diff options
author | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:24:06 +0300 |
---|---|---|
committer | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:41:34 +0300 |
commit | e0e3e1717e3d33762ce61950504f9637a6e669ed (patch) | |
tree | bca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/tools/python/src/Modules/_randommodule.c | |
parent | 38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff) | |
download | ydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz |
add ydb deps
Diffstat (limited to 'contrib/tools/python/src/Modules/_randommodule.c')
-rw-r--r-- | contrib/tools/python/src/Modules/_randommodule.c | 608 |
1 files changed, 608 insertions, 0 deletions
diff --git a/contrib/tools/python/src/Modules/_randommodule.c b/contrib/tools/python/src/Modules/_randommodule.c new file mode 100644 index 0000000000..2c0daef71f --- /dev/null +++ b/contrib/tools/python/src/Modules/_randommodule.c @@ -0,0 +1,608 @@ +/* Random objects */ + +/* ------------------------------------------------------------------ + The code in this module was based on a download from: + http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html + + It was modified in 2002 by Raymond Hettinger as follows: + + * the principal computational lines untouched. + + * renamed genrand_res53() to random_random() and wrapped + in python calling/return code. + + * genrand_int32() and the helper functions, init_genrand() + and init_by_array(), were declared static, wrapped in + Python calling/return code. also, their global data + references were replaced with structure references. + + * unused functions from the original were deleted. + new, original C python code was added to implement the + Random() interface. + + The following are the verbatim comments from the original code: + + A C-program for MT19937, with initialization improved 2002/1/26. + Coded by Takuji Nishimura and Makoto Matsumoto. + + Before using, initialize the state by using init_genrand(seed) + or init_by_array(init_key, key_length). + + Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + 1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. The names of its contributors may not be used to endorse or promote + products derived from this software without specific prior written + permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR + CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + + Any feedback is very welcome. + http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html + email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) +*/ + +/* ---------------------------------------------------------------*/ + +#include "Python.h" +#include <time.h> /* for seeding to current time */ + +/* Period parameters -- These are all magic. Don't change. */ +#define N 624 +#define M 397 +#define MATRIX_A 0x9908b0dfUL /* constant vector a */ +#define UPPER_MASK 0x80000000UL /* most significant w-r bits */ +#define LOWER_MASK 0x7fffffffUL /* least significant r bits */ + +typedef struct { + PyObject_HEAD + unsigned long state[N]; + int index; +} RandomObject; + +static PyTypeObject Random_Type; + +#define RandomObject_Check(v) (Py_TYPE(v) == &Random_Type) + + +/* Random methods */ + + +/* generates a random number on [0,0xffffffff]-interval */ +static unsigned long +genrand_int32(RandomObject *self) +{ + unsigned long y; + static unsigned long mag01[2]={0x0UL, MATRIX_A}; + /* mag01[x] = x * MATRIX_A for x=0,1 */ + unsigned long *mt; + + mt = self->state; + if (self->index >= N) { /* generate N words at one time */ + int kk; + + for (kk=0;kk<N-M;kk++) { + y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); + mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL]; + } + for (;kk<N-1;kk++) { + y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); + mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL]; + } + y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); + mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL]; + + self->index = 0; + } + + y = mt[self->index++]; + y ^= (y >> 11); + y ^= (y << 7) & 0x9d2c5680UL; + y ^= (y << 15) & 0xefc60000UL; + y ^= (y >> 18); + return y; +} + +/* random_random is the function named genrand_res53 in the original code; + * generates a random number on [0,1) with 53-bit resolution; note that + * 9007199254740992 == 2**53; I assume they're spelling "/2**53" as + * multiply-by-reciprocal in the (likely vain) hope that the compiler will + * optimize the division away at compile-time. 67108864 is 2**26. In + * effect, a contains 27 random bits shifted left 26, and b fills in the + * lower 26 bits of the 53-bit numerator. + * The orginal code credited Isaku Wada for this algorithm, 2002/01/09. + */ +static PyObject * +random_random(RandomObject *self) +{ + unsigned long a=genrand_int32(self)>>5, b=genrand_int32(self)>>6; + return PyFloat_FromDouble((a*67108864.0+b)*(1.0/9007199254740992.0)); +} + +/* initializes mt[N] with a seed */ +static void +init_genrand(RandomObject *self, unsigned long s) +{ + int mti; + unsigned long *mt; + + mt = self->state; + mt[0]= s & 0xffffffffUL; + for (mti=1; mti<N; mti++) { + mt[mti] = + (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); + /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ + /* In the previous versions, MSBs of the seed affect */ + /* only MSBs of the array mt[]. */ + /* 2002/01/09 modified by Makoto Matsumoto */ + mt[mti] &= 0xffffffffUL; + /* for >32 bit machines */ + } + self->index = mti; + return; +} + +/* initialize by an array with array-length */ +/* init_key is the array for initializing keys */ +/* key_length is its length */ +static PyObject * +init_by_array(RandomObject *self, unsigned long init_key[], unsigned long key_length) +{ + unsigned int i, j, k; /* was signed in the original code. RDH 12/16/2002 */ + unsigned long *mt; + + mt = self->state; + init_genrand(self, 19650218UL); + i=1; j=0; + k = (N>key_length ? N : key_length); + for (; k; k--) { + mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) + + init_key[j] + j; /* non linear */ + mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ + i++; j++; + if (i>=N) { mt[0] = mt[N-1]; i=1; } + if (j>=key_length) j=0; + } + for (k=N-1; k; k--) { + mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) + - i; /* non linear */ + mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ + i++; + if (i>=N) { mt[0] = mt[N-1]; i=1; } + } + + mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ + Py_INCREF(Py_None); + return Py_None; +} + +/* + * The rest is Python-specific code, neither part of, nor derived from, the + * Twister download. + */ + +static PyObject * +random_seed(RandomObject *self, PyObject *args) +{ + PyObject *result = NULL; /* guilty until proved innocent */ + PyObject *masklower = NULL; + PyObject *thirtytwo = NULL; + PyObject *n = NULL; + unsigned long *key = NULL; + unsigned long keymax; /* # of allocated slots in key */ + unsigned long keyused; /* # of used slots in key */ + int err; + + PyObject *arg = NULL; + + if (!PyArg_UnpackTuple(args, "seed", 0, 1, &arg)) + return NULL; + + if (arg == NULL || arg == Py_None) { + time_t now; + + time(&now); + init_genrand(self, (unsigned long)now); + Py_INCREF(Py_None); + return Py_None; + } + /* If the arg is an int or long, use its absolute value; else use + * the absolute value of its hash code. + * Calling int.__abs__() or long.__abs__() prevents calling arg.__abs__(), + * which might return an invalid value. See issue #31478. + */ + if (PyInt_Check(arg)) { + n = PyInt_Type.tp_as_number->nb_absolute(arg); + } + else if (PyLong_Check(arg)) { + n = PyLong_Type.tp_as_number->nb_absolute(arg); + } + else { + long hash = PyObject_Hash(arg); + if (hash == -1) + goto Done; + n = PyLong_FromUnsignedLong((unsigned long)hash); + } + if (n == NULL) + goto Done; + + /* Now split n into 32-bit chunks, from the right. Each piece is + * stored into key, which has a capacity of keymax chunks, of which + * keyused are filled. Alas, the repeated shifting makes this a + * quadratic-time algorithm; we'd really like to use + * _PyLong_AsByteArray here, but then we'd have to break into the + * long representation to figure out how big an array was needed + * in advance. + */ + keymax = 8; /* arbitrary; grows later if needed */ + keyused = 0; + key = (unsigned long *)PyMem_Malloc(keymax * sizeof(*key)); + if (key == NULL) + goto Done; + + masklower = PyLong_FromUnsignedLong(0xffffffffU); + if (masklower == NULL) + goto Done; + thirtytwo = PyInt_FromLong(32L); + if (thirtytwo == NULL) + goto Done; + while ((err=PyObject_IsTrue(n))) { + PyObject *newn; + PyObject *pychunk; + unsigned long chunk; + + if (err == -1) + goto Done; + pychunk = PyNumber_And(n, masklower); + if (pychunk == NULL) + goto Done; + chunk = PyLong_AsUnsignedLong(pychunk); + Py_DECREF(pychunk); + if (chunk == (unsigned long)-1 && PyErr_Occurred()) + goto Done; + newn = PyNumber_Rshift(n, thirtytwo); + if (newn == NULL) + goto Done; + Py_DECREF(n); + n = newn; + if (keyused >= keymax) { + unsigned long bigger = keymax << 1; + if ((bigger >> 1) != keymax) { + PyErr_NoMemory(); + goto Done; + } + key = (unsigned long *)PyMem_Realloc(key, + bigger * sizeof(*key)); + if (key == NULL) + goto Done; + keymax = bigger; + } + assert(keyused < keymax); + key[keyused++] = chunk; + } + + if (keyused == 0) + key[keyused++] = 0UL; + result = init_by_array(self, key, keyused); +Done: + Py_XDECREF(masklower); + Py_XDECREF(thirtytwo); + Py_XDECREF(n); + PyMem_Free(key); + return result; +} + +static PyObject * +random_getstate(RandomObject *self) +{ + PyObject *state; + PyObject *element; + int i; + + state = PyTuple_New(N+1); + if (state == NULL) + return NULL; + for (i=0; i<N ; i++) { + element = PyLong_FromUnsignedLong(self->state[i]); + if (element == NULL) + goto Fail; + PyTuple_SET_ITEM(state, i, element); + } + element = PyLong_FromLong((long)(self->index)); + if (element == NULL) + goto Fail; + PyTuple_SET_ITEM(state, i, element); + return state; + +Fail: + Py_DECREF(state); + return NULL; +} + +static PyObject * +random_setstate(RandomObject *self, PyObject *state) +{ + int i; + unsigned long element; + long index; + unsigned long new_state[N]; + + if (!PyTuple_Check(state)) { + PyErr_SetString(PyExc_TypeError, + "state vector must be a tuple"); + return NULL; + } + if (PyTuple_Size(state) != N+1) { + PyErr_SetString(PyExc_ValueError, + "state vector is the wrong size"); + return NULL; + } + + for (i=0; i<N ; i++) { + element = PyLong_AsUnsignedLong(PyTuple_GET_ITEM(state, i)); + if (element == (unsigned long)-1 && PyErr_Occurred()) + return NULL; + new_state[i] = element & 0xffffffffUL; /* Make sure we get sane state */ + } + + index = PyLong_AsLong(PyTuple_GET_ITEM(state, i)); + if (index == -1 && PyErr_Occurred()) + return NULL; + if (index < 0 || index > N) { + PyErr_SetString(PyExc_ValueError, "invalid state"); + return NULL; + } + self->index = (int)index; + for (i = 0; i < N; i++) + self->state[i] = new_state[i]; + + Py_INCREF(Py_None); + return Py_None; +} + +/* +Jumpahead should be a fast way advance the generator n-steps ahead, but +lacking a formula for that, the next best is to use n and the existing +state to create a new state far away from the original. + +The generator uses constant spaced additive feedback, so shuffling the +state elements ought to produce a state which would not be encountered +(in the near term) by calls to random(). Shuffling is normally +implemented by swapping the ith element with another element ranging +from 0 to i inclusive. That allows the element to have the possibility +of not being moved. Since the goal is to produce a new, different +state, the swap element is ranged from 0 to i-1 inclusive. This assures +that each element gets moved at least once. + +To make sure that consecutive calls to jumpahead(n) produce different +states (even in the rare case of involutory shuffles), i+1 is added to +each element at position i. Successive calls are then guaranteed to +have changing (growing) values as well as shuffled positions. + +Finally, the self->index value is set to N so that the generator itself +kicks in on the next call to random(). This assures that all results +have been through the generator and do not just reflect alterations to +the underlying state. +*/ + +static PyObject * +random_jumpahead(RandomObject *self, PyObject *n) +{ + long i, j; + PyObject *iobj; + PyObject *remobj; + unsigned long *mt, tmp, nonzero; + + if (!_PyAnyInt_Check(n)) { + PyErr_Format(PyExc_TypeError, "jumpahead requires an " + "integer, not '%s'", + Py_TYPE(n)->tp_name); + return NULL; + } + + mt = self->state; + for (i = N-1; i > 1; i--) { + iobj = PyInt_FromLong(i); + if (iobj == NULL) + return NULL; + remobj = PyNumber_Remainder(n, iobj); + Py_DECREF(iobj); + if (remobj == NULL) + return NULL; + j = PyInt_AsLong(remobj); + Py_DECREF(remobj); + if (j == -1L && PyErr_Occurred()) + return NULL; + tmp = mt[i]; + mt[i] = mt[j]; + mt[j] = tmp; + } + + nonzero = 0; + for (i = 1; i < N; i++) { + mt[i] += i+1; + mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ + nonzero |= mt[i]; + } + + /* Ensure the state is nonzero: in the unlikely event that mt[1] through + mt[N-1] are all zero, set the MSB of mt[0] (see issue #14591). In the + normal case, we fall back to the pre-issue 14591 behaviour for mt[0]. */ + if (nonzero) { + mt[0] += 1; + mt[0] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ + } + else { + mt[0] = 0x80000000UL; + } + + self->index = N; + Py_INCREF(Py_None); + return Py_None; +} + +static PyObject * +random_getrandbits(RandomObject *self, PyObject *args) +{ + int k, i, bytes; + unsigned long r; + unsigned char *bytearray; + PyObject *result; + + if (!PyArg_ParseTuple(args, "i:getrandbits", &k)) + return NULL; + + if (k <= 0) { + PyErr_SetString(PyExc_ValueError, + "number of bits must be greater than zero"); + return NULL; + } + + bytes = ((k - 1) / 32 + 1) * 4; + bytearray = (unsigned char *)PyMem_Malloc(bytes); + if (bytearray == NULL) { + PyErr_NoMemory(); + return NULL; + } + + /* Fill-out whole words, byte-by-byte to avoid endianness issues */ + for (i=0 ; i<bytes ; i+=4, k-=32) { + r = genrand_int32(self); + if (k < 32) + r >>= (32 - k); + bytearray[i+0] = (unsigned char)r; + bytearray[i+1] = (unsigned char)(r >> 8); + bytearray[i+2] = (unsigned char)(r >> 16); + bytearray[i+3] = (unsigned char)(r >> 24); + } + + /* little endian order to match bytearray assignment order */ + result = _PyLong_FromByteArray(bytearray, bytes, 1, 0); + PyMem_Free(bytearray); + return result; +} + +static PyObject * +random_new(PyTypeObject *type, PyObject *args, PyObject *kwds) +{ + RandomObject *self; + PyObject *tmp; + + if (type == &Random_Type && !_PyArg_NoKeywords("Random()", kwds)) + return NULL; + + self = (RandomObject *)type->tp_alloc(type, 0); + if (self == NULL) + return NULL; + tmp = random_seed(self, args); + if (tmp == NULL) { + Py_DECREF(self); + return NULL; + } + Py_DECREF(tmp); + return (PyObject *)self; +} + +static PyMethodDef random_methods[] = { + {"random", (PyCFunction)random_random, METH_NOARGS, + PyDoc_STR("random() -> x in the interval [0, 1).")}, + {"seed", (PyCFunction)random_seed, METH_VARARGS, + PyDoc_STR("seed([n]) -> None. Defaults to current time.")}, + {"getstate", (PyCFunction)random_getstate, METH_NOARGS, + PyDoc_STR("getstate() -> tuple containing the current state.")}, + {"setstate", (PyCFunction)random_setstate, METH_O, + PyDoc_STR("setstate(state) -> None. Restores generator state.")}, + {"jumpahead", (PyCFunction)random_jumpahead, METH_O, + PyDoc_STR("jumpahead(int) -> None. Create new state from " + "existing state and integer.")}, + {"getrandbits", (PyCFunction)random_getrandbits, METH_VARARGS, + PyDoc_STR("getrandbits(k) -> x. Generates a long int with " + "k random bits.")}, + {NULL, NULL} /* sentinel */ +}; + +PyDoc_STRVAR(random_doc, +"Random() -> create a random number generator with its own internal state."); + +static PyTypeObject Random_Type = { + PyVarObject_HEAD_INIT(NULL, 0) + "_random.Random", /*tp_name*/ + sizeof(RandomObject), /*tp_basicsize*/ + 0, /*tp_itemsize*/ + /* methods */ + 0, /*tp_dealloc*/ + 0, /*tp_print*/ + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + 0, /*tp_compare*/ + 0, /*tp_repr*/ + 0, /*tp_as_number*/ + 0, /*tp_as_sequence*/ + 0, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + 0, /*tp_str*/ + PyObject_GenericGetAttr, /*tp_getattro*/ + 0, /*tp_setattro*/ + 0, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ + random_doc, /*tp_doc*/ + 0, /*tp_traverse*/ + 0, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + random_methods, /*tp_methods*/ + 0, /*tp_members*/ + 0, /*tp_getset*/ + 0, /*tp_base*/ + 0, /*tp_dict*/ + 0, /*tp_descr_get*/ + 0, /*tp_descr_set*/ + 0, /*tp_dictoffset*/ + 0, /*tp_init*/ + 0, /*tp_alloc*/ + random_new, /*tp_new*/ + _PyObject_Del, /*tp_free*/ + 0, /*tp_is_gc*/ +}; + +PyDoc_STRVAR(module_doc, +"Module implements the Mersenne Twister random number generator."); + +PyMODINIT_FUNC +init_random(void) +{ + PyObject *m; + + if (PyType_Ready(&Random_Type) < 0) + return; + m = Py_InitModule3("_random", NULL, module_doc); + if (m == NULL) + return; + Py_INCREF(&Random_Type); + PyModule_AddObject(m, "Random", (PyObject *)&Random_Type); +} |