diff options
author | zaycevm <[email protected]> | 2025-08-12 18:23:32 +0300 |
---|---|---|
committer | zaycevm <[email protected]> | 2025-08-12 18:58:10 +0300 |
commit | 7ce1229be33024092eb56910264510447d21116f (patch) | |
tree | 6697d934399db06c36ebd516ebe6f0a76245a3ba /contrib/restricted/google/boringssl/crypto/fipsmodule/rsa/rsa_impl.c | |
parent | 27af3f7dfd34fe3cdd1c1329f3d205ac5ac136a3 (diff) |
BoringSSL as optional cryptobackend for ngtcp2
PR добавляет возможность использовать BoringSSL в ngtcp2 в качестве криптобиблиотеки. Для проектов в Аркадии, уже зависящих от ngtcp2, добавлена явная зависимость от слоя абстракции quictls (сейчас в транке ngtcp2 собирается с quictls).
commit_hash:3d6607abecfcff2157859acbdd18f9d0345ac485
Diffstat (limited to 'contrib/restricted/google/boringssl/crypto/fipsmodule/rsa/rsa_impl.c')
-rw-r--r-- | contrib/restricted/google/boringssl/crypto/fipsmodule/rsa/rsa_impl.c | 1351 |
1 files changed, 1351 insertions, 0 deletions
diff --git a/contrib/restricted/google/boringssl/crypto/fipsmodule/rsa/rsa_impl.c b/contrib/restricted/google/boringssl/crypto/fipsmodule/rsa/rsa_impl.c new file mode 100644 index 00000000000..9056f0c02cc --- /dev/null +++ b/contrib/restricted/google/boringssl/crypto/fipsmodule/rsa/rsa_impl.c @@ -0,0 +1,1351 @@ +/* Copyright (C) 1995-1998 Eric Young ([email protected]) + * All rights reserved. + * + * This package is an SSL implementation written + * by Eric Young ([email protected]). + * The implementation was written so as to conform with Netscapes SSL. + * + * This library is free for commercial and non-commercial use as long as + * the following conditions are aheared to. The following conditions + * apply to all code found in this distribution, be it the RC4, RSA, + * lhash, DES, etc., code; not just the SSL code. The SSL documentation + * included with this distribution is covered by the same copyright terms + * except that the holder is Tim Hudson ([email protected]). + * + * Copyright remains Eric Young's, and as such any Copyright notices in + * the code are not to be removed. + * If this package is used in a product, Eric Young should be given attribution + * as the author of the parts of the library used. + * This can be in the form of a textual message at program startup or + * in documentation (online or textual) provided with the package. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * "This product includes cryptographic software written by + * Eric Young ([email protected])" + * The word 'cryptographic' can be left out if the rouines from the library + * being used are not cryptographic related :-). + * 4. If you include any Windows specific code (or a derivative thereof) from + * the apps directory (application code) you must include an acknowledgement: + * "This product includes software written by Tim Hudson ([email protected])" + * + * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * The licence and distribution terms for any publically available version or + * derivative of this code cannot be changed. i.e. this code cannot simply be + * copied and put under another distribution licence + * [including the GNU Public Licence.] */ + +#include <contrib/restricted/google/boringssl/include/openssl/rsa.h> + +#include <assert.h> +#include <limits.h> +#include <string.h> + +#include <contrib/restricted/google/boringssl/include/openssl/bn.h> +#include <contrib/restricted/google/boringssl/include/openssl/err.h> +#include <contrib/restricted/google/boringssl/include/openssl/mem.h> +#include <contrib/restricted/google/boringssl/include/openssl/thread.h> + +#include "../../internal.h" +#include "../bn/internal.h" +#include "../delocate.h" +#include "../rand/fork_detect.h" +#include "../service_indicator/internal.h" +#include "internal.h" + + +int rsa_check_public_key(const RSA *rsa) { + if (rsa->n == NULL) { + OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); + return 0; + } + + // TODO(davidben): 16384-bit RSA is huge. Can we bring this down to a limit of + // 8192-bit? + unsigned n_bits = BN_num_bits(rsa->n); + if (n_bits > 16 * 1024) { + OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); + return 0; + } + + // TODO(crbug.com/boringssl/607): Raise this limit. 512-bit RSA was factored + // in 1999. + if (n_bits < 512) { + OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); + return 0; + } + + // RSA moduli must be positive and odd. In addition to being necessary for RSA + // in general, we cannot setup Montgomery reduction with even moduli. + if (!BN_is_odd(rsa->n) || BN_is_negative(rsa->n)) { + OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); + return 0; + } + + static const unsigned kMaxExponentBits = 33; + if (rsa->e != NULL) { + // Reject e = 1, negative e, and even e. e must be odd to be relatively + // prime with phi(n). + unsigned e_bits = BN_num_bits(rsa->e); + if (e_bits < 2 || BN_is_negative(rsa->e) || !BN_is_odd(rsa->e)) { + OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); + return 0; + } + if (rsa->flags & RSA_FLAG_LARGE_PUBLIC_EXPONENT) { + // The caller has requested disabling DoS protections. Still, e must be + // less than n. + if (BN_ucmp(rsa->n, rsa->e) <= 0) { + OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); + return 0; + } + } else { + // Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen + // as the limit based on the recommendations in [1] and [2]. Windows + // CryptoAPI doesn't support values larger than 32 bits [3], so it is + // unlikely that exponents larger than 32 bits are being used for anything + // Windows commonly does. + // + // [1] https://www.imperialviolet.org/2012/03/16/rsae.html + // [2] https://www.imperialviolet.org/2012/03/17/rsados.html + // [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx + if (e_bits > kMaxExponentBits) { + OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); + return 0; + } + + // The upper bound on |e_bits| and lower bound on |n_bits| imply e is + // bounded by n. + assert(BN_ucmp(rsa->n, rsa->e) > 0); + } + } else if (!(rsa->flags & RSA_FLAG_NO_PUBLIC_EXPONENT)) { + OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); + return 0; + } + + return 1; +} + +static int ensure_fixed_copy(BIGNUM **out, const BIGNUM *in, int width) { + if (*out != NULL) { + return 1; + } + BIGNUM *copy = BN_dup(in); + if (copy == NULL || + !bn_resize_words(copy, width)) { + BN_free(copy); + return 0; + } + *out = copy; + bn_secret(copy); + + return 1; +} + +// freeze_private_key finishes initializing |rsa|'s private key components. +// After this function has returned, |rsa| may not be changed. This is needed +// because |RSA| is a public struct and, additionally, OpenSSL 1.1.0 opaquified +// it wrong (see https://github.com/openssl/openssl/issues/5158). +static int freeze_private_key(RSA *rsa, BN_CTX *ctx) { + CRYPTO_MUTEX_lock_read(&rsa->lock); + int frozen = rsa->private_key_frozen; + CRYPTO_MUTEX_unlock_read(&rsa->lock); + if (frozen) { + return 1; + } + + int ret = 0; + CRYPTO_MUTEX_lock_write(&rsa->lock); + if (rsa->private_key_frozen) { + ret = 1; + goto err; + } + + // Check the public components are within DoS bounds. + if (!rsa_check_public_key(rsa)) { + goto err; + } + + // Pre-compute various intermediate values, as well as copies of private + // exponents with correct widths. Note that other threads may concurrently + // read from |rsa->n|, |rsa->e|, etc., so any fixes must be in separate + // copies. We use |mont_n->N|, |mont_p->N|, and |mont_q->N| as copies of |n|, + // |p|, and |q| with the correct minimal widths. + + if (rsa->mont_n == NULL) { + rsa->mont_n = BN_MONT_CTX_new_for_modulus(rsa->n, ctx); + if (rsa->mont_n == NULL) { + goto err; + } + } + const BIGNUM *n_fixed = &rsa->mont_n->N; + + // The only public upper-bound of |rsa->d| is the bit length of |rsa->n|. The + // ASN.1 serialization of RSA private keys unfortunately leaks the byte length + // of |rsa->d|, but normalize it so we only leak it once, rather than per + // operation. + if (rsa->d != NULL && + !ensure_fixed_copy(&rsa->d_fixed, rsa->d, n_fixed->width)) { + goto err; + } + + if (rsa->e != NULL && rsa->p != NULL && rsa->q != NULL) { + // TODO: p and q are also CONSTTIME_SECRET but not yet marked as such + // because the Montgomery code does things like test whether or not values + // are zero. So the secret marking probably needs to happen inside that + // code. + + if (rsa->mont_p == NULL) { + rsa->mont_p = BN_MONT_CTX_new_consttime(rsa->p, ctx); + if (rsa->mont_p == NULL) { + goto err; + } + } + const BIGNUM *p_fixed = &rsa->mont_p->N; + + if (rsa->mont_q == NULL) { + rsa->mont_q = BN_MONT_CTX_new_consttime(rsa->q, ctx); + if (rsa->mont_q == NULL) { + goto err; + } + } + const BIGNUM *q_fixed = &rsa->mont_q->N; + + if (rsa->dmp1 != NULL && rsa->dmq1 != NULL) { + // Key generation relies on this function to compute |iqmp|. + if (rsa->iqmp == NULL) { + BIGNUM *iqmp = BN_new(); + if (iqmp == NULL || + !bn_mod_inverse_secret_prime(iqmp, rsa->q, rsa->p, ctx, + rsa->mont_p)) { + BN_free(iqmp); + goto err; + } + rsa->iqmp = iqmp; + } + + // CRT components are only publicly bounded by their corresponding + // moduli's bit lengths. + if (!ensure_fixed_copy(&rsa->dmp1_fixed, rsa->dmp1, p_fixed->width) || + !ensure_fixed_copy(&rsa->dmq1_fixed, rsa->dmq1, q_fixed->width)) { + goto err; + } + + // Compute |iqmp_mont|, which is |iqmp| in Montgomery form and with the + // correct bit width. + if (rsa->iqmp_mont == NULL) { + BIGNUM *iqmp_mont = BN_new(); + if (iqmp_mont == NULL || + !BN_to_montgomery(iqmp_mont, rsa->iqmp, rsa->mont_p, ctx)) { + BN_free(iqmp_mont); + goto err; + } + rsa->iqmp_mont = iqmp_mont; + bn_secret(rsa->iqmp_mont); + } + } + } + + rsa->private_key_frozen = 1; + ret = 1; + +err: + CRYPTO_MUTEX_unlock_write(&rsa->lock); + return ret; +} + +void rsa_invalidate_key(RSA *rsa) { + rsa->private_key_frozen = 0; + + BN_MONT_CTX_free(rsa->mont_n); + rsa->mont_n = NULL; + BN_MONT_CTX_free(rsa->mont_p); + rsa->mont_p = NULL; + BN_MONT_CTX_free(rsa->mont_q); + rsa->mont_q = NULL; + + BN_free(rsa->d_fixed); + rsa->d_fixed = NULL; + BN_free(rsa->dmp1_fixed); + rsa->dmp1_fixed = NULL; + BN_free(rsa->dmq1_fixed); + rsa->dmq1_fixed = NULL; + BN_free(rsa->iqmp_mont); + rsa->iqmp_mont = NULL; + + for (size_t i = 0; i < rsa->num_blindings; i++) { + BN_BLINDING_free(rsa->blindings[i]); + } + OPENSSL_free(rsa->blindings); + rsa->blindings = NULL; + rsa->num_blindings = 0; + OPENSSL_free(rsa->blindings_inuse); + rsa->blindings_inuse = NULL; + rsa->blinding_fork_generation = 0; +} + +size_t rsa_default_size(const RSA *rsa) { + return BN_num_bytes(rsa->n); +} + +// MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per +// RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and +// destroyed as needed. +#if defined(OPENSSL_TSAN) +// Smaller under TSAN so that the edge case can be hit with fewer threads. +#define MAX_BLINDINGS_PER_RSA 2 +#else +#define MAX_BLINDINGS_PER_RSA 1024 +#endif + +// rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by +// allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If +// none are free, the cache will be extended by a extra element and the new +// BN_BLINDING is returned. +// +// On success, the index of the assigned BN_BLINDING is written to +// |*index_used| and must be passed to |rsa_blinding_release| when finished. +static BN_BLINDING *rsa_blinding_get(RSA *rsa, size_t *index_used, + BN_CTX *ctx) { + assert(ctx != NULL); + assert(rsa->mont_n != NULL); + + BN_BLINDING *ret = NULL; + const uint64_t fork_generation = CRYPTO_get_fork_generation(); + CRYPTO_MUTEX_lock_write(&rsa->lock); + + // Wipe the blinding cache on |fork|. + if (rsa->blinding_fork_generation != fork_generation) { + for (size_t i = 0; i < rsa->num_blindings; i++) { + // The inuse flag must be zero unless we were forked from a + // multi-threaded process, in which case calling back into BoringSSL is + // forbidden. + assert(rsa->blindings_inuse[i] == 0); + BN_BLINDING_invalidate(rsa->blindings[i]); + } + rsa->blinding_fork_generation = fork_generation; + } + + uint8_t *const free_inuse_flag = + OPENSSL_memchr(rsa->blindings_inuse, 0, rsa->num_blindings); + if (free_inuse_flag != NULL) { + *free_inuse_flag = 1; + *index_used = free_inuse_flag - rsa->blindings_inuse; + ret = rsa->blindings[*index_used]; + goto out; + } + + if (rsa->num_blindings >= MAX_BLINDINGS_PER_RSA) { + // No |BN_BLINDING| is free and nor can the cache be extended. This index + // value is magic and indicates to |rsa_blinding_release| that a + // |BN_BLINDING| was not inserted into the array. + *index_used = MAX_BLINDINGS_PER_RSA; + ret = BN_BLINDING_new(); + goto out; + } + + // Double the length of the cache. + static_assert(MAX_BLINDINGS_PER_RSA < UINT_MAX / 2, + "MAX_BLINDINGS_PER_RSA too large"); + size_t new_num_blindings = rsa->num_blindings * 2; + if (new_num_blindings == 0) { + new_num_blindings = 1; + } + if (new_num_blindings > MAX_BLINDINGS_PER_RSA) { + new_num_blindings = MAX_BLINDINGS_PER_RSA; + } + assert(new_num_blindings > rsa->num_blindings); + + BN_BLINDING **new_blindings = + OPENSSL_calloc(new_num_blindings, sizeof(BN_BLINDING *)); + uint8_t *new_blindings_inuse = OPENSSL_malloc(new_num_blindings); + if (new_blindings == NULL || new_blindings_inuse == NULL) { + goto err; + } + + OPENSSL_memcpy(new_blindings, rsa->blindings, + sizeof(BN_BLINDING *) * rsa->num_blindings); + OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings); + + for (size_t i = rsa->num_blindings; i < new_num_blindings; i++) { + new_blindings[i] = BN_BLINDING_new(); + if (new_blindings[i] == NULL) { + for (size_t j = rsa->num_blindings; j < i; j++) { + BN_BLINDING_free(new_blindings[j]); + } + goto err; + } + } + memset(&new_blindings_inuse[rsa->num_blindings], 0, + new_num_blindings - rsa->num_blindings); + + new_blindings_inuse[rsa->num_blindings] = 1; + *index_used = rsa->num_blindings; + assert(*index_used != MAX_BLINDINGS_PER_RSA); + ret = new_blindings[rsa->num_blindings]; + + OPENSSL_free(rsa->blindings); + rsa->blindings = new_blindings; + OPENSSL_free(rsa->blindings_inuse); + rsa->blindings_inuse = new_blindings_inuse; + rsa->num_blindings = new_num_blindings; + + goto out; + +err: + OPENSSL_free(new_blindings_inuse); + OPENSSL_free(new_blindings); + +out: + CRYPTO_MUTEX_unlock_write(&rsa->lock); + return ret; +} + +// rsa_blinding_release marks the cached BN_BLINDING at the given index as free +// for other threads to use. +static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding, + size_t blinding_index) { + if (blinding_index == MAX_BLINDINGS_PER_RSA) { + // This blinding wasn't cached. + BN_BLINDING_free(blinding); + return; + } + + CRYPTO_MUTEX_lock_write(&rsa->lock); + rsa->blindings_inuse[blinding_index] = 0; + CRYPTO_MUTEX_unlock_write(&rsa->lock); +} + +// signing +int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, + size_t max_out, const uint8_t *in, size_t in_len, + int padding) { + const unsigned rsa_size = RSA_size(rsa); + uint8_t *buf = NULL; + int i, ret = 0; + + if (max_out < rsa_size) { + OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); + return 0; + } + + buf = OPENSSL_malloc(rsa_size); + if (buf == NULL) { + goto err; + } + + switch (padding) { + case RSA_PKCS1_PADDING: + i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len); + break; + case RSA_NO_PADDING: + i = RSA_padding_add_none(buf, rsa_size, in, in_len); + break; + default: + OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); + goto err; + } + + if (i <= 0) { + goto err; + } + + if (!rsa_private_transform_no_self_test(rsa, out, buf, rsa_size)) { + goto err; + } + + CONSTTIME_DECLASSIFY(out, rsa_size); + *out_len = rsa_size; + ret = 1; + +err: + OPENSSL_free(buf); + + return ret; +} + + +static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx); + +int rsa_verify_raw_no_self_test(RSA *rsa, size_t *out_len, uint8_t *out, + size_t max_out, const uint8_t *in, + size_t in_len, int padding) { + if (rsa->n == NULL || rsa->e == NULL) { + OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); + return 0; + } + + if (!rsa_check_public_key(rsa)) { + return 0; + } + + const unsigned rsa_size = RSA_size(rsa); + BIGNUM *f, *result; + + if (max_out < rsa_size) { + OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); + return 0; + } + + if (in_len != rsa_size) { + OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); + return 0; + } + + BN_CTX *ctx = BN_CTX_new(); + if (ctx == NULL) { + return 0; + } + + int ret = 0; + uint8_t *buf = NULL; + + BN_CTX_start(ctx); + f = BN_CTX_get(ctx); + result = BN_CTX_get(ctx); + if (f == NULL || result == NULL) { + goto err; + } + + if (padding == RSA_NO_PADDING) { + buf = out; + } else { + // Allocate a temporary buffer to hold the padded plaintext. + buf = OPENSSL_malloc(rsa_size); + if (buf == NULL) { + goto err; + } + } + + if (BN_bin2bn(in, in_len, f) == NULL) { + goto err; + } + + if (BN_ucmp(f, rsa->n) >= 0) { + OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); + goto err; + } + + if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) || + !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) { + goto err; + } + + if (!BN_bn2bin_padded(buf, rsa_size, result)) { + OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); + goto err; + } + + switch (padding) { + case RSA_PKCS1_PADDING: + ret = + RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size); + break; + case RSA_NO_PADDING: + ret = 1; + *out_len = rsa_size; + break; + default: + OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); + goto err; + } + + if (!ret) { + OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); + goto err; + } + +err: + BN_CTX_end(ctx); + BN_CTX_free(ctx); + if (buf != out) { + OPENSSL_free(buf); + } + return ret; +} + +int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, + size_t max_out, const uint8_t *in, + size_t in_len, int padding) { + boringssl_ensure_rsa_self_test(); + return rsa_verify_raw_no_self_test(rsa, out_len, out, max_out, in, in_len, + padding); +} + +int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, + size_t len) { + if (rsa->n == NULL || rsa->d == NULL) { + OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); + return 0; + } + + BIGNUM *f, *result; + BN_CTX *ctx = NULL; + size_t blinding_index = 0; + BN_BLINDING *blinding = NULL; + int ret = 0; + + ctx = BN_CTX_new(); + if (ctx == NULL) { + goto err; + } + BN_CTX_start(ctx); + f = BN_CTX_get(ctx); + result = BN_CTX_get(ctx); + + if (f == NULL || result == NULL) { + goto err; + } + + // The caller should have ensured this. + assert(len == BN_num_bytes(rsa->n)); + if (BN_bin2bn(in, len, f) == NULL) { + goto err; + } + + // The input to the RSA private transform may be secret, but padding is + // expected to construct a value within range, so we can leak this comparison. + if (constant_time_declassify_int(BN_ucmp(f, rsa->n) >= 0)) { + // Usually the padding functions would catch this. + OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); + goto err; + } + + if (!freeze_private_key(rsa, ctx)) { + OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); + goto err; + } + + const int do_blinding = + (rsa->flags & (RSA_FLAG_NO_BLINDING | RSA_FLAG_NO_PUBLIC_EXPONENT)) == 0; + + if (rsa->e == NULL && do_blinding) { + // We cannot do blinding or verification without |e|, and continuing without + // those countermeasures is dangerous. However, the Java/Android RSA API + // requires support for keys where only |d| and |n| (and not |e|) are known. + // The callers that require that bad behavior must set + // |RSA_FLAG_NO_BLINDING| or use |RSA_new_private_key_no_e|. + // + // TODO(davidben): Update this comment when Conscrypt is updated to use + // |RSA_new_private_key_no_e|. + OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT); + goto err; + } + + if (do_blinding) { + blinding = rsa_blinding_get(rsa, &blinding_index, ctx); + if (blinding == NULL) { + OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); + goto err; + } + if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) { + goto err; + } + } + + if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL && + rsa->dmq1 != NULL && rsa->iqmp != NULL && + // Require that we can reduce |f| by |rsa->p| and |rsa->q| in constant + // time, which requires primes be the same size, rounded to the Montgomery + // coefficient. (See |mod_montgomery|.) This is not required by RFC 8017, + // but it is true for keys generated by us and all common implementations. + bn_less_than_montgomery_R(rsa->q, rsa->mont_p) && + bn_less_than_montgomery_R(rsa->p, rsa->mont_q)) { + if (!mod_exp(result, f, rsa, ctx)) { + goto err; + } + } else if (!BN_mod_exp_mont_consttime(result, f, rsa->d_fixed, rsa->n, ctx, + rsa->mont_n)) { + goto err; + } + + // Verify the result to protect against fault attacks as described in the + // 1997 paper "On the Importance of Checking Cryptographic Protocols for + // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some + // implementations do this only when the CRT is used, but we do it in all + // cases. Section 6 of the aforementioned paper describes an attack that + // works when the CRT isn't used. That attack is much less likely to succeed + // than the CRT attack, but there have likely been improvements since 1997. + // + // This check is cheap assuming |e| is small, which we require in + // |rsa_check_public_key|. + if (rsa->e != NULL) { + BIGNUM *vrfy = BN_CTX_get(ctx); + if (vrfy == NULL || + !BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) || + !constant_time_declassify_int(BN_equal_consttime(vrfy, f))) { + OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); + goto err; + } + } + + if (do_blinding && + !BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) { + goto err; + } + + // The computation should have left |result| as a maximally-wide number, so + // that it and serializing does not leak information about the magnitude of + // the result. + // + // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010. + assert(result->width == rsa->mont_n->N.width); + bn_assert_fits_in_bytes(result, len); + if (!BN_bn2bin_padded(out, len, result)) { + OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); + goto err; + } + + ret = 1; + +err: + if (ctx != NULL) { + BN_CTX_end(ctx); + BN_CTX_free(ctx); + } + if (blinding != NULL) { + rsa_blinding_release(rsa, blinding, blinding_index); + } + + return ret; +} + +// mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced +// modulo |p| times |q|. It returns one on success and zero on error. +static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p, + const BN_MONT_CTX *mont_p, const BIGNUM *q, + BN_CTX *ctx) { + // Reducing in constant-time with Montgomery reduction requires I <= p * R. We + // have I < p * q, so this follows if q < R. The caller should have checked + // this already. + if (!bn_less_than_montgomery_R(q, mont_p)) { + OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); + return 0; + } + + if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p. + !BN_from_montgomery(r, I, mont_p, ctx) || + // Multiply by R^2 and do another Montgomery reduction to compute + // I * R^-1 * R^2 * R^-1 = I mod p. + !BN_to_montgomery(r, r, mont_p, ctx)) { + return 0; + } + + // By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and + // adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute + // I * R mod p here and save a reduction per prime. But this would require + // changing the RSAZ code and may not be worth it. Note that the RSAZ code + // uses a different radix, so it uses R' = 2^1044. There we'd actually want + // R^2 * R', and would futher benefit from a precomputed R'^2. It currently + // converts |mont_p->RR| to R'^2. + return 1; +} + +static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) { + assert(ctx != NULL); + + assert(rsa->n != NULL); + assert(rsa->e != NULL); + assert(rsa->d != NULL); + assert(rsa->p != NULL); + assert(rsa->q != NULL); + assert(rsa->dmp1 != NULL); + assert(rsa->dmq1 != NULL); + assert(rsa->iqmp != NULL); + + BIGNUM *r1, *m1; + int ret = 0; + + BN_CTX_start(ctx); + r1 = BN_CTX_get(ctx); + m1 = BN_CTX_get(ctx); + if (r1 == NULL || + m1 == NULL) { + goto err; + } + + if (!freeze_private_key(rsa, ctx)) { + goto err; + } + + // Use the minimal-width versions of |n|, |p|, and |q|. Either works, but if + // someone gives us non-minimal values, these will be slightly more efficient + // on the non-Montgomery operations. + const BIGNUM *n = &rsa->mont_n->N; + const BIGNUM *p = &rsa->mont_p->N; + const BIGNUM *q = &rsa->mont_q->N; + + // This is a pre-condition for |mod_montgomery|. It was already checked by the + // caller. + declassify_assert(BN_ucmp(I, n) < 0); + + if (// |m1| is the result modulo |q|. + !mod_montgomery(r1, I, q, rsa->mont_q, p, ctx) || + !BN_mod_exp_mont_consttime(m1, r1, rsa->dmq1_fixed, q, ctx, + rsa->mont_q) || + // |r0| is the result modulo |p|. + !mod_montgomery(r1, I, p, rsa->mont_p, q, ctx) || + !BN_mod_exp_mont_consttime(r0, r1, rsa->dmp1_fixed, p, ctx, + rsa->mont_p) || + // Compute r0 = r0 - m1 mod p. |m1| is reduced mod |q|, not |p|, so we + // just run |mod_montgomery| again for simplicity. This could be more + // efficient with more cases: if |p > q|, |m1| is already reduced. If + // |p < q| but they have the same bit width, |bn_reduce_once| suffices. + // However, compared to over 2048 Montgomery multiplications above, this + // difference is not measurable. + !mod_montgomery(r1, m1, p, rsa->mont_p, q, ctx) || + !bn_mod_sub_consttime(r0, r0, r1, p, ctx) || + // r0 = r0 * iqmp mod p. We use Montgomery multiplication to compute this + // in constant time. |iqmp_mont| is in Montgomery form and r0 is not, so + // the result is taken out of Montgomery form. + !BN_mod_mul_montgomery(r0, r0, rsa->iqmp_mont, rsa->mont_p, ctx) || + // r0 = r0 * q + m1 gives the final result. Reducing modulo q gives m1, so + // it is correct mod p. Reducing modulo p gives (r0-m1)*iqmp*q + m1 = r0, + // so it is correct mod q. Finally, the result is bounded by [m1, n + m1), + // and the result is at least |m1|, so this must be the unique answer in + // [0, n). + !bn_mul_consttime(r0, r0, q, ctx) || // + !bn_uadd_consttime(r0, r0, m1)) { + goto err; + } + + // The result should be bounded by |n|, but fixed-width operations may + // bound the width slightly higher, so fix it. This trips constant-time checks + // because a naive data flow analysis does not realize the excess words are + // publicly zero. + declassify_assert(BN_cmp(r0, n) < 0); + bn_assert_fits_in_bytes(r0, BN_num_bytes(n)); + if (!bn_resize_words(r0, n->width)) { + goto err; + } + + ret = 1; + +err: + BN_CTX_end(ctx); + return ret; +} + +static int ensure_bignum(BIGNUM **out) { + if (*out == NULL) { + *out = BN_new(); + } + return *out != NULL; +} + +// kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2²⁰⁴⁷×√2⌋. This is +// chosen to give enough precision for 4096-bit RSA, the largest key size FIPS +// specifies. Key sizes beyond this will round up. +// +// To calculate, use the following Haskell code: +// +// import Text.Printf (printf) +// import Data.List (intercalate) +// +// pow2 = 4095 +// target = 2^pow2 +// +// f x = x*x - (toRational target) +// +// fprime x = 2*x +// +// newtonIteration x = x - (f x) / (fprime x) +// +// converge x = +// let n = floor x in +// if n*n - target < 0 && (n+1)*(n+1) - target > 0 +// then n +// else converge (newtonIteration x) +// +// divrem bits x = (x `div` (2^bits), x `rem` (2^bits)) +// +// bnWords :: Integer -> [Integer] +// bnWords x = +// if x == 0 +// then [] +// else let (high, low) = divrem 64 x in low : bnWords high +// +// showWord x = let (high, low) = divrem 32 x in printf "TOBN(0x%08x, 0x%08x)" high low +// +// output :: String +// output = intercalate ", " $ map showWord $ bnWords $ converge (2 ^ (pow2 `div` 2)) +// +// To verify this number, check that n² < 2⁴⁰⁹⁵ < (n+1)², where n is value +// represented here. Note the components are listed in little-endian order. Here +// is some sample Python code to check: +// +// >>> TOBN = lambda a, b: a << 32 | b +// >>> l = [ <paste the contents of kSqrtTwo> ] +// >>> n = sum(a * 2**(64*i) for i, a in enumerate(l)) +// >>> n**2 < 2**4095 < (n+1)**2 +// True +const BN_ULONG kBoringSSLRSASqrtTwo[] = { + TOBN(0x4d7c60a5, 0xe633e3e1), TOBN(0x5fcf8f7b, 0xca3ea33b), + TOBN(0xc246785e, 0x92957023), TOBN(0xf9acce41, 0x797f2805), + TOBN(0xfdfe170f, 0xd3b1f780), TOBN(0xd24f4a76, 0x3facb882), + TOBN(0x18838a2e, 0xaff5f3b2), TOBN(0xc1fcbdde, 0xa2f7dc33), + TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307), + TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f), + TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651), + TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd), + TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e), + TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc), + TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a), + TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e), + TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a), + TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3), + TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c), + TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484), +}; +const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo); + +// generate_prime sets |out| to a prime with length |bits| such that |out|-1 is +// relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to +// |p|. |sqrt2| must be ⌊2^(bits-1)×√2⌋ (or a slightly overestimate for large +// sizes), and |pow2_bits_100| must be 2^(bits-100). +// +// This function fails with probability around 2^-21. +static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e, + const BIGNUM *p, const BIGNUM *sqrt2, + const BIGNUM *pow2_bits_100, BN_CTX *ctx, + BN_GENCB *cb) { + if (bits < 128 || (bits % BN_BITS2) != 0) { + OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); + return 0; + } + assert(BN_is_pow2(pow2_bits_100)); + assert(BN_is_bit_set(pow2_bits_100, bits - 100)); + + // See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2. + + // Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3, + // the 186-4 limit is too low, so we use a higher one. Note this case is not + // reachable from |RSA_generate_key_fips|. + // + // |limit| determines the failure probability. We must find a prime that is + // not 1 mod |e|. By the prime number theorem, we'll find one with probability + // p = (e-1)/e * 2/(ln(2)*bits). Note the second term is doubled because we + // discard even numbers. + // + // The failure probability is thus (1-p)^limit. To convert that to a power of + // two, we take logs. -log_2((1-p)^limit) = -limit * ln(1-p) / ln(2). + // + // >>> def f(bits, e, limit): + // ... p = (e-1.0)/e * 2.0/(math.log(2)*bits) + // ... return -limit * math.log(1 - p) / math.log(2) + // ... + // >>> f(1024, 65537, 5*1024) + // 20.842750558272634 + // >>> f(1536, 65537, 5*1536) + // 20.83294549602474 + // >>> f(2048, 65537, 5*2048) + // 20.828047576234948 + // >>> f(1024, 3, 8*1024) + // 22.222147925962307 + // >>> f(1536, 3, 8*1536) + // 22.21518251065506 + // >>> f(2048, 3, 8*2048) + // 22.211701985875937 + if (bits >= INT_MAX/32) { + OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); + return 0; + } + int limit = BN_is_word(e, 3) ? bits * 8 : bits * 5; + + int ret = 0, tries = 0, rand_tries = 0; + BN_CTX_start(ctx); + BIGNUM *tmp = BN_CTX_get(ctx); + if (tmp == NULL) { + goto err; + } + + for (;;) { + // Generate a random number of length |bits| where the bottom bit is set + // (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the + // bound checked below in steps 4.4 and 5.5). + if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) || + !BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) { + goto err; + } + + if (p != NULL) { + // If |p| and |out| are too close, try again (step 5.4). + if (!bn_abs_sub_consttime(tmp, out, p, ctx)) { + goto err; + } + if (BN_cmp(tmp, pow2_bits_100) <= 0) { + continue; + } + } + + // If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5). This is equivalent + // to out <= ⌊2^(bits-1)×√2⌋, or out <= sqrt2 for FIPS key sizes. + // + // For larger keys, the comparison is approximate, leaning towards + // retrying. That is, we reject a negligible fraction of primes that are + // within the FIPS bound, but we will never accept a prime outside the + // bound, ensuring the resulting RSA key is the right size. + // + // Values over the threshold are discarded, so it is safe to leak this + // comparison. + if (constant_time_declassify_int(BN_cmp(out, sqrt2) <= 0)) { + continue; + } + + // RSA key generation's bottleneck is discarding composites. If it fails + // trial division, do not bother computing a GCD or performing Miller-Rabin. + if (!bn_odd_number_is_obviously_composite(out)) { + // Check gcd(out-1, e) is one (steps 4.5 and 5.6). Leaking the final + // result of this comparison is safe because, if not relatively prime, the + // value will be discarded. + int relatively_prime; + if (!bn_usub_consttime(tmp, out, BN_value_one()) || + !bn_is_relatively_prime(&relatively_prime, tmp, e, ctx)) { + goto err; + } + if (constant_time_declassify_int(relatively_prime)) { + // Test |out| for primality (steps 4.5.1 and 5.6.1). + int is_probable_prime; + if (!BN_primality_test(&is_probable_prime, out, + BN_prime_checks_for_generation, ctx, 0, cb)) { + goto err; + } + if (is_probable_prime) { + ret = 1; + goto err; + } + } + } + + // If we've tried too many times to find a prime, abort (steps 4.7 and + // 5.8). + tries++; + if (tries >= limit) { + OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS); + goto err; + } + if (!BN_GENCB_call(cb, 2, tries)) { + goto err; + } + } + +err: + BN_CTX_end(ctx); + return ret; +} + +// rsa_generate_key_impl generates an RSA key using a generalized version of +// FIPS 186-4 appendix B.3. |RSA_generate_key_fips| performs additional checks +// for FIPS-compliant key generation. +// +// This function returns one on success and zero on failure. It has a failure +// probability of about 2^-20. +static int rsa_generate_key_impl(RSA *rsa, int bits, const BIGNUM *e_value, + BN_GENCB *cb) { + // See FIPS 186-4 appendix B.3. This function implements a generalized version + // of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks + // for FIPS-compliant key generation. + + // Always generate RSA keys which are a multiple of 128 bits. Round |bits| + // down as needed. + bits &= ~127; + + // Reject excessively small keys. + if (bits < 256) { + OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); + return 0; + } + + // Reject excessively large public exponents. Windows CryptoAPI and Go don't + // support values larger than 32 bits, so match their limits for generating + // keys. (|rsa_check_public_key| uses a slightly more conservative value, but + // we don't need to support generating such keys.) + // https://github.com/golang/go/issues/3161 + // https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx + if (BN_num_bits(e_value) > 32) { + OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); + return 0; + } + + int ret = 0; + int prime_bits = bits / 2; + BN_CTX *ctx = BN_CTX_new(); + if (ctx == NULL) { + goto bn_err; + } + BN_CTX_start(ctx); + BIGNUM *totient = BN_CTX_get(ctx); + BIGNUM *pm1 = BN_CTX_get(ctx); + BIGNUM *qm1 = BN_CTX_get(ctx); + BIGNUM *sqrt2 = BN_CTX_get(ctx); + BIGNUM *pow2_prime_bits_100 = BN_CTX_get(ctx); + BIGNUM *pow2_prime_bits = BN_CTX_get(ctx); + if (totient == NULL || pm1 == NULL || qm1 == NULL || sqrt2 == NULL || + pow2_prime_bits_100 == NULL || pow2_prime_bits == NULL || + !BN_set_bit(pow2_prime_bits_100, prime_bits - 100) || + !BN_set_bit(pow2_prime_bits, prime_bits)) { + goto bn_err; + } + + // We need the RSA components non-NULL. + if (!ensure_bignum(&rsa->n) || + !ensure_bignum(&rsa->d) || + !ensure_bignum(&rsa->e) || + !ensure_bignum(&rsa->p) || + !ensure_bignum(&rsa->q) || + !ensure_bignum(&rsa->dmp1) || + !ensure_bignum(&rsa->dmq1)) { + goto bn_err; + } + + if (!BN_copy(rsa->e, e_value)) { + goto bn_err; + } + + // Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋. + if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) { + goto bn_err; + } + int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2; + assert(sqrt2_bits == (int)BN_num_bits(sqrt2)); + if (sqrt2_bits > prime_bits) { + // For key sizes up to 4096 (prime_bits = 2048), this is exactly + // ⌊2^(prime_bits-1)×√2⌋. + if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) { + goto bn_err; + } + } else if (prime_bits > sqrt2_bits) { + // For key sizes beyond 4096, this is approximate. We err towards retrying + // to ensure our key is the right size and round up. + if (!BN_add_word(sqrt2, 1) || + !BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) { + goto bn_err; + } + } + assert(prime_bits == (int)BN_num_bits(sqrt2)); + + do { + // Generate p and q, each of size |prime_bits|, using the steps outlined in + // appendix FIPS 186-4 appendix B.3.3. + // + // Each call to |generate_prime| fails with probability p = 2^-21. The + // probability that either call fails is 1 - (1-p)^2, which is around 2^-20. + if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2, + pow2_prime_bits_100, ctx, cb) || + !BN_GENCB_call(cb, 3, 0) || + !generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2, + pow2_prime_bits_100, ctx, cb) || + !BN_GENCB_call(cb, 3, 1)) { + goto bn_err; + } + + if (BN_cmp(rsa->p, rsa->q) < 0) { + BIGNUM *tmp = rsa->p; + rsa->p = rsa->q; + rsa->q = tmp; + } + + // Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs + // from typical RSA implementations which use (p-1)*(q-1). + // + // Note this means the size of d might reveal information about p-1 and + // q-1. However, we do operations with Chinese Remainder Theorem, so we only + // use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient + // does not affect those two values. + int no_inverse; + if (!bn_usub_consttime(pm1, rsa->p, BN_value_one()) || + !bn_usub_consttime(qm1, rsa->q, BN_value_one()) || + !bn_lcm_consttime(totient, pm1, qm1, ctx) || + !bn_mod_inverse_consttime(rsa->d, &no_inverse, rsa->e, totient, ctx)) { + goto bn_err; + } + + // Retry if |rsa->d| <= 2^|prime_bits|. See appendix B.3.1's guidance on + // values for d. When we retry, p and q are discarded, so it is safe to leak + // this comparison. + } while (constant_time_declassify_int(BN_cmp(rsa->d, pow2_prime_bits) <= 0)); + + assert(BN_num_bits(pm1) == (unsigned)prime_bits); + assert(BN_num_bits(qm1) == (unsigned)prime_bits); + if (// Calculate n. + !bn_mul_consttime(rsa->n, rsa->p, rsa->q, ctx) || + // Calculate d mod (p-1). + !bn_div_consttime(NULL, rsa->dmp1, rsa->d, pm1, prime_bits, ctx) || + // Calculate d mod (q-1) + !bn_div_consttime(NULL, rsa->dmq1, rsa->d, qm1, prime_bits, ctx)) { + goto bn_err; + } + bn_set_minimal_width(rsa->n); + + // |rsa->n| is computed from the private key, but is public. + bn_declassify(rsa->n); + + // Sanity-check that |rsa->n| has the specified size. This is implied by + // |generate_prime|'s bounds. + if (BN_num_bits(rsa->n) != (unsigned)bits) { + OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); + goto err; + } + + // Call |freeze_private_key| to compute the inverse of q mod p, by way of + // |rsa->mont_p|. + if (!freeze_private_key(rsa, ctx)) { + goto bn_err; + } + + // The key generation process is complex and thus error-prone. It could be + // disastrous to generate and then use a bad key so double-check that the key + // makes sense. + if (!RSA_check_key(rsa)) { + OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR); + goto err; + } + + ret = 1; + +bn_err: + if (!ret) { + OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); + } +err: + if (ctx != NULL) { + BN_CTX_end(ctx); + BN_CTX_free(ctx); + } + return ret; +} + +static void replace_bignum(BIGNUM **out, BIGNUM **in) { + BN_free(*out); + *out = *in; + *in = NULL; +} + +static void replace_bn_mont_ctx(BN_MONT_CTX **out, BN_MONT_CTX **in) { + BN_MONT_CTX_free(*out); + *out = *in; + *in = NULL; +} + +static int RSA_generate_key_ex_maybe_fips(RSA *rsa, int bits, + const BIGNUM *e_value, BN_GENCB *cb, + int check_fips) { + boringssl_ensure_rsa_self_test(); + + if (rsa == NULL) { + OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); + return 0; + } + + RSA *tmp = NULL; + uint32_t err; + int ret = 0; + + // |rsa_generate_key_impl|'s 2^-20 failure probability is too high at scale, + // so we run the FIPS algorithm four times, bringing it down to 2^-80. We + // should just adjust the retry limit, but FIPS 186-4 prescribes that value + // and thus results in unnecessary complexity. + int failures = 0; + do { + ERR_clear_error(); + // Generate into scratch space, to avoid leaving partial work on failure. + tmp = RSA_new(); + if (tmp == NULL) { + goto out; + } + + if (rsa_generate_key_impl(tmp, bits, e_value, cb)) { + break; + } + + err = ERR_peek_error(); + RSA_free(tmp); + tmp = NULL; + failures++; + + // Only retry on |RSA_R_TOO_MANY_ITERATIONS|. This is so a caller-induced + // failure in |BN_GENCB_call| is still fatal. + } while (failures < 4 && ERR_GET_LIB(err) == ERR_LIB_RSA && + ERR_GET_REASON(err) == RSA_R_TOO_MANY_ITERATIONS); + + if (tmp == NULL || (check_fips && !RSA_check_fips(tmp))) { + goto out; + } + + rsa_invalidate_key(rsa); + replace_bignum(&rsa->n, &tmp->n); + replace_bignum(&rsa->e, &tmp->e); + replace_bignum(&rsa->d, &tmp->d); + replace_bignum(&rsa->p, &tmp->p); + replace_bignum(&rsa->q, &tmp->q); + replace_bignum(&rsa->dmp1, &tmp->dmp1); + replace_bignum(&rsa->dmq1, &tmp->dmq1); + replace_bignum(&rsa->iqmp, &tmp->iqmp); + replace_bn_mont_ctx(&rsa->mont_n, &tmp->mont_n); + replace_bn_mont_ctx(&rsa->mont_p, &tmp->mont_p); + replace_bn_mont_ctx(&rsa->mont_q, &tmp->mont_q); + replace_bignum(&rsa->d_fixed, &tmp->d_fixed); + replace_bignum(&rsa->dmp1_fixed, &tmp->dmp1_fixed); + replace_bignum(&rsa->dmq1_fixed, &tmp->dmq1_fixed); + replace_bignum(&rsa->iqmp_mont, &tmp->iqmp_mont); + rsa->private_key_frozen = tmp->private_key_frozen; + ret = 1; + +out: + RSA_free(tmp); + return ret; +} + +int RSA_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e_value, + BN_GENCB *cb) { + return RSA_generate_key_ex_maybe_fips(rsa, bits, e_value, cb, + /*check_fips=*/0); +} + +int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) { + // FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit + // primes, respectively) with the prime generation method we use. + // Subsequently, IG A.14 stated that larger modulus sizes can be used and ACVP + // testing supports 4096 bits. + if (bits != 2048 && bits != 3072 && bits != 4096) { + OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); + return 0; + } + + BIGNUM *e = BN_new(); + int ret = e != NULL && + BN_set_word(e, RSA_F4) && + RSA_generate_key_ex_maybe_fips(rsa, bits, e, cb, /*check_fips=*/1); + BN_free(e); + + if (ret) { + FIPS_service_indicator_update_state(); + } + return ret; +} + +DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) { + // All of the methods are NULL to make it easier for the compiler/linker to + // drop unused functions. The wrapper functions will select the appropriate + // |rsa_default_*| implementation. + OPENSSL_memset(out, 0, sizeof(RSA_METHOD)); + out->common.is_static = 1; +} |