aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/s2n/pq-crypto/sike_r1/ec_isogeny_r1.c
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:44:49 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:44:49 +0300
commit718c552901d703c502ccbefdfc3c9028d608b947 (patch)
tree46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/restricted/aws/s2n/pq-crypto/sike_r1/ec_isogeny_r1.c
parente9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff)
downloadydb-718c552901d703c502ccbefdfc3c9028d608b947.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/restricted/aws/s2n/pq-crypto/sike_r1/ec_isogeny_r1.c')
-rw-r--r--contrib/restricted/aws/s2n/pq-crypto/sike_r1/ec_isogeny_r1.c692
1 files changed, 346 insertions, 346 deletions
diff --git a/contrib/restricted/aws/s2n/pq-crypto/sike_r1/ec_isogeny_r1.c b/contrib/restricted/aws/s2n/pq-crypto/sike_r1/ec_isogeny_r1.c
index b83e7a3ae3..670a1490ea 100644
--- a/contrib/restricted/aws/s2n/pq-crypto/sike_r1/ec_isogeny_r1.c
+++ b/contrib/restricted/aws/s2n/pq-crypto/sike_r1/ec_isogeny_r1.c
@@ -1,346 +1,346 @@
-/********************************************************************************************
-* Supersingular Isogeny Key Encapsulation Library
-*
-* Abstract: elliptic curve and isogeny functions
-*********************************************************************************************/
-
-#include "sike_r1_namespace.h"
-#include "P503_internal_r1.h"
-
-void xDBL(const point_proj_t P, point_proj_t Q, const f2elm_t *A24plus, const f2elm_t *C24)
-{ // Doubling of a Montgomery point in projective coordinates (X:Z).
- // Input: projective Montgomery x-coordinates P = (X1:Z1), where x1=X1/Z1 and Montgomery curve constants A+2C and 4C.
- // Output: projective Montgomery x-coordinates Q = 2*P = (X2:Z2).
- f2elm_t _t0, _t1;
- f2elm_t *t0=&_t0, *t1=&_t1;
-
- fp2sub(&P->X, &P->Z, t0); // t0 = X1-Z1
- fp2add(&P->X, &P->Z, t1); // t1 = X1+Z1
- fp2sqr_mont(t0, t0); // t0 = (X1-Z1)^2
- fp2sqr_mont(t1, t1); // t1 = (X1+Z1)^2
- fp2mul_mont(C24, t0, &Q->Z); // Z2 = C24*(X1-Z1)^2
- fp2mul_mont(t1, &Q->Z, &Q->X); // X2 = C24*(X1-Z1)^2*(X1+Z1)^2
- fp2sub(t1, t0, t1); // t1 = (X1+Z1)^2-(X1-Z1)^2
- fp2mul_mont(A24plus, t1, t0); // t0 = A24plus*[(X1+Z1)^2-(X1-Z1)^2]
- fp2add(&Q->Z, t0, &Q->Z); // Z2 = A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2
- fp2mul_mont(&Q->Z, t1, &Q->Z); // Z2 = [A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2]*[(X1+Z1)^2-(X1-Z1)^2]
-}
-
-
-void xDBLe(const point_proj_t P, point_proj_t Q, const f2elm_t *A24plus, const f2elm_t *C24, const int e)
-{ // Computes [2^e](X:Z) on Montgomery curve with projective constant via e repeated doublings.
- // Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A+2C and 4C.
- // Output: projective Montgomery x-coordinates Q <- (2^e)*P.
- int i;
-
- copy_words((const digit_t*)P, (digit_t*)Q, 2*2*NWORDS_FIELD);
-
- for (i = 0; i < e; i++) {
- xDBL(Q, Q, A24plus, C24);
- }
-}
-
-
-void get_4_isog(const point_proj_t P, f2elm_t *A24plus, f2elm_t *C24, f2elm_t* coeff)
-{ // Computes the corresponding 4-isogeny of a projective Montgomery point (X4:Z4) of order 4.
- // Input: projective point of order four P = (X4:Z4).
- // Output: the 4-isogenous Montgomery curve with projective coefficients A+2C/4C and the 3 coefficients
- // that are used to evaluate the isogeny at a point in eval_4_isog().
-
- fp2sub(&P->X, &P->Z, &coeff[1]); // coeff[1] = X4-Z4
- fp2add(&P->X, &P->Z, &coeff[2]); // coeff[2] = X4+Z4
- fp2sqr_mont(&P->Z, &coeff[0]); // coeff[0] = Z4^2
- fp2add(&coeff[0], &coeff[0], &coeff[0]); // coeff[0] = 2*Z4^2
- fp2sqr_mont(&coeff[0], C24); // C24 = 4*Z4^4
- fp2add(&coeff[0], &coeff[0], &coeff[0]); // coeff[0] = 4*Z4^2
- fp2sqr_mont(&P->X, A24plus); // A24plus = X4^2
- fp2add(A24plus, A24plus, A24plus); // A24plus = 2*X4^2
- fp2sqr_mont(A24plus, A24plus); // A24plus = 4*X4^4
-}
-
-
-void eval_4_isog(point_proj_t P, f2elm_t* coeff)
-{ // Evaluates the isogeny at the point (X:Z) in the domain of the isogeny, given a 4-isogeny phi defined
- // by the 3 coefficients in coeff (computed in the function get_4_isog()).
- // Inputs: the coefficients defining the isogeny, and the projective point P = (X:Z).
- // Output: the projective point P = phi(P) = (X:Z) in the codomain.
- f2elm_t _t0, _t1;
- f2elm_t *t0=&_t0, *t1=&_t1;
-
- fp2add(&P->X, &P->Z, t0); // t0 = X+Z
- fp2sub(&P->X, &P->Z, t1); // t1 = X-Z
- fp2mul_mont(t0, &coeff[1], &P->X); // X = (X+Z)*coeff[1]
- fp2mul_mont(t1, &coeff[2], &P->Z); // Z = (X-Z)*coeff[2]
- fp2mul_mont(t0, t1, t0); // t0 = (X+Z)*(X-Z)
- fp2mul_mont(t0, &coeff[0], t0); // t0 = coeff[0]*(X+Z)*(X-Z)
- fp2add(&P->X, &P->Z, t1); // t1 = (X-Z)*coeff[2] + (X+Z)*coeff[1]
- fp2sub(&P->X, &P->Z, &P->Z); // Z = (X-Z)*coeff[2] - (X+Z)*coeff[1]
- fp2sqr_mont(t1, t1); // t1 = [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2
- fp2sqr_mont(&P->Z, &P->Z); // Z = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2
- fp2add(t1, t0, &P->X); // X = coeff[0]*(X+Z)*(X-Z) + [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2
- fp2sub(&P->Z, t0, t0); // t0 = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2 - coeff[0]*(X+Z)*(X-Z)
- fp2mul_mont(&P->X, t1, &P->X); // Xfinal
- fp2mul_mont(&P->Z, t0, &P->Z); // Zfinal
-}
-
-
-void xTPL(const point_proj_t P, point_proj_t Q, const f2elm_t *A24minus, const f2elm_t *A24plus)
-{ // Tripling of a Montgomery point in projective coordinates (X:Z).
- // Input: projective Montgomery x-coordinates P = (X:Z), where x=X/Z and Montgomery curve constants A24plus = A+2C and A24minus = A-2C.
- // Output: projective Montgomery x-coordinates Q = 3*P = (X3:Z3).
- f2elm_t _t0, _t1, _t2, _t3, _t4, _t5, _t6;
- f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2 ;
- f2elm_t *t3=&_t3, *t4=&_t4, *t5=&_t5, *t6=&_t6;
-
- fp2sub(&P->X, &P->Z, t0); // t0 = X-Z
- fp2sqr_mont(t0, t2); // t2 = (X-Z)^2
- fp2add(&P->X, &P->Z, t1); // t1 = X+Z
- fp2sqr_mont(t1, t3); // t3 = (X+Z)^2
- fp2add(t0, t1, t4); // t4 = 2*X
- fp2sub(t1, t0, t0); // t0 = 2*Z
- fp2sqr_mont(t4, t1); // t1 = 4*X^2
- fp2sub(t1, t3, t1); // t1 = 4*X^2 - (X+Z)^2
- fp2sub(t1, t2, t1); // t1 = 4*X^2 - (X+Z)^2 - (X-Z)^2
- fp2mul_mont(t3, A24plus, t5); // t5 = A24plus*(X+Z)^2
- fp2mul_mont(t3, t5, t3); // t3 = A24plus*(X+Z)^3
- fp2mul_mont(A24minus, t2, t6); // t6 = A24minus*(X-Z)^2
- fp2mul_mont(t2, t6, t2); // t2 = A24minus*(X-Z)^3
- fp2sub(t2, t3, t3); // t3 = A24minus*(X-Z)^3 - coeff*(X+Z)^3
- fp2sub(t5, t6, t2); // t2 = A24plus*(X+Z)^2 - A24minus*(X-Z)^2
- fp2mul_mont(t1, t2, t1); // t1 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2]
- fp2add(t3, t1, t2); // t2 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] + A24minus*(X-Z)^3 - coeff*(X+Z)^3
- fp2sqr_mont(t2, t2); // t2 = t2^2
- fp2mul_mont(t4, t2, &Q->X); // X3 = 2*X*t2
- fp2sub(t3, t1, t1); // t1 = A24minus*(X-Z)^3 - A24plus*(X+Z)^3 - [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2]
- fp2sqr_mont(t1, t1); // t1 = t1^2
- fp2mul_mont(t0, t1, &Q->Z); // Z3 = 2*Z*t1
-}
-
-
-void xTPLe(const point_proj_t P, point_proj_t Q, const f2elm_t *A24minus, const f2elm_t *A24plus, const int e)
-{ // Computes [3^e](X:Z) on Montgomery curve with projective constant via e repeated triplings.
- // Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A24plus = A+2C and A24minus = A-2C.
- // Output: projective Montgomery x-coordinates Q <- (3^e)*P.
- int i;
-
- copy_words((const digit_t*)P, (digit_t*)Q, 2*2*NWORDS_FIELD);
-
- for (i = 0; i < e; i++) {
- xTPL(Q, Q, A24minus, A24plus);
- }
-}
-
-
-void get_3_isog(const point_proj_t P, f2elm_t *A24minus, f2elm_t *A24plus, f2elm_t* coeff)
-{ // Computes the corresponding 3-isogeny of a projective Montgomery point (X3:Z3) of order 3.
- // Input: projective point of order three P = (X3:Z3).
- // Output: the 3-isogenous Montgomery curve with projective coefficient A/C.
- f2elm_t _t0, _t1, _t2, _t3, _t4;
- f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2 ;
- f2elm_t *t3=&_t3, *t4=&_t4 ;
-
- fp2sub(&P->X, &P->Z, &coeff[0]); // coeff0 = X-Z
- fp2sqr_mont(&coeff[0], t0); // t0 = (X-Z)^2
- fp2add(&P->X, &P->Z, &coeff[1]); // coeff1 = X+Z
- fp2sqr_mont(&coeff[1], t1); // t1 = (X+Z)^2
- fp2add(t0, t1, t2); // t2 = (X+Z)^2 + (X-Z)^2
- fp2add(&coeff[0], &coeff[1], t3); // t3 = 2*X
- fp2sqr_mont(t3, t3); // t3 = 4*X^2
- fp2sub(t3, t2, t3); // t3 = 4*X^2 - (X+Z)^2 - (X-Z)^2
- fp2add(t1, t3, t2); // t2 = 4*X^2 - (X-Z)^2
- fp2add(t3, t0, t3); // t3 = 4*X^2 - (X+Z)^2
- fp2add(t0, t3, t4); // t4 = 4*X^2 - (X+Z)^2 + (X-Z)^2
- fp2add(t4, t4, t4); // t4 = 2(4*X^2 - (X+Z)^2 + (X-Z)^2)
- fp2add(t1, t4, t4); // t4 = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2
- fp2mul_mont(t2, t4, A24minus); // A24minus = [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2]
- fp2add(t1, t2, t4); // t4 = 4*X^2 + (X+Z)^2 - (X-Z)^2
- fp2add(t4, t4, t4); // t4 = 2(4*X^2 + (X+Z)^2 - (X-Z)^2)
- fp2add(t0, t4, t4); // t4 = 8*X^2 + 2*(X+Z)^2 - (X-Z)^2
- fp2mul_mont(t3, t4, t4); // t4 = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2]
- fp2sub(t4, A24minus, t0); // t0 = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2] - [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2]
- fp2add(A24minus, t0, A24plus); // A24plus = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2
-}
-
-
-void eval_3_isog(point_proj_t Q, const f2elm_t* coeff)
-{ // Computes the 3-isogeny R=phi(X:Z), given projective point (X3:Z3) of order 3 on a Montgomery curve and
- // a point P with 2 coefficients in coeff (computed in the function get_3_isog()).
- // Inputs: projective points P = (X3:Z3) and Q = (X:Z).
- // Output: the projective point Q <- phi(Q) = (X3:Z3).
- f2elm_t _t0, _t1, _t2;
- f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2 ;
-
- fp2add(&Q->X, &Q->Z, t0); // t0 = X+Z
- fp2sub(&Q->X, &Q->Z, t1); // t1 = X-Z
- fp2mul_mont(t0, &coeff[0], t0); // t0 = coeff0*(X+Z)
- fp2mul_mont(t1, &coeff[1], t1); // t1 = coeff1*(X-Z)
- fp2add(t0, t1, t2); // t2 = coeff0*(X-Z) + coeff1*(X+Z)
- fp2sub(t1, t0, t0); // t0 = coeff0*(X-Z) - coeff1*(X+Z)
- fp2sqr_mont(t2, t2); // t2 = [coeff0*(X-Z) + coeff1*(X+Z)]^2
- fp2sqr_mont(t0, t0); // t1 = [coeff0*(X-Z) - coeff1*(X+Z)]^2
- fp2mul_mont(&Q->X, t2, &Q->X); // X3final = X*[coeff0*(X-Z) + coeff1*(X+Z)]^2
- fp2mul_mont(&Q->Z, t0, &Q->Z); // Z3final = Z*[coeff0*(X-Z) - coeff1*(X+Z)]^2
-}
-
-
-void inv_3_way(f2elm_t *z1, f2elm_t *z2, f2elm_t *z3)
-{ // 3-way simultaneous inversion
- // Input: z1,z2,z3
- // Output: 1/z1,1/z2,1/z3 (override inputs).
- f2elm_t _t0, _t1, _t2, _t3;
- f2elm_t *t0=&_t0, *t1=&_t1;
- f2elm_t *t2=&_t2, *t3=&_t3;
-
- fp2mul_mont(z1, z2, t0); // t0 = z1*z2
- fp2mul_mont(z3, t0, t1); // t1 = z1*z2*z3
- fp2inv_mont(t1); // t1 = 1/(z1*z2*z3)
- fp2mul_mont(z3, t1, t2); // t2 = 1/(z1*z2)
- fp2mul_mont(t2, z2, t3); // t3 = 1/z1
- fp2mul_mont(t2, z1, z2); // z2 = 1/z2
- fp2mul_mont(t0, t1, z3); // z3 = 1/z3
- fp2copy(t3, z1); // z1 = 1/z1
-}
-
-
-void get_A(const f2elm_t *xP, const f2elm_t *xQ, const f2elm_t *xR, f2elm_t *A)
-{ // Given the x-coordinates of P, Q, and R, returns the value A corresponding to the Montgomery curve E_A: y^2=x^3+A*x^2+x such that R=Q-P on E_A.
- // Input: the x-coordinates xP, xQ, and xR of the points P, Q and R.
- // Output: the coefficient A corresponding to the curve E_A: y^2=x^3+A*x^2+x.
- f2elm_t _t0, _t1, one = {0};
- f2elm_t *t0=&_t0, *t1=&_t1;
-
- fpcopy((const digit_t*)&Montgomery_one, one.e[0]);
- fp2add(xP, xQ, t1); // t1 = xP+xQ
- fp2mul_mont(xP, xQ, t0); // t0 = xP*xQ
- fp2mul_mont(xR, t1, A); // A = xR*t1
- fp2add(t0, A, A); // A = A+t0
- fp2mul_mont(t0, xR, t0); // t0 = t0*xR
- fp2sub(A, &one, A); // A = A-1
- fp2add(t0, t0, t0); // t0 = t0+t0
- fp2add(t1, xR, t1); // t1 = t1+xR
- fp2add(t0, t0, t0); // t0 = t0+t0
- fp2sqr_mont(A, A); // A = A^2
- fp2inv_mont(t0); // t0 = 1/t0
- fp2mul_mont(A, t0, A); // A = A*t0
- fp2sub(A, t1, A); // Afinal = A-t1
-}
-
-
-void j_inv(const f2elm_t *A, const f2elm_t *C, f2elm_t *jinv)
-{ // Computes the j-invariant of a Montgomery curve with projective constant.
- // Input: A,C in GF(p^2).
- // Output: j=256*(A^2-3*C^2)^3/(C^4*(A^2-4*C^2)), which is the j-invariant of the Montgomery curve B*y^2=x^3+(A/C)*x^2+x or (equivalently) j-invariant of B'*y^2=C*x^3+A*x^2+C*x.
- f2elm_t _t0, _t1;
- f2elm_t *t0=&_t0, *t1=&_t1;
-
- fp2sqr_mont(A, jinv); // jinv = A^2
- fp2sqr_mont(C, t1); // t1 = C^2
- fp2add(t1, t1, t0); // t0 = t1+t1
- fp2sub(jinv, t0, t0); // t0 = jinv-t0
- fp2sub(t0, t1, t0); // t0 = t0-t1
- fp2sub(t0, t1, jinv); // jinv = t0-t1
- fp2sqr_mont(t1, t1); // t1 = t1^2
- fp2mul_mont(jinv, t1, jinv); // jinv = jinv*t1
- fp2add(t0, t0, t0); // t0 = t0+t0
- fp2add(t0, t0, t0); // t0 = t0+t0
- fp2sqr_mont(t0, t1); // t1 = t0^2
- fp2mul_mont(t0, t1, t0); // t0 = t0*t1
- fp2add(t0, t0, t0); // t0 = t0+t0
- fp2add(t0, t0, t0); // t0 = t0+t0
- fp2inv_mont(jinv); // jinv = 1/jinv
- fp2mul_mont(jinv, t0, jinv); // jinv = t0*jinv
-}
-
-
-void xDBLADD(point_proj_t P, point_proj_t Q, const f2elm_t *xPQ, const f2elm_t *A24)
-{ // Simultaneous doubling and differential addition.
- // Input: projective Montgomery points P=(XP:ZP) and Q=(XQ:ZQ) such that xP=XP/ZP and xQ=XQ/ZQ, affine difference xPQ=x(P-Q) and Montgomery curve constant A24=(A+2)/4.
- // Output: projective Montgomery points P <- 2*P = (X2P:Z2P) such that x(2P)=X2P/Z2P, and Q <- P+Q = (XQP:ZQP) such that = x(Q+P)=XQP/ZQP.
- f2elm_t _t0, _t1, _t2;
- f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2;
-
- fp2add(&P->X, &P->Z, t0); // t0 = XP+ZP
- fp2sub(&P->X, &P->Z, t1); // t1 = XP-ZP
- fp2sqr_mont(t0, &P->X); // XP = (XP+ZP)^2
- fp2sub(&Q->X, &Q->Z, t2); // t2 = XQ-ZQ
- fp2correction(t2);
- fp2add(&Q->X,&Q->Z, &Q->X); // XQ = XQ+ZQ
- fp2mul_mont(t0, t2, t0); // t0 = (XP+ZP)*(XQ-ZQ)
- fp2sqr_mont(t1, &P->Z); // ZP = (XP-ZP)^2
- fp2mul_mont(t1, &Q->X, t1); // t1 = (XP-ZP)*(XQ+ZQ)
- fp2sub(&P->X, &P->Z, t2); // t2 = (XP+ZP)^2-(XP-ZP)^2
- fp2mul_mont(&P->X, &P->Z, &P->X); // XP = (XP+ZP)^2*(XP-ZP)^2
- fp2mul_mont(t2, A24, &Q->X); // XQ = A24*[(XP+ZP)^2-(XP-ZP)^2]
- fp2sub(t0, t1, &Q->Z); // ZQ = (XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)
- fp2add(&Q->X, &P->Z, &P->Z); // ZP = A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2
- fp2add(t0, t1, &Q->X); // XQ = (XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)
- fp2mul_mont(&P->Z, t2, &P->Z); // ZP = [A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2]*[(XP+ZP)^2-(XP-ZP)^2]
- fp2sqr_mont(&Q->Z, &Q->Z); // ZQ = [(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
- fp2sqr_mont(&Q->X, &Q->X); // XQ = [(XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)]^2
- fp2mul_mont(&Q->Z, xPQ, &Q->Z); // ZQ = xPQ*[(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
-}
-
-
-static void swap_points(point_proj_t P, point_proj_t Q, const digit_t option)
-{ // Swap points.
- // If option = 0 then P <- P and Q <- Q, else if option = 0xFF...FF then P <- Q and Q <- P
- unsigned int i;
-
- for (i = 0; i < NWORDS_FIELD; i++) {
- digit_t temp = option & (P->X.e[0][i] ^ Q->X.e[0][i]);
- P->X.e[0][i] = temp ^ P->X.e[0][i];
- Q->X.e[0][i] = temp ^ Q->X.e[0][i];
- temp = option & (P->Z.e[0][i] ^ Q->Z.e[0][i]);
- P->Z.e[0][i] = temp ^ P->Z.e[0][i];
- Q->Z.e[0][i] = temp ^ Q->Z.e[0][i];
- temp = option & (P->X.e[1][i] ^ Q->X.e[1][i]);
- P->X.e[1][i] = temp ^ P->X.e[1][i];
- Q->X.e[1][i] = temp ^ Q->X.e[1][i];
- temp = option & (P->Z.e[1][i] ^ Q->Z.e[1][i]);
- P->Z.e[1][i] = temp ^ P->Z.e[1][i];
- Q->Z.e[1][i] = temp ^ Q->Z.e[1][i];
- }
-}
-
-
-static void LADDER3PT(const f2elm_t *xP, const f2elm_t *xQ, const f2elm_t *xPQ, const digit_t* m, const unsigned int AliceOrBob, point_proj_t R, const f2elm_t *A)
-{
- point_proj_t R0 = {0}, R2 = {0};
- f2elm_t _A24 = {0};
- f2elm_t *A24=&_A24;
- int i, nbits, prevbit = 0;
-
- if (AliceOrBob == ALICE) {
- nbits = OALICE_BITS;
- } else {
- nbits = OBOB_BITS;
- }
-
- // Initializing constant
- fpcopy((const digit_t*)&Montgomery_one, A24->e[0]);
- fp2add(A24, A24, A24);
- fp2add(A, A24, A24);
- fp2div2(A24, A24);
- fp2div2(A24, A24); // A24 = (A+2)/4
-
- // Initializing points
- fp2copy(xQ, &R0->X);
- fpcopy((const digit_t*)&Montgomery_one, (digit_t*)R0->Z.e);
- fp2copy(xPQ, &R2->X);
- fpcopy((const digit_t*)&Montgomery_one, (digit_t*)R2->Z.e);
- fp2copy(xP, &R->X);
- fpcopy((const digit_t*)&Montgomery_one, (digit_t*)R->Z.e);
- fpzero((digit_t*)(R->Z.e)[1]);
-
- // Main loop
- for (i = 0; i < nbits; i++) {
- int bit = (m[i >> LOG2RADIX] >> (i & (RADIX-1))) & 1;
- int swap = bit ^ prevbit;
- prevbit = bit;
- digit_t mask = 0 - (digit_t)swap;
-
- swap_points(R, R2, mask);
- xDBLADD(R0, R2, &R->X, A24);
- fp2mul_mont(&R2->X, &R->Z, &R2->X);
- }
-}
+/********************************************************************************************
+* Supersingular Isogeny Key Encapsulation Library
+*
+* Abstract: elliptic curve and isogeny functions
+*********************************************************************************************/
+
+#include "sike_r1_namespace.h"
+#include "P503_internal_r1.h"
+
+void xDBL(const point_proj_t P, point_proj_t Q, const f2elm_t *A24plus, const f2elm_t *C24)
+{ // Doubling of a Montgomery point in projective coordinates (X:Z).
+ // Input: projective Montgomery x-coordinates P = (X1:Z1), where x1=X1/Z1 and Montgomery curve constants A+2C and 4C.
+ // Output: projective Montgomery x-coordinates Q = 2*P = (X2:Z2).
+ f2elm_t _t0, _t1;
+ f2elm_t *t0=&_t0, *t1=&_t1;
+
+ fp2sub(&P->X, &P->Z, t0); // t0 = X1-Z1
+ fp2add(&P->X, &P->Z, t1); // t1 = X1+Z1
+ fp2sqr_mont(t0, t0); // t0 = (X1-Z1)^2
+ fp2sqr_mont(t1, t1); // t1 = (X1+Z1)^2
+ fp2mul_mont(C24, t0, &Q->Z); // Z2 = C24*(X1-Z1)^2
+ fp2mul_mont(t1, &Q->Z, &Q->X); // X2 = C24*(X1-Z1)^2*(X1+Z1)^2
+ fp2sub(t1, t0, t1); // t1 = (X1+Z1)^2-(X1-Z1)^2
+ fp2mul_mont(A24plus, t1, t0); // t0 = A24plus*[(X1+Z1)^2-(X1-Z1)^2]
+ fp2add(&Q->Z, t0, &Q->Z); // Z2 = A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2
+ fp2mul_mont(&Q->Z, t1, &Q->Z); // Z2 = [A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2]*[(X1+Z1)^2-(X1-Z1)^2]
+}
+
+
+void xDBLe(const point_proj_t P, point_proj_t Q, const f2elm_t *A24plus, const f2elm_t *C24, const int e)
+{ // Computes [2^e](X:Z) on Montgomery curve with projective constant via e repeated doublings.
+ // Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A+2C and 4C.
+ // Output: projective Montgomery x-coordinates Q <- (2^e)*P.
+ int i;
+
+ copy_words((const digit_t*)P, (digit_t*)Q, 2*2*NWORDS_FIELD);
+
+ for (i = 0; i < e; i++) {
+ xDBL(Q, Q, A24plus, C24);
+ }
+}
+
+
+void get_4_isog(const point_proj_t P, f2elm_t *A24plus, f2elm_t *C24, f2elm_t* coeff)
+{ // Computes the corresponding 4-isogeny of a projective Montgomery point (X4:Z4) of order 4.
+ // Input: projective point of order four P = (X4:Z4).
+ // Output: the 4-isogenous Montgomery curve with projective coefficients A+2C/4C and the 3 coefficients
+ // that are used to evaluate the isogeny at a point in eval_4_isog().
+
+ fp2sub(&P->X, &P->Z, &coeff[1]); // coeff[1] = X4-Z4
+ fp2add(&P->X, &P->Z, &coeff[2]); // coeff[2] = X4+Z4
+ fp2sqr_mont(&P->Z, &coeff[0]); // coeff[0] = Z4^2
+ fp2add(&coeff[0], &coeff[0], &coeff[0]); // coeff[0] = 2*Z4^2
+ fp2sqr_mont(&coeff[0], C24); // C24 = 4*Z4^4
+ fp2add(&coeff[0], &coeff[0], &coeff[0]); // coeff[0] = 4*Z4^2
+ fp2sqr_mont(&P->X, A24plus); // A24plus = X4^2
+ fp2add(A24plus, A24plus, A24plus); // A24plus = 2*X4^2
+ fp2sqr_mont(A24plus, A24plus); // A24plus = 4*X4^4
+}
+
+
+void eval_4_isog(point_proj_t P, f2elm_t* coeff)
+{ // Evaluates the isogeny at the point (X:Z) in the domain of the isogeny, given a 4-isogeny phi defined
+ // by the 3 coefficients in coeff (computed in the function get_4_isog()).
+ // Inputs: the coefficients defining the isogeny, and the projective point P = (X:Z).
+ // Output: the projective point P = phi(P) = (X:Z) in the codomain.
+ f2elm_t _t0, _t1;
+ f2elm_t *t0=&_t0, *t1=&_t1;
+
+ fp2add(&P->X, &P->Z, t0); // t0 = X+Z
+ fp2sub(&P->X, &P->Z, t1); // t1 = X-Z
+ fp2mul_mont(t0, &coeff[1], &P->X); // X = (X+Z)*coeff[1]
+ fp2mul_mont(t1, &coeff[2], &P->Z); // Z = (X-Z)*coeff[2]
+ fp2mul_mont(t0, t1, t0); // t0 = (X+Z)*(X-Z)
+ fp2mul_mont(t0, &coeff[0], t0); // t0 = coeff[0]*(X+Z)*(X-Z)
+ fp2add(&P->X, &P->Z, t1); // t1 = (X-Z)*coeff[2] + (X+Z)*coeff[1]
+ fp2sub(&P->X, &P->Z, &P->Z); // Z = (X-Z)*coeff[2] - (X+Z)*coeff[1]
+ fp2sqr_mont(t1, t1); // t1 = [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2
+ fp2sqr_mont(&P->Z, &P->Z); // Z = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2
+ fp2add(t1, t0, &P->X); // X = coeff[0]*(X+Z)*(X-Z) + [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2
+ fp2sub(&P->Z, t0, t0); // t0 = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2 - coeff[0]*(X+Z)*(X-Z)
+ fp2mul_mont(&P->X, t1, &P->X); // Xfinal
+ fp2mul_mont(&P->Z, t0, &P->Z); // Zfinal
+}
+
+
+void xTPL(const point_proj_t P, point_proj_t Q, const f2elm_t *A24minus, const f2elm_t *A24plus)
+{ // Tripling of a Montgomery point in projective coordinates (X:Z).
+ // Input: projective Montgomery x-coordinates P = (X:Z), where x=X/Z and Montgomery curve constants A24plus = A+2C and A24minus = A-2C.
+ // Output: projective Montgomery x-coordinates Q = 3*P = (X3:Z3).
+ f2elm_t _t0, _t1, _t2, _t3, _t4, _t5, _t6;
+ f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2 ;
+ f2elm_t *t3=&_t3, *t4=&_t4, *t5=&_t5, *t6=&_t6;
+
+ fp2sub(&P->X, &P->Z, t0); // t0 = X-Z
+ fp2sqr_mont(t0, t2); // t2 = (X-Z)^2
+ fp2add(&P->X, &P->Z, t1); // t1 = X+Z
+ fp2sqr_mont(t1, t3); // t3 = (X+Z)^2
+ fp2add(t0, t1, t4); // t4 = 2*X
+ fp2sub(t1, t0, t0); // t0 = 2*Z
+ fp2sqr_mont(t4, t1); // t1 = 4*X^2
+ fp2sub(t1, t3, t1); // t1 = 4*X^2 - (X+Z)^2
+ fp2sub(t1, t2, t1); // t1 = 4*X^2 - (X+Z)^2 - (X-Z)^2
+ fp2mul_mont(t3, A24plus, t5); // t5 = A24plus*(X+Z)^2
+ fp2mul_mont(t3, t5, t3); // t3 = A24plus*(X+Z)^3
+ fp2mul_mont(A24minus, t2, t6); // t6 = A24minus*(X-Z)^2
+ fp2mul_mont(t2, t6, t2); // t2 = A24minus*(X-Z)^3
+ fp2sub(t2, t3, t3); // t3 = A24minus*(X-Z)^3 - coeff*(X+Z)^3
+ fp2sub(t5, t6, t2); // t2 = A24plus*(X+Z)^2 - A24minus*(X-Z)^2
+ fp2mul_mont(t1, t2, t1); // t1 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2]
+ fp2add(t3, t1, t2); // t2 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] + A24minus*(X-Z)^3 - coeff*(X+Z)^3
+ fp2sqr_mont(t2, t2); // t2 = t2^2
+ fp2mul_mont(t4, t2, &Q->X); // X3 = 2*X*t2
+ fp2sub(t3, t1, t1); // t1 = A24minus*(X-Z)^3 - A24plus*(X+Z)^3 - [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2]
+ fp2sqr_mont(t1, t1); // t1 = t1^2
+ fp2mul_mont(t0, t1, &Q->Z); // Z3 = 2*Z*t1
+}
+
+
+void xTPLe(const point_proj_t P, point_proj_t Q, const f2elm_t *A24minus, const f2elm_t *A24plus, const int e)
+{ // Computes [3^e](X:Z) on Montgomery curve with projective constant via e repeated triplings.
+ // Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A24plus = A+2C and A24minus = A-2C.
+ // Output: projective Montgomery x-coordinates Q <- (3^e)*P.
+ int i;
+
+ copy_words((const digit_t*)P, (digit_t*)Q, 2*2*NWORDS_FIELD);
+
+ for (i = 0; i < e; i++) {
+ xTPL(Q, Q, A24minus, A24plus);
+ }
+}
+
+
+void get_3_isog(const point_proj_t P, f2elm_t *A24minus, f2elm_t *A24plus, f2elm_t* coeff)
+{ // Computes the corresponding 3-isogeny of a projective Montgomery point (X3:Z3) of order 3.
+ // Input: projective point of order three P = (X3:Z3).
+ // Output: the 3-isogenous Montgomery curve with projective coefficient A/C.
+ f2elm_t _t0, _t1, _t2, _t3, _t4;
+ f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2 ;
+ f2elm_t *t3=&_t3, *t4=&_t4 ;
+
+ fp2sub(&P->X, &P->Z, &coeff[0]); // coeff0 = X-Z
+ fp2sqr_mont(&coeff[0], t0); // t0 = (X-Z)^2
+ fp2add(&P->X, &P->Z, &coeff[1]); // coeff1 = X+Z
+ fp2sqr_mont(&coeff[1], t1); // t1 = (X+Z)^2
+ fp2add(t0, t1, t2); // t2 = (X+Z)^2 + (X-Z)^2
+ fp2add(&coeff[0], &coeff[1], t3); // t3 = 2*X
+ fp2sqr_mont(t3, t3); // t3 = 4*X^2
+ fp2sub(t3, t2, t3); // t3 = 4*X^2 - (X+Z)^2 - (X-Z)^2
+ fp2add(t1, t3, t2); // t2 = 4*X^2 - (X-Z)^2
+ fp2add(t3, t0, t3); // t3 = 4*X^2 - (X+Z)^2
+ fp2add(t0, t3, t4); // t4 = 4*X^2 - (X+Z)^2 + (X-Z)^2
+ fp2add(t4, t4, t4); // t4 = 2(4*X^2 - (X+Z)^2 + (X-Z)^2)
+ fp2add(t1, t4, t4); // t4 = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2
+ fp2mul_mont(t2, t4, A24minus); // A24minus = [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2]
+ fp2add(t1, t2, t4); // t4 = 4*X^2 + (X+Z)^2 - (X-Z)^2
+ fp2add(t4, t4, t4); // t4 = 2(4*X^2 + (X+Z)^2 - (X-Z)^2)
+ fp2add(t0, t4, t4); // t4 = 8*X^2 + 2*(X+Z)^2 - (X-Z)^2
+ fp2mul_mont(t3, t4, t4); // t4 = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2]
+ fp2sub(t4, A24minus, t0); // t0 = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2] - [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2]
+ fp2add(A24minus, t0, A24plus); // A24plus = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2
+}
+
+
+void eval_3_isog(point_proj_t Q, const f2elm_t* coeff)
+{ // Computes the 3-isogeny R=phi(X:Z), given projective point (X3:Z3) of order 3 on a Montgomery curve and
+ // a point P with 2 coefficients in coeff (computed in the function get_3_isog()).
+ // Inputs: projective points P = (X3:Z3) and Q = (X:Z).
+ // Output: the projective point Q <- phi(Q) = (X3:Z3).
+ f2elm_t _t0, _t1, _t2;
+ f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2 ;
+
+ fp2add(&Q->X, &Q->Z, t0); // t0 = X+Z
+ fp2sub(&Q->X, &Q->Z, t1); // t1 = X-Z
+ fp2mul_mont(t0, &coeff[0], t0); // t0 = coeff0*(X+Z)
+ fp2mul_mont(t1, &coeff[1], t1); // t1 = coeff1*(X-Z)
+ fp2add(t0, t1, t2); // t2 = coeff0*(X-Z) + coeff1*(X+Z)
+ fp2sub(t1, t0, t0); // t0 = coeff0*(X-Z) - coeff1*(X+Z)
+ fp2sqr_mont(t2, t2); // t2 = [coeff0*(X-Z) + coeff1*(X+Z)]^2
+ fp2sqr_mont(t0, t0); // t1 = [coeff0*(X-Z) - coeff1*(X+Z)]^2
+ fp2mul_mont(&Q->X, t2, &Q->X); // X3final = X*[coeff0*(X-Z) + coeff1*(X+Z)]^2
+ fp2mul_mont(&Q->Z, t0, &Q->Z); // Z3final = Z*[coeff0*(X-Z) - coeff1*(X+Z)]^2
+}
+
+
+void inv_3_way(f2elm_t *z1, f2elm_t *z2, f2elm_t *z3)
+{ // 3-way simultaneous inversion
+ // Input: z1,z2,z3
+ // Output: 1/z1,1/z2,1/z3 (override inputs).
+ f2elm_t _t0, _t1, _t2, _t3;
+ f2elm_t *t0=&_t0, *t1=&_t1;
+ f2elm_t *t2=&_t2, *t3=&_t3;
+
+ fp2mul_mont(z1, z2, t0); // t0 = z1*z2
+ fp2mul_mont(z3, t0, t1); // t1 = z1*z2*z3
+ fp2inv_mont(t1); // t1 = 1/(z1*z2*z3)
+ fp2mul_mont(z3, t1, t2); // t2 = 1/(z1*z2)
+ fp2mul_mont(t2, z2, t3); // t3 = 1/z1
+ fp2mul_mont(t2, z1, z2); // z2 = 1/z2
+ fp2mul_mont(t0, t1, z3); // z3 = 1/z3
+ fp2copy(t3, z1); // z1 = 1/z1
+}
+
+
+void get_A(const f2elm_t *xP, const f2elm_t *xQ, const f2elm_t *xR, f2elm_t *A)
+{ // Given the x-coordinates of P, Q, and R, returns the value A corresponding to the Montgomery curve E_A: y^2=x^3+A*x^2+x such that R=Q-P on E_A.
+ // Input: the x-coordinates xP, xQ, and xR of the points P, Q and R.
+ // Output: the coefficient A corresponding to the curve E_A: y^2=x^3+A*x^2+x.
+ f2elm_t _t0, _t1, one = {0};
+ f2elm_t *t0=&_t0, *t1=&_t1;
+
+ fpcopy((const digit_t*)&Montgomery_one, one.e[0]);
+ fp2add(xP, xQ, t1); // t1 = xP+xQ
+ fp2mul_mont(xP, xQ, t0); // t0 = xP*xQ
+ fp2mul_mont(xR, t1, A); // A = xR*t1
+ fp2add(t0, A, A); // A = A+t0
+ fp2mul_mont(t0, xR, t0); // t0 = t0*xR
+ fp2sub(A, &one, A); // A = A-1
+ fp2add(t0, t0, t0); // t0 = t0+t0
+ fp2add(t1, xR, t1); // t1 = t1+xR
+ fp2add(t0, t0, t0); // t0 = t0+t0
+ fp2sqr_mont(A, A); // A = A^2
+ fp2inv_mont(t0); // t0 = 1/t0
+ fp2mul_mont(A, t0, A); // A = A*t0
+ fp2sub(A, t1, A); // Afinal = A-t1
+}
+
+
+void j_inv(const f2elm_t *A, const f2elm_t *C, f2elm_t *jinv)
+{ // Computes the j-invariant of a Montgomery curve with projective constant.
+ // Input: A,C in GF(p^2).
+ // Output: j=256*(A^2-3*C^2)^3/(C^4*(A^2-4*C^2)), which is the j-invariant of the Montgomery curve B*y^2=x^3+(A/C)*x^2+x or (equivalently) j-invariant of B'*y^2=C*x^3+A*x^2+C*x.
+ f2elm_t _t0, _t1;
+ f2elm_t *t0=&_t0, *t1=&_t1;
+
+ fp2sqr_mont(A, jinv); // jinv = A^2
+ fp2sqr_mont(C, t1); // t1 = C^2
+ fp2add(t1, t1, t0); // t0 = t1+t1
+ fp2sub(jinv, t0, t0); // t0 = jinv-t0
+ fp2sub(t0, t1, t0); // t0 = t0-t1
+ fp2sub(t0, t1, jinv); // jinv = t0-t1
+ fp2sqr_mont(t1, t1); // t1 = t1^2
+ fp2mul_mont(jinv, t1, jinv); // jinv = jinv*t1
+ fp2add(t0, t0, t0); // t0 = t0+t0
+ fp2add(t0, t0, t0); // t0 = t0+t0
+ fp2sqr_mont(t0, t1); // t1 = t0^2
+ fp2mul_mont(t0, t1, t0); // t0 = t0*t1
+ fp2add(t0, t0, t0); // t0 = t0+t0
+ fp2add(t0, t0, t0); // t0 = t0+t0
+ fp2inv_mont(jinv); // jinv = 1/jinv
+ fp2mul_mont(jinv, t0, jinv); // jinv = t0*jinv
+}
+
+
+void xDBLADD(point_proj_t P, point_proj_t Q, const f2elm_t *xPQ, const f2elm_t *A24)
+{ // Simultaneous doubling and differential addition.
+ // Input: projective Montgomery points P=(XP:ZP) and Q=(XQ:ZQ) such that xP=XP/ZP and xQ=XQ/ZQ, affine difference xPQ=x(P-Q) and Montgomery curve constant A24=(A+2)/4.
+ // Output: projective Montgomery points P <- 2*P = (X2P:Z2P) such that x(2P)=X2P/Z2P, and Q <- P+Q = (XQP:ZQP) such that = x(Q+P)=XQP/ZQP.
+ f2elm_t _t0, _t1, _t2;
+ f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2;
+
+ fp2add(&P->X, &P->Z, t0); // t0 = XP+ZP
+ fp2sub(&P->X, &P->Z, t1); // t1 = XP-ZP
+ fp2sqr_mont(t0, &P->X); // XP = (XP+ZP)^2
+ fp2sub(&Q->X, &Q->Z, t2); // t2 = XQ-ZQ
+ fp2correction(t2);
+ fp2add(&Q->X,&Q->Z, &Q->X); // XQ = XQ+ZQ
+ fp2mul_mont(t0, t2, t0); // t0 = (XP+ZP)*(XQ-ZQ)
+ fp2sqr_mont(t1, &P->Z); // ZP = (XP-ZP)^2
+ fp2mul_mont(t1, &Q->X, t1); // t1 = (XP-ZP)*(XQ+ZQ)
+ fp2sub(&P->X, &P->Z, t2); // t2 = (XP+ZP)^2-(XP-ZP)^2
+ fp2mul_mont(&P->X, &P->Z, &P->X); // XP = (XP+ZP)^2*(XP-ZP)^2
+ fp2mul_mont(t2, A24, &Q->X); // XQ = A24*[(XP+ZP)^2-(XP-ZP)^2]
+ fp2sub(t0, t1, &Q->Z); // ZQ = (XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)
+ fp2add(&Q->X, &P->Z, &P->Z); // ZP = A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2
+ fp2add(t0, t1, &Q->X); // XQ = (XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)
+ fp2mul_mont(&P->Z, t2, &P->Z); // ZP = [A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2]*[(XP+ZP)^2-(XP-ZP)^2]
+ fp2sqr_mont(&Q->Z, &Q->Z); // ZQ = [(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
+ fp2sqr_mont(&Q->X, &Q->X); // XQ = [(XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)]^2
+ fp2mul_mont(&Q->Z, xPQ, &Q->Z); // ZQ = xPQ*[(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
+}
+
+
+static void swap_points(point_proj_t P, point_proj_t Q, const digit_t option)
+{ // Swap points.
+ // If option = 0 then P <- P and Q <- Q, else if option = 0xFF...FF then P <- Q and Q <- P
+ unsigned int i;
+
+ for (i = 0; i < NWORDS_FIELD; i++) {
+ digit_t temp = option & (P->X.e[0][i] ^ Q->X.e[0][i]);
+ P->X.e[0][i] = temp ^ P->X.e[0][i];
+ Q->X.e[0][i] = temp ^ Q->X.e[0][i];
+ temp = option & (P->Z.e[0][i] ^ Q->Z.e[0][i]);
+ P->Z.e[0][i] = temp ^ P->Z.e[0][i];
+ Q->Z.e[0][i] = temp ^ Q->Z.e[0][i];
+ temp = option & (P->X.e[1][i] ^ Q->X.e[1][i]);
+ P->X.e[1][i] = temp ^ P->X.e[1][i];
+ Q->X.e[1][i] = temp ^ Q->X.e[1][i];
+ temp = option & (P->Z.e[1][i] ^ Q->Z.e[1][i]);
+ P->Z.e[1][i] = temp ^ P->Z.e[1][i];
+ Q->Z.e[1][i] = temp ^ Q->Z.e[1][i];
+ }
+}
+
+
+static void LADDER3PT(const f2elm_t *xP, const f2elm_t *xQ, const f2elm_t *xPQ, const digit_t* m, const unsigned int AliceOrBob, point_proj_t R, const f2elm_t *A)
+{
+ point_proj_t R0 = {0}, R2 = {0};
+ f2elm_t _A24 = {0};
+ f2elm_t *A24=&_A24;
+ int i, nbits, prevbit = 0;
+
+ if (AliceOrBob == ALICE) {
+ nbits = OALICE_BITS;
+ } else {
+ nbits = OBOB_BITS;
+ }
+
+ // Initializing constant
+ fpcopy((const digit_t*)&Montgomery_one, A24->e[0]);
+ fp2add(A24, A24, A24);
+ fp2add(A, A24, A24);
+ fp2div2(A24, A24);
+ fp2div2(A24, A24); // A24 = (A+2)/4
+
+ // Initializing points
+ fp2copy(xQ, &R0->X);
+ fpcopy((const digit_t*)&Montgomery_one, (digit_t*)R0->Z.e);
+ fp2copy(xPQ, &R2->X);
+ fpcopy((const digit_t*)&Montgomery_one, (digit_t*)R2->Z.e);
+ fp2copy(xP, &R->X);
+ fpcopy((const digit_t*)&Montgomery_one, (digit_t*)R->Z.e);
+ fpzero((digit_t*)(R->Z.e)[1]);
+
+ // Main loop
+ for (i = 0; i < nbits; i++) {
+ int bit = (m[i >> LOG2RADIX] >> (i & (RADIX-1))) & 1;
+ int swap = bit ^ prevbit;
+ prevbit = bit;
+ digit_t mask = 0 - (digit_t)swap;
+
+ swap_points(R, R2, mask);
+ xDBLADD(R0, R2, &R->X, A24);
+ fp2mul_mont(&R2->X, &R->Z, &R2->X);
+ }
+}