diff options
author | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:24:06 +0300 |
---|---|---|
committer | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:41:34 +0300 |
commit | e0e3e1717e3d33762ce61950504f9637a6e669ed (patch) | |
tree | bca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python/src/Modules/mathmodule.c | |
parent | 38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff) | |
download | ydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz |
add ydb deps
Diffstat (limited to 'contrib/tools/python/src/Modules/mathmodule.c')
-rw-r--r-- | contrib/tools/python/src/Modules/mathmodule.c | 1633 |
1 files changed, 1633 insertions, 0 deletions
diff --git a/contrib/tools/python/src/Modules/mathmodule.c b/contrib/tools/python/src/Modules/mathmodule.c new file mode 100644 index 0000000000..67354a7594 --- /dev/null +++ b/contrib/tools/python/src/Modules/mathmodule.c @@ -0,0 +1,1633 @@ +/* Math module -- standard C math library functions, pi and e */ + +/* Here are some comments from Tim Peters, extracted from the + discussion attached to http://bugs.python.org/issue1640. They + describe the general aims of the math module with respect to + special values, IEEE-754 floating-point exceptions, and Python + exceptions. + +These are the "spirit of 754" rules: + +1. If the mathematical result is a real number, but of magnitude too +large to approximate by a machine float, overflow is signaled and the +result is an infinity (with the appropriate sign). + +2. If the mathematical result is a real number, but of magnitude too +small to approximate by a machine float, underflow is signaled and the +result is a zero (with the appropriate sign). + +3. At a singularity (a value x such that the limit of f(y) as y +approaches x exists and is an infinity), "divide by zero" is signaled +and the result is an infinity (with the appropriate sign). This is +complicated a little by that the left-side and right-side limits may +not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 +from the positive or negative directions. In that specific case, the +sign of the zero determines the result of 1/0. + +4. At a point where a function has no defined result in the extended +reals (i.e., the reals plus an infinity or two), invalid operation is +signaled and a NaN is returned. + +And these are what Python has historically /tried/ to do (but not +always successfully, as platform libm behavior varies a lot): + +For #1, raise OverflowError. + +For #2, return a zero (with the appropriate sign if that happens by +accident ;-)). + +For #3 and #4, raise ValueError. It may have made sense to raise +Python's ZeroDivisionError in #3, but historically that's only been +raised for division by zero and mod by zero. + +*/ + +/* + In general, on an IEEE-754 platform the aim is to follow the C99 + standard, including Annex 'F', whenever possible. Where the + standard recommends raising the 'divide-by-zero' or 'invalid' + floating-point exceptions, Python should raise a ValueError. Where + the standard recommends raising 'overflow', Python should raise an + OverflowError. In all other circumstances a value should be + returned. + */ + +#include "Python.h" +#include "_math.h" + +#ifdef _OSF_SOURCE +/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */ +extern double copysign(double, double); +#endif + +/* + sin(pi*x), giving accurate results for all finite x (especially x + integral or close to an integer). This is here for use in the + reflection formula for the gamma function. It conforms to IEEE + 754-2008 for finite arguments, but not for infinities or nans. +*/ + +static const double pi = 3.141592653589793238462643383279502884197; +static const double sqrtpi = 1.772453850905516027298167483341145182798; + +static double +sinpi(double x) +{ + double y, r; + int n; + /* this function should only ever be called for finite arguments */ + assert(Py_IS_FINITE(x)); + y = fmod(fabs(x), 2.0); + n = (int)round(2.0*y); + assert(0 <= n && n <= 4); + switch (n) { + case 0: + r = sin(pi*y); + break; + case 1: + r = cos(pi*(y-0.5)); + break; + case 2: + /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give + -0.0 instead of 0.0 when y == 1.0. */ + r = sin(pi*(1.0-y)); + break; + case 3: + r = -cos(pi*(y-1.5)); + break; + case 4: + r = sin(pi*(y-2.0)); + break; + default: + assert(0); /* should never get here */ + r = -1.23e200; /* silence gcc warning */ + } + return copysign(1.0, x)*r; +} + +/* Implementation of the real gamma function. In extensive but non-exhaustive + random tests, this function proved accurate to within <= 10 ulps across the + entire float domain. Note that accuracy may depend on the quality of the + system math functions, the pow function in particular. Special cases + follow C99 annex F. The parameters and method are tailored to platforms + whose double format is the IEEE 754 binary64 format. + + Method: for x > 0.0 we use the Lanczos approximation with parameters N=13 + and g=6.024680040776729583740234375; these parameters are amongst those + used by the Boost library. Following Boost (again), we re-express the + Lanczos sum as a rational function, and compute it that way. The + coefficients below were computed independently using MPFR, and have been + double-checked against the coefficients in the Boost source code. + + For x < 0.0 we use the reflection formula. + + There's one minor tweak that deserves explanation: Lanczos' formula for + Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x + values, x+g-0.5 can be represented exactly. However, in cases where it + can't be represented exactly the small error in x+g-0.5 can be magnified + significantly by the pow and exp calls, especially for large x. A cheap + correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error + involved in the computation of x+g-0.5 (that is, e = computed value of + x+g-0.5 - exact value of x+g-0.5). Here's the proof: + + Correction factor + ----------------- + Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754 + double, and e is tiny. Then: + + pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e) + = pow(y, x-0.5)/exp(y) * C, + + where the correction_factor C is given by + + C = pow(1-e/y, x-0.5) * exp(e) + + Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so: + + C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y + + But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and + + pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y), + + Note that for accuracy, when computing r*C it's better to do + + r + e*g/y*r; + + than + + r * (1 + e*g/y); + + since the addition in the latter throws away most of the bits of + information in e*g/y. +*/ + +#define LANCZOS_N 13 +static const double lanczos_g = 6.024680040776729583740234375; +static const double lanczos_g_minus_half = 5.524680040776729583740234375; +static const double lanczos_num_coeffs[LANCZOS_N] = { + 23531376880.410759688572007674451636754734846804940, + 42919803642.649098768957899047001988850926355848959, + 35711959237.355668049440185451547166705960488635843, + 17921034426.037209699919755754458931112671403265390, + 6039542586.3520280050642916443072979210699388420708, + 1439720407.3117216736632230727949123939715485786772, + 248874557.86205415651146038641322942321632125127801, + 31426415.585400194380614231628318205362874684987640, + 2876370.6289353724412254090516208496135991145378768, + 186056.26539522349504029498971604569928220784236328, + 8071.6720023658162106380029022722506138218516325024, + 210.82427775157934587250973392071336271166969580291, + 2.5066282746310002701649081771338373386264310793408 +}; + +/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */ +static const double lanczos_den_coeffs[LANCZOS_N] = { + 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0, + 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0}; + +/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */ +#define NGAMMA_INTEGRAL 23 +static const double gamma_integral[NGAMMA_INTEGRAL] = { + 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0, + 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0, + 1307674368000.0, 20922789888000.0, 355687428096000.0, + 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0, + 51090942171709440000.0, 1124000727777607680000.0, +}; + +/* Lanczos' sum L_g(x), for positive x */ + +static double +lanczos_sum(double x) +{ + double num = 0.0, den = 0.0; + int i; + assert(x > 0.0); + /* evaluate the rational function lanczos_sum(x). For large + x, the obvious algorithm risks overflow, so we instead + rescale the denominator and numerator of the rational + function by x**(1-LANCZOS_N) and treat this as a + rational function in 1/x. This also reduces the error for + larger x values. The choice of cutoff point (5.0 below) is + somewhat arbitrary; in tests, smaller cutoff values than + this resulted in lower accuracy. */ + if (x < 5.0) { + for (i = LANCZOS_N; --i >= 0; ) { + num = num * x + lanczos_num_coeffs[i]; + den = den * x + lanczos_den_coeffs[i]; + } + } + else { + for (i = 0; i < LANCZOS_N; i++) { + num = num / x + lanczos_num_coeffs[i]; + den = den / x + lanczos_den_coeffs[i]; + } + } + return num/den; +} + +static double +m_tgamma(double x) +{ + double absx, r, y, z, sqrtpow; + + /* special cases */ + if (!Py_IS_FINITE(x)) { + if (Py_IS_NAN(x) || x > 0.0) + return x; /* tgamma(nan) = nan, tgamma(inf) = inf */ + else { + errno = EDOM; + return Py_NAN; /* tgamma(-inf) = nan, invalid */ + } + } + if (x == 0.0) { + errno = EDOM; + return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */ + } + + /* integer arguments */ + if (x == floor(x)) { + if (x < 0.0) { + errno = EDOM; /* tgamma(n) = nan, invalid for */ + return Py_NAN; /* negative integers n */ + } + if (x <= NGAMMA_INTEGRAL) + return gamma_integral[(int)x - 1]; + } + absx = fabs(x); + + /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */ + if (absx < 1e-20) { + r = 1.0/x; + if (Py_IS_INFINITY(r)) + errno = ERANGE; + return r; + } + + /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for + x > 200, and underflows to +-0.0 for x < -200, not a negative + integer. */ + if (absx > 200.0) { + if (x < 0.0) { + return 0.0/sinpi(x); + } + else { + errno = ERANGE; + return Py_HUGE_VAL; + } + } + + y = absx + lanczos_g_minus_half; + /* compute error in sum */ + if (absx > lanczos_g_minus_half) { + /* note: the correction can be foiled by an optimizing + compiler that (incorrectly) thinks that an expression like + a + b - a - b can be optimized to 0.0. This shouldn't + happen in a standards-conforming compiler. */ + double q = y - absx; + z = q - lanczos_g_minus_half; + } + else { + double q = y - lanczos_g_minus_half; + z = q - absx; + } + z = z * lanczos_g / y; + if (x < 0.0) { + r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx); + r -= z * r; + if (absx < 140.0) { + r /= pow(y, absx - 0.5); + } + else { + sqrtpow = pow(y, absx / 2.0 - 0.25); + r /= sqrtpow; + r /= sqrtpow; + } + } + else { + r = lanczos_sum(absx) / exp(y); + r += z * r; + if (absx < 140.0) { + r *= pow(y, absx - 0.5); + } + else { + sqrtpow = pow(y, absx / 2.0 - 0.25); + r *= sqrtpow; + r *= sqrtpow; + } + } + if (Py_IS_INFINITY(r)) + errno = ERANGE; + return r; +} + +/* + lgamma: natural log of the absolute value of the Gamma function. + For large arguments, Lanczos' formula works extremely well here. +*/ + +static double +m_lgamma(double x) +{ + double r, absx; + + /* special cases */ + if (!Py_IS_FINITE(x)) { + if (Py_IS_NAN(x)) + return x; /* lgamma(nan) = nan */ + else + return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */ + } + + /* integer arguments */ + if (x == floor(x) && x <= 2.0) { + if (x <= 0.0) { + errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */ + return Py_HUGE_VAL; /* integers n <= 0 */ + } + else { + return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */ + } + } + + absx = fabs(x); + /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */ + if (absx < 1e-20) + return -log(absx); + + /* Lanczos' formula */ + if (x > 0.0) { + /* we could save a fraction of a ulp in accuracy by having a + second set of numerator coefficients for lanczos_sum that + absorbed the exp(-lanczos_g) term, and throwing out the + lanczos_g subtraction below; it's probably not worth it. */ + r = log(lanczos_sum(x)) - lanczos_g + + (x-0.5)*(log(x+lanczos_g-0.5)-1); + } + else { + r = log(pi) - log(fabs(sinpi(absx))) - log(absx) - + (log(lanczos_sum(absx)) - lanczos_g + + (absx-0.5)*(log(absx+lanczos_g-0.5)-1)); + } + if (Py_IS_INFINITY(r)) + errno = ERANGE; + return r; +} + +/* + Implementations of the error function erf(x) and the complementary error + function erfc(x). + + Method: we use a series approximation for erf for small x, and a continued + fraction approximation for erfc(x) for larger x; + combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x), + this gives us erf(x) and erfc(x) for all x. + + The series expansion used is: + + erf(x) = x*exp(-x*x)/sqrt(pi) * [ + 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...] + + The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k). + This series converges well for smallish x, but slowly for larger x. + + The continued fraction expansion used is: + + erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - ) + 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...] + + after the first term, the general term has the form: + + k*(k-0.5)/(2*k+0.5 + x**2 - ...). + + This expansion converges fast for larger x, but convergence becomes + infinitely slow as x approaches 0.0. The (somewhat naive) continued + fraction evaluation algorithm used below also risks overflow for large x; + but for large x, erfc(x) == 0.0 to within machine precision. (For + example, erfc(30.0) is approximately 2.56e-393). + + Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and + continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) < + ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the + numbers of terms to use for the relevant expansions. */ + +#define ERF_SERIES_CUTOFF 1.5 +#define ERF_SERIES_TERMS 25 +#define ERFC_CONTFRAC_CUTOFF 30.0 +#define ERFC_CONTFRAC_TERMS 50 + +/* + Error function, via power series. + + Given a finite float x, return an approximation to erf(x). + Converges reasonably fast for small x. +*/ + +static double +m_erf_series(double x) +{ + double x2, acc, fk, result; + int i, saved_errno; + + x2 = x * x; + acc = 0.0; + fk = (double)ERF_SERIES_TERMS + 0.5; + for (i = 0; i < ERF_SERIES_TERMS; i++) { + acc = 2.0 + x2 * acc / fk; + fk -= 1.0; + } + /* Make sure the exp call doesn't affect errno; + see m_erfc_contfrac for more. */ + saved_errno = errno; + result = acc * x * exp(-x2) / sqrtpi; + errno = saved_errno; + return result; +} + +/* + Complementary error function, via continued fraction expansion. + + Given a positive float x, return an approximation to erfc(x). Converges + reasonably fast for x large (say, x > 2.0), and should be safe from + overflow if x and nterms are not too large. On an IEEE 754 machine, with x + <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller + than the smallest representable nonzero float. */ + +static double +m_erfc_contfrac(double x) +{ + double x2, a, da, p, p_last, q, q_last, b, result; + int i, saved_errno; + + if (x >= ERFC_CONTFRAC_CUTOFF) + return 0.0; + + x2 = x*x; + a = 0.0; + da = 0.5; + p = 1.0; p_last = 0.0; + q = da + x2; q_last = 1.0; + for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) { + double temp; + a += da; + da += 2.0; + b = da + x2; + temp = p; p = b*p - a*p_last; p_last = temp; + temp = q; q = b*q - a*q_last; q_last = temp; + } + /* Issue #8986: On some platforms, exp sets errno on underflow to zero; + save the current errno value so that we can restore it later. */ + saved_errno = errno; + result = p / q * x * exp(-x2) / sqrtpi; + errno = saved_errno; + return result; +} + +/* Error function erf(x), for general x */ + +static double +m_erf(double x) +{ + double absx, cf; + + if (Py_IS_NAN(x)) + return x; + absx = fabs(x); + if (absx < ERF_SERIES_CUTOFF) + return m_erf_series(x); + else { + cf = m_erfc_contfrac(absx); + return x > 0.0 ? 1.0 - cf : cf - 1.0; + } +} + +/* Complementary error function erfc(x), for general x. */ + +static double +m_erfc(double x) +{ + double absx, cf; + + if (Py_IS_NAN(x)) + return x; + absx = fabs(x); + if (absx < ERF_SERIES_CUTOFF) + return 1.0 - m_erf_series(x); + else { + cf = m_erfc_contfrac(absx); + return x > 0.0 ? cf : 2.0 - cf; + } +} + +/* + wrapper for atan2 that deals directly with special cases before + delegating to the platform libm for the remaining cases. This + is necessary to get consistent behaviour across platforms. + Windows, FreeBSD and alpha Tru64 are amongst platforms that don't + always follow C99. +*/ + +static double +m_atan2(double y, double x) +{ + if (Py_IS_NAN(x) || Py_IS_NAN(y)) + return Py_NAN; + if (Py_IS_INFINITY(y)) { + if (Py_IS_INFINITY(x)) { + if (copysign(1., x) == 1.) + /* atan2(+-inf, +inf) == +-pi/4 */ + return copysign(0.25*Py_MATH_PI, y); + else + /* atan2(+-inf, -inf) == +-pi*3/4 */ + return copysign(0.75*Py_MATH_PI, y); + } + /* atan2(+-inf, x) == +-pi/2 for finite x */ + return copysign(0.5*Py_MATH_PI, y); + } + if (Py_IS_INFINITY(x) || y == 0.) { + if (copysign(1., x) == 1.) + /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ + return copysign(0., y); + else + /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ + return copysign(Py_MATH_PI, y); + } + return atan2(y, x); +} + +/* + Various platforms (Solaris, OpenBSD) do nonstandard things for log(0), + log(-ve), log(NaN). Here are wrappers for log and log10 that deal with + special values directly, passing positive non-special values through to + the system log/log10. + */ + +static double +m_log(double x) +{ + if (Py_IS_FINITE(x)) { + if (x > 0.0) + return log(x); + errno = EDOM; + if (x == 0.0) + return -Py_HUGE_VAL; /* log(0) = -inf */ + else + return Py_NAN; /* log(-ve) = nan */ + } + else if (Py_IS_NAN(x)) + return x; /* log(nan) = nan */ + else if (x > 0.0) + return x; /* log(inf) = inf */ + else { + errno = EDOM; + return Py_NAN; /* log(-inf) = nan */ + } +} + +static double +m_log10(double x) +{ + if (Py_IS_FINITE(x)) { + if (x > 0.0) + return log10(x); + errno = EDOM; + if (x == 0.0) + return -Py_HUGE_VAL; /* log10(0) = -inf */ + else + return Py_NAN; /* log10(-ve) = nan */ + } + else if (Py_IS_NAN(x)) + return x; /* log10(nan) = nan */ + else if (x > 0.0) + return x; /* log10(inf) = inf */ + else { + errno = EDOM; + return Py_NAN; /* log10(-inf) = nan */ + } +} + + +/* Call is_error when errno != 0, and where x is the result libm + * returned. is_error will usually set up an exception and return + * true (1), but may return false (0) without setting up an exception. + */ +static int +is_error(double x) +{ + int result = 1; /* presumption of guilt */ + assert(errno); /* non-zero errno is a precondition for calling */ + if (errno == EDOM) + PyErr_SetString(PyExc_ValueError, "math domain error"); + + else if (errno == ERANGE) { + /* ANSI C generally requires libm functions to set ERANGE + * on overflow, but also generally *allows* them to set + * ERANGE on underflow too. There's no consistency about + * the latter across platforms. + * Alas, C99 never requires that errno be set. + * Here we suppress the underflow errors (libm functions + * should return a zero on underflow, and +- HUGE_VAL on + * overflow, so testing the result for zero suffices to + * distinguish the cases). + * + * On some platforms (Ubuntu/ia64) it seems that errno can be + * set to ERANGE for subnormal results that do *not* underflow + * to zero. So to be safe, we'll ignore ERANGE whenever the + * function result is less than one in absolute value. + */ + if (fabs(x) < 1.0) + result = 0; + else + PyErr_SetString(PyExc_OverflowError, + "math range error"); + } + else + /* Unexpected math error */ + PyErr_SetFromErrno(PyExc_ValueError); + return result; +} + +/* + math_1 is used to wrap a libm function f that takes a double + arguments and returns a double. + + The error reporting follows these rules, which are designed to do + the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 + platforms. + + - a NaN result from non-NaN inputs causes ValueError to be raised + - an infinite result from finite inputs causes OverflowError to be + raised if can_overflow is 1, or raises ValueError if can_overflow + is 0. + - if the result is finite and errno == EDOM then ValueError is + raised + - if the result is finite and nonzero and errno == ERANGE then + OverflowError is raised + + The last rule is used to catch overflow on platforms which follow + C89 but for which HUGE_VAL is not an infinity. + + For the majority of one-argument functions these rules are enough + to ensure that Python's functions behave as specified in 'Annex F' + of the C99 standard, with the 'invalid' and 'divide-by-zero' + floating-point exceptions mapping to Python's ValueError and the + 'overflow' floating-point exception mapping to OverflowError. + math_1 only works for functions that don't have singularities *and* + the possibility of overflow; fortunately, that covers everything we + care about right now. +*/ + +static PyObject * +math_1(PyObject *arg, double (*func) (double), int can_overflow) +{ + double x, r; + x = PyFloat_AsDouble(arg); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + errno = 0; + PyFPE_START_PROTECT("in math_1", return 0); + r = (*func)(x); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x)) + errno = EDOM; + else + errno = 0; + } + else if (Py_IS_INFINITY(r)) { + if (Py_IS_FINITE(x)) + errno = can_overflow ? ERANGE : EDOM; + else + errno = 0; + } + if (errno && is_error(r)) + return NULL; + else + return PyFloat_FromDouble(r); +} + +/* variant of math_1, to be used when the function being wrapped is known to + set errno properly (that is, errno = EDOM for invalid or divide-by-zero, + errno = ERANGE for overflow). */ + +static PyObject * +math_1a(PyObject *arg, double (*func) (double)) +{ + double x, r; + x = PyFloat_AsDouble(arg); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + errno = 0; + PyFPE_START_PROTECT("in math_1a", return 0); + r = (*func)(x); + PyFPE_END_PROTECT(r); + if (errno && is_error(r)) + return NULL; + return PyFloat_FromDouble(r); +} + +/* + math_2 is used to wrap a libm function f that takes two double + arguments and returns a double. + + The error reporting follows these rules, which are designed to do + the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 + platforms. + + - a NaN result from non-NaN inputs causes ValueError to be raised + - an infinite result from finite inputs causes OverflowError to be + raised. + - if the result is finite and errno == EDOM then ValueError is + raised + - if the result is finite and nonzero and errno == ERANGE then + OverflowError is raised + + The last rule is used to catch overflow on platforms which follow + C89 but for which HUGE_VAL is not an infinity. + + For most two-argument functions (copysign, fmod, hypot, atan2) + these rules are enough to ensure that Python's functions behave as + specified in 'Annex F' of the C99 standard, with the 'invalid' and + 'divide-by-zero' floating-point exceptions mapping to Python's + ValueError and the 'overflow' floating-point exception mapping to + OverflowError. +*/ + +static PyObject * +math_2(PyObject *args, double (*func) (double, double), char *funcname) +{ + PyObject *ox, *oy; + double x, y, r; + if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy)) + return NULL; + x = PyFloat_AsDouble(ox); + y = PyFloat_AsDouble(oy); + if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) + return NULL; + errno = 0; + PyFPE_START_PROTECT("in math_2", return 0); + r = (*func)(x, y); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) + errno = EDOM; + else + errno = 0; + } + else if (Py_IS_INFINITY(r)) { + if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) + errno = ERANGE; + else + errno = 0; + } + if (errno && is_error(r)) + return NULL; + else + return PyFloat_FromDouble(r); +} + +#define FUNC1(funcname, func, can_overflow, docstring) \ + static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ + return math_1(args, func, can_overflow); \ + }\ + PyDoc_STRVAR(math_##funcname##_doc, docstring); + +#define FUNC1A(funcname, func, docstring) \ + static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ + return math_1a(args, func); \ + }\ + PyDoc_STRVAR(math_##funcname##_doc, docstring); + +#define FUNC2(funcname, func, docstring) \ + static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ + return math_2(args, func, #funcname); \ + }\ + PyDoc_STRVAR(math_##funcname##_doc, docstring); + +FUNC1(acos, acos, 0, + "acos(x)\n\nReturn the arc cosine (measured in radians) of x.") +FUNC1(acosh, m_acosh, 0, + "acosh(x)\n\nReturn the inverse hyperbolic cosine of x.") +FUNC1(asin, asin, 0, + "asin(x)\n\nReturn the arc sine (measured in radians) of x.") +FUNC1(asinh, m_asinh, 0, + "asinh(x)\n\nReturn the inverse hyperbolic sine of x.") +FUNC1(atan, atan, 0, + "atan(x)\n\nReturn the arc tangent (measured in radians) of x.") +FUNC2(atan2, m_atan2, + "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n" + "Unlike atan(y/x), the signs of both x and y are considered.") +FUNC1(atanh, m_atanh, 0, + "atanh(x)\n\nReturn the inverse hyperbolic tangent of x.") +FUNC1(ceil, ceil, 0, + "ceil(x)\n\nReturn the ceiling of x as a float.\n" + "This is the smallest integral value >= x.") +FUNC2(copysign, copysign, + "copysign(x, y)\n\nReturn x with the sign of y.") +FUNC1(cos, cos, 0, + "cos(x)\n\nReturn the cosine of x (measured in radians).") +FUNC1(cosh, cosh, 1, + "cosh(x)\n\nReturn the hyperbolic cosine of x.") +FUNC1A(erf, m_erf, + "erf(x)\n\nError function at x.") +FUNC1A(erfc, m_erfc, + "erfc(x)\n\nComplementary error function at x.") +FUNC1(exp, exp, 1, + "exp(x)\n\nReturn e raised to the power of x.") +FUNC1(expm1, m_expm1, 1, + "expm1(x)\n\nReturn exp(x)-1.\n" + "This function avoids the loss of precision involved in the direct " + "evaluation of exp(x)-1 for small x.") +FUNC1(fabs, fabs, 0, + "fabs(x)\n\nReturn the absolute value of the float x.") +FUNC1(floor, floor, 0, + "floor(x)\n\nReturn the floor of x as a float.\n" + "This is the largest integral value <= x.") +FUNC1A(gamma, m_tgamma, + "gamma(x)\n\nGamma function at x.") +FUNC1A(lgamma, m_lgamma, + "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.") +FUNC1(log1p, m_log1p, 1, + "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n" + "The result is computed in a way which is accurate for x near zero.") +FUNC1(sin, sin, 0, + "sin(x)\n\nReturn the sine of x (measured in radians).") +FUNC1(sinh, sinh, 1, + "sinh(x)\n\nReturn the hyperbolic sine of x.") +FUNC1(sqrt, sqrt, 0, + "sqrt(x)\n\nReturn the square root of x.") +FUNC1(tan, tan, 0, + "tan(x)\n\nReturn the tangent of x (measured in radians).") +FUNC1(tanh, tanh, 0, + "tanh(x)\n\nReturn the hyperbolic tangent of x.") + +/* Precision summation function as msum() by Raymond Hettinger in + <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>, + enhanced with the exact partials sum and roundoff from Mark + Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. + See those links for more details, proofs and other references. + + Note 1: IEEE 754R floating point semantics are assumed, + but the current implementation does not re-establish special + value semantics across iterations (i.e. handling -Inf + Inf). + + Note 2: No provision is made for intermediate overflow handling; + therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while + sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the + overflow of the first partial sum. + + Note 3: The intermediate values lo, yr, and hi are declared volatile so + aggressive compilers won't algebraically reduce lo to always be exactly 0.0. + Also, the volatile declaration forces the values to be stored in memory as + regular doubles instead of extended long precision (80-bit) values. This + prevents double rounding because any addition or subtraction of two doubles + can be resolved exactly into double-sized hi and lo values. As long as the + hi value gets forced into a double before yr and lo are computed, the extra + bits in downstream extended precision operations (x87 for example) will be + exactly zero and therefore can be losslessly stored back into a double, + thereby preventing double rounding. + + Note 4: A similar implementation is in Modules/cmathmodule.c. + Be sure to update both when making changes. + + Note 5: The signature of math.fsum() differs from __builtin__.sum() + because the start argument doesn't make sense in the context of + accurate summation. Since the partials table is collapsed before + returning a result, sum(seq2, start=sum(seq1)) may not equal the + accurate result returned by sum(itertools.chain(seq1, seq2)). +*/ + +#define NUM_PARTIALS 32 /* initial partials array size, on stack */ + +/* Extend the partials array p[] by doubling its size. */ +static int /* non-zero on error */ +_fsum_realloc(double **p_ptr, Py_ssize_t n, + double *ps, Py_ssize_t *m_ptr) +{ + void *v = NULL; + Py_ssize_t m = *m_ptr; + + m += m; /* double */ + if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) { + double *p = *p_ptr; + if (p == ps) { + v = PyMem_Malloc(sizeof(double) * m); + if (v != NULL) + memcpy(v, ps, sizeof(double) * n); + } + else + v = PyMem_Realloc(p, sizeof(double) * m); + } + if (v == NULL) { /* size overflow or no memory */ + PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); + return 1; + } + *p_ptr = (double*) v; + *m_ptr = m; + return 0; +} + +/* Full precision summation of a sequence of floats. + + def msum(iterable): + partials = [] # sorted, non-overlapping partial sums + for x in iterable: + i = 0 + for y in partials: + if abs(x) < abs(y): + x, y = y, x + hi = x + y + lo = y - (hi - x) + if lo: + partials[i] = lo + i += 1 + x = hi + partials[i:] = [x] + return sum_exact(partials) + + Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo + are exactly equal to x+y. The inner loop applies hi/lo summation to each + partial so that the list of partial sums remains exact. + + Sum_exact() adds the partial sums exactly and correctly rounds the final + result (using the round-half-to-even rule). The items in partials remain + non-zero, non-special, non-overlapping and strictly increasing in + magnitude, but possibly not all having the same sign. + + Depends on IEEE 754 arithmetic guarantees and half-even rounding. +*/ + +static PyObject* +math_fsum(PyObject *self, PyObject *seq) +{ + PyObject *item, *iter, *sum = NULL; + Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; + double x, y, t, ps[NUM_PARTIALS], *p = ps; + double xsave, special_sum = 0.0, inf_sum = 0.0; + volatile double hi, yr, lo; + + iter = PyObject_GetIter(seq); + if (iter == NULL) + return NULL; + + PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL) + + for(;;) { /* for x in iterable */ + assert(0 <= n && n <= m); + assert((m == NUM_PARTIALS && p == ps) || + (m > NUM_PARTIALS && p != NULL)); + + item = PyIter_Next(iter); + if (item == NULL) { + if (PyErr_Occurred()) + goto _fsum_error; + break; + } + x = PyFloat_AsDouble(item); + Py_DECREF(item); + if (PyErr_Occurred()) + goto _fsum_error; + + xsave = x; + for (i = j = 0; j < n; j++) { /* for y in partials */ + y = p[j]; + if (fabs(x) < fabs(y)) { + t = x; x = y; y = t; + } + hi = x + y; + yr = hi - x; + lo = y - yr; + if (lo != 0.0) + p[i++] = lo; + x = hi; + } + + n = i; /* ps[i:] = [x] */ + if (x != 0.0) { + if (! Py_IS_FINITE(x)) { + /* a nonfinite x could arise either as + a result of intermediate overflow, or + as a result of a nan or inf in the + summands */ + if (Py_IS_FINITE(xsave)) { + PyErr_SetString(PyExc_OverflowError, + "intermediate overflow in fsum"); + goto _fsum_error; + } + if (Py_IS_INFINITY(xsave)) + inf_sum += xsave; + special_sum += xsave; + /* reset partials */ + n = 0; + } + else if (n >= m && _fsum_realloc(&p, n, ps, &m)) + goto _fsum_error; + else + p[n++] = x; + } + } + + if (special_sum != 0.0) { + if (Py_IS_NAN(inf_sum)) + PyErr_SetString(PyExc_ValueError, + "-inf + inf in fsum"); + else + sum = PyFloat_FromDouble(special_sum); + goto _fsum_error; + } + + hi = 0.0; + if (n > 0) { + hi = p[--n]; + /* sum_exact(ps, hi) from the top, stop when the sum becomes + inexact. */ + while (n > 0) { + x = hi; + y = p[--n]; + assert(fabs(y) < fabs(x)); + hi = x + y; + yr = hi - x; + lo = y - yr; + if (lo != 0.0) + break; + } + /* Make half-even rounding work across multiple partials. + Needed so that sum([1e-16, 1, 1e16]) will round-up the last + digit to two instead of down to zero (the 1e-16 makes the 1 + slightly closer to two). With a potential 1 ULP rounding + error fixed-up, math.fsum() can guarantee commutativity. */ + if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || + (lo > 0.0 && p[n-1] > 0.0))) { + y = lo * 2.0; + x = hi + y; + yr = x - hi; + if (y == yr) + hi = x; + } + } + sum = PyFloat_FromDouble(hi); + +_fsum_error: + PyFPE_END_PROTECT(hi) + Py_DECREF(iter); + if (p != ps) + PyMem_Free(p); + return sum; +} + +#undef NUM_PARTIALS + +PyDoc_STRVAR(math_fsum_doc, +"fsum(iterable)\n\n\ +Return an accurate floating point sum of values in the iterable.\n\ +Assumes IEEE-754 floating point arithmetic."); + +static PyObject * +math_factorial(PyObject *self, PyObject *arg) +{ + long i, x; + PyObject *result, *iobj, *newresult; + + if (PyFloat_Check(arg)) { + PyObject *lx; + double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg); + if (!(Py_IS_FINITE(dx) && dx == floor(dx))) { + PyErr_SetString(PyExc_ValueError, + "factorial() only accepts integral values"); + return NULL; + } + lx = PyLong_FromDouble(dx); + if (lx == NULL) + return NULL; + x = PyLong_AsLong(lx); + Py_DECREF(lx); + } + else + x = PyInt_AsLong(arg); + + if (x == -1 && PyErr_Occurred()) + return NULL; + if (x < 0) { + PyErr_SetString(PyExc_ValueError, + "factorial() not defined for negative values"); + return NULL; + } + + result = (PyObject *)PyInt_FromLong(1); + if (result == NULL) + return NULL; + for (i=1 ; i<=x ; i++) { + iobj = (PyObject *)PyInt_FromLong(i); + if (iobj == NULL) + goto error; + newresult = PyNumber_Multiply(result, iobj); + Py_DECREF(iobj); + if (newresult == NULL) + goto error; + Py_DECREF(result); + result = newresult; + } + return result; + +error: + Py_DECREF(result); + return NULL; +} + +PyDoc_STRVAR(math_factorial_doc, +"factorial(x) -> Integral\n" +"\n" +"Find x!. Raise a ValueError if x is negative or non-integral."); + +static PyObject * +math_trunc(PyObject *self, PyObject *number) +{ + return PyObject_CallMethod(number, "__trunc__", NULL); +} + +PyDoc_STRVAR(math_trunc_doc, +"trunc(x:Real) -> Integral\n" +"\n" +"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method."); + +static PyObject * +math_frexp(PyObject *self, PyObject *arg) +{ + int i; + double x = PyFloat_AsDouble(arg); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + /* deal with special cases directly, to sidestep platform + differences */ + if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { + i = 0; + } + else { + PyFPE_START_PROTECT("in math_frexp", return 0); + x = frexp(x, &i); + PyFPE_END_PROTECT(x); + } + return Py_BuildValue("(di)", x, i); +} + +PyDoc_STRVAR(math_frexp_doc, +"frexp(x)\n" +"\n" +"Return the mantissa and exponent of x, as pair (m, e).\n" +"m is a float and e is an int, such that x = m * 2.**e.\n" +"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0."); + +static PyObject * +math_ldexp(PyObject *self, PyObject *args) +{ + double x, r; + PyObject *oexp; + long exp; + int overflow; + if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp)) + return NULL; + + if (_PyAnyInt_Check(oexp)) { + /* on overflow, replace exponent with either LONG_MAX + or LONG_MIN, depending on the sign. */ + exp = PyLong_AsLongAndOverflow(oexp, &overflow); + if (exp == -1 && PyErr_Occurred()) + return NULL; + if (overflow) + exp = overflow < 0 ? LONG_MIN : LONG_MAX; + } + else { + PyErr_SetString(PyExc_TypeError, + "Expected an int or long as second argument " + "to ldexp."); + return NULL; + } + + if (x == 0. || !Py_IS_FINITE(x)) { + /* NaNs, zeros and infinities are returned unchanged */ + r = x; + errno = 0; + } else if (exp > INT_MAX) { + /* overflow */ + r = copysign(Py_HUGE_VAL, x); + errno = ERANGE; + } else if (exp < INT_MIN) { + /* underflow to +-0 */ + r = copysign(0., x); + errno = 0; + } else { + errno = 0; + PyFPE_START_PROTECT("in math_ldexp", return 0); + r = ldexp(x, (int)exp); + PyFPE_END_PROTECT(r); + if (Py_IS_INFINITY(r)) + errno = ERANGE; + } + + if (errno && is_error(r)) + return NULL; + return PyFloat_FromDouble(r); +} + +PyDoc_STRVAR(math_ldexp_doc, +"ldexp(x, i)\n\n\ +Return x * (2**i)."); + +static PyObject * +math_modf(PyObject *self, PyObject *arg) +{ + double y, x = PyFloat_AsDouble(arg); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + /* some platforms don't do the right thing for NaNs and + infinities, so we take care of special cases directly. */ + if (!Py_IS_FINITE(x)) { + if (Py_IS_INFINITY(x)) + return Py_BuildValue("(dd)", copysign(0., x), x); + else if (Py_IS_NAN(x)) + return Py_BuildValue("(dd)", x, x); + } + + errno = 0; + PyFPE_START_PROTECT("in math_modf", return 0); + x = modf(x, &y); + PyFPE_END_PROTECT(x); + return Py_BuildValue("(dd)", x, y); +} + +PyDoc_STRVAR(math_modf_doc, +"modf(x)\n" +"\n" +"Return the fractional and integer parts of x. Both results carry the sign\n" +"of x and are floats."); + +/* A decent logarithm is easy to compute even for huge longs, but libm can't + do that by itself -- loghelper can. func is log or log10, and name is + "log" or "log10". Note that overflow of the result isn't possible: a long + can contain no more than INT_MAX * SHIFT bits, so has value certainly less + than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is + small enough to fit in an IEEE single. log and log10 are even smaller. + However, intermediate overflow is possible for a long if the number of bits + in that long is larger than PY_SSIZE_T_MAX. */ + +static PyObject* +loghelper(PyObject* arg, double (*func)(double), char *funcname) +{ + /* If it is long, do it ourselves. */ + if (PyLong_Check(arg)) { + double x, result; + Py_ssize_t e; + + /* Negative or zero inputs give a ValueError. */ + if (Py_SIZE(arg) <= 0) { + PyErr_SetString(PyExc_ValueError, + "math domain error"); + return NULL; + } + + x = PyLong_AsDouble(arg); + if (x == -1.0 && PyErr_Occurred()) { + if (!PyErr_ExceptionMatches(PyExc_OverflowError)) + return NULL; + /* Here the conversion to double overflowed, but it's possible + to compute the log anyway. Clear the exception and continue. */ + PyErr_Clear(); + x = _PyLong_Frexp((PyLongObject *)arg, &e); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */ + result = func(x) + func(2.0) * e; + } + else + /* Successfully converted x to a double. */ + result = func(x); + return PyFloat_FromDouble(result); + } + + /* Else let libm handle it by itself. */ + return math_1(arg, func, 0); +} + +static PyObject * +math_log(PyObject *self, PyObject *args) +{ + PyObject *arg; + PyObject *base = NULL; + PyObject *num, *den; + PyObject *ans; + + if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base)) + return NULL; + + num = loghelper(arg, m_log, "log"); + if (num == NULL || base == NULL) + return num; + + den = loghelper(base, m_log, "log"); + if (den == NULL) { + Py_DECREF(num); + return NULL; + } + + ans = PyNumber_Divide(num, den); + Py_DECREF(num); + Py_DECREF(den); + return ans; +} + +PyDoc_STRVAR(math_log_doc, +"log(x[, base])\n\n\ +Return the logarithm of x to the given base.\n\ +If the base not specified, returns the natural logarithm (base e) of x."); + +static PyObject * +math_log10(PyObject *self, PyObject *arg) +{ + return loghelper(arg, m_log10, "log10"); +} + +PyDoc_STRVAR(math_log10_doc, +"log10(x)\n\nReturn the base 10 logarithm of x."); + +static PyObject * +math_fmod(PyObject *self, PyObject *args) +{ + PyObject *ox, *oy; + double r, x, y; + if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy)) + return NULL; + x = PyFloat_AsDouble(ox); + y = PyFloat_AsDouble(oy); + if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) + return NULL; + /* fmod(x, +/-Inf) returns x for finite x. */ + if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) + return PyFloat_FromDouble(x); + errno = 0; + PyFPE_START_PROTECT("in math_fmod", return 0); + r = fmod(x, y); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) + errno = EDOM; + else + errno = 0; + } + if (errno && is_error(r)) + return NULL; + else + return PyFloat_FromDouble(r); +} + +PyDoc_STRVAR(math_fmod_doc, +"fmod(x, y)\n\nReturn fmod(x, y), according to platform C." +" x % y may differ."); + +static PyObject * +math_hypot(PyObject *self, PyObject *args) +{ + PyObject *ox, *oy; + double r, x, y; + if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy)) + return NULL; + x = PyFloat_AsDouble(ox); + y = PyFloat_AsDouble(oy); + if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) + return NULL; + /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */ + if (Py_IS_INFINITY(x)) + return PyFloat_FromDouble(fabs(x)); + if (Py_IS_INFINITY(y)) + return PyFloat_FromDouble(fabs(y)); + errno = 0; + PyFPE_START_PROTECT("in math_hypot", return 0); + r = hypot(x, y); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) + errno = EDOM; + else + errno = 0; + } + else if (Py_IS_INFINITY(r)) { + if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) + errno = ERANGE; + else + errno = 0; + } + if (errno && is_error(r)) + return NULL; + else + return PyFloat_FromDouble(r); +} + +PyDoc_STRVAR(math_hypot_doc, +"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y)."); + +/* pow can't use math_2, but needs its own wrapper: the problem is + that an infinite result can arise either as a result of overflow + (in which case OverflowError should be raised) or as a result of + e.g. 0.**-5. (for which ValueError needs to be raised.) +*/ + +static PyObject * +math_pow(PyObject *self, PyObject *args) +{ + PyObject *ox, *oy; + double r, x, y; + int odd_y; + + if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy)) + return NULL; + x = PyFloat_AsDouble(ox); + y = PyFloat_AsDouble(oy); + if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) + return NULL; + + /* deal directly with IEEE specials, to cope with problems on various + platforms whose semantics don't exactly match C99 */ + r = 0.; /* silence compiler warning */ + if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { + errno = 0; + if (Py_IS_NAN(x)) + r = y == 0. ? 1. : x; /* NaN**0 = 1 */ + else if (Py_IS_NAN(y)) + r = x == 1. ? 1. : y; /* 1**NaN = 1 */ + else if (Py_IS_INFINITY(x)) { + odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; + if (y > 0.) + r = odd_y ? x : fabs(x); + else if (y == 0.) + r = 1.; + else /* y < 0. */ + r = odd_y ? copysign(0., x) : 0.; + } + else if (Py_IS_INFINITY(y)) { + if (fabs(x) == 1.0) + r = 1.; + else if (y > 0. && fabs(x) > 1.0) + r = y; + else if (y < 0. && fabs(x) < 1.0) { + r = -y; /* result is +inf */ + if (x == 0.) /* 0**-inf: divide-by-zero */ + errno = EDOM; + } + else + r = 0.; + } + } + else { + /* let libm handle finite**finite */ + errno = 0; + PyFPE_START_PROTECT("in math_pow", return 0); + r = pow(x, y); + PyFPE_END_PROTECT(r); + /* a NaN result should arise only from (-ve)**(finite + non-integer); in this case we want to raise ValueError. */ + if (!Py_IS_FINITE(r)) { + if (Py_IS_NAN(r)) { + errno = EDOM; + } + /* + an infinite result here arises either from: + (A) (+/-0.)**negative (-> divide-by-zero) + (B) overflow of x**y with x and y finite + */ + else if (Py_IS_INFINITY(r)) { + if (x == 0.) + errno = EDOM; + else + errno = ERANGE; + } + } + } + + if (errno && is_error(r)) + return NULL; + else + return PyFloat_FromDouble(r); +} + +PyDoc_STRVAR(math_pow_doc, +"pow(x, y)\n\nReturn x**y (x to the power of y)."); + +static const double degToRad = Py_MATH_PI / 180.0; +static const double radToDeg = 180.0 / Py_MATH_PI; + +static PyObject * +math_degrees(PyObject *self, PyObject *arg) +{ + double x = PyFloat_AsDouble(arg); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + return PyFloat_FromDouble(x * radToDeg); +} + +PyDoc_STRVAR(math_degrees_doc, +"degrees(x)\n\n\ +Convert angle x from radians to degrees."); + +static PyObject * +math_radians(PyObject *self, PyObject *arg) +{ + double x = PyFloat_AsDouble(arg); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + return PyFloat_FromDouble(x * degToRad); +} + +PyDoc_STRVAR(math_radians_doc, +"radians(x)\n\n\ +Convert angle x from degrees to radians."); + +static PyObject * +math_isnan(PyObject *self, PyObject *arg) +{ + double x = PyFloat_AsDouble(arg); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + return PyBool_FromLong((long)Py_IS_NAN(x)); +} + +PyDoc_STRVAR(math_isnan_doc, +"isnan(x) -> bool\n\n\ +Check if float x is not a number (NaN)."); + +static PyObject * +math_isinf(PyObject *self, PyObject *arg) +{ + double x = PyFloat_AsDouble(arg); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + return PyBool_FromLong((long)Py_IS_INFINITY(x)); +} + +PyDoc_STRVAR(math_isinf_doc, +"isinf(x) -> bool\n\n\ +Check if float x is infinite (positive or negative)."); + +static PyMethodDef math_methods[] = { + {"acos", math_acos, METH_O, math_acos_doc}, + {"acosh", math_acosh, METH_O, math_acosh_doc}, + {"asin", math_asin, METH_O, math_asin_doc}, + {"asinh", math_asinh, METH_O, math_asinh_doc}, + {"atan", math_atan, METH_O, math_atan_doc}, + {"atan2", math_atan2, METH_VARARGS, math_atan2_doc}, + {"atanh", math_atanh, METH_O, math_atanh_doc}, + {"ceil", math_ceil, METH_O, math_ceil_doc}, + {"copysign", math_copysign, METH_VARARGS, math_copysign_doc}, + {"cos", math_cos, METH_O, math_cos_doc}, + {"cosh", math_cosh, METH_O, math_cosh_doc}, + {"degrees", math_degrees, METH_O, math_degrees_doc}, + {"erf", math_erf, METH_O, math_erf_doc}, + {"erfc", math_erfc, METH_O, math_erfc_doc}, + {"exp", math_exp, METH_O, math_exp_doc}, + {"expm1", math_expm1, METH_O, math_expm1_doc}, + {"fabs", math_fabs, METH_O, math_fabs_doc}, + {"factorial", math_factorial, METH_O, math_factorial_doc}, + {"floor", math_floor, METH_O, math_floor_doc}, + {"fmod", math_fmod, METH_VARARGS, math_fmod_doc}, + {"frexp", math_frexp, METH_O, math_frexp_doc}, + {"fsum", math_fsum, METH_O, math_fsum_doc}, + {"gamma", math_gamma, METH_O, math_gamma_doc}, + {"hypot", math_hypot, METH_VARARGS, math_hypot_doc}, + {"isinf", math_isinf, METH_O, math_isinf_doc}, + {"isnan", math_isnan, METH_O, math_isnan_doc}, + {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc}, + {"lgamma", math_lgamma, METH_O, math_lgamma_doc}, + {"log", math_log, METH_VARARGS, math_log_doc}, + {"log1p", math_log1p, METH_O, math_log1p_doc}, + {"log10", math_log10, METH_O, math_log10_doc}, + {"modf", math_modf, METH_O, math_modf_doc}, + {"pow", math_pow, METH_VARARGS, math_pow_doc}, + {"radians", math_radians, METH_O, math_radians_doc}, + {"sin", math_sin, METH_O, math_sin_doc}, + {"sinh", math_sinh, METH_O, math_sinh_doc}, + {"sqrt", math_sqrt, METH_O, math_sqrt_doc}, + {"tan", math_tan, METH_O, math_tan_doc}, + {"tanh", math_tanh, METH_O, math_tanh_doc}, + {"trunc", math_trunc, METH_O, math_trunc_doc}, + {NULL, NULL} /* sentinel */ +}; + + +PyDoc_STRVAR(module_doc, +"This module is always available. It provides access to the\n" +"mathematical functions defined by the C standard."); + +PyMODINIT_FUNC +initmath(void) +{ + PyObject *m; + + m = Py_InitModule3("math", math_methods, module_doc); + if (m == NULL) + goto finally; + + PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); + PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); + + finally: + return; +} |