aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/fast_float
diff options
context:
space:
mode:
authorrobot-contrib <robot-contrib@yandex-team.com>2022-12-10 21:46:46 +0300
committerrobot-contrib <robot-contrib@yandex-team.com>2022-12-10 21:46:46 +0300
commit7820b7b16b16b28cbdfcf31c646531094359fd19 (patch)
tree2e73fe3618b28e927100abab45ac1203eae16edc /contrib/restricted/fast_float
parent8e003675e20f29143ae6088e4beebfa7256c825c (diff)
downloadydb-7820b7b16b16b28cbdfcf31c646531094359fd19.tar.gz
Update contrib/restricted/fast_float to 3.8.1
Diffstat (limited to 'contrib/restricted/fast_float')
-rw-r--r--contrib/restricted/fast_float/README.md6
-rw-r--r--contrib/restricted/fast_float/include/fast_float/ascii_number.h4
-rw-r--r--contrib/restricted/fast_float/include/fast_float/bigint.h2
-rw-r--r--contrib/restricted/fast_float/include/fast_float/fast_float.h2
-rw-r--r--contrib/restricted/fast_float/include/fast_float/float_common.h104
-rw-r--r--contrib/restricted/fast_float/include/fast_float/parse_number.h88
6 files changed, 167 insertions, 39 deletions
diff --git a/contrib/restricted/fast_float/README.md b/contrib/restricted/fast_float/README.md
index 92eb3a4d2b..d6ae279527 100644
--- a/contrib/restricted/fast_float/README.md
+++ b/contrib/restricted/fast_float/README.md
@@ -70,7 +70,7 @@ Furthermore, we have the following restrictions:
We support Visual Studio, macOS, Linux, freeBSD. We support big and little endian. We support 32-bit and 64-bit systems.
-
+We assume that the rounding mode is set to nearest (`std::fegetround() == FE_TONEAREST`).
## Using commas as decimal separator
@@ -126,13 +126,13 @@ You can parse delimited numbers:
## Reference
-- Daniel Lemire, [Number Parsing at a Gigabyte per Second](https://arxiv.org/abs/2101.11408), Software: Pratice and Experience 51 (8), 2021.
+- Daniel Lemire, [Number Parsing at a Gigabyte per Second](https://arxiv.org/abs/2101.11408), Software: Practice and Experience 51 (8), 2021.
## Other programming languages
- [There is an R binding](https://github.com/eddelbuettel/rcppfastfloat) called `rcppfastfloat`.
- [There is a Rust port of the fast_float library](https://github.com/aldanor/fast-float-rust/) called `fast-float-rust`.
-- [There is a Java port of the fast_float library](https://github.com/wrandelshofer/FastDoubleParser) called `FastDoubleParser`.
+- [There is a Java port of the fast_float library](https://github.com/wrandelshofer/FastDoubleParser) called `FastDoubleParser`. It used for important systems such as [Jackson](https://github.com/FasterXML/jackson-core).
- [There is a C# port of the fast_float library](https://github.com/CarlVerret/csFastFloat) called `csFastFloat`.
diff --git a/contrib/restricted/fast_float/include/fast_float/ascii_number.h b/contrib/restricted/fast_float/include/fast_float/ascii_number.h
index 3e6bb3e9ef..1783bd4ab1 100644
--- a/contrib/restricted/fast_float/include/fast_float/ascii_number.h
+++ b/contrib/restricted/fast_float/include/fast_float/ascii_number.h
@@ -106,10 +106,6 @@ parsed_number_string parse_number_string(const char *p, const char *pend, parse_
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
- while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
- i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
- p += 8;
- }
while ((p != pend) && is_integer(*p)) {
// a multiplication by 10 is cheaper than an arbitrary integer
// multiplication
diff --git a/contrib/restricted/fast_float/include/fast_float/bigint.h b/contrib/restricted/fast_float/include/fast_float/bigint.h
index b56cb9b03b..220e0572a3 100644
--- a/contrib/restricted/fast_float/include/fast_float/bigint.h
+++ b/contrib/restricted/fast_float/include/fast_float/bigint.h
@@ -17,7 +17,7 @@ namespace fast_float {
// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
// doing `8 * sizeof(limb)`.
#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
-#define FASTFLOAT_64BIT_LIMB
+#define FASTFLOAT_64BIT_LIMB 1
typedef uint64_t limb;
constexpr size_t limb_bits = 64;
#else
diff --git a/contrib/restricted/fast_float/include/fast_float/fast_float.h b/contrib/restricted/fast_float/include/fast_float/fast_float.h
index 3c483803af..ad3093ef88 100644
--- a/contrib/restricted/fast_float/include/fast_float/fast_float.h
+++ b/contrib/restricted/fast_float/include/fast_float/fast_float.h
@@ -44,7 +44,7 @@ struct parse_options {
* Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of
* the type `fast_float::chars_format`. It is a bitset value: we check whether
* `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set
- * to determine whether we allowe the fixed point and scientific notation respectively.
+ * to determine whether we allow the fixed point and scientific notation respectively.
* The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`.
*/
template<typename T>
diff --git a/contrib/restricted/fast_float/include/fast_float/float_common.h b/contrib/restricted/fast_float/include/fast_float/float_common.h
index 55a2e4c32b..c2084e0ed9 100644
--- a/contrib/restricted/fast_float/include/fast_float/float_common.h
+++ b/contrib/restricted/fast_float/include/fast_float/float_common.h
@@ -12,11 +12,11 @@
|| defined(__MINGW64__) \
|| defined(__s390x__) \
|| (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || defined(__PPC64LE__)) )
-#define FASTFLOAT_64BIT
+#define FASTFLOAT_64BIT 1
#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) \
|| defined(__arm__) || defined(_M_ARM) \
|| defined(__MINGW32__) || defined(__EMSCRIPTEN__))
-#define FASTFLOAT_32BIT
+#define FASTFLOAT_32BIT 1
#else
// Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
// We can never tell the register width, but the SIZE_MAX is a good approximation.
@@ -24,9 +24,9 @@
#if SIZE_MAX == 0xffff
#error Unknown platform (16-bit, unsupported)
#elif SIZE_MAX == 0xffffffff
- #define FASTFLOAT_32BIT
+ #define FASTFLOAT_32BIT 1
#elif SIZE_MAX == 0xffffffffffffffff
- #define FASTFLOAT_64BIT
+ #define FASTFLOAT_64BIT 1
#else
#error Unknown platform (not 32-bit, not 64-bit?)
#endif
@@ -183,8 +183,9 @@ fastfloat_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd,
fastfloat_really_inline value128 full_multiplication(uint64_t a,
uint64_t b) {
value128 answer;
-#ifdef _M_ARM64
+#if defined(_M_ARM64) && !defined(__MINGW32__)
// ARM64 has native support for 64-bit multiplications, no need to emulate
+ // But MinGW on ARM64 doesn't have native support for 64-bit multiplications
answer.high = __umulh(a, b);
answer.low = a * b;
#elif defined(FASTFLOAT_32BIT) || (defined(_WIN64) && !defined(__clang__))
@@ -219,6 +220,50 @@ constexpr static double powers_of_ten_double[] = {
1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
constexpr static float powers_of_ten_float[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5,
1e6, 1e7, 1e8, 1e9, 1e10};
+// used for max_mantissa_double and max_mantissa_float
+constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5;
+// Largest integer value v so that (5**index * v) <= 1<<53.
+// 0x10000000000000 == 1 << 53
+constexpr static uint64_t max_mantissa_double[] = {
+ 0x10000000000000,
+ 0x10000000000000 / 5,
+ 0x10000000000000 / (5 * 5),
+ 0x10000000000000 / (5 * 5 * 5),
+ 0x10000000000000 / (5 * 5 * 5 * 5),
+ 0x10000000000000 / (constant_55555),
+ 0x10000000000000 / (constant_55555 * 5),
+ 0x10000000000000 / (constant_55555 * 5 * 5),
+ 0x10000000000000 / (constant_55555 * 5 * 5 * 5),
+ 0x10000000000000 / (constant_55555 * 5 * 5 * 5 * 5),
+ 0x10000000000000 / (constant_55555 * constant_55555),
+ 0x10000000000000 / (constant_55555 * constant_55555 * 5),
+ 0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5),
+ 0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5),
+ 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555),
+ 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5),
+ 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5),
+ 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
+ 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5),
+ 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555),
+ 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5),
+ 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5),
+ 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
+ 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5)};
+ // Largest integer value v so that (5**index * v) <= 1<<24.
+ // 0x1000000 == 1<<24
+ constexpr static uint64_t max_mantissa_float[] = {
+ 0x1000000,
+ 0x1000000 / 5,
+ 0x1000000 / (5 * 5),
+ 0x1000000 / (5 * 5 * 5),
+ 0x1000000 / (5 * 5 * 5 * 5),
+ 0x1000000 / (constant_55555),
+ 0x1000000 / (constant_55555 * 5),
+ 0x1000000 / (constant_55555 * 5 * 5),
+ 0x1000000 / (constant_55555 * 5 * 5 * 5),
+ 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5),
+ 0x1000000 / (constant_55555 * constant_55555),
+ 0x1000000 / (constant_55555 * constant_55555 * 5)};
template <typename T> struct binary_format {
using equiv_uint = typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;
@@ -227,11 +272,12 @@ template <typename T> struct binary_format {
static inline constexpr int minimum_exponent();
static inline constexpr int infinite_power();
static inline constexpr int sign_index();
- static inline constexpr int min_exponent_fast_path();
+ static inline constexpr int min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST
static inline constexpr int max_exponent_fast_path();
static inline constexpr int max_exponent_round_to_even();
static inline constexpr int min_exponent_round_to_even();
- static inline constexpr uint64_t max_mantissa_fast_path();
+ static inline constexpr uint64_t max_mantissa_fast_path(int64_t power);
+ static inline constexpr uint64_t max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST
static inline constexpr int largest_power_of_ten();
static inline constexpr int smallest_power_of_ten();
static inline constexpr T exact_power_of_ten(int64_t power);
@@ -241,6 +287,22 @@ template <typename T> struct binary_format {
static inline constexpr equiv_uint hidden_bit_mask();
};
+template <> inline constexpr int binary_format<double>::min_exponent_fast_path() {
+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
+ return 0;
+#else
+ return -22;
+#endif
+}
+
+template <> inline constexpr int binary_format<float>::min_exponent_fast_path() {
+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
+ return 0;
+#else
+ return -10;
+#endif
+}
+
template <> inline constexpr int binary_format<double>::mantissa_explicit_bits() {
return 52;
}
@@ -281,34 +343,30 @@ template <> inline constexpr int binary_format<float>::infinite_power() {
template <> inline constexpr int binary_format<double>::sign_index() { return 63; }
template <> inline constexpr int binary_format<float>::sign_index() { return 31; }
-template <> inline constexpr int binary_format<double>::min_exponent_fast_path() {
-#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
- return 0;
-#else
- return -22;
-#endif
-}
-template <> inline constexpr int binary_format<float>::min_exponent_fast_path() {
-#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
- return 0;
-#else
- return -10;
-#endif
-}
-
template <> inline constexpr int binary_format<double>::max_exponent_fast_path() {
return 22;
}
template <> inline constexpr int binary_format<float>::max_exponent_fast_path() {
return 10;
}
-
template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
return uint64_t(2) << mantissa_explicit_bits();
}
+template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path(int64_t power) {
+ // caller is responsible to ensure that
+ // power >= 0 && power <= 22
+ //
+ return max_mantissa_double[power];
+}
template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
return uint64_t(2) << mantissa_explicit_bits();
}
+template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path(int64_t power) {
+ // caller is responsible to ensure that
+ // power >= 0 && power <= 10
+ //
+ return max_mantissa_float[power];
+}
template <>
inline constexpr double binary_format<double>::exact_power_of_ten(int64_t power) {
diff --git a/contrib/restricted/fast_float/include/fast_float/parse_number.h b/contrib/restricted/fast_float/include/fast_float/parse_number.h
index 62ae3b039e..477288199e 100644
--- a/contrib/restricted/fast_float/include/fast_float/parse_number.h
+++ b/contrib/restricted/fast_float/include/fast_float/parse_number.h
@@ -60,6 +60,48 @@ from_chars_result parse_infnan(const char *first, const char *last, T &value) n
return answer;
}
+/**
+ * Returns true if the floating-pointing rounding mode is to 'nearest'.
+ * It is the default on most system. This function is meant to be inexpensive.
+ * Credit : @mwalcott3
+ */
+fastfloat_really_inline bool rounds_to_nearest() noexcept {
+ // See
+ // A fast function to check your floating-point rounding mode
+ // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
+ //
+ // This function is meant to be equivalent to :
+ // prior: #include <cfenv>
+ // return fegetround() == FE_TONEAREST;
+ // However, it is expected to be much faster than the fegetround()
+ // function call.
+ //
+ // The volatile keywoard prevents the compiler from computing the function
+ // at compile-time.
+ // There might be other ways to prevent compile-time optimizations (e.g., asm).
+ // The value does not need to be std::numeric_limits<float>::min(), any small
+ // value so that 1 + x should round to 1 would do (after accounting for excess
+ // precision, as in 387 instructions).
+ static volatile float fmin = std::numeric_limits<float>::min();
+ float fmini = fmin; // we copy it so that it gets loaded at most once.
+ //
+ // Explanation:
+ // Only when fegetround() == FE_TONEAREST do we have that
+ // fmin + 1.0f == 1.0f - fmin.
+ //
+ // FE_UPWARD:
+ // fmin + 1.0f > 1
+ // 1.0f - fmin == 1
+ //
+ // FE_DOWNWARD or FE_TOWARDZERO:
+ // fmin + 1.0f == 1
+ // 1.0f - fmin < 1
+ //
+ // Note: This may fail to be accurate if fast-math has been
+ // enabled, as rounding conventions may not apply.
+ return (fmini + 1.0f == 1.0f - fmini);
+}
+
} // namespace detail
template<typename T>
@@ -87,13 +129,45 @@ from_chars_result from_chars_advanced(const char *first, const char *last,
}
answer.ec = std::errc(); // be optimistic
answer.ptr = pns.lastmatch;
- // Next is Clinger's fast path.
- if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && pns.mantissa <=binary_format<T>::max_mantissa_fast_path() && !pns.too_many_digits) {
- value = T(pns.mantissa);
- if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); }
- else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); }
- if (pns.negative) { value = -value; }
- return answer;
+ // The implementation of the Clinger's fast path is convoluted because
+ // we want round-to-nearest in all cases, irrespective of the rounding mode
+ // selected on the thread.
+ // We proceed optimistically, assuming that detail::rounds_to_nearest() returns
+ // true.
+ if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && !pns.too_many_digits) {
+ // Unfortunately, the conventional Clinger's fast path is only possible
+ // when the system rounds to the nearest float.
+ //
+ // We expect the next branch to almost always be selected.
+ // We could check it first (before the previous branch), but
+ // there might be performance advantages at having the check
+ // be last.
+ if(detail::rounds_to_nearest()) {
+ // We have that fegetround() == FE_TONEAREST.
+ // Next is Clinger's fast path.
+ if (pns.mantissa <=binary_format<T>::max_mantissa_fast_path()) {
+ value = T(pns.mantissa);
+ if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); }
+ else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); }
+ if (pns.negative) { value = -value; }
+ return answer;
+ }
+ } else {
+ // We do not have that fegetround() == FE_TONEAREST.
+ // Next is a modified Clinger's fast path, inspired by Jakub JelĂ­nek's proposal
+ if (pns.exponent >= 0 && pns.mantissa <=binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
+#if defined(__clang__)
+ // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
+ if(pns.mantissa == 0) {
+ value = 0;
+ return answer;
+ }
+#endif
+ value = T(pns.mantissa) * binary_format<T>::exact_power_of_ten(pns.exponent);
+ if (pns.negative) { value = -value; }
+ return answer;
+ }
+ }
}
adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
if(pns.too_many_digits && am.power2 >= 0) {