diff options
author | jakalletti <jakalletti@yandex-team.ru> | 2022-02-10 16:45:56 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:56 +0300 |
commit | 43fcb614adecb5c1e5922dd592beb143b758e2bc (patch) | |
tree | ac11b2d941560a38dbf365fd6955fd4624ee16ef /contrib/restricted/fast_float | |
parent | 32afff1bad806b1fc774d6ccc979a3dc05a0c7f8 (diff) | |
download | ydb-43fcb614adecb5c1e5922dd592beb143b758e2bc.tar.gz |
Restoring authorship annotation for <jakalletti@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/restricted/fast_float')
9 files changed, 1797 insertions, 1797 deletions
diff --git a/contrib/restricted/fast_float/README.md b/contrib/restricted/fast_float/README.md index 1e1c06d0a3..04e842a40a 100644 --- a/contrib/restricted/fast_float/README.md +++ b/contrib/restricted/fast_float/README.md @@ -1,70 +1,70 @@ ## fast_float number parsing library: 4x faster than strtod - -![Ubuntu 20.04 CI (GCC 9)](https://github.com/lemire/fast_float/workflows/Ubuntu%2020.04%20CI%20(GCC%209)/badge.svg) -![Ubuntu 18.04 CI (GCC 7)](https://github.com/lemire/fast_float/workflows/Ubuntu%2018.04%20CI%20(GCC%207)/badge.svg) -![Alpine Linux](https://github.com/lemire/fast_float/workflows/Alpine%20Linux/badge.svg) -![MSYS2-CI](https://github.com/lemire/fast_float/workflows/MSYS2-CI/badge.svg) -![VS16-CLANG-CI](https://github.com/lemire/fast_float/workflows/VS16-CLANG-CI/badge.svg) + +![Ubuntu 20.04 CI (GCC 9)](https://github.com/lemire/fast_float/workflows/Ubuntu%2020.04%20CI%20(GCC%209)/badge.svg) +![Ubuntu 18.04 CI (GCC 7)](https://github.com/lemire/fast_float/workflows/Ubuntu%2018.04%20CI%20(GCC%207)/badge.svg) +![Alpine Linux](https://github.com/lemire/fast_float/workflows/Alpine%20Linux/badge.svg) +![MSYS2-CI](https://github.com/lemire/fast_float/workflows/MSYS2-CI/badge.svg) +![VS16-CLANG-CI](https://github.com/lemire/fast_float/workflows/VS16-CLANG-CI/badge.svg) [![VS16-CI](https://github.com/fastfloat/fast_float/actions/workflows/vs16-ci.yml/badge.svg)](https://github.com/fastfloat/fast_float/actions/workflows/vs16-ci.yml) - -The fast_float library provides fast header-only implementations for the C++ from_chars -functions for `float` and `double` types. These functions convert ASCII strings representing -decimal values (e.g., `1.3e10`) into binary types. We provide exact rounding (including + +The fast_float library provides fast header-only implementations for the C++ from_chars +functions for `float` and `double` types. These functions convert ASCII strings representing +decimal values (e.g., `1.3e10`) into binary types. We provide exact rounding (including round to even). In our experience, these `fast_float` functions many times faster than comparable number-parsing functions from existing C++ standard libraries. - -Specifically, `fast_float` provides the following two functions with a C++17-like syntax (the library itself only requires C++11): - -```C++ -from_chars_result from_chars(const char* first, const char* last, float& value, ...); -from_chars_result from_chars(const char* first, const char* last, double& value, ...); -``` - -The return type (`from_chars_result`) is defined as the struct: -```C++ -struct from_chars_result { - const char* ptr; - std::errc ec; -}; -``` - -It parses the character sequence [first,last) for a number. It parses floating-point numbers expecting + +Specifically, `fast_float` provides the following two functions with a C++17-like syntax (the library itself only requires C++11): + +```C++ +from_chars_result from_chars(const char* first, const char* last, float& value, ...); +from_chars_result from_chars(const char* first, const char* last, double& value, ...); +``` + +The return type (`from_chars_result`) is defined as the struct: +```C++ +struct from_chars_result { + const char* ptr; + std::errc ec; +}; +``` + +It parses the character sequence [first,last) for a number. It parses floating-point numbers expecting a locale-independent format equivalent to the C++17 from_chars function. -The resulting floating-point value is the closest floating-point values (using either float or double), -using the "round to even" convention for values that would otherwise fall right in-between two values. -That is, we provide exact parsing according to the IEEE standard. - - -Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the -parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned -`ec` contains a representative error, otherwise the default (`std::errc()`) value is stored. - -The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`). - -It will parse infinity and nan values. - -Example: - -``` C++ -#include "fast_float/fast_float.h" -#include <iostream> +The resulting floating-point value is the closest floating-point values (using either float or double), +using the "round to even" convention for values that would otherwise fall right in-between two values. +That is, we provide exact parsing according to the IEEE standard. -int main() { - const std::string input = "3.1416 xyz "; - double result; - auto answer = fast_float::from_chars(input.data(), input.data()+input.size(), result); - if(answer.ec != std::errc()) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; } - std::cout << "parsed the number " << result << std::endl; - return EXIT_SUCCESS; -} -``` - - -Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of -the type `fast_float::chars_format`. It is a bitset value: we check whether -`fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set -to determine whether we allow the fixed point and scientific notation respectively. -The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`. +Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the +parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned +`ec` contains a representative error, otherwise the default (`std::errc()`) value is stored. + +The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`). + +It will parse infinity and nan values. + +Example: + +``` C++ +#include "fast_float/fast_float.h" +#include <iostream> + +int main() { + const std::string input = "3.1416 xyz "; + double result; + auto answer = fast_float::from_chars(input.data(), input.data()+input.size(), result); + if(answer.ec != std::errc()) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; } + std::cout << "parsed the number " << result << std::endl; + return EXIT_SUCCESS; +} +``` + + +Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of +the type `fast_float::chars_format`. It is a bitset value: we check whether +`fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set +to determine whether we allow the fixed point and scientific notation respectively. +The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`. + The library seeks to follow the C++17 (see [20.19.3](http://eel.is/c++draft/charconv.from.chars).(7.1)) specification. * The `from_chars` function does not skip leading white-space characters. * [A leading `+` sign](https://en.cppreference.com/w/cpp/utility/from_chars) is forbidden. @@ -75,8 +75,8 @@ Furthermore, we have the following restrictions: * We only support the decimal format: we do not support hexadecimal strings. * For values that are either very large or very small (e.g., `1e9999`), we represent it using the infinity or negative infinity value. -We support Visual Studio, macOS, Linux, freeBSD. We support big and little endian. We support 32-bit and 64-bit systems. - +We support Visual Studio, macOS, Linux, freeBSD. We support big and little endian. We support 32-bit and 64-bit systems. + ## Using commas as decimal separator @@ -117,90 +117,90 @@ int main() { - [There is a C# port of the fast_float library](https://github.com/CarlVerret/csFastFloat) called `csFastFloat`. -## Relation With Other Work - +## Relation With Other Work + The fastfloat algorithm is part of the [LLVM standard libraries](https://github.com/llvm/llvm-project/commit/87c016078ad72c46505461e4ff8bfa04819fe7ba). The fast_float library provides a performance similar to that of the [fast_double_parser](https://github.com/lemire/fast_double_parser) library but using an updated algorithm reworked from the ground up, and while offering an API more in line with the expectations of C++ programmers. The fast_double_parser library is part of the [Microsoft LightGBM machine-learning framework](https://github.com/microsoft/LightGBM). - -## Users - + +## Users + The fast_float library is used by [Apache Arrow](https://github.com/apache/arrow/pull/8494) where it multiplied the number parsing speed by two or three times. It is also used by [Yandex ClickHouse](https://github.com/ClickHouse/ClickHouse) and by [Google Jsonnet](https://github.com/google/jsonnet). - - -## How fast is it? - -It can parse random floating-point numbers at a speed of 1 GB/s on some systems. We find that it is often twice as fast as the best available competitor, and many times faster than many standard-library implementations. - + + +## How fast is it? + +It can parse random floating-point numbers at a speed of 1 GB/s on some systems. We find that it is often twice as fast as the best available competitor, and many times faster than many standard-library implementations. + <img src="http://lemire.me/blog/wp-content/uploads/2020/11/fastfloat_speed.png" width="400"> -``` -$ ./build/benchmarks/benchmark -# parsing random integers in the range [0,1) -volume = 2.09808 MB -netlib : 271.18 MB/s (+/- 1.2 %) 12.93 Mfloat/s -doubleconversion : 225.35 MB/s (+/- 1.2 %) 10.74 Mfloat/s -strtod : 190.94 MB/s (+/- 1.6 %) 9.10 Mfloat/s -abseil : 430.45 MB/s (+/- 2.2 %) 20.52 Mfloat/s -fastfloat : 1042.38 MB/s (+/- 9.9 %) 49.68 Mfloat/s -``` - -See https://github.com/lemire/simple_fastfloat_benchmark for our benchmarking code. - +``` +$ ./build/benchmarks/benchmark +# parsing random integers in the range [0,1) +volume = 2.09808 MB +netlib : 271.18 MB/s (+/- 1.2 %) 12.93 Mfloat/s +doubleconversion : 225.35 MB/s (+/- 1.2 %) 10.74 Mfloat/s +strtod : 190.94 MB/s (+/- 1.6 %) 9.10 Mfloat/s +abseil : 430.45 MB/s (+/- 2.2 %) 20.52 Mfloat/s +fastfloat : 1042.38 MB/s (+/- 9.9 %) 49.68 Mfloat/s +``` + +See https://github.com/lemire/simple_fastfloat_benchmark for our benchmarking code. + ## Video [![Go Systems 2020](http://img.youtube.com/vi/AVXgvlMeIm4/0.jpg)](http://www.youtube.com/watch?v=AVXgvlMeIm4)<br /> -## Using as a CMake dependency - -This library is header-only by design. The CMake file provides the `fast_float` target -which is merely a pointer to the `include` directory. - -If you drop the `fast_float` repository in your CMake project, you should be able to use -it in this manner: - -```cmake -add_subdirectory(fast_float) -target_link_libraries(myprogram PUBLIC fast_float) -``` - -Or you may want to retrieve the dependency automatically if you have a sufficiently recent version of CMake (3.11 or better at least): - -```cmake -FetchContent_Declare( - fast_float - GIT_REPOSITORY https://github.com/lemire/fast_float.git +## Using as a CMake dependency + +This library is header-only by design. The CMake file provides the `fast_float` target +which is merely a pointer to the `include` directory. + +If you drop the `fast_float` repository in your CMake project, you should be able to use +it in this manner: + +```cmake +add_subdirectory(fast_float) +target_link_libraries(myprogram PUBLIC fast_float) +``` + +Or you may want to retrieve the dependency automatically if you have a sufficiently recent version of CMake (3.11 or better at least): + +```cmake +FetchContent_Declare( + fast_float + GIT_REPOSITORY https://github.com/lemire/fast_float.git GIT_TAG tags/v1.1.2 - GIT_SHALLOW TRUE) - -FetchContent_MakeAvailable(fast_float) -target_link_libraries(myprogram PUBLIC fast_float) - -``` - + GIT_SHALLOW TRUE) + +FetchContent_MakeAvailable(fast_float) +target_link_libraries(myprogram PUBLIC fast_float) + +``` + You should change the `GIT_TAG` line so that you recover the version you wish to use. - + ## Using as single header - + The script `script/amalgamate.py` may be used to generate a single header version of the library if so desired. Just run the script from the root directory of this repository. You can customize the license type and output file if desired as described in the command line help. - + You may directly download automatically generated single-header files: - + https://github.com/fastfloat/fast_float/releases/download/v1.1.2/fast_float.h - -## Credit - -Though this work is inspired by many different people, this work benefited especially from exchanges with -Michael Eisel, who motivated the original research with his key insights, and with Nigel Tao who provided -invaluable feedback. Rémy Oudompheng first implemented a fast path we use in the case of long digits. - -The library includes code adapted from Google Wuffs (written by Nigel Tao) which was originally published -under the Apache 2.0 license. + +## Credit + +Though this work is inspired by many different people, this work benefited especially from exchanges with +Michael Eisel, who motivated the original research with his key insights, and with Nigel Tao who provided +invaluable feedback. Rémy Oudompheng first implemented a fast path we use in the case of long digits. + +The library includes code adapted from Google Wuffs (written by Nigel Tao) which was originally published +under the Apache 2.0 license. ## License diff --git a/contrib/restricted/fast_float/include/fast_float/ascii_number.h b/contrib/restricted/fast_float/include/fast_float/ascii_number.h index 3e6bb3e9ef..018013c8d6 100644 --- a/contrib/restricted/fast_float/include/fast_float/ascii_number.h +++ b/contrib/restricted/fast_float/include/fast_float/ascii_number.h @@ -1,19 +1,19 @@ -#ifndef FASTFLOAT_ASCII_NUMBER_H -#define FASTFLOAT_ASCII_NUMBER_H - -#include <cctype> -#include <cstdint> -#include <cstring> +#ifndef FASTFLOAT_ASCII_NUMBER_H +#define FASTFLOAT_ASCII_NUMBER_H + +#include <cctype> +#include <cstdint> +#include <cstring> #include <iterator> - -#include "float_common.h" - -namespace fast_float { - -// Next function can be micro-optimized, but compilers are entirely -// able to optimize it well. -fastfloat_really_inline bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; } - + +#include "float_common.h" + +namespace fast_float { + +// Next function can be micro-optimized, but compilers are entirely +// able to optimize it well. +fastfloat_really_inline bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; } + fastfloat_really_inline uint64_t byteswap(uint64_t val) { return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 @@ -24,7 +24,7 @@ fastfloat_really_inline uint64_t byteswap(uint64_t val) { | (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; } - + fastfloat_really_inline uint64_t read_u64(const char *chars) { uint64_t val; ::memcpy(&val, chars, sizeof(uint64_t)); @@ -43,34 +43,34 @@ fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) { ::memcpy(chars, &val, sizeof(uint64_t)); } -// credit @aqrit -fastfloat_really_inline uint32_t parse_eight_digits_unrolled(uint64_t val) { - const uint64_t mask = 0x000000FF000000FF; - const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) - const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) - val -= 0x3030303030303030; - val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; - val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; - return uint32_t(val); -} - -fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept { +// credit @aqrit +fastfloat_really_inline uint32_t parse_eight_digits_unrolled(uint64_t val) { + const uint64_t mask = 0x000000FF000000FF; + const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) + const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) + val -= 0x3030303030303030; + val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; + val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; + return uint32_t(val); +} + +fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept { return parse_eight_digits_unrolled(read_u64(chars)); -} - -// credit @aqrit -fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept { - return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & +} + +// credit @aqrit +fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept { + return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & 0x8080808080808080)); -} - -fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept { +} + +fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept { return is_made_of_eight_digits_fast(read_u64(chars)); -} - +} + typedef span<const char> byte_span; -struct parsed_number_string { +struct parsed_number_string { int64_t exponent{0}; uint64_t mantissa{0}; const char *lastmatch{nullptr}; @@ -80,122 +80,122 @@ struct parsed_number_string { // contains the range of the significant digits byte_span integer{}; // non-nullable byte_span fraction{}; // nullable -}; - -// Assuming that you use no more than 19 digits, this will -// parse an ASCII string. -fastfloat_really_inline +}; + +// Assuming that you use no more than 19 digits, this will +// parse an ASCII string. +fastfloat_really_inline parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept { const chars_format fmt = options.format; const char decimal_point = options.decimal_point; - parsed_number_string answer; - answer.valid = false; + parsed_number_string answer; + answer.valid = false; answer.too_many_digits = false; - answer.negative = (*p == '-'); + answer.negative = (*p == '-'); if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here - ++p; - if (p == pend) { - return answer; - } + ++p; + if (p == pend) { + return answer; + } if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot - return answer; - } - } - const char *const start_digits = p; - - uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) - + return answer; + } + } + const char *const start_digits = p; + + uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) + while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) { i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok p += 8; } - while ((p != pend) && is_integer(*p)) { - // a multiplication by 10 is cheaper than an arbitrary integer - // multiplication - i = 10 * i + - uint64_t(*p - '0'); // might overflow, we will handle the overflow later - ++p; - } + while ((p != pend) && is_integer(*p)) { + // a multiplication by 10 is cheaper than an arbitrary integer + // multiplication + i = 10 * i + + uint64_t(*p - '0'); // might overflow, we will handle the overflow later + ++p; + } const char *const end_of_integer_part = p; int64_t digit_count = int64_t(end_of_integer_part - start_digits); answer.integer = byte_span(start_digits, size_t(digit_count)); - int64_t exponent = 0; + int64_t exponent = 0; if ((p != pend) && (*p == decimal_point)) { - ++p; + ++p; const char* before = p; // can occur at most twice without overflowing, but let it occur more, since // for integers with many digits, digit parsing is the primary bottleneck. while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) { - i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok - p += 8; - } - while ((p != pend) && is_integer(*p)) { - uint8_t digit = uint8_t(*p - '0'); - ++p; - i = i * 10 + digit; // in rare cases, this will overflow, but that's ok - } + i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok + p += 8; + } + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); + ++p; + i = i * 10 + digit; // in rare cases, this will overflow, but that's ok + } exponent = before - p; answer.fraction = byte_span(before, size_t(p - before)); digit_count -= exponent; - } - // we must have encountered at least one integer! + } + // we must have encountered at least one integer! if (digit_count == 0) { - return answer; - } + return answer; + } int64_t exp_number = 0; // explicit exponential part - if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) { - const char * location_of_e = p; - ++p; - bool neg_exp = false; - if ((p != pend) && ('-' == *p)) { - neg_exp = true; - ++p; + if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) { + const char * location_of_e = p; + ++p; + bool neg_exp = false; + if ((p != pend) && ('-' == *p)) { + neg_exp = true; + ++p; } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) - ++p; - } - if ((p == pend) || !is_integer(*p)) { - if(!(fmt & chars_format::fixed)) { - // We are in error. - return answer; - } - // Otherwise, we will be ignoring the 'e'. - p = location_of_e; - } else { - while ((p != pend) && is_integer(*p)) { - uint8_t digit = uint8_t(*p - '0'); + ++p; + } + if ((p == pend) || !is_integer(*p)) { + if(!(fmt & chars_format::fixed)) { + // We are in error. + return answer; + } + // Otherwise, we will be ignoring the 'e'. + p = location_of_e; + } else { + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); if (exp_number < 0x10000000) { - exp_number = 10 * exp_number + digit; - } - ++p; - } + exp_number = 10 * exp_number + digit; + } + ++p; + } if(neg_exp) { exp_number = - exp_number; } exponent += exp_number; - } - } else { - // If it scientific and not fixed, we have to bail out. - if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; } - } - answer.lastmatch = p; - answer.valid = true; - - // If we frequently had to deal with long strings of digits, - // we could extend our code by using a 128-bit integer instead - // of a 64-bit integer. However, this is uncommon. + } + } else { + // If it scientific and not fixed, we have to bail out. + if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; } + } + answer.lastmatch = p; + answer.valid = true; + + // If we frequently had to deal with long strings of digits, + // we could extend our code by using a 128-bit integer instead + // of a 64-bit integer. However, this is uncommon. // // We can deal with up to 19 digits. if (digit_count > 19) { // this is uncommon - // It is possible that the integer had an overflow. - // We have to handle the case where we have 0.0000somenumber. + // It is possible that the integer had an overflow. + // We have to handle the case where we have 0.0000somenumber. // We need to be mindful of the case where we only have zeroes... // E.g., 0.000000000...000. - const char *start = start_digits; + const char *start = start_digits; while ((start != pend) && (*start == '0' || *start == decimal_point)) { if(*start == '0') { digit_count --; } - start++; - } + start++; + } if (digit_count > 19) { - answer.too_many_digits = true; + answer.too_many_digits = true; // Let us start again, this time, avoiding overflows. // We don't need to check if is_integer, since we use the // pre-tokenized spans from above. @@ -219,13 +219,13 @@ parsed_number_string parse_number_string(const char *p, const char *pend, parse_ exponent = answer.fraction.ptr - p + exp_number; } // We have now corrected both exponent and i, to a truncated value - } - } - answer.exponent = exponent; - answer.mantissa = i; - return answer; -} - -} // namespace fast_float - -#endif + } + } + answer.exponent = exponent; + answer.mantissa = i; + return answer; +} + +} // namespace fast_float + +#endif diff --git a/contrib/restricted/fast_float/include/fast_float/decimal_to_binary.h b/contrib/restricted/fast_float/include/fast_float/decimal_to_binary.h index 6da6c66a3a..7cef086c13 100644 --- a/contrib/restricted/fast_float/include/fast_float/decimal_to_binary.h +++ b/contrib/restricted/fast_float/include/fast_float/decimal_to_binary.h @@ -1,65 +1,65 @@ -#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H -#define FASTFLOAT_DECIMAL_TO_BINARY_H - -#include "float_common.h" -#include "fast_table.h" -#include <cfloat> -#include <cinttypes> -#include <cmath> -#include <cstdint> -#include <cstdlib> -#include <cstring> - -namespace fast_float { - -// This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating -// the result, with the "high" part corresponding to the most significant bits and the -// low part corresponding to the least significant bits. -// -template <int bit_precision> -fastfloat_really_inline -value128 compute_product_approximation(int64_t q, uint64_t w) { +#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H +#define FASTFLOAT_DECIMAL_TO_BINARY_H + +#include "float_common.h" +#include "fast_table.h" +#include <cfloat> +#include <cinttypes> +#include <cmath> +#include <cstdint> +#include <cstdlib> +#include <cstring> + +namespace fast_float { + +// This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating +// the result, with the "high" part corresponding to the most significant bits and the +// low part corresponding to the least significant bits. +// +template <int bit_precision> +fastfloat_really_inline +value128 compute_product_approximation(int64_t q, uint64_t w) { const int index = 2 * int(q - powers::smallest_power_of_five); - // For small values of q, e.g., q in [0,27], the answer is always exact because - // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]); - // gives the exact answer. + // For small values of q, e.g., q in [0,27], the answer is always exact because + // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]); + // gives the exact answer. value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]); - static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]"); - constexpr uint64_t precision_mask = (bit_precision < 64) ? - (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) - : uint64_t(0xFFFFFFFFFFFFFFFF); - if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower) - // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed. + static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]"); + constexpr uint64_t precision_mask = (bit_precision < 64) ? + (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) + : uint64_t(0xFFFFFFFFFFFFFFFF); + if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower) + // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed. value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]); - firstproduct.low += secondproduct.high; - if(secondproduct.high > firstproduct.low) { - firstproduct.high++; - } - } - return firstproduct; -} - + firstproduct.low += secondproduct.high; + if(secondproduct.high > firstproduct.low) { + firstproduct.high++; + } + } + return firstproduct; +} + namespace detail { -/** - * For q in (0,350), we have that - * f = (((152170 + 65536) * q ) >> 16); - * is equal to - * floor(p) + q - * where - * p = log(5**q)/log(2) = q * log(5)/log(2) - * - * For negative values of q in (-400,0), we have that - * f = (((152170 + 65536) * q ) >> 16); +/** + * For q in (0,350), we have that + * f = (((152170 + 65536) * q ) >> 16); * is equal to - * -ceil(p) + q - * where - * p = log(5**-q)/log(2) = -q * log(5)/log(2) - */ + * floor(p) + q + * where + * p = log(5**q)/log(2) = q * log(5)/log(2) + * + * For negative values of q in (-400,0), we have that + * f = (((152170 + 65536) * q ) >> 16); + * is equal to + * -ceil(p) + q + * where + * p = log(5**-q)/log(2) = -q * log(5)/log(2) + */ constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept { - return (((152170 + 65536) * q) >> 16) + 63; - } + return (((152170 + 65536) * q) >> 16) + 63; + } } // namespace detail - + // create an adjusted mantissa, biased by the invalid power2 // for significant digits already multiplied by 10 ** q. template <typename binary> @@ -72,7 +72,7 @@ adjusted_mantissa compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + invalid_am_bias); return answer; } - + // w * 10 ** q, without rounding the representation up. // the power2 in the exponent will be adjusted by invalid_am_bias. template <typename binary> @@ -84,111 +84,111 @@ adjusted_mantissa compute_error(int64_t q, uint64_t w) noexcept { return compute_error_scaled<binary>(q, product.high, lz); } -// w * 10 ** q -// The returned value should be a valid ieee64 number that simply need to be packed. -// However, in some very rare cases, the computation will fail. In such cases, we -// return an adjusted_mantissa with a negative power of 2: the caller should recompute -// in such cases. -template <typename binary> -fastfloat_really_inline -adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept { - adjusted_mantissa answer; - if ((w == 0) || (q < binary::smallest_power_of_ten())) { - answer.power2 = 0; - answer.mantissa = 0; - // result should be zero - return answer; - } - if (q > binary::largest_power_of_ten()) { - // we want to get infinity: - answer.power2 = binary::infinite_power(); - answer.mantissa = 0; - return answer; - } +// w * 10 ** q +// The returned value should be a valid ieee64 number that simply need to be packed. +// However, in some very rare cases, the computation will fail. In such cases, we +// return an adjusted_mantissa with a negative power of 2: the caller should recompute +// in such cases. +template <typename binary> +fastfloat_really_inline +adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept { + adjusted_mantissa answer; + if ((w == 0) || (q < binary::smallest_power_of_ten())) { + answer.power2 = 0; + answer.mantissa = 0; + // result should be zero + return answer; + } + if (q > binary::largest_power_of_ten()) { + // we want to get infinity: + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } // At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five]. - - // We want the most significant bit of i to be 1. Shift if needed. - int lz = leading_zeroes(w); - w <<= lz; - - // The required precision is binary::mantissa_explicit_bits() + 3 because - // 1. We need the implicit bit - // 2. We need an extra bit for rounding purposes - // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift) - - value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); - if(product.low == 0xFFFFFFFFFFFFFFFF) { // could guard it further - // In some very rare cases, this could happen, in which case we might need a more accurate - // computation that what we can provide cheaply. This is very, very unlikely. - // - const bool inside_safe_exponent = (q >= -27) && (q <= 55); // always good because 5**q <2**128 when q>=0, - // and otherwise, for q<0, we have 5**-q<2**64 and the 128-bit reciprocal allows for exact computation. - if(!inside_safe_exponent) { + + // We want the most significant bit of i to be 1. Shift if needed. + int lz = leading_zeroes(w); + w <<= lz; + + // The required precision is binary::mantissa_explicit_bits() + 3 because + // 1. We need the implicit bit + // 2. We need an extra bit for rounding purposes + // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift) + + value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); + if(product.low == 0xFFFFFFFFFFFFFFFF) { // could guard it further + // In some very rare cases, this could happen, in which case we might need a more accurate + // computation that what we can provide cheaply. This is very, very unlikely. + // + const bool inside_safe_exponent = (q >= -27) && (q <= 55); // always good because 5**q <2**128 when q>=0, + // and otherwise, for q<0, we have 5**-q<2**64 and the 128-bit reciprocal allows for exact computation. + if(!inside_safe_exponent) { return compute_error_scaled<binary>(q, product.high, lz); - } - } - // The "compute_product_approximation" function can be slightly slower than a branchless approach: - // value128 product = compute_product(q, w); - // but in practice, we can win big with the compute_product_approximation if its additional branch - // is easily predicted. Which is best is data specific. - int upperbit = int(product.high >> 63); - - answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); - + } + } + // The "compute_product_approximation" function can be slightly slower than a branchless approach: + // value128 product = compute_product(q, w); + // but in practice, we can win big with the compute_product_approximation if its additional branch + // is easily predicted. Which is best is data specific. + int upperbit = int(product.high >> 63); + + answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); + answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent()); - if (answer.power2 <= 0) { // we have a subnormal? - // Here have that answer.power2 <= 0 so -answer.power2 >= 0 - if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure. - answer.power2 = 0; - answer.mantissa = 0; - // result should be zero - return answer; - } - // next line is safe because -answer.power2 + 1 < 64 - answer.mantissa >>= -answer.power2 + 1; - // Thankfully, we can't have both "round-to-even" and subnormals because - // "round-to-even" only occurs for powers close to 0. - answer.mantissa += (answer.mantissa & 1); // round up - answer.mantissa >>= 1; - // There is a weird scenario where we don't have a subnormal but just. - // Suppose we start with 2.2250738585072013e-308, we end up - // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal - // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round - // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer - // subnormal, but we can only know this after rounding. - // So we only declare a subnormal if we are smaller than the threshold. - answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1; - return answer; - } - - // usually, we round *up*, but if we fall right in between and and we have an - // even basis, we need to round down - // We are only concerned with the cases where 5**q fits in single 64-bit word. - if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) && - ((answer.mantissa & 3) == 1) ) { // we may fall between two floats! - // To be in-between two floats we need that in doing - // answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); - // ... we dropped out only zeroes. But if this happened, then we can go back!!! - if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) { - answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up - } - } - - answer.mantissa += (answer.mantissa & 1); // round up - answer.mantissa >>= 1; - if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { - answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); - answer.power2++; // undo previous addition - } - - answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); - if (answer.power2 >= binary::infinite_power()) { // infinity - answer.power2 = binary::infinite_power(); - answer.mantissa = 0; - } - return answer; -} - -} // namespace fast_float - -#endif + if (answer.power2 <= 0) { // we have a subnormal? + // Here have that answer.power2 <= 0 so -answer.power2 >= 0 + if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure. + answer.power2 = 0; + answer.mantissa = 0; + // result should be zero + return answer; + } + // next line is safe because -answer.power2 + 1 < 64 + answer.mantissa >>= -answer.power2 + 1; + // Thankfully, we can't have both "round-to-even" and subnormals because + // "round-to-even" only occurs for powers close to 0. + answer.mantissa += (answer.mantissa & 1); // round up + answer.mantissa >>= 1; + // There is a weird scenario where we don't have a subnormal but just. + // Suppose we start with 2.2250738585072013e-308, we end up + // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal + // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round + // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer + // subnormal, but we can only know this after rounding. + // So we only declare a subnormal if we are smaller than the threshold. + answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1; + return answer; + } + + // usually, we round *up*, but if we fall right in between and and we have an + // even basis, we need to round down + // We are only concerned with the cases where 5**q fits in single 64-bit word. + if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) && + ((answer.mantissa & 3) == 1) ) { // we may fall between two floats! + // To be in-between two floats we need that in doing + // answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); + // ... we dropped out only zeroes. But if this happened, then we can go back!!! + if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) { + answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up + } + } + + answer.mantissa += (answer.mantissa & 1); // round up + answer.mantissa >>= 1; + if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { + answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); + answer.power2++; // undo previous addition + } + + answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); + if (answer.power2 >= binary::infinite_power()) { // infinity + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + } + return answer; +} + +} // namespace fast_float + +#endif diff --git a/contrib/restricted/fast_float/include/fast_float/fast_float.h b/contrib/restricted/fast_float/include/fast_float/fast_float.h index 3c483803af..f579fa4265 100644 --- a/contrib/restricted/fast_float/include/fast_float/fast_float.h +++ b/contrib/restricted/fast_float/include/fast_float/fast_float.h @@ -1,22 +1,22 @@ -#ifndef FASTFLOAT_FAST_FLOAT_H -#define FASTFLOAT_FAST_FLOAT_H - -#include <system_error> - -namespace fast_float { -enum chars_format { - scientific = 1<<0, - fixed = 1<<2, - hex = 1<<3, - general = fixed | scientific -}; - - -struct from_chars_result { - const char *ptr; - std::errc ec; -}; - +#ifndef FASTFLOAT_FAST_FLOAT_H +#define FASTFLOAT_FAST_FLOAT_H + +#include <system_error> + +namespace fast_float { +enum chars_format { + scientific = 1<<0, + fixed = 1<<2, + hex = 1<<3, + general = fixed | scientific +}; + + +struct from_chars_result { + const char *ptr; + std::errc ec; +}; + struct parse_options { constexpr explicit parse_options(chars_format fmt = chars_format::general, char dot = '.') @@ -28,29 +28,29 @@ struct parse_options { char decimal_point; }; -/** - * This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting - * a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale. - * The resulting floating-point value is the closest floating-point values (using either float or double), - * using the "round to even" convention for values that would otherwise fall right in-between two values. - * That is, we provide exact parsing according to the IEEE standard. - * - * Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the - * parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned - * `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored. - * - * The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`). - * - * Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of - * the type `fast_float::chars_format`. It is a bitset value: we check whether - * `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set - * to determine whether we allowe the fixed point and scientific notation respectively. - * The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`. - */ -template<typename T> -from_chars_result from_chars(const char *first, const char *last, - T &value, chars_format fmt = chars_format::general) noexcept; - +/** + * This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting + * a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale. + * The resulting floating-point value is the closest floating-point values (using either float or double), + * using the "round to even" convention for values that would otherwise fall right in-between two values. + * That is, we provide exact parsing according to the IEEE standard. + * + * Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the + * parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned + * `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored. + * + * The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`). + * + * Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of + * the type `fast_float::chars_format`. It is a bitset value: we check whether + * `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set + * to determine whether we allowe the fixed point and scientific notation respectively. + * The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`. + */ +template<typename T> +from_chars_result from_chars(const char *first, const char *last, + T &value, chars_format fmt = chars_format::general) noexcept; + /** * Like from_chars, but accepts an `options` argument to govern number parsing. */ @@ -58,6 +58,6 @@ template<typename T> from_chars_result from_chars_advanced(const char *first, const char *last, T &value, parse_options options) noexcept; -} -#include "parse_number.h" +} +#include "parse_number.h" #endif // FASTFLOAT_FAST_FLOAT_H diff --git a/contrib/restricted/fast_float/include/fast_float/fast_table.h b/contrib/restricted/fast_float/include/fast_float/fast_table.h index 5766274ca4..3f4d5e7e41 100644 --- a/contrib/restricted/fast_float/include/fast_float/fast_table.h +++ b/contrib/restricted/fast_float/include/fast_float/fast_table.h @@ -1,699 +1,699 @@ -#ifndef FASTFLOAT_FAST_TABLE_H -#define FASTFLOAT_FAST_TABLE_H +#ifndef FASTFLOAT_FAST_TABLE_H +#define FASTFLOAT_FAST_TABLE_H -#include <cstdint> - -namespace fast_float { - -/** - * When mapping numbers from decimal to binary, - * we go from w * 10^q to m * 2^p but we have - * 10^q = 5^q * 2^q, so effectively - * we are trying to match - * w * 2^q * 5^q to m * 2^p. Thus the powers of two - * are not a concern since they can be represented - * exactly using the binary notation, only the powers of five - * affect the binary significand. - */ - -/** - * The smallest non-zero float (binary64) is 2^−1074. - * We take as input numbers of the form w x 10^q where w < 2^64. - * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. - * However, we have that - * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^−1074. - * Thus it is possible for a number of the form w * 10^-342 where - * w is a 64-bit value to be a non-zero floating-point number. - ********* - * Any number of form w * 10^309 where w>= 1 is going to be - * infinite in binary64 so we never need to worry about powers - * of 5 greater than 308. - */ +#include <cstdint> + +namespace fast_float { + +/** + * When mapping numbers from decimal to binary, + * we go from w * 10^q to m * 2^p but we have + * 10^q = 5^q * 2^q, so effectively + * we are trying to match + * w * 2^q * 5^q to m * 2^p. Thus the powers of two + * are not a concern since they can be represented + * exactly using the binary notation, only the powers of five + * affect the binary significand. + */ + +/** + * The smallest non-zero float (binary64) is 2^−1074. + * We take as input numbers of the form w x 10^q where w < 2^64. + * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. + * However, we have that + * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^−1074. + * Thus it is possible for a number of the form w * 10^-342 where + * w is a 64-bit value to be a non-zero floating-point number. + ********* + * Any number of form w * 10^309 where w>= 1 is going to be + * infinite in binary64 so we never need to worry about powers + * of 5 greater than 308. + */ template <class unused = void> struct powers_template { constexpr static int smallest_power_of_five = binary_format<double>::smallest_power_of_ten(); constexpr static int largest_power_of_five = binary_format<double>::largest_power_of_ten(); constexpr static int number_of_entries = 2 * (largest_power_of_five - smallest_power_of_five + 1); -// Powers of five from 5^-342 all the way to 5^308 rounded toward one. +// Powers of five from 5^-342 all the way to 5^308 rounded toward one. static const uint64_t power_of_five_128[number_of_entries]; }; template <class unused> const uint64_t powers_template<unused>::power_of_five_128[number_of_entries] = { - 0xeef453d6923bd65a,0x113faa2906a13b3f, - 0x9558b4661b6565f8,0x4ac7ca59a424c507, - 0xbaaee17fa23ebf76,0x5d79bcf00d2df649, - 0xe95a99df8ace6f53,0xf4d82c2c107973dc, - 0x91d8a02bb6c10594,0x79071b9b8a4be869, - 0xb64ec836a47146f9,0x9748e2826cdee284, - 0xe3e27a444d8d98b7,0xfd1b1b2308169b25, - 0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7, - 0xb208ef855c969f4f,0xbdbd2d335e51a935, - 0xde8b2b66b3bc4723,0xad2c788035e61382, - 0x8b16fb203055ac76,0x4c3bcb5021afcc31, - 0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d, - 0xd953e8624b85dd78,0xd71d6dad34a2af0d, - 0x87d4713d6f33aa6b,0x8672648c40e5ad68, - 0xa9c98d8ccb009506,0x680efdaf511f18c2, - 0xd43bf0effdc0ba48,0x212bd1b2566def2, - 0x84a57695fe98746d,0x14bb630f7604b57, - 0xa5ced43b7e3e9188,0x419ea3bd35385e2d, - 0xcf42894a5dce35ea,0x52064cac828675b9, - 0x818995ce7aa0e1b2,0x7343efebd1940993, - 0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8, - 0xca66fa129f9b60a6,0xd41a26e077774ef6, - 0xfd00b897478238d0,0x8920b098955522b4, - 0x9e20735e8cb16382,0x55b46e5f5d5535b0, - 0xc5a890362fddbc62,0xeb2189f734aa831d, - 0xf712b443bbd52b7b,0xa5e9ec7501d523e4, - 0x9a6bb0aa55653b2d,0x47b233c92125366e, - 0xc1069cd4eabe89f8,0x999ec0bb696e840a, - 0xf148440a256e2c76,0xc00670ea43ca250d, - 0x96cd2a865764dbca,0x380406926a5e5728, - 0xbc807527ed3e12bc,0xc605083704f5ecf2, - 0xeba09271e88d976b,0xf7864a44c633682e, - 0x93445b8731587ea3,0x7ab3ee6afbe0211d, - 0xb8157268fdae9e4c,0x5960ea05bad82964, - 0xe61acf033d1a45df,0x6fb92487298e33bd, - 0x8fd0c16206306bab,0xa5d3b6d479f8e056, - 0xb3c4f1ba87bc8696,0x8f48a4899877186c, - 0xe0b62e2929aba83c,0x331acdabfe94de87, - 0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14, - 0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9, - 0xdb71e91432b1a24a,0xc9e82cd9f69d6150, - 0x892731ac9faf056e,0xbe311c083a225cd2, - 0xab70fe17c79ac6ca,0x6dbd630a48aaf406, - 0xd64d3d9db981787d,0x92cbbccdad5b108, - 0x85f0468293f0eb4e,0x25bbf56008c58ea5, - 0xa76c582338ed2621,0xaf2af2b80af6f24e, - 0xd1476e2c07286faa,0x1af5af660db4aee1, - 0x82cca4db847945ca,0x50d98d9fc890ed4d, - 0xa37fce126597973c,0xe50ff107bab528a0, - 0xcc5fc196fefd7d0c,0x1e53ed49a96272c8, - 0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a, - 0x9faacf3df73609b1,0x77b191618c54e9ac, - 0xc795830d75038c1d,0xd59df5b9ef6a2417, - 0xf97ae3d0d2446f25,0x4b0573286b44ad1d, - 0x9becce62836ac577,0x4ee367f9430aec32, - 0xc2e801fb244576d5,0x229c41f793cda73f, - 0xf3a20279ed56d48a,0x6b43527578c1110f, - 0x9845418c345644d6,0x830a13896b78aaa9, - 0xbe5691ef416bd60c,0x23cc986bc656d553, - 0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8, - 0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9, - 0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53, - 0xe858ad248f5c22c9,0xd1b3400f8f9cff68, - 0x91376c36d99995be,0x23100809b9c21fa1, - 0xb58547448ffffb2d,0xabd40a0c2832a78a, - 0xe2e69915b3fff9f9,0x16c90c8f323f516c, - 0x8dd01fad907ffc3b,0xae3da7d97f6792e3, - 0xb1442798f49ffb4a,0x99cd11cfdf41779c, - 0xdd95317f31c7fa1d,0x40405643d711d583, - 0x8a7d3eef7f1cfc52,0x482835ea666b2572, - 0xad1c8eab5ee43b66,0xda3243650005eecf, - 0xd863b256369d4a40,0x90bed43e40076a82, - 0x873e4f75e2224e68,0x5a7744a6e804a291, - 0xa90de3535aaae202,0x711515d0a205cb36, - 0xd3515c2831559a83,0xd5a5b44ca873e03, - 0x8412d9991ed58091,0xe858790afe9486c2, - 0xa5178fff668ae0b6,0x626e974dbe39a872, - 0xce5d73ff402d98e3,0xfb0a3d212dc8128f, - 0x80fa687f881c7f8e,0x7ce66634bc9d0b99, - 0xa139029f6a239f72,0x1c1fffc1ebc44e80, - 0xc987434744ac874e,0xa327ffb266b56220, - 0xfbe9141915d7a922,0x4bf1ff9f0062baa8, - 0x9d71ac8fada6c9b5,0x6f773fc3603db4a9, - 0xc4ce17b399107c22,0xcb550fb4384d21d3, - 0xf6019da07f549b2b,0x7e2a53a146606a48, - 0x99c102844f94e0fb,0x2eda7444cbfc426d, - 0xc0314325637a1939,0xfa911155fefb5308, - 0xf03d93eebc589f88,0x793555ab7eba27ca, - 0x96267c7535b763b5,0x4bc1558b2f3458de, - 0xbbb01b9283253ca2,0x9eb1aaedfb016f16, - 0xea9c227723ee8bcb,0x465e15a979c1cadc, - 0x92a1958a7675175f,0xbfacd89ec191ec9, - 0xb749faed14125d36,0xcef980ec671f667b, - 0xe51c79a85916f484,0x82b7e12780e7401a, - 0x8f31cc0937ae58d2,0xd1b2ecb8b0908810, - 0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15, - 0xdfbdcece67006ac9,0x67a791e093e1d49a, - 0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0, - 0xaecc49914078536d,0x58fae9f773886e18, - 0xda7f5bf590966848,0xaf39a475506a899e, - 0x888f99797a5e012d,0x6d8406c952429603, - 0xaab37fd7d8f58178,0xc8e5087ba6d33b83, - 0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64, - 0x855c3be0a17fcd26,0x5cf2eea09a55067f, - 0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e, - 0xd0601d8efc57b08b,0xf13b94daf124da26, - 0x823c12795db6ce57,0x76c53d08d6b70858, - 0xa2cb1717b52481ed,0x54768c4b0c64ca6e, - 0xcb7ddcdda26da268,0xa9942f5dcf7dfd09, - 0xfe5d54150b090b02,0xd3f93b35435d7c4c, - 0x9efa548d26e5a6e1,0xc47bc5014a1a6daf, - 0xc6b8e9b0709f109a,0x359ab6419ca1091b, - 0xf867241c8cc6d4c0,0xc30163d203c94b62, - 0x9b407691d7fc44f8,0x79e0de63425dcf1d, - 0xc21094364dfb5636,0x985915fc12f542e4, - 0xf294b943e17a2bc4,0x3e6f5b7b17b2939d, - 0x979cf3ca6cec5b5a,0xa705992ceecf9c42, - 0xbd8430bd08277231,0x50c6ff782a838353, - 0xece53cec4a314ebd,0xa4f8bf5635246428, - 0x940f4613ae5ed136,0x871b7795e136be99, - 0xb913179899f68584,0x28e2557b59846e3f, - 0xe757dd7ec07426e5,0x331aeada2fe589cf, - 0x9096ea6f3848984f,0x3ff0d2c85def7621, - 0xb4bca50b065abe63,0xfed077a756b53a9, - 0xe1ebce4dc7f16dfb,0xd3e8495912c62894, - 0x8d3360f09cf6e4bd,0x64712dd7abbbd95c, - 0xb080392cc4349dec,0xbd8d794d96aacfb3, - 0xdca04777f541c567,0xecf0d7a0fc5583a0, - 0x89e42caaf9491b60,0xf41686c49db57244, - 0xac5d37d5b79b6239,0x311c2875c522ced5, - 0xd77485cb25823ac7,0x7d633293366b828b, - 0x86a8d39ef77164bc,0xae5dff9c02033197, - 0xa8530886b54dbdeb,0xd9f57f830283fdfc, - 0xd267caa862a12d66,0xd072df63c324fd7b, - 0x8380dea93da4bc60,0x4247cb9e59f71e6d, - 0xa46116538d0deb78,0x52d9be85f074e608, - 0xcd795be870516656,0x67902e276c921f8b, - 0x806bd9714632dff6,0xba1cd8a3db53b6, - 0xa086cfcd97bf97f3,0x80e8a40eccd228a4, - 0xc8a883c0fdaf7df0,0x6122cd128006b2cd, - 0xfad2a4b13d1b5d6c,0x796b805720085f81, - 0x9cc3a6eec6311a63,0xcbe3303674053bb0, - 0xc3f490aa77bd60fc,0xbedbfc4411068a9c, - 0xf4f1b4d515acb93b,0xee92fb5515482d44, - 0x991711052d8bf3c5,0x751bdd152d4d1c4a, - 0xbf5cd54678eef0b6,0xd262d45a78a0635d, - 0xef340a98172aace4,0x86fb897116c87c34, - 0x9580869f0e7aac0e,0xd45d35e6ae3d4da0, - 0xbae0a846d2195712,0x8974836059cca109, - 0xe998d258869facd7,0x2bd1a438703fc94b, - 0x91ff83775423cc06,0x7b6306a34627ddcf, - 0xb67f6455292cbf08,0x1a3bc84c17b1d542, - 0xe41f3d6a7377eeca,0x20caba5f1d9e4a93, - 0x8e938662882af53e,0x547eb47b7282ee9c, - 0xb23867fb2a35b28d,0xe99e619a4f23aa43, - 0xdec681f9f4c31f31,0x6405fa00e2ec94d4, - 0x8b3c113c38f9f37e,0xde83bc408dd3dd04, - 0xae0b158b4738705e,0x9624ab50b148d445, - 0xd98ddaee19068c76,0x3badd624dd9b0957, - 0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6, - 0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c, - 0xd47487cc8470652b,0x7647c3200069671f, - 0x84c8d4dfd2c63f3b,0x29ecd9f40041e073, - 0xa5fb0a17c777cf09,0xf468107100525890, - 0xcf79cc9db955c2cc,0x7182148d4066eeb4, - 0x81ac1fe293d599bf,0xc6f14cd848405530, - 0xa21727db38cb002f,0xb8ada00e5a506a7c, - 0xca9cf1d206fdc03b,0xa6d90811f0e4851c, - 0xfd442e4688bd304a,0x908f4a166d1da663, - 0x9e4a9cec15763e2e,0x9a598e4e043287fe, - 0xc5dd44271ad3cdba,0x40eff1e1853f29fd, - 0xf7549530e188c128,0xd12bee59e68ef47c, - 0x9a94dd3e8cf578b9,0x82bb74f8301958ce, - 0xc13a148e3032d6e7,0xe36a52363c1faf01, - 0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1, - 0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9, - 0xbcb2b812db11a5de,0x7415d448f6b6f0e7, - 0xebdf661791d60f56,0x111b495b3464ad21, - 0x936b9fcebb25c995,0xcab10dd900beec34, - 0xb84687c269ef3bfb,0x3d5d514f40eea742, - 0xe65829b3046b0afa,0xcb4a5a3112a5112, - 0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab, - 0xb3f4e093db73a093,0x59ed216765690f56, - 0xe0f218b8d25088b8,0x306869c13ec3532c, - 0x8c974f7383725573,0x1e414218c73a13fb, - 0xafbd2350644eeacf,0xe5d1929ef90898fa, - 0xdbac6c247d62a583,0xdf45f746b74abf39, - 0x894bc396ce5da772,0x6b8bba8c328eb783, - 0xab9eb47c81f5114f,0x66ea92f3f326564, - 0xd686619ba27255a2,0xc80a537b0efefebd, - 0x8613fd0145877585,0xbd06742ce95f5f36, - 0xa798fc4196e952e7,0x2c48113823b73704, - 0xd17f3b51fca3a7a0,0xf75a15862ca504c5, - 0x82ef85133de648c4,0x9a984d73dbe722fb, - 0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba, - 0xcc963fee10b7d1b3,0x318df905079926a8, - 0xffbbcfe994e5c61f,0xfdf17746497f7052, - 0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633, - 0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0, - 0xf9bd690a1b68637b,0x3dfdce7aa3c673b0, - 0x9c1661a651213e2d,0x6bea10ca65c084e, - 0xc31bfa0fe5698db8,0x486e494fcff30a62, - 0xf3e2f893dec3f126,0x5a89dba3c3efccfa, - 0x986ddb5c6b3a76b7,0xf89629465a75e01c, - 0xbe89523386091465,0xf6bbb397f1135823, - 0xee2ba6c0678b597f,0x746aa07ded582e2c, - 0x94db483840b717ef,0xa8c2a44eb4571cdc, - 0xba121a4650e4ddeb,0x92f34d62616ce413, - 0xe896a0d7e51e1566,0x77b020baf9c81d17, - 0x915e2486ef32cd60,0xace1474dc1d122e, - 0xb5b5ada8aaff80b8,0xd819992132456ba, - 0xe3231912d5bf60e6,0x10e1fff697ed6c69, - 0x8df5efabc5979c8f,0xca8d3ffa1ef463c1, - 0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2, - 0xddd0467c64bce4a0,0xac7cb3f6d05ddbde, - 0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b, - 0xad4ab7112eb3929d,0x86c16c98d2c953c6, - 0xd89d64d57a607744,0xe871c7bf077ba8b7, - 0x87625f056c7c4a8b,0x11471cd764ad4972, - 0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf, - 0xd389b47879823479,0x4aff1d108d4ec2c3, - 0x843610cb4bf160cb,0xcedf722a585139ba, - 0xa54394fe1eedb8fe,0xc2974eb4ee658828, - 0xce947a3da6a9273e,0x733d226229feea32, - 0x811ccc668829b887,0x806357d5a3f525f, - 0xa163ff802a3426a8,0xca07c2dcb0cf26f7, - 0xc9bcff6034c13052,0xfc89b393dd02f0b5, - 0xfc2c3f3841f17c67,0xbbac2078d443ace2, - 0x9d9ba7832936edc0,0xd54b944b84aa4c0d, - 0xc5029163f384a931,0xa9e795e65d4df11, - 0xf64335bcf065d37d,0x4d4617b5ff4a16d5, - 0x99ea0196163fa42e,0x504bced1bf8e4e45, - 0xc06481fb9bcf8d39,0xe45ec2862f71e1d6, - 0xf07da27a82c37088,0x5d767327bb4e5a4c, - 0x964e858c91ba2655,0x3a6a07f8d510f86f, - 0xbbe226efb628afea,0x890489f70a55368b, - 0xeadab0aba3b2dbe5,0x2b45ac74ccea842e, - 0x92c8ae6b464fc96f,0x3b0b8bc90012929d, - 0xb77ada0617e3bbcb,0x9ce6ebb40173744, - 0xe55990879ddcaabd,0xcc420a6a101d0515, - 0x8f57fa54c2a9eab6,0x9fa946824a12232d, - 0xb32df8e9f3546564,0x47939822dc96abf9, - 0xdff9772470297ebd,0x59787e2b93bc56f7, - 0x8bfbea76c619ef36,0x57eb4edb3c55b65a, - 0xaefae51477a06b03,0xede622920b6b23f1, - 0xdab99e59958885c4,0xe95fab368e45eced, - 0x88b402f7fd75539b,0x11dbcb0218ebb414, - 0xaae103b5fcd2a881,0xd652bdc29f26a119, - 0xd59944a37c0752a2,0x4be76d3346f0495f, - 0x857fcae62d8493a5,0x6f70a4400c562ddb, - 0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952, - 0xd097ad07a71f26b2,0x7e2000a41346a7a7, - 0x825ecc24c873782f,0x8ed400668c0c28c8, - 0xa2f67f2dfa90563b,0x728900802f0f32fa, - 0xcbb41ef979346bca,0x4f2b40a03ad2ffb9, - 0xfea126b7d78186bc,0xe2f610c84987bfa8, - 0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9, - 0xc6ede63fa05d3143,0x91503d1c79720dbb, - 0xf8a95fcf88747d94,0x75a44c6397ce912a, - 0x9b69dbe1b548ce7c,0xc986afbe3ee11aba, - 0xc24452da229b021b,0xfbe85badce996168, - 0xf2d56790ab41c2a2,0xfae27299423fb9c3, - 0x97c560ba6b0919a5,0xdccd879fc967d41a, - 0xbdb6b8e905cb600f,0x5400e987bbc1c920, - 0xed246723473e3813,0x290123e9aab23b68, - 0x9436c0760c86e30b,0xf9a0b6720aaf6521, - 0xb94470938fa89bce,0xf808e40e8d5b3e69, - 0xe7958cb87392c2c2,0xb60b1d1230b20e04, - 0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2, - 0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3, - 0xe2280b6c20dd5232,0x25c6da63c38de1b0, - 0x8d590723948a535f,0x579c487e5a38ad0e, - 0xb0af48ec79ace837,0x2d835a9df0c6d851, - 0xdcdb1b2798182244,0xf8e431456cf88e65, - 0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff, - 0xac8b2d36eed2dac5,0xe272467e3d222f3f, - 0xd7adf884aa879177,0x5b0ed81dcc6abb0f, - 0x86ccbb52ea94baea,0x98e947129fc2b4e9, - 0xa87fea27a539e9a5,0x3f2398d747b36224, - 0xd29fe4b18e88640e,0x8eec7f0d19a03aad, - 0x83a3eeeef9153e89,0x1953cf68300424ac, - 0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7, - 0xcdb02555653131b6,0x3792f412cb06794d, - 0x808e17555f3ebf11,0xe2bbd88bbee40bd0, - 0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4, - 0xc8de047564d20a8b,0xf245825a5a445275, - 0xfb158592be068d2e,0xeed6e2f0f0d56712, - 0x9ced737bb6c4183d,0x55464dd69685606b, - 0xc428d05aa4751e4c,0xaa97e14c3c26b886, - 0xf53304714d9265df,0xd53dd99f4b3066a8, - 0x993fe2c6d07b7fab,0xe546a8038efe4029, - 0xbf8fdb78849a5f96,0xde98520472bdd033, - 0xef73d256a5c0f77c,0x963e66858f6d4440, - 0x95a8637627989aad,0xdde7001379a44aa8, - 0xbb127c53b17ec159,0x5560c018580d5d52, - 0xe9d71b689dde71af,0xaab8f01e6e10b4a6, - 0x9226712162ab070d,0xcab3961304ca70e8, - 0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22, - 0xe45c10c42a2b3b05,0x8cb89a7db77c506a, - 0x8eb98a7a9a5b04e3,0x77f3608e92adb242, - 0xb267ed1940f1c61c,0x55f038b237591ed3, - 0xdf01e85f912e37a3,0x6b6c46dec52f6688, - 0x8b61313bbabce2c6,0x2323ac4b3b3da015, - 0xae397d8aa96c1b77,0xabec975e0a0d081a, - 0xd9c7dced53c72255,0x96e7bd358c904a21, - 0x881cea14545c7575,0x7e50d64177da2e54, - 0xaa242499697392d2,0xdde50bd1d5d0b9e9, - 0xd4ad2dbfc3d07787,0x955e4ec64b44e864, - 0x84ec3c97da624ab4,0xbd5af13bef0b113e, - 0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e, - 0xcfb11ead453994ba,0x67de18eda5814af2, - 0x81ceb32c4b43fcf4,0x80eacf948770ced7, - 0xa2425ff75e14fc31,0xa1258379a94d028d, - 0xcad2f7f5359a3b3e,0x96ee45813a04330, - 0xfd87b5f28300ca0d,0x8bca9d6e188853fc, - 0x9e74d1b791e07e48,0x775ea264cf55347e, - 0xc612062576589dda,0x95364afe032a819e, - 0xf79687aed3eec551,0x3a83ddbd83f52205, - 0x9abe14cd44753b52,0xc4926a9672793543, - 0xc16d9a0095928a27,0x75b7053c0f178294, - 0xf1c90080baf72cb1,0x5324c68b12dd6339, - 0x971da05074da7bee,0xd3f6fc16ebca5e04, - 0xbce5086492111aea,0x88f4bb1ca6bcf585, - 0xec1e4a7db69561a5,0x2b31e9e3d06c32e6, - 0x9392ee8e921d5d07,0x3aff322e62439fd0, - 0xb877aa3236a4b449,0x9befeb9fad487c3, - 0xe69594bec44de15b,0x4c2ebe687989a9b4, - 0x901d7cf73ab0acd9,0xf9d37014bf60a11, - 0xb424dc35095cd80f,0x538484c19ef38c95, - 0xe12e13424bb40e13,0x2865a5f206b06fba, - 0x8cbccc096f5088cb,0xf93f87b7442e45d4, - 0xafebff0bcb24aafe,0xf78f69a51539d749, - 0xdbe6fecebdedd5be,0xb573440e5a884d1c, - 0x89705f4136b4a597,0x31680a88f8953031, - 0xabcc77118461cefc,0xfdc20d2b36ba7c3e, - 0xd6bf94d5e57a42bc,0x3d32907604691b4d, - 0x8637bd05af6c69b5,0xa63f9a49c2c1b110, - 0xa7c5ac471b478423,0xfcf80dc33721d54, - 0xd1b71758e219652b,0xd3c36113404ea4a9, - 0x83126e978d4fdf3b,0x645a1cac083126ea, - 0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4, - 0xcccccccccccccccc,0xcccccccccccccccd, - 0x8000000000000000,0x0, - 0xa000000000000000,0x0, - 0xc800000000000000,0x0, - 0xfa00000000000000,0x0, - 0x9c40000000000000,0x0, - 0xc350000000000000,0x0, - 0xf424000000000000,0x0, - 0x9896800000000000,0x0, - 0xbebc200000000000,0x0, - 0xee6b280000000000,0x0, - 0x9502f90000000000,0x0, - 0xba43b74000000000,0x0, - 0xe8d4a51000000000,0x0, - 0x9184e72a00000000,0x0, - 0xb5e620f480000000,0x0, - 0xe35fa931a0000000,0x0, - 0x8e1bc9bf04000000,0x0, - 0xb1a2bc2ec5000000,0x0, - 0xde0b6b3a76400000,0x0, - 0x8ac7230489e80000,0x0, - 0xad78ebc5ac620000,0x0, - 0xd8d726b7177a8000,0x0, - 0x878678326eac9000,0x0, - 0xa968163f0a57b400,0x0, - 0xd3c21bcecceda100,0x0, - 0x84595161401484a0,0x0, - 0xa56fa5b99019a5c8,0x0, - 0xcecb8f27f4200f3a,0x0, - 0x813f3978f8940984,0x4000000000000000, - 0xa18f07d736b90be5,0x5000000000000000, - 0xc9f2c9cd04674ede,0xa400000000000000, - 0xfc6f7c4045812296,0x4d00000000000000, - 0x9dc5ada82b70b59d,0xf020000000000000, - 0xc5371912364ce305,0x6c28000000000000, - 0xf684df56c3e01bc6,0xc732000000000000, - 0x9a130b963a6c115c,0x3c7f400000000000, - 0xc097ce7bc90715b3,0x4b9f100000000000, - 0xf0bdc21abb48db20,0x1e86d40000000000, - 0x96769950b50d88f4,0x1314448000000000, - 0xbc143fa4e250eb31,0x17d955a000000000, - 0xeb194f8e1ae525fd,0x5dcfab0800000000, - 0x92efd1b8d0cf37be,0x5aa1cae500000000, - 0xb7abc627050305ad,0xf14a3d9e40000000, - 0xe596b7b0c643c719,0x6d9ccd05d0000000, - 0x8f7e32ce7bea5c6f,0xe4820023a2000000, - 0xb35dbf821ae4f38b,0xdda2802c8a800000, - 0xe0352f62a19e306e,0xd50b2037ad200000, - 0x8c213d9da502de45,0x4526f422cc340000, - 0xaf298d050e4395d6,0x9670b12b7f410000, - 0xdaf3f04651d47b4c,0x3c0cdd765f114000, - 0x88d8762bf324cd0f,0xa5880a69fb6ac800, - 0xab0e93b6efee0053,0x8eea0d047a457a00, - 0xd5d238a4abe98068,0x72a4904598d6d880, - 0x85a36366eb71f041,0x47a6da2b7f864750, - 0xa70c3c40a64e6c51,0x999090b65f67d924, - 0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d, - 0x82818f1281ed449f,0xbff8f10e7a8921a4, - 0xa321f2d7226895c7,0xaff72d52192b6a0d, - 0xcbea6f8ceb02bb39,0x9bf4f8a69f764490, - 0xfee50b7025c36a08,0x2f236d04753d5b4, - 0x9f4f2726179a2245,0x1d762422c946590, - 0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5, - 0xf8ebad2b84e0d58b,0xd2e0898765a7deb2, - 0x9b934c3b330c8577,0x63cc55f49f88eb2f, - 0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb, - 0xf316271c7fc3908a,0x8bef464e3945ef7a, - 0x97edd871cfda3a56,0x97758bf0e3cbb5ac, - 0xbde94e8e43d0c8ec,0x3d52eeed1cbea317, - 0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd, - 0x945e455f24fb1cf8,0x8fe8caa93e74ef6a, - 0xb975d6b6ee39e436,0xb3e2fd538e122b44, - 0xe7d34c64a9c85d44,0x60dbbca87196b616, - 0x90e40fbeea1d3a4a,0xbc8955e946fe31cd, - 0xb51d13aea4a488dd,0x6babab6398bdbe41, - 0xe264589a4dcdab14,0xc696963c7eed2dd1, - 0x8d7eb76070a08aec,0xfc1e1de5cf543ca2, - 0xb0de65388cc8ada8,0x3b25a55f43294bcb, - 0xdd15fe86affad912,0x49ef0eb713f39ebe, - 0x8a2dbf142dfcc7ab,0x6e3569326c784337, - 0xacb92ed9397bf996,0x49c2c37f07965404, - 0xd7e77a8f87daf7fb,0xdc33745ec97be906, - 0x86f0ac99b4e8dafd,0x69a028bb3ded71a3, - 0xa8acd7c0222311bc,0xc40832ea0d68ce0c, - 0xd2d80db02aabd62b,0xf50a3fa490c30190, - 0x83c7088e1aab65db,0x792667c6da79e0fa, - 0xa4b8cab1a1563f52,0x577001b891185938, - 0xcde6fd5e09abcf26,0xed4c0226b55e6f86, - 0x80b05e5ac60b6178,0x544f8158315b05b4, - 0xa0dc75f1778e39d6,0x696361ae3db1c721, - 0xc913936dd571c84c,0x3bc3a19cd1e38e9, - 0xfb5878494ace3a5f,0x4ab48a04065c723, - 0x9d174b2dcec0e47b,0x62eb0d64283f9c76, - 0xc45d1df942711d9a,0x3ba5d0bd324f8394, - 0xf5746577930d6500,0xca8f44ec7ee36479, - 0x9968bf6abbe85f20,0x7e998b13cf4e1ecb, - 0xbfc2ef456ae276e8,0x9e3fedd8c321a67e, - 0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e, - 0x95d04aee3b80ece5,0xbba1f1d158724a12, - 0xbb445da9ca61281f,0x2a8a6e45ae8edc97, - 0xea1575143cf97226,0xf52d09d71a3293bd, - 0x924d692ca61be758,0x593c2626705f9c56, - 0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c, - 0xe498f455c38b997a,0xb6dfb9c0f956447, - 0x8edf98b59a373fec,0x4724bd4189bd5eac, - 0xb2977ee300c50fe7,0x58edec91ec2cb657, - 0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed, - 0x8b865b215899f46c,0xbd79e0d20082ee74, - 0xae67f1e9aec07187,0xecd8590680a3aa11, - 0xda01ee641a708de9,0xe80e6f4820cc9495, - 0x884134fe908658b2,0x3109058d147fdcdd, - 0xaa51823e34a7eede,0xbd4b46f0599fd415, - 0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a, - 0x850fadc09923329e,0x3e2cf6bc604ddb0, - 0xa6539930bf6bff45,0x84db8346b786151c, - 0xcfe87f7cef46ff16,0xe612641865679a63, - 0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e, - 0xa26da3999aef7749,0xe3be5e330f38f09d, - 0xcb090c8001ab551c,0x5cadf5bfd3072cc5, - 0xfdcb4fa002162a63,0x73d9732fc7c8f7f6, - 0x9e9f11c4014dda7e,0x2867e7fddcdd9afa, - 0xc646d63501a1511d,0xb281e1fd541501b8, - 0xf7d88bc24209a565,0x1f225a7ca91a4226, - 0x9ae757596946075f,0x3375788de9b06958, - 0xc1a12d2fc3978937,0x52d6b1641c83ae, - 0xf209787bb47d6b84,0xc0678c5dbd23a49a, - 0x9745eb4d50ce6332,0xf840b7ba963646e0, - 0xbd176620a501fbff,0xb650e5a93bc3d898, - 0xec5d3fa8ce427aff,0xa3e51f138ab4cebe, - 0x93ba47c980e98cdf,0xc66f336c36b10137, - 0xb8a8d9bbe123f017,0xb80b0047445d4184, - 0xe6d3102ad96cec1d,0xa60dc059157491e5, - 0x9043ea1ac7e41392,0x87c89837ad68db2f, - 0xb454e4a179dd1877,0x29babe4598c311fb, - 0xe16a1dc9d8545e94,0xf4296dd6fef3d67a, - 0x8ce2529e2734bb1d,0x1899e4a65f58660c, - 0xb01ae745b101e9e4,0x5ec05dcff72e7f8f, - 0xdc21a1171d42645d,0x76707543f4fa1f73, - 0x899504ae72497eba,0x6a06494a791c53a8, - 0xabfa45da0edbde69,0x487db9d17636892, - 0xd6f8d7509292d603,0x45a9d2845d3c42b6, - 0x865b86925b9bc5c2,0xb8a2392ba45a9b2, - 0xa7f26836f282b732,0x8e6cac7768d7141e, - 0xd1ef0244af2364ff,0x3207d795430cd926, - 0x8335616aed761f1f,0x7f44e6bd49e807b8, - 0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6, - 0xcd036837130890a1,0x36dba887c37a8c0f, - 0x802221226be55a64,0xc2494954da2c9789, - 0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c, - 0xc83553c5c8965d3d,0x6f92829494e5acc7, - 0xfa42a8b73abbf48c,0xcb772339ba1f17f9, - 0x9c69a97284b578d7,0xff2a760414536efb, - 0xc38413cf25e2d70d,0xfef5138519684aba, - 0xf46518c2ef5b8cd1,0x7eb258665fc25d69, - 0x98bf2f79d5993802,0xef2f773ffbd97a61, - 0xbeeefb584aff8603,0xaafb550ffacfd8fa, - 0xeeaaba2e5dbf6784,0x95ba2a53f983cf38, - 0x952ab45cfa97a0b2,0xdd945a747bf26183, - 0xba756174393d88df,0x94f971119aeef9e4, - 0xe912b9d1478ceb17,0x7a37cd5601aab85d, - 0x91abb422ccb812ee,0xac62e055c10ab33a, - 0xb616a12b7fe617aa,0x577b986b314d6009, - 0xe39c49765fdf9d94,0xed5a7e85fda0b80b, - 0x8e41ade9fbebc27d,0x14588f13be847307, - 0xb1d219647ae6b31c,0x596eb2d8ae258fc8, - 0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb, - 0x8aec23d680043bee,0x25de7bb9480d5854, - 0xada72ccc20054ae9,0xaf561aa79a10ae6a, - 0xd910f7ff28069da4,0x1b2ba1518094da04, - 0x87aa9aff79042286,0x90fb44d2f05d0842, - 0xa99541bf57452b28,0x353a1607ac744a53, - 0xd3fa922f2d1675f2,0x42889b8997915ce8, - 0x847c9b5d7c2e09b7,0x69956135febada11, - 0xa59bc234db398c25,0x43fab9837e699095, - 0xcf02b2c21207ef2e,0x94f967e45e03f4bb, - 0x8161afb94b44f57d,0x1d1be0eebac278f5, - 0xa1ba1ba79e1632dc,0x6462d92a69731732, - 0xca28a291859bbf93,0x7d7b8f7503cfdcfe, - 0xfcb2cb35e702af78,0x5cda735244c3d43e, - 0x9defbf01b061adab,0x3a0888136afa64a7, - 0xc56baec21c7a1916,0x88aaa1845b8fdd0, - 0xf6c69a72a3989f5b,0x8aad549e57273d45, - 0x9a3c2087a63f6399,0x36ac54e2f678864b, - 0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd, - 0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5, - 0x969eb7c47859e743,0x9f644ae5a4b1b325, - 0xbc4665b596706114,0x873d5d9f0dde1fee, - 0xeb57ff22fc0c7959,0xa90cb506d155a7ea, - 0x9316ff75dd87cbd8,0x9a7f12442d588f2, - 0xb7dcbf5354e9bece,0xc11ed6d538aeb2f, - 0xe5d3ef282a242e81,0x8f1668c8a86da5fa, - 0x8fa475791a569d10,0xf96e017d694487bc, - 0xb38d92d760ec4455,0x37c981dcc395a9ac, - 0xe070f78d3927556a,0x85bbe253f47b1417, - 0x8c469ab843b89562,0x93956d7478ccec8e, - 0xaf58416654a6babb,0x387ac8d1970027b2, - 0xdb2e51bfe9d0696a,0x6997b05fcc0319e, - 0x88fcf317f22241e2,0x441fece3bdf81f03, - 0xab3c2fddeeaad25a,0xd527e81cad7626c3, - 0xd60b3bd56a5586f1,0x8a71e223d8d3b074, - 0x85c7056562757456,0xf6872d5667844e49, - 0xa738c6bebb12d16c,0xb428f8ac016561db, - 0xd106f86e69d785c7,0xe13336d701beba52, - 0x82a45b450226b39c,0xecc0024661173473, - 0xa34d721642b06084,0x27f002d7f95d0190, - 0xcc20ce9bd35c78a5,0x31ec038df7b441f4, - 0xff290242c83396ce,0x7e67047175a15271, - 0x9f79a169bd203e41,0xf0062c6e984d386, - 0xc75809c42c684dd1,0x52c07b78a3e60868, - 0xf92e0c3537826145,0xa7709a56ccdf8a82, - 0x9bbcc7a142b17ccb,0x88a66076400bb691, - 0xc2abf989935ddbfe,0x6acff893d00ea435, - 0xf356f7ebf83552fe,0x583f6b8c4124d43, - 0x98165af37b2153de,0xc3727a337a8b704a, - 0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c, - 0xeda2ee1c7064130c,0x1162def06f79df73, - 0x9485d4d1c63e8be7,0x8addcb5645ac2ba8, - 0xb9a74a0637ce2ee1,0x6d953e2bd7173692, - 0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437, - 0x910ab1d4db9914a0,0x1d9c9892400a22a2, - 0xb54d5e4a127f59c8,0x2503beb6d00cab4b, - 0xe2a0b5dc971f303a,0x2e44ae64840fd61d, - 0x8da471a9de737e24,0x5ceaecfed289e5d2, - 0xb10d8e1456105dad,0x7425a83e872c5f47, - 0xdd50f1996b947518,0xd12f124e28f77719, - 0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f, - 0xace73cbfdc0bfb7b,0x636cc64d1001550b, - 0xd8210befd30efa5a,0x3c47f7e05401aa4e, - 0x8714a775e3e95c78,0x65acfaec34810a71, - 0xa8d9d1535ce3b396,0x7f1839a741a14d0d, - 0xd31045a8341ca07c,0x1ede48111209a050, - 0x83ea2b892091e44d,0x934aed0aab460432, - 0xa4e4b66b68b65d60,0xf81da84d5617853f, - 0xce1de40642e3f4b9,0x36251260ab9d668e, - 0x80d2ae83e9ce78f3,0xc1d72b7c6b426019, - 0xa1075a24e4421730,0xb24cf65b8612f81f, - 0xc94930ae1d529cfc,0xdee033f26797b627, - 0xfb9b7cd9a4a7443c,0x169840ef017da3b1, - 0x9d412e0806e88aa5,0x8e1f289560ee864e, - 0xc491798a08a2ad4e,0xf1a6f2bab92a27e2, - 0xf5b5d7ec8acb58a2,0xae10af696774b1db, - 0x9991a6f3d6bf1765,0xacca6da1e0a8ef29, - 0xbff610b0cc6edd3f,0x17fd090a58d32af3, - 0xeff394dcff8a948e,0xddfc4b4cef07f5b0, - 0x95f83d0a1fb69cd9,0x4abdaf101564f98e, - 0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1, - 0xea53df5fd18d5513,0x84c86189216dc5ed, - 0x92746b9be2f8552c,0x32fd3cf5b4e49bb4, - 0xb7118682dbb66a77,0x3fbc8c33221dc2a1, - 0xe4d5e82392a40515,0xfabaf3feaa5334a, - 0x8f05b1163ba6832d,0x29cb4d87f2a7400e, - 0xb2c71d5bca9023f8,0x743e20e9ef511012, - 0xdf78e4b2bd342cf6,0x914da9246b255416, - 0x8bab8eefb6409c1a,0x1ad089b6c2f7548e, - 0xae9672aba3d0c320,0xa184ac2473b529b1, - 0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e, - 0x8865899617fb1871,0x7e2fa67c7a658892, - 0xaa7eebfb9df9de8d,0xddbb901b98feeab7, - 0xd51ea6fa85785631,0x552a74227f3ea565, - 0x8533285c936b35de,0xd53a88958f87275f, - 0xa67ff273b8460356,0x8a892abaf368f137, - 0xd01fef10a657842c,0x2d2b7569b0432d85, - 0x8213f56a67f6b29b,0x9c3b29620e29fc73, - 0xa298f2c501f45f42,0x8349f3ba91b47b8f, - 0xcb3f2f7642717713,0x241c70a936219a73, - 0xfe0efb53d30dd4d7,0xed238cd383aa0110, - 0x9ec95d1463e8a506,0xf4363804324a40aa, - 0xc67bb4597ce2ce48,0xb143c6053edcd0d5, - 0xf81aa16fdc1b81da,0xdd94b7868e94050a, - 0x9b10a4e5e9913128,0xca7cf2b4191c8326, - 0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0, - 0xf24a01a73cf2dccf,0xbc633b39673c8cec, - 0x976e41088617ca01,0xd5be0503e085d813, - 0xbd49d14aa79dbc82,0x4b2d8644d8a74e18, - 0xec9c459d51852ba2,0xddf8e7d60ed1219e, - 0x93e1ab8252f33b45,0xcabb90e5c942b503, - 0xb8da1662e7b00a17,0x3d6a751f3b936243, - 0xe7109bfba19c0c9d,0xcc512670a783ad4, - 0x906a617d450187e2,0x27fb2b80668b24c5, - 0xb484f9dc9641e9da,0xb1f9f660802dedf6, - 0xe1a63853bbd26451,0x5e7873f8a0396973, - 0x8d07e33455637eb2,0xdb0b487b6423e1e8, - 0xb049dc016abc5e5f,0x91ce1a9a3d2cda62, - 0xdc5c5301c56b75f7,0x7641a140cc7810fb, - 0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d, - 0xac2820d9623bf429,0x546345fa9fbdcd44, - 0xd732290fbacaf133,0xa97c177947ad4095, - 0x867f59a9d4bed6c0,0x49ed8eabcccc485d, - 0xa81f301449ee8c70,0x5c68f256bfff5a74, - 0xd226fc195c6a2f8c,0x73832eec6fff3111, - 0x83585d8fd9c25db7,0xc831fd53c5ff7eab, - 0xa42e74f3d032f525,0xba3e7ca8b77f5e55, - 0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb, - 0x80444b5e7aa7cf85,0x7980d163cf5b81b3, - 0xa0555e361951c366,0xd7e105bcc332621f, - 0xc86ab5c39fa63440,0x8dd9472bf3fefaa7, - 0xfa856334878fc150,0xb14f98f6f0feb951, - 0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3, - 0xc3b8358109e84f07,0xa862f80ec4700c8, - 0xf4a642e14c6262c8,0xcd27bb612758c0fa, - 0x98e7e9cccfbd7dbd,0x8038d51cb897789c, - 0xbf21e44003acdd2c,0xe0470a63e6bd56c3, - 0xeeea5d5004981478,0x1858ccfce06cac74, - 0x95527a5202df0ccb,0xf37801e0c43ebc8, - 0xbaa718e68396cffd,0xd30560258f54e6ba, - 0xe950df20247c83fd,0x47c6b82ef32a2069, - 0x91d28b7416cdd27e,0x4cdc331d57fa5441, - 0xb6472e511c81471d,0xe0133fe4adf8e952, - 0xe3d8f9e563a198e5,0x58180fddd97723a6, - 0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,}; + 0xeef453d6923bd65a,0x113faa2906a13b3f, + 0x9558b4661b6565f8,0x4ac7ca59a424c507, + 0xbaaee17fa23ebf76,0x5d79bcf00d2df649, + 0xe95a99df8ace6f53,0xf4d82c2c107973dc, + 0x91d8a02bb6c10594,0x79071b9b8a4be869, + 0xb64ec836a47146f9,0x9748e2826cdee284, + 0xe3e27a444d8d98b7,0xfd1b1b2308169b25, + 0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7, + 0xb208ef855c969f4f,0xbdbd2d335e51a935, + 0xde8b2b66b3bc4723,0xad2c788035e61382, + 0x8b16fb203055ac76,0x4c3bcb5021afcc31, + 0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d, + 0xd953e8624b85dd78,0xd71d6dad34a2af0d, + 0x87d4713d6f33aa6b,0x8672648c40e5ad68, + 0xa9c98d8ccb009506,0x680efdaf511f18c2, + 0xd43bf0effdc0ba48,0x212bd1b2566def2, + 0x84a57695fe98746d,0x14bb630f7604b57, + 0xa5ced43b7e3e9188,0x419ea3bd35385e2d, + 0xcf42894a5dce35ea,0x52064cac828675b9, + 0x818995ce7aa0e1b2,0x7343efebd1940993, + 0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8, + 0xca66fa129f9b60a6,0xd41a26e077774ef6, + 0xfd00b897478238d0,0x8920b098955522b4, + 0x9e20735e8cb16382,0x55b46e5f5d5535b0, + 0xc5a890362fddbc62,0xeb2189f734aa831d, + 0xf712b443bbd52b7b,0xa5e9ec7501d523e4, + 0x9a6bb0aa55653b2d,0x47b233c92125366e, + 0xc1069cd4eabe89f8,0x999ec0bb696e840a, + 0xf148440a256e2c76,0xc00670ea43ca250d, + 0x96cd2a865764dbca,0x380406926a5e5728, + 0xbc807527ed3e12bc,0xc605083704f5ecf2, + 0xeba09271e88d976b,0xf7864a44c633682e, + 0x93445b8731587ea3,0x7ab3ee6afbe0211d, + 0xb8157268fdae9e4c,0x5960ea05bad82964, + 0xe61acf033d1a45df,0x6fb92487298e33bd, + 0x8fd0c16206306bab,0xa5d3b6d479f8e056, + 0xb3c4f1ba87bc8696,0x8f48a4899877186c, + 0xe0b62e2929aba83c,0x331acdabfe94de87, + 0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14, + 0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9, + 0xdb71e91432b1a24a,0xc9e82cd9f69d6150, + 0x892731ac9faf056e,0xbe311c083a225cd2, + 0xab70fe17c79ac6ca,0x6dbd630a48aaf406, + 0xd64d3d9db981787d,0x92cbbccdad5b108, + 0x85f0468293f0eb4e,0x25bbf56008c58ea5, + 0xa76c582338ed2621,0xaf2af2b80af6f24e, + 0xd1476e2c07286faa,0x1af5af660db4aee1, + 0x82cca4db847945ca,0x50d98d9fc890ed4d, + 0xa37fce126597973c,0xe50ff107bab528a0, + 0xcc5fc196fefd7d0c,0x1e53ed49a96272c8, + 0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a, + 0x9faacf3df73609b1,0x77b191618c54e9ac, + 0xc795830d75038c1d,0xd59df5b9ef6a2417, + 0xf97ae3d0d2446f25,0x4b0573286b44ad1d, + 0x9becce62836ac577,0x4ee367f9430aec32, + 0xc2e801fb244576d5,0x229c41f793cda73f, + 0xf3a20279ed56d48a,0x6b43527578c1110f, + 0x9845418c345644d6,0x830a13896b78aaa9, + 0xbe5691ef416bd60c,0x23cc986bc656d553, + 0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8, + 0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9, + 0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53, + 0xe858ad248f5c22c9,0xd1b3400f8f9cff68, + 0x91376c36d99995be,0x23100809b9c21fa1, + 0xb58547448ffffb2d,0xabd40a0c2832a78a, + 0xe2e69915b3fff9f9,0x16c90c8f323f516c, + 0x8dd01fad907ffc3b,0xae3da7d97f6792e3, + 0xb1442798f49ffb4a,0x99cd11cfdf41779c, + 0xdd95317f31c7fa1d,0x40405643d711d583, + 0x8a7d3eef7f1cfc52,0x482835ea666b2572, + 0xad1c8eab5ee43b66,0xda3243650005eecf, + 0xd863b256369d4a40,0x90bed43e40076a82, + 0x873e4f75e2224e68,0x5a7744a6e804a291, + 0xa90de3535aaae202,0x711515d0a205cb36, + 0xd3515c2831559a83,0xd5a5b44ca873e03, + 0x8412d9991ed58091,0xe858790afe9486c2, + 0xa5178fff668ae0b6,0x626e974dbe39a872, + 0xce5d73ff402d98e3,0xfb0a3d212dc8128f, + 0x80fa687f881c7f8e,0x7ce66634bc9d0b99, + 0xa139029f6a239f72,0x1c1fffc1ebc44e80, + 0xc987434744ac874e,0xa327ffb266b56220, + 0xfbe9141915d7a922,0x4bf1ff9f0062baa8, + 0x9d71ac8fada6c9b5,0x6f773fc3603db4a9, + 0xc4ce17b399107c22,0xcb550fb4384d21d3, + 0xf6019da07f549b2b,0x7e2a53a146606a48, + 0x99c102844f94e0fb,0x2eda7444cbfc426d, + 0xc0314325637a1939,0xfa911155fefb5308, + 0xf03d93eebc589f88,0x793555ab7eba27ca, + 0x96267c7535b763b5,0x4bc1558b2f3458de, + 0xbbb01b9283253ca2,0x9eb1aaedfb016f16, + 0xea9c227723ee8bcb,0x465e15a979c1cadc, + 0x92a1958a7675175f,0xbfacd89ec191ec9, + 0xb749faed14125d36,0xcef980ec671f667b, + 0xe51c79a85916f484,0x82b7e12780e7401a, + 0x8f31cc0937ae58d2,0xd1b2ecb8b0908810, + 0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15, + 0xdfbdcece67006ac9,0x67a791e093e1d49a, + 0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0, + 0xaecc49914078536d,0x58fae9f773886e18, + 0xda7f5bf590966848,0xaf39a475506a899e, + 0x888f99797a5e012d,0x6d8406c952429603, + 0xaab37fd7d8f58178,0xc8e5087ba6d33b83, + 0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64, + 0x855c3be0a17fcd26,0x5cf2eea09a55067f, + 0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e, + 0xd0601d8efc57b08b,0xf13b94daf124da26, + 0x823c12795db6ce57,0x76c53d08d6b70858, + 0xa2cb1717b52481ed,0x54768c4b0c64ca6e, + 0xcb7ddcdda26da268,0xa9942f5dcf7dfd09, + 0xfe5d54150b090b02,0xd3f93b35435d7c4c, + 0x9efa548d26e5a6e1,0xc47bc5014a1a6daf, + 0xc6b8e9b0709f109a,0x359ab6419ca1091b, + 0xf867241c8cc6d4c0,0xc30163d203c94b62, + 0x9b407691d7fc44f8,0x79e0de63425dcf1d, + 0xc21094364dfb5636,0x985915fc12f542e4, + 0xf294b943e17a2bc4,0x3e6f5b7b17b2939d, + 0x979cf3ca6cec5b5a,0xa705992ceecf9c42, + 0xbd8430bd08277231,0x50c6ff782a838353, + 0xece53cec4a314ebd,0xa4f8bf5635246428, + 0x940f4613ae5ed136,0x871b7795e136be99, + 0xb913179899f68584,0x28e2557b59846e3f, + 0xe757dd7ec07426e5,0x331aeada2fe589cf, + 0x9096ea6f3848984f,0x3ff0d2c85def7621, + 0xb4bca50b065abe63,0xfed077a756b53a9, + 0xe1ebce4dc7f16dfb,0xd3e8495912c62894, + 0x8d3360f09cf6e4bd,0x64712dd7abbbd95c, + 0xb080392cc4349dec,0xbd8d794d96aacfb3, + 0xdca04777f541c567,0xecf0d7a0fc5583a0, + 0x89e42caaf9491b60,0xf41686c49db57244, + 0xac5d37d5b79b6239,0x311c2875c522ced5, + 0xd77485cb25823ac7,0x7d633293366b828b, + 0x86a8d39ef77164bc,0xae5dff9c02033197, + 0xa8530886b54dbdeb,0xd9f57f830283fdfc, + 0xd267caa862a12d66,0xd072df63c324fd7b, + 0x8380dea93da4bc60,0x4247cb9e59f71e6d, + 0xa46116538d0deb78,0x52d9be85f074e608, + 0xcd795be870516656,0x67902e276c921f8b, + 0x806bd9714632dff6,0xba1cd8a3db53b6, + 0xa086cfcd97bf97f3,0x80e8a40eccd228a4, + 0xc8a883c0fdaf7df0,0x6122cd128006b2cd, + 0xfad2a4b13d1b5d6c,0x796b805720085f81, + 0x9cc3a6eec6311a63,0xcbe3303674053bb0, + 0xc3f490aa77bd60fc,0xbedbfc4411068a9c, + 0xf4f1b4d515acb93b,0xee92fb5515482d44, + 0x991711052d8bf3c5,0x751bdd152d4d1c4a, + 0xbf5cd54678eef0b6,0xd262d45a78a0635d, + 0xef340a98172aace4,0x86fb897116c87c34, + 0x9580869f0e7aac0e,0xd45d35e6ae3d4da0, + 0xbae0a846d2195712,0x8974836059cca109, + 0xe998d258869facd7,0x2bd1a438703fc94b, + 0x91ff83775423cc06,0x7b6306a34627ddcf, + 0xb67f6455292cbf08,0x1a3bc84c17b1d542, + 0xe41f3d6a7377eeca,0x20caba5f1d9e4a93, + 0x8e938662882af53e,0x547eb47b7282ee9c, + 0xb23867fb2a35b28d,0xe99e619a4f23aa43, + 0xdec681f9f4c31f31,0x6405fa00e2ec94d4, + 0x8b3c113c38f9f37e,0xde83bc408dd3dd04, + 0xae0b158b4738705e,0x9624ab50b148d445, + 0xd98ddaee19068c76,0x3badd624dd9b0957, + 0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6, + 0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c, + 0xd47487cc8470652b,0x7647c3200069671f, + 0x84c8d4dfd2c63f3b,0x29ecd9f40041e073, + 0xa5fb0a17c777cf09,0xf468107100525890, + 0xcf79cc9db955c2cc,0x7182148d4066eeb4, + 0x81ac1fe293d599bf,0xc6f14cd848405530, + 0xa21727db38cb002f,0xb8ada00e5a506a7c, + 0xca9cf1d206fdc03b,0xa6d90811f0e4851c, + 0xfd442e4688bd304a,0x908f4a166d1da663, + 0x9e4a9cec15763e2e,0x9a598e4e043287fe, + 0xc5dd44271ad3cdba,0x40eff1e1853f29fd, + 0xf7549530e188c128,0xd12bee59e68ef47c, + 0x9a94dd3e8cf578b9,0x82bb74f8301958ce, + 0xc13a148e3032d6e7,0xe36a52363c1faf01, + 0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1, + 0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9, + 0xbcb2b812db11a5de,0x7415d448f6b6f0e7, + 0xebdf661791d60f56,0x111b495b3464ad21, + 0x936b9fcebb25c995,0xcab10dd900beec34, + 0xb84687c269ef3bfb,0x3d5d514f40eea742, + 0xe65829b3046b0afa,0xcb4a5a3112a5112, + 0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab, + 0xb3f4e093db73a093,0x59ed216765690f56, + 0xe0f218b8d25088b8,0x306869c13ec3532c, + 0x8c974f7383725573,0x1e414218c73a13fb, + 0xafbd2350644eeacf,0xe5d1929ef90898fa, + 0xdbac6c247d62a583,0xdf45f746b74abf39, + 0x894bc396ce5da772,0x6b8bba8c328eb783, + 0xab9eb47c81f5114f,0x66ea92f3f326564, + 0xd686619ba27255a2,0xc80a537b0efefebd, + 0x8613fd0145877585,0xbd06742ce95f5f36, + 0xa798fc4196e952e7,0x2c48113823b73704, + 0xd17f3b51fca3a7a0,0xf75a15862ca504c5, + 0x82ef85133de648c4,0x9a984d73dbe722fb, + 0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba, + 0xcc963fee10b7d1b3,0x318df905079926a8, + 0xffbbcfe994e5c61f,0xfdf17746497f7052, + 0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633, + 0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0, + 0xf9bd690a1b68637b,0x3dfdce7aa3c673b0, + 0x9c1661a651213e2d,0x6bea10ca65c084e, + 0xc31bfa0fe5698db8,0x486e494fcff30a62, + 0xf3e2f893dec3f126,0x5a89dba3c3efccfa, + 0x986ddb5c6b3a76b7,0xf89629465a75e01c, + 0xbe89523386091465,0xf6bbb397f1135823, + 0xee2ba6c0678b597f,0x746aa07ded582e2c, + 0x94db483840b717ef,0xa8c2a44eb4571cdc, + 0xba121a4650e4ddeb,0x92f34d62616ce413, + 0xe896a0d7e51e1566,0x77b020baf9c81d17, + 0x915e2486ef32cd60,0xace1474dc1d122e, + 0xb5b5ada8aaff80b8,0xd819992132456ba, + 0xe3231912d5bf60e6,0x10e1fff697ed6c69, + 0x8df5efabc5979c8f,0xca8d3ffa1ef463c1, + 0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2, + 0xddd0467c64bce4a0,0xac7cb3f6d05ddbde, + 0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b, + 0xad4ab7112eb3929d,0x86c16c98d2c953c6, + 0xd89d64d57a607744,0xe871c7bf077ba8b7, + 0x87625f056c7c4a8b,0x11471cd764ad4972, + 0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf, + 0xd389b47879823479,0x4aff1d108d4ec2c3, + 0x843610cb4bf160cb,0xcedf722a585139ba, + 0xa54394fe1eedb8fe,0xc2974eb4ee658828, + 0xce947a3da6a9273e,0x733d226229feea32, + 0x811ccc668829b887,0x806357d5a3f525f, + 0xa163ff802a3426a8,0xca07c2dcb0cf26f7, + 0xc9bcff6034c13052,0xfc89b393dd02f0b5, + 0xfc2c3f3841f17c67,0xbbac2078d443ace2, + 0x9d9ba7832936edc0,0xd54b944b84aa4c0d, + 0xc5029163f384a931,0xa9e795e65d4df11, + 0xf64335bcf065d37d,0x4d4617b5ff4a16d5, + 0x99ea0196163fa42e,0x504bced1bf8e4e45, + 0xc06481fb9bcf8d39,0xe45ec2862f71e1d6, + 0xf07da27a82c37088,0x5d767327bb4e5a4c, + 0x964e858c91ba2655,0x3a6a07f8d510f86f, + 0xbbe226efb628afea,0x890489f70a55368b, + 0xeadab0aba3b2dbe5,0x2b45ac74ccea842e, + 0x92c8ae6b464fc96f,0x3b0b8bc90012929d, + 0xb77ada0617e3bbcb,0x9ce6ebb40173744, + 0xe55990879ddcaabd,0xcc420a6a101d0515, + 0x8f57fa54c2a9eab6,0x9fa946824a12232d, + 0xb32df8e9f3546564,0x47939822dc96abf9, + 0xdff9772470297ebd,0x59787e2b93bc56f7, + 0x8bfbea76c619ef36,0x57eb4edb3c55b65a, + 0xaefae51477a06b03,0xede622920b6b23f1, + 0xdab99e59958885c4,0xe95fab368e45eced, + 0x88b402f7fd75539b,0x11dbcb0218ebb414, + 0xaae103b5fcd2a881,0xd652bdc29f26a119, + 0xd59944a37c0752a2,0x4be76d3346f0495f, + 0x857fcae62d8493a5,0x6f70a4400c562ddb, + 0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952, + 0xd097ad07a71f26b2,0x7e2000a41346a7a7, + 0x825ecc24c873782f,0x8ed400668c0c28c8, + 0xa2f67f2dfa90563b,0x728900802f0f32fa, + 0xcbb41ef979346bca,0x4f2b40a03ad2ffb9, + 0xfea126b7d78186bc,0xe2f610c84987bfa8, + 0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9, + 0xc6ede63fa05d3143,0x91503d1c79720dbb, + 0xf8a95fcf88747d94,0x75a44c6397ce912a, + 0x9b69dbe1b548ce7c,0xc986afbe3ee11aba, + 0xc24452da229b021b,0xfbe85badce996168, + 0xf2d56790ab41c2a2,0xfae27299423fb9c3, + 0x97c560ba6b0919a5,0xdccd879fc967d41a, + 0xbdb6b8e905cb600f,0x5400e987bbc1c920, + 0xed246723473e3813,0x290123e9aab23b68, + 0x9436c0760c86e30b,0xf9a0b6720aaf6521, + 0xb94470938fa89bce,0xf808e40e8d5b3e69, + 0xe7958cb87392c2c2,0xb60b1d1230b20e04, + 0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2, + 0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3, + 0xe2280b6c20dd5232,0x25c6da63c38de1b0, + 0x8d590723948a535f,0x579c487e5a38ad0e, + 0xb0af48ec79ace837,0x2d835a9df0c6d851, + 0xdcdb1b2798182244,0xf8e431456cf88e65, + 0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff, + 0xac8b2d36eed2dac5,0xe272467e3d222f3f, + 0xd7adf884aa879177,0x5b0ed81dcc6abb0f, + 0x86ccbb52ea94baea,0x98e947129fc2b4e9, + 0xa87fea27a539e9a5,0x3f2398d747b36224, + 0xd29fe4b18e88640e,0x8eec7f0d19a03aad, + 0x83a3eeeef9153e89,0x1953cf68300424ac, + 0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7, + 0xcdb02555653131b6,0x3792f412cb06794d, + 0x808e17555f3ebf11,0xe2bbd88bbee40bd0, + 0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4, + 0xc8de047564d20a8b,0xf245825a5a445275, + 0xfb158592be068d2e,0xeed6e2f0f0d56712, + 0x9ced737bb6c4183d,0x55464dd69685606b, + 0xc428d05aa4751e4c,0xaa97e14c3c26b886, + 0xf53304714d9265df,0xd53dd99f4b3066a8, + 0x993fe2c6d07b7fab,0xe546a8038efe4029, + 0xbf8fdb78849a5f96,0xde98520472bdd033, + 0xef73d256a5c0f77c,0x963e66858f6d4440, + 0x95a8637627989aad,0xdde7001379a44aa8, + 0xbb127c53b17ec159,0x5560c018580d5d52, + 0xe9d71b689dde71af,0xaab8f01e6e10b4a6, + 0x9226712162ab070d,0xcab3961304ca70e8, + 0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22, + 0xe45c10c42a2b3b05,0x8cb89a7db77c506a, + 0x8eb98a7a9a5b04e3,0x77f3608e92adb242, + 0xb267ed1940f1c61c,0x55f038b237591ed3, + 0xdf01e85f912e37a3,0x6b6c46dec52f6688, + 0x8b61313bbabce2c6,0x2323ac4b3b3da015, + 0xae397d8aa96c1b77,0xabec975e0a0d081a, + 0xd9c7dced53c72255,0x96e7bd358c904a21, + 0x881cea14545c7575,0x7e50d64177da2e54, + 0xaa242499697392d2,0xdde50bd1d5d0b9e9, + 0xd4ad2dbfc3d07787,0x955e4ec64b44e864, + 0x84ec3c97da624ab4,0xbd5af13bef0b113e, + 0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e, + 0xcfb11ead453994ba,0x67de18eda5814af2, + 0x81ceb32c4b43fcf4,0x80eacf948770ced7, + 0xa2425ff75e14fc31,0xa1258379a94d028d, + 0xcad2f7f5359a3b3e,0x96ee45813a04330, + 0xfd87b5f28300ca0d,0x8bca9d6e188853fc, + 0x9e74d1b791e07e48,0x775ea264cf55347e, + 0xc612062576589dda,0x95364afe032a819e, + 0xf79687aed3eec551,0x3a83ddbd83f52205, + 0x9abe14cd44753b52,0xc4926a9672793543, + 0xc16d9a0095928a27,0x75b7053c0f178294, + 0xf1c90080baf72cb1,0x5324c68b12dd6339, + 0x971da05074da7bee,0xd3f6fc16ebca5e04, + 0xbce5086492111aea,0x88f4bb1ca6bcf585, + 0xec1e4a7db69561a5,0x2b31e9e3d06c32e6, + 0x9392ee8e921d5d07,0x3aff322e62439fd0, + 0xb877aa3236a4b449,0x9befeb9fad487c3, + 0xe69594bec44de15b,0x4c2ebe687989a9b4, + 0x901d7cf73ab0acd9,0xf9d37014bf60a11, + 0xb424dc35095cd80f,0x538484c19ef38c95, + 0xe12e13424bb40e13,0x2865a5f206b06fba, + 0x8cbccc096f5088cb,0xf93f87b7442e45d4, + 0xafebff0bcb24aafe,0xf78f69a51539d749, + 0xdbe6fecebdedd5be,0xb573440e5a884d1c, + 0x89705f4136b4a597,0x31680a88f8953031, + 0xabcc77118461cefc,0xfdc20d2b36ba7c3e, + 0xd6bf94d5e57a42bc,0x3d32907604691b4d, + 0x8637bd05af6c69b5,0xa63f9a49c2c1b110, + 0xa7c5ac471b478423,0xfcf80dc33721d54, + 0xd1b71758e219652b,0xd3c36113404ea4a9, + 0x83126e978d4fdf3b,0x645a1cac083126ea, + 0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4, + 0xcccccccccccccccc,0xcccccccccccccccd, + 0x8000000000000000,0x0, + 0xa000000000000000,0x0, + 0xc800000000000000,0x0, + 0xfa00000000000000,0x0, + 0x9c40000000000000,0x0, + 0xc350000000000000,0x0, + 0xf424000000000000,0x0, + 0x9896800000000000,0x0, + 0xbebc200000000000,0x0, + 0xee6b280000000000,0x0, + 0x9502f90000000000,0x0, + 0xba43b74000000000,0x0, + 0xe8d4a51000000000,0x0, + 0x9184e72a00000000,0x0, + 0xb5e620f480000000,0x0, + 0xe35fa931a0000000,0x0, + 0x8e1bc9bf04000000,0x0, + 0xb1a2bc2ec5000000,0x0, + 0xde0b6b3a76400000,0x0, + 0x8ac7230489e80000,0x0, + 0xad78ebc5ac620000,0x0, + 0xd8d726b7177a8000,0x0, + 0x878678326eac9000,0x0, + 0xa968163f0a57b400,0x0, + 0xd3c21bcecceda100,0x0, + 0x84595161401484a0,0x0, + 0xa56fa5b99019a5c8,0x0, + 0xcecb8f27f4200f3a,0x0, + 0x813f3978f8940984,0x4000000000000000, + 0xa18f07d736b90be5,0x5000000000000000, + 0xc9f2c9cd04674ede,0xa400000000000000, + 0xfc6f7c4045812296,0x4d00000000000000, + 0x9dc5ada82b70b59d,0xf020000000000000, + 0xc5371912364ce305,0x6c28000000000000, + 0xf684df56c3e01bc6,0xc732000000000000, + 0x9a130b963a6c115c,0x3c7f400000000000, + 0xc097ce7bc90715b3,0x4b9f100000000000, + 0xf0bdc21abb48db20,0x1e86d40000000000, + 0x96769950b50d88f4,0x1314448000000000, + 0xbc143fa4e250eb31,0x17d955a000000000, + 0xeb194f8e1ae525fd,0x5dcfab0800000000, + 0x92efd1b8d0cf37be,0x5aa1cae500000000, + 0xb7abc627050305ad,0xf14a3d9e40000000, + 0xe596b7b0c643c719,0x6d9ccd05d0000000, + 0x8f7e32ce7bea5c6f,0xe4820023a2000000, + 0xb35dbf821ae4f38b,0xdda2802c8a800000, + 0xe0352f62a19e306e,0xd50b2037ad200000, + 0x8c213d9da502de45,0x4526f422cc340000, + 0xaf298d050e4395d6,0x9670b12b7f410000, + 0xdaf3f04651d47b4c,0x3c0cdd765f114000, + 0x88d8762bf324cd0f,0xa5880a69fb6ac800, + 0xab0e93b6efee0053,0x8eea0d047a457a00, + 0xd5d238a4abe98068,0x72a4904598d6d880, + 0x85a36366eb71f041,0x47a6da2b7f864750, + 0xa70c3c40a64e6c51,0x999090b65f67d924, + 0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d, + 0x82818f1281ed449f,0xbff8f10e7a8921a4, + 0xa321f2d7226895c7,0xaff72d52192b6a0d, + 0xcbea6f8ceb02bb39,0x9bf4f8a69f764490, + 0xfee50b7025c36a08,0x2f236d04753d5b4, + 0x9f4f2726179a2245,0x1d762422c946590, + 0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5, + 0xf8ebad2b84e0d58b,0xd2e0898765a7deb2, + 0x9b934c3b330c8577,0x63cc55f49f88eb2f, + 0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb, + 0xf316271c7fc3908a,0x8bef464e3945ef7a, + 0x97edd871cfda3a56,0x97758bf0e3cbb5ac, + 0xbde94e8e43d0c8ec,0x3d52eeed1cbea317, + 0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd, + 0x945e455f24fb1cf8,0x8fe8caa93e74ef6a, + 0xb975d6b6ee39e436,0xb3e2fd538e122b44, + 0xe7d34c64a9c85d44,0x60dbbca87196b616, + 0x90e40fbeea1d3a4a,0xbc8955e946fe31cd, + 0xb51d13aea4a488dd,0x6babab6398bdbe41, + 0xe264589a4dcdab14,0xc696963c7eed2dd1, + 0x8d7eb76070a08aec,0xfc1e1de5cf543ca2, + 0xb0de65388cc8ada8,0x3b25a55f43294bcb, + 0xdd15fe86affad912,0x49ef0eb713f39ebe, + 0x8a2dbf142dfcc7ab,0x6e3569326c784337, + 0xacb92ed9397bf996,0x49c2c37f07965404, + 0xd7e77a8f87daf7fb,0xdc33745ec97be906, + 0x86f0ac99b4e8dafd,0x69a028bb3ded71a3, + 0xa8acd7c0222311bc,0xc40832ea0d68ce0c, + 0xd2d80db02aabd62b,0xf50a3fa490c30190, + 0x83c7088e1aab65db,0x792667c6da79e0fa, + 0xa4b8cab1a1563f52,0x577001b891185938, + 0xcde6fd5e09abcf26,0xed4c0226b55e6f86, + 0x80b05e5ac60b6178,0x544f8158315b05b4, + 0xa0dc75f1778e39d6,0x696361ae3db1c721, + 0xc913936dd571c84c,0x3bc3a19cd1e38e9, + 0xfb5878494ace3a5f,0x4ab48a04065c723, + 0x9d174b2dcec0e47b,0x62eb0d64283f9c76, + 0xc45d1df942711d9a,0x3ba5d0bd324f8394, + 0xf5746577930d6500,0xca8f44ec7ee36479, + 0x9968bf6abbe85f20,0x7e998b13cf4e1ecb, + 0xbfc2ef456ae276e8,0x9e3fedd8c321a67e, + 0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e, + 0x95d04aee3b80ece5,0xbba1f1d158724a12, + 0xbb445da9ca61281f,0x2a8a6e45ae8edc97, + 0xea1575143cf97226,0xf52d09d71a3293bd, + 0x924d692ca61be758,0x593c2626705f9c56, + 0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c, + 0xe498f455c38b997a,0xb6dfb9c0f956447, + 0x8edf98b59a373fec,0x4724bd4189bd5eac, + 0xb2977ee300c50fe7,0x58edec91ec2cb657, + 0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed, + 0x8b865b215899f46c,0xbd79e0d20082ee74, + 0xae67f1e9aec07187,0xecd8590680a3aa11, + 0xda01ee641a708de9,0xe80e6f4820cc9495, + 0x884134fe908658b2,0x3109058d147fdcdd, + 0xaa51823e34a7eede,0xbd4b46f0599fd415, + 0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a, + 0x850fadc09923329e,0x3e2cf6bc604ddb0, + 0xa6539930bf6bff45,0x84db8346b786151c, + 0xcfe87f7cef46ff16,0xe612641865679a63, + 0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e, + 0xa26da3999aef7749,0xe3be5e330f38f09d, + 0xcb090c8001ab551c,0x5cadf5bfd3072cc5, + 0xfdcb4fa002162a63,0x73d9732fc7c8f7f6, + 0x9e9f11c4014dda7e,0x2867e7fddcdd9afa, + 0xc646d63501a1511d,0xb281e1fd541501b8, + 0xf7d88bc24209a565,0x1f225a7ca91a4226, + 0x9ae757596946075f,0x3375788de9b06958, + 0xc1a12d2fc3978937,0x52d6b1641c83ae, + 0xf209787bb47d6b84,0xc0678c5dbd23a49a, + 0x9745eb4d50ce6332,0xf840b7ba963646e0, + 0xbd176620a501fbff,0xb650e5a93bc3d898, + 0xec5d3fa8ce427aff,0xa3e51f138ab4cebe, + 0x93ba47c980e98cdf,0xc66f336c36b10137, + 0xb8a8d9bbe123f017,0xb80b0047445d4184, + 0xe6d3102ad96cec1d,0xa60dc059157491e5, + 0x9043ea1ac7e41392,0x87c89837ad68db2f, + 0xb454e4a179dd1877,0x29babe4598c311fb, + 0xe16a1dc9d8545e94,0xf4296dd6fef3d67a, + 0x8ce2529e2734bb1d,0x1899e4a65f58660c, + 0xb01ae745b101e9e4,0x5ec05dcff72e7f8f, + 0xdc21a1171d42645d,0x76707543f4fa1f73, + 0x899504ae72497eba,0x6a06494a791c53a8, + 0xabfa45da0edbde69,0x487db9d17636892, + 0xd6f8d7509292d603,0x45a9d2845d3c42b6, + 0x865b86925b9bc5c2,0xb8a2392ba45a9b2, + 0xa7f26836f282b732,0x8e6cac7768d7141e, + 0xd1ef0244af2364ff,0x3207d795430cd926, + 0x8335616aed761f1f,0x7f44e6bd49e807b8, + 0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6, + 0xcd036837130890a1,0x36dba887c37a8c0f, + 0x802221226be55a64,0xc2494954da2c9789, + 0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c, + 0xc83553c5c8965d3d,0x6f92829494e5acc7, + 0xfa42a8b73abbf48c,0xcb772339ba1f17f9, + 0x9c69a97284b578d7,0xff2a760414536efb, + 0xc38413cf25e2d70d,0xfef5138519684aba, + 0xf46518c2ef5b8cd1,0x7eb258665fc25d69, + 0x98bf2f79d5993802,0xef2f773ffbd97a61, + 0xbeeefb584aff8603,0xaafb550ffacfd8fa, + 0xeeaaba2e5dbf6784,0x95ba2a53f983cf38, + 0x952ab45cfa97a0b2,0xdd945a747bf26183, + 0xba756174393d88df,0x94f971119aeef9e4, + 0xe912b9d1478ceb17,0x7a37cd5601aab85d, + 0x91abb422ccb812ee,0xac62e055c10ab33a, + 0xb616a12b7fe617aa,0x577b986b314d6009, + 0xe39c49765fdf9d94,0xed5a7e85fda0b80b, + 0x8e41ade9fbebc27d,0x14588f13be847307, + 0xb1d219647ae6b31c,0x596eb2d8ae258fc8, + 0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb, + 0x8aec23d680043bee,0x25de7bb9480d5854, + 0xada72ccc20054ae9,0xaf561aa79a10ae6a, + 0xd910f7ff28069da4,0x1b2ba1518094da04, + 0x87aa9aff79042286,0x90fb44d2f05d0842, + 0xa99541bf57452b28,0x353a1607ac744a53, + 0xd3fa922f2d1675f2,0x42889b8997915ce8, + 0x847c9b5d7c2e09b7,0x69956135febada11, + 0xa59bc234db398c25,0x43fab9837e699095, + 0xcf02b2c21207ef2e,0x94f967e45e03f4bb, + 0x8161afb94b44f57d,0x1d1be0eebac278f5, + 0xa1ba1ba79e1632dc,0x6462d92a69731732, + 0xca28a291859bbf93,0x7d7b8f7503cfdcfe, + 0xfcb2cb35e702af78,0x5cda735244c3d43e, + 0x9defbf01b061adab,0x3a0888136afa64a7, + 0xc56baec21c7a1916,0x88aaa1845b8fdd0, + 0xf6c69a72a3989f5b,0x8aad549e57273d45, + 0x9a3c2087a63f6399,0x36ac54e2f678864b, + 0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd, + 0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5, + 0x969eb7c47859e743,0x9f644ae5a4b1b325, + 0xbc4665b596706114,0x873d5d9f0dde1fee, + 0xeb57ff22fc0c7959,0xa90cb506d155a7ea, + 0x9316ff75dd87cbd8,0x9a7f12442d588f2, + 0xb7dcbf5354e9bece,0xc11ed6d538aeb2f, + 0xe5d3ef282a242e81,0x8f1668c8a86da5fa, + 0x8fa475791a569d10,0xf96e017d694487bc, + 0xb38d92d760ec4455,0x37c981dcc395a9ac, + 0xe070f78d3927556a,0x85bbe253f47b1417, + 0x8c469ab843b89562,0x93956d7478ccec8e, + 0xaf58416654a6babb,0x387ac8d1970027b2, + 0xdb2e51bfe9d0696a,0x6997b05fcc0319e, + 0x88fcf317f22241e2,0x441fece3bdf81f03, + 0xab3c2fddeeaad25a,0xd527e81cad7626c3, + 0xd60b3bd56a5586f1,0x8a71e223d8d3b074, + 0x85c7056562757456,0xf6872d5667844e49, + 0xa738c6bebb12d16c,0xb428f8ac016561db, + 0xd106f86e69d785c7,0xe13336d701beba52, + 0x82a45b450226b39c,0xecc0024661173473, + 0xa34d721642b06084,0x27f002d7f95d0190, + 0xcc20ce9bd35c78a5,0x31ec038df7b441f4, + 0xff290242c83396ce,0x7e67047175a15271, + 0x9f79a169bd203e41,0xf0062c6e984d386, + 0xc75809c42c684dd1,0x52c07b78a3e60868, + 0xf92e0c3537826145,0xa7709a56ccdf8a82, + 0x9bbcc7a142b17ccb,0x88a66076400bb691, + 0xc2abf989935ddbfe,0x6acff893d00ea435, + 0xf356f7ebf83552fe,0x583f6b8c4124d43, + 0x98165af37b2153de,0xc3727a337a8b704a, + 0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c, + 0xeda2ee1c7064130c,0x1162def06f79df73, + 0x9485d4d1c63e8be7,0x8addcb5645ac2ba8, + 0xb9a74a0637ce2ee1,0x6d953e2bd7173692, + 0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437, + 0x910ab1d4db9914a0,0x1d9c9892400a22a2, + 0xb54d5e4a127f59c8,0x2503beb6d00cab4b, + 0xe2a0b5dc971f303a,0x2e44ae64840fd61d, + 0x8da471a9de737e24,0x5ceaecfed289e5d2, + 0xb10d8e1456105dad,0x7425a83e872c5f47, + 0xdd50f1996b947518,0xd12f124e28f77719, + 0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f, + 0xace73cbfdc0bfb7b,0x636cc64d1001550b, + 0xd8210befd30efa5a,0x3c47f7e05401aa4e, + 0x8714a775e3e95c78,0x65acfaec34810a71, + 0xa8d9d1535ce3b396,0x7f1839a741a14d0d, + 0xd31045a8341ca07c,0x1ede48111209a050, + 0x83ea2b892091e44d,0x934aed0aab460432, + 0xa4e4b66b68b65d60,0xf81da84d5617853f, + 0xce1de40642e3f4b9,0x36251260ab9d668e, + 0x80d2ae83e9ce78f3,0xc1d72b7c6b426019, + 0xa1075a24e4421730,0xb24cf65b8612f81f, + 0xc94930ae1d529cfc,0xdee033f26797b627, + 0xfb9b7cd9a4a7443c,0x169840ef017da3b1, + 0x9d412e0806e88aa5,0x8e1f289560ee864e, + 0xc491798a08a2ad4e,0xf1a6f2bab92a27e2, + 0xf5b5d7ec8acb58a2,0xae10af696774b1db, + 0x9991a6f3d6bf1765,0xacca6da1e0a8ef29, + 0xbff610b0cc6edd3f,0x17fd090a58d32af3, + 0xeff394dcff8a948e,0xddfc4b4cef07f5b0, + 0x95f83d0a1fb69cd9,0x4abdaf101564f98e, + 0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1, + 0xea53df5fd18d5513,0x84c86189216dc5ed, + 0x92746b9be2f8552c,0x32fd3cf5b4e49bb4, + 0xb7118682dbb66a77,0x3fbc8c33221dc2a1, + 0xe4d5e82392a40515,0xfabaf3feaa5334a, + 0x8f05b1163ba6832d,0x29cb4d87f2a7400e, + 0xb2c71d5bca9023f8,0x743e20e9ef511012, + 0xdf78e4b2bd342cf6,0x914da9246b255416, + 0x8bab8eefb6409c1a,0x1ad089b6c2f7548e, + 0xae9672aba3d0c320,0xa184ac2473b529b1, + 0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e, + 0x8865899617fb1871,0x7e2fa67c7a658892, + 0xaa7eebfb9df9de8d,0xddbb901b98feeab7, + 0xd51ea6fa85785631,0x552a74227f3ea565, + 0x8533285c936b35de,0xd53a88958f87275f, + 0xa67ff273b8460356,0x8a892abaf368f137, + 0xd01fef10a657842c,0x2d2b7569b0432d85, + 0x8213f56a67f6b29b,0x9c3b29620e29fc73, + 0xa298f2c501f45f42,0x8349f3ba91b47b8f, + 0xcb3f2f7642717713,0x241c70a936219a73, + 0xfe0efb53d30dd4d7,0xed238cd383aa0110, + 0x9ec95d1463e8a506,0xf4363804324a40aa, + 0xc67bb4597ce2ce48,0xb143c6053edcd0d5, + 0xf81aa16fdc1b81da,0xdd94b7868e94050a, + 0x9b10a4e5e9913128,0xca7cf2b4191c8326, + 0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0, + 0xf24a01a73cf2dccf,0xbc633b39673c8cec, + 0x976e41088617ca01,0xd5be0503e085d813, + 0xbd49d14aa79dbc82,0x4b2d8644d8a74e18, + 0xec9c459d51852ba2,0xddf8e7d60ed1219e, + 0x93e1ab8252f33b45,0xcabb90e5c942b503, + 0xb8da1662e7b00a17,0x3d6a751f3b936243, + 0xe7109bfba19c0c9d,0xcc512670a783ad4, + 0x906a617d450187e2,0x27fb2b80668b24c5, + 0xb484f9dc9641e9da,0xb1f9f660802dedf6, + 0xe1a63853bbd26451,0x5e7873f8a0396973, + 0x8d07e33455637eb2,0xdb0b487b6423e1e8, + 0xb049dc016abc5e5f,0x91ce1a9a3d2cda62, + 0xdc5c5301c56b75f7,0x7641a140cc7810fb, + 0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d, + 0xac2820d9623bf429,0x546345fa9fbdcd44, + 0xd732290fbacaf133,0xa97c177947ad4095, + 0x867f59a9d4bed6c0,0x49ed8eabcccc485d, + 0xa81f301449ee8c70,0x5c68f256bfff5a74, + 0xd226fc195c6a2f8c,0x73832eec6fff3111, + 0x83585d8fd9c25db7,0xc831fd53c5ff7eab, + 0xa42e74f3d032f525,0xba3e7ca8b77f5e55, + 0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb, + 0x80444b5e7aa7cf85,0x7980d163cf5b81b3, + 0xa0555e361951c366,0xd7e105bcc332621f, + 0xc86ab5c39fa63440,0x8dd9472bf3fefaa7, + 0xfa856334878fc150,0xb14f98f6f0feb951, + 0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3, + 0xc3b8358109e84f07,0xa862f80ec4700c8, + 0xf4a642e14c6262c8,0xcd27bb612758c0fa, + 0x98e7e9cccfbd7dbd,0x8038d51cb897789c, + 0xbf21e44003acdd2c,0xe0470a63e6bd56c3, + 0xeeea5d5004981478,0x1858ccfce06cac74, + 0x95527a5202df0ccb,0xf37801e0c43ebc8, + 0xbaa718e68396cffd,0xd30560258f54e6ba, + 0xe950df20247c83fd,0x47c6b82ef32a2069, + 0x91d28b7416cdd27e,0x4cdc331d57fa5441, + 0xb6472e511c81471d,0xe0133fe4adf8e952, + 0xe3d8f9e563a198e5,0x58180fddd97723a6, + 0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,}; using powers = powers_template<>; - -} - + +} + #endif diff --git a/contrib/restricted/fast_float/include/fast_float/float_common.h b/contrib/restricted/fast_float/include/fast_float/float_common.h index 9374cdffd4..1a224948e4 100644 --- a/contrib/restricted/fast_float/include/fast_float/float_common.h +++ b/contrib/restricted/fast_float/include/fast_float/float_common.h @@ -1,24 +1,24 @@ -#ifndef FASTFLOAT_FLOAT_COMMON_H -#define FASTFLOAT_FLOAT_COMMON_H - -#include <cfloat> -#include <cstdint> -#include <cassert> +#ifndef FASTFLOAT_FLOAT_COMMON_H +#define FASTFLOAT_FLOAT_COMMON_H + +#include <cfloat> +#include <cstdint> +#include <cassert> #include <cstring> #include <type_traits> - + #if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) \ - || defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) \ - || defined(__MINGW64__) \ - || defined(__s390x__) \ + || defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) \ + || defined(__MINGW64__) \ + || defined(__s390x__) \ || (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || defined(__PPC64LE__)) \ || defined(__EMSCRIPTEN__)) -#define FASTFLOAT_64BIT +#define FASTFLOAT_64BIT #elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) \ || defined(__arm__) || defined(_M_ARM) \ || defined(__MINGW32__)) #define FASTFLOAT_32BIT -#else +#else // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow. // We can never tell the register width, but the SIZE_MAX is a good approximation. // UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max portability. @@ -31,50 +31,50 @@ #else #error Unknown platform (not 32-bit, not 64-bit?) #endif -#endif - -#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) -#include <intrin.h> -#endif - -#if defined(_MSC_VER) && !defined(__clang__) -#define FASTFLOAT_VISUAL_STUDIO 1 -#endif - -#ifdef _WIN32 -#define FASTFLOAT_IS_BIG_ENDIAN 0 -#else -#if defined(__APPLE__) || defined(__FreeBSD__) -#include <machine/endian.h> +#endif + +#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) +#include <intrin.h> +#endif + +#if defined(_MSC_VER) && !defined(__clang__) +#define FASTFLOAT_VISUAL_STUDIO 1 +#endif + +#ifdef _WIN32 +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#else +#if defined(__APPLE__) || defined(__FreeBSD__) +#include <machine/endian.h> #elif defined(sun) || defined(__sun) #include <sys/byteorder.h> -#else -#include <endian.h> -#endif -# -#ifndef __BYTE_ORDER__ -// safe choice -#define FASTFLOAT_IS_BIG_ENDIAN 0 -#endif -# -#ifndef __ORDER_LITTLE_ENDIAN__ -// safe choice -#define FASTFLOAT_IS_BIG_ENDIAN 0 -#endif -# -#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ -#define FASTFLOAT_IS_BIG_ENDIAN 0 -#else -#define FASTFLOAT_IS_BIG_ENDIAN 1 -#endif -#endif - -#ifdef FASTFLOAT_VISUAL_STUDIO -#define fastfloat_really_inline __forceinline -#else -#define fastfloat_really_inline inline __attribute__((always_inline)) -#endif - +#else +#include <endian.h> +#endif +# +#ifndef __BYTE_ORDER__ +// safe choice +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#endif +# +#ifndef __ORDER_LITTLE_ENDIAN__ +// safe choice +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#endif +# +#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#else +#define FASTFLOAT_IS_BIG_ENDIAN 1 +#endif +#endif + +#ifdef FASTFLOAT_VISUAL_STUDIO +#define fastfloat_really_inline __forceinline +#else +#define fastfloat_really_inline inline __attribute__((always_inline)) +#endif + #ifndef FASTFLOAT_ASSERT #define FASTFLOAT_ASSERT(x) { if (!(x)) abort(); } #endif @@ -87,22 +87,22 @@ // rust style `try!()` macro, or `?` operator #define FASTFLOAT_TRY(x) { if (!(x)) return false; } -namespace fast_float { - -// Compares two ASCII strings in a case insensitive manner. -inline bool fastfloat_strncasecmp(const char *input1, const char *input2, - size_t length) { - char running_diff{0}; - for (size_t i = 0; i < length; i++) { - running_diff |= (input1[i] ^ input2[i]); - } - return (running_diff == 0) || (running_diff == 32); -} - -#ifndef FLT_EVAL_METHOD -#error "FLT_EVAL_METHOD should be defined, please include cfloat." -#endif - +namespace fast_float { + +// Compares two ASCII strings in a case insensitive manner. +inline bool fastfloat_strncasecmp(const char *input1, const char *input2, + size_t length) { + char running_diff{0}; + for (size_t i = 0; i < length; i++) { + running_diff |= (input1[i] ^ input2[i]); + } + return (running_diff == 0) || (running_diff == 32); +} + +#ifndef FLT_EVAL_METHOD +#error "FLT_EVAL_METHOD should be defined, please include cfloat." +#endif + // a pointer and a length to a contiguous block of memory template <typename T> struct span { @@ -110,7 +110,7 @@ struct span { size_t length; span(const T* _ptr, size_t _length) : ptr(_ptr), length(_length) {} span() : ptr(nullptr), length(0) {} - + constexpr size_t len() const noexcept { return length; } @@ -121,105 +121,105 @@ struct span { } }; -struct value128 { - uint64_t low; - uint64_t high; - value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} - value128() : low(0), high(0) {} -}; - -/* result might be undefined when input_num is zero */ -fastfloat_really_inline int leading_zeroes(uint64_t input_num) { - assert(input_num > 0); -#ifdef FASTFLOAT_VISUAL_STUDIO - #if defined(_M_X64) || defined(_M_ARM64) - unsigned long leading_zero = 0; - // Search the mask data from most significant bit (MSB) - // to least significant bit (LSB) for a set bit (1). - _BitScanReverse64(&leading_zero, input_num); - return (int)(63 - leading_zero); - #else - int last_bit = 0; - if(input_num & uint64_t(0xffffffff00000000)) input_num >>= 32, last_bit |= 32; - if(input_num & uint64_t( 0xffff0000)) input_num >>= 16, last_bit |= 16; - if(input_num & uint64_t( 0xff00)) input_num >>= 8, last_bit |= 8; - if(input_num & uint64_t( 0xf0)) input_num >>= 4, last_bit |= 4; - if(input_num & uint64_t( 0xc)) input_num >>= 2, last_bit |= 2; - if(input_num & uint64_t( 0x2)) input_num >>= 1, last_bit |= 1; - return 63 - last_bit; - #endif -#else - return __builtin_clzll(input_num); -#endif -} - -#ifdef FASTFLOAT_32BIT - -// slow emulation routine for 32-bit +struct value128 { + uint64_t low; + uint64_t high; + value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} + value128() : low(0), high(0) {} +}; + +/* result might be undefined when input_num is zero */ +fastfloat_really_inline int leading_zeroes(uint64_t input_num) { + assert(input_num > 0); +#ifdef FASTFLOAT_VISUAL_STUDIO + #if defined(_M_X64) || defined(_M_ARM64) + unsigned long leading_zero = 0; + // Search the mask data from most significant bit (MSB) + // to least significant bit (LSB) for a set bit (1). + _BitScanReverse64(&leading_zero, input_num); + return (int)(63 - leading_zero); + #else + int last_bit = 0; + if(input_num & uint64_t(0xffffffff00000000)) input_num >>= 32, last_bit |= 32; + if(input_num & uint64_t( 0xffff0000)) input_num >>= 16, last_bit |= 16; + if(input_num & uint64_t( 0xff00)) input_num >>= 8, last_bit |= 8; + if(input_num & uint64_t( 0xf0)) input_num >>= 4, last_bit |= 4; + if(input_num & uint64_t( 0xc)) input_num >>= 2, last_bit |= 2; + if(input_num & uint64_t( 0x2)) input_num >>= 1, last_bit |= 1; + return 63 - last_bit; + #endif +#else + return __builtin_clzll(input_num); +#endif +} + +#ifdef FASTFLOAT_32BIT + +// slow emulation routine for 32-bit fastfloat_really_inline uint64_t emulu(uint32_t x, uint32_t y) { - return x * (uint64_t)y; -} - -// slow emulation routine for 32-bit -#if !defined(__MINGW64__) -fastfloat_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd, - uint64_t *hi) { + return x * (uint64_t)y; +} + +// slow emulation routine for 32-bit +#if !defined(__MINGW64__) +fastfloat_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd, + uint64_t *hi) { uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd); uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd); uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32)); - uint64_t adbc_carry = !!(adbc < ad); - uint64_t lo = bd + (adbc << 32); + uint64_t adbc_carry = !!(adbc < ad); + uint64_t lo = bd + (adbc << 32); *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + - (adbc_carry << 32) + !!(lo < bd); - return lo; -} -#endif // !__MINGW64__ - -#endif // FASTFLOAT_32BIT - - -// compute 64-bit a*b -fastfloat_really_inline value128 full_multiplication(uint64_t a, - uint64_t b) { - value128 answer; -#ifdef _M_ARM64 - // ARM64 has native support for 64-bit multiplications, no need to emulate - answer.high = __umulh(a, b); - answer.low = a * b; + (adbc_carry << 32) + !!(lo < bd); + return lo; +} +#endif // !__MINGW64__ + +#endif // FASTFLOAT_32BIT + + +// compute 64-bit a*b +fastfloat_really_inline value128 full_multiplication(uint64_t a, + uint64_t b) { + value128 answer; +#ifdef _M_ARM64 + // ARM64 has native support for 64-bit multiplications, no need to emulate + answer.high = __umulh(a, b); + answer.low = a * b; #elif defined(FASTFLOAT_32BIT) || (defined(_WIN64) && !defined(__clang__)) - answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64 -#elif defined(FASTFLOAT_64BIT) - __uint128_t r = ((__uint128_t)a) * b; - answer.low = uint64_t(r); - answer.high = uint64_t(r >> 64); -#else - #error Not implemented -#endif - return answer; -} - -struct adjusted_mantissa { - uint64_t mantissa{0}; + answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64 +#elif defined(FASTFLOAT_64BIT) + __uint128_t r = ((__uint128_t)a) * b; + answer.low = uint64_t(r); + answer.high = uint64_t(r >> 64); +#else + #error Not implemented +#endif + return answer; +} + +struct adjusted_mantissa { + uint64_t mantissa{0}; int32_t power2{0}; // a negative value indicates an invalid result - adjusted_mantissa() = default; - bool operator==(const adjusted_mantissa &o) const { - return mantissa == o.mantissa && power2 == o.power2; - } + adjusted_mantissa() = default; + bool operator==(const adjusted_mantissa &o) const { + return mantissa == o.mantissa && power2 == o.power2; + } bool operator!=(const adjusted_mantissa &o) const { return mantissa != o.mantissa || power2 != o.power2; } -}; - +}; + // Bias so we can get the real exponent with an invalid adjusted_mantissa. constexpr static int32_t invalid_am_bias = -0x8000; - -constexpr static double powers_of_ten_double[] = { - 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, - 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; -constexpr static float powers_of_ten_float[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5, - 1e6, 1e7, 1e8, 1e9, 1e10}; - -template <typename T> struct binary_format { + +constexpr static double powers_of_ten_double[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, + 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; +constexpr static float powers_of_ten_float[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5, + 1e6, 1e7, 1e8, 1e9, 1e10}; + +template <typename T> struct binary_format { using equiv_uint = typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type; static inline constexpr int mantissa_explicit_bits(); @@ -238,122 +238,122 @@ template <typename T> struct binary_format { static inline constexpr equiv_uint exponent_mask(); static inline constexpr equiv_uint mantissa_mask(); static inline constexpr equiv_uint hidden_bit_mask(); -}; - +}; + template <> inline constexpr int binary_format<double>::mantissa_explicit_bits() { - return 52; -} + return 52; +} template <> inline constexpr int binary_format<float>::mantissa_explicit_bits() { - return 23; -} - + return 23; +} + template <> inline constexpr int binary_format<double>::max_exponent_round_to_even() { - return 23; -} - + return 23; +} + template <> inline constexpr int binary_format<float>::max_exponent_round_to_even() { - return 10; -} - + return 10; +} + template <> inline constexpr int binary_format<double>::min_exponent_round_to_even() { - return -4; -} - + return -4; +} + template <> inline constexpr int binary_format<float>::min_exponent_round_to_even() { - return -17; -} - + return -17; +} + template <> inline constexpr int binary_format<double>::minimum_exponent() { - return -1023; -} + return -1023; +} template <> inline constexpr int binary_format<float>::minimum_exponent() { - return -127; -} - + return -127; +} + template <> inline constexpr int binary_format<double>::infinite_power() { - return 0x7FF; -} + return 0x7FF; +} template <> inline constexpr int binary_format<float>::infinite_power() { - return 0xFF; -} - + return 0xFF; +} + template <> inline constexpr int binary_format<double>::sign_index() { return 63; } template <> inline constexpr int binary_format<float>::sign_index() { return 31; } - + template <> inline constexpr int binary_format<double>::min_exponent_fast_path() { -#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) - return 0; -#else - return -22; -#endif -} +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return 0; +#else + return -22; +#endif +} template <> inline constexpr int binary_format<float>::min_exponent_fast_path() { -#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) - return 0; -#else - return -10; -#endif -} - +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return 0; +#else + return -10; +#endif +} + template <> inline constexpr int binary_format<double>::max_exponent_fast_path() { - return 22; -} + return 22; +} template <> inline constexpr int binary_format<float>::max_exponent_fast_path() { - return 10; -} - + return 10; +} + template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() { - return uint64_t(2) << mantissa_explicit_bits(); -} + return uint64_t(2) << mantissa_explicit_bits(); +} template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() { - return uint64_t(2) << mantissa_explicit_bits(); -} - -template <> + return uint64_t(2) << mantissa_explicit_bits(); +} + +template <> inline constexpr double binary_format<double>::exact_power_of_ten(int64_t power) { - return powers_of_ten_double[power]; -} -template <> + return powers_of_ten_double[power]; +} +template <> inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) { - - return powers_of_ten_float[power]; -} - - -template <> + + return powers_of_ten_float[power]; +} + + +template <> inline constexpr int binary_format<double>::largest_power_of_ten() { - return 308; -} -template <> + return 308; +} +template <> inline constexpr int binary_format<float>::largest_power_of_ten() { - return 38; -} - -template <> + return 38; +} + +template <> inline constexpr int binary_format<double>::smallest_power_of_ten() { - return -342; -} -template <> + return -342; +} +template <> inline constexpr int binary_format<float>::smallest_power_of_ten() { - return -65; -} - + return -65; +} + template <> inline constexpr size_t binary_format<double>::max_digits() { return 769; } template <> inline constexpr size_t binary_format<float>::max_digits() { return 114; } - + template <> inline constexpr binary_format<float>::equiv_uint binary_format<float>::exponent_mask() { return 0x7F800000; -} +} template <> inline constexpr binary_format<double>::equiv_uint binary_format<double>::exponent_mask() { return 0x7FF0000000000000; } - + template <> inline constexpr binary_format<float>::equiv_uint binary_format<float>::mantissa_mask() { return 0x007FFFFF; diff --git a/contrib/restricted/fast_float/include/fast_float/parse_number.h b/contrib/restricted/fast_float/include/fast_float/parse_number.h index 62ae3b039e..7ca5e755dc 100644 --- a/contrib/restricted/fast_float/include/fast_float/parse_number.h +++ b/contrib/restricted/fast_float/include/fast_float/parse_number.h @@ -1,36 +1,36 @@ -#ifndef FASTFLOAT_PARSE_NUMBER_H -#define FASTFLOAT_PARSE_NUMBER_H +#ifndef FASTFLOAT_PARSE_NUMBER_H +#define FASTFLOAT_PARSE_NUMBER_H -#include "ascii_number.h" -#include "decimal_to_binary.h" +#include "ascii_number.h" +#include "decimal_to_binary.h" #include "digit_comparison.h" - -#include <cmath> -#include <cstring> -#include <limits> -#include <system_error> - -namespace fast_float { - - + +#include <cmath> +#include <cstring> +#include <limits> +#include <system_error> + +namespace fast_float { + + namespace detail { -/** - * Special case +inf, -inf, nan, infinity, -infinity. - * The case comparisons could be made much faster given that we know that the - * strings a null-free and fixed. - **/ -template <typename T> -from_chars_result parse_infnan(const char *first, const char *last, T &value) noexcept { - from_chars_result answer; +/** + * Special case +inf, -inf, nan, infinity, -infinity. + * The case comparisons could be made much faster given that we know that the + * strings a null-free and fixed. + **/ +template <typename T> +from_chars_result parse_infnan(const char *first, const char *last, T &value) noexcept { + from_chars_result answer; answer.ptr = first; - answer.ec = std::errc(); // be optimistic + answer.ec = std::errc(); // be optimistic bool minusSign = false; if (*first == '-') { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here minusSign = true; ++first; } - if (last - first >= 3) { - if (fastfloat_strncasecmp(first, "nan", 3)) { + if (last - first >= 3) { + if (fastfloat_strncasecmp(first, "nan", 3)) { answer.ptr = (first += 3); value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN(); // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan). @@ -44,27 +44,27 @@ from_chars_result parse_infnan(const char *first, const char *last, T &value) n break; // forbidden char, not nan(n-char-seq-opt) } } - return answer; - } - if (fastfloat_strncasecmp(first, "inf", 3)) { + return answer; + } + if (fastfloat_strncasecmp(first, "inf", 3)) { if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, "inity", 5)) { - answer.ptr = first + 8; - } else { - answer.ptr = first + 3; - } + answer.ptr = first + 8; + } else { + answer.ptr = first + 3; + } value = minusSign ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::infinity(); - return answer; - } - } - answer.ec = std::errc::invalid_argument; - return answer; -} - + return answer; + } + } + answer.ec = std::errc::invalid_argument; + return answer; +} + } // namespace detail - -template<typename T> -from_chars_result from_chars(const char *first, const char *last, - T &value, chars_format fmt /*= chars_format::general*/) noexcept { + +template<typename T> +from_chars_result from_chars(const char *first, const char *last, + T &value, chars_format fmt /*= chars_format::general*/) noexcept { return from_chars_advanced(first, last, value, parse_options{fmt}); } @@ -72,42 +72,42 @@ template<typename T> from_chars_result from_chars_advanced(const char *first, const char *last, T &value, parse_options options) noexcept { - static_assert (std::is_same<T, double>::value || std::is_same<T, float>::value, "only float and double are supported"); - - - from_chars_result answer; - if (first == last) { - answer.ec = std::errc::invalid_argument; - answer.ptr = first; - return answer; - } + static_assert (std::is_same<T, double>::value || std::is_same<T, float>::value, "only float and double are supported"); + + + from_chars_result answer; + if (first == last) { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + return answer; + } parsed_number_string pns = parse_number_string(first, last, options); - if (!pns.valid) { + if (!pns.valid) { return detail::parse_infnan(first, last, value); - } - answer.ec = std::errc(); // be optimistic - answer.ptr = pns.lastmatch; - // Next is Clinger's fast path. + } + answer.ec = std::errc(); // be optimistic + answer.ptr = pns.lastmatch; + // Next is Clinger's fast path. if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && pns.mantissa <=binary_format<T>::max_mantissa_fast_path() && !pns.too_many_digits) { - value = T(pns.mantissa); - if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); } - else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); } - if (pns.negative) { value = -value; } - return answer; - } + value = T(pns.mantissa); + if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); } + else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); } + if (pns.negative) { value = -value; } + return answer; + } adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa); if(pns.too_many_digits && am.power2 >= 0) { if(am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) { am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa); } } - // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0), - // then we need to go the long way around again. This is very uncommon. + // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0), + // then we need to go the long way around again. This is very uncommon. if(am.power2 < 0) { am = digit_comp<T>(pns, am); } to_float(pns.negative, am, value); - return answer; -} - -} // namespace fast_float - -#endif + return answer; +} + +} // namespace fast_float + +#endif diff --git a/contrib/restricted/fast_float/include/fast_float/simple_decimal_conversion.h b/contrib/restricted/fast_float/include/fast_float/simple_decimal_conversion.h index e87801480b..4f32db0fe0 100644 --- a/contrib/restricted/fast_float/include/fast_float/simple_decimal_conversion.h +++ b/contrib/restricted/fast_float/include/fast_float/simple_decimal_conversion.h @@ -1,360 +1,360 @@ -#ifndef FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H -#define FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H - -/** - * This code is meant to handle the case where we have more than 19 digits. - * - * It is based on work by Nigel Tao (at https://github.com/google/wuffs/) - * who credits Ken Thompson for the design (via a reference to the Go source - * code). - * - * Rob Pike suggested that this algorithm be called "Simple Decimal Conversion". - * - * It is probably not very fast but it is a fallback that should almost never - * be used in real life. Though it is not fast, it is "easily" understood and debugged. - **/ -#include "ascii_number.h" -#include "decimal_to_binary.h" -#include <cstdint> - -namespace fast_float { - +#ifndef FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H +#define FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H + +/** + * This code is meant to handle the case where we have more than 19 digits. + * + * It is based on work by Nigel Tao (at https://github.com/google/wuffs/) + * who credits Ken Thompson for the design (via a reference to the Go source + * code). + * + * Rob Pike suggested that this algorithm be called "Simple Decimal Conversion". + * + * It is probably not very fast but it is a fallback that should almost never + * be used in real life. Though it is not fast, it is "easily" understood and debugged. + **/ +#include "ascii_number.h" +#include "decimal_to_binary.h" +#include <cstdint> + +namespace fast_float { + namespace detail { - -// remove all final zeroes -inline void trim(decimal &h) { - while ((h.num_digits > 0) && (h.digits[h.num_digits - 1] == 0)) { - h.num_digits--; - } -} - - - + +// remove all final zeroes +inline void trim(decimal &h) { + while ((h.num_digits > 0) && (h.digits[h.num_digits - 1] == 0)) { + h.num_digits--; + } +} + + + inline uint32_t number_of_digits_decimal_left_shift(const decimal &h, uint32_t shift) { - shift &= 63; + shift &= 63; constexpr uint16_t number_of_digits_decimal_left_shift_table[65] = { - 0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817, - 0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067, - 0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF, - 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0, - 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA, - 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC, - 0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C, - 0x051C, 0x051C, - }; - uint32_t x_a = number_of_digits_decimal_left_shift_table[shift]; - uint32_t x_b = number_of_digits_decimal_left_shift_table[shift + 1]; - uint32_t num_new_digits = x_a >> 11; - uint32_t pow5_a = 0x7FF & x_a; - uint32_t pow5_b = 0x7FF & x_b; + 0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817, + 0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067, + 0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF, + 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0, + 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA, + 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC, + 0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C, + 0x051C, 0x051C, + }; + uint32_t x_a = number_of_digits_decimal_left_shift_table[shift]; + uint32_t x_b = number_of_digits_decimal_left_shift_table[shift + 1]; + uint32_t num_new_digits = x_a >> 11; + uint32_t pow5_a = 0x7FF & x_a; + uint32_t pow5_b = 0x7FF & x_b; constexpr uint8_t - number_of_digits_decimal_left_shift_table_powers_of_5[0x051C] = { - 5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, - 9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, - 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, - 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, - 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, - 9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, - 3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, - 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, - 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, - 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, - 4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, - 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, - 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, - 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, - 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2, - 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, - 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, - 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, - 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2, - 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0, - 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, - 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, - 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6, - 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7, 2, - 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5, - 0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, - 3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, - 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, - 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, - 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, - 9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, - 5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, - 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, - 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, - 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, - 9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, - 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, - 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, - 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, - 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4, - 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, - 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, - 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, - 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5, - 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1, - 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1, - 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9, - 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0, - 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6, 2, - 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1, - 8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, - 1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, - 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, - 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, - 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5, - }; - const uint8_t *pow5 = - &number_of_digits_decimal_left_shift_table_powers_of_5[pow5_a]; - uint32_t i = 0; - uint32_t n = pow5_b - pow5_a; - for (; i < n; i++) { - if (i >= h.num_digits) { - return num_new_digits - 1; - } else if (h.digits[i] == pow5[i]) { - continue; - } else if (h.digits[i] < pow5[i]) { - return num_new_digits - 1; - } else { - return num_new_digits; - } - } - return num_new_digits; -} - + number_of_digits_decimal_left_shift_table_powers_of_5[0x051C] = { + 5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, + 9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, + 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, + 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, + 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, + 9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, + 3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, + 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, + 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, + 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, + 4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, + 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, + 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, + 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, + 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2, + 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, + 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, + 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, + 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2, + 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0, + 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, + 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, + 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6, + 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7, 2, + 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5, + 0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, + 3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, + 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, + 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, + 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, + 9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, + 5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, + 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, + 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, + 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, + 9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, + 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, + 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, + 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, + 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4, + 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, + 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, + 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, + 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5, + 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1, + 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1, + 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9, + 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0, + 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6, 2, + 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1, + 8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, + 1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, + 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, + 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, + 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5, + }; + const uint8_t *pow5 = + &number_of_digits_decimal_left_shift_table_powers_of_5[pow5_a]; + uint32_t i = 0; + uint32_t n = pow5_b - pow5_a; + for (; i < n; i++) { + if (i >= h.num_digits) { + return num_new_digits - 1; + } else if (h.digits[i] == pow5[i]) { + continue; + } else if (h.digits[i] < pow5[i]) { + return num_new_digits - 1; + } else { + return num_new_digits; + } + } + return num_new_digits; +} + inline uint64_t round(decimal &h) { - if ((h.num_digits == 0) || (h.decimal_point < 0)) { - return 0; - } else if (h.decimal_point > 18) { - return UINT64_MAX; - } - // at this point, we know that h.decimal_point >= 0 - uint32_t dp = uint32_t(h.decimal_point); - uint64_t n = 0; - for (uint32_t i = 0; i < dp; i++) { - n = (10 * n) + ((i < h.num_digits) ? h.digits[i] : 0); - } - bool round_up = false; - if (dp < h.num_digits) { - round_up = h.digits[dp] >= 5; // normally, we round up - // but we may need to round to even! - if ((h.digits[dp] == 5) && (dp + 1 == h.num_digits)) { - round_up = h.truncated || ((dp > 0) && (1 & h.digits[dp - 1])); - } - } - if (round_up) { - n++; - } - return n; -} - -// computes h * 2^-shift + if ((h.num_digits == 0) || (h.decimal_point < 0)) { + return 0; + } else if (h.decimal_point > 18) { + return UINT64_MAX; + } + // at this point, we know that h.decimal_point >= 0 + uint32_t dp = uint32_t(h.decimal_point); + uint64_t n = 0; + for (uint32_t i = 0; i < dp; i++) { + n = (10 * n) + ((i < h.num_digits) ? h.digits[i] : 0); + } + bool round_up = false; + if (dp < h.num_digits) { + round_up = h.digits[dp] >= 5; // normally, we round up + // but we may need to round to even! + if ((h.digits[dp] == 5) && (dp + 1 == h.num_digits)) { + round_up = h.truncated || ((dp > 0) && (1 & h.digits[dp - 1])); + } + } + if (round_up) { + n++; + } + return n; +} + +// computes h * 2^-shift inline void decimal_left_shift(decimal &h, uint32_t shift) { - if (h.num_digits == 0) { - return; - } - uint32_t num_new_digits = number_of_digits_decimal_left_shift(h, shift); - int32_t read_index = int32_t(h.num_digits - 1); - uint32_t write_index = h.num_digits - 1 + num_new_digits; - uint64_t n = 0; - - while (read_index >= 0) { - n += uint64_t(h.digits[read_index]) << shift; - uint64_t quotient = n / 10; - uint64_t remainder = n - (10 * quotient); - if (write_index < max_digits) { - h.digits[write_index] = uint8_t(remainder); - } else if (remainder > 0) { - h.truncated = true; - } - n = quotient; - write_index--; - read_index--; - } - while (n > 0) { - uint64_t quotient = n / 10; - uint64_t remainder = n - (10 * quotient); - if (write_index < max_digits) { - h.digits[write_index] = uint8_t(remainder); - } else if (remainder > 0) { - h.truncated = true; - } - n = quotient; - write_index--; - } - h.num_digits += num_new_digits; - if (h.num_digits > max_digits) { - h.num_digits = max_digits; - } - h.decimal_point += int32_t(num_new_digits); - trim(h); -} - -// computes h * 2^shift + if (h.num_digits == 0) { + return; + } + uint32_t num_new_digits = number_of_digits_decimal_left_shift(h, shift); + int32_t read_index = int32_t(h.num_digits - 1); + uint32_t write_index = h.num_digits - 1 + num_new_digits; + uint64_t n = 0; + + while (read_index >= 0) { + n += uint64_t(h.digits[read_index]) << shift; + uint64_t quotient = n / 10; + uint64_t remainder = n - (10 * quotient); + if (write_index < max_digits) { + h.digits[write_index] = uint8_t(remainder); + } else if (remainder > 0) { + h.truncated = true; + } + n = quotient; + write_index--; + read_index--; + } + while (n > 0) { + uint64_t quotient = n / 10; + uint64_t remainder = n - (10 * quotient); + if (write_index < max_digits) { + h.digits[write_index] = uint8_t(remainder); + } else if (remainder > 0) { + h.truncated = true; + } + n = quotient; + write_index--; + } + h.num_digits += num_new_digits; + if (h.num_digits > max_digits) { + h.num_digits = max_digits; + } + h.decimal_point += int32_t(num_new_digits); + trim(h); +} + +// computes h * 2^shift inline void decimal_right_shift(decimal &h, uint32_t shift) { - uint32_t read_index = 0; - uint32_t write_index = 0; - - uint64_t n = 0; - - while ((n >> shift) == 0) { - if (read_index < h.num_digits) { - n = (10 * n) + h.digits[read_index++]; - } else if (n == 0) { - return; - } else { - while ((n >> shift) == 0) { - n = 10 * n; - read_index++; - } - break; - } - } - h.decimal_point -= int32_t(read_index - 1); - if (h.decimal_point < -decimal_point_range) { // it is zero - h.num_digits = 0; - h.decimal_point = 0; - h.negative = false; - h.truncated = false; - return; - } - uint64_t mask = (uint64_t(1) << shift) - 1; - while (read_index < h.num_digits) { - uint8_t new_digit = uint8_t(n >> shift); - n = (10 * (n & mask)) + h.digits[read_index++]; - h.digits[write_index++] = new_digit; - } - while (n > 0) { - uint8_t new_digit = uint8_t(n >> shift); - n = 10 * (n & mask); - if (write_index < max_digits) { - h.digits[write_index++] = new_digit; - } else if (new_digit > 0) { - h.truncated = true; - } - } - h.num_digits = write_index; - trim(h); -} - + uint32_t read_index = 0; + uint32_t write_index = 0; + + uint64_t n = 0; + + while ((n >> shift) == 0) { + if (read_index < h.num_digits) { + n = (10 * n) + h.digits[read_index++]; + } else if (n == 0) { + return; + } else { + while ((n >> shift) == 0) { + n = 10 * n; + read_index++; + } + break; + } + } + h.decimal_point -= int32_t(read_index - 1); + if (h.decimal_point < -decimal_point_range) { // it is zero + h.num_digits = 0; + h.decimal_point = 0; + h.negative = false; + h.truncated = false; + return; + } + uint64_t mask = (uint64_t(1) << shift) - 1; + while (read_index < h.num_digits) { + uint8_t new_digit = uint8_t(n >> shift); + n = (10 * (n & mask)) + h.digits[read_index++]; + h.digits[write_index++] = new_digit; + } + while (n > 0) { + uint8_t new_digit = uint8_t(n >> shift); + n = 10 * (n & mask); + if (write_index < max_digits) { + h.digits[write_index++] = new_digit; + } else if (new_digit > 0) { + h.truncated = true; + } + } + h.num_digits = write_index; + trim(h); +} + } // namespace detail - -template <typename binary> -adjusted_mantissa compute_float(decimal &d) { - adjusted_mantissa answer; - if (d.num_digits == 0) { - // should be zero - answer.power2 = 0; - answer.mantissa = 0; - return answer; - } - // At this point, going further, we can assume that d.num_digits > 0. - // - // We want to guard against excessive decimal point values because - // they can result in long running times. Indeed, we do - // shifts by at most 60 bits. We have that log(10**400)/log(2**60) ~= 22 - // which is fine, but log(10**299995)/log(2**60) ~= 16609 which is not - // fine (runs for a long time). - // - if(d.decimal_point < -324) { - // We have something smaller than 1e-324 which is always zero - // in binary64 and binary32. - // It should be zero. - answer.power2 = 0; - answer.mantissa = 0; - return answer; - } else if(d.decimal_point >= 310) { - // We have something at least as large as 0.1e310 which is - // always infinite. - answer.power2 = binary::infinite_power(); - answer.mantissa = 0; - return answer; - } + +template <typename binary> +adjusted_mantissa compute_float(decimal &d) { + adjusted_mantissa answer; + if (d.num_digits == 0) { + // should be zero + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } + // At this point, going further, we can assume that d.num_digits > 0. + // + // We want to guard against excessive decimal point values because + // they can result in long running times. Indeed, we do + // shifts by at most 60 bits. We have that log(10**400)/log(2**60) ~= 22 + // which is fine, but log(10**299995)/log(2**60) ~= 16609 which is not + // fine (runs for a long time). + // + if(d.decimal_point < -324) { + // We have something smaller than 1e-324 which is always zero + // in binary64 and binary32. + // It should be zero. + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } else if(d.decimal_point >= 310) { + // We have something at least as large as 0.1e310 which is + // always infinite. + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } constexpr uint32_t max_shift = 60; constexpr uint32_t num_powers = 19; constexpr uint8_t decimal_powers[19] = { - 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, // - 33, 36, 39, 43, 46, 49, 53, 56, 59, // - }; - int32_t exp2 = 0; - while (d.decimal_point > 0) { - uint32_t n = uint32_t(d.decimal_point); + 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, // + 33, 36, 39, 43, 46, 49, 53, 56, 59, // + }; + int32_t exp2 = 0; + while (d.decimal_point > 0) { + uint32_t n = uint32_t(d.decimal_point); uint32_t shift = (n < num_powers) ? decimal_powers[n] : max_shift; detail::decimal_right_shift(d, shift); - if (d.decimal_point < -decimal_point_range) { - // should be zero - answer.power2 = 0; - answer.mantissa = 0; - return answer; - } - exp2 += int32_t(shift); - } - // We shift left toward [1/2 ... 1]. - while (d.decimal_point <= 0) { - uint32_t shift; - if (d.decimal_point == 0) { - if (d.digits[0] >= 5) { - break; - } - shift = (d.digits[0] < 2) ? 2 : 1; - } else { - uint32_t n = uint32_t(-d.decimal_point); + if (d.decimal_point < -decimal_point_range) { + // should be zero + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } + exp2 += int32_t(shift); + } + // We shift left toward [1/2 ... 1]. + while (d.decimal_point <= 0) { + uint32_t shift; + if (d.decimal_point == 0) { + if (d.digits[0] >= 5) { + break; + } + shift = (d.digits[0] < 2) ? 2 : 1; + } else { + uint32_t n = uint32_t(-d.decimal_point); shift = (n < num_powers) ? decimal_powers[n] : max_shift; - } + } detail::decimal_left_shift(d, shift); - if (d.decimal_point > decimal_point_range) { - // we want to get infinity: + if (d.decimal_point > decimal_point_range) { + // we want to get infinity: answer.power2 = binary::infinite_power(); - answer.mantissa = 0; - return answer; - } - exp2 -= int32_t(shift); - } - // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2]. - exp2--; - constexpr int32_t minimum_exponent = binary::minimum_exponent(); - while ((minimum_exponent + 1) > exp2) { - uint32_t n = uint32_t((minimum_exponent + 1) - exp2); - if (n > max_shift) { - n = max_shift; - } + answer.mantissa = 0; + return answer; + } + exp2 -= int32_t(shift); + } + // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2]. + exp2--; + constexpr int32_t minimum_exponent = binary::minimum_exponent(); + while ((minimum_exponent + 1) > exp2) { + uint32_t n = uint32_t((minimum_exponent + 1) - exp2); + if (n > max_shift) { + n = max_shift; + } detail::decimal_right_shift(d, n); - exp2 += int32_t(n); - } - if ((exp2 - minimum_exponent) >= binary::infinite_power()) { - answer.power2 = binary::infinite_power(); - answer.mantissa = 0; - return answer; - } - - const int mantissa_size_in_bits = binary::mantissa_explicit_bits() + 1; + exp2 += int32_t(n); + } + if ((exp2 - minimum_exponent) >= binary::infinite_power()) { + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + + const int mantissa_size_in_bits = binary::mantissa_explicit_bits() + 1; detail::decimal_left_shift(d, mantissa_size_in_bits); - + uint64_t mantissa = detail::round(d); - // It is possible that we have an overflow, in which case we need - // to shift back. - if(mantissa >= (uint64_t(1) << mantissa_size_in_bits)) { + // It is possible that we have an overflow, in which case we need + // to shift back. + if(mantissa >= (uint64_t(1) << mantissa_size_in_bits)) { detail::decimal_right_shift(d, 1); - exp2 += 1; + exp2 += 1; mantissa = detail::round(d); - if ((exp2 - minimum_exponent) >= binary::infinite_power()) { - answer.power2 = binary::infinite_power(); - answer.mantissa = 0; - return answer; - } - } - answer.power2 = exp2 - binary::minimum_exponent(); - if(mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) { answer.power2--; } - answer.mantissa = mantissa & ((uint64_t(1) << binary::mantissa_explicit_bits()) - 1); - return answer; -} - -template <typename binary> + if ((exp2 - minimum_exponent) >= binary::infinite_power()) { + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + } + answer.power2 = exp2 - binary::minimum_exponent(); + if(mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) { answer.power2--; } + answer.mantissa = mantissa & ((uint64_t(1) << binary::mantissa_explicit_bits()) - 1); + return answer; +} + +template <typename binary> adjusted_mantissa parse_long_mantissa(const char *first, const char* last, parse_options options) { decimal d = parse_decimal(first, last, options); - return compute_float<binary>(d); -} - -} // namespace fast_float -#endif + return compute_float<binary>(d); +} + +} // namespace fast_float +#endif diff --git a/contrib/restricted/fast_float/ya.make b/contrib/restricted/fast_float/ya.make index dd331096b3..735572be33 100644 --- a/contrib/restricted/fast_float/ya.make +++ b/contrib/restricted/fast_float/ya.make @@ -1,5 +1,5 @@ # Generated by devtools/yamaker from nixpkgs 21.11. - + LIBRARY() LICENSE( @@ -14,15 +14,15 @@ OWNER( g:cpp-contrib g:kikimr ) - + VERSION(3.4.0) - + ORIGINAL_SOURCE(https://github.com/fastfloat/fast_float/archive/v3.4.0.tar.gz) -NO_COMPILER_WARNINGS() - +NO_COMPILER_WARNINGS() + NO_RUNTIME() - + NO_UTIL() - -END() + +END() |