diff options
author | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:24:06 +0300 |
---|---|---|
committer | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:41:34 +0300 |
commit | e0e3e1717e3d33762ce61950504f9637a6e669ed (patch) | |
tree | bca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python/src/Objects/frameobject.c | |
parent | 38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff) | |
download | ydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz |
add ydb deps
Diffstat (limited to 'contrib/tools/python/src/Objects/frameobject.c')
-rw-r--r-- | contrib/tools/python/src/Objects/frameobject.c | 1021 |
1 files changed, 1021 insertions, 0 deletions
diff --git a/contrib/tools/python/src/Objects/frameobject.c b/contrib/tools/python/src/Objects/frameobject.c new file mode 100644 index 0000000000..76ef545757 --- /dev/null +++ b/contrib/tools/python/src/Objects/frameobject.c @@ -0,0 +1,1021 @@ +/* Frame object implementation */ + +#include "Python.h" + +#include "code.h" +#include "frameobject.h" +#include "opcode.h" +#include "structmember.h" + +#undef MIN +#undef MAX +#define MIN(a, b) ((a) < (b) ? (a) : (b)) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +#define OFF(x) offsetof(PyFrameObject, x) + +static PyMemberDef frame_memberlist[] = { + {"f_back", T_OBJECT, OFF(f_back), RO}, + {"f_code", T_OBJECT, OFF(f_code), RO}, + {"f_builtins", T_OBJECT, OFF(f_builtins),RO}, + {"f_globals", T_OBJECT, OFF(f_globals), RO}, + {"f_lasti", T_INT, OFF(f_lasti), RO}, + {NULL} /* Sentinel */ +}; + +#define WARN_GET_SET(NAME) \ +static PyObject * frame_get_ ## NAME(PyFrameObject *f) { \ + if (PyErr_WarnPy3k(#NAME " has been removed in 3.x", 2) < 0) \ + return NULL; \ + if (f->NAME) { \ + Py_INCREF(f->NAME); \ + return f->NAME; \ + } \ + Py_RETURN_NONE; \ +} \ +static int frame_set_ ## NAME(PyFrameObject *f, PyObject *new) { \ + if (PyErr_WarnPy3k(#NAME " has been removed in 3.x", 2) < 0) \ + return -1; \ + if (f->NAME) { \ + Py_CLEAR(f->NAME); \ + } \ + if (new == Py_None) \ + new = NULL; \ + Py_XINCREF(new); \ + f->NAME = new; \ + return 0; \ +} + + +WARN_GET_SET(f_exc_traceback) +WARN_GET_SET(f_exc_type) +WARN_GET_SET(f_exc_value) + + +static PyObject * +frame_getlocals(PyFrameObject *f, void *closure) +{ + PyFrame_FastToLocals(f); + Py_INCREF(f->f_locals); + return f->f_locals; +} + +int +PyFrame_GetLineNumber(PyFrameObject *f) +{ + if (f->f_trace) + return f->f_lineno; + else + return PyCode_Addr2Line(f->f_code, f->f_lasti); +} + +static PyObject * +frame_getlineno(PyFrameObject *f, void *closure) +{ + return PyInt_FromLong(PyFrame_GetLineNumber(f)); +} + +/* Setter for f_lineno - you can set f_lineno from within a trace function in + * order to jump to a given line of code, subject to some restrictions. Most + * lines are OK to jump to because they don't make any assumptions about the + * state of the stack (obvious because you could remove the line and the code + * would still work without any stack errors), but there are some constructs + * that limit jumping: + * + * o Lines with an 'except' statement on them can't be jumped to, because + * they expect an exception to be on the top of the stack. + * o Lines that live in a 'finally' block can't be jumped from or to, since + * the END_FINALLY expects to clean up the stack after the 'try' block. + * o 'try'/'for'/'while' blocks can't be jumped into because the blockstack + * needs to be set up before their code runs, and for 'for' loops the + * iterator needs to be on the stack. + * o Jumps cannot be made from within a trace function invoked with a + * 'return' or 'exception' event since the eval loop has been exited at + * that time. + */ +static int +frame_setlineno(PyFrameObject *f, PyObject* p_new_lineno) +{ + int new_lineno = 0; /* The new value of f_lineno */ + int new_lasti = 0; /* The new value of f_lasti */ + int new_iblock = 0; /* The new value of f_iblock */ + unsigned char *code = NULL; /* The bytecode for the frame... */ + Py_ssize_t code_len = 0; /* ...and its length */ + unsigned char *lnotab = NULL; /* Iterating over co_lnotab */ + Py_ssize_t lnotab_len = 0; /* (ditto) */ + int offset = 0; /* (ditto) */ + int line = 0; /* (ditto) */ + int addr = 0; /* (ditto) */ + int min_addr = 0; /* Scanning the SETUPs and POPs */ + int max_addr = 0; /* (ditto) */ + int delta_iblock = 0; /* (ditto) */ + int min_delta_iblock = 0; /* (ditto) */ + int min_iblock = 0; /* (ditto) */ + int f_lasti_setup_addr = 0; /* Policing no-jump-into-finally */ + int new_lasti_setup_addr = 0; /* (ditto) */ + int blockstack[CO_MAXBLOCKS]; /* Walking the 'finally' blocks */ + int in_finally[CO_MAXBLOCKS]; /* (ditto) */ + int blockstack_top = 0; /* (ditto) */ + unsigned char setup_op = 0; /* (ditto) */ + + if (p_new_lineno == NULL) { + PyErr_SetString(PyExc_AttributeError, "cannot delete attribute"); + return -1; + } + /* f_lineno must be an integer. */ + if (!PyInt_Check(p_new_lineno)) { + PyErr_SetString(PyExc_ValueError, + "lineno must be an integer"); + return -1; + } + + /* Upon the 'call' trace event of a new frame, f->f_lasti is -1 and + * f->f_trace is NULL, check first on the first condition. + * Forbidding jumps from the 'call' event of a new frame is a side effect + * of allowing to set f_lineno only from trace functions. */ + if (f->f_lasti == -1) { + PyErr_Format(PyExc_ValueError, + "can't jump from the 'call' trace event of a new frame"); + return -1; + } + + /* You can only do this from within a trace function, not via + * _getframe or similar hackery. */ + if (!f->f_trace) { + PyErr_Format(PyExc_ValueError, + "f_lineno can only be set by a trace function"); + return -1; + } + + /* Forbid jumps upon a 'return' trace event (except after executing a + * YIELD_VALUE opcode, f_stacktop is not NULL in that case) and upon an + * 'exception' trace event. + * Jumps from 'call' trace events have already been forbidden above for new + * frames, so this check does not change anything for 'call' events. */ + if (f->f_stacktop == NULL) { + PyErr_SetString(PyExc_ValueError, + "can only jump from a 'line' trace event"); + return -1; + } + + /* Fail if the line comes before the start of the code block. */ + new_lineno = (int) PyInt_AsLong(p_new_lineno); + if (new_lineno < f->f_code->co_firstlineno) { + PyErr_Format(PyExc_ValueError, + "line %d comes before the current code block", + new_lineno); + return -1; + } + else if (new_lineno == f->f_code->co_firstlineno) { + new_lasti = 0; + new_lineno = f->f_code->co_firstlineno; + } + else { + /* Find the bytecode offset for the start of the given + * line, or the first code-owning line after it. */ + char *tmp; + PyString_AsStringAndSize(f->f_code->co_lnotab, + &tmp, &lnotab_len); + lnotab = (unsigned char *) tmp; + addr = 0; + line = f->f_code->co_firstlineno; + new_lasti = -1; + for (offset = 0; offset < lnotab_len; offset += 2) { + addr += lnotab[offset]; + line += (signed char)lnotab[offset+1]; + if (line >= new_lineno) { + new_lasti = addr; + new_lineno = line; + break; + } + } + } + + /* If we didn't reach the requested line, return an error. */ + if (new_lasti == -1) { + PyErr_Format(PyExc_ValueError, + "line %d comes after the current code block", + new_lineno); + return -1; + } + + /* We're now ready to look at the bytecode. */ + PyString_AsStringAndSize(f->f_code->co_code, (char **)&code, &code_len); + min_addr = MIN(new_lasti, f->f_lasti); + max_addr = MAX(new_lasti, f->f_lasti); + + /* The trace function is called with a 'return' trace event after the + * execution of a yield statement. */ + assert(f->f_lasti != -1); + if (code[f->f_lasti] == YIELD_VALUE) { + PyErr_SetString(PyExc_ValueError, + "can't jump from a yield statement"); + return -1; + } + + /* You can't jump onto a line with an 'except' statement on it - + * they expect to have an exception on the top of the stack, which + * won't be true if you jump to them. They always start with code + * that either pops the exception using POP_TOP (plain 'except:' + * lines do this) or duplicates the exception on the stack using + * DUP_TOP (if there's an exception type specified). See compile.c, + * 'com_try_except' for the full details. There aren't any other + * cases (AFAIK) where a line's code can start with DUP_TOP or + * POP_TOP, but if any ever appear, they'll be subject to the same + * restriction (but with a different error message). */ + if (code[new_lasti] == DUP_TOP || code[new_lasti] == POP_TOP) { + PyErr_SetString(PyExc_ValueError, + "can't jump to 'except' line as there's no exception"); + return -1; + } + + /* You can't jump into or out of a 'finally' block because the 'try' + * block leaves something on the stack for the END_FINALLY to clean + * up. So we walk the bytecode, maintaining a simulated blockstack. + * When we reach the old or new address and it's in a 'finally' block + * we note the address of the corresponding SETUP_FINALLY. The jump + * is only legal if neither address is in a 'finally' block or + * they're both in the same one. 'blockstack' is a stack of the + * bytecode addresses of the SETUP_X opcodes, and 'in_finally' tracks + * whether we're in a 'finally' block at each blockstack level. */ + f_lasti_setup_addr = -1; + new_lasti_setup_addr = -1; + memset(blockstack, '\0', sizeof(blockstack)); + memset(in_finally, '\0', sizeof(in_finally)); + blockstack_top = 0; + for (addr = 0; addr < code_len; addr++) { + unsigned char op = code[addr]; + switch (op) { + case SETUP_LOOP: + case SETUP_EXCEPT: + case SETUP_FINALLY: + case SETUP_WITH: + blockstack[blockstack_top++] = addr; + in_finally[blockstack_top-1] = 0; + break; + + case POP_BLOCK: + assert(blockstack_top > 0); + setup_op = code[blockstack[blockstack_top-1]]; + if (setup_op == SETUP_FINALLY || setup_op == SETUP_WITH) { + in_finally[blockstack_top-1] = 1; + } + else { + blockstack_top--; + } + break; + + case END_FINALLY: + /* Ignore END_FINALLYs for SETUP_EXCEPTs - they exist + * in the bytecode but don't correspond to an actual + * 'finally' block. (If blockstack_top is 0, we must + * be seeing such an END_FINALLY.) */ + if (blockstack_top > 0) { + setup_op = code[blockstack[blockstack_top-1]]; + if (setup_op == SETUP_FINALLY || setup_op == SETUP_WITH) { + blockstack_top--; + } + } + break; + } + + /* For the addresses we're interested in, see whether they're + * within a 'finally' block and if so, remember the address + * of the SETUP_FINALLY. */ + if (addr == new_lasti || addr == f->f_lasti) { + int i = 0; + int setup_addr = -1; + for (i = blockstack_top-1; i >= 0; i--) { + if (in_finally[i]) { + setup_addr = blockstack[i]; + break; + } + } + + if (setup_addr != -1) { + if (addr == new_lasti) { + new_lasti_setup_addr = setup_addr; + } + + if (addr == f->f_lasti) { + f_lasti_setup_addr = setup_addr; + } + } + } + + if (op >= HAVE_ARGUMENT) { + addr += 2; + } + } + + /* Verify that the blockstack tracking code didn't get lost. */ + assert(blockstack_top == 0); + + /* After all that, are we jumping into / out of a 'finally' block? */ + if (new_lasti_setup_addr != f_lasti_setup_addr) { + PyErr_SetString(PyExc_ValueError, + "can't jump into or out of a 'finally' block"); + return -1; + } + + + /* Police block-jumping (you can't jump into the middle of a block) + * and ensure that the blockstack finishes up in a sensible state (by + * popping any blocks we're jumping out of). We look at all the + * blockstack operations between the current position and the new + * one, and keep track of how many blocks we drop out of on the way. + * By also keeping track of the lowest blockstack position we see, we + * can tell whether the jump goes into any blocks without coming out + * again - in that case we raise an exception below. */ + delta_iblock = 0; + for (addr = min_addr; addr < max_addr; addr++) { + unsigned char op = code[addr]; + switch (op) { + case SETUP_LOOP: + case SETUP_EXCEPT: + case SETUP_FINALLY: + case SETUP_WITH: + delta_iblock++; + break; + + case POP_BLOCK: + delta_iblock--; + break; + } + + min_delta_iblock = MIN(min_delta_iblock, delta_iblock); + + if (op >= HAVE_ARGUMENT) { + addr += 2; + } + } + + /* Derive the absolute iblock values from the deltas. */ + min_iblock = f->f_iblock + min_delta_iblock; + if (new_lasti > f->f_lasti) { + /* Forwards jump. */ + new_iblock = f->f_iblock + delta_iblock; + } + else { + /* Backwards jump. */ + new_iblock = f->f_iblock - delta_iblock; + } + + /* Are we jumping into a block? */ + if (new_iblock > min_iblock) { + PyErr_SetString(PyExc_ValueError, + "can't jump into the middle of a block"); + return -1; + } + + /* Pop any blocks that we're jumping out of. */ + while (f->f_iblock > new_iblock) { + PyTryBlock *b = &f->f_blockstack[--f->f_iblock]; + while ((f->f_stacktop - f->f_valuestack) > b->b_level) { + PyObject *v = (*--f->f_stacktop); + Py_DECREF(v); + } + if (b->b_type == SETUP_WITH) { + /* Pop the exit function. */ + PyObject *v = (*--f->f_stacktop); + Py_DECREF(v); + } + } + + /* Finally set the new f_lineno and f_lasti and return OK. */ + f->f_lineno = new_lineno; + f->f_lasti = new_lasti; + return 0; +} + +static PyObject * +frame_gettrace(PyFrameObject *f, void *closure) +{ + PyObject* trace = f->f_trace; + + if (trace == NULL) + trace = Py_None; + + Py_INCREF(trace); + + return trace; +} + +static int +frame_settrace(PyFrameObject *f, PyObject* v, void *closure) +{ + /* We rely on f_lineno being accurate when f_trace is set. */ + f->f_lineno = PyFrame_GetLineNumber(f); + + if (v == Py_None) + v = NULL; + Py_XINCREF(v); + Py_XSETREF(f->f_trace, v); + + return 0; +} + +static PyObject * +frame_getrestricted(PyFrameObject *f, void *closure) +{ + return PyBool_FromLong(PyFrame_IsRestricted(f)); +} + +static PyGetSetDef frame_getsetlist[] = { + {"f_locals", (getter)frame_getlocals, NULL, NULL}, + {"f_lineno", (getter)frame_getlineno, + (setter)frame_setlineno, NULL}, + {"f_trace", (getter)frame_gettrace, (setter)frame_settrace, NULL}, + {"f_restricted",(getter)frame_getrestricted,NULL, NULL}, + {"f_exc_traceback", (getter)frame_get_f_exc_traceback, + (setter)frame_set_f_exc_traceback, NULL}, + {"f_exc_type", (getter)frame_get_f_exc_type, + (setter)frame_set_f_exc_type, NULL}, + {"f_exc_value", (getter)frame_get_f_exc_value, + (setter)frame_set_f_exc_value, NULL}, + {0} +}; + +/* Stack frames are allocated and deallocated at a considerable rate. + In an attempt to improve the speed of function calls, we: + + 1. Hold a single "zombie" frame on each code object. This retains + the allocated and initialised frame object from an invocation of + the code object. The zombie is reanimated the next time we need a + frame object for that code object. Doing this saves the malloc/ + realloc required when using a free_list frame that isn't the + correct size. It also saves some field initialisation. + + In zombie mode, no field of PyFrameObject holds a reference, but + the following fields are still valid: + + * ob_type, ob_size, f_code, f_valuestack; + + * f_locals, f_trace, + f_exc_type, f_exc_value, f_exc_traceback are NULL; + + * f_localsplus does not require re-allocation and + the local variables in f_localsplus are NULL. + + 2. We also maintain a separate free list of stack frames (just like + integers are allocated in a special way -- see intobject.c). When + a stack frame is on the free list, only the following members have + a meaning: + ob_type == &Frametype + f_back next item on free list, or NULL + f_stacksize size of value stack + ob_size size of localsplus + Note that the value and block stacks are preserved -- this can save + another malloc() call or two (and two free() calls as well!). + Also note that, unlike for integers, each frame object is a + malloc'ed object in its own right -- it is only the actual calls to + malloc() that we are trying to save here, not the administration. + After all, while a typical program may make millions of calls, a + call depth of more than 20 or 30 is probably already exceptional + unless the program contains run-away recursion. I hope. + + Later, PyFrame_MAXFREELIST was added to bound the # of frames saved on + free_list. Else programs creating lots of cyclic trash involving + frames could provoke free_list into growing without bound. +*/ + +static PyFrameObject *free_list = NULL; +static int numfree = 0; /* number of frames currently in free_list */ +/* max value for numfree */ +#define PyFrame_MAXFREELIST 200 + +static void +frame_dealloc(PyFrameObject *f) +{ + PyObject **p, **valuestack; + PyCodeObject *co; + + PyObject_GC_UnTrack(f); + Py_TRASHCAN_SAFE_BEGIN(f) + /* Kill all local variables */ + valuestack = f->f_valuestack; + for (p = f->f_localsplus; p < valuestack; p++) + Py_CLEAR(*p); + + /* Free stack */ + if (f->f_stacktop != NULL) { + for (p = valuestack; p < f->f_stacktop; p++) + Py_XDECREF(*p); + } + + Py_XDECREF(f->f_back); + Py_DECREF(f->f_builtins); + Py_DECREF(f->f_globals); + Py_CLEAR(f->f_locals); + Py_CLEAR(f->f_trace); + Py_CLEAR(f->f_exc_type); + Py_CLEAR(f->f_exc_value); + Py_CLEAR(f->f_exc_traceback); + + co = f->f_code; + if (co->co_zombieframe == NULL) + co->co_zombieframe = f; + else if (numfree < PyFrame_MAXFREELIST) { + ++numfree; + f->f_back = free_list; + free_list = f; + } + else + PyObject_GC_Del(f); + + Py_DECREF(co); + Py_TRASHCAN_SAFE_END(f) +} + +static int +frame_traverse(PyFrameObject *f, visitproc visit, void *arg) +{ + PyObject **fastlocals, **p; + int i, slots; + + Py_VISIT(f->f_back); + Py_VISIT(f->f_code); + Py_VISIT(f->f_builtins); + Py_VISIT(f->f_globals); + Py_VISIT(f->f_locals); + Py_VISIT(f->f_trace); + Py_VISIT(f->f_exc_type); + Py_VISIT(f->f_exc_value); + Py_VISIT(f->f_exc_traceback); + + /* locals */ + slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars); + fastlocals = f->f_localsplus; + for (i = slots; --i >= 0; ++fastlocals) + Py_VISIT(*fastlocals); + + /* stack */ + if (f->f_stacktop != NULL) { + for (p = f->f_valuestack; p < f->f_stacktop; p++) + Py_VISIT(*p); + } + return 0; +} + +static void +frame_clear(PyFrameObject *f) +{ + PyObject **fastlocals, **p, **oldtop; + int i, slots; + + /* Before anything else, make sure that this frame is clearly marked + * as being defunct! Else, e.g., a generator reachable from this + * frame may also point to this frame, believe itself to still be + * active, and try cleaning up this frame again. + */ + oldtop = f->f_stacktop; + f->f_stacktop = NULL; + + Py_CLEAR(f->f_exc_type); + Py_CLEAR(f->f_exc_value); + Py_CLEAR(f->f_exc_traceback); + Py_CLEAR(f->f_trace); + + /* locals */ + slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars); + fastlocals = f->f_localsplus; + for (i = slots; --i >= 0; ++fastlocals) + Py_CLEAR(*fastlocals); + + /* stack */ + if (oldtop != NULL) { + for (p = f->f_valuestack; p < oldtop; p++) + Py_CLEAR(*p); + } +} + +static PyObject * +frame_sizeof(PyFrameObject *f) +{ + Py_ssize_t res, extras, ncells, nfrees; + + ncells = PyTuple_GET_SIZE(f->f_code->co_cellvars); + nfrees = PyTuple_GET_SIZE(f->f_code->co_freevars); + extras = f->f_code->co_stacksize + f->f_code->co_nlocals + + ncells + nfrees; + /* subtract one as it is already included in PyFrameObject */ + res = sizeof(PyFrameObject) + (extras-1) * sizeof(PyObject *); + + return PyInt_FromSsize_t(res); +} + +PyDoc_STRVAR(sizeof__doc__, +"F.__sizeof__() -> size of F in memory, in bytes"); + +static PyMethodDef frame_methods[] = { + {"__sizeof__", (PyCFunction)frame_sizeof, METH_NOARGS, + sizeof__doc__}, + {NULL, NULL} /* sentinel */ +}; + +PyTypeObject PyFrame_Type = { + PyVarObject_HEAD_INIT(&PyType_Type, 0) + "frame", + sizeof(PyFrameObject), + sizeof(PyObject *), + (destructor)frame_dealloc, /* tp_dealloc */ + 0, /* tp_print */ + 0, /* tp_getattr */ + 0, /* tp_setattr */ + 0, /* tp_compare */ + 0, /* tp_repr */ + 0, /* tp_as_number */ + 0, /* tp_as_sequence */ + 0, /* tp_as_mapping */ + 0, /* tp_hash */ + 0, /* tp_call */ + 0, /* tp_str */ + PyObject_GenericGetAttr, /* tp_getattro */ + PyObject_GenericSetAttr, /* tp_setattro */ + 0, /* tp_as_buffer */ + Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ + 0, /* tp_doc */ + (traverseproc)frame_traverse, /* tp_traverse */ + (inquiry)frame_clear, /* tp_clear */ + 0, /* tp_richcompare */ + 0, /* tp_weaklistoffset */ + 0, /* tp_iter */ + 0, /* tp_iternext */ + frame_methods, /* tp_methods */ + frame_memberlist, /* tp_members */ + frame_getsetlist, /* tp_getset */ + 0, /* tp_base */ + 0, /* tp_dict */ +}; + +static PyObject *builtin_object; + +int _PyFrame_Init() +{ + builtin_object = PyString_InternFromString("__builtins__"); + if (builtin_object == NULL) + return 0; + return 1; +} + +PyFrameObject * +PyFrame_New(PyThreadState *tstate, PyCodeObject *code, PyObject *globals, + PyObject *locals) +{ + PyFrameObject *back = tstate->frame; + PyFrameObject *f; + PyObject *builtins; + Py_ssize_t i; + +#ifdef Py_DEBUG + if (code == NULL || globals == NULL || !PyDict_Check(globals) || + (locals != NULL && !PyMapping_Check(locals))) { + PyErr_BadInternalCall(); + return NULL; + } +#endif + if (back == NULL || back->f_globals != globals) { + builtins = PyDict_GetItem(globals, builtin_object); + if (builtins) { + if (PyModule_Check(builtins)) { + builtins = PyModule_GetDict(builtins); + assert(!builtins || PyDict_Check(builtins)); + } + else if (!PyDict_Check(builtins)) + builtins = NULL; + } + if (builtins == NULL) { + /* No builtins! Make up a minimal one + Give them 'None', at least. */ + builtins = PyDict_New(); + if (builtins == NULL || + PyDict_SetItemString( + builtins, "None", Py_None) < 0) + return NULL; + } + else + Py_INCREF(builtins); + + } + else { + /* If we share the globals, we share the builtins. + Save a lookup and a call. */ + builtins = back->f_builtins; + assert(builtins != NULL && PyDict_Check(builtins)); + Py_INCREF(builtins); + } + if (code->co_zombieframe != NULL) { + f = code->co_zombieframe; + code->co_zombieframe = NULL; + _Py_NewReference((PyObject *)f); + assert(f->f_code == code); + } + else { + Py_ssize_t extras, ncells, nfrees; + ncells = PyTuple_GET_SIZE(code->co_cellvars); + nfrees = PyTuple_GET_SIZE(code->co_freevars); + extras = code->co_stacksize + code->co_nlocals + ncells + + nfrees; + if (free_list == NULL) { + f = PyObject_GC_NewVar(PyFrameObject, &PyFrame_Type, + extras); + if (f == NULL) { + Py_DECREF(builtins); + return NULL; + } + } + else { + assert(numfree > 0); + --numfree; + f = free_list; + free_list = free_list->f_back; + if (Py_SIZE(f) < extras) { + f = PyObject_GC_Resize(PyFrameObject, f, extras); + if (f == NULL) { + Py_DECREF(builtins); + return NULL; + } + } + _Py_NewReference((PyObject *)f); + } + + f->f_code = code; + extras = code->co_nlocals + ncells + nfrees; + f->f_valuestack = f->f_localsplus + extras; + for (i=0; i<extras; i++) + f->f_localsplus[i] = NULL; + f->f_locals = NULL; + f->f_trace = NULL; + f->f_exc_type = f->f_exc_value = f->f_exc_traceback = NULL; + } + f->f_stacktop = f->f_valuestack; + f->f_builtins = builtins; + Py_XINCREF(back); + f->f_back = back; + Py_INCREF(code); + Py_INCREF(globals); + f->f_globals = globals; + /* Most functions have CO_NEWLOCALS and CO_OPTIMIZED set. */ + if ((code->co_flags & (CO_NEWLOCALS | CO_OPTIMIZED)) == + (CO_NEWLOCALS | CO_OPTIMIZED)) + ; /* f_locals = NULL; will be set by PyFrame_FastToLocals() */ + else if (code->co_flags & CO_NEWLOCALS) { + locals = PyDict_New(); + if (locals == NULL) { + Py_DECREF(f); + return NULL; + } + f->f_locals = locals; + } + else { + if (locals == NULL) + locals = globals; + Py_INCREF(locals); + f->f_locals = locals; + } + f->f_tstate = tstate; + + f->f_lasti = -1; + f->f_lineno = code->co_firstlineno; + f->f_iblock = 0; + + _PyObject_GC_TRACK(f); + return f; +} + +/* Block management */ + +void +PyFrame_BlockSetup(PyFrameObject *f, int type, int handler, int level) +{ + PyTryBlock *b; + if (f->f_iblock >= CO_MAXBLOCKS) + Py_FatalError("XXX block stack overflow"); + b = &f->f_blockstack[f->f_iblock++]; + b->b_type = type; + b->b_level = level; + b->b_handler = handler; +} + +PyTryBlock * +PyFrame_BlockPop(PyFrameObject *f) +{ + PyTryBlock *b; + if (f->f_iblock <= 0) + Py_FatalError("XXX block stack underflow"); + b = &f->f_blockstack[--f->f_iblock]; + return b; +} + +/* Convert between "fast" version of locals and dictionary version. + + map and values are input arguments. map is a tuple of strings. + values is an array of PyObject*. At index i, map[i] is the name of + the variable with value values[i]. The function copies the first + nmap variable from map/values into dict. If values[i] is NULL, + the variable is deleted from dict. + + If deref is true, then the values being copied are cell variables + and the value is extracted from the cell variable before being put + in dict. + + Exceptions raised while modifying the dict are silently ignored, + because there is no good way to report them. + */ + +static void +map_to_dict(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values, + int deref) +{ + Py_ssize_t j; + assert(PyTuple_Check(map)); + assert(PyDict_Check(dict)); + assert(PyTuple_Size(map) >= nmap); + for (j = nmap; --j >= 0; ) { + PyObject *key = PyTuple_GET_ITEM(map, j); + PyObject *value = values[j]; + assert(PyString_Check(key)); + if (deref) { + assert(PyCell_Check(value)); + value = PyCell_GET(value); + } + if (value == NULL) { + if (PyObject_DelItem(dict, key) != 0) + PyErr_Clear(); + } + else { + if (PyObject_SetItem(dict, key, value) != 0) + PyErr_Clear(); + } + } +} + +/* Copy values from the "locals" dict into the fast locals. + + dict is an input argument containing string keys representing + variables names and arbitrary PyObject* as values. + + map and values are input arguments. map is a tuple of strings. + values is an array of PyObject*. At index i, map[i] is the name of + the variable with value values[i]. The function copies the first + nmap variable from map/values into dict. If values[i] is NULL, + the variable is deleted from dict. + + If deref is true, then the values being copied are cell variables + and the value is extracted from the cell variable before being put + in dict. If clear is true, then variables in map but not in dict + are set to NULL in map; if clear is false, variables missing in + dict are ignored. + + Exceptions raised while modifying the dict are silently ignored, + because there is no good way to report them. +*/ + +static void +dict_to_map(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values, + int deref, int clear) +{ + Py_ssize_t j; + assert(PyTuple_Check(map)); + assert(PyDict_Check(dict)); + assert(PyTuple_Size(map) >= nmap); + for (j = nmap; --j >= 0; ) { + PyObject *key = PyTuple_GET_ITEM(map, j); + PyObject *value = PyObject_GetItem(dict, key); + assert(PyString_Check(key)); + /* We only care about NULLs if clear is true. */ + if (value == NULL) { + PyErr_Clear(); + if (!clear) + continue; + } + if (deref) { + assert(PyCell_Check(values[j])); + if (PyCell_GET(values[j]) != value) { + if (PyCell_Set(values[j], value) < 0) + PyErr_Clear(); + } + } else if (values[j] != value) { + Py_XINCREF(value); + Py_XSETREF(values[j], value); + } + Py_XDECREF(value); + } +} + +void +PyFrame_FastToLocals(PyFrameObject *f) +{ + /* Merge fast locals into f->f_locals */ + PyObject *locals, *map; + PyObject **fast; + PyObject *error_type, *error_value, *error_traceback; + PyCodeObject *co; + Py_ssize_t j; + int ncells, nfreevars; + if (f == NULL) + return; + locals = f->f_locals; + if (locals == NULL) { + locals = f->f_locals = PyDict_New(); + if (locals == NULL) { + PyErr_Clear(); /* Can't report it :-( */ + return; + } + } + co = f->f_code; + map = co->co_varnames; + if (!PyTuple_Check(map)) + return; + PyErr_Fetch(&error_type, &error_value, &error_traceback); + fast = f->f_localsplus; + j = PyTuple_GET_SIZE(map); + if (j > co->co_nlocals) + j = co->co_nlocals; + if (co->co_nlocals) + map_to_dict(map, j, locals, fast, 0); + ncells = PyTuple_GET_SIZE(co->co_cellvars); + nfreevars = PyTuple_GET_SIZE(co->co_freevars); + if (ncells || nfreevars) { + map_to_dict(co->co_cellvars, ncells, + locals, fast + co->co_nlocals, 1); + /* If the namespace is unoptimized, then one of the + following cases applies: + 1. It does not contain free variables, because it + uses import * or is a top-level namespace. + 2. It is a class namespace. + We don't want to accidentally copy free variables + into the locals dict used by the class. + */ + if (co->co_flags & CO_OPTIMIZED) { + map_to_dict(co->co_freevars, nfreevars, + locals, fast + co->co_nlocals + ncells, 1); + } + } + PyErr_Restore(error_type, error_value, error_traceback); +} + +void +PyFrame_LocalsToFast(PyFrameObject *f, int clear) +{ + /* Merge f->f_locals into fast locals */ + PyObject *locals, *map; + PyObject **fast; + PyObject *error_type, *error_value, *error_traceback; + PyCodeObject *co; + Py_ssize_t j; + int ncells, nfreevars; + if (f == NULL) + return; + locals = f->f_locals; + co = f->f_code; + map = co->co_varnames; + if (locals == NULL) + return; + if (!PyTuple_Check(map)) + return; + PyErr_Fetch(&error_type, &error_value, &error_traceback); + fast = f->f_localsplus; + j = PyTuple_GET_SIZE(map); + if (j > co->co_nlocals) + j = co->co_nlocals; + if (co->co_nlocals) + dict_to_map(co->co_varnames, j, locals, fast, 0, clear); + ncells = PyTuple_GET_SIZE(co->co_cellvars); + nfreevars = PyTuple_GET_SIZE(co->co_freevars); + if (ncells || nfreevars) { + dict_to_map(co->co_cellvars, ncells, + locals, fast + co->co_nlocals, 1, clear); + /* Same test as in PyFrame_FastToLocals() above. */ + if (co->co_flags & CO_OPTIMIZED) { + dict_to_map(co->co_freevars, nfreevars, + locals, fast + co->co_nlocals + ncells, 1, + clear); + } + } + PyErr_Restore(error_type, error_value, error_traceback); +} + +/* Clear out the free list */ +int +PyFrame_ClearFreeList(void) +{ + int freelist_size = numfree; + + while (free_list != NULL) { + PyFrameObject *f = free_list; + free_list = free_list->f_back; + PyObject_GC_Del(f); + --numfree; + } + assert(numfree == 0); + return freelist_size; +} + +void +PyFrame_Fini(void) +{ + (void)PyFrame_ClearFreeList(); + Py_XDECREF(builtin_object); + builtin_object = NULL; +} |