diff options
| author | alexv-smirnov <[email protected]> | 2023-03-28 22:25:04 +0300 |
|---|---|---|
| committer | alexv-smirnov <[email protected]> | 2023-03-28 22:25:04 +0300 |
| commit | b8a17f9b1c166d2e9a26b99348a4c29d972caf55 (patch) | |
| tree | 1a2d881f1a9452b9c6103dbf69d73da7624e98e5 /contrib/tools/cython/Cython/Compiler/Parsing.py | |
| parent | 25659221f18577ea38430a8ec3349836f5626b6a (diff) | |
Revert ymake build from ydb oss export
Diffstat (limited to 'contrib/tools/cython/Cython/Compiler/Parsing.py')
| -rw-r--r-- | contrib/tools/cython/Cython/Compiler/Parsing.py | 3860 |
1 files changed, 0 insertions, 3860 deletions
diff --git a/contrib/tools/cython/Cython/Compiler/Parsing.py b/contrib/tools/cython/Cython/Compiler/Parsing.py deleted file mode 100644 index 20dbc9bbf95..00000000000 --- a/contrib/tools/cython/Cython/Compiler/Parsing.py +++ /dev/null @@ -1,3860 +0,0 @@ -# cython: auto_cpdef=True, infer_types=True, language_level=3, py2_import=True -# -# Parser -# - -from __future__ import absolute_import - -# This should be done automatically -import cython -cython.declare(Nodes=object, ExprNodes=object, EncodedString=object, - bytes_literal=object, StringEncoding=object, - FileSourceDescriptor=object, lookup_unicodechar=object, unicode_category=object, - Future=object, Options=object, error=object, warning=object, - Builtin=object, ModuleNode=object, Utils=object, _unicode=object, _bytes=object, - re=object, sys=object, _parse_escape_sequences=object, _parse_escape_sequences_raw=object, - partial=object, reduce=object, _IS_PY3=cython.bint, _IS_2BYTE_UNICODE=cython.bint, - _CDEF_MODIFIERS=tuple) - -from io import StringIO -import re -import sys -from unicodedata import lookup as lookup_unicodechar, category as unicode_category -from functools import partial, reduce - -from .Scanning import PyrexScanner, FileSourceDescriptor, StringSourceDescriptor -from . import Nodes -from . import ExprNodes -from . import Builtin -from . import StringEncoding -from .StringEncoding import EncodedString, bytes_literal, _unicode, _bytes -from .ModuleNode import ModuleNode -from .Errors import error, warning -from .. import Utils -from . import Future -from . import Options - -_IS_PY3 = sys.version_info[0] >= 3 -_IS_2BYTE_UNICODE = sys.maxunicode == 0xffff -_CDEF_MODIFIERS = ('inline', 'nogil', 'api') - - -class Ctx(object): - # Parsing context - level = 'other' - visibility = 'private' - cdef_flag = 0 - typedef_flag = 0 - api = 0 - overridable = 0 - nogil = 0 - namespace = None - templates = None - allow_struct_enum_decorator = False - - def __init__(self, **kwds): - self.__dict__.update(kwds) - - def __call__(self, **kwds): - ctx = Ctx() - d = ctx.__dict__ - d.update(self.__dict__) - d.update(kwds) - return ctx - - -def p_ident(s, message="Expected an identifier"): - if s.sy == 'IDENT': - name = s.systring - s.next() - return name - else: - s.error(message) - -def p_ident_list(s): - names = [] - while s.sy == 'IDENT': - names.append(s.systring) - s.next() - if s.sy != ',': - break - s.next() - return names - -#------------------------------------------ -# -# Expressions -# -#------------------------------------------ - -def p_binop_operator(s): - pos = s.position() - op = s.sy - s.next() - return op, pos - -def p_binop_expr(s, ops, p_sub_expr): - n1 = p_sub_expr(s) - while s.sy in ops: - op, pos = p_binop_operator(s) - n2 = p_sub_expr(s) - n1 = ExprNodes.binop_node(pos, op, n1, n2) - if op == '/': - if Future.division in s.context.future_directives: - n1.truedivision = True - else: - n1.truedivision = None # unknown - return n1 - -#lambdef: 'lambda' [varargslist] ':' test - -def p_lambdef(s, allow_conditional=True): - # s.sy == 'lambda' - pos = s.position() - s.next() - if s.sy == ':': - args = [] - star_arg = starstar_arg = None - else: - args, star_arg, starstar_arg = p_varargslist( - s, terminator=':', annotated=False) - s.expect(':') - if allow_conditional: - expr = p_test(s) - else: - expr = p_test_nocond(s) - return ExprNodes.LambdaNode( - pos, args = args, - star_arg = star_arg, starstar_arg = starstar_arg, - result_expr = expr) - -#lambdef_nocond: 'lambda' [varargslist] ':' test_nocond - -def p_lambdef_nocond(s): - return p_lambdef(s, allow_conditional=False) - -#test: or_test ['if' or_test 'else' test] | lambdef - -def p_test(s): - if s.sy == 'lambda': - return p_lambdef(s) - pos = s.position() - expr = p_or_test(s) - if s.sy == 'if': - s.next() - test = p_or_test(s) - s.expect('else') - other = p_test(s) - return ExprNodes.CondExprNode(pos, test=test, true_val=expr, false_val=other) - else: - return expr - -#test_nocond: or_test | lambdef_nocond - -def p_test_nocond(s): - if s.sy == 'lambda': - return p_lambdef_nocond(s) - else: - return p_or_test(s) - -#or_test: and_test ('or' and_test)* - -def p_or_test(s): - return p_rassoc_binop_expr(s, ('or',), p_and_test) - -def p_rassoc_binop_expr(s, ops, p_subexpr): - n1 = p_subexpr(s) - if s.sy in ops: - pos = s.position() - op = s.sy - s.next() - n2 = p_rassoc_binop_expr(s, ops, p_subexpr) - n1 = ExprNodes.binop_node(pos, op, n1, n2) - return n1 - -#and_test: not_test ('and' not_test)* - -def p_and_test(s): - #return p_binop_expr(s, ('and',), p_not_test) - return p_rassoc_binop_expr(s, ('and',), p_not_test) - -#not_test: 'not' not_test | comparison - -def p_not_test(s): - if s.sy == 'not': - pos = s.position() - s.next() - return ExprNodes.NotNode(pos, operand = p_not_test(s)) - else: - return p_comparison(s) - -#comparison: expr (comp_op expr)* -#comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not' - -def p_comparison(s): - n1 = p_starred_expr(s) - if s.sy in comparison_ops: - pos = s.position() - op = p_cmp_op(s) - n2 = p_starred_expr(s) - n1 = ExprNodes.PrimaryCmpNode(pos, - operator = op, operand1 = n1, operand2 = n2) - if s.sy in comparison_ops: - n1.cascade = p_cascaded_cmp(s) - return n1 - -def p_test_or_starred_expr(s): - if s.sy == '*': - return p_starred_expr(s) - else: - return p_test(s) - -def p_starred_expr(s): - pos = s.position() - if s.sy == '*': - starred = True - s.next() - else: - starred = False - expr = p_bit_expr(s) - if starred: - expr = ExprNodes.StarredUnpackingNode(pos, expr) - return expr - -def p_cascaded_cmp(s): - pos = s.position() - op = p_cmp_op(s) - n2 = p_starred_expr(s) - result = ExprNodes.CascadedCmpNode(pos, - operator = op, operand2 = n2) - if s.sy in comparison_ops: - result.cascade = p_cascaded_cmp(s) - return result - -def p_cmp_op(s): - if s.sy == 'not': - s.next() - s.expect('in') - op = 'not_in' - elif s.sy == 'is': - s.next() - if s.sy == 'not': - s.next() - op = 'is_not' - else: - op = 'is' - else: - op = s.sy - s.next() - if op == '<>': - op = '!=' - return op - -comparison_ops = cython.declare(set, set([ - '<', '>', '==', '>=', '<=', '<>', '!=', - 'in', 'is', 'not' -])) - -#expr: xor_expr ('|' xor_expr)* - -def p_bit_expr(s): - return p_binop_expr(s, ('|',), p_xor_expr) - -#xor_expr: and_expr ('^' and_expr)* - -def p_xor_expr(s): - return p_binop_expr(s, ('^',), p_and_expr) - -#and_expr: shift_expr ('&' shift_expr)* - -def p_and_expr(s): - return p_binop_expr(s, ('&',), p_shift_expr) - -#shift_expr: arith_expr (('<<'|'>>') arith_expr)* - -def p_shift_expr(s): - return p_binop_expr(s, ('<<', '>>'), p_arith_expr) - -#arith_expr: term (('+'|'-') term)* - -def p_arith_expr(s): - return p_binop_expr(s, ('+', '-'), p_term) - -#term: factor (('*'|'@'|'/'|'%'|'//') factor)* - -def p_term(s): - return p_binop_expr(s, ('*', '@', '/', '%', '//'), p_factor) - -#factor: ('+'|'-'|'~'|'&'|typecast|sizeof) factor | power - -def p_factor(s): - # little indirection for C-ification purposes - return _p_factor(s) - -def _p_factor(s): - sy = s.sy - if sy in ('+', '-', '~'): - op = s.sy - pos = s.position() - s.next() - return ExprNodes.unop_node(pos, op, p_factor(s)) - elif not s.in_python_file: - if sy == '&': - pos = s.position() - s.next() - arg = p_factor(s) - return ExprNodes.AmpersandNode(pos, operand = arg) - elif sy == "<": - return p_typecast(s) - elif sy == 'IDENT' and s.systring == "sizeof": - return p_sizeof(s) - return p_power(s) - -def p_typecast(s): - # s.sy == "<" - pos = s.position() - s.next() - base_type = p_c_base_type(s) - is_memslice = isinstance(base_type, Nodes.MemoryViewSliceTypeNode) - is_template = isinstance(base_type, Nodes.TemplatedTypeNode) - is_const = isinstance(base_type, Nodes.CConstTypeNode) - if (not is_memslice and not is_template and not is_const - and base_type.name is None): - s.error("Unknown type") - declarator = p_c_declarator(s, empty = 1) - if s.sy == '?': - s.next() - typecheck = 1 - else: - typecheck = 0 - s.expect(">") - operand = p_factor(s) - if is_memslice: - return ExprNodes.CythonArrayNode(pos, base_type_node=base_type, - operand=operand) - - return ExprNodes.TypecastNode(pos, - base_type = base_type, - declarator = declarator, - operand = operand, - typecheck = typecheck) - -def p_sizeof(s): - # s.sy == ident "sizeof" - pos = s.position() - s.next() - s.expect('(') - # Here we decide if we are looking at an expression or type - # If it is actually a type, but parsable as an expression, - # we treat it as an expression here. - if looking_at_expr(s): - operand = p_test(s) - node = ExprNodes.SizeofVarNode(pos, operand = operand) - else: - base_type = p_c_base_type(s) - declarator = p_c_declarator(s, empty = 1) - node = ExprNodes.SizeofTypeNode(pos, - base_type = base_type, declarator = declarator) - s.expect(')') - return node - - -def p_yield_expression(s): - # s.sy == "yield" - pos = s.position() - s.next() - is_yield_from = False - if s.sy == 'from': - is_yield_from = True - s.next() - if s.sy != ')' and s.sy not in statement_terminators: - # "yield from" does not support implicit tuples, but "yield" does ("yield 1,2") - arg = p_test(s) if is_yield_from else p_testlist(s) - else: - if is_yield_from: - s.error("'yield from' requires a source argument", - pos=pos, fatal=False) - arg = None - if is_yield_from: - return ExprNodes.YieldFromExprNode(pos, arg=arg) - else: - return ExprNodes.YieldExprNode(pos, arg=arg) - - -def p_yield_statement(s): - # s.sy == "yield" - yield_expr = p_yield_expression(s) - return Nodes.ExprStatNode(yield_expr.pos, expr=yield_expr) - - -def p_async_statement(s, ctx, decorators): - # s.sy >> 'async' ... - if s.sy == 'def': - # 'async def' statements aren't allowed in pxd files - if 'pxd' in ctx.level: - s.error('def statement not allowed here') - s.level = ctx.level - return p_def_statement(s, decorators, is_async_def=True) - elif decorators: - s.error("Decorators can only be followed by functions or classes") - elif s.sy == 'for': - return p_for_statement(s, is_async=True) - elif s.sy == 'with': - s.next() - return p_with_items(s, is_async=True) - else: - s.error("expected one of 'def', 'for', 'with' after 'async'") - - -#power: atom_expr ('**' factor)* -#atom_expr: ['await'] atom trailer* - -def p_power(s): - if s.systring == 'new' and s.peek()[0] == 'IDENT': - return p_new_expr(s) - await_pos = None - if s.sy == 'await': - await_pos = s.position() - s.next() - n1 = p_atom(s) - while s.sy in ('(', '[', '.'): - n1 = p_trailer(s, n1) - if await_pos: - n1 = ExprNodes.AwaitExprNode(await_pos, arg=n1) - if s.sy == '**': - pos = s.position() - s.next() - n2 = p_factor(s) - n1 = ExprNodes.binop_node(pos, '**', n1, n2) - return n1 - - -def p_new_expr(s): - # s.systring == 'new'. - pos = s.position() - s.next() - cppclass = p_c_base_type(s) - return p_call(s, ExprNodes.NewExprNode(pos, cppclass = cppclass)) - -#trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME - -def p_trailer(s, node1): - pos = s.position() - if s.sy == '(': - return p_call(s, node1) - elif s.sy == '[': - return p_index(s, node1) - else: # s.sy == '.' - s.next() - name = p_ident(s) - return ExprNodes.AttributeNode(pos, - obj=node1, attribute=name) - - -# arglist: argument (',' argument)* [','] -# argument: [test '='] test # Really [keyword '='] test - -# since PEP 448: -# argument: ( test [comp_for] | -# test '=' test | -# '**' expr | -# star_expr ) - -def p_call_parse_args(s, allow_genexp=True): - # s.sy == '(' - pos = s.position() - s.next() - positional_args = [] - keyword_args = [] - starstar_seen = False - last_was_tuple_unpack = False - while s.sy != ')': - if s.sy == '*': - if starstar_seen: - s.error("Non-keyword arg following keyword arg", pos=s.position()) - s.next() - positional_args.append(p_test(s)) - last_was_tuple_unpack = True - elif s.sy == '**': - s.next() - keyword_args.append(p_test(s)) - starstar_seen = True - else: - arg = p_test(s) - if s.sy == '=': - s.next() - if not arg.is_name: - s.error("Expected an identifier before '='", - pos=arg.pos) - encoded_name = s.context.intern_ustring(arg.name) - keyword = ExprNodes.IdentifierStringNode( - arg.pos, value=encoded_name) - arg = p_test(s) - keyword_args.append((keyword, arg)) - else: - if keyword_args: - s.error("Non-keyword arg following keyword arg", pos=arg.pos) - if positional_args and not last_was_tuple_unpack: - positional_args[-1].append(arg) - else: - positional_args.append([arg]) - last_was_tuple_unpack = False - if s.sy != ',': - break - s.next() - - if s.sy in ('for', 'async'): - if not keyword_args and not last_was_tuple_unpack: - if len(positional_args) == 1 and len(positional_args[0]) == 1: - positional_args = [[p_genexp(s, positional_args[0][0])]] - s.expect(')') - return positional_args or [[]], keyword_args - - -def p_call_build_packed_args(pos, positional_args, keyword_args): - keyword_dict = None - - subtuples = [ - ExprNodes.TupleNode(pos, args=arg) if isinstance(arg, list) else ExprNodes.AsTupleNode(pos, arg=arg) - for arg in positional_args - ] - # TODO: implement a faster way to join tuples than creating each one and adding them - arg_tuple = reduce(partial(ExprNodes.binop_node, pos, '+'), subtuples) - - if keyword_args: - kwargs = [] - dict_items = [] - for item in keyword_args: - if isinstance(item, tuple): - key, value = item - dict_items.append(ExprNodes.DictItemNode(pos=key.pos, key=key, value=value)) - elif item.is_dict_literal: - # unpack "**{a:b}" directly - dict_items.extend(item.key_value_pairs) - else: - if dict_items: - kwargs.append(ExprNodes.DictNode( - dict_items[0].pos, key_value_pairs=dict_items, reject_duplicates=True)) - dict_items = [] - kwargs.append(item) - - if dict_items: - kwargs.append(ExprNodes.DictNode( - dict_items[0].pos, key_value_pairs=dict_items, reject_duplicates=True)) - - if kwargs: - if len(kwargs) == 1 and kwargs[0].is_dict_literal: - # only simple keyword arguments found -> one dict - keyword_dict = kwargs[0] - else: - # at least one **kwargs - keyword_dict = ExprNodes.MergedDictNode(pos, keyword_args=kwargs) - - return arg_tuple, keyword_dict - - -def p_call(s, function): - # s.sy == '(' - pos = s.position() - positional_args, keyword_args = p_call_parse_args(s) - - if not keyword_args and len(positional_args) == 1 and isinstance(positional_args[0], list): - return ExprNodes.SimpleCallNode(pos, function=function, args=positional_args[0]) - else: - arg_tuple, keyword_dict = p_call_build_packed_args(pos, positional_args, keyword_args) - return ExprNodes.GeneralCallNode( - pos, function=function, positional_args=arg_tuple, keyword_args=keyword_dict) - - -#lambdef: 'lambda' [varargslist] ':' test - -#subscriptlist: subscript (',' subscript)* [','] - -def p_index(s, base): - # s.sy == '[' - pos = s.position() - s.next() - subscripts, is_single_value = p_subscript_list(s) - if is_single_value and len(subscripts[0]) == 2: - start, stop = subscripts[0] - result = ExprNodes.SliceIndexNode(pos, - base = base, start = start, stop = stop) - else: - indexes = make_slice_nodes(pos, subscripts) - if is_single_value: - index = indexes[0] - else: - index = ExprNodes.TupleNode(pos, args = indexes) - result = ExprNodes.IndexNode(pos, - base = base, index = index) - s.expect(']') - return result - -def p_subscript_list(s): - is_single_value = True - items = [p_subscript(s)] - while s.sy == ',': - is_single_value = False - s.next() - if s.sy == ']': - break - items.append(p_subscript(s)) - return items, is_single_value - -#subscript: '.' '.' '.' | test | [test] ':' [test] [':' [test]] - -def p_subscript(s): - # Parse a subscript and return a list of - # 1, 2 or 3 ExprNodes, depending on how - # many slice elements were encountered. - pos = s.position() - start = p_slice_element(s, (':',)) - if s.sy != ':': - return [start] - s.next() - stop = p_slice_element(s, (':', ',', ']')) - if s.sy != ':': - return [start, stop] - s.next() - step = p_slice_element(s, (':', ',', ']')) - return [start, stop, step] - -def p_slice_element(s, follow_set): - # Simple expression which may be missing iff - # it is followed by something in follow_set. - if s.sy not in follow_set: - return p_test(s) - else: - return None - -def expect_ellipsis(s): - s.expect('.') - s.expect('.') - s.expect('.') - -def make_slice_nodes(pos, subscripts): - # Convert a list of subscripts as returned - # by p_subscript_list into a list of ExprNodes, - # creating SliceNodes for elements with 2 or - # more components. - result = [] - for subscript in subscripts: - if len(subscript) == 1: - result.append(subscript[0]) - else: - result.append(make_slice_node(pos, *subscript)) - return result - -def make_slice_node(pos, start, stop = None, step = None): - if not start: - start = ExprNodes.NoneNode(pos) - if not stop: - stop = ExprNodes.NoneNode(pos) - if not step: - step = ExprNodes.NoneNode(pos) - return ExprNodes.SliceNode(pos, - start = start, stop = stop, step = step) - -#atom: '(' [yield_expr|testlist_comp] ')' | '[' [listmaker] ']' | '{' [dict_or_set_maker] '}' | '`' testlist '`' | NAME | NUMBER | STRING+ - -def p_atom(s): - pos = s.position() - sy = s.sy - if sy == '(': - s.next() - if s.sy == ')': - result = ExprNodes.TupleNode(pos, args = []) - elif s.sy == 'yield': - result = p_yield_expression(s) - else: - result = p_testlist_comp(s) - s.expect(')') - return result - elif sy == '[': - return p_list_maker(s) - elif sy == '{': - return p_dict_or_set_maker(s) - elif sy == '`': - return p_backquote_expr(s) - elif sy == '.': - expect_ellipsis(s) - return ExprNodes.EllipsisNode(pos) - elif sy == 'INT': - return p_int_literal(s) - elif sy == 'FLOAT': - value = s.systring - s.next() - return ExprNodes.FloatNode(pos, value = value) - elif sy == 'IMAG': - value = s.systring[:-1] - s.next() - return ExprNodes.ImagNode(pos, value = value) - elif sy == 'BEGIN_STRING': - kind, bytes_value, unicode_value = p_cat_string_literal(s) - if kind == 'c': - return ExprNodes.CharNode(pos, value = bytes_value) - elif kind == 'u': - return ExprNodes.UnicodeNode(pos, value = unicode_value, bytes_value = bytes_value) - elif kind == 'b': - return ExprNodes.BytesNode(pos, value = bytes_value) - elif kind == 'f': - return ExprNodes.JoinedStrNode(pos, values = unicode_value) - elif kind == '': - return ExprNodes.StringNode(pos, value = bytes_value, unicode_value = unicode_value) - else: - s.error("invalid string kind '%s'" % kind) - elif sy == 'IDENT': - name = s.systring - if name == "None": - result = ExprNodes.NoneNode(pos) - elif name == "True": - result = ExprNodes.BoolNode(pos, value=True) - elif name == "False": - result = ExprNodes.BoolNode(pos, value=False) - elif name == "NULL" and not s.in_python_file: - result = ExprNodes.NullNode(pos) - else: - result = p_name(s, name) - s.next() - return result - else: - s.error("Expected an identifier or literal") - -def p_int_literal(s): - pos = s.position() - value = s.systring - s.next() - unsigned = "" - longness = "" - while value[-1] in u"UuLl": - if value[-1] in u"Ll": - longness += "L" - else: - unsigned += "U" - value = value[:-1] - # '3L' is ambiguous in Py2 but not in Py3. '3U' and '3LL' are - # illegal in Py2 Python files. All suffixes are illegal in Py3 - # Python files. - is_c_literal = None - if unsigned: - is_c_literal = True - elif longness: - if longness == 'LL' or s.context.language_level >= 3: - is_c_literal = True - if s.in_python_file: - if is_c_literal: - error(pos, "illegal integer literal syntax in Python source file") - is_c_literal = False - return ExprNodes.IntNode(pos, - is_c_literal = is_c_literal, - value = value, - unsigned = unsigned, - longness = longness) - - -def p_name(s, name): - pos = s.position() - if not s.compile_time_expr and name in s.compile_time_env: - value = s.compile_time_env.lookup_here(name) - node = wrap_compile_time_constant(pos, value) - if node is not None: - return node - return ExprNodes.NameNode(pos, name=name) - - -def wrap_compile_time_constant(pos, value): - rep = repr(value) - if value is None: - return ExprNodes.NoneNode(pos) - elif value is Ellipsis: - return ExprNodes.EllipsisNode(pos) - elif isinstance(value, bool): - return ExprNodes.BoolNode(pos, value=value) - elif isinstance(value, int): - return ExprNodes.IntNode(pos, value=rep, constant_result=value) - elif isinstance(value, float): - return ExprNodes.FloatNode(pos, value=rep, constant_result=value) - elif isinstance(value, complex): - node = ExprNodes.ImagNode(pos, value=repr(value.imag), constant_result=complex(0.0, value.imag)) - if value.real: - # FIXME: should we care about -0.0 ? - # probably not worth using the '-' operator for negative imag values - node = ExprNodes.binop_node( - pos, '+', ExprNodes.FloatNode(pos, value=repr(value.real), constant_result=value.real), node, - constant_result=value) - return node - elif isinstance(value, _unicode): - return ExprNodes.UnicodeNode(pos, value=EncodedString(value)) - elif isinstance(value, _bytes): - bvalue = bytes_literal(value, 'ascii') # actually: unknown encoding, but BytesLiteral requires one - return ExprNodes.BytesNode(pos, value=bvalue, constant_result=value) - elif isinstance(value, tuple): - args = [wrap_compile_time_constant(pos, arg) - for arg in value] - if None not in args: - return ExprNodes.TupleNode(pos, args=args) - else: - # error already reported - return None - elif not _IS_PY3 and isinstance(value, long): - return ExprNodes.IntNode(pos, value=rep.rstrip('L'), constant_result=value) - error(pos, "Invalid type for compile-time constant: %r (type %s)" - % (value, value.__class__.__name__)) - return None - - -def p_cat_string_literal(s): - # A sequence of one or more adjacent string literals. - # Returns (kind, bytes_value, unicode_value) - # where kind in ('b', 'c', 'u', 'f', '') - pos = s.position() - kind, bytes_value, unicode_value = p_string_literal(s) - if kind == 'c' or s.sy != 'BEGIN_STRING': - return kind, bytes_value, unicode_value - bstrings, ustrings, positions = [bytes_value], [unicode_value], [pos] - bytes_value = unicode_value = None - while s.sy == 'BEGIN_STRING': - pos = s.position() - next_kind, next_bytes_value, next_unicode_value = p_string_literal(s) - if next_kind == 'c': - error(pos, "Cannot concatenate char literal with another string or char literal") - continue - elif next_kind != kind: - # concatenating f strings and normal strings is allowed and leads to an f string - if set([kind, next_kind]) in (set(['f', 'u']), set(['f', ''])): - kind = 'f' - else: - error(pos, "Cannot mix string literals of different types, expected %s'', got %s''" % ( - kind, next_kind)) - continue - bstrings.append(next_bytes_value) - ustrings.append(next_unicode_value) - positions.append(pos) - # join and rewrap the partial literals - if kind in ('b', 'c', '') or kind == 'u' and None not in bstrings: - # Py3 enforced unicode literals are parsed as bytes/unicode combination - bytes_value = bytes_literal(StringEncoding.join_bytes(bstrings), s.source_encoding) - if kind in ('u', ''): - unicode_value = EncodedString(u''.join([u for u in ustrings if u is not None])) - if kind == 'f': - unicode_value = [] - for u, pos in zip(ustrings, positions): - if isinstance(u, list): - unicode_value += u - else: - # non-f-string concatenated into the f-string - unicode_value.append(ExprNodes.UnicodeNode(pos, value=EncodedString(u))) - return kind, bytes_value, unicode_value - - -def p_opt_string_literal(s, required_type='u'): - if s.sy != 'BEGIN_STRING': - return None - pos = s.position() - kind, bytes_value, unicode_value = p_string_literal(s, required_type) - if required_type == 'u': - if kind == 'f': - s.error("f-string not allowed here", pos) - return unicode_value - elif required_type == 'b': - return bytes_value - else: - s.error("internal parser configuration error") - - -def check_for_non_ascii_characters(string): - for c in string: - if c >= u'\x80': - return True - return False - - -def p_string_literal(s, kind_override=None): - # A single string or char literal. Returns (kind, bvalue, uvalue) - # where kind in ('b', 'c', 'u', 'f', ''). The 'bvalue' is the source - # code byte sequence of the string literal, 'uvalue' is the - # decoded Unicode string. Either of the two may be None depending - # on the 'kind' of string, only unprefixed strings have both - # representations. In f-strings, the uvalue is a list of the Unicode - # strings and f-string expressions that make up the f-string. - - # s.sy == 'BEGIN_STRING' - pos = s.position() - is_python3_source = s.context.language_level >= 3 - has_non_ascii_literal_characters = False - string_start_pos = (pos[0], pos[1], pos[2] + len(s.systring)) - kind_string = s.systring.rstrip('"\'').lower() - if len(kind_string) > 1: - if len(set(kind_string)) != len(kind_string): - error(pos, 'Duplicate string prefix character') - if 'b' in kind_string and 'u' in kind_string: - error(pos, 'String prefixes b and u cannot be combined') - if 'b' in kind_string and 'f' in kind_string: - error(pos, 'String prefixes b and f cannot be combined') - if 'u' in kind_string and 'f' in kind_string: - error(pos, 'String prefixes u and f cannot be combined') - - is_raw = 'r' in kind_string - - if 'c' in kind_string: - # this should never happen, since the lexer does not allow combining c - # with other prefix characters - if len(kind_string) != 1: - error(pos, 'Invalid string prefix for character literal') - kind = 'c' - elif 'f' in kind_string: - kind = 'f' # u is ignored - is_raw = True # postpone the escape resolution - elif 'b' in kind_string: - kind = 'b' - elif 'u' in kind_string: - kind = 'u' - else: - kind = '' - - if kind == '' and kind_override is None and Future.unicode_literals in s.context.future_directives: - chars = StringEncoding.StrLiteralBuilder(s.source_encoding) - kind = 'u' - else: - if kind_override is not None and kind_override in 'ub': - kind = kind_override - if kind in ('u', 'f'): # f-strings are scanned exactly like Unicode literals, but are parsed further later - chars = StringEncoding.UnicodeLiteralBuilder() - elif kind == '': - chars = StringEncoding.StrLiteralBuilder(s.source_encoding) - else: - chars = StringEncoding.BytesLiteralBuilder(s.source_encoding) - - while 1: - s.next() - sy = s.sy - systr = s.systring - # print "p_string_literal: sy =", sy, repr(s.systring) ### - if sy == 'CHARS': - chars.append(systr) - if is_python3_source and not has_non_ascii_literal_characters and check_for_non_ascii_characters(systr): - has_non_ascii_literal_characters = True - elif sy == 'ESCAPE': - # in Py2, 'ur' raw unicode strings resolve unicode escapes but nothing else - if is_raw and (is_python3_source or kind != 'u' or systr[1] not in u'Uu'): - chars.append(systr) - if is_python3_source and not has_non_ascii_literal_characters and check_for_non_ascii_characters(systr): - has_non_ascii_literal_characters = True - else: - _append_escape_sequence(kind, chars, systr, s) - elif sy == 'NEWLINE': - chars.append(u'\n') - elif sy == 'END_STRING': - break - elif sy == 'EOF': - s.error("Unclosed string literal", pos=pos) - else: - s.error("Unexpected token %r:%r in string literal" % ( - sy, s.systring)) - - if kind == 'c': - unicode_value = None - bytes_value = chars.getchar() - if len(bytes_value) != 1: - error(pos, u"invalid character literal: %r" % bytes_value) - else: - bytes_value, unicode_value = chars.getstrings() - if (has_non_ascii_literal_characters - and is_python3_source and Future.unicode_literals in s.context.future_directives): - # Python 3 forbids literal non-ASCII characters in byte strings - if kind == 'b': - s.error("bytes can only contain ASCII literal characters.", pos=pos) - bytes_value = None - if kind == 'f': - unicode_value = p_f_string(s, unicode_value, string_start_pos, is_raw='r' in kind_string) - s.next() - return (kind, bytes_value, unicode_value) - - -def _append_escape_sequence(kind, builder, escape_sequence, s): - c = escape_sequence[1] - if c in u"01234567": - builder.append_charval(int(escape_sequence[1:], 8)) - elif c in u"'\"\\": - builder.append(c) - elif c in u"abfnrtv": - builder.append(StringEncoding.char_from_escape_sequence(escape_sequence)) - elif c == u'\n': - pass # line continuation - elif c == u'x': # \xXX - if len(escape_sequence) == 4: - builder.append_charval(int(escape_sequence[2:], 16)) - else: - s.error("Invalid hex escape '%s'" % escape_sequence, fatal=False) - elif c in u'NUu' and kind in ('u', 'f', ''): # \uxxxx, \Uxxxxxxxx, \N{...} - chrval = -1 - if c == u'N': - uchar = None - try: - uchar = lookup_unicodechar(escape_sequence[3:-1]) - chrval = ord(uchar) - except KeyError: - s.error("Unknown Unicode character name %s" % - repr(escape_sequence[3:-1]).lstrip('u'), fatal=False) - except TypeError: - # 2-byte unicode build of CPython? - if (uchar is not None and _IS_2BYTE_UNICODE and len(uchar) == 2 and - unicode_category(uchar[0]) == 'Cs' and unicode_category(uchar[1]) == 'Cs'): - # surrogate pair instead of single character - chrval = 0x10000 + (ord(uchar[0]) - 0xd800) >> 10 + (ord(uchar[1]) - 0xdc00) - else: - raise - elif len(escape_sequence) in (6, 10): - chrval = int(escape_sequence[2:], 16) - if chrval > 1114111: # sys.maxunicode: - s.error("Invalid unicode escape '%s'" % escape_sequence) - chrval = -1 - else: - s.error("Invalid unicode escape '%s'" % escape_sequence, fatal=False) - if chrval >= 0: - builder.append_uescape(chrval, escape_sequence) - else: - builder.append(escape_sequence) - - -_parse_escape_sequences_raw, _parse_escape_sequences = [re.compile(( - # escape sequences: - br'(\\(?:' + - (br'\\?' if is_raw else ( - br'[\\abfnrtv"\'{]|' - br'[0-7]{2,3}|' - br'N\{[^}]*\}|' - br'x[0-9a-fA-F]{2}|' - br'u[0-9a-fA-F]{4}|' - br'U[0-9a-fA-F]{8}|' - br'[NxuU]|' # detect invalid escape sequences that do not match above - )) + - br')?|' - # non-escape sequences: - br'\{\{?|' - br'\}\}?|' - br'[^\\{}]+)' - ).decode('us-ascii')).match - for is_raw in (True, False)] - - -def _f_string_error_pos(pos, string, i): - return (pos[0], pos[1], pos[2] + i + 1) # FIXME: handle newlines in string - - -def p_f_string(s, unicode_value, pos, is_raw): - # Parses a PEP 498 f-string literal into a list of nodes. Nodes are either UnicodeNodes - # or FormattedValueNodes. - values = [] - next_start = 0 - size = len(unicode_value) - builder = StringEncoding.UnicodeLiteralBuilder() - _parse_seq = _parse_escape_sequences_raw if is_raw else _parse_escape_sequences - - while next_start < size: - end = next_start - match = _parse_seq(unicode_value, next_start) - if match is None: - error(_f_string_error_pos(pos, unicode_value, next_start), "Invalid escape sequence") - - next_start = match.end() - part = match.group() - c = part[0] - if c == '\\': - if not is_raw and len(part) > 1: - _append_escape_sequence('f', builder, part, s) - else: - builder.append(part) - elif c == '{': - if part == '{{': - builder.append('{') - else: - # start of an expression - if builder.chars: - values.append(ExprNodes.UnicodeNode(pos, value=builder.getstring())) - builder = StringEncoding.UnicodeLiteralBuilder() - next_start, expr_node = p_f_string_expr(s, unicode_value, pos, next_start, is_raw) - values.append(expr_node) - elif c == '}': - if part == '}}': - builder.append('}') - else: - error(_f_string_error_pos(pos, unicode_value, end), - "f-string: single '}' is not allowed") - else: - builder.append(part) - - if builder.chars: - values.append(ExprNodes.UnicodeNode(pos, value=builder.getstring())) - return values - - -def p_f_string_expr(s, unicode_value, pos, starting_index, is_raw): - # Parses a {}-delimited expression inside an f-string. Returns a FormattedValueNode - # and the index in the string that follows the expression. - i = starting_index - size = len(unicode_value) - conversion_char = terminal_char = format_spec = None - format_spec_str = None - NO_CHAR = 2**30 - - nested_depth = 0 - quote_char = NO_CHAR - in_triple_quotes = False - backslash_reported = False - - while True: - if i >= size: - break # error will be reported below - c = unicode_value[i] - - if quote_char != NO_CHAR: - if c == '\\': - # avoid redundant error reports along '\' sequences - if not backslash_reported: - error(_f_string_error_pos(pos, unicode_value, i), - "backslashes not allowed in f-strings") - backslash_reported = True - elif c == quote_char: - if in_triple_quotes: - if i + 2 < size and unicode_value[i + 1] == c and unicode_value[i + 2] == c: - in_triple_quotes = False - quote_char = NO_CHAR - i += 2 - else: - quote_char = NO_CHAR - elif c in '\'"': - quote_char = c - if i + 2 < size and unicode_value[i + 1] == c and unicode_value[i + 2] == c: - in_triple_quotes = True - i += 2 - elif c in '{[(': - nested_depth += 1 - elif nested_depth != 0 and c in '}])': - nested_depth -= 1 - elif c == '#': - error(_f_string_error_pos(pos, unicode_value, i), - "format string cannot include #") - elif nested_depth == 0 and c in '!:}': - # allow != as a special case - if c == '!' and i + 1 < size and unicode_value[i + 1] == '=': - i += 1 - continue - - terminal_char = c - break - i += 1 - - # normalise line endings as the parser expects that - expr_str = unicode_value[starting_index:i].replace('\r\n', '\n').replace('\r', '\n') - expr_pos = (pos[0], pos[1], pos[2] + starting_index + 2) # TODO: find exact code position (concat, multi-line, ...) - - if not expr_str.strip(): - error(_f_string_error_pos(pos, unicode_value, starting_index), - "empty expression not allowed in f-string") - - if terminal_char == '!': - i += 1 - if i + 2 > size: - pass # error will be reported below - else: - conversion_char = unicode_value[i] - i += 1 - terminal_char = unicode_value[i] - - if terminal_char == ':': - in_triple_quotes = False - in_string = False - nested_depth = 0 - start_format_spec = i + 1 - while True: - if i >= size: - break # error will be reported below - c = unicode_value[i] - if not in_triple_quotes and not in_string: - if c == '{': - nested_depth += 1 - elif c == '}': - if nested_depth > 0: - nested_depth -= 1 - else: - terminal_char = c - break - if c in '\'"': - if not in_string and i + 2 < size and unicode_value[i + 1] == c and unicode_value[i + 2] == c: - in_triple_quotes = not in_triple_quotes - i += 2 - elif not in_triple_quotes: - in_string = not in_string - i += 1 - - format_spec_str = unicode_value[start_format_spec:i] - - if terminal_char != '}': - error(_f_string_error_pos(pos, unicode_value, i), - "missing '}' in format string expression" + ( - ", found '%s'" % terminal_char if terminal_char else "")) - - # parse the expression as if it was surrounded by parentheses - buf = StringIO('(%s)' % expr_str) - scanner = PyrexScanner(buf, expr_pos[0], parent_scanner=s, source_encoding=s.source_encoding, initial_pos=expr_pos) - expr = p_testlist(scanner) # TODO is testlist right here? - - # validate the conversion char - if conversion_char is not None and not ExprNodes.FormattedValueNode.find_conversion_func(conversion_char): - error(expr_pos, "invalid conversion character '%s'" % conversion_char) - - # the format spec is itself treated like an f-string - if format_spec_str: - format_spec = ExprNodes.JoinedStrNode(pos, values=p_f_string(s, format_spec_str, pos, is_raw)) - - return i + 1, ExprNodes.FormattedValueNode( - pos, value=expr, conversion_char=conversion_char, format_spec=format_spec) - - -# since PEP 448: -# list_display ::= "[" [listmaker] "]" -# listmaker ::= (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] ) -# comp_iter ::= comp_for | comp_if -# comp_for ::= ["async"] "for" expression_list "in" testlist [comp_iter] -# comp_if ::= "if" test [comp_iter] - -def p_list_maker(s): - # s.sy == '[' - pos = s.position() - s.next() - if s.sy == ']': - s.expect(']') - return ExprNodes.ListNode(pos, args=[]) - - expr = p_test_or_starred_expr(s) - if s.sy in ('for', 'async'): - if expr.is_starred: - s.error("iterable unpacking cannot be used in comprehension") - append = ExprNodes.ComprehensionAppendNode(pos, expr=expr) - loop = p_comp_for(s, append) - s.expect(']') - return ExprNodes.ComprehensionNode( - pos, loop=loop, append=append, type=Builtin.list_type, - # list comprehensions leak their loop variable in Py2 - has_local_scope=s.context.language_level >= 3) - - # (merged) list literal - if s.sy == ',': - s.next() - exprs = p_test_or_starred_expr_list(s, expr) - else: - exprs = [expr] - s.expect(']') - return ExprNodes.ListNode(pos, args=exprs) - - -def p_comp_iter(s, body): - if s.sy in ('for', 'async'): - return p_comp_for(s, body) - elif s.sy == 'if': - return p_comp_if(s, body) - else: - # insert the 'append' operation into the loop - return body - -def p_comp_for(s, body): - pos = s.position() - # [async] for ... - is_async = False - if s.sy == 'async': - is_async = True - s.next() - - # s.sy == 'for' - s.expect('for') - kw = p_for_bounds(s, allow_testlist=False, is_async=is_async) - kw.update(else_clause=None, body=p_comp_iter(s, body), is_async=is_async) - return Nodes.ForStatNode(pos, **kw) - -def p_comp_if(s, body): - # s.sy == 'if' - pos = s.position() - s.next() - test = p_test_nocond(s) - return Nodes.IfStatNode(pos, - if_clauses = [Nodes.IfClauseNode(pos, condition = test, - body = p_comp_iter(s, body))], - else_clause = None ) - - -# since PEP 448: -#dictorsetmaker: ( ((test ':' test | '**' expr) -# (comp_for | (',' (test ':' test | '**' expr))* [','])) | -# ((test | star_expr) -# (comp_for | (',' (test | star_expr))* [','])) ) - -def p_dict_or_set_maker(s): - # s.sy == '{' - pos = s.position() - s.next() - if s.sy == '}': - s.next() - return ExprNodes.DictNode(pos, key_value_pairs=[]) - - parts = [] - target_type = 0 - last_was_simple_item = False - while True: - if s.sy in ('*', '**'): - # merged set/dict literal - if target_type == 0: - target_type = 1 if s.sy == '*' else 2 # 'stars' - elif target_type != len(s.sy): - s.error("unexpected %sitem found in %s literal" % ( - s.sy, 'set' if target_type == 1 else 'dict')) - s.next() - if s.sy == '*': - s.error("expected expression, found '*'") - item = p_starred_expr(s) - parts.append(item) - last_was_simple_item = False - else: - item = p_test(s) - if target_type == 0: - target_type = 2 if s.sy == ':' else 1 # dict vs. set - if target_type == 2: - # dict literal - s.expect(':') - key = item - value = p_test(s) - item = ExprNodes.DictItemNode(key.pos, key=key, value=value) - if last_was_simple_item: - parts[-1].append(item) - else: - parts.append([item]) - last_was_simple_item = True - - if s.sy == ',': - s.next() - if s.sy == '}': - break - else: - break - - if s.sy in ('for', 'async'): - # dict/set comprehension - if len(parts) == 1 and isinstance(parts[0], list) and len(parts[0]) == 1: - item = parts[0][0] - if target_type == 2: - assert isinstance(item, ExprNodes.DictItemNode), type(item) - comprehension_type = Builtin.dict_type - append = ExprNodes.DictComprehensionAppendNode( - item.pos, key_expr=item.key, value_expr=item.value) - else: - comprehension_type = Builtin.set_type - append = ExprNodes.ComprehensionAppendNode(item.pos, expr=item) - loop = p_comp_for(s, append) - s.expect('}') - return ExprNodes.ComprehensionNode(pos, loop=loop, append=append, type=comprehension_type) - else: - # syntax error, try to find a good error message - if len(parts) == 1 and not isinstance(parts[0], list): - s.error("iterable unpacking cannot be used in comprehension") - else: - # e.g. "{1,2,3 for ..." - s.expect('}') - return ExprNodes.DictNode(pos, key_value_pairs=[]) - - s.expect('}') - if target_type == 1: - # (merged) set literal - items = [] - set_items = [] - for part in parts: - if isinstance(part, list): - set_items.extend(part) - else: - if set_items: - items.append(ExprNodes.SetNode(set_items[0].pos, args=set_items)) - set_items = [] - items.append(part) - if set_items: - items.append(ExprNodes.SetNode(set_items[0].pos, args=set_items)) - if len(items) == 1 and items[0].is_set_literal: - return items[0] - return ExprNodes.MergedSequenceNode(pos, args=items, type=Builtin.set_type) - else: - # (merged) dict literal - items = [] - dict_items = [] - for part in parts: - if isinstance(part, list): - dict_items.extend(part) - else: - if dict_items: - items.append(ExprNodes.DictNode(dict_items[0].pos, key_value_pairs=dict_items)) - dict_items = [] - items.append(part) - if dict_items: - items.append(ExprNodes.DictNode(dict_items[0].pos, key_value_pairs=dict_items)) - if len(items) == 1 and items[0].is_dict_literal: - return items[0] - return ExprNodes.MergedDictNode(pos, keyword_args=items, reject_duplicates=False) - - -# NOTE: no longer in Py3 :) -def p_backquote_expr(s): - # s.sy == '`' - pos = s.position() - s.next() - args = [p_test(s)] - while s.sy == ',': - s.next() - args.append(p_test(s)) - s.expect('`') - if len(args) == 1: - arg = args[0] - else: - arg = ExprNodes.TupleNode(pos, args = args) - return ExprNodes.BackquoteNode(pos, arg = arg) - -def p_simple_expr_list(s, expr=None): - exprs = expr is not None and [expr] or [] - while s.sy not in expr_terminators: - exprs.append( p_test(s) ) - if s.sy != ',': - break - s.next() - return exprs - - -def p_test_or_starred_expr_list(s, expr=None): - exprs = expr is not None and [expr] or [] - while s.sy not in expr_terminators: - exprs.append(p_test_or_starred_expr(s)) - if s.sy != ',': - break - s.next() - return exprs - - -#testlist: test (',' test)* [','] - -def p_testlist(s): - pos = s.position() - expr = p_test(s) - if s.sy == ',': - s.next() - exprs = p_simple_expr_list(s, expr) - return ExprNodes.TupleNode(pos, args = exprs) - else: - return expr - -# testlist_star_expr: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] ) - -def p_testlist_star_expr(s): - pos = s.position() - expr = p_test_or_starred_expr(s) - if s.sy == ',': - s.next() - exprs = p_test_or_starred_expr_list(s, expr) - return ExprNodes.TupleNode(pos, args = exprs) - else: - return expr - -# testlist_comp: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] ) - -def p_testlist_comp(s): - pos = s.position() - expr = p_test_or_starred_expr(s) - if s.sy == ',': - s.next() - exprs = p_test_or_starred_expr_list(s, expr) - return ExprNodes.TupleNode(pos, args = exprs) - elif s.sy in ('for', 'async'): - return p_genexp(s, expr) - else: - return expr - -def p_genexp(s, expr): - # s.sy == 'async' | 'for' - loop = p_comp_for(s, Nodes.ExprStatNode( - expr.pos, expr = ExprNodes.YieldExprNode(expr.pos, arg=expr))) - return ExprNodes.GeneratorExpressionNode(expr.pos, loop=loop) - -expr_terminators = cython.declare(set, set([ - ')', ']', '}', ':', '=', 'NEWLINE'])) - - -#------------------------------------------------------- -# -# Statements -# -#------------------------------------------------------- - -def p_global_statement(s): - # assume s.sy == 'global' - pos = s.position() - s.next() - names = p_ident_list(s) - return Nodes.GlobalNode(pos, names = names) - - -def p_nonlocal_statement(s): - pos = s.position() - s.next() - names = p_ident_list(s) - return Nodes.NonlocalNode(pos, names = names) - - -def p_expression_or_assignment(s): - expr = p_testlist_star_expr(s) - if s.sy == ':' and (expr.is_name or expr.is_subscript or expr.is_attribute): - s.next() - expr.annotation = p_test(s) - if s.sy == '=' and expr.is_starred: - # This is a common enough error to make when learning Cython to let - # it fail as early as possible and give a very clear error message. - s.error("a starred assignment target must be in a list or tuple" - " - maybe you meant to use an index assignment: var[0] = ...", - pos=expr.pos) - expr_list = [expr] - while s.sy == '=': - s.next() - if s.sy == 'yield': - expr = p_yield_expression(s) - else: - expr = p_testlist_star_expr(s) - expr_list.append(expr) - if len(expr_list) == 1: - if re.match(r"([-+*/%^&|]|<<|>>|\*\*|//|@)=", s.sy): - lhs = expr_list[0] - if isinstance(lhs, ExprNodes.SliceIndexNode): - # implementation requires IndexNode - lhs = ExprNodes.IndexNode( - lhs.pos, - base=lhs.base, - index=make_slice_node(lhs.pos, lhs.start, lhs.stop)) - elif not isinstance(lhs, (ExprNodes.AttributeNode, ExprNodes.IndexNode, ExprNodes.NameNode)): - error(lhs.pos, "Illegal operand for inplace operation.") - operator = s.sy[:-1] - s.next() - if s.sy == 'yield': - rhs = p_yield_expression(s) - else: - rhs = p_testlist(s) - return Nodes.InPlaceAssignmentNode(lhs.pos, operator=operator, lhs=lhs, rhs=rhs) - expr = expr_list[0] - return Nodes.ExprStatNode(expr.pos, expr=expr) - - rhs = expr_list[-1] - if len(expr_list) == 2: - return Nodes.SingleAssignmentNode(rhs.pos, lhs=expr_list[0], rhs=rhs) - else: - return Nodes.CascadedAssignmentNode(rhs.pos, lhs_list=expr_list[:-1], rhs=rhs) - - -def p_print_statement(s): - # s.sy == 'print' - pos = s.position() - ends_with_comma = 0 - s.next() - if s.sy == '>>': - s.next() - stream = p_test(s) - if s.sy == ',': - s.next() - ends_with_comma = s.sy in ('NEWLINE', 'EOF') - else: - stream = None - args = [] - if s.sy not in ('NEWLINE', 'EOF'): - args.append(p_test(s)) - while s.sy == ',': - s.next() - if s.sy in ('NEWLINE', 'EOF'): - ends_with_comma = 1 - break - args.append(p_test(s)) - arg_tuple = ExprNodes.TupleNode(pos, args=args) - return Nodes.PrintStatNode(pos, - arg_tuple=arg_tuple, stream=stream, - append_newline=not ends_with_comma) - - -def p_exec_statement(s): - # s.sy == 'exec' - pos = s.position() - s.next() - code = p_bit_expr(s) - if isinstance(code, ExprNodes.TupleNode): - # Py3 compatibility syntax - tuple_variant = True - args = code.args - if len(args) not in (2, 3): - s.error("expected tuple of length 2 or 3, got length %d" % len(args), - pos=pos, fatal=False) - args = [code] - else: - tuple_variant = False - args = [code] - if s.sy == 'in': - if tuple_variant: - s.error("tuple variant of exec does not support additional 'in' arguments", - fatal=False) - s.next() - args.append(p_test(s)) - if s.sy == ',': - s.next() - args.append(p_test(s)) - return Nodes.ExecStatNode(pos, args=args) - -def p_del_statement(s): - # s.sy == 'del' - pos = s.position() - s.next() - # FIXME: 'exprlist' in Python - args = p_simple_expr_list(s) - return Nodes.DelStatNode(pos, args = args) - -def p_pass_statement(s, with_newline = 0): - pos = s.position() - s.expect('pass') - if with_newline: - s.expect_newline("Expected a newline", ignore_semicolon=True) - return Nodes.PassStatNode(pos) - -def p_break_statement(s): - # s.sy == 'break' - pos = s.position() - s.next() - return Nodes.BreakStatNode(pos) - -def p_continue_statement(s): - # s.sy == 'continue' - pos = s.position() - s.next() - return Nodes.ContinueStatNode(pos) - -def p_return_statement(s): - # s.sy == 'return' - pos = s.position() - s.next() - if s.sy not in statement_terminators: - value = p_testlist(s) - else: - value = None - return Nodes.ReturnStatNode(pos, value = value) - -def p_raise_statement(s): - # s.sy == 'raise' - pos = s.position() - s.next() - exc_type = None - exc_value = None - exc_tb = None - cause = None - if s.sy not in statement_terminators: - exc_type = p_test(s) - if s.sy == ',': - s.next() - exc_value = p_test(s) - if s.sy == ',': - s.next() - exc_tb = p_test(s) - elif s.sy == 'from': - s.next() - cause = p_test(s) - if exc_type or exc_value or exc_tb: - return Nodes.RaiseStatNode(pos, - exc_type = exc_type, - exc_value = exc_value, - exc_tb = exc_tb, - cause = cause) - else: - return Nodes.ReraiseStatNode(pos) - - -def p_import_statement(s): - # s.sy in ('import', 'cimport') - pos = s.position() - kind = s.sy - s.next() - items = [p_dotted_name(s, as_allowed=1)] - while s.sy == ',': - s.next() - items.append(p_dotted_name(s, as_allowed=1)) - stats = [] - is_absolute = Future.absolute_import in s.context.future_directives - for pos, target_name, dotted_name, as_name in items: - if kind == 'cimport': - stat = Nodes.CImportStatNode( - pos, - module_name=dotted_name, - as_name=as_name, - is_absolute=is_absolute) - else: - if as_name and "." in dotted_name: - name_list = ExprNodes.ListNode(pos, args=[ - ExprNodes.IdentifierStringNode(pos, value=s.context.intern_ustring("*"))]) - else: - name_list = None - stat = Nodes.SingleAssignmentNode( - pos, - lhs=ExprNodes.NameNode(pos, name=as_name or target_name), - rhs=ExprNodes.ImportNode( - pos, - module_name=ExprNodes.IdentifierStringNode(pos, value=dotted_name), - level=0 if is_absolute else None, - name_list=name_list)) - stats.append(stat) - return Nodes.StatListNode(pos, stats=stats) - - -def p_from_import_statement(s, first_statement = 0): - # s.sy == 'from' - pos = s.position() - s.next() - if s.sy == '.': - # count relative import level - level = 0 - while s.sy == '.': - level += 1 - s.next() - else: - level = None - if level is not None and s.sy in ('import', 'cimport'): - # we are dealing with "from .. import foo, bar" - dotted_name_pos, dotted_name = s.position(), s.context.intern_ustring('') - else: - if level is None and Future.absolute_import in s.context.future_directives: - level = 0 - (dotted_name_pos, _, dotted_name, _) = p_dotted_name(s, as_allowed=False) - if s.sy not in ('import', 'cimport'): - s.error("Expected 'import' or 'cimport'") - kind = s.sy - s.next() - - is_cimport = kind == 'cimport' - is_parenthesized = False - if s.sy == '*': - imported_names = [(s.position(), s.context.intern_ustring("*"), None, None)] - s.next() - else: - if s.sy == '(': - is_parenthesized = True - s.next() - imported_names = [p_imported_name(s, is_cimport)] - while s.sy == ',': - s.next() - if is_parenthesized and s.sy == ')': - break - imported_names.append(p_imported_name(s, is_cimport)) - if is_parenthesized: - s.expect(')') - if dotted_name == '__future__': - if not first_statement: - s.error("from __future__ imports must occur at the beginning of the file") - elif level: - s.error("invalid syntax") - else: - for (name_pos, name, as_name, kind) in imported_names: - if name == "braces": - s.error("not a chance", name_pos) - break - try: - directive = getattr(Future, name) - except AttributeError: - s.error("future feature %s is not defined" % name, name_pos) - break - s.context.future_directives.add(directive) - return Nodes.PassStatNode(pos) - elif kind == 'cimport': - return Nodes.FromCImportStatNode( - pos, module_name=dotted_name, - relative_level=level, - imported_names=imported_names) - else: - imported_name_strings = [] - items = [] - for (name_pos, name, as_name, kind) in imported_names: - imported_name_strings.append( - ExprNodes.IdentifierStringNode(name_pos, value=name)) - items.append( - (name, ExprNodes.NameNode(name_pos, name=as_name or name))) - import_list = ExprNodes.ListNode( - imported_names[0][0], args=imported_name_strings) - return Nodes.FromImportStatNode(pos, - module = ExprNodes.ImportNode(dotted_name_pos, - module_name = ExprNodes.IdentifierStringNode(pos, value = dotted_name), - level = level, - name_list = import_list), - items = items) - - -imported_name_kinds = cython.declare(set, set(['class', 'struct', 'union'])) - -def p_imported_name(s, is_cimport): - pos = s.position() - kind = None - if is_cimport and s.systring in imported_name_kinds: - kind = s.systring - warning(pos, 'the "from module cimport %s name" syntax is deprecated and ' - 'will be removed in Cython 3.0' % kind, 2) - s.next() - name = p_ident(s) - as_name = p_as_name(s) - return (pos, name, as_name, kind) - - -def p_dotted_name(s, as_allowed): - pos = s.position() - target_name = p_ident(s) - as_name = None - names = [target_name] - while s.sy == '.': - s.next() - names.append(p_ident(s)) - if as_allowed: - as_name = p_as_name(s) - return (pos, target_name, s.context.intern_ustring(u'.'.join(names)), as_name) - - -def p_as_name(s): - if s.sy == 'IDENT' and s.systring == 'as': - s.next() - return p_ident(s) - else: - return None - - -def p_assert_statement(s): - # s.sy == 'assert' - pos = s.position() - s.next() - cond = p_test(s) - if s.sy == ',': - s.next() - value = p_test(s) - else: - value = None - return Nodes.AssertStatNode(pos, cond = cond, value = value) - - -statement_terminators = cython.declare(set, set([';', 'NEWLINE', 'EOF'])) - -def p_if_statement(s): - # s.sy == 'if' - pos = s.position() - s.next() - if_clauses = [p_if_clause(s)] - while s.sy == 'elif': - s.next() - if_clauses.append(p_if_clause(s)) - else_clause = p_else_clause(s) - return Nodes.IfStatNode(pos, - if_clauses = if_clauses, else_clause = else_clause) - -def p_if_clause(s): - pos = s.position() - test = p_test(s) - body = p_suite(s) - return Nodes.IfClauseNode(pos, - condition = test, body = body) - -def p_else_clause(s): - if s.sy == 'else': - s.next() - return p_suite(s) - else: - return None - -def p_while_statement(s): - # s.sy == 'while' - pos = s.position() - s.next() - test = p_test(s) - body = p_suite(s) - else_clause = p_else_clause(s) - return Nodes.WhileStatNode(pos, - condition = test, body = body, - else_clause = else_clause) - - -def p_for_statement(s, is_async=False): - # s.sy == 'for' - pos = s.position() - s.next() - kw = p_for_bounds(s, allow_testlist=True, is_async=is_async) - body = p_suite(s) - else_clause = p_else_clause(s) - kw.update(body=body, else_clause=else_clause, is_async=is_async) - return Nodes.ForStatNode(pos, **kw) - - -def p_for_bounds(s, allow_testlist=True, is_async=False): - target = p_for_target(s) - if s.sy == 'in': - s.next() - iterator = p_for_iterator(s, allow_testlist, is_async=is_async) - return dict(target=target, iterator=iterator) - elif not s.in_python_file and not is_async: - if s.sy == 'from': - s.next() - bound1 = p_bit_expr(s) - else: - # Support shorter "for a <= x < b" syntax - bound1, target = target, None - rel1 = p_for_from_relation(s) - name2_pos = s.position() - name2 = p_ident(s) - rel2_pos = s.position() - rel2 = p_for_from_relation(s) - bound2 = p_bit_expr(s) - step = p_for_from_step(s) - if target is None: - target = ExprNodes.NameNode(name2_pos, name = name2) - else: - if not target.is_name: - error(target.pos, - "Target of for-from statement must be a variable name") - elif name2 != target.name: - error(name2_pos, - "Variable name in for-from range does not match target") - if rel1[0] != rel2[0]: - error(rel2_pos, - "Relation directions in for-from do not match") - return dict(target = target, - bound1 = bound1, - relation1 = rel1, - relation2 = rel2, - bound2 = bound2, - step = step, - ) - else: - s.expect('in') - return {} - -def p_for_from_relation(s): - if s.sy in inequality_relations: - op = s.sy - s.next() - return op - else: - s.error("Expected one of '<', '<=', '>' '>='") - -def p_for_from_step(s): - if s.sy == 'IDENT' and s.systring == 'by': - s.next() - step = p_bit_expr(s) - return step - else: - return None - -inequality_relations = cython.declare(set, set(['<', '<=', '>', '>='])) - -def p_target(s, terminator): - pos = s.position() - expr = p_starred_expr(s) - if s.sy == ',': - s.next() - exprs = [expr] - while s.sy != terminator: - exprs.append(p_starred_expr(s)) - if s.sy != ',': - break - s.next() - return ExprNodes.TupleNode(pos, args = exprs) - else: - return expr - - -def p_for_target(s): - return p_target(s, 'in') - - -def p_for_iterator(s, allow_testlist=True, is_async=False): - pos = s.position() - if allow_testlist: - expr = p_testlist(s) - else: - expr = p_or_test(s) - return (ExprNodes.AsyncIteratorNode if is_async else ExprNodes.IteratorNode)(pos, sequence=expr) - - -def p_try_statement(s): - # s.sy == 'try' - pos = s.position() - s.next() - body = p_suite(s) - except_clauses = [] - else_clause = None - if s.sy in ('except', 'else'): - while s.sy == 'except': - except_clauses.append(p_except_clause(s)) - if s.sy == 'else': - s.next() - else_clause = p_suite(s) - body = Nodes.TryExceptStatNode(pos, - body = body, except_clauses = except_clauses, - else_clause = else_clause) - if s.sy != 'finally': - return body - # try-except-finally is equivalent to nested try-except/try-finally - if s.sy == 'finally': - s.next() - finally_clause = p_suite(s) - return Nodes.TryFinallyStatNode(pos, - body = body, finally_clause = finally_clause) - else: - s.error("Expected 'except' or 'finally'") - -def p_except_clause(s): - # s.sy == 'except' - pos = s.position() - s.next() - exc_type = None - exc_value = None - is_except_as = False - if s.sy != ':': - exc_type = p_test(s) - # normalise into list of single exception tests - if isinstance(exc_type, ExprNodes.TupleNode): - exc_type = exc_type.args - else: - exc_type = [exc_type] - if s.sy == ',' or (s.sy == 'IDENT' and s.systring == 'as' - and s.context.language_level == 2): - s.next() - exc_value = p_test(s) - elif s.sy == 'IDENT' and s.systring == 'as': - # Py3 syntax requires a name here - s.next() - pos2 = s.position() - name = p_ident(s) - exc_value = ExprNodes.NameNode(pos2, name = name) - is_except_as = True - body = p_suite(s) - return Nodes.ExceptClauseNode(pos, - pattern = exc_type, target = exc_value, - body = body, is_except_as=is_except_as) - -def p_include_statement(s, ctx): - pos = s.position() - s.next() # 'include' - unicode_include_file_name = p_string_literal(s, 'u')[2] - s.expect_newline("Syntax error in include statement") - if s.compile_time_eval: - include_file_name = unicode_include_file_name - include_file_path = s.context.find_include_file(include_file_name, pos) - if include_file_path: - s.included_files.append(include_file_name) - with Utils.open_source_file(include_file_path) as f: - if Options.source_root: - import os - rel_path = os.path.relpath(include_file_path, Options.source_root) - else: - rel_path = None - source_desc = FileSourceDescriptor(include_file_path, rel_path) - s2 = PyrexScanner(f, source_desc, s, source_encoding=f.encoding, parse_comments=s.parse_comments) - tree = p_statement_list(s2, ctx) - return tree - else: - return None - else: - return Nodes.PassStatNode(pos) - - -def p_with_statement(s): - s.next() # 'with' - if s.systring == 'template' and not s.in_python_file: - node = p_with_template(s) - else: - node = p_with_items(s) - return node - - -def p_with_items(s, is_async=False): - pos = s.position() - if not s.in_python_file and s.sy == 'IDENT' and s.systring in ('nogil', 'gil'): - if is_async: - s.error("with gil/nogil cannot be async") - state = s.systring - s.next() - if s.sy == ',': - s.next() - body = p_with_items(s) - else: - body = p_suite(s) - return Nodes.GILStatNode(pos, state=state, body=body) - else: - manager = p_test(s) - target = None - if s.sy == 'IDENT' and s.systring == 'as': - s.next() - target = p_starred_expr(s) - if s.sy == ',': - s.next() - body = p_with_items(s, is_async=is_async) - else: - body = p_suite(s) - return Nodes.WithStatNode(pos, manager=manager, target=target, body=body, is_async=is_async) - - -def p_with_template(s): - pos = s.position() - templates = [] - s.next() - s.expect('[') - templates.append(s.systring) - s.next() - while s.systring == ',': - s.next() - templates.append(s.systring) - s.next() - s.expect(']') - if s.sy == ':': - s.next() - s.expect_newline("Syntax error in template function declaration") - s.expect_indent() - body_ctx = Ctx() - body_ctx.templates = templates - func_or_var = p_c_func_or_var_declaration(s, pos, body_ctx) - s.expect_dedent() - return func_or_var - else: - error(pos, "Syntax error in template function declaration") - -def p_simple_statement(s, first_statement = 0): - #print "p_simple_statement:", s.sy, s.systring ### - if s.sy == 'global': - node = p_global_statement(s) - elif s.sy == 'nonlocal': - node = p_nonlocal_statement(s) - elif s.sy == 'print': - node = p_print_statement(s) - elif s.sy == 'exec': - node = p_exec_statement(s) - elif s.sy == 'del': - node = p_del_statement(s) - elif s.sy == 'break': - node = p_break_statement(s) - elif s.sy == 'continue': - node = p_continue_statement(s) - elif s.sy == 'return': - node = p_return_statement(s) - elif s.sy == 'raise': - node = p_raise_statement(s) - elif s.sy in ('import', 'cimport'): - node = p_import_statement(s) - elif s.sy == 'from': - node = p_from_import_statement(s, first_statement = first_statement) - elif s.sy == 'yield': - node = p_yield_statement(s) - elif s.sy == 'assert': - node = p_assert_statement(s) - elif s.sy == 'pass': - node = p_pass_statement(s) - else: - node = p_expression_or_assignment(s) - return node - -def p_simple_statement_list(s, ctx, first_statement = 0): - # Parse a series of simple statements on one line - # separated by semicolons. - stat = p_simple_statement(s, first_statement = first_statement) - pos = stat.pos - stats = [] - if not isinstance(stat, Nodes.PassStatNode): - stats.append(stat) - while s.sy == ';': - #print "p_simple_statement_list: maybe more to follow" ### - s.next() - if s.sy in ('NEWLINE', 'EOF'): - break - stat = p_simple_statement(s, first_statement = first_statement) - if isinstance(stat, Nodes.PassStatNode): - continue - stats.append(stat) - first_statement = False - - if not stats: - stat = Nodes.PassStatNode(pos) - elif len(stats) == 1: - stat = stats[0] - else: - stat = Nodes.StatListNode(pos, stats = stats) - - if s.sy not in ('NEWLINE', 'EOF'): - # provide a better error message for users who accidentally write Cython code in .py files - if isinstance(stat, Nodes.ExprStatNode): - if stat.expr.is_name and stat.expr.name == 'cdef': - s.error("The 'cdef' keyword is only allowed in Cython files (pyx/pxi/pxd)", pos) - s.expect_newline("Syntax error in simple statement list") - - return stat - -def p_compile_time_expr(s): - old = s.compile_time_expr - s.compile_time_expr = 1 - expr = p_testlist(s) - s.compile_time_expr = old - return expr - -def p_DEF_statement(s): - pos = s.position() - denv = s.compile_time_env - s.next() # 'DEF' - name = p_ident(s) - s.expect('=') - expr = p_compile_time_expr(s) - if s.compile_time_eval: - value = expr.compile_time_value(denv) - #print "p_DEF_statement: %s = %r" % (name, value) ### - denv.declare(name, value) - s.expect_newline("Expected a newline", ignore_semicolon=True) - return Nodes.PassStatNode(pos) - -def p_IF_statement(s, ctx): - pos = s.position() - saved_eval = s.compile_time_eval - current_eval = saved_eval - denv = s.compile_time_env - result = None - while 1: - s.next() # 'IF' or 'ELIF' - expr = p_compile_time_expr(s) - s.compile_time_eval = current_eval and bool(expr.compile_time_value(denv)) - body = p_suite(s, ctx) - if s.compile_time_eval: - result = body - current_eval = 0 - if s.sy != 'ELIF': - break - if s.sy == 'ELSE': - s.next() - s.compile_time_eval = current_eval - body = p_suite(s, ctx) - if current_eval: - result = body - if not result: - result = Nodes.PassStatNode(pos) - s.compile_time_eval = saved_eval - return result - -def p_statement(s, ctx, first_statement = 0): - cdef_flag = ctx.cdef_flag - decorators = None - if s.sy == 'ctypedef': - if ctx.level not in ('module', 'module_pxd'): - s.error("ctypedef statement not allowed here") - #if ctx.api: - # error(s.position(), "'api' not allowed with 'ctypedef'") - return p_ctypedef_statement(s, ctx) - elif s.sy == 'DEF': - return p_DEF_statement(s) - elif s.sy == 'IF': - return p_IF_statement(s, ctx) - elif s.sy == '@': - if ctx.level not in ('module', 'class', 'c_class', 'function', 'property', 'module_pxd', 'c_class_pxd', 'other'): - s.error('decorator not allowed here') - s.level = ctx.level - decorators = p_decorators(s) - if not ctx.allow_struct_enum_decorator and s.sy not in ('def', 'cdef', 'cpdef', 'class', 'async'): - if s.sy == 'IDENT' and s.systring == 'async': - pass # handled below - else: - s.error("Decorators can only be followed by functions or classes") - elif s.sy == 'pass' and cdef_flag: - # empty cdef block - return p_pass_statement(s, with_newline=1) - - overridable = 0 - if s.sy == 'cdef': - cdef_flag = 1 - s.next() - elif s.sy == 'cpdef': - cdef_flag = 1 - overridable = 1 - s.next() - if cdef_flag: - if ctx.level not in ('module', 'module_pxd', 'function', 'c_class', 'c_class_pxd'): - s.error('cdef statement not allowed here') - s.level = ctx.level - node = p_cdef_statement(s, ctx(overridable=overridable)) - if decorators is not None: - tup = (Nodes.CFuncDefNode, Nodes.CVarDefNode, Nodes.CClassDefNode) - if ctx.allow_struct_enum_decorator: - tup += (Nodes.CStructOrUnionDefNode, Nodes.CEnumDefNode) - if not isinstance(node, tup): - s.error("Decorators can only be followed by functions or classes") - node.decorators = decorators - return node - else: - if ctx.api: - s.error("'api' not allowed with this statement", fatal=False) - elif s.sy == 'def': - # def statements aren't allowed in pxd files, except - # as part of a cdef class - if ('pxd' in ctx.level) and (ctx.level != 'c_class_pxd'): - s.error('def statement not allowed here') - s.level = ctx.level - return p_def_statement(s, decorators) - elif s.sy == 'class': - if ctx.level not in ('module', 'function', 'class', 'other'): - s.error("class definition not allowed here") - return p_class_statement(s, decorators) - elif s.sy == 'include': - if ctx.level not in ('module', 'module_pxd'): - s.error("include statement not allowed here") - return p_include_statement(s, ctx) - elif ctx.level == 'c_class' and s.sy == 'IDENT' and s.systring == 'property': - return p_property_decl(s) - elif s.sy == 'pass' and ctx.level != 'property': - return p_pass_statement(s, with_newline=True) - else: - if ctx.level in ('c_class_pxd', 'property'): - node = p_ignorable_statement(s) - if node is not None: - return node - s.error("Executable statement not allowed here") - if s.sy == 'if': - return p_if_statement(s) - elif s.sy == 'while': - return p_while_statement(s) - elif s.sy == 'for': - return p_for_statement(s) - elif s.sy == 'try': - return p_try_statement(s) - elif s.sy == 'with': - return p_with_statement(s) - elif s.sy == 'async': - s.next() - return p_async_statement(s, ctx, decorators) - else: - if s.sy == 'IDENT' and s.systring == 'async': - ident_name = s.systring - # PEP 492 enables the async/await keywords when it spots "async def ..." - s.next() - if s.sy == 'def': - return p_async_statement(s, ctx, decorators) - elif decorators: - s.error("Decorators can only be followed by functions or classes") - s.put_back('IDENT', ident_name) # re-insert original token - return p_simple_statement_list(s, ctx, first_statement=first_statement) - - -def p_statement_list(s, ctx, first_statement = 0): - # Parse a series of statements separated by newlines. - pos = s.position() - stats = [] - while s.sy not in ('DEDENT', 'EOF'): - stat = p_statement(s, ctx, first_statement = first_statement) - if isinstance(stat, Nodes.PassStatNode): - continue - stats.append(stat) - first_statement = False - if not stats: - return Nodes.PassStatNode(pos) - elif len(stats) == 1: - return stats[0] - else: - return Nodes.StatListNode(pos, stats = stats) - - -def p_suite(s, ctx=Ctx()): - return p_suite_with_docstring(s, ctx, with_doc_only=False)[1] - - -def p_suite_with_docstring(s, ctx, with_doc_only=False): - s.expect(':') - doc = None - if s.sy == 'NEWLINE': - s.next() - s.expect_indent() - if with_doc_only: - doc = p_doc_string(s) - body = p_statement_list(s, ctx) - s.expect_dedent() - else: - if ctx.api: - s.error("'api' not allowed with this statement", fatal=False) - if ctx.level in ('module', 'class', 'function', 'other'): - body = p_simple_statement_list(s, ctx) - else: - body = p_pass_statement(s) - s.expect_newline("Syntax error in declarations", ignore_semicolon=True) - if not with_doc_only: - doc, body = _extract_docstring(body) - return doc, body - - -def p_positional_and_keyword_args(s, end_sy_set, templates = None): - """ - Parses positional and keyword arguments. end_sy_set - should contain any s.sy that terminate the argument list. - Argument expansion (* and **) are not allowed. - - Returns: (positional_args, keyword_args) - """ - positional_args = [] - keyword_args = [] - pos_idx = 0 - - while s.sy not in end_sy_set: - if s.sy == '*' or s.sy == '**': - s.error('Argument expansion not allowed here.', fatal=False) - - parsed_type = False - if s.sy == 'IDENT' and s.peek()[0] == '=': - ident = s.systring - s.next() # s.sy is '=' - s.next() - if looking_at_expr(s): - arg = p_test(s) - else: - base_type = p_c_base_type(s, templates = templates) - declarator = p_c_declarator(s, empty = 1) - arg = Nodes.CComplexBaseTypeNode(base_type.pos, - base_type = base_type, declarator = declarator) - parsed_type = True - keyword_node = ExprNodes.IdentifierStringNode(arg.pos, value=ident) - keyword_args.append((keyword_node, arg)) - was_keyword = True - - else: - if looking_at_expr(s): - arg = p_test(s) - else: - base_type = p_c_base_type(s, templates = templates) - declarator = p_c_declarator(s, empty = 1) - arg = Nodes.CComplexBaseTypeNode(base_type.pos, - base_type = base_type, declarator = declarator) - parsed_type = True - positional_args.append(arg) - pos_idx += 1 - if len(keyword_args) > 0: - s.error("Non-keyword arg following keyword arg", - pos=arg.pos) - - if s.sy != ',': - if s.sy not in end_sy_set: - if parsed_type: - s.error("Unmatched %s" % " or ".join(end_sy_set)) - break - s.next() - return positional_args, keyword_args - -def p_c_base_type(s, self_flag = 0, nonempty = 0, templates = None): - # If self_flag is true, this is the base type for the - # self argument of a C method of an extension type. - if s.sy == '(': - return p_c_complex_base_type(s, templates = templates) - else: - return p_c_simple_base_type(s, self_flag, nonempty = nonempty, templates = templates) - -def p_calling_convention(s): - if s.sy == 'IDENT' and s.systring in calling_convention_words: - result = s.systring - s.next() - return result - else: - return "" - - -calling_convention_words = cython.declare( - set, set(["__stdcall", "__cdecl", "__fastcall"])) - - -def p_c_complex_base_type(s, templates = None): - # s.sy == '(' - pos = s.position() - s.next() - base_type = p_c_base_type(s, templates=templates) - declarator = p_c_declarator(s, empty=True) - type_node = Nodes.CComplexBaseTypeNode( - pos, base_type=base_type, declarator=declarator) - if s.sy == ',': - components = [type_node] - while s.sy == ',': - s.next() - if s.sy == ')': - break - base_type = p_c_base_type(s, templates=templates) - declarator = p_c_declarator(s, empty=True) - components.append(Nodes.CComplexBaseTypeNode( - pos, base_type=base_type, declarator=declarator)) - type_node = Nodes.CTupleBaseTypeNode(pos, components = components) - - s.expect(')') - if s.sy == '[': - if is_memoryviewslice_access(s): - type_node = p_memoryviewslice_access(s, type_node) - else: - type_node = p_buffer_or_template(s, type_node, templates) - return type_node - - -def p_c_simple_base_type(s, self_flag, nonempty, templates = None): - #print "p_c_simple_base_type: self_flag =", self_flag, nonempty - is_basic = 0 - signed = 1 - longness = 0 - complex = 0 - module_path = [] - pos = s.position() - if not s.sy == 'IDENT': - error(pos, "Expected an identifier, found '%s'" % s.sy) - if s.systring == 'const': - s.next() - base_type = p_c_base_type(s, self_flag=self_flag, nonempty=nonempty, templates=templates) - if isinstance(base_type, Nodes.MemoryViewSliceTypeNode): - # reverse order to avoid having to write "(const int)[:]" - base_type.base_type_node = Nodes.CConstTypeNode(pos, base_type=base_type.base_type_node) - return base_type - return Nodes.CConstTypeNode(pos, base_type=base_type) - if looking_at_base_type(s): - #print "p_c_simple_base_type: looking_at_base_type at", s.position() - is_basic = 1 - if s.sy == 'IDENT' and s.systring in special_basic_c_types: - signed, longness = special_basic_c_types[s.systring] - name = s.systring - s.next() - else: - signed, longness = p_sign_and_longness(s) - if s.sy == 'IDENT' and s.systring in basic_c_type_names: - name = s.systring - s.next() - else: - name = 'int' # long [int], short [int], long [int] complex, etc. - if s.sy == 'IDENT' and s.systring == 'complex': - complex = 1 - s.next() - elif looking_at_dotted_name(s): - #print "p_c_simple_base_type: looking_at_type_name at", s.position() - name = s.systring - s.next() - while s.sy == '.': - module_path.append(name) - s.next() - name = p_ident(s) - else: - name = s.systring - s.next() - if nonempty and s.sy != 'IDENT': - # Make sure this is not a declaration of a variable or function. - if s.sy == '(': - s.next() - if (s.sy == '*' or s.sy == '**' or s.sy == '&' - or (s.sy == 'IDENT' and s.systring in calling_convention_words)): - s.put_back('(', '(') - else: - s.put_back('(', '(') - s.put_back('IDENT', name) - name = None - elif s.sy not in ('*', '**', '[', '&'): - s.put_back('IDENT', name) - name = None - - type_node = Nodes.CSimpleBaseTypeNode(pos, - name = name, module_path = module_path, - is_basic_c_type = is_basic, signed = signed, - complex = complex, longness = longness, - is_self_arg = self_flag, templates = templates) - - # declarations here. - if s.sy == '[': - if is_memoryviewslice_access(s): - type_node = p_memoryviewslice_access(s, type_node) - else: - type_node = p_buffer_or_template(s, type_node, templates) - - if s.sy == '.': - s.next() - name = p_ident(s) - type_node = Nodes.CNestedBaseTypeNode(pos, base_type = type_node, name = name) - - return type_node - -def p_buffer_or_template(s, base_type_node, templates): - # s.sy == '[' - pos = s.position() - s.next() - # Note that buffer_positional_options_count=1, so the only positional argument is dtype. - # For templated types, all parameters are types. - positional_args, keyword_args = ( - p_positional_and_keyword_args(s, (']',), templates) - ) - s.expect(']') - - if s.sy == '[': - base_type_node = p_buffer_or_template(s, base_type_node, templates) - - keyword_dict = ExprNodes.DictNode(pos, - key_value_pairs = [ - ExprNodes.DictItemNode(pos=key.pos, key=key, value=value) - for key, value in keyword_args - ]) - result = Nodes.TemplatedTypeNode(pos, - positional_args = positional_args, - keyword_args = keyword_dict, - base_type_node = base_type_node) - return result - -def p_bracketed_base_type(s, base_type_node, nonempty, empty): - # s.sy == '[' - if empty and not nonempty: - # sizeof-like thing. Only anonymous C arrays allowed (int[SIZE]). - return base_type_node - elif not empty and nonempty: - # declaration of either memoryview slice or buffer. - if is_memoryviewslice_access(s): - return p_memoryviewslice_access(s, base_type_node) - else: - return p_buffer_or_template(s, base_type_node, None) - # return p_buffer_access(s, base_type_node) - elif not empty and not nonempty: - # only anonymous C arrays and memoryview slice arrays here. We - # disallow buffer declarations for now, due to ambiguity with anonymous - # C arrays. - if is_memoryviewslice_access(s): - return p_memoryviewslice_access(s, base_type_node) - else: - return base_type_node - -def is_memoryviewslice_access(s): - # s.sy == '[' - # a memoryview slice declaration is distinguishable from a buffer access - # declaration by the first entry in the bracketed list. The buffer will - # not have an unnested colon in the first entry; the memoryview slice will. - saved = [(s.sy, s.systring)] - s.next() - retval = False - if s.systring == ':': - retval = True - elif s.sy == 'INT': - saved.append((s.sy, s.systring)) - s.next() - if s.sy == ':': - retval = True - - for sv in saved[::-1]: - s.put_back(*sv) - - return retval - -def p_memoryviewslice_access(s, base_type_node): - # s.sy == '[' - pos = s.position() - s.next() - subscripts, _ = p_subscript_list(s) - # make sure each entry in subscripts is a slice - for subscript in subscripts: - if len(subscript) < 2: - s.error("An axis specification in memoryview declaration does not have a ':'.") - s.expect(']') - indexes = make_slice_nodes(pos, subscripts) - result = Nodes.MemoryViewSliceTypeNode(pos, - base_type_node = base_type_node, - axes = indexes) - return result - -def looking_at_name(s): - return s.sy == 'IDENT' and not s.systring in calling_convention_words - -def looking_at_expr(s): - if s.systring in base_type_start_words: - return False - elif s.sy == 'IDENT': - is_type = False - name = s.systring - dotted_path = [] - s.next() - - while s.sy == '.': - s.next() - dotted_path.append(s.systring) - s.expect('IDENT') - - saved = s.sy, s.systring - if s.sy == 'IDENT': - is_type = True - elif s.sy == '*' or s.sy == '**': - s.next() - is_type = s.sy in (')', ']') - s.put_back(*saved) - elif s.sy == '(': - s.next() - is_type = s.sy == '*' - s.put_back(*saved) - elif s.sy == '[': - s.next() - is_type = s.sy == ']' or not looking_at_expr(s) # could be a nested template type - s.put_back(*saved) - - dotted_path.reverse() - for p in dotted_path: - s.put_back('IDENT', p) - s.put_back('.', '.') - - s.put_back('IDENT', name) - return not is_type and saved[0] - else: - return True - -def looking_at_base_type(s): - #print "looking_at_base_type?", s.sy, s.systring, s.position() - return s.sy == 'IDENT' and s.systring in base_type_start_words - -def looking_at_dotted_name(s): - if s.sy == 'IDENT': - name = s.systring - s.next() - result = s.sy == '.' - s.put_back('IDENT', name) - return result - else: - return 0 - -def looking_at_call(s): - "See if we're looking at a.b.c(" - # Don't mess up the original position, so save and restore it. - # Unfortunately there's no good way to handle this, as a subsequent call - # to next() will not advance the position until it reads a new token. - position = s.start_line, s.start_col - result = looking_at_expr(s) == u'(' - if not result: - s.start_line, s.start_col = position - return result - -basic_c_type_names = cython.declare( - set, set(["void", "char", "int", "float", "double", "bint"])) - -special_basic_c_types = cython.declare(dict, { - # name : (signed, longness) - "Py_UNICODE" : (0, 0), - "Py_UCS4" : (0, 0), - "Py_hash_t" : (2, 0), - "Py_ssize_t" : (2, 0), - "ssize_t" : (2, 0), - "size_t" : (0, 0), - "ptrdiff_t" : (2, 0), - "Py_tss_t" : (1, 0), -}) - -sign_and_longness_words = cython.declare( - set, set(["short", "long", "signed", "unsigned"])) - -base_type_start_words = cython.declare( - set, - basic_c_type_names - | sign_and_longness_words - | set(special_basic_c_types)) - -struct_enum_union = cython.declare( - set, set(["struct", "union", "enum", "packed"])) - -def p_sign_and_longness(s): - signed = 1 - longness = 0 - while s.sy == 'IDENT' and s.systring in sign_and_longness_words: - if s.systring == 'unsigned': - signed = 0 - elif s.systring == 'signed': - signed = 2 - elif s.systring == 'short': - longness = -1 - elif s.systring == 'long': - longness += 1 - s.next() - return signed, longness - -def p_opt_cname(s): - literal = p_opt_string_literal(s, 'u') - if literal is not None: - cname = EncodedString(literal) - cname.encoding = s.source_encoding - else: - cname = None - return cname - -def p_c_declarator(s, ctx = Ctx(), empty = 0, is_type = 0, cmethod_flag = 0, - assignable = 0, nonempty = 0, - calling_convention_allowed = 0): - # If empty is true, the declarator must be empty. If nonempty is true, - # the declarator must be nonempty. Otherwise we don't care. - # If cmethod_flag is true, then if this declarator declares - # a function, it's a C method of an extension type. - pos = s.position() - if s.sy == '(': - s.next() - if s.sy == ')' or looking_at_name(s): - base = Nodes.CNameDeclaratorNode(pos, name=s.context.intern_ustring(u""), cname=None) - result = p_c_func_declarator(s, pos, ctx, base, cmethod_flag) - else: - result = p_c_declarator(s, ctx, empty = empty, is_type = is_type, - cmethod_flag = cmethod_flag, - nonempty = nonempty, - calling_convention_allowed = 1) - s.expect(')') - else: - result = p_c_simple_declarator(s, ctx, empty, is_type, cmethod_flag, - assignable, nonempty) - if not calling_convention_allowed and result.calling_convention and s.sy != '(': - error(s.position(), "%s on something that is not a function" - % result.calling_convention) - while s.sy in ('[', '('): - pos = s.position() - if s.sy == '[': - result = p_c_array_declarator(s, result) - else: # sy == '(' - s.next() - result = p_c_func_declarator(s, pos, ctx, result, cmethod_flag) - cmethod_flag = 0 - return result - -def p_c_array_declarator(s, base): - pos = s.position() - s.next() # '[' - if s.sy != ']': - dim = p_testlist(s) - else: - dim = None - s.expect(']') - return Nodes.CArrayDeclaratorNode(pos, base = base, dimension = dim) - -def p_c_func_declarator(s, pos, ctx, base, cmethod_flag): - # Opening paren has already been skipped - args = p_c_arg_list(s, ctx, cmethod_flag = cmethod_flag, - nonempty_declarators = 0) - ellipsis = p_optional_ellipsis(s) - s.expect(')') - nogil = p_nogil(s) - exc_val, exc_check = p_exception_value_clause(s) - # TODO - warning to enforce preferred exception specification order - nogil = nogil or p_nogil(s) - with_gil = p_with_gil(s) - return Nodes.CFuncDeclaratorNode(pos, - base = base, args = args, has_varargs = ellipsis, - exception_value = exc_val, exception_check = exc_check, - nogil = nogil or ctx.nogil or with_gil, with_gil = with_gil) - -supported_overloaded_operators = cython.declare(set, set([ - '+', '-', '*', '/', '%', - '++', '--', '~', '|', '&', '^', '<<', '>>', ',', - '==', '!=', '>=', '>', '<=', '<', - '[]', '()', '!', '=', - 'bool', -])) - -def p_c_simple_declarator(s, ctx, empty, is_type, cmethod_flag, - assignable, nonempty): - pos = s.position() - calling_convention = p_calling_convention(s) - if s.sy == '*': - s.next() - if s.systring == 'const': - const_pos = s.position() - s.next() - const_base = p_c_declarator(s, ctx, empty = empty, - is_type = is_type, - cmethod_flag = cmethod_flag, - assignable = assignable, - nonempty = nonempty) - base = Nodes.CConstDeclaratorNode(const_pos, base = const_base) - else: - base = p_c_declarator(s, ctx, empty = empty, is_type = is_type, - cmethod_flag = cmethod_flag, - assignable = assignable, nonempty = nonempty) - result = Nodes.CPtrDeclaratorNode(pos, - base = base) - elif s.sy == '**': # scanner returns this as a single token - s.next() - base = p_c_declarator(s, ctx, empty = empty, is_type = is_type, - cmethod_flag = cmethod_flag, - assignable = assignable, nonempty = nonempty) - result = Nodes.CPtrDeclaratorNode(pos, - base = Nodes.CPtrDeclaratorNode(pos, - base = base)) - elif s.sy == '&': - s.next() - base = p_c_declarator(s, ctx, empty = empty, is_type = is_type, - cmethod_flag = cmethod_flag, - assignable = assignable, nonempty = nonempty) - result = Nodes.CReferenceDeclaratorNode(pos, base = base) - else: - rhs = None - if s.sy == 'IDENT': - name = s.systring - if empty: - error(s.position(), "Declarator should be empty") - s.next() - cname = p_opt_cname(s) - if name != 'operator' and s.sy == '=' and assignable: - s.next() - rhs = p_test(s) - else: - if nonempty: - error(s.position(), "Empty declarator") - name = "" - cname = None - if cname is None and ctx.namespace is not None and nonempty: - cname = ctx.namespace + "::" + name - if name == 'operator' and ctx.visibility == 'extern' and nonempty: - op = s.sy - if [1 for c in op if c in '+-*/<=>!%&|([^~,']: - s.next() - # Handle diphthong operators. - if op == '(': - s.expect(')') - op = '()' - elif op == '[': - s.expect(']') - op = '[]' - elif op in ('-', '+', '|', '&') and s.sy == op: - op *= 2 # ++, --, ... - s.next() - elif s.sy == '=': - op += s.sy # +=, -=, ... - s.next() - if op not in supported_overloaded_operators: - s.error("Overloading operator '%s' not yet supported." % op, - fatal=False) - name += op - elif op == 'IDENT': - op = s.systring; - if op not in supported_overloaded_operators: - s.error("Overloading operator '%s' not yet supported." % op, - fatal=False) - name = name + ' ' + op - s.next() - result = Nodes.CNameDeclaratorNode(pos, - name = name, cname = cname, default = rhs) - result.calling_convention = calling_convention - return result - -def p_nogil(s): - if s.sy == 'IDENT' and s.systring == 'nogil': - s.next() - return 1 - else: - return 0 - -def p_with_gil(s): - if s.sy == 'with': - s.next() - s.expect_keyword('gil') - return 1 - else: - return 0 - -def p_exception_value_clause(s): - exc_val = None - exc_check = 0 - - if s.sy == 'IDENT' and s.systring == 'noexcept': - s.next() - exc_check = False # No-op in Cython 0.29.x - elif s.sy == 'except': - s.next() - if s.sy == '*': - exc_check = 1 - s.next() - elif s.sy == '+': - exc_check = '+' - s.next() - if s.sy == 'IDENT': - name = s.systring - s.next() - exc_val = p_name(s, name) - elif s.sy == '*': - exc_val = ExprNodes.CharNode(s.position(), value=u'*') - s.next() - else: - if s.sy == '?': - exc_check = 1 - s.next() - exc_val = p_test(s) - return exc_val, exc_check - -c_arg_list_terminators = cython.declare(set, set(['*', '**', '.', ')', ':'])) - -def p_c_arg_list(s, ctx = Ctx(), in_pyfunc = 0, cmethod_flag = 0, - nonempty_declarators = 0, kw_only = 0, annotated = 1): - # Comma-separated list of C argument declarations, possibly empty. - # May have a trailing comma. - args = [] - is_self_arg = cmethod_flag - while s.sy not in c_arg_list_terminators: - args.append(p_c_arg_decl(s, ctx, in_pyfunc, is_self_arg, - nonempty = nonempty_declarators, kw_only = kw_only, - annotated = annotated)) - if s.sy != ',': - break - s.next() - is_self_arg = 0 - return args - -def p_optional_ellipsis(s): - if s.sy == '.': - expect_ellipsis(s) - return 1 - else: - return 0 - -def p_c_arg_decl(s, ctx, in_pyfunc, cmethod_flag = 0, nonempty = 0, - kw_only = 0, annotated = 1): - pos = s.position() - not_none = or_none = 0 - default = None - annotation = None - if s.in_python_file: - # empty type declaration - base_type = Nodes.CSimpleBaseTypeNode(pos, - name = None, module_path = [], - is_basic_c_type = 0, signed = 0, - complex = 0, longness = 0, - is_self_arg = cmethod_flag, templates = None) - else: - base_type = p_c_base_type(s, cmethod_flag, nonempty = nonempty) - declarator = p_c_declarator(s, ctx, nonempty = nonempty) - if s.sy in ('not', 'or') and not s.in_python_file: - kind = s.sy - s.next() - if s.sy == 'IDENT' and s.systring == 'None': - s.next() - else: - s.error("Expected 'None'") - if not in_pyfunc: - error(pos, "'%s None' only allowed in Python functions" % kind) - or_none = kind == 'or' - not_none = kind == 'not' - if annotated and s.sy == ':': - s.next() - annotation = p_test(s) - if s.sy == '=': - s.next() - if 'pxd' in ctx.level: - if s.sy in ['*', '?']: - # TODO(github/1736): Make this an error for inline declarations. - default = ExprNodes.NoneNode(pos) - s.next() - elif 'inline' in ctx.modifiers: - default = p_test(s) - else: - error(pos, "default values cannot be specified in pxd files, use ? or *") - else: - default = p_test(s) - return Nodes.CArgDeclNode(pos, - base_type = base_type, - declarator = declarator, - not_none = not_none, - or_none = or_none, - default = default, - annotation = annotation, - kw_only = kw_only) - -def p_api(s): - if s.sy == 'IDENT' and s.systring == 'api': - s.next() - return 1 - else: - return 0 - -def p_cdef_statement(s, ctx): - pos = s.position() - ctx.visibility = p_visibility(s, ctx.visibility) - ctx.api = ctx.api or p_api(s) - if ctx.api: - if ctx.visibility not in ('private', 'public'): - error(pos, "Cannot combine 'api' with '%s'" % ctx.visibility) - if (ctx.visibility == 'extern') and s.sy == 'from': - return p_cdef_extern_block(s, pos, ctx) - elif s.sy == 'import': - s.next() - return p_cdef_extern_block(s, pos, ctx) - elif p_nogil(s): - ctx.nogil = 1 - if ctx.overridable: - error(pos, "cdef blocks cannot be declared cpdef") - return p_cdef_block(s, ctx) - elif s.sy == ':': - if ctx.overridable: - error(pos, "cdef blocks cannot be declared cpdef") - return p_cdef_block(s, ctx) - elif s.sy == 'class': - if ctx.level not in ('module', 'module_pxd'): - error(pos, "Extension type definition not allowed here") - if ctx.overridable: - error(pos, "Extension types cannot be declared cpdef") - return p_c_class_definition(s, pos, ctx) - elif s.sy == 'IDENT' and s.systring == 'cppclass': - return p_cpp_class_definition(s, pos, ctx) - elif s.sy == 'IDENT' and s.systring in struct_enum_union: - if ctx.level not in ('module', 'module_pxd'): - error(pos, "C struct/union/enum definition not allowed here") - if ctx.overridable: - if s.systring != 'enum': - error(pos, "C struct/union cannot be declared cpdef") - return p_struct_enum(s, pos, ctx) - elif s.sy == 'IDENT' and s.systring == 'fused': - return p_fused_definition(s, pos, ctx) - else: - return p_c_func_or_var_declaration(s, pos, ctx) - -def p_cdef_block(s, ctx): - return p_suite(s, ctx(cdef_flag = 1)) - -def p_cdef_extern_block(s, pos, ctx): - if ctx.overridable: - error(pos, "cdef extern blocks cannot be declared cpdef") - include_file = None - s.expect('from') - if s.sy == '*': - s.next() - else: - include_file = p_string_literal(s, 'u')[2] - ctx = ctx(cdef_flag = 1, visibility = 'extern') - if s.systring == "namespace": - s.next() - ctx.namespace = p_string_literal(s, 'u')[2] - if p_nogil(s): - ctx.nogil = 1 - - # Use "docstring" as verbatim string to include - verbatim_include, body = p_suite_with_docstring(s, ctx, True) - - return Nodes.CDefExternNode(pos, - include_file = include_file, - verbatim_include = verbatim_include, - body = body, - namespace = ctx.namespace) - -def p_c_enum_definition(s, pos, ctx): - # s.sy == ident 'enum' - s.next() - if s.sy == 'IDENT': - name = s.systring - s.next() - cname = p_opt_cname(s) - if cname is None and ctx.namespace is not None: - cname = ctx.namespace + "::" + name - else: - name = None - cname = None - items = None - s.expect(':') - items = [] - if s.sy != 'NEWLINE': - p_c_enum_line(s, ctx, items) - else: - s.next() # 'NEWLINE' - s.expect_indent() - while s.sy not in ('DEDENT', 'EOF'): - p_c_enum_line(s, ctx, items) - s.expect_dedent() - return Nodes.CEnumDefNode( - pos, name = name, cname = cname, items = items, - typedef_flag = ctx.typedef_flag, visibility = ctx.visibility, - create_wrapper = ctx.overridable, - api = ctx.api, in_pxd = ctx.level == 'module_pxd') - -def p_c_enum_line(s, ctx, items): - if s.sy != 'pass': - p_c_enum_item(s, ctx, items) - while s.sy == ',': - s.next() - if s.sy in ('NEWLINE', 'EOF'): - break - p_c_enum_item(s, ctx, items) - else: - s.next() - s.expect_newline("Syntax error in enum item list") - -def p_c_enum_item(s, ctx, items): - pos = s.position() - name = p_ident(s) - cname = p_opt_cname(s) - if cname is None and ctx.namespace is not None: - cname = ctx.namespace + "::" + name - value = None - if s.sy == '=': - s.next() - value = p_test(s) - items.append(Nodes.CEnumDefItemNode(pos, - name = name, cname = cname, value = value)) - -def p_c_struct_or_union_definition(s, pos, ctx): - packed = False - if s.systring == 'packed': - packed = True - s.next() - if s.sy != 'IDENT' or s.systring != 'struct': - s.expected('struct') - # s.sy == ident 'struct' or 'union' - kind = s.systring - s.next() - name = p_ident(s) - cname = p_opt_cname(s) - if cname is None and ctx.namespace is not None: - cname = ctx.namespace + "::" + name - attributes = None - if s.sy == ':': - s.next() - s.expect('NEWLINE') - s.expect_indent() - attributes = [] - body_ctx = Ctx() - while s.sy != 'DEDENT': - if s.sy != 'pass': - attributes.append( - p_c_func_or_var_declaration(s, s.position(), body_ctx)) - else: - s.next() - s.expect_newline("Expected a newline") - s.expect_dedent() - else: - s.expect_newline("Syntax error in struct or union definition") - return Nodes.CStructOrUnionDefNode(pos, - name = name, cname = cname, kind = kind, attributes = attributes, - typedef_flag = ctx.typedef_flag, visibility = ctx.visibility, - api = ctx.api, in_pxd = ctx.level == 'module_pxd', packed = packed) - -def p_fused_definition(s, pos, ctx): - """ - c(type)def fused my_fused_type: - ... - """ - # s.systring == 'fused' - - if ctx.level not in ('module', 'module_pxd'): - error(pos, "Fused type definition not allowed here") - - s.next() - name = p_ident(s) - - s.expect(":") - s.expect_newline() - s.expect_indent() - - types = [] - while s.sy != 'DEDENT': - if s.sy != 'pass': - #types.append(p_c_declarator(s)) - types.append(p_c_base_type(s)) #, nonempty=1)) - else: - s.next() - - s.expect_newline() - - s.expect_dedent() - - if not types: - error(pos, "Need at least one type") - - return Nodes.FusedTypeNode(pos, name=name, types=types) - -def p_struct_enum(s, pos, ctx): - if s.systring == 'enum': - return p_c_enum_definition(s, pos, ctx) - else: - return p_c_struct_or_union_definition(s, pos, ctx) - -def p_visibility(s, prev_visibility): - pos = s.position() - visibility = prev_visibility - if s.sy == 'IDENT' and s.systring in ('extern', 'public', 'readonly'): - visibility = s.systring - if prev_visibility != 'private' and visibility != prev_visibility: - s.error("Conflicting visibility options '%s' and '%s'" - % (prev_visibility, visibility), fatal=False) - s.next() - return visibility - -def p_c_modifiers(s): - if s.sy == 'IDENT' and s.systring in ('inline',): - modifier = s.systring - s.next() - return [modifier] + p_c_modifiers(s) - return [] - -def p_c_func_or_var_declaration(s, pos, ctx): - cmethod_flag = ctx.level in ('c_class', 'c_class_pxd') - modifiers = p_c_modifiers(s) - base_type = p_c_base_type(s, nonempty = 1, templates = ctx.templates) - declarator = p_c_declarator(s, ctx(modifiers=modifiers), cmethod_flag = cmethod_flag, - assignable = 1, nonempty = 1) - declarator.overridable = ctx.overridable - if s.sy == 'IDENT' and s.systring == 'const' and ctx.level == 'cpp_class': - s.next() - is_const_method = 1 - else: - is_const_method = 0 - if s.sy == '->': - # Special enough to give a better error message and keep going. - s.error( - "Return type annotation is not allowed in cdef/cpdef signatures. " - "Please define it before the function name, as in C signatures.", - fatal=False) - s.next() - p_test(s) # Keep going, but ignore result. - if s.sy == ':': - if ctx.level not in ('module', 'c_class', 'module_pxd', 'c_class_pxd', 'cpp_class') and not ctx.templates: - s.error("C function definition not allowed here") - doc, suite = p_suite_with_docstring(s, Ctx(level='function')) - result = Nodes.CFuncDefNode(pos, - visibility = ctx.visibility, - base_type = base_type, - declarator = declarator, - body = suite, - doc = doc, - modifiers = modifiers, - api = ctx.api, - overridable = ctx.overridable, - is_const_method = is_const_method) - else: - #if api: - # s.error("'api' not allowed with variable declaration") - if is_const_method: - declarator.is_const_method = is_const_method - declarators = [declarator] - while s.sy == ',': - s.next() - if s.sy == 'NEWLINE': - break - declarator = p_c_declarator(s, ctx, cmethod_flag = cmethod_flag, - assignable = 1, nonempty = 1) - declarators.append(declarator) - doc_line = s.start_line + 1 - s.expect_newline("Syntax error in C variable declaration", ignore_semicolon=True) - if ctx.level in ('c_class', 'c_class_pxd') and s.start_line == doc_line: - doc = p_doc_string(s) - else: - doc = None - result = Nodes.CVarDefNode(pos, - visibility = ctx.visibility, - base_type = base_type, - declarators = declarators, - in_pxd = ctx.level in ('module_pxd', 'c_class_pxd'), - doc = doc, - api = ctx.api, - modifiers = modifiers, - overridable = ctx.overridable) - return result - -def p_ctypedef_statement(s, ctx): - # s.sy == 'ctypedef' - pos = s.position() - s.next() - visibility = p_visibility(s, ctx.visibility) - api = p_api(s) - ctx = ctx(typedef_flag = 1, visibility = visibility) - if api: - ctx.api = 1 - if s.sy == 'class': - return p_c_class_definition(s, pos, ctx) - elif s.sy == 'IDENT' and s.systring in struct_enum_union: - return p_struct_enum(s, pos, ctx) - elif s.sy == 'IDENT' and s.systring == 'fused': - return p_fused_definition(s, pos, ctx) - else: - base_type = p_c_base_type(s, nonempty = 1) - declarator = p_c_declarator(s, ctx, is_type = 1, nonempty = 1) - s.expect_newline("Syntax error in ctypedef statement", ignore_semicolon=True) - return Nodes.CTypeDefNode( - pos, base_type = base_type, - declarator = declarator, - visibility = visibility, api = api, - in_pxd = ctx.level == 'module_pxd') - -def p_decorators(s): - decorators = [] - while s.sy == '@': - pos = s.position() - s.next() - decstring = p_dotted_name(s, as_allowed=0)[2] - names = decstring.split('.') - decorator = ExprNodes.NameNode(pos, name=s.context.intern_ustring(names[0])) - for name in names[1:]: - decorator = ExprNodes.AttributeNode( - pos, attribute=s.context.intern_ustring(name), obj=decorator) - if s.sy == '(': - decorator = p_call(s, decorator) - decorators.append(Nodes.DecoratorNode(pos, decorator=decorator)) - s.expect_newline("Expected a newline after decorator") - return decorators - - -def _reject_cdef_modifier_in_py(s, name): - """Step over incorrectly placed cdef modifiers (@see _CDEF_MODIFIERS) to provide a good error message for them. - """ - if s.sy == 'IDENT' and name in _CDEF_MODIFIERS: - # Special enough to provide a good error message. - s.error("Cannot use cdef modifier '%s' in Python function signature. Use a decorator instead." % name, fatal=False) - return p_ident(s) # Keep going, in case there are other errors. - return name - - -def p_def_statement(s, decorators=None, is_async_def=False): - # s.sy == 'def' - pos = s.position() - # PEP 492 switches the async/await keywords on in "async def" functions - if is_async_def: - s.enter_async() - s.next() - name = _reject_cdef_modifier_in_py(s, p_ident(s)) - s.expect( - '(', - "Expected '(', found '%s'. Did you use cdef syntax in a Python declaration? " - "Use decorators and Python type annotations instead." % ( - s.systring if s.sy == 'IDENT' else s.sy)) - args, star_arg, starstar_arg = p_varargslist(s, terminator=')') - s.expect(')') - _reject_cdef_modifier_in_py(s, s.systring) - return_type_annotation = None - if s.sy == '->': - s.next() - return_type_annotation = p_test(s) - _reject_cdef_modifier_in_py(s, s.systring) - - doc, body = p_suite_with_docstring(s, Ctx(level='function')) - if is_async_def: - s.exit_async() - - return Nodes.DefNode( - pos, name=name, args=args, star_arg=star_arg, starstar_arg=starstar_arg, - doc=doc, body=body, decorators=decorators, is_async_def=is_async_def, - return_type_annotation=return_type_annotation) - - -def p_varargslist(s, terminator=')', annotated=1): - args = p_c_arg_list(s, in_pyfunc = 1, nonempty_declarators = 1, - annotated = annotated) - star_arg = None - starstar_arg = None - if s.sy == '*': - s.next() - if s.sy == 'IDENT': - star_arg = p_py_arg_decl(s, annotated=annotated) - if s.sy == ',': - s.next() - args.extend(p_c_arg_list(s, in_pyfunc = 1, - nonempty_declarators = 1, kw_only = 1, annotated = annotated)) - elif s.sy != terminator: - s.error("Syntax error in Python function argument list") - if s.sy == '**': - s.next() - starstar_arg = p_py_arg_decl(s, annotated=annotated) - if s.sy == ',': - s.next() - return (args, star_arg, starstar_arg) - -def p_py_arg_decl(s, annotated = 1): - pos = s.position() - name = p_ident(s) - annotation = None - if annotated and s.sy == ':': - s.next() - annotation = p_test(s) - return Nodes.PyArgDeclNode(pos, name = name, annotation = annotation) - - -def p_class_statement(s, decorators): - # s.sy == 'class' - pos = s.position() - s.next() - class_name = EncodedString(p_ident(s)) - class_name.encoding = s.source_encoding # FIXME: why is this needed? - arg_tuple = None - keyword_dict = None - if s.sy == '(': - positional_args, keyword_args = p_call_parse_args(s, allow_genexp=False) - arg_tuple, keyword_dict = p_call_build_packed_args(pos, positional_args, keyword_args) - if arg_tuple is None: - # XXX: empty arg_tuple - arg_tuple = ExprNodes.TupleNode(pos, args=[]) - doc, body = p_suite_with_docstring(s, Ctx(level='class')) - return Nodes.PyClassDefNode( - pos, name=class_name, - bases=arg_tuple, - keyword_args=keyword_dict, - doc=doc, body=body, decorators=decorators, - force_py3_semantics=s.context.language_level >= 3) - - -def p_c_class_definition(s, pos, ctx): - # s.sy == 'class' - s.next() - module_path = [] - class_name = p_ident(s) - while s.sy == '.': - s.next() - module_path.append(class_name) - class_name = p_ident(s) - if module_path and ctx.visibility != 'extern': - error(pos, "Qualified class name only allowed for 'extern' C class") - if module_path and s.sy == 'IDENT' and s.systring == 'as': - s.next() - as_name = p_ident(s) - else: - as_name = class_name - objstruct_name = None - typeobj_name = None - bases = None - check_size = None - if s.sy == '(': - positional_args, keyword_args = p_call_parse_args(s, allow_genexp=False) - if keyword_args: - s.error("C classes cannot take keyword bases.") - bases, _ = p_call_build_packed_args(pos, positional_args, keyword_args) - if bases is None: - bases = ExprNodes.TupleNode(pos, args=[]) - - if s.sy == '[': - if ctx.visibility not in ('public', 'extern') and not ctx.api: - error(s.position(), "Name options only allowed for 'public', 'api', or 'extern' C class") - objstruct_name, typeobj_name, check_size = p_c_class_options(s) - if s.sy == ':': - if ctx.level == 'module_pxd': - body_level = 'c_class_pxd' - else: - body_level = 'c_class' - doc, body = p_suite_with_docstring(s, Ctx(level=body_level)) - else: - s.expect_newline("Syntax error in C class definition") - doc = None - body = None - if ctx.visibility == 'extern': - if not module_path: - error(pos, "Module name required for 'extern' C class") - if typeobj_name: - error(pos, "Type object name specification not allowed for 'extern' C class") - elif ctx.visibility == 'public': - if not objstruct_name: - error(pos, "Object struct name specification required for 'public' C class") - if not typeobj_name: - error(pos, "Type object name specification required for 'public' C class") - elif ctx.visibility == 'private': - if ctx.api: - if not objstruct_name: - error(pos, "Object struct name specification required for 'api' C class") - if not typeobj_name: - error(pos, "Type object name specification required for 'api' C class") - else: - error(pos, "Invalid class visibility '%s'" % ctx.visibility) - return Nodes.CClassDefNode(pos, - visibility = ctx.visibility, - typedef_flag = ctx.typedef_flag, - api = ctx.api, - module_name = ".".join(module_path), - class_name = class_name, - as_name = as_name, - bases = bases, - objstruct_name = objstruct_name, - typeobj_name = typeobj_name, - check_size = check_size, - in_pxd = ctx.level == 'module_pxd', - doc = doc, - body = body) - - -def p_c_class_options(s): - objstruct_name = None - typeobj_name = None - check_size = None - s.expect('[') - while 1: - if s.sy != 'IDENT': - break - if s.systring == 'object': - s.next() - objstruct_name = p_ident(s) - elif s.systring == 'type': - s.next() - typeobj_name = p_ident(s) - elif s.systring == 'check_size': - s.next() - check_size = p_ident(s) - if check_size not in ('ignore', 'warn', 'error'): - s.error("Expected one of ignore, warn or error, found %r" % check_size) - if s.sy != ',': - break - s.next() - s.expect(']', "Expected 'object', 'type' or 'check_size'") - return objstruct_name, typeobj_name, check_size - - -def p_property_decl(s): - pos = s.position() - s.next() # 'property' - name = p_ident(s) - doc, body = p_suite_with_docstring( - s, Ctx(level='property'), with_doc_only=True) - return Nodes.PropertyNode(pos, name=name, doc=doc, body=body) - - -def p_ignorable_statement(s): - """ - Parses any kind of ignorable statement that is allowed in .pxd files. - """ - if s.sy == 'BEGIN_STRING': - pos = s.position() - string_node = p_atom(s) - s.expect_newline("Syntax error in string", ignore_semicolon=True) - return Nodes.ExprStatNode(pos, expr=string_node) - return None - - -def p_doc_string(s): - if s.sy == 'BEGIN_STRING': - pos = s.position() - kind, bytes_result, unicode_result = p_cat_string_literal(s) - s.expect_newline("Syntax error in doc string", ignore_semicolon=True) - if kind in ('u', ''): - return unicode_result - warning(pos, "Python 3 requires docstrings to be unicode strings") - return bytes_result - else: - return None - - -def _extract_docstring(node): - """ - Extract a docstring from a statement or from the first statement - in a list. Remove the statement if found. Return a tuple - (plain-docstring or None, node). - """ - doc_node = None - if node is None: - pass - elif isinstance(node, Nodes.ExprStatNode): - if node.expr.is_string_literal: - doc_node = node.expr - node = Nodes.StatListNode(node.pos, stats=[]) - elif isinstance(node, Nodes.StatListNode) and node.stats: - stats = node.stats - if isinstance(stats[0], Nodes.ExprStatNode): - if stats[0].expr.is_string_literal: - doc_node = stats[0].expr - del stats[0] - - if doc_node is None: - doc = None - elif isinstance(doc_node, ExprNodes.BytesNode): - warning(node.pos, - "Python 3 requires docstrings to be unicode strings") - doc = doc_node.value - elif isinstance(doc_node, ExprNodes.StringNode): - doc = doc_node.unicode_value - if doc is None: - doc = doc_node.value - else: - doc = doc_node.value - return doc, node - - -def p_code(s, level=None, ctx=Ctx): - body = p_statement_list(s, ctx(level = level), first_statement = 1) - if s.sy != 'EOF': - s.error("Syntax error in statement [%s,%s]" % ( - repr(s.sy), repr(s.systring))) - return body - - -_match_compiler_directive_comment = cython.declare(object, re.compile( - r"^#\s*cython\s*:\s*((\w|[.])+\s*=.*)$").match) - - -def p_compiler_directive_comments(s): - result = {} - while s.sy == 'commentline': - pos = s.position() - m = _match_compiler_directive_comment(s.systring) - if m: - directives_string = m.group(1).strip() - try: - new_directives = Options.parse_directive_list(directives_string, ignore_unknown=True) - except ValueError as e: - s.error(e.args[0], fatal=False) - s.next() - continue - - for name in new_directives: - if name not in result: - pass - elif new_directives[name] == result[name]: - warning(pos, "Duplicate directive found: %s" % (name,)) - else: - s.error("Conflicting settings found for top-level directive %s: %r and %r" % ( - name, result[name], new_directives[name]), pos=pos) - - if 'language_level' in new_directives: - # Make sure we apply the language level already to the first token that follows the comments. - s.context.set_language_level(new_directives['language_level']) - - result.update(new_directives) - - s.next() - return result - - -def p_module(s, pxd, full_module_name, ctx=Ctx): - pos = s.position() - - directive_comments = p_compiler_directive_comments(s) - s.parse_comments = False - - if s.context.language_level is None: - s.context.set_language_level(2) # Arcadia default. - - if s.context.language_level is None: - s.context.set_language_level(2) - if pos[0].filename: - import warnings - warnings.warn( - "Cython directive 'language_level' not set, using 2 for now (Py2). " - "This will change in a later release! File: %s" % pos[0].filename, - FutureWarning, - stacklevel=1 if cython.compiled else 2, - ) - - doc = p_doc_string(s) - if pxd: - level = 'module_pxd' - else: - level = 'module' - - body = p_statement_list(s, ctx(level=level), first_statement = 1) - if s.sy != 'EOF': - s.error("Syntax error in statement [%s,%s]" % ( - repr(s.sy), repr(s.systring))) - return ModuleNode(pos, doc = doc, body = body, - full_module_name = full_module_name, - directive_comments = directive_comments) - -def p_template_definition(s): - name = p_ident(s) - if s.sy == '=': - s.expect('=') - s.expect('*') - required = False - else: - required = True - return name, required - -def p_cpp_class_definition(s, pos, ctx): - # s.sy == 'cppclass' - s.next() - module_path = [] - class_name = p_ident(s) - cname = p_opt_cname(s) - if cname is None and ctx.namespace is not None: - cname = ctx.namespace + "::" + class_name - if s.sy == '.': - error(pos, "Qualified class name not allowed C++ class") - if s.sy == '[': - s.next() - templates = [p_template_definition(s)] - while s.sy == ',': - s.next() - templates.append(p_template_definition(s)) - s.expect(']') - template_names = [name for name, required in templates] - else: - templates = None - template_names = None - if s.sy == '(': - s.next() - base_classes = [p_c_base_type(s, templates = template_names)] - while s.sy == ',': - s.next() - base_classes.append(p_c_base_type(s, templates = template_names)) - s.expect(')') - else: - base_classes = [] - if s.sy == '[': - error(s.position(), "Name options not allowed for C++ class") - nogil = p_nogil(s) - if s.sy == ':': - s.next() - s.expect('NEWLINE') - s.expect_indent() - attributes = [] - body_ctx = Ctx(visibility = ctx.visibility, level='cpp_class', nogil=nogil or ctx.nogil) - body_ctx.templates = template_names - while s.sy != 'DEDENT': - if s.sy != 'pass': - attributes.append(p_cpp_class_attribute(s, body_ctx)) - else: - s.next() - s.expect_newline("Expected a newline") - s.expect_dedent() - else: - attributes = None - s.expect_newline("Syntax error in C++ class definition") - return Nodes.CppClassNode(pos, - name = class_name, - cname = cname, - base_classes = base_classes, - visibility = ctx.visibility, - in_pxd = ctx.level == 'module_pxd', - attributes = attributes, - templates = templates) - -def p_cpp_class_attribute(s, ctx): - decorators = None - if s.sy == '@': - decorators = p_decorators(s) - if s.systring == 'cppclass': - return p_cpp_class_definition(s, s.position(), ctx) - elif s.systring == 'ctypedef': - return p_ctypedef_statement(s, ctx) - elif s.sy == 'IDENT' and s.systring in struct_enum_union: - if s.systring != 'enum': - return p_cpp_class_definition(s, s.position(), ctx) - else: - return p_struct_enum(s, s.position(), ctx) - else: - node = p_c_func_or_var_declaration(s, s.position(), ctx) - if decorators is not None: - tup = Nodes.CFuncDefNode, Nodes.CVarDefNode, Nodes.CClassDefNode - if ctx.allow_struct_enum_decorator: - tup += Nodes.CStructOrUnionDefNode, Nodes.CEnumDefNode - if not isinstance(node, tup): - s.error("Decorators can only be followed by functions or classes") - node.decorators = decorators - return node - - -#---------------------------------------------- -# -# Debugging -# -#---------------------------------------------- - -def print_parse_tree(f, node, level, key = None): - ind = " " * level - if node: - f.write(ind) - if key: - f.write("%s: " % key) - t = type(node) - if t is tuple: - f.write("(%s @ %s\n" % (node[0], node[1])) - for i in range(2, len(node)): - print_parse_tree(f, node[i], level+1) - f.write("%s)\n" % ind) - return - elif isinstance(node, Nodes.Node): - try: - tag = node.tag - except AttributeError: - tag = node.__class__.__name__ - f.write("%s @ %s\n" % (tag, node.pos)) - for name, value in node.__dict__.items(): - if name != 'tag' and name != 'pos': - print_parse_tree(f, value, level+1, name) - return - elif t is list: - f.write("[\n") - for i in range(len(node)): - print_parse_tree(f, node[i], level+1) - f.write("%s]\n" % ind) - return - f.write("%s%s\n" % (ind, node)) |
