (c < -1 || c > 1) { + if (PyErr_Warn(PyExc_RuntimeWarning, + "tp_compare didn't return -1, 0 or 1") < 0) + return -2; + else + return c < -1 ? -1 : 1; + } + else { + assert(c >= -1 && c <= 1); + return c; + } +} + + +/* Macro to get the tp_richcompare field of a type if defined */ +#define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \ + ? (t)->tp_richcompare : NULL) + +/* Map rich comparison operators to their swapped version, e.g. LT --> GT */ +int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE}; + +/* Try a genuine rich comparison, returning an object. Return: + NULL for exception; + NotImplemented if this particular rich comparison is not implemented or + undefined; + some object not equal to NotImplemented if it is implemented + (this latter object may not be a Boolean). +*/ +static PyObject * +try_rich_compare(PyObject *v, PyObject *w, int op) +{ + richcmpfunc f; + PyObject *res; + + if (v->ob_type != w->ob_type && + PyType_IsSubtype(w->ob_type, v->ob_type) && + (f = RICHCOMPARE(w->ob_type)) != NULL) { + res = (*f)(w, v, _Py_SwappedOp[op]); + if (res != Py_NotImplemented) + return res; + Py_DECREF(res); + } + if ((f = RICHCOMPARE(v->ob_type)) != NULL) { + res = (*f)(v, w, op); + if (res != Py_NotImplemented) + return res; + Py_DECREF(res); + } + if ((f = RICHCOMPARE(w->ob_type)) != NULL) { + return (*f)(w, v, _Py_SwappedOp[op]); + } + res = Py_NotImplemented; + Py_INCREF(res); + return res; +} + +/* Try a genuine rich comparison, returning an int. Return: + -1 for exception (including the case where try_rich_compare() returns an + object that's not a Boolean); + 0 if the outcome is false; + 1 if the outcome is true; + 2 if this particular rich comparison is not implemented or undefined. +*/ +static int +try_rich_compare_bool(PyObject *v, PyObject *w, int op) +{ + PyObject *res; + int ok; + + if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL) + return 2; /* Shortcut, avoid INCREF+DECREF */ + res = try_rich_compare(v, w, op); + if (res == NULL) + return -1; + if (res == Py_NotImplemented) { + Py_DECREF(res); + return 2; + } + ok = PyObject_IsTrue(res); + Py_DECREF(res); + return ok; +} + +/* Try rich comparisons to determine a 3-way comparison. Return: + -2 for an exception; + -1 if v < w; + 0 if v == w; + 1 if v > w; + 2 if this particular rich comparison is not implemented or undefined. +*/ +static int +try_rich_to_3way_compare(PyObject *v, PyObject *w) +{ + static struct { int op; int outcome; } tries[3] = { + /* Try this operator, and if it is true, use this outcome: */ + {Py_EQ, 0}, + {Py_LT, -1}, + {Py_GT, 1}, + }; + int i; + + if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL) + return 2; /* Shortcut */ + + for (i = 0; i < 3; i++) { + switch (try_rich_compare_bool(v, w, tries[i].op)) { + case -1: + return -2; + case 1: + return tries[i].outcome; + } + } + + return 2; +} + +/* Try a 3-way comparison, returning an int. Return: + -2 for an exception; + -1 if v < w; + 0 if v == w; + 1 if v > w; + 2 if this particular 3-way comparison is not implemented or undefined. +*/ +static int +try_3way_compare(PyObject *v, PyObject *w) +{ + int c; + cmpfunc f; + + /* Comparisons involving instances are given to instance_compare, + which has the same return conventions as this function. */ + + f = v->ob_type->tp_compare; + if (PyInstance_Check(v)) + return (*f)(v, w); + if (PyInstance_Check(w)) + return (*w->ob_type->tp_compare)(v, w); + + /* If both have the same (non-NULL) tp_compare, use it. */ + if (f != NULL && f == w->ob_type->tp_compare) { + c = (*f)(v, w); + return adjust_tp_compare(c); + } + + /* If either tp_compare is _PyObject_SlotCompare, that's safe. */ + if (f == _PyObject_SlotCompare || + w->ob_type->tp_compare == _PyObject_SlotCompare) + return _PyObject_SlotCompare(v, w); + + /* If we're here, v and w, + a) are not instances; + b) have different types or a type without tp_compare; and + c) don't have a user-defined tp_compare. + tp_compare implementations in C assume that both arguments + have their type, so we give up if the coercion fails or if + it yields types which are still incompatible (which can + happen with a user-defined nb_coerce). + */ + c = PyNumber_CoerceEx(&v, &w); + if (c < 0) + return -2; + if (c > 0) + return 2; + f = v->ob_type->tp_compare; + if (f != NULL && f == w->ob_type->tp_compare) { + c = (*f)(v, w); + Py_DECREF(v); + Py_DECREF(w); + return adjust_tp_compare(c); + } + + /* No comparison defined */ + Py_DECREF(v); + Py_DECREF(w); + return 2; +} + +/* Final fallback 3-way comparison, returning an int. Return: + -2 if an error occurred; + -1 if v < w; + 0 if v == w; + 1 if v > w. +*/ +static int +default_3way_compare(PyObject *v, PyObject *w) +{ + int c; + const char *vname, *wname; + + if (v->ob_type == w->ob_type) { + /* When comparing these pointers, they must be cast to + * integer types (i.e. Py_uintptr_t, our spelling of C9X's + * uintptr_t). ANSI specifies that pointer compares other + * than == and != to non-related structures are undefined. + */ + Py_uintptr_t vv = (Py_uintptr_t)v; + Py_uintptr_t ww = (Py_uintptr_t)w; + return (vv < ww) ? -1 : (vv > ww) ? 1 : 0; + } + + /* None is smaller than anything */ + if (v == Py_None) + return -1; + if (w == Py_None) + return 1; + + /* different type: compare type names; numbers are smaller */ + if (PyNumber_Check(v)) + vname = ""; + else + vname = v->ob_type->tp_name; + if (PyNumber_Check(w)) + wname = ""; + else + wname = w->ob_type->tp_name; + c = strcmp(vname, wname); + if (c < 0) + return -1; + if (c > 0) + return 1; + /* Same type name, or (more likely) incomparable numeric types */ + return ((Py_uintptr_t)(v->ob_type) < ( + Py_uintptr_t)(w->ob_type)) ? -1 : 1; +} + +/* Do a 3-way comparison, by hook or by crook. Return: + -2 for an exception (but see below); + -1 if v < w; + 0 if v == w; + 1 if v > w; + BUT: if the object implements a tp_compare function, it returns + whatever this function returns (whether with an exception or not). +*/ +static int +do_cmp(PyObject *v, PyObject *w) +{ + int c; + cmpfunc f; + + if (v->ob_type == w->ob_type + && (f = v->ob_type->tp_compare) != NULL) { + c = (*f)(v, w); + if (PyInstance_Check(v)) { + /* Instance tp_compare has a different signature. + But if it returns undefined we fall through. */ + if (c != 2) + return c; + /* Else fall through to try_rich_to_3way_compare() */ + } + else + return adjust_tp_compare(c); + } + /* We only get here if one of the following is true: + a) v and w have different types + b) v and w have the same type, which doesn't have tp_compare + c) v and w are instances, and either __cmp__ is not defined or + __cmp__ returns NotImplemented + */ + c = try_rich_to_3way_compare(v, w); + if (c < 2) + return c; + c = try_3way_compare(v, w); + if (c < 2) + return c; + return default_3way_compare(v, w); +} + +/* Compare v to w. Return + -1 if v < w or exception (PyErr_Occurred() true in latter case). + 0 if v == w. + 1 if v > w. + XXX The docs (C API manual) say the return value is undefined in case + XXX of error. +*/ +int +PyObject_Compare(PyObject *v, PyObject *w) +{ + int result; + + if (v == NULL || w == NULL) { + PyErr_BadInternalCall(); + return -1; + } + if (v == w) + return 0; + if (Py_EnterRecursiveCall(" in cmp")) + return -1; + result = do_cmp(v, w); + Py_LeaveRecursiveCall(); + return result < 0 ? -1 : result; +} + +/* Return (new reference to) Py_True or Py_False. */ +static PyObject * +convert_3way_to_object(int op, int c) +{ + PyObject *result; + switch (op) { + case Py_LT: c = c < 0; break; + case Py_LE: c = c <= 0; break; + case Py_EQ: c = c == 0; break; + case Py_NE: c = c != 0; break; + case Py_GT: c = c > 0; break; + case Py_GE: c = c >= 0; break; + } + result = c ? Py_True : Py_False; + Py_INCREF(result); + return result; +} + +/* We want a rich comparison but don't have one. Try a 3-way cmp instead. + Return + NULL if error + Py_True if v op w + Py_False if not (v op w) +*/ +static PyObject * +try_3way_to_rich_compare(PyObject *v, PyObject *w, int op) +{ + int c; + + c = try_3way_compare(v, w); + if (c >= 2) { + + /* Py3K warning if types are not equal and comparison isn't == or != */ + if (Py_Py3kWarningFlag && + v->ob_type != w->ob_type && op != Py_EQ && op != Py_NE && + PyErr_WarnEx(PyExc_DeprecationWarning, + "comparing unequal types not supported " + "in 3.x", 1) < 0) { + return NULL; + } + + c = default_3way_compare(v, w); + } + if (c <= -2) + return NULL; + return convert_3way_to_object(op, c); +} + +/* Do rich comparison on v and w. Return + NULL if error + Else a new reference to an object other than Py_NotImplemented, usually(?): + Py_True if v op w + Py_False if not (v op w) +*/ +static PyObject * +do_richcmp(PyObject *v, PyObject *w, int op) +{ + PyObject *res; + + res = try_rich_compare(v, w, op); + if (res != Py_NotImplemented) + return res; + Py_DECREF(res); + + return try_3way_to_rich_compare(v, w, op); +} + +/* Return: + NULL for exception; + some object not equal to NotImplemented if it is implemented + (this latter object may not be a Boolean). +*/ +PyObject * +PyObject_RichCompare(PyObject *v, PyObject *w, int op) +{ + PyObject *res; + + assert(Py_LT <= op && op <= Py_GE); + if (Py_EnterRecursiveCall(" in cmp")) + return NULL; + + /* If the types are equal, and not old-style instances, try to + get out cheap (don't bother with coercions etc.). */ + if (v->ob_type == w->ob_type && !PyInstance_Check(v)) { + cmpfunc fcmp; + richcmpfunc frich = RICHCOMPARE(v->ob_type); + /* If the type has richcmp, try it first. try_rich_compare + tries it two-sided, which is not needed since we've a + single type only. */ + if (frich != NULL) { + res = (*frich)(v, w, op); + if (res != Py_NotImplemented) + goto Done; + Py_DECREF(res); + } + /* No richcmp, or this particular richmp not implemented. + Try 3-way cmp. */ + fcmp = v->ob_type->tp_compare; + if (fcmp != NULL) { + int c = (*fcmp)(v, w); + c = adjust_tp_compare(c); + if (c == -2) { + res = NULL; + goto Done; + } + res = convert_3way_to_object(op, c); + goto Done; + } + } + + /* Fast path not taken, or couldn't deliver a useful result. */ + res = do_richcmp(v, w, op); +Done: + Py_LeaveRecursiveCall(); + return res; +} + +/* Return -1 if error; 1 if v op w; 0 if not (v op w). */ +int +PyObject_RichCompareBool(PyObject *v, PyObject *w, int op) +{ + PyObject *res; + int ok; + + /* Quick result when objects are the same. + Guarantees that identity implies equality. */ + if (v == w) { + if (op == Py_EQ) + return 1; + else if (op == Py_NE) + return 0; + } + + res = PyObject_RichCompare(v, w, op); + if (res == NULL) + return -1; + if (PyBool_Check(res)) + ok = (res == Py_True); + else + ok = PyObject_IsTrue(res); + Py_DECREF(res); + return ok; +} + +/* Set of hash utility functions to help maintaining the invariant that + if a==b then hash(a)==hash(b) + + All the utility functions (_Py_Hash*()) return "-1" to signify an error. +*/ + +long +_Py_HashDouble(double v) +{ + double intpart, fractpart; + int expo; + long hipart; + long x; /* the final hash value */ + /* This is designed so that Python numbers of different types + * that compare equal hash to the same value; otherwise comparisons + * of mapping keys will turn out weird. + */ + + if (!Py_IS_FINITE(v)) { + if (Py_IS_INFINITY(v)) + return v < 0 ? -271828 : 314159; + else + return 0; + } + fractpart = modf(v, &intpart); + if (fractpart == 0.0) { + /* This must return the same hash as an equal int or long. */ + if (intpart > LONG_MAX/2 || -intpart > LONG_MAX/2) { + /* Convert to long and use its hash. */ + PyObject *plong; /* converted to Python long */ + plong = PyLong_FromDouble(v); + if (plong == NULL) + return -1; + x = PyObject_Hash(plong); + Py_DECREF(plong); + return x; + } + /* Fits in a C long == a Python int, so is its own hash. */ + x = (long)intpart; + if (x == -1) + x = -2; + return x; + } + /* The fractional part is non-zero, so we don't have to worry about + * making this match the hash of some other type. + * Use frexp to get at the bits in the double. + * Since the VAX D double format has 56 mantissa bits, which is the + * most of any double format in use, each of these parts may have as + * many as (but no more than) 56 significant bits. + * So, assuming sizeof(long) >= 4, each part can be broken into two + * longs; frexp and multiplication are used to do that. + * Also, since the Cray double format has 15 exponent bits, which is + * the most of any double format in use, shifting the exponent field + * left by 15 won't overflow a long (again assuming sizeof(long) >= 4). + */ + v = frexp(v, &expo); + v *= 2147483648.0; /* 2**31 */ + hipart = (long)v; /* take the top 32 bits */ + v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */ + x = hipart + (long)v + (expo << 15); + if (x == -1) + x = -2; + return x; +} + +long +_Py_HashPointer(void *p) +{ + long x; + size_t y = (size_t)p; + /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid + excessive hash collisions for dicts and sets */ + y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4)); + x = (long)y; + if (x == -1) + x = -2; + return x; +} + +long +PyObject_HashNotImplemented(PyObject *self) +{ + PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'", + self->ob_type->tp_name); + return -1; +} + +_Py_HashSecret_t _Py_HashSecret; + +long +PyObject_Hash(PyObject *v) +{ + PyTypeObject *tp = v->ob_type; + if (tp->tp_hash != NULL) + return (*tp->tp_hash)(v); + /* To keep to the general practice that inheriting + * solely from object in C code should work without + * an explicit call to PyType_Ready, we implicitly call + * PyType_Ready here and then check the tp_hash slot again + */ + if (tp->tp_dict == NULL) { + if (PyType_Ready(tp) < 0) + return -1; + if (tp->tp_hash != NULL) + return (*tp->tp_hash)(v); + } + if (tp->tp_compare == NULL && RICHCOMPARE(tp) == NULL) { + return _Py_HashPointer(v); /* Use address as hash value */ + } + /* If there's a cmp but no hash defined, the object can't be hashed */ + return PyObject_HashNotImplemented(v); +} + +PyObject * +PyObject_GetAttrString(PyObject *v, const char *name) +{ + PyObject *w, *res; + + if (Py_TYPE(v)->tp_getattr != NULL) + return (*Py_TYPE(v)->tp_getattr)(v, (char*)name); + w = PyString_InternFromString(name); + if (w == NULL) + return NULL; + res = PyObject_GetAttr(v, w); + Py_XDECREF(w); + return res; +} + +int +PyObject_HasAttrString(PyObject *v, const char *name) +{ + PyObject *res = PyObject_GetAttrString(v, name); + if (res != NULL) { + Py_DECREF(res); + return 1; + } + PyErr_Clear(); + return 0; +} + +int +PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w) +{ + PyObject *s; + int res; + + if (Py_TYPE(v)->tp_setattr != NULL) + return (*Py_TYPE(v)->tp_setattr)(v, (char*)name, w); + s = PyString_InternFromString(name); + if (s == NULL) + return -1; + res = PyObject_SetAttr(v, s, w); + Py_XDECREF(s); + return res; +} + +PyObject * +PyObject_GetAttr(PyObject *v, PyObject *name) +{ + PyTypeObject *tp = Py_TYPE(v); + + if (!PyString_Check(name)) { +#ifdef Py_USING_UNICODE + /* The Unicode to string conversion is done here because the + existing tp_getattro slots expect a string object as name + and we wouldn't want to break those. */ + if (PyUnicode_Check(name)) { + name = _PyUnicode_AsDefaultEncodedString(name, NULL); + if (name == NULL) + return NULL; + } + else +#endif + { + PyErr_Format(PyExc_TypeError, + "attribute name must be string, not '%.200s'", + Py_TYPE(name)->tp_name); + return NULL; + } + } + if (tp->tp_getattro != NULL) + return (*tp->tp_getattro)(v, name); + if (tp->tp_getattr != NULL) + return (*tp->tp_getattr)(v, PyString_AS_STRING(name)); + PyErr_Format(PyExc_AttributeError, + "'%.50s' object has no attribute '%.400s'", + tp->tp_name, PyString_AS_STRING(name)); + return NULL; +} + +int +PyObject_HasAttr(PyObject *v, PyObject *name) +{ + PyObject *res = PyObject_GetAttr(v, name); + if (res != NULL) { + Py_DECREF(res); + return 1; + } + PyErr_Clear(); + return 0; +} + +int +PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value) +{ + PyTypeObject *tp = Py_TYPE(v); + int err; + + if (!PyString_Check(name)){ +#ifdef Py_USING_UNICODE + /* The Unicode to string conversion is done here because the + existing tp_setattro slots expect a string object as name + and we wouldn't want to break those. */ + if (PyUnicode_Check(name)) { + name = PyUnicode_AsEncodedString(name, NULL, NULL); + if (name == NULL) + return -1; + } + else +#endif + { + PyErr_Format(PyExc_TypeError, + "attribute name must be string, not '%.200s'", + Py_TYPE(name)->tp_name); + return -1; + } + } + else + Py_INCREF(name); + + PyString_InternInPlace(&name); + if (tp->tp_setattro != NULL) { + err = (*tp->tp_setattro)(v, name, value); + Py_DECREF(name); + return err; + } + if (tp->tp_setattr != NULL) { + err = (*tp->tp_setattr)(v, PyString_AS_STRING(name), value); + Py_DECREF(name); + return err; + } + Py_DECREF(name); + if (tp->tp_getattr == NULL && tp->tp_getattro == NULL) + PyErr_Format(PyExc_TypeError, + "'%.100s' object has no attributes " + "(%s .%.100s)", + tp->tp_name, + value==NULL ? "del" : "assign to", + PyString_AS_STRING(name)); + else + PyErr_Format(PyExc_TypeError, + "'%.100s' object has only read-only attributes " + "(%s .%.100s)", + tp->tp_name, + value==NULL ? "del" : "assign to", + PyString_AS_STRING(name)); + return -1; +} + +/* Helper to get a pointer to an object's __dict__ slot, if any */ + +PyObject ** +_PyObject_GetDictPtr(PyObject *obj) +{ + Py_ssize_t dictoffset; + PyTypeObject *tp = Py_TYPE(obj); + + if (!(tp->tp_flags & Py_TPFLAGS_HAVE_CLASS)) + return NULL; + dictoffset = tp->tp_dictoffset; + if (dictoffset == 0) + return NULL; + if (dictoffset < 0) { + Py_ssize_t tsize; + size_t size; + + tsize = ((PyVarObject *)obj)->ob_size; + if (tsize < 0) + tsize = -tsize; + size = _PyObject_VAR_SIZE(tp, tsize); + + dictoffset += (long)size; + assert(dictoffset > 0); + assert(dictoffset % SIZEOF_VOID_P == 0); + } + return (PyObject **) ((char *)obj + dictoffset); +} + +PyObject * +PyObject_SelfIter(PyObject *obj) +{ + Py_INCREF(obj); + return obj; +} + +/* Helper used when the __next__ method is removed from a type: + tp_iternext is never NULL and can be safely called without checking + on every iteration. + */ + +PyObject * +_PyObject_NextNotImplemented(PyObject *self) +{ + PyErr_Format(PyExc_TypeError, + "'%.200s' object is not iterable", + Py_TYPE(self)->tp_name); + return NULL; +} + +/* Generic GetAttr functions - put these in your tp_[gs]etattro slot */ + +PyObject * +_PyObject_GenericGetAttrWithDict(PyObject *obj, PyObject *name, PyObject *dict) +{ + PyTypeObject *tp = Py_TYPE(obj); + PyObject *descr = NULL; + PyObject *res = NULL; + descrgetfunc f; + Py_ssize_t dictoffset; + PyObject **dictptr; + + if (!PyString_Check(name)){ +#ifdef Py_USING_UNICODE + /* The Unicode to string conversion is done here because the + existing tp_setattro slots expect a string object as name + and we wouldn't want to break those. */ + if (PyUnicode_Check(name)) { + name = PyUnicode_AsEncodedString(name, NULL, NULL); + if (name == NULL) + return NULL; + } + else +#endif + { + PyErr_Format(PyExc_TypeError, + "attribute name must be string, not '%.200s'", + Py_TYPE(name)->tp_name); + return NULL; + } + } + else + Py_INCREF(name); + + if (tp->tp_dict == NULL) { + if (PyType_Ready(tp) < 0) + goto done; + } + +#if 0 /* XXX this is not quite _PyType_Lookup anymore */ + /* Inline _PyType_Lookup */ + { + Py_ssize_t i, n; + PyObject *mro, *base, *dict; + + /* Look in tp_dict of types in MRO */ + mro = tp->tp_mro; + assert(mro != NULL); + assert(PyTuple_Check(mro)); + n = PyTuple_GET_SIZE(mro); + for (i = 0; i < n; i++) { + base = PyTuple_GET_ITEM(mro, i); + if (PyClass_Check(base)) + dict = ((PyClassObject *)base)->cl_dict; + else { + assert(PyType_Check(base)); + dict = ((PyTypeObject *)base)->tp_dict; + } + assert(dict && PyDict_Check(dict)); + descr = PyDict_GetItem(dict, name); + if (descr != NULL) + break; + } + } +#else + descr = _PyType_Lookup(tp, name); +#endif + + Py_XINCREF(descr); + + f = NULL; + if (descr != NULL && + PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) { + f = descr->ob_type->tp_descr_get; + if (f != NULL && PyDescr_IsData(descr)) { + res = f(descr, obj, (PyObject *)obj->ob_type); + Py_DECREF(descr); + goto done; + } + } + + if (dict == NULL) { + /* Inline _PyObject_GetDictPtr */ + dictoffset = tp->tp_dictoffset; + if (dictoffset != 0) { + if (dictoffset < 0) { + Py_ssize_t tsize; + size_t size; + + tsize = ((PyVarObject *)obj)->ob_size; + if (tsize < 0) + tsize = -tsize; + size = _PyObject_VAR_SIZE(tp, tsize); + + dictoffset += (long)size; + assert(dictoffset > 0); + assert(dictoffset % SIZEOF_VOID_P == 0); + } + dictptr = (PyObject **) ((char *)obj + dictoffset); + dict = *dictptr; + } + } + if (dict != NULL) { + Py_INCREF(dict); + res = PyDict_GetItem(dict, name); + if (res != NULL) { + Py_INCREF(res); + Py_XDECREF(descr); + Py_DECREF(dict); + goto done; + } + Py_DECREF(dict); + } + + if (f != NULL) { + res = f(descr, obj, (PyObject *)Py_TYPE(obj)); + Py_DECREF(descr); + goto done; + } + + if (descr != NULL) { + res = descr; + /* descr was already increfed above */ + goto done; + } + + PyErr_Format(PyExc_AttributeError, + "'%.50s' object has no attribute '%.400s'", + tp->tp_name, PyString_AS_STRING(name)); + done: + Py_DECREF(name); + return res; +} + +PyObject * +PyObject_GenericGetAttr(PyObject *obj, PyObject *name) +{ + return _PyObject_GenericGetAttrWithDict(obj, name, NULL); +} + +int +_PyObject_GenericSetAttrWithDict(PyObject *obj, PyObject *name, + PyObject *value, PyObject *dict) +{ + PyTypeObject *tp = Py_TYPE(obj); + PyObject *descr; + descrsetfunc f; + PyObject **dictptr; + int res = -1; + + if (!PyString_Check(name)){ +#ifdef Py_USING_UNICODE + /* The Unicode to string conversion is done here because the + existing tp_setattro slots expect a string object as name + and we wouldn't want to break those. */ + if (PyUnicode_Check(name)) { + name = PyUnicode_AsEncodedString(name, NULL, NULL); + if (name == NULL) + return -1; + } + else +#endif + { + PyErr_Format(PyExc_TypeError, + "attribute name must be string, not '%.200s'", + Py_TYPE(name)->tp_name); + return -1; + } + } + else + Py_INCREF(name); + + if (tp->tp_dict == NULL) { + if (PyType_Ready(tp) < 0) + goto done; + } + + descr = _PyType_Lookup(tp, name); + f = NULL; + if (descr != NULL && + PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) { + f = descr->ob_type->tp_descr_set; + if (f != NULL && PyDescr_IsData(descr)) { + res = f(descr, obj, value); + goto done; + } + } + + if (dict == NULL) { + dictptr = _PyObject_GetDictPtr(obj); + if (dictptr != NULL) { + dict = *dictptr; + if (dict == NULL && value != NULL) { + dict = PyDict_New(); + if (dict == NULL) + goto done; + *dictptr = dict; + } + } + } + if (dict != NULL) { + Py_INCREF(dict); + if (value == NULL) + res = PyDict_DelItem(dict, name); + else + res = PyDict_SetItem(dict, name, value); + if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError)) + PyErr_SetObject(PyExc_AttributeError, name); + Py_DECREF(dict); + goto done; + } + + if (f != NULL) { + res = f(descr, obj, value); + goto done; + } + + if (descr == NULL) { + PyErr_Format(PyExc_AttributeError, + "'%.100s' object has no attribute '%.200s'", + tp->tp_name, PyString_AS_STRING(name)); + goto done; + } + + PyErr_Format(PyExc_AttributeError, + "'%.50s' object attribute '%.400s' is read-only", + tp->tp_name, PyString_AS_STRING(name)); + done: + Py_DECREF(name); + return res; +} + +int +PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value) +{ + return _PyObject_GenericSetAttrWithDict(obj, name, value, NULL); +} + + +/* Test a value used as condition, e.g., in a for or if statement. + Return -1 if an error occurred */ + +int +PyObject_IsTrue(PyObject *v) +{ + Py_ssize_t res; + if (v == Py_True) + return 1; + if (v == Py_False) + return 0; + if (v == Py_None) + return 0; + else if (v->ob_type->tp_as_number != NULL && + v->ob_type->tp_as_number->nb_nonzero != NULL) + res = (*v->ob_type->tp_as_number->nb_nonzero)(v); + else if (v->ob_type->tp_as_mapping != NULL && + v->ob_type->tp_as_mapping->mp_length != NULL) + res = (*v->ob_type->tp_as_mapping->mp_length)(v); + else if (v->ob_type->tp_as_sequence != NULL && + v->ob_type->tp_as_sequence->sq_length != NULL) + res = (*v->ob_type->tp_as_sequence->sq_length)(v); + else + return 1; + /* if it is negative, it should be either -1 or -2 */ + return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int); +} + +/* equivalent of 'not v' + Return -1 if an error occurred */ + +int +PyObject_Not(PyObject *v) +{ + int res; + res = PyObject_IsTrue(v); + if (res < 0) + return res; + return res == 0; +} + +/* Coerce two numeric types to the "larger" one. + Increment the reference count on each argument. + Return value: + -1 if an error occurred; + 0 if the coercion succeeded (and then the reference counts are increased); + 1 if no coercion is possible (and no error is raised). +*/ +int +PyNumber_CoerceEx(PyObject **pv, PyObject **pw) +{ + register PyObject *v = *pv; + register PyObject *w = *pw; + int res; + + /* Shortcut only for old-style types */ + if (v->ob_type == w->ob_type && + !PyType_HasFeature(v->ob_type, Py_TPFLAGS_CHECKTYPES)) + { + Py_INCREF(v); + Py_INCREF(w); + return 0; + } + if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_coerce) { + res = (*v->ob_type->tp_as_number->nb_coerce)(pv, pw); + if (res <= 0) + return res; + } + if (w->ob_type->tp_as_number && w->ob_type->tp_as_number->nb_coerce) { + res = (*w->ob_type->tp_as_number->nb_coerce)(pw, pv); + if (res <= 0) + return res; + } + return 1; +} + +/* Coerce two numeric types to the "larger" one. + Increment the reference count on each argument. + Return -1 and raise an exception if no coercion is possible + (and then no reference count is incremented). +*/ +int +PyNumber_Coerce(PyObject **pv, PyObject **pw) +{ + int err = PyNumber_CoerceEx(pv, pw); + if (err <= 0) + return err; + PyErr_SetString(PyExc_TypeError, "number coercion failed"); + return -1; +} + + +/* Test whether an object can be called */ + +int +PyCallable_Check(PyObject *x) +{ + if (x == NULL) + return 0; + if (PyInstance_Check(x)) { + PyObject *call = PyObject_GetAttrString(x, "__call__"); + if (call == NULL) { + PyErr_Clear(); + return 0; + } + /* Could test recursively but don't, for fear of endless + recursion if some joker sets self.__call__ = self */ + Py_DECREF(call); + return 1; + } + else { + return x->ob_type->tp_call != NULL; + } +} + +/* ------------------------- PyObject_Dir() helpers ------------------------- */ + +/* Helper for PyObject_Dir. + Merge the __dict__ of aclass into dict, and recursively also all + the __dict__s of aclass's base classes. The order of merging isn't + defined, as it's expected that only the final set of dict keys is + interesting. + Return 0 on success, -1 on error. +*/ + +static int +merge_class_dict(PyObject* dict, PyObject* aclass) +{ + PyObject *classdict; + PyObject *bases; + + assert(PyDict_Check(dict)); + assert(aclass); + + /* Merge in the type's dict (if any). */ + classdict = PyObject_GetAttrString(aclass, "__dict__"); + if (classdict == NULL) + PyErr_Clear(); + else { + int status = PyDict_Update(dict, classdict); + Py_DECREF(classdict); + if (status < 0) + return -1; + } + + /* Recursively merge in the base types' (if any) dicts. */ + bases = PyObject_GetAttrString(aclass, "__bases__"); + if (bases == NULL) + PyErr_Clear(); + else { + /* We have no guarantee that bases is a real tuple */ + Py_ssize_t i, n; + n = PySequence_Size(bases); /* This better be right */ + if (n < 0) + PyErr_Clear(); + else { + for (i = 0; i < n; i++) { + int status; + PyObject *base = PySequence_GetItem(bases, i); + if (base == NULL) { + Py_DECREF(bases); + return -1; + } + status = merge_class_dict(dict, base); + Py_DECREF(base); + if (status < 0) { + Py_DECREF(bases); + return -1; + } + } + } + Py_DECREF(bases); + } + return 0; +} + +/* Helper for PyObject_Dir. + If obj has an attr named attrname that's a list, merge its string + elements into keys of dict. + Return 0 on success, -1 on error. Errors due to not finding the attr, + or the attr not being a list, are suppressed. +*/ + +static int +merge_list_attr(PyObject* dict, PyObject* obj, const char *attrname) +{ + PyObject *list; + int result = 0; + + assert(PyDict_Check(dict)); + assert(obj); + assert(attrname); + + list = PyObject_GetAttrString(obj, attrname); + if (list == NULL) + PyErr_Clear(); + + else if (PyList_Check(list)) { + int i; + for (i = 0; i < PyList_GET_SIZE(list); ++i) { + PyObject *item = PyList_GET_ITEM(list, i); + if (PyString_Check(item)) { + result = PyDict_SetItem(dict, item, Py_None); + if (result < 0) + break; + } + } + if (Py_Py3kWarningFlag && + (strcmp(attrname, "__members__") == 0 || + strcmp(attrname, "__methods__") == 0)) { + if (PyErr_WarnEx(PyExc_DeprecationWarning, + "__members__ and __methods__ not " + "supported in 3.x", 1) < 0) { + Py_XDECREF(list); + return -1; + } + } + } + + Py_XDECREF(list); + return result; +} + +/* Helper for PyObject_Dir without arguments: returns the local scope. */ +static PyObject * +_dir_locals(void) +{ + PyObject *names; + PyObject *locals = PyEval_GetLocals(); + + if (locals == NULL) { + PyErr_SetString(PyExc_SystemError, "frame does not exist"); + return NULL; + } + + names = PyMapping_Keys(locals); + if (!names) + return NULL; + if (!PyList_Check(names)) { + PyErr_Format(PyExc_TypeError, + "dir(): expected keys() of locals to be a list, " + "not '%.200s'", Py_TYPE(names)->tp_name); + Py_DECREF(names); + return NULL; + } + /* the locals don't need to be DECREF'd */ + return names; +} + +/* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__. + We deliberately don't suck up its __class__, as methods belonging to the + metaclass would probably be more confusing than helpful. +*/ +static PyObject * +_specialized_dir_type(PyObject *obj) +{ + PyObject *result = NULL; + PyObject *dict = PyDict_New(); + + if (dict != NULL && merge_class_dict(dict, obj) == 0) + result = PyDict_Keys(dict); + + Py_XDECREF(dict); + return result; +} + +/* Helper for PyObject_Dir of module objects: returns the module's __dict__. */ +static PyObject * +_specialized_dir_module(PyObject *obj) +{ + PyObject *result = NULL; + PyObject *dict = PyObject_GetAttrString(obj, "__dict__"); + + if (dict != NULL) { + if (PyDict_Check(dict)) + result = PyDict_Keys(dict); + else { + char *name = PyModule_GetName(obj); + if (name) + PyErr_Format(PyExc_TypeError, + "%.200s.__dict__ is not a dictionary", + name); + } + } + + Py_XDECREF(dict); + return result; +} + +/* Helper for PyObject_Dir of generic objects: returns __dict__, __class__, + and recursively up the __class__.__bases__ chain. +*/ +static PyObject * +_generic_dir(PyObject *obj) +{ + PyObject *result = NULL; + PyObject *dict = NULL; + PyObject *itsclass = NULL; + + /* Get __dict__ (which may or may not be a real dict...) */ + dict = PyObject_GetAttrString(obj, "__dict__"); + if (dict == NULL) { + PyErr_Clear(); + dict = PyDict_New(); + } + else if (!PyDict_Check(dict)) { + Py_DECREF(dict); + dict = PyDict_New(); + } + else { + /* Copy __dict__ to avoid mutating it. */ + PyObject *temp = PyDict_Copy(dict); + Py_DECREF(dict); + dict = temp; + } + + if (dict == NULL) + goto error; + + /* Merge in __members__ and __methods__ (if any). + * This is removed in Python 3000. */ + if (merge_list_attr(dict, obj, "__members__") < 0) + goto error; + if (merge_list_attr(dict, obj, "__methods__") < 0) + goto error; + + /* Merge in attrs reachable from its class. */ + itsclass = PyObject_GetAttrString(obj, "__class__"); + if (itsclass == NULL) + /* XXX(tomer): Perhaps fall back to obj->ob_type if no + __class__ exists? */ + PyErr_Clear(); + else { + if (merge_class_dict(dict, itsclass) != 0) + goto error; + } + + result = PyDict_Keys(dict); + /* fall through */ +error: + Py_XDECREF(itsclass); + Py_XDECREF(dict); + return result; +} + +/* Helper for PyObject_Dir: object introspection. + This calls one of the above specialized versions if no __dir__ method + exists. */ +static PyObject * +_dir_object(PyObject *obj) +{ + PyObject *result = NULL; + static PyObject *dir_str = NULL; + PyObject *dirfunc; + + assert(obj); + if (PyInstance_Check(obj)) { + dirfunc = PyObject_GetAttrString(obj, "__dir__"); + if (dirfunc == NULL) { + if (PyErr_ExceptionMatches(PyExc_AttributeError)) + PyErr_Clear(); + else + return NULL; + } + } + else { + dirfunc = _PyObject_LookupSpecial(obj, "__dir__", &dir_str); + if (PyErr_Occurred()) + return NULL; + } + if (dirfunc == NULL) { + /* use default implementation */ + if (PyModule_Check(obj)) + result = _specialized_dir_module(obj); + else if (PyType_Check(obj) || PyClass_Check(obj)) + result = _specialized_dir_type(obj); + else + result = _generic_dir(obj); + } + else { + /* use __dir__ */ + result = PyObject_CallFunctionObjArgs(dirfunc, NULL); + Py_DECREF(dirfunc); + if (result == NULL) + return NULL; + + /* result must be a list */ + /* XXX(gbrandl): could also check if all items are strings */ + if (!PyList_Check(result)) { + PyErr_Format(PyExc_TypeError, + "__dir__() must return a list, not %.200s", + Py_TYPE(result)->tp_name); + Py_DECREF(result); + result = NULL; + } + } + + return result; +} + +/* Implementation of dir() -- if obj is NULL, returns the names in the current + (local) scope. Otherwise, performs introspection of the object: returns a + sorted list of attribute names (supposedly) accessible from the object +*/ +PyObject * +PyObject_Dir(PyObject *obj) +{ + PyObject * result; + + if (obj == NULL) + /* no object -- introspect the locals */ + result = _dir_locals(); + else + /* object -- introspect the object */ + result = _dir_object(obj); + + assert(result == NULL || PyList_Check(result)); + + if (result != NULL && PyList_Sort(result) != 0) { + /* sorting the list failed */ + Py_DECREF(result); + result = NULL; + } + + return result; +} + +/* +NoObject is usable as a non-NULL undefined value, used by the macro None. +There is (and should be!) no way to create other objects of this type, +so there is exactly one (which is indestructible, by the way). +(XXX This type and the type of NotImplemented below should be unified.) +*/ + +/* ARGSUSED */ +static PyObject * +none_repr(PyObject *op) +{ + return PyString_FromString("None"); +} + +/* ARGUSED */ +static void +none_dealloc(PyObject* ignore) +{ + /* This should never get called, but we also don't want to SEGV if + * we accidentally decref None out of existence. + */ + Py_FatalError("deallocating None"); +} + + +static PyTypeObject PyNone_Type = { + PyVarObject_HEAD_INIT(&PyType_Type, 0) + "NoneType", + 0, + 0, + none_dealloc, /*tp_dealloc*/ /*never called*/ + 0, /*tp_print*/ + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + 0, /*tp_compare*/ + none_repr, /*tp_repr*/ + 0, /*tp_as_number*/ + 0, /*tp_as_sequence*/ + 0, /*tp_as_mapping*/ + (hashfunc)_Py_HashPointer, /*tp_hash */ +}; + +PyObject _Py_NoneStruct = { + _PyObject_EXTRA_INIT + 1, &PyNone_Type +}; + +/* NotImplemented is an object that can be used to signal that an + operation is not implemented for the given type combination. */ + +static PyObject * +NotImplemented_repr(PyObject *op) +{ + return PyString_FromString("NotImplemented"); +} + +static PyTypeObject PyNotImplemented_Type = { + PyVarObject_HEAD_INIT(&PyType_Type, 0) + "NotImplementedType", + 0, + 0, + none_dealloc, /*tp_dealloc*/ /*never called*/ + 0, /*tp_print*/ + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + 0, /*tp_compare*/ + NotImplemented_repr, /*tp_repr*/ + 0, /*tp_as_number*/ + 0, /*tp_as_sequence*/ + 0, /*tp_as_mapping*/ + 0, /*tp_hash */ +}; + +PyObject _Py_NotImplementedStruct = { + _PyObject_EXTRA_INIT + 1, &PyNotImplemented_Type +}; + +void +_Py_ReadyTypes(void) +{ + if (PyType_Ready(&PyType_Type) < 0) + Py_FatalError("Can't initialize type type"); + + if (PyType_Ready(&_PyWeakref_RefType) < 0) + Py_FatalError("Can't initialize weakref type"); + + if (PyType_Ready(&_PyWeakref_CallableProxyType) < 0) + Py_FatalError("Can't initialize callable weakref proxy type"); + + if (PyType_Ready(&_PyWeakref_ProxyType) < 0) + Py_FatalError("Can't initialize weakref proxy type"); + + if (PyType_Ready(&PyBool_Type) < 0) + Py_FatalError("Can't initialize bool type"); + + if (PyType_Ready(&PyString_Type) < 0) + Py_FatalError("Can't initialize str type"); + + if (PyType_Ready(&PyByteArray_Type) < 0) + Py_FatalError("Can't initialize bytearray type"); + + if (PyType_Ready(&PyList_Type) < 0) + Py_FatalError("Can't initialize list type"); + + if (PyType_Ready(&PyNone_Type) < 0) + Py_FatalError("Can't initialize None type"); + + if (PyType_Ready(&PyNotImplemented_Type) < 0) + Py_FatalError("Can't initialize NotImplemented type"); + + if (PyType_Ready(&PyTraceBack_Type) < 0) + Py_FatalError("Can't initialize traceback type"); + + if (PyType_Ready(&PySuper_Type) < 0) + Py_FatalError("Can't initialize super type"); + + if (PyType_Ready(&PyBaseObject_Type) < 0) + Py_FatalError("Can't initialize object type"); + + if (PyType_Ready(&PyRange_Type) < 0) + Py_FatalError("Can't initialize xrange type"); + + if (PyType_Ready(&PyDict_Type) < 0) + Py_FatalError("Can't initialize dict type"); + + if (PyType_Ready(&PySet_Type) < 0) + Py_FatalError("Can't initialize set type"); + +#ifdef Py_USING_UNICODE + if (PyType_Ready(&PyUnicode_Type) < 0) + Py_FatalError("Can't initialize unicode type"); +#endif + + if (PyType_Ready(&PySlice_Type) < 0) + Py_FatalError("Can't initialize slice type"); + + if (PyType_Ready(&PyStaticMethod_Type) < 0) + Py_FatalError("Can't initialize static method type"); + +#ifndef WITHOUT_COMPLEX + if (PyType_Ready(&PyComplex_Type) < 0) + Py_FatalError("Can't initialize complex type"); +#endif + + if (PyType_Ready(&PyFloat_Type) < 0) + Py_FatalError("Can't initialize float type"); + + if (PyType_Ready(&PyBuffer_Type) < 0) + Py_FatalError("Can't initialize buffer type"); + + if (PyType_Ready(&PyLong_Type) < 0) + Py_FatalError("Can't initialize long type"); + + if (PyType_Ready(&PyInt_Type) < 0) + Py_FatalError("Can't initialize int type"); + + if (PyType_Ready(&PyFrozenSet_Type) < 0) + Py_FatalError("Can't initialize frozenset type"); + + if (PyType_Ready(&PyProperty_Type) < 0) + Py_FatalError("Can't initialize property type"); + + if (PyType_Ready(&PyMemoryView_Type) < 0) + Py_FatalError("Can't initialize memoryview type"); + + if (PyType_Ready(&PyTuple_Type) < 0) + Py_FatalError("Can't initialize tuple type"); + + if (PyType_Ready(&PyEnum_Type) < 0) + Py_FatalError("Can't initialize enumerate type"); + + if (PyType_Ready(&PyReversed_Type) < 0) + Py_FatalError("Can't initialize reversed type"); + + if (PyType_Ready(&PyCode_Type) < 0) + Py_FatalError("Can't initialize code type"); + + if (PyType_Ready(&PyFrame_Type) < 0) + Py_FatalError("Can't initialize frame type"); + + if (PyType_Ready(&PyCFunction_Type) < 0) + Py_FatalError("Can't initialize builtin function type"); + + if (PyType_Ready(&PyMethod_Type) < 0) + Py_FatalError("Can't initialize method type"); + + if (PyType_Ready(&PyFunction_Type) < 0) + Py_FatalError("Can't initialize function type"); + + if (PyType_Ready(&PyClass_Type) < 0) + Py_FatalError("Can't initialize class type"); + + if (PyType_Ready(&PyDictProxy_Type) < 0) + Py_FatalError("Can't initialize dict proxy type"); + + if (PyType_Ready(&PyGen_Type) < 0) + Py_FatalError("Can't initialize generator type"); + + if (PyType_Ready(&PyGetSetDescr_Type) < 0) + Py_FatalError("Can't initialize get-set descriptor type"); + + if (PyType_Ready(&PyWrapperDescr_Type) < 0) + Py_FatalError("Can't initialize wrapper type"); + + if (PyType_Ready(&PyInstance_Type) < 0) + Py_FatalError("Can't initialize instance type"); + + if (PyType_Ready(&PyEllipsis_Type) < 0) + Py_FatalError("Can't initialize ellipsis type"); + + if (PyType_Ready(&PyMemberDescr_Type) < 0) + Py_FatalError("Can't initialize member descriptor type"); + + if (PyType_Ready(&PyFile_Type) < 0) + Py_FatalError("Can't initialize file type"); + + if (PyType_Ready(&PyCapsule_Type) < 0) + Py_FatalError("Can't initialize capsule type"); + + if (PyType_Ready(&PyCell_Type) < 0) + Py_FatalError("Can't initialize cell type"); + + if (PyType_Ready(&PyCallIter_Type) < 0) + Py_FatalError("Can't initialize call iter type"); + + if (PyType_Ready(&PySeqIter_Type) < 0) + Py_FatalError("Can't initialize sequence iterator type"); +} + + +#ifdef Py_TRACE_REFS + +void +_Py_NewReference(PyObject *op) +{ + _Py_INC_REFTOTAL; + op->ob_refcnt = 1; + _Py_AddToAllObjects(op, 1); + _Py_INC_TPALLOCS(op); +} + +void +_Py_ForgetReference(register PyObject *op) +{ +#ifdef SLOW_UNREF_CHECK + register PyObject *p; +#endif + if (op->ob_refcnt < 0) + Py_FatalError("UNREF negative refcnt"); + if (op == &refchain || + op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op) + Py_FatalError("UNREF invalid object"); +#ifdef SLOW_UNREF_CHECK + for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) { + if (p == op) + break; + } + if (p == &refchain) /* Not found */ + Py_FatalError("UNREF unknown object"); +#endif + op->_ob_next->_ob_prev = op->_ob_prev; + op->_ob_prev->_ob_next = op->_ob_next; + op->_ob_next = op->_ob_prev = NULL; + _Py_INC_TPFREES(op); +} + +void +_Py_Dealloc(PyObject *op) +{ + destructor dealloc = Py_TYPE(op)->tp_dealloc; + _Py_ForgetReference(op); + (*dealloc)(op); +} + +/* Print all live objects. Because PyObject_Print is called, the + * interpreter must be in a healthy state. + */ +void +_Py_PrintReferences(FILE *fp) +{ + PyObject *op; + fprintf(fp, "Remaining objects:\n"); + for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) { + fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt); + if (PyObject_Print(op, fp, 0) != 0) + PyErr_Clear(); + putc('\n', fp); + } +} + +/* Print the addresses of all live objects. Unlike _Py_PrintReferences, this + * doesn't make any calls to the Python C API, so is always safe to call. + */ +void +_Py_PrintReferenceAddresses(FILE *fp) +{ + PyObject *op; + fprintf(fp, "Remaining object addresses:\n"); + for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) + fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op, + op->ob_refcnt, Py_TYPE(op)->tp_name); +} + +PyObject * +_Py_GetObjects(PyObject *self, PyObject *args) +{ + int i, n; + PyObject *t = NULL; + PyObject *res, *op; + + if (!PyArg_ParseTuple(args, "i|O", &n, &t)) + return NULL; + op = refchain._ob_next; + res = PyList_New(0); + if (res == NULL) + return NULL; + for (i = 0; (n == 0 || i < n) && op != &refchain; i++) { + while (op == self || op == args || op == res || op == t || + (t != NULL && Py_TYPE(op) != (PyTypeObject *) t)) { + op = op->_ob_next; + if (op == &refchain) + return res; + } + if (PyList_Append(res, op) < 0) { + Py_DECREF(res); + return NULL; + } + op = op->_ob_next; + } + return res; +} + +#endif + + +/* Hack to force loading of capsule.o */ +PyTypeObject *_Py_capsule_hack = &PyCapsule_Type; + + +/* Hack to force loading of cobject.o */ +PyTypeObject *_Py_cobject_hack = &PyCObject_Type; + + +/* Hack to force loading of abstract.o */ +Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size; + + +/* These methods are used to control infinite recursion in repr, str, print, + etc. Container objects that may recursively contain themselves, + e.g. builtin dictionaries and lists, should use Py_ReprEnter() and + Py_ReprLeave() to avoid infinite recursion. + + Py_ReprEnter() returns 0 the first time it is called for a particular + object and 1 every time thereafter. It returns -1 if an exception + occurred. Py_ReprLeave() has no return value. + + See dictobject.c and listobject.c for examples of use. +*/ + +#define KEY "Py_Repr" + +int +Py_ReprEnter(PyObject *obj) +{ + PyObject *dict; + PyObject *list; + Py_ssize_t i; + + dict = PyThreadState_GetDict(); + if (dict == NULL) + return 0; + list = PyDict_GetItemString(dict, KEY); + if (list == NULL) { + list = PyList_New(0); + if (list == NULL) + return -1; + if (PyDict_SetItemString(dict, KEY, list) < 0) + return -1; + Py_DECREF(list); + } + i = PyList_GET_SIZE(list); + while (--i >= 0) { + if (PyList_GET_ITEM(list, i) == obj) + return 1; + } + PyList_Append(list, obj); + return 0; +} + +void +Py_ReprLeave(PyObject *obj) +{ + PyObject *dict; + PyObject *list; + Py_ssize_t i; + + dict = PyThreadState_GetDict(); + if (dict == NULL) + return; + list = PyDict_GetItemString(dict, KEY); + if (list == NULL || !PyList_Check(list)) + return; + i = PyList_GET_SIZE(list); + /* Count backwards because we always expect obj to be list[-1] */ + while (--i >= 0) { + if (PyList_GET_ITEM(list, i) == obj) { + PyList_SetSlice(list, i, i + 1, NULL); + break; + } + } +} + +/* Trashcan support. */ + +/* Current call-stack depth of tp_dealloc calls. */ +int _PyTrash_delete_nesting = 0; + +/* List of objects that still need to be cleaned up, singly linked via their + * gc headers' gc_prev pointers. + */ +PyObject *_PyTrash_delete_later = NULL; + +/* Add op to the _PyTrash_delete_later list. Called when the current + * call-stack depth gets large. op must be a currently untracked gc'ed + * object, with refcount 0. Py_DECREF must already have been called on it. + */ +void +_PyTrash_deposit_object(PyObject *op) +{ + assert(PyObject_IS_GC(op)); + assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED); + assert(op->ob_refcnt == 0); + _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later; + _PyTrash_delete_later = op; +} + +/* The equivalent API, using per-thread state recursion info */ +void +_PyTrash_thread_deposit_object(PyObject *op) +{ + PyThreadState *tstate = PyThreadState_GET(); + assert(PyObject_IS_GC(op)); + assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED); + assert(op->ob_refcnt == 0); + _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *) tstate->trash_delete_later; + tstate->trash_delete_later = op; +} + +/* Dealloccate all the objects in the _PyTrash_delete_later list. Called when + * the call-stack unwinds again. + */ +void +_PyTrash_destroy_chain(void) +{ + while (_PyTrash_delete_later) { + PyObject *op = _PyTrash_delete_later; + destructor dealloc = Py_TYPE(op)->tp_dealloc; + + _PyTrash_delete_later = + (PyObject*) _Py_AS_GC(op)->gc.gc_prev; + + /* Call the deallocator directly. This used to try to + * fool Py_DECREF into calling it indirectly, but + * Py_DECREF was already called on this object, and in + * assorted non-release builds calling Py_DECREF again ends + * up distorting allocation statistics. + */ + assert(op->ob_refcnt == 0); + ++_PyTrash_delete_nesting; + (*dealloc)(op); + --_PyTrash_delete_nesting; + } +} + +/* The equivalent API, using per-thread state recursion info */ +void +_PyTrash_thread_destroy_chain(void) +{ + PyThreadState *tstate = PyThreadState_GET(); + while (tstate->trash_delete_later) { + PyObject *op = tstate->trash_delete_later; + destructor dealloc = Py_TYPE(op)->tp_dealloc; + + tstate->trash_delete_later = + (PyObject*) _Py_AS_GC(op)->gc.gc_prev; + + /* Call the deallocator directly. This used to try to + * fool Py_DECREF into calling it indirectly, but + * Py_DECREF was already called on this object, and in + * assorted non-release builds calling Py_DECREF again ends + * up distorting allocation statistics. + */ + assert(op->ob_refcnt == 0); + ++tstate->trash_delete_nesting; + (*dealloc)(op); + --tstate->trash_delete_nesting; + } +} + +#ifdef __cplusplus +} +#endif |