aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/cython/Cython/Compiler/FusedNode.py
diff options
context:
space:
mode:
authoralexv-smirnov <alex@ydb.tech>2023-06-13 11:05:01 +0300
committeralexv-smirnov <alex@ydb.tech>2023-06-13 11:05:01 +0300
commitbf0f13dd39ee3e65092ba3572bb5b1fcd125dcd0 (patch)
tree1d1df72c0541a59a81439842f46d95396d3e7189 /contrib/tools/cython/Cython/Compiler/FusedNode.py
parent8bfdfa9a9bd19bddbc58d888e180fbd1218681be (diff)
downloadydb-bf0f13dd39ee3e65092ba3572bb5b1fcd125dcd0.tar.gz
add ymake export to ydb
Diffstat (limited to 'contrib/tools/cython/Cython/Compiler/FusedNode.py')
-rw-r--r--contrib/tools/cython/Cython/Compiler/FusedNode.py901
1 files changed, 901 insertions, 0 deletions
diff --git a/contrib/tools/cython/Cython/Compiler/FusedNode.py b/contrib/tools/cython/Cython/Compiler/FusedNode.py
new file mode 100644
index 0000000000..26d6ffd3d6
--- /dev/null
+++ b/contrib/tools/cython/Cython/Compiler/FusedNode.py
@@ -0,0 +1,901 @@
+from __future__ import absolute_import
+
+import copy
+
+from . import (ExprNodes, PyrexTypes, MemoryView,
+ ParseTreeTransforms, StringEncoding, Errors)
+from .ExprNodes import CloneNode, ProxyNode, TupleNode
+from .Nodes import FuncDefNode, CFuncDefNode, StatListNode, DefNode
+from ..Utils import OrderedSet
+
+
+class FusedCFuncDefNode(StatListNode):
+ """
+ This node replaces a function with fused arguments. It deep-copies the
+ function for every permutation of fused types, and allocates a new local
+ scope for it. It keeps track of the original function in self.node, and
+ the entry of the original function in the symbol table is given the
+ 'fused_cfunction' attribute which points back to us.
+ Then when a function lookup occurs (to e.g. call it), the call can be
+ dispatched to the right function.
+
+ node FuncDefNode the original function
+ nodes [FuncDefNode] list of copies of node with different specific types
+ py_func DefNode the fused python function subscriptable from
+ Python space
+ __signatures__ A DictNode mapping signature specialization strings
+ to PyCFunction nodes
+ resulting_fused_function PyCFunction for the fused DefNode that delegates
+ to specializations
+ fused_func_assignment Assignment of the fused function to the function name
+ defaults_tuple TupleNode of defaults (letting PyCFunctionNode build
+ defaults would result in many different tuples)
+ specialized_pycfuncs List of synthesized pycfunction nodes for the
+ specializations
+ code_object CodeObjectNode shared by all specializations and the
+ fused function
+
+ fused_compound_types All fused (compound) types (e.g. floating[:])
+ """
+
+ __signatures__ = None
+ resulting_fused_function = None
+ fused_func_assignment = None
+ defaults_tuple = None
+ decorators = None
+
+ child_attrs = StatListNode.child_attrs + [
+ '__signatures__', 'resulting_fused_function', 'fused_func_assignment']
+
+ def __init__(self, node, env):
+ super(FusedCFuncDefNode, self).__init__(node.pos)
+
+ self.nodes = []
+ self.node = node
+
+ is_def = isinstance(self.node, DefNode)
+ if is_def:
+ # self.node.decorators = []
+ self.copy_def(env)
+ else:
+ self.copy_cdef(env)
+
+ # Perform some sanity checks. If anything fails, it's a bug
+ for n in self.nodes:
+ assert not n.entry.type.is_fused
+ assert not n.local_scope.return_type.is_fused
+ if node.return_type.is_fused:
+ assert not n.return_type.is_fused
+
+ if not is_def and n.cfunc_declarator.optional_arg_count:
+ assert n.type.op_arg_struct
+
+ node.entry.fused_cfunction = self
+ # Copy the nodes as AnalyseDeclarationsTransform will prepend
+ # self.py_func to self.stats, as we only want specialized
+ # CFuncDefNodes in self.nodes
+ self.stats = self.nodes[:]
+
+ def copy_def(self, env):
+ """
+ Create a copy of the original def or lambda function for specialized
+ versions.
+ """
+ fused_compound_types = PyrexTypes.unique(
+ [arg.type for arg in self.node.args if arg.type.is_fused])
+ fused_types = self._get_fused_base_types(fused_compound_types)
+ permutations = PyrexTypes.get_all_specialized_permutations(fused_types)
+
+ self.fused_compound_types = fused_compound_types
+
+ if self.node.entry in env.pyfunc_entries:
+ env.pyfunc_entries.remove(self.node.entry)
+
+ for cname, fused_to_specific in permutations:
+ copied_node = copy.deepcopy(self.node)
+ # keep signature object identity for special casing in DefNode.analyse_declarations()
+ copied_node.entry.signature = self.node.entry.signature
+
+ self._specialize_function_args(copied_node.args, fused_to_specific)
+ copied_node.return_type = self.node.return_type.specialize(
+ fused_to_specific)
+
+ copied_node.analyse_declarations(env)
+ # copied_node.is_staticmethod = self.node.is_staticmethod
+ # copied_node.is_classmethod = self.node.is_classmethod
+ self.create_new_local_scope(copied_node, env, fused_to_specific)
+ self.specialize_copied_def(copied_node, cname, self.node.entry,
+ fused_to_specific, fused_compound_types)
+
+ PyrexTypes.specialize_entry(copied_node.entry, cname)
+ copied_node.entry.used = True
+ env.entries[copied_node.entry.name] = copied_node.entry
+
+ if not self.replace_fused_typechecks(copied_node):
+ break
+
+ self.orig_py_func = self.node
+ self.py_func = self.make_fused_cpdef(self.node, env, is_def=True)
+
+ def copy_cdef(self, env):
+ """
+ Create a copy of the original c(p)def function for all specialized
+ versions.
+ """
+ permutations = self.node.type.get_all_specialized_permutations()
+ # print 'Node %s has %d specializations:' % (self.node.entry.name,
+ # len(permutations))
+ # import pprint; pprint.pprint([d for cname, d in permutations])
+
+ # Prevent copying of the python function
+ self.orig_py_func = orig_py_func = self.node.py_func
+ self.node.py_func = None
+ if orig_py_func:
+ env.pyfunc_entries.remove(orig_py_func.entry)
+
+ fused_types = self.node.type.get_fused_types()
+ self.fused_compound_types = fused_types
+
+ new_cfunc_entries = []
+ for cname, fused_to_specific in permutations:
+ copied_node = copy.deepcopy(self.node)
+
+ # Make the types in our CFuncType specific.
+ type = copied_node.type.specialize(fused_to_specific)
+ entry = copied_node.entry
+ type.specialize_entry(entry, cname)
+
+ # Reuse existing Entries (e.g. from .pxd files).
+ for i, orig_entry in enumerate(env.cfunc_entries):
+ if entry.cname == orig_entry.cname and type.same_as_resolved_type(orig_entry.type):
+ copied_node.entry = env.cfunc_entries[i]
+ if not copied_node.entry.func_cname:
+ copied_node.entry.func_cname = entry.func_cname
+ entry = copied_node.entry
+ type = entry.type
+ break
+ else:
+ new_cfunc_entries.append(entry)
+
+ copied_node.type = type
+ entry.type, type.entry = type, entry
+
+ entry.used = (entry.used or
+ self.node.entry.defined_in_pxd or
+ env.is_c_class_scope or
+ entry.is_cmethod)
+
+ if self.node.cfunc_declarator.optional_arg_count:
+ self.node.cfunc_declarator.declare_optional_arg_struct(
+ type, env, fused_cname=cname)
+
+ copied_node.return_type = type.return_type
+ self.create_new_local_scope(copied_node, env, fused_to_specific)
+
+ # Make the argument types in the CFuncDeclarator specific
+ self._specialize_function_args(copied_node.cfunc_declarator.args,
+ fused_to_specific)
+
+ # If a cpdef, declare all specialized cpdefs (this
+ # also calls analyse_declarations)
+ copied_node.declare_cpdef_wrapper(env)
+ if copied_node.py_func:
+ env.pyfunc_entries.remove(copied_node.py_func.entry)
+
+ self.specialize_copied_def(
+ copied_node.py_func, cname, self.node.entry.as_variable,
+ fused_to_specific, fused_types)
+
+ if not self.replace_fused_typechecks(copied_node):
+ break
+
+ # replace old entry with new entries
+ try:
+ cindex = env.cfunc_entries.index(self.node.entry)
+ except ValueError:
+ env.cfunc_entries.extend(new_cfunc_entries)
+ else:
+ env.cfunc_entries[cindex:cindex+1] = new_cfunc_entries
+
+ if orig_py_func:
+ self.py_func = self.make_fused_cpdef(orig_py_func, env,
+ is_def=False)
+ else:
+ self.py_func = orig_py_func
+
+ def _get_fused_base_types(self, fused_compound_types):
+ """
+ Get a list of unique basic fused types, from a list of
+ (possibly) compound fused types.
+ """
+ base_types = []
+ seen = set()
+ for fused_type in fused_compound_types:
+ fused_type.get_fused_types(result=base_types, seen=seen)
+ return base_types
+
+ def _specialize_function_args(self, args, fused_to_specific):
+ for arg in args:
+ if arg.type.is_fused:
+ arg.type = arg.type.specialize(fused_to_specific)
+ if arg.type.is_memoryviewslice:
+ arg.type.validate_memslice_dtype(arg.pos)
+
+ def create_new_local_scope(self, node, env, f2s):
+ """
+ Create a new local scope for the copied node and append it to
+ self.nodes. A new local scope is needed because the arguments with the
+ fused types are already in the local scope, and we need the specialized
+ entries created after analyse_declarations on each specialized version
+ of the (CFunc)DefNode.
+ f2s is a dict mapping each fused type to its specialized version
+ """
+ node.create_local_scope(env)
+ node.local_scope.fused_to_specific = f2s
+
+ # This is copied from the original function, set it to false to
+ # stop recursion
+ node.has_fused_arguments = False
+ self.nodes.append(node)
+
+ def specialize_copied_def(self, node, cname, py_entry, f2s, fused_compound_types):
+ """Specialize the copy of a DefNode given the copied node,
+ the specialization cname and the original DefNode entry"""
+ fused_types = self._get_fused_base_types(fused_compound_types)
+ type_strings = [
+ PyrexTypes.specialization_signature_string(fused_type, f2s)
+ for fused_type in fused_types
+ ]
+
+ node.specialized_signature_string = '|'.join(type_strings)
+
+ node.entry.pymethdef_cname = PyrexTypes.get_fused_cname(
+ cname, node.entry.pymethdef_cname)
+ node.entry.doc = py_entry.doc
+ node.entry.doc_cname = py_entry.doc_cname
+
+ def replace_fused_typechecks(self, copied_node):
+ """
+ Branch-prune fused type checks like
+
+ if fused_t is int:
+ ...
+
+ Returns whether an error was issued and whether we should stop in
+ in order to prevent a flood of errors.
+ """
+ num_errors = Errors.num_errors
+ transform = ParseTreeTransforms.ReplaceFusedTypeChecks(
+ copied_node.local_scope)
+ transform(copied_node)
+
+ if Errors.num_errors > num_errors:
+ return False
+
+ return True
+
+ def _fused_instance_checks(self, normal_types, pyx_code, env):
+ """
+ Generate Cython code for instance checks, matching an object to
+ specialized types.
+ """
+ for specialized_type in normal_types:
+ # all_numeric = all_numeric and specialized_type.is_numeric
+ pyx_code.context.update(
+ py_type_name=specialized_type.py_type_name(),
+ specialized_type_name=specialized_type.specialization_string,
+ )
+ pyx_code.put_chunk(
+ u"""
+ if isinstance(arg, {{py_type_name}}):
+ dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'; break
+ """)
+
+ def _dtype_name(self, dtype):
+ if dtype.is_typedef:
+ return '___pyx_%s' % dtype
+ return str(dtype).replace(' ', '_')
+
+ def _dtype_type(self, dtype):
+ if dtype.is_typedef:
+ return self._dtype_name(dtype)
+ return str(dtype)
+
+ def _sizeof_dtype(self, dtype):
+ if dtype.is_pyobject:
+ return 'sizeof(void *)'
+ else:
+ return "sizeof(%s)" % self._dtype_type(dtype)
+
+ def _buffer_check_numpy_dtype_setup_cases(self, pyx_code):
+ "Setup some common cases to match dtypes against specializations"
+ if pyx_code.indenter("if kind in b'iu':"):
+ pyx_code.putln("pass")
+ pyx_code.named_insertion_point("dtype_int")
+ pyx_code.dedent()
+
+ if pyx_code.indenter("elif kind == b'f':"):
+ pyx_code.putln("pass")
+ pyx_code.named_insertion_point("dtype_float")
+ pyx_code.dedent()
+
+ if pyx_code.indenter("elif kind == b'c':"):
+ pyx_code.putln("pass")
+ pyx_code.named_insertion_point("dtype_complex")
+ pyx_code.dedent()
+
+ if pyx_code.indenter("elif kind == b'O':"):
+ pyx_code.putln("pass")
+ pyx_code.named_insertion_point("dtype_object")
+ pyx_code.dedent()
+
+ match = "dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'"
+ no_match = "dest_sig[{{dest_sig_idx}}] = None"
+ def _buffer_check_numpy_dtype(self, pyx_code, specialized_buffer_types, pythran_types):
+ """
+ Match a numpy dtype object to the individual specializations.
+ """
+ self._buffer_check_numpy_dtype_setup_cases(pyx_code)
+
+ for specialized_type in pythran_types+specialized_buffer_types:
+ final_type = specialized_type
+ if specialized_type.is_pythran_expr:
+ specialized_type = specialized_type.org_buffer
+ dtype = specialized_type.dtype
+ pyx_code.context.update(
+ itemsize_match=self._sizeof_dtype(dtype) + " == itemsize",
+ signed_match="not (%s_is_signed ^ dtype_signed)" % self._dtype_name(dtype),
+ dtype=dtype,
+ specialized_type_name=final_type.specialization_string)
+
+ dtypes = [
+ (dtype.is_int, pyx_code.dtype_int),
+ (dtype.is_float, pyx_code.dtype_float),
+ (dtype.is_complex, pyx_code.dtype_complex)
+ ]
+
+ for dtype_category, codewriter in dtypes:
+ if dtype_category:
+ cond = '{{itemsize_match}} and (<Py_ssize_t>arg.ndim) == %d' % (
+ specialized_type.ndim,)
+ if dtype.is_int:
+ cond += ' and {{signed_match}}'
+
+ if final_type.is_pythran_expr:
+ cond += ' and arg_is_pythran_compatible'
+
+ if codewriter.indenter("if %s:" % cond):
+ #codewriter.putln("print 'buffer match found based on numpy dtype'")
+ codewriter.putln(self.match)
+ codewriter.putln("break")
+ codewriter.dedent()
+
+ def _buffer_parse_format_string_check(self, pyx_code, decl_code,
+ specialized_type, env):
+ """
+ For each specialized type, try to coerce the object to a memoryview
+ slice of that type. This means obtaining a buffer and parsing the
+ format string.
+ TODO: separate buffer acquisition from format parsing
+ """
+ dtype = specialized_type.dtype
+ if specialized_type.is_buffer:
+ axes = [('direct', 'strided')] * specialized_type.ndim
+ else:
+ axes = specialized_type.axes
+
+ memslice_type = PyrexTypes.MemoryViewSliceType(dtype, axes)
+ memslice_type.create_from_py_utility_code(env)
+ pyx_code.context.update(
+ coerce_from_py_func=memslice_type.from_py_function,
+ dtype=dtype)
+ decl_code.putln(
+ "{{memviewslice_cname}} {{coerce_from_py_func}}(object, int)")
+
+ pyx_code.context.update(
+ specialized_type_name=specialized_type.specialization_string,
+ sizeof_dtype=self._sizeof_dtype(dtype))
+
+ pyx_code.put_chunk(
+ u"""
+ # try {{dtype}}
+ if itemsize == -1 or itemsize == {{sizeof_dtype}}:
+ memslice = {{coerce_from_py_func}}(arg, 0)
+ if memslice.memview:
+ __PYX_XDEC_MEMVIEW(&memslice, 1)
+ # print 'found a match for the buffer through format parsing'
+ %s
+ break
+ else:
+ __pyx_PyErr_Clear()
+ """ % self.match)
+
+ def _buffer_checks(self, buffer_types, pythran_types, pyx_code, decl_code, env):
+ """
+ Generate Cython code to match objects to buffer specializations.
+ First try to get a numpy dtype object and match it against the individual
+ specializations. If that fails, try naively to coerce the object
+ to each specialization, which obtains the buffer each time and tries
+ to match the format string.
+ """
+ # The first thing to find a match in this loop breaks out of the loop
+ pyx_code.put_chunk(
+ u"""
+ """ + (u"arg_is_pythran_compatible = False" if pythran_types else u"") + u"""
+ if ndarray is not None:
+ if isinstance(arg, ndarray):
+ dtype = arg.dtype
+ """ + (u"arg_is_pythran_compatible = True" if pythran_types else u"") + u"""
+ elif __pyx_memoryview_check(arg):
+ arg_base = arg.base
+ if isinstance(arg_base, ndarray):
+ dtype = arg_base.dtype
+ else:
+ dtype = None
+ else:
+ dtype = None
+
+ itemsize = -1
+ if dtype is not None:
+ itemsize = dtype.itemsize
+ kind = ord(dtype.kind)
+ dtype_signed = kind == 'i'
+ """)
+ pyx_code.indent(2)
+ if pythran_types:
+ pyx_code.put_chunk(
+ u"""
+ # Pythran only supports the endianness of the current compiler
+ byteorder = dtype.byteorder
+ if byteorder == "<" and not __Pyx_Is_Little_Endian():
+ arg_is_pythran_compatible = False
+ elif byteorder == ">" and __Pyx_Is_Little_Endian():
+ arg_is_pythran_compatible = False
+ if arg_is_pythran_compatible:
+ cur_stride = itemsize
+ shape = arg.shape
+ strides = arg.strides
+ for i in range(arg.ndim-1, -1, -1):
+ if (<Py_ssize_t>strides[i]) != cur_stride:
+ arg_is_pythran_compatible = False
+ break
+ cur_stride *= <Py_ssize_t> shape[i]
+ else:
+ arg_is_pythran_compatible = not (arg.flags.f_contiguous and (<Py_ssize_t>arg.ndim) > 1)
+ """)
+ pyx_code.named_insertion_point("numpy_dtype_checks")
+ self._buffer_check_numpy_dtype(pyx_code, buffer_types, pythran_types)
+ pyx_code.dedent(2)
+
+ for specialized_type in buffer_types:
+ self._buffer_parse_format_string_check(
+ pyx_code, decl_code, specialized_type, env)
+
+ def _buffer_declarations(self, pyx_code, decl_code, all_buffer_types, pythran_types):
+ """
+ If we have any buffer specializations, write out some variable
+ declarations and imports.
+ """
+ decl_code.put_chunk(
+ u"""
+ ctypedef struct {{memviewslice_cname}}:
+ void *memview
+
+ void __PYX_XDEC_MEMVIEW({{memviewslice_cname}} *, int have_gil)
+ bint __pyx_memoryview_check(object)
+ """)
+
+ pyx_code.local_variable_declarations.put_chunk(
+ u"""
+ cdef {{memviewslice_cname}} memslice
+ cdef Py_ssize_t itemsize
+ cdef bint dtype_signed
+ cdef char kind
+
+ itemsize = -1
+ """)
+
+ if pythran_types:
+ pyx_code.local_variable_declarations.put_chunk(u"""
+ cdef bint arg_is_pythran_compatible
+ cdef Py_ssize_t cur_stride
+ """)
+
+ pyx_code.imports.put_chunk(
+ u"""
+ cdef type ndarray
+ ndarray = __Pyx_ImportNumPyArrayTypeIfAvailable()
+ """)
+
+ seen_typedefs = set()
+ seen_int_dtypes = set()
+ for buffer_type in all_buffer_types:
+ dtype = buffer_type.dtype
+ dtype_name = self._dtype_name(dtype)
+ if dtype.is_typedef:
+ if dtype_name not in seen_typedefs:
+ seen_typedefs.add(dtype_name)
+ decl_code.putln(
+ 'ctypedef %s %s "%s"' % (dtype.resolve(), dtype_name,
+ dtype.empty_declaration_code()))
+
+ if buffer_type.dtype.is_int:
+ if str(dtype) not in seen_int_dtypes:
+ seen_int_dtypes.add(str(dtype))
+ pyx_code.context.update(dtype_name=dtype_name,
+ dtype_type=self._dtype_type(dtype))
+ pyx_code.local_variable_declarations.put_chunk(
+ u"""
+ cdef bint {{dtype_name}}_is_signed
+ {{dtype_name}}_is_signed = not (<{{dtype_type}}> -1 > 0)
+ """)
+
+ def _split_fused_types(self, arg):
+ """
+ Specialize fused types and split into normal types and buffer types.
+ """
+ specialized_types = PyrexTypes.get_specialized_types(arg.type)
+
+ # Prefer long over int, etc by sorting (see type classes in PyrexTypes.py)
+ specialized_types.sort()
+
+ seen_py_type_names = set()
+ normal_types, buffer_types, pythran_types = [], [], []
+ has_object_fallback = False
+ for specialized_type in specialized_types:
+ py_type_name = specialized_type.py_type_name()
+ if py_type_name:
+ if py_type_name in seen_py_type_names:
+ continue
+ seen_py_type_names.add(py_type_name)
+ if py_type_name == 'object':
+ has_object_fallback = True
+ else:
+ normal_types.append(specialized_type)
+ elif specialized_type.is_pythran_expr:
+ pythran_types.append(specialized_type)
+ elif specialized_type.is_buffer or specialized_type.is_memoryviewslice:
+ buffer_types.append(specialized_type)
+
+ return normal_types, buffer_types, pythran_types, has_object_fallback
+
+ def _unpack_argument(self, pyx_code):
+ pyx_code.put_chunk(
+ u"""
+ # PROCESSING ARGUMENT {{arg_tuple_idx}}
+ if {{arg_tuple_idx}} < len(<tuple>args):
+ arg = (<tuple>args)[{{arg_tuple_idx}}]
+ elif kwargs is not None and '{{arg.name}}' in <dict>kwargs:
+ arg = (<dict>kwargs)['{{arg.name}}']
+ else:
+ {{if arg.default}}
+ arg = (<tuple>defaults)[{{default_idx}}]
+ {{else}}
+ {{if arg_tuple_idx < min_positional_args}}
+ raise TypeError("Expected at least %d argument%s, got %d" % (
+ {{min_positional_args}}, {{'"s"' if min_positional_args != 1 else '""'}}, len(<tuple>args)))
+ {{else}}
+ raise TypeError("Missing keyword-only argument: '%s'" % "{{arg.default}}")
+ {{endif}}
+ {{endif}}
+ """)
+
+ def make_fused_cpdef(self, orig_py_func, env, is_def):
+ """
+ This creates the function that is indexable from Python and does
+ runtime dispatch based on the argument types. The function gets the
+ arg tuple and kwargs dict (or None) and the defaults tuple
+ as arguments from the Binding Fused Function's tp_call.
+ """
+ from . import TreeFragment, Code, UtilityCode
+
+ fused_types = self._get_fused_base_types([
+ arg.type for arg in self.node.args if arg.type.is_fused])
+
+ context = {
+ 'memviewslice_cname': MemoryView.memviewslice_cname,
+ 'func_args': self.node.args,
+ 'n_fused': len(fused_types),
+ 'min_positional_args':
+ self.node.num_required_args - self.node.num_required_kw_args
+ if is_def else
+ sum(1 for arg in self.node.args if arg.default is None),
+ 'name': orig_py_func.entry.name,
+ }
+
+ pyx_code = Code.PyxCodeWriter(context=context)
+ decl_code = Code.PyxCodeWriter(context=context)
+ decl_code.put_chunk(
+ u"""
+ cdef extern from *:
+ void __pyx_PyErr_Clear "PyErr_Clear" ()
+ type __Pyx_ImportNumPyArrayTypeIfAvailable()
+ int __Pyx_Is_Little_Endian()
+ """)
+ decl_code.indent()
+
+ pyx_code.put_chunk(
+ u"""
+ def __pyx_fused_cpdef(signatures, args, kwargs, defaults):
+ # FIXME: use a typed signature - currently fails badly because
+ # default arguments inherit the types we specify here!
+
+ dest_sig = [None] * {{n_fused}}
+
+ if kwargs is not None and not kwargs:
+ kwargs = None
+
+ cdef Py_ssize_t i
+
+ # instance check body
+ """)
+
+ pyx_code.indent() # indent following code to function body
+ pyx_code.named_insertion_point("imports")
+ pyx_code.named_insertion_point("func_defs")
+ pyx_code.named_insertion_point("local_variable_declarations")
+
+ fused_index = 0
+ default_idx = 0
+ all_buffer_types = OrderedSet()
+ seen_fused_types = set()
+ for i, arg in enumerate(self.node.args):
+ if arg.type.is_fused:
+ arg_fused_types = arg.type.get_fused_types()
+ if len(arg_fused_types) > 1:
+ raise NotImplementedError("Determination of more than one fused base "
+ "type per argument is not implemented.")
+ fused_type = arg_fused_types[0]
+
+ if arg.type.is_fused and fused_type not in seen_fused_types:
+ seen_fused_types.add(fused_type)
+
+ context.update(
+ arg_tuple_idx=i,
+ arg=arg,
+ dest_sig_idx=fused_index,
+ default_idx=default_idx,
+ )
+
+ normal_types, buffer_types, pythran_types, has_object_fallback = self._split_fused_types(arg)
+ self._unpack_argument(pyx_code)
+
+ # 'unrolled' loop, first match breaks out of it
+ if pyx_code.indenter("while 1:"):
+ if normal_types:
+ self._fused_instance_checks(normal_types, pyx_code, env)
+ if buffer_types or pythran_types:
+ env.use_utility_code(Code.UtilityCode.load_cached("IsLittleEndian", "ModuleSetupCode.c"))
+ self._buffer_checks(buffer_types, pythran_types, pyx_code, decl_code, env)
+ if has_object_fallback:
+ pyx_code.context.update(specialized_type_name='object')
+ pyx_code.putln(self.match)
+ else:
+ pyx_code.putln(self.no_match)
+ pyx_code.putln("break")
+ pyx_code.dedent()
+
+ fused_index += 1
+ all_buffer_types.update(buffer_types)
+ all_buffer_types.update(ty.org_buffer for ty in pythran_types)
+
+ if arg.default:
+ default_idx += 1
+
+ if all_buffer_types:
+ self._buffer_declarations(pyx_code, decl_code, all_buffer_types, pythran_types)
+ env.use_utility_code(Code.UtilityCode.load_cached("Import", "ImportExport.c"))
+ env.use_utility_code(Code.UtilityCode.load_cached("ImportNumPyArray", "ImportExport.c"))
+
+ pyx_code.put_chunk(
+ u"""
+ candidates = []
+ for sig in <dict>signatures:
+ match_found = False
+ src_sig = sig.strip('()').split('|')
+ for i in range(len(dest_sig)):
+ dst_type = dest_sig[i]
+ if dst_type is not None:
+ if src_sig[i] == dst_type:
+ match_found = True
+ else:
+ match_found = False
+ break
+
+ if match_found:
+ candidates.append(sig)
+
+ if not candidates:
+ raise TypeError("No matching signature found")
+ elif len(candidates) > 1:
+ raise TypeError("Function call with ambiguous argument types")
+ else:
+ return (<dict>signatures)[candidates[0]]
+ """)
+
+ fragment_code = pyx_code.getvalue()
+ # print decl_code.getvalue()
+ # print fragment_code
+ from .Optimize import ConstantFolding
+ fragment = TreeFragment.TreeFragment(
+ fragment_code, level='module', pipeline=[ConstantFolding()])
+ ast = TreeFragment.SetPosTransform(self.node.pos)(fragment.root)
+ UtilityCode.declare_declarations_in_scope(
+ decl_code.getvalue(), env.global_scope())
+ ast.scope = env
+ # FIXME: for static methods of cdef classes, we build the wrong signature here: first arg becomes 'self'
+ ast.analyse_declarations(env)
+ py_func = ast.stats[-1] # the DefNode
+ self.fragment_scope = ast.scope
+
+ if isinstance(self.node, DefNode):
+ py_func.specialized_cpdefs = self.nodes[:]
+ else:
+ py_func.specialized_cpdefs = [n.py_func for n in self.nodes]
+
+ return py_func
+
+ def update_fused_defnode_entry(self, env):
+ copy_attributes = (
+ 'name', 'pos', 'cname', 'func_cname', 'pyfunc_cname',
+ 'pymethdef_cname', 'doc', 'doc_cname', 'is_member',
+ 'scope'
+ )
+
+ entry = self.py_func.entry
+
+ for attr in copy_attributes:
+ setattr(entry, attr,
+ getattr(self.orig_py_func.entry, attr))
+
+ self.py_func.name = self.orig_py_func.name
+ self.py_func.doc = self.orig_py_func.doc
+
+ env.entries.pop('__pyx_fused_cpdef', None)
+ if isinstance(self.node, DefNode):
+ env.entries[entry.name] = entry
+ else:
+ env.entries[entry.name].as_variable = entry
+
+ env.pyfunc_entries.append(entry)
+
+ self.py_func.entry.fused_cfunction = self
+ for node in self.nodes:
+ if isinstance(self.node, DefNode):
+ node.fused_py_func = self.py_func
+ else:
+ node.py_func.fused_py_func = self.py_func
+ node.entry.as_variable = entry
+
+ self.synthesize_defnodes()
+ self.stats.append(self.__signatures__)
+
+ def analyse_expressions(self, env):
+ """
+ Analyse the expressions. Take care to only evaluate default arguments
+ once and clone the result for all specializations
+ """
+ for fused_compound_type in self.fused_compound_types:
+ for fused_type in fused_compound_type.get_fused_types():
+ for specialization_type in fused_type.types:
+ if specialization_type.is_complex:
+ specialization_type.create_declaration_utility_code(env)
+
+ if self.py_func:
+ self.__signatures__ = self.__signatures__.analyse_expressions(env)
+ self.py_func = self.py_func.analyse_expressions(env)
+ self.resulting_fused_function = self.resulting_fused_function.analyse_expressions(env)
+ self.fused_func_assignment = self.fused_func_assignment.analyse_expressions(env)
+
+ self.defaults = defaults = []
+
+ for arg in self.node.args:
+ if arg.default:
+ arg.default = arg.default.analyse_expressions(env)
+ defaults.append(ProxyNode(arg.default))
+ else:
+ defaults.append(None)
+
+ for i, stat in enumerate(self.stats):
+ stat = self.stats[i] = stat.analyse_expressions(env)
+ if isinstance(stat, FuncDefNode):
+ for arg, default in zip(stat.args, defaults):
+ if default is not None:
+ arg.default = CloneNode(default).coerce_to(arg.type, env)
+
+ if self.py_func:
+ args = [CloneNode(default) for default in defaults if default]
+ self.defaults_tuple = TupleNode(self.pos, args=args)
+ self.defaults_tuple = self.defaults_tuple.analyse_types(env, skip_children=True).coerce_to_pyobject(env)
+ self.defaults_tuple = ProxyNode(self.defaults_tuple)
+ self.code_object = ProxyNode(self.specialized_pycfuncs[0].code_object)
+
+ fused_func = self.resulting_fused_function.arg
+ fused_func.defaults_tuple = CloneNode(self.defaults_tuple)
+ fused_func.code_object = CloneNode(self.code_object)
+
+ for i, pycfunc in enumerate(self.specialized_pycfuncs):
+ pycfunc.code_object = CloneNode(self.code_object)
+ pycfunc = self.specialized_pycfuncs[i] = pycfunc.analyse_types(env)
+ pycfunc.defaults_tuple = CloneNode(self.defaults_tuple)
+ return self
+
+ def synthesize_defnodes(self):
+ """
+ Create the __signatures__ dict of PyCFunctionNode specializations.
+ """
+ if isinstance(self.nodes[0], CFuncDefNode):
+ nodes = [node.py_func for node in self.nodes]
+ else:
+ nodes = self.nodes
+
+ signatures = [StringEncoding.EncodedString(node.specialized_signature_string)
+ for node in nodes]
+ keys = [ExprNodes.StringNode(node.pos, value=sig)
+ for node, sig in zip(nodes, signatures)]
+ values = [ExprNodes.PyCFunctionNode.from_defnode(node, binding=True)
+ for node in nodes]
+
+ self.__signatures__ = ExprNodes.DictNode.from_pairs(self.pos, zip(keys, values))
+
+ self.specialized_pycfuncs = values
+ for pycfuncnode in values:
+ pycfuncnode.is_specialization = True
+
+ def generate_function_definitions(self, env, code):
+ if self.py_func:
+ self.py_func.pymethdef_required = True
+ self.fused_func_assignment.generate_function_definitions(env, code)
+
+ for stat in self.stats:
+ if isinstance(stat, FuncDefNode) and stat.entry.used:
+ code.mark_pos(stat.pos)
+ stat.generate_function_definitions(env, code)
+
+ def generate_execution_code(self, code):
+ # Note: all def function specialization are wrapped in PyCFunction
+ # nodes in the self.__signatures__ dictnode.
+ for default in self.defaults:
+ if default is not None:
+ default.generate_evaluation_code(code)
+
+ if self.py_func:
+ self.defaults_tuple.generate_evaluation_code(code)
+ self.code_object.generate_evaluation_code(code)
+
+ for stat in self.stats:
+ code.mark_pos(stat.pos)
+ if isinstance(stat, ExprNodes.ExprNode):
+ stat.generate_evaluation_code(code)
+ else:
+ stat.generate_execution_code(code)
+
+ if self.__signatures__:
+ self.resulting_fused_function.generate_evaluation_code(code)
+
+ code.putln(
+ "((__pyx_FusedFunctionObject *) %s)->__signatures__ = %s;" %
+ (self.resulting_fused_function.result(),
+ self.__signatures__.result()))
+ code.put_giveref(self.__signatures__.result())
+ self.__signatures__.generate_post_assignment_code(code)
+ self.__signatures__.free_temps(code)
+
+ self.fused_func_assignment.generate_execution_code(code)
+
+ # Dispose of results
+ self.resulting_fused_function.generate_disposal_code(code)
+ self.resulting_fused_function.free_temps(code)
+ self.defaults_tuple.generate_disposal_code(code)
+ self.defaults_tuple.free_temps(code)
+ self.code_object.generate_disposal_code(code)
+ self.code_object.free_temps(code)
+
+ for default in self.defaults:
+ if default is not None:
+ default.generate_disposal_code(code)
+ default.free_temps(code)
+
+ def annotate(self, code):
+ for stat in self.stats:
+ stat.annotate(code)