diff options
author | alexv-smirnov <alex@ydb.tech> | 2023-06-13 11:05:01 +0300 |
---|---|---|
committer | alexv-smirnov <alex@ydb.tech> | 2023-06-13 11:05:01 +0300 |
commit | bf0f13dd39ee3e65092ba3572bb5b1fcd125dcd0 (patch) | |
tree | 1d1df72c0541a59a81439842f46d95396d3e7189 /contrib/tools/cython/Cython/Compiler/FusedNode.py | |
parent | 8bfdfa9a9bd19bddbc58d888e180fbd1218681be (diff) | |
download | ydb-bf0f13dd39ee3e65092ba3572bb5b1fcd125dcd0.tar.gz |
add ymake export to ydb
Diffstat (limited to 'contrib/tools/cython/Cython/Compiler/FusedNode.py')
-rw-r--r-- | contrib/tools/cython/Cython/Compiler/FusedNode.py | 901 |
1 files changed, 901 insertions, 0 deletions
diff --git a/contrib/tools/cython/Cython/Compiler/FusedNode.py b/contrib/tools/cython/Cython/Compiler/FusedNode.py new file mode 100644 index 0000000000..26d6ffd3d6 --- /dev/null +++ b/contrib/tools/cython/Cython/Compiler/FusedNode.py @@ -0,0 +1,901 @@ +from __future__ import absolute_import + +import copy + +from . import (ExprNodes, PyrexTypes, MemoryView, + ParseTreeTransforms, StringEncoding, Errors) +from .ExprNodes import CloneNode, ProxyNode, TupleNode +from .Nodes import FuncDefNode, CFuncDefNode, StatListNode, DefNode +from ..Utils import OrderedSet + + +class FusedCFuncDefNode(StatListNode): + """ + This node replaces a function with fused arguments. It deep-copies the + function for every permutation of fused types, and allocates a new local + scope for it. It keeps track of the original function in self.node, and + the entry of the original function in the symbol table is given the + 'fused_cfunction' attribute which points back to us. + Then when a function lookup occurs (to e.g. call it), the call can be + dispatched to the right function. + + node FuncDefNode the original function + nodes [FuncDefNode] list of copies of node with different specific types + py_func DefNode the fused python function subscriptable from + Python space + __signatures__ A DictNode mapping signature specialization strings + to PyCFunction nodes + resulting_fused_function PyCFunction for the fused DefNode that delegates + to specializations + fused_func_assignment Assignment of the fused function to the function name + defaults_tuple TupleNode of defaults (letting PyCFunctionNode build + defaults would result in many different tuples) + specialized_pycfuncs List of synthesized pycfunction nodes for the + specializations + code_object CodeObjectNode shared by all specializations and the + fused function + + fused_compound_types All fused (compound) types (e.g. floating[:]) + """ + + __signatures__ = None + resulting_fused_function = None + fused_func_assignment = None + defaults_tuple = None + decorators = None + + child_attrs = StatListNode.child_attrs + [ + '__signatures__', 'resulting_fused_function', 'fused_func_assignment'] + + def __init__(self, node, env): + super(FusedCFuncDefNode, self).__init__(node.pos) + + self.nodes = [] + self.node = node + + is_def = isinstance(self.node, DefNode) + if is_def: + # self.node.decorators = [] + self.copy_def(env) + else: + self.copy_cdef(env) + + # Perform some sanity checks. If anything fails, it's a bug + for n in self.nodes: + assert not n.entry.type.is_fused + assert not n.local_scope.return_type.is_fused + if node.return_type.is_fused: + assert not n.return_type.is_fused + + if not is_def and n.cfunc_declarator.optional_arg_count: + assert n.type.op_arg_struct + + node.entry.fused_cfunction = self + # Copy the nodes as AnalyseDeclarationsTransform will prepend + # self.py_func to self.stats, as we only want specialized + # CFuncDefNodes in self.nodes + self.stats = self.nodes[:] + + def copy_def(self, env): + """ + Create a copy of the original def or lambda function for specialized + versions. + """ + fused_compound_types = PyrexTypes.unique( + [arg.type for arg in self.node.args if arg.type.is_fused]) + fused_types = self._get_fused_base_types(fused_compound_types) + permutations = PyrexTypes.get_all_specialized_permutations(fused_types) + + self.fused_compound_types = fused_compound_types + + if self.node.entry in env.pyfunc_entries: + env.pyfunc_entries.remove(self.node.entry) + + for cname, fused_to_specific in permutations: + copied_node = copy.deepcopy(self.node) + # keep signature object identity for special casing in DefNode.analyse_declarations() + copied_node.entry.signature = self.node.entry.signature + + self._specialize_function_args(copied_node.args, fused_to_specific) + copied_node.return_type = self.node.return_type.specialize( + fused_to_specific) + + copied_node.analyse_declarations(env) + # copied_node.is_staticmethod = self.node.is_staticmethod + # copied_node.is_classmethod = self.node.is_classmethod + self.create_new_local_scope(copied_node, env, fused_to_specific) + self.specialize_copied_def(copied_node, cname, self.node.entry, + fused_to_specific, fused_compound_types) + + PyrexTypes.specialize_entry(copied_node.entry, cname) + copied_node.entry.used = True + env.entries[copied_node.entry.name] = copied_node.entry + + if not self.replace_fused_typechecks(copied_node): + break + + self.orig_py_func = self.node + self.py_func = self.make_fused_cpdef(self.node, env, is_def=True) + + def copy_cdef(self, env): + """ + Create a copy of the original c(p)def function for all specialized + versions. + """ + permutations = self.node.type.get_all_specialized_permutations() + # print 'Node %s has %d specializations:' % (self.node.entry.name, + # len(permutations)) + # import pprint; pprint.pprint([d for cname, d in permutations]) + + # Prevent copying of the python function + self.orig_py_func = orig_py_func = self.node.py_func + self.node.py_func = None + if orig_py_func: + env.pyfunc_entries.remove(orig_py_func.entry) + + fused_types = self.node.type.get_fused_types() + self.fused_compound_types = fused_types + + new_cfunc_entries = [] + for cname, fused_to_specific in permutations: + copied_node = copy.deepcopy(self.node) + + # Make the types in our CFuncType specific. + type = copied_node.type.specialize(fused_to_specific) + entry = copied_node.entry + type.specialize_entry(entry, cname) + + # Reuse existing Entries (e.g. from .pxd files). + for i, orig_entry in enumerate(env.cfunc_entries): + if entry.cname == orig_entry.cname and type.same_as_resolved_type(orig_entry.type): + copied_node.entry = env.cfunc_entries[i] + if not copied_node.entry.func_cname: + copied_node.entry.func_cname = entry.func_cname + entry = copied_node.entry + type = entry.type + break + else: + new_cfunc_entries.append(entry) + + copied_node.type = type + entry.type, type.entry = type, entry + + entry.used = (entry.used or + self.node.entry.defined_in_pxd or + env.is_c_class_scope or + entry.is_cmethod) + + if self.node.cfunc_declarator.optional_arg_count: + self.node.cfunc_declarator.declare_optional_arg_struct( + type, env, fused_cname=cname) + + copied_node.return_type = type.return_type + self.create_new_local_scope(copied_node, env, fused_to_specific) + + # Make the argument types in the CFuncDeclarator specific + self._specialize_function_args(copied_node.cfunc_declarator.args, + fused_to_specific) + + # If a cpdef, declare all specialized cpdefs (this + # also calls analyse_declarations) + copied_node.declare_cpdef_wrapper(env) + if copied_node.py_func: + env.pyfunc_entries.remove(copied_node.py_func.entry) + + self.specialize_copied_def( + copied_node.py_func, cname, self.node.entry.as_variable, + fused_to_specific, fused_types) + + if not self.replace_fused_typechecks(copied_node): + break + + # replace old entry with new entries + try: + cindex = env.cfunc_entries.index(self.node.entry) + except ValueError: + env.cfunc_entries.extend(new_cfunc_entries) + else: + env.cfunc_entries[cindex:cindex+1] = new_cfunc_entries + + if orig_py_func: + self.py_func = self.make_fused_cpdef(orig_py_func, env, + is_def=False) + else: + self.py_func = orig_py_func + + def _get_fused_base_types(self, fused_compound_types): + """ + Get a list of unique basic fused types, from a list of + (possibly) compound fused types. + """ + base_types = [] + seen = set() + for fused_type in fused_compound_types: + fused_type.get_fused_types(result=base_types, seen=seen) + return base_types + + def _specialize_function_args(self, args, fused_to_specific): + for arg in args: + if arg.type.is_fused: + arg.type = arg.type.specialize(fused_to_specific) + if arg.type.is_memoryviewslice: + arg.type.validate_memslice_dtype(arg.pos) + + def create_new_local_scope(self, node, env, f2s): + """ + Create a new local scope for the copied node and append it to + self.nodes. A new local scope is needed because the arguments with the + fused types are already in the local scope, and we need the specialized + entries created after analyse_declarations on each specialized version + of the (CFunc)DefNode. + f2s is a dict mapping each fused type to its specialized version + """ + node.create_local_scope(env) + node.local_scope.fused_to_specific = f2s + + # This is copied from the original function, set it to false to + # stop recursion + node.has_fused_arguments = False + self.nodes.append(node) + + def specialize_copied_def(self, node, cname, py_entry, f2s, fused_compound_types): + """Specialize the copy of a DefNode given the copied node, + the specialization cname and the original DefNode entry""" + fused_types = self._get_fused_base_types(fused_compound_types) + type_strings = [ + PyrexTypes.specialization_signature_string(fused_type, f2s) + for fused_type in fused_types + ] + + node.specialized_signature_string = '|'.join(type_strings) + + node.entry.pymethdef_cname = PyrexTypes.get_fused_cname( + cname, node.entry.pymethdef_cname) + node.entry.doc = py_entry.doc + node.entry.doc_cname = py_entry.doc_cname + + def replace_fused_typechecks(self, copied_node): + """ + Branch-prune fused type checks like + + if fused_t is int: + ... + + Returns whether an error was issued and whether we should stop in + in order to prevent a flood of errors. + """ + num_errors = Errors.num_errors + transform = ParseTreeTransforms.ReplaceFusedTypeChecks( + copied_node.local_scope) + transform(copied_node) + + if Errors.num_errors > num_errors: + return False + + return True + + def _fused_instance_checks(self, normal_types, pyx_code, env): + """ + Generate Cython code for instance checks, matching an object to + specialized types. + """ + for specialized_type in normal_types: + # all_numeric = all_numeric and specialized_type.is_numeric + pyx_code.context.update( + py_type_name=specialized_type.py_type_name(), + specialized_type_name=specialized_type.specialization_string, + ) + pyx_code.put_chunk( + u""" + if isinstance(arg, {{py_type_name}}): + dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'; break + """) + + def _dtype_name(self, dtype): + if dtype.is_typedef: + return '___pyx_%s' % dtype + return str(dtype).replace(' ', '_') + + def _dtype_type(self, dtype): + if dtype.is_typedef: + return self._dtype_name(dtype) + return str(dtype) + + def _sizeof_dtype(self, dtype): + if dtype.is_pyobject: + return 'sizeof(void *)' + else: + return "sizeof(%s)" % self._dtype_type(dtype) + + def _buffer_check_numpy_dtype_setup_cases(self, pyx_code): + "Setup some common cases to match dtypes against specializations" + if pyx_code.indenter("if kind in b'iu':"): + pyx_code.putln("pass") + pyx_code.named_insertion_point("dtype_int") + pyx_code.dedent() + + if pyx_code.indenter("elif kind == b'f':"): + pyx_code.putln("pass") + pyx_code.named_insertion_point("dtype_float") + pyx_code.dedent() + + if pyx_code.indenter("elif kind == b'c':"): + pyx_code.putln("pass") + pyx_code.named_insertion_point("dtype_complex") + pyx_code.dedent() + + if pyx_code.indenter("elif kind == b'O':"): + pyx_code.putln("pass") + pyx_code.named_insertion_point("dtype_object") + pyx_code.dedent() + + match = "dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'" + no_match = "dest_sig[{{dest_sig_idx}}] = None" + def _buffer_check_numpy_dtype(self, pyx_code, specialized_buffer_types, pythran_types): + """ + Match a numpy dtype object to the individual specializations. + """ + self._buffer_check_numpy_dtype_setup_cases(pyx_code) + + for specialized_type in pythran_types+specialized_buffer_types: + final_type = specialized_type + if specialized_type.is_pythran_expr: + specialized_type = specialized_type.org_buffer + dtype = specialized_type.dtype + pyx_code.context.update( + itemsize_match=self._sizeof_dtype(dtype) + " == itemsize", + signed_match="not (%s_is_signed ^ dtype_signed)" % self._dtype_name(dtype), + dtype=dtype, + specialized_type_name=final_type.specialization_string) + + dtypes = [ + (dtype.is_int, pyx_code.dtype_int), + (dtype.is_float, pyx_code.dtype_float), + (dtype.is_complex, pyx_code.dtype_complex) + ] + + for dtype_category, codewriter in dtypes: + if dtype_category: + cond = '{{itemsize_match}} and (<Py_ssize_t>arg.ndim) == %d' % ( + specialized_type.ndim,) + if dtype.is_int: + cond += ' and {{signed_match}}' + + if final_type.is_pythran_expr: + cond += ' and arg_is_pythran_compatible' + + if codewriter.indenter("if %s:" % cond): + #codewriter.putln("print 'buffer match found based on numpy dtype'") + codewriter.putln(self.match) + codewriter.putln("break") + codewriter.dedent() + + def _buffer_parse_format_string_check(self, pyx_code, decl_code, + specialized_type, env): + """ + For each specialized type, try to coerce the object to a memoryview + slice of that type. This means obtaining a buffer and parsing the + format string. + TODO: separate buffer acquisition from format parsing + """ + dtype = specialized_type.dtype + if specialized_type.is_buffer: + axes = [('direct', 'strided')] * specialized_type.ndim + else: + axes = specialized_type.axes + + memslice_type = PyrexTypes.MemoryViewSliceType(dtype, axes) + memslice_type.create_from_py_utility_code(env) + pyx_code.context.update( + coerce_from_py_func=memslice_type.from_py_function, + dtype=dtype) + decl_code.putln( + "{{memviewslice_cname}} {{coerce_from_py_func}}(object, int)") + + pyx_code.context.update( + specialized_type_name=specialized_type.specialization_string, + sizeof_dtype=self._sizeof_dtype(dtype)) + + pyx_code.put_chunk( + u""" + # try {{dtype}} + if itemsize == -1 or itemsize == {{sizeof_dtype}}: + memslice = {{coerce_from_py_func}}(arg, 0) + if memslice.memview: + __PYX_XDEC_MEMVIEW(&memslice, 1) + # print 'found a match for the buffer through format parsing' + %s + break + else: + __pyx_PyErr_Clear() + """ % self.match) + + def _buffer_checks(self, buffer_types, pythran_types, pyx_code, decl_code, env): + """ + Generate Cython code to match objects to buffer specializations. + First try to get a numpy dtype object and match it against the individual + specializations. If that fails, try naively to coerce the object + to each specialization, which obtains the buffer each time and tries + to match the format string. + """ + # The first thing to find a match in this loop breaks out of the loop + pyx_code.put_chunk( + u""" + """ + (u"arg_is_pythran_compatible = False" if pythran_types else u"") + u""" + if ndarray is not None: + if isinstance(arg, ndarray): + dtype = arg.dtype + """ + (u"arg_is_pythran_compatible = True" if pythran_types else u"") + u""" + elif __pyx_memoryview_check(arg): + arg_base = arg.base + if isinstance(arg_base, ndarray): + dtype = arg_base.dtype + else: + dtype = None + else: + dtype = None + + itemsize = -1 + if dtype is not None: + itemsize = dtype.itemsize + kind = ord(dtype.kind) + dtype_signed = kind == 'i' + """) + pyx_code.indent(2) + if pythran_types: + pyx_code.put_chunk( + u""" + # Pythran only supports the endianness of the current compiler + byteorder = dtype.byteorder + if byteorder == "<" and not __Pyx_Is_Little_Endian(): + arg_is_pythran_compatible = False + elif byteorder == ">" and __Pyx_Is_Little_Endian(): + arg_is_pythran_compatible = False + if arg_is_pythran_compatible: + cur_stride = itemsize + shape = arg.shape + strides = arg.strides + for i in range(arg.ndim-1, -1, -1): + if (<Py_ssize_t>strides[i]) != cur_stride: + arg_is_pythran_compatible = False + break + cur_stride *= <Py_ssize_t> shape[i] + else: + arg_is_pythran_compatible = not (arg.flags.f_contiguous and (<Py_ssize_t>arg.ndim) > 1) + """) + pyx_code.named_insertion_point("numpy_dtype_checks") + self._buffer_check_numpy_dtype(pyx_code, buffer_types, pythran_types) + pyx_code.dedent(2) + + for specialized_type in buffer_types: + self._buffer_parse_format_string_check( + pyx_code, decl_code, specialized_type, env) + + def _buffer_declarations(self, pyx_code, decl_code, all_buffer_types, pythran_types): + """ + If we have any buffer specializations, write out some variable + declarations and imports. + """ + decl_code.put_chunk( + u""" + ctypedef struct {{memviewslice_cname}}: + void *memview + + void __PYX_XDEC_MEMVIEW({{memviewslice_cname}} *, int have_gil) + bint __pyx_memoryview_check(object) + """) + + pyx_code.local_variable_declarations.put_chunk( + u""" + cdef {{memviewslice_cname}} memslice + cdef Py_ssize_t itemsize + cdef bint dtype_signed + cdef char kind + + itemsize = -1 + """) + + if pythran_types: + pyx_code.local_variable_declarations.put_chunk(u""" + cdef bint arg_is_pythran_compatible + cdef Py_ssize_t cur_stride + """) + + pyx_code.imports.put_chunk( + u""" + cdef type ndarray + ndarray = __Pyx_ImportNumPyArrayTypeIfAvailable() + """) + + seen_typedefs = set() + seen_int_dtypes = set() + for buffer_type in all_buffer_types: + dtype = buffer_type.dtype + dtype_name = self._dtype_name(dtype) + if dtype.is_typedef: + if dtype_name not in seen_typedefs: + seen_typedefs.add(dtype_name) + decl_code.putln( + 'ctypedef %s %s "%s"' % (dtype.resolve(), dtype_name, + dtype.empty_declaration_code())) + + if buffer_type.dtype.is_int: + if str(dtype) not in seen_int_dtypes: + seen_int_dtypes.add(str(dtype)) + pyx_code.context.update(dtype_name=dtype_name, + dtype_type=self._dtype_type(dtype)) + pyx_code.local_variable_declarations.put_chunk( + u""" + cdef bint {{dtype_name}}_is_signed + {{dtype_name}}_is_signed = not (<{{dtype_type}}> -1 > 0) + """) + + def _split_fused_types(self, arg): + """ + Specialize fused types and split into normal types and buffer types. + """ + specialized_types = PyrexTypes.get_specialized_types(arg.type) + + # Prefer long over int, etc by sorting (see type classes in PyrexTypes.py) + specialized_types.sort() + + seen_py_type_names = set() + normal_types, buffer_types, pythran_types = [], [], [] + has_object_fallback = False + for specialized_type in specialized_types: + py_type_name = specialized_type.py_type_name() + if py_type_name: + if py_type_name in seen_py_type_names: + continue + seen_py_type_names.add(py_type_name) + if py_type_name == 'object': + has_object_fallback = True + else: + normal_types.append(specialized_type) + elif specialized_type.is_pythran_expr: + pythran_types.append(specialized_type) + elif specialized_type.is_buffer or specialized_type.is_memoryviewslice: + buffer_types.append(specialized_type) + + return normal_types, buffer_types, pythran_types, has_object_fallback + + def _unpack_argument(self, pyx_code): + pyx_code.put_chunk( + u""" + # PROCESSING ARGUMENT {{arg_tuple_idx}} + if {{arg_tuple_idx}} < len(<tuple>args): + arg = (<tuple>args)[{{arg_tuple_idx}}] + elif kwargs is not None and '{{arg.name}}' in <dict>kwargs: + arg = (<dict>kwargs)['{{arg.name}}'] + else: + {{if arg.default}} + arg = (<tuple>defaults)[{{default_idx}}] + {{else}} + {{if arg_tuple_idx < min_positional_args}} + raise TypeError("Expected at least %d argument%s, got %d" % ( + {{min_positional_args}}, {{'"s"' if min_positional_args != 1 else '""'}}, len(<tuple>args))) + {{else}} + raise TypeError("Missing keyword-only argument: '%s'" % "{{arg.default}}") + {{endif}} + {{endif}} + """) + + def make_fused_cpdef(self, orig_py_func, env, is_def): + """ + This creates the function that is indexable from Python and does + runtime dispatch based on the argument types. The function gets the + arg tuple and kwargs dict (or None) and the defaults tuple + as arguments from the Binding Fused Function's tp_call. + """ + from . import TreeFragment, Code, UtilityCode + + fused_types = self._get_fused_base_types([ + arg.type for arg in self.node.args if arg.type.is_fused]) + + context = { + 'memviewslice_cname': MemoryView.memviewslice_cname, + 'func_args': self.node.args, + 'n_fused': len(fused_types), + 'min_positional_args': + self.node.num_required_args - self.node.num_required_kw_args + if is_def else + sum(1 for arg in self.node.args if arg.default is None), + 'name': orig_py_func.entry.name, + } + + pyx_code = Code.PyxCodeWriter(context=context) + decl_code = Code.PyxCodeWriter(context=context) + decl_code.put_chunk( + u""" + cdef extern from *: + void __pyx_PyErr_Clear "PyErr_Clear" () + type __Pyx_ImportNumPyArrayTypeIfAvailable() + int __Pyx_Is_Little_Endian() + """) + decl_code.indent() + + pyx_code.put_chunk( + u""" + def __pyx_fused_cpdef(signatures, args, kwargs, defaults): + # FIXME: use a typed signature - currently fails badly because + # default arguments inherit the types we specify here! + + dest_sig = [None] * {{n_fused}} + + if kwargs is not None and not kwargs: + kwargs = None + + cdef Py_ssize_t i + + # instance check body + """) + + pyx_code.indent() # indent following code to function body + pyx_code.named_insertion_point("imports") + pyx_code.named_insertion_point("func_defs") + pyx_code.named_insertion_point("local_variable_declarations") + + fused_index = 0 + default_idx = 0 + all_buffer_types = OrderedSet() + seen_fused_types = set() + for i, arg in enumerate(self.node.args): + if arg.type.is_fused: + arg_fused_types = arg.type.get_fused_types() + if len(arg_fused_types) > 1: + raise NotImplementedError("Determination of more than one fused base " + "type per argument is not implemented.") + fused_type = arg_fused_types[0] + + if arg.type.is_fused and fused_type not in seen_fused_types: + seen_fused_types.add(fused_type) + + context.update( + arg_tuple_idx=i, + arg=arg, + dest_sig_idx=fused_index, + default_idx=default_idx, + ) + + normal_types, buffer_types, pythran_types, has_object_fallback = self._split_fused_types(arg) + self._unpack_argument(pyx_code) + + # 'unrolled' loop, first match breaks out of it + if pyx_code.indenter("while 1:"): + if normal_types: + self._fused_instance_checks(normal_types, pyx_code, env) + if buffer_types or pythran_types: + env.use_utility_code(Code.UtilityCode.load_cached("IsLittleEndian", "ModuleSetupCode.c")) + self._buffer_checks(buffer_types, pythran_types, pyx_code, decl_code, env) + if has_object_fallback: + pyx_code.context.update(specialized_type_name='object') + pyx_code.putln(self.match) + else: + pyx_code.putln(self.no_match) + pyx_code.putln("break") + pyx_code.dedent() + + fused_index += 1 + all_buffer_types.update(buffer_types) + all_buffer_types.update(ty.org_buffer for ty in pythran_types) + + if arg.default: + default_idx += 1 + + if all_buffer_types: + self._buffer_declarations(pyx_code, decl_code, all_buffer_types, pythran_types) + env.use_utility_code(Code.UtilityCode.load_cached("Import", "ImportExport.c")) + env.use_utility_code(Code.UtilityCode.load_cached("ImportNumPyArray", "ImportExport.c")) + + pyx_code.put_chunk( + u""" + candidates = [] + for sig in <dict>signatures: + match_found = False + src_sig = sig.strip('()').split('|') + for i in range(len(dest_sig)): + dst_type = dest_sig[i] + if dst_type is not None: + if src_sig[i] == dst_type: + match_found = True + else: + match_found = False + break + + if match_found: + candidates.append(sig) + + if not candidates: + raise TypeError("No matching signature found") + elif len(candidates) > 1: + raise TypeError("Function call with ambiguous argument types") + else: + return (<dict>signatures)[candidates[0]] + """) + + fragment_code = pyx_code.getvalue() + # print decl_code.getvalue() + # print fragment_code + from .Optimize import ConstantFolding + fragment = TreeFragment.TreeFragment( + fragment_code, level='module', pipeline=[ConstantFolding()]) + ast = TreeFragment.SetPosTransform(self.node.pos)(fragment.root) + UtilityCode.declare_declarations_in_scope( + decl_code.getvalue(), env.global_scope()) + ast.scope = env + # FIXME: for static methods of cdef classes, we build the wrong signature here: first arg becomes 'self' + ast.analyse_declarations(env) + py_func = ast.stats[-1] # the DefNode + self.fragment_scope = ast.scope + + if isinstance(self.node, DefNode): + py_func.specialized_cpdefs = self.nodes[:] + else: + py_func.specialized_cpdefs = [n.py_func for n in self.nodes] + + return py_func + + def update_fused_defnode_entry(self, env): + copy_attributes = ( + 'name', 'pos', 'cname', 'func_cname', 'pyfunc_cname', + 'pymethdef_cname', 'doc', 'doc_cname', 'is_member', + 'scope' + ) + + entry = self.py_func.entry + + for attr in copy_attributes: + setattr(entry, attr, + getattr(self.orig_py_func.entry, attr)) + + self.py_func.name = self.orig_py_func.name + self.py_func.doc = self.orig_py_func.doc + + env.entries.pop('__pyx_fused_cpdef', None) + if isinstance(self.node, DefNode): + env.entries[entry.name] = entry + else: + env.entries[entry.name].as_variable = entry + + env.pyfunc_entries.append(entry) + + self.py_func.entry.fused_cfunction = self + for node in self.nodes: + if isinstance(self.node, DefNode): + node.fused_py_func = self.py_func + else: + node.py_func.fused_py_func = self.py_func + node.entry.as_variable = entry + + self.synthesize_defnodes() + self.stats.append(self.__signatures__) + + def analyse_expressions(self, env): + """ + Analyse the expressions. Take care to only evaluate default arguments + once and clone the result for all specializations + """ + for fused_compound_type in self.fused_compound_types: + for fused_type in fused_compound_type.get_fused_types(): + for specialization_type in fused_type.types: + if specialization_type.is_complex: + specialization_type.create_declaration_utility_code(env) + + if self.py_func: + self.__signatures__ = self.__signatures__.analyse_expressions(env) + self.py_func = self.py_func.analyse_expressions(env) + self.resulting_fused_function = self.resulting_fused_function.analyse_expressions(env) + self.fused_func_assignment = self.fused_func_assignment.analyse_expressions(env) + + self.defaults = defaults = [] + + for arg in self.node.args: + if arg.default: + arg.default = arg.default.analyse_expressions(env) + defaults.append(ProxyNode(arg.default)) + else: + defaults.append(None) + + for i, stat in enumerate(self.stats): + stat = self.stats[i] = stat.analyse_expressions(env) + if isinstance(stat, FuncDefNode): + for arg, default in zip(stat.args, defaults): + if default is not None: + arg.default = CloneNode(default).coerce_to(arg.type, env) + + if self.py_func: + args = [CloneNode(default) for default in defaults if default] + self.defaults_tuple = TupleNode(self.pos, args=args) + self.defaults_tuple = self.defaults_tuple.analyse_types(env, skip_children=True).coerce_to_pyobject(env) + self.defaults_tuple = ProxyNode(self.defaults_tuple) + self.code_object = ProxyNode(self.specialized_pycfuncs[0].code_object) + + fused_func = self.resulting_fused_function.arg + fused_func.defaults_tuple = CloneNode(self.defaults_tuple) + fused_func.code_object = CloneNode(self.code_object) + + for i, pycfunc in enumerate(self.specialized_pycfuncs): + pycfunc.code_object = CloneNode(self.code_object) + pycfunc = self.specialized_pycfuncs[i] = pycfunc.analyse_types(env) + pycfunc.defaults_tuple = CloneNode(self.defaults_tuple) + return self + + def synthesize_defnodes(self): + """ + Create the __signatures__ dict of PyCFunctionNode specializations. + """ + if isinstance(self.nodes[0], CFuncDefNode): + nodes = [node.py_func for node in self.nodes] + else: + nodes = self.nodes + + signatures = [StringEncoding.EncodedString(node.specialized_signature_string) + for node in nodes] + keys = [ExprNodes.StringNode(node.pos, value=sig) + for node, sig in zip(nodes, signatures)] + values = [ExprNodes.PyCFunctionNode.from_defnode(node, binding=True) + for node in nodes] + + self.__signatures__ = ExprNodes.DictNode.from_pairs(self.pos, zip(keys, values)) + + self.specialized_pycfuncs = values + for pycfuncnode in values: + pycfuncnode.is_specialization = True + + def generate_function_definitions(self, env, code): + if self.py_func: + self.py_func.pymethdef_required = True + self.fused_func_assignment.generate_function_definitions(env, code) + + for stat in self.stats: + if isinstance(stat, FuncDefNode) and stat.entry.used: + code.mark_pos(stat.pos) + stat.generate_function_definitions(env, code) + + def generate_execution_code(self, code): + # Note: all def function specialization are wrapped in PyCFunction + # nodes in the self.__signatures__ dictnode. + for default in self.defaults: + if default is not None: + default.generate_evaluation_code(code) + + if self.py_func: + self.defaults_tuple.generate_evaluation_code(code) + self.code_object.generate_evaluation_code(code) + + for stat in self.stats: + code.mark_pos(stat.pos) + if isinstance(stat, ExprNodes.ExprNode): + stat.generate_evaluation_code(code) + else: + stat.generate_execution_code(code) + + if self.__signatures__: + self.resulting_fused_function.generate_evaluation_code(code) + + code.putln( + "((__pyx_FusedFunctionObject *) %s)->__signatures__ = %s;" % + (self.resulting_fused_function.result(), + self.__signatures__.result())) + code.put_giveref(self.__signatures__.result()) + self.__signatures__.generate_post_assignment_code(code) + self.__signatures__.free_temps(code) + + self.fused_func_assignment.generate_execution_code(code) + + # Dispose of results + self.resulting_fused_function.generate_disposal_code(code) + self.resulting_fused_function.free_temps(code) + self.defaults_tuple.generate_disposal_code(code) + self.defaults_tuple.free_temps(code) + self.code_object.generate_disposal_code(code) + self.code_object.free_temps(code) + + for default in self.defaults: + if default is not None: + default.generate_disposal_code(code) + default.free_temps(code) + + def annotate(self, code): + for stat in self.stats: + stat.annotate(code) |