summaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/aws-c-common/source/byte_buf.c
diff options
context:
space:
mode:
authororivej <[email protected]>2022-02-10 16:44:49 +0300
committerDaniil Cherednik <[email protected]>2022-02-10 16:44:49 +0300
commit718c552901d703c502ccbefdfc3c9028d608b947 (patch)
tree46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/restricted/aws/aws-c-common/source/byte_buf.c
parente9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff)
Restoring authorship annotation for <[email protected]>. Commit 1 of 2.
Diffstat (limited to 'contrib/restricted/aws/aws-c-common/source/byte_buf.c')
-rw-r--r--contrib/restricted/aws/aws-c-common/source/byte_buf.c2226
1 files changed, 1113 insertions, 1113 deletions
diff --git a/contrib/restricted/aws/aws-c-common/source/byte_buf.c b/contrib/restricted/aws/aws-c-common/source/byte_buf.c
index ca18f4121b8..d07a1e9b38c 100644
--- a/contrib/restricted/aws/aws-c-common/source/byte_buf.c
+++ b/contrib/restricted/aws/aws-c-common/source/byte_buf.c
@@ -1,10 +1,10 @@
-/**
- * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
- * SPDX-License-Identifier: Apache-2.0.
+/**
+ * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
+ * SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/common/byte_buf.h>
-#include <aws/common/private/byte_buf.h>
+#include <aws/common/private/byte_buf.h>
#include <stdarg.h>
@@ -15,12 +15,12 @@
#endif
int aws_byte_buf_init(struct aws_byte_buf *buf, struct aws_allocator *allocator, size_t capacity) {
- AWS_PRECONDITION(buf);
- AWS_PRECONDITION(allocator);
+ AWS_PRECONDITION(buf);
+ AWS_PRECONDITION(allocator);
buf->buffer = (capacity == 0) ? NULL : aws_mem_acquire(allocator, capacity);
if (capacity != 0 && buf->buffer == NULL) {
- AWS_ZERO_STRUCT(*buf);
+ AWS_ZERO_STRUCT(*buf);
return AWS_OP_ERR;
}
@@ -32,9 +32,9 @@ int aws_byte_buf_init(struct aws_byte_buf *buf, struct aws_allocator *allocator,
}
int aws_byte_buf_init_copy(struct aws_byte_buf *dest, struct aws_allocator *allocator, const struct aws_byte_buf *src) {
- AWS_PRECONDITION(allocator);
- AWS_PRECONDITION(dest);
- AWS_ERROR_PRECONDITION(aws_byte_buf_is_valid(src));
+ AWS_PRECONDITION(allocator);
+ AWS_PRECONDITION(dest);
+ AWS_ERROR_PRECONDITION(aws_byte_buf_is_valid(src));
if (!src->buffer) {
AWS_ZERO_STRUCT(*dest);
@@ -56,23 +56,23 @@ int aws_byte_buf_init_copy(struct aws_byte_buf *dest, struct aws_allocator *allo
}
bool aws_byte_buf_is_valid(const struct aws_byte_buf *const buf) {
- return buf != NULL &&
- ((buf->capacity == 0 && buf->len == 0 && buf->buffer == NULL) ||
- (buf->capacity > 0 && buf->len <= buf->capacity && AWS_MEM_IS_WRITABLE(buf->buffer, buf->capacity)));
+ return buf != NULL &&
+ ((buf->capacity == 0 && buf->len == 0 && buf->buffer == NULL) ||
+ (buf->capacity > 0 && buf->len <= buf->capacity && AWS_MEM_IS_WRITABLE(buf->buffer, buf->capacity)));
}
bool aws_byte_cursor_is_valid(const struct aws_byte_cursor *cursor) {
- return cursor != NULL &&
- ((cursor->len == 0) || (cursor->len > 0 && cursor->ptr && AWS_MEM_IS_READABLE(cursor->ptr, cursor->len)));
-}
-
-void aws_byte_buf_reset(struct aws_byte_buf *buf, bool zero_contents) {
- if (zero_contents) {
- aws_byte_buf_secure_zero(buf);
- }
- buf->len = 0;
+ return cursor != NULL &&
+ ((cursor->len == 0) || (cursor->len > 0 && cursor->ptr && AWS_MEM_IS_READABLE(cursor->ptr, cursor->len)));
}
+void aws_byte_buf_reset(struct aws_byte_buf *buf, bool zero_contents) {
+ if (zero_contents) {
+ aws_byte_buf_secure_zero(buf);
+ }
+ buf->len = 0;
+}
+
void aws_byte_buf_clean_up(struct aws_byte_buf *buf) {
AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
if (buf->allocator && buf->buffer) {
@@ -94,53 +94,53 @@ void aws_byte_buf_secure_zero(struct aws_byte_buf *buf) {
}
void aws_byte_buf_clean_up_secure(struct aws_byte_buf *buf) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
aws_byte_buf_secure_zero(buf);
aws_byte_buf_clean_up(buf);
- AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
}
-bool aws_byte_buf_eq(const struct aws_byte_buf *const a, const struct aws_byte_buf *const b) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(a));
- AWS_PRECONDITION(aws_byte_buf_is_valid(b));
- bool rval = aws_array_eq(a->buffer, a->len, b->buffer, b->len);
- AWS_POSTCONDITION(aws_byte_buf_is_valid(a));
- AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
- return rval;
+bool aws_byte_buf_eq(const struct aws_byte_buf *const a, const struct aws_byte_buf *const b) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(a));
+ AWS_PRECONDITION(aws_byte_buf_is_valid(b));
+ bool rval = aws_array_eq(a->buffer, a->len, b->buffer, b->len);
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(a));
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
+ return rval;
}
-bool aws_byte_buf_eq_ignore_case(const struct aws_byte_buf *const a, const struct aws_byte_buf *const b) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(a));
- AWS_PRECONDITION(aws_byte_buf_is_valid(b));
- bool rval = aws_array_eq_ignore_case(a->buffer, a->len, b->buffer, b->len);
- AWS_POSTCONDITION(aws_byte_buf_is_valid(a));
- AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
- return rval;
+bool aws_byte_buf_eq_ignore_case(const struct aws_byte_buf *const a, const struct aws_byte_buf *const b) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(a));
+ AWS_PRECONDITION(aws_byte_buf_is_valid(b));
+ bool rval = aws_array_eq_ignore_case(a->buffer, a->len, b->buffer, b->len);
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(a));
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
+ return rval;
}
-bool aws_byte_buf_eq_c_str(const struct aws_byte_buf *const buf, const char *const c_str) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- AWS_PRECONDITION(c_str != NULL);
- bool rval = aws_array_eq_c_str(buf->buffer, buf->len, c_str);
- AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
- return rval;
+bool aws_byte_buf_eq_c_str(const struct aws_byte_buf *const buf, const char *const c_str) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ AWS_PRECONDITION(c_str != NULL);
+ bool rval = aws_array_eq_c_str(buf->buffer, buf->len, c_str);
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
+ return rval;
}
-bool aws_byte_buf_eq_c_str_ignore_case(const struct aws_byte_buf *const buf, const char *const c_str) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- AWS_PRECONDITION(c_str != NULL);
- bool rval = aws_array_eq_c_str_ignore_case(buf->buffer, buf->len, c_str);
- AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
- return rval;
+bool aws_byte_buf_eq_c_str_ignore_case(const struct aws_byte_buf *const buf, const char *const c_str) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ AWS_PRECONDITION(c_str != NULL);
+ bool rval = aws_array_eq_c_str_ignore_case(buf->buffer, buf->len, c_str);
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
+ return rval;
}
int aws_byte_buf_init_copy_from_cursor(
struct aws_byte_buf *dest,
struct aws_allocator *allocator,
struct aws_byte_cursor src) {
- AWS_PRECONDITION(allocator);
- AWS_PRECONDITION(dest);
- AWS_ERROR_PRECONDITION(aws_byte_cursor_is_valid(&src));
+ AWS_PRECONDITION(allocator);
+ AWS_PRECONDITION(dest);
+ AWS_ERROR_PRECONDITION(aws_byte_cursor_is_valid(&src));
AWS_ZERO_STRUCT(*dest);
@@ -159,89 +159,89 @@ int aws_byte_buf_init_copy_from_cursor(
return AWS_OP_SUCCESS;
}
-int aws_byte_buf_init_cache_and_update_cursors(struct aws_byte_buf *dest, struct aws_allocator *allocator, ...) {
- AWS_PRECONDITION(allocator);
- AWS_PRECONDITION(dest);
-
- AWS_ZERO_STRUCT(*dest);
-
- size_t total_len = 0;
- va_list args;
- va_start(args, allocator);
-
- /* Loop until final NULL arg is encountered */
- struct aws_byte_cursor *cursor_i;
- while ((cursor_i = va_arg(args, struct aws_byte_cursor *)) != NULL) {
- AWS_ASSERT(aws_byte_cursor_is_valid(cursor_i));
- if (aws_add_size_checked(total_len, cursor_i->len, &total_len)) {
- return AWS_OP_ERR;
- }
- }
- va_end(args);
-
- if (aws_byte_buf_init(dest, allocator, total_len)) {
- return AWS_OP_ERR;
- }
-
- va_start(args, allocator);
- while ((cursor_i = va_arg(args, struct aws_byte_cursor *)) != NULL) {
- /* Impossible for this call to fail, we pre-allocated sufficient space */
- aws_byte_buf_append_and_update(dest, cursor_i);
- }
- va_end(args);
-
- return AWS_OP_SUCCESS;
-}
-
+int aws_byte_buf_init_cache_and_update_cursors(struct aws_byte_buf *dest, struct aws_allocator *allocator, ...) {
+ AWS_PRECONDITION(allocator);
+ AWS_PRECONDITION(dest);
+
+ AWS_ZERO_STRUCT(*dest);
+
+ size_t total_len = 0;
+ va_list args;
+ va_start(args, allocator);
+
+ /* Loop until final NULL arg is encountered */
+ struct aws_byte_cursor *cursor_i;
+ while ((cursor_i = va_arg(args, struct aws_byte_cursor *)) != NULL) {
+ AWS_ASSERT(aws_byte_cursor_is_valid(cursor_i));
+ if (aws_add_size_checked(total_len, cursor_i->len, &total_len)) {
+ return AWS_OP_ERR;
+ }
+ }
+ va_end(args);
+
+ if (aws_byte_buf_init(dest, allocator, total_len)) {
+ return AWS_OP_ERR;
+ }
+
+ va_start(args, allocator);
+ while ((cursor_i = va_arg(args, struct aws_byte_cursor *)) != NULL) {
+ /* Impossible for this call to fail, we pre-allocated sufficient space */
+ aws_byte_buf_append_and_update(dest, cursor_i);
+ }
+ va_end(args);
+
+ return AWS_OP_SUCCESS;
+}
+
bool aws_byte_cursor_next_split(
const struct aws_byte_cursor *AWS_RESTRICT input_str,
char split_on,
struct aws_byte_cursor *AWS_RESTRICT substr) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(input_str));
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(input_str));
- /* If substr is zeroed-out, then this is the first run. */
- const bool first_run = substr->ptr == NULL;
+ /* If substr is zeroed-out, then this is the first run. */
+ const bool first_run = substr->ptr == NULL;
- /* It's legal for input_str to be zeroed out: {.ptr=NULL, .len=0}
- * Deal with this case separately */
- if (AWS_UNLIKELY(input_str->ptr == NULL)) {
- if (first_run) {
- /* Set substr->ptr to something non-NULL so that next split() call doesn't look like the first run */
- substr->ptr = (void *)"";
- substr->len = 0;
- return true;
- }
+ /* It's legal for input_str to be zeroed out: {.ptr=NULL, .len=0}
+ * Deal with this case separately */
+ if (AWS_UNLIKELY(input_str->ptr == NULL)) {
+ if (first_run) {
+ /* Set substr->ptr to something non-NULL so that next split() call doesn't look like the first run */
+ substr->ptr = (void *)"";
+ substr->len = 0;
+ return true;
+ }
- /* done */
+ /* done */
AWS_ZERO_STRUCT(*substr);
return false;
}
- /* Rest of function deals with non-NULL input_str->ptr */
-
- if (first_run) {
- *substr = *input_str;
- } else {
- /* This is not the first run.
- * Advance substr past the previous split. */
- const uint8_t *input_end = input_str->ptr + input_str->len;
- substr->ptr += substr->len + 1;
-
- /* Note that it's ok if substr->ptr == input_end, this happens in the
- * final valid split of an input_str that ends with the split_on character:
- * Ex: "AB&" split on '&' produces "AB" and "" */
- if (substr->ptr > input_end || substr->ptr < input_str->ptr) { /* 2nd check is overflow check */
- /* done */
- AWS_ZERO_STRUCT(*substr);
- return false;
+ /* Rest of function deals with non-NULL input_str->ptr */
+
+ if (first_run) {
+ *substr = *input_str;
+ } else {
+ /* This is not the first run.
+ * Advance substr past the previous split. */
+ const uint8_t *input_end = input_str->ptr + input_str->len;
+ substr->ptr += substr->len + 1;
+
+ /* Note that it's ok if substr->ptr == input_end, this happens in the
+ * final valid split of an input_str that ends with the split_on character:
+ * Ex: "AB&" split on '&' produces "AB" and "" */
+ if (substr->ptr > input_end || substr->ptr < input_str->ptr) { /* 2nd check is overflow check */
+ /* done */
+ AWS_ZERO_STRUCT(*substr);
+ return false;
}
-
- /* update len to be remainder of the string */
- substr->len = input_str->len - (substr->ptr - input_str->ptr);
+
+ /* update len to be remainder of the string */
+ substr->len = input_str->len - (substr->ptr - input_str->ptr);
}
- /* substr is now remainder of string, search for next split */
+ /* substr is now remainder of string, search for next split */
uint8_t *new_location = memchr(substr->ptr, split_on, substr->len);
if (new_location) {
@@ -249,7 +249,7 @@ bool aws_byte_cursor_next_split(
substr->len = new_location - substr->ptr;
}
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(substr));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(substr));
return true;
}
@@ -258,7 +258,7 @@ int aws_byte_cursor_split_on_char_n(
char split_on,
size_t n,
struct aws_array_list *AWS_RESTRICT output) {
- AWS_ASSERT(aws_byte_cursor_is_valid(input_str));
+ AWS_ASSERT(aws_byte_cursor_is_valid(input_str));
AWS_ASSERT(output);
AWS_ASSERT(output->item_size >= sizeof(struct aws_byte_cursor));
@@ -293,46 +293,46 @@ int aws_byte_cursor_split_on_char(
return aws_byte_cursor_split_on_char_n(input_str, split_on, 0, output);
}
-int aws_byte_cursor_find_exact(
- const struct aws_byte_cursor *AWS_RESTRICT input_str,
- const struct aws_byte_cursor *AWS_RESTRICT to_find,
- struct aws_byte_cursor *first_find) {
- if (to_find->len > input_str->len) {
- return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
- }
-
- if (to_find->len < 1) {
- return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
- }
-
- struct aws_byte_cursor working_cur = *input_str;
-
- while (working_cur.len) {
- uint8_t *first_char_location = memchr(working_cur.ptr, (char)*to_find->ptr, working_cur.len);
-
- if (!first_char_location) {
- return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
- }
-
- aws_byte_cursor_advance(&working_cur, first_char_location - working_cur.ptr);
-
- if (working_cur.len < to_find->len) {
- return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
- }
-
- if (!memcmp(working_cur.ptr, to_find->ptr, to_find->len)) {
- *first_find = working_cur;
- return AWS_OP_SUCCESS;
- }
-
- aws_byte_cursor_advance(&working_cur, 1);
- }
-
- return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
-}
-
+int aws_byte_cursor_find_exact(
+ const struct aws_byte_cursor *AWS_RESTRICT input_str,
+ const struct aws_byte_cursor *AWS_RESTRICT to_find,
+ struct aws_byte_cursor *first_find) {
+ if (to_find->len > input_str->len) {
+ return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
+ }
+
+ if (to_find->len < 1) {
+ return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
+ }
+
+ struct aws_byte_cursor working_cur = *input_str;
+
+ while (working_cur.len) {
+ uint8_t *first_char_location = memchr(working_cur.ptr, (char)*to_find->ptr, working_cur.len);
+
+ if (!first_char_location) {
+ return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
+ }
+
+ aws_byte_cursor_advance(&working_cur, first_char_location - working_cur.ptr);
+
+ if (working_cur.len < to_find->len) {
+ return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
+ }
+
+ if (!memcmp(working_cur.ptr, to_find->ptr, to_find->len)) {
+ *first_find = working_cur;
+ return AWS_OP_SUCCESS;
+ }
+
+ aws_byte_cursor_advance(&working_cur, 1);
+ }
+
+ return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
+}
+
int aws_byte_buf_cat(struct aws_byte_buf *dest, size_t number_of_args, ...) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(dest));
+ AWS_PRECONDITION(aws_byte_buf_is_valid(dest));
va_list ap;
va_start(ap, number_of_args);
@@ -343,36 +343,36 @@ int aws_byte_buf_cat(struct aws_byte_buf *dest, size_t number_of_args, ...) {
if (aws_byte_buf_append(dest, &cursor)) {
va_end(ap);
- AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
return AWS_OP_ERR;
}
}
va_end(ap);
- AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
return AWS_OP_SUCCESS;
}
bool aws_byte_cursor_eq(const struct aws_byte_cursor *a, const struct aws_byte_cursor *b) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
- AWS_PRECONDITION(aws_byte_cursor_is_valid(b));
- bool rv = aws_array_eq(a->ptr, a->len, b->ptr, b->len);
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(b));
- return rv;
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(b));
+ bool rv = aws_array_eq(a->ptr, a->len, b->ptr, b->len);
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(b));
+ return rv;
}
bool aws_byte_cursor_eq_ignore_case(const struct aws_byte_cursor *a, const struct aws_byte_cursor *b) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
- AWS_PRECONDITION(aws_byte_cursor_is_valid(b));
- bool rv = aws_array_eq_ignore_case(a->ptr, a->len, b->ptr, b->len);
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(b));
- return rv;
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(b));
+ bool rv = aws_array_eq_ignore_case(a->ptr, a->len, b->ptr, b->len);
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(b));
+ return rv;
}
/* Every possible uint8_t value, lowercased */
-static const uint8_t s_tolower_table[] = {
+static const uint8_t s_tolower_table[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 'a',
@@ -385,21 +385,21 @@ static const uint8_t s_tolower_table[] = {
198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,
220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255};
-AWS_STATIC_ASSERT(AWS_ARRAY_SIZE(s_tolower_table) == 256);
+AWS_STATIC_ASSERT(AWS_ARRAY_SIZE(s_tolower_table) == 256);
const uint8_t *aws_lookup_table_to_lower_get(void) {
return s_tolower_table;
}
-bool aws_array_eq_ignore_case(
- const void *const array_a,
- const size_t len_a,
- const void *const array_b,
- const size_t len_b) {
- AWS_PRECONDITION(
- (len_a == 0) || AWS_MEM_IS_READABLE(array_a, len_a), "Input array [array_a] must be readable up to [len_a].");
- AWS_PRECONDITION(
- (len_b == 0) || AWS_MEM_IS_READABLE(array_b, len_b), "Input array [array_b] must be readable up to [len_b].");
+bool aws_array_eq_ignore_case(
+ const void *const array_a,
+ const size_t len_a,
+ const void *const array_b,
+ const size_t len_b) {
+ AWS_PRECONDITION(
+ (len_a == 0) || AWS_MEM_IS_READABLE(array_a, len_a), "Input array [array_a] must be readable up to [len_a].");
+ AWS_PRECONDITION(
+ (len_b == 0) || AWS_MEM_IS_READABLE(array_b, len_b), "Input array [array_b] must be readable up to [len_b].");
if (len_a != len_b) {
return false;
@@ -416,11 +416,11 @@ bool aws_array_eq_ignore_case(
return true;
}
-bool aws_array_eq(const void *const array_a, const size_t len_a, const void *const array_b, const size_t len_b) {
- AWS_PRECONDITION(
- (len_a == 0) || AWS_MEM_IS_READABLE(array_a, len_a), "Input array [array_a] must be readable up to [len_a].");
- AWS_PRECONDITION(
- (len_b == 0) || AWS_MEM_IS_READABLE(array_b, len_b), "Input array [array_b] must be readable up to [len_b].");
+bool aws_array_eq(const void *const array_a, const size_t len_a, const void *const array_b, const size_t len_b) {
+ AWS_PRECONDITION(
+ (len_a == 0) || AWS_MEM_IS_READABLE(array_a, len_a), "Input array [array_a] must be readable up to [len_a].");
+ AWS_PRECONDITION(
+ (len_b == 0) || AWS_MEM_IS_READABLE(array_b, len_b), "Input array [array_b] must be readable up to [len_b].");
if (len_a != len_b) {
return false;
@@ -433,11 +433,11 @@ bool aws_array_eq(const void *const array_a, const size_t len_a, const void *con
return !memcmp(array_a, array_b, len_a);
}
-bool aws_array_eq_c_str_ignore_case(const void *const array, const size_t array_len, const char *const c_str) {
- AWS_PRECONDITION(
- array || (array_len == 0),
- "Either input pointer [array_a] mustn't be NULL or input [array_len] mustn't be zero.");
- AWS_PRECONDITION(c_str != NULL);
+bool aws_array_eq_c_str_ignore_case(const void *const array, const size_t array_len, const char *const c_str) {
+ AWS_PRECONDITION(
+ array || (array_len == 0),
+ "Either input pointer [array_a] mustn't be NULL or input [array_len] mustn't be zero.");
+ AWS_PRECONDITION(c_str != NULL);
/* Simpler implementation could have been:
* return aws_array_eq_ignore_case(array, array_len, c_str, strlen(c_str));
@@ -461,11 +461,11 @@ bool aws_array_eq_c_str_ignore_case(const void *const array, const size_t array_
return str_bytes[array_len] == '\0';
}
-bool aws_array_eq_c_str(const void *const array, const size_t array_len, const char *const c_str) {
- AWS_PRECONDITION(
- array || (array_len == 0),
- "Either input pointer [array_a] mustn't be NULL or input [array_len] mustn't be zero.");
- AWS_PRECONDITION(c_str != NULL);
+bool aws_array_eq_c_str(const void *const array, const size_t array_len, const char *const c_str) {
+ AWS_PRECONDITION(
+ array || (array_len == 0),
+ "Either input pointer [array_a] mustn't be NULL or input [array_len] mustn't be zero.");
+ AWS_PRECONDITION(c_str != NULL);
/* Simpler implementation could have been:
* return aws_array_eq(array, array_len, c_str, strlen(c_str));
@@ -489,8 +489,8 @@ bool aws_array_eq_c_str(const void *const array, const size_t array_len, const c
return str_bytes[array_len] == '\0';
}
-uint64_t aws_hash_array_ignore_case(const void *array, const size_t len) {
- AWS_PRECONDITION(AWS_MEM_IS_READABLE(array, len));
+uint64_t aws_hash_array_ignore_case(const void *array, const size_t len) {
+ AWS_PRECONDITION(AWS_MEM_IS_READABLE(array, len));
/* FNV-1a: https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function */
const uint64_t fnv_offset_basis = 0xcbf29ce484222325ULL;
const uint64_t fnv_prime = 0x100000001b3ULL;
@@ -502,60 +502,60 @@ uint64_t aws_hash_array_ignore_case(const void *array, const size_t len) {
while (i != end) {
const uint8_t lower = s_tolower_table[*i++];
hash ^= lower;
-#ifdef CBMC
-# pragma CPROVER check push
-# pragma CPROVER check disable "unsigned-overflow"
-#endif
+#ifdef CBMC
+# pragma CPROVER check push
+# pragma CPROVER check disable "unsigned-overflow"
+#endif
hash *= fnv_prime;
-#ifdef CBMC
-# pragma CPROVER check pop
-#endif
+#ifdef CBMC
+# pragma CPROVER check pop
+#endif
}
return hash;
}
uint64_t aws_hash_byte_cursor_ptr_ignore_case(const void *item) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(item));
- const struct aws_byte_cursor *const cursor = item;
- uint64_t rval = aws_hash_array_ignore_case(cursor->ptr, cursor->len);
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(item));
- return rval;
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(item));
+ const struct aws_byte_cursor *const cursor = item;
+ uint64_t rval = aws_hash_array_ignore_case(cursor->ptr, cursor->len);
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(item));
+ return rval;
}
-bool aws_byte_cursor_eq_byte_buf(const struct aws_byte_cursor *const a, const struct aws_byte_buf *const b) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
- AWS_PRECONDITION(aws_byte_buf_is_valid(b));
- bool rv = aws_array_eq(a->ptr, a->len, b->buffer, b->len);
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
- AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
- return rv;
+bool aws_byte_cursor_eq_byte_buf(const struct aws_byte_cursor *const a, const struct aws_byte_buf *const b) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
+ AWS_PRECONDITION(aws_byte_buf_is_valid(b));
+ bool rv = aws_array_eq(a->ptr, a->len, b->buffer, b->len);
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
+ return rv;
}
-bool aws_byte_cursor_eq_byte_buf_ignore_case(
- const struct aws_byte_cursor *const a,
- const struct aws_byte_buf *const b) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
- AWS_PRECONDITION(aws_byte_buf_is_valid(b));
- bool rv = aws_array_eq_ignore_case(a->ptr, a->len, b->buffer, b->len);
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
- AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
- return rv;
+bool aws_byte_cursor_eq_byte_buf_ignore_case(
+ const struct aws_byte_cursor *const a,
+ const struct aws_byte_buf *const b) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
+ AWS_PRECONDITION(aws_byte_buf_is_valid(b));
+ bool rv = aws_array_eq_ignore_case(a->ptr, a->len, b->buffer, b->len);
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
+ return rv;
}
-bool aws_byte_cursor_eq_c_str(const struct aws_byte_cursor *const cursor, const char *const c_str) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));
- AWS_PRECONDITION(c_str != NULL);
- bool rv = aws_array_eq_c_str(cursor->ptr, cursor->len, c_str);
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
- return rv;
+bool aws_byte_cursor_eq_c_str(const struct aws_byte_cursor *const cursor, const char *const c_str) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));
+ AWS_PRECONDITION(c_str != NULL);
+ bool rv = aws_array_eq_c_str(cursor->ptr, cursor->len, c_str);
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
+ return rv;
}
-bool aws_byte_cursor_eq_c_str_ignore_case(const struct aws_byte_cursor *const cursor, const char *const c_str) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));
- AWS_PRECONDITION(c_str != NULL);
- bool rv = aws_array_eq_c_str_ignore_case(cursor->ptr, cursor->len, c_str);
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
- return rv;
+bool aws_byte_cursor_eq_c_str_ignore_case(const struct aws_byte_cursor *const cursor, const char *const c_str) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));
+ AWS_PRECONDITION(c_str != NULL);
+ bool rv = aws_array_eq_c_str_ignore_case(cursor->ptr, cursor->len, c_str);
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
+ return rv;
}
int aws_byte_buf_append(struct aws_byte_buf *to, const struct aws_byte_cursor *from) {
@@ -587,8 +587,8 @@ int aws_byte_buf_append_with_lookup(
const uint8_t *lookup_table) {
AWS_PRECONDITION(aws_byte_buf_is_valid(to));
AWS_PRECONDITION(aws_byte_cursor_is_valid(from));
- AWS_PRECONDITION(
- AWS_MEM_IS_READABLE(lookup_table, 256), "Input array [lookup_table] must be at least 256 bytes long.");
+ AWS_PRECONDITION(
+ AWS_MEM_IS_READABLE(lookup_table, 256), "Input array [lookup_table] must be at least 256 bytes long.");
if (to->capacity - to->len < from->len) {
AWS_POSTCONDITION(aws_byte_buf_is_valid(to));
@@ -609,13 +609,13 @@ int aws_byte_buf_append_with_lookup(
return AWS_OP_SUCCESS;
}
-static int s_aws_byte_buf_append_dynamic(
- struct aws_byte_buf *to,
- const struct aws_byte_cursor *from,
- bool clear_released_memory) {
+static int s_aws_byte_buf_append_dynamic(
+ struct aws_byte_buf *to,
+ const struct aws_byte_cursor *from,
+ bool clear_released_memory) {
AWS_PRECONDITION(aws_byte_buf_is_valid(to));
AWS_PRECONDITION(aws_byte_cursor_is_valid(from));
- AWS_ERROR_PRECONDITION(to->allocator);
+ AWS_ERROR_PRECONDITION(to->allocator);
if (to->capacity - to->len < from->len) {
/*
@@ -679,11 +679,11 @@ static int s_aws_byte_buf_append_dynamic(
if (from->len > 0) {
memcpy(new_buffer + to->len, from->ptr, from->len);
}
-
- if (clear_released_memory) {
- aws_secure_zero(to->buffer, to->capacity);
- }
-
+
+ if (clear_released_memory) {
+ aws_secure_zero(to->buffer, to->capacity);
+ }
+
/*
* Get rid of the old buffer
*/
@@ -710,41 +710,41 @@ static int s_aws_byte_buf_append_dynamic(
return AWS_OP_SUCCESS;
}
-int aws_byte_buf_append_dynamic(struct aws_byte_buf *to, const struct aws_byte_cursor *from) {
- return s_aws_byte_buf_append_dynamic(to, from, false);
-}
-
-int aws_byte_buf_append_dynamic_secure(struct aws_byte_buf *to, const struct aws_byte_cursor *from) {
- return s_aws_byte_buf_append_dynamic(to, from, true);
-}
-
-static int s_aws_byte_buf_append_byte_dynamic(struct aws_byte_buf *buffer, uint8_t value, bool clear_released_memory) {
-#if defined(_MSC_VER)
-# pragma warning(push)
-# pragma warning(disable : 4221)
-#endif /* _MSC_VER */
-
- /* msvc isn't a fan of this pointer-to-local assignment */
- struct aws_byte_cursor eq_cursor = {.len = 1, .ptr = &value};
-
-#if defined(_MSC_VER)
-# pragma warning(pop)
-#endif /* _MSC_VER */
-
- return s_aws_byte_buf_append_dynamic(buffer, &eq_cursor, clear_released_memory);
-}
-
-int aws_byte_buf_append_byte_dynamic(struct aws_byte_buf *buffer, uint8_t value) {
- return s_aws_byte_buf_append_byte_dynamic(buffer, value, false);
-}
-
-int aws_byte_buf_append_byte_dynamic_secure(struct aws_byte_buf *buffer, uint8_t value) {
- return s_aws_byte_buf_append_byte_dynamic(buffer, value, true);
-}
-
+int aws_byte_buf_append_dynamic(struct aws_byte_buf *to, const struct aws_byte_cursor *from) {
+ return s_aws_byte_buf_append_dynamic(to, from, false);
+}
+
+int aws_byte_buf_append_dynamic_secure(struct aws_byte_buf *to, const struct aws_byte_cursor *from) {
+ return s_aws_byte_buf_append_dynamic(to, from, true);
+}
+
+static int s_aws_byte_buf_append_byte_dynamic(struct aws_byte_buf *buffer, uint8_t value, bool clear_released_memory) {
+#if defined(_MSC_VER)
+# pragma warning(push)
+# pragma warning(disable : 4221)
+#endif /* _MSC_VER */
+
+ /* msvc isn't a fan of this pointer-to-local assignment */
+ struct aws_byte_cursor eq_cursor = {.len = 1, .ptr = &value};
+
+#if defined(_MSC_VER)
+# pragma warning(pop)
+#endif /* _MSC_VER */
+
+ return s_aws_byte_buf_append_dynamic(buffer, &eq_cursor, clear_released_memory);
+}
+
+int aws_byte_buf_append_byte_dynamic(struct aws_byte_buf *buffer, uint8_t value) {
+ return s_aws_byte_buf_append_byte_dynamic(buffer, value, false);
+}
+
+int aws_byte_buf_append_byte_dynamic_secure(struct aws_byte_buf *buffer, uint8_t value) {
+ return s_aws_byte_buf_append_byte_dynamic(buffer, value, true);
+}
+
int aws_byte_buf_reserve(struct aws_byte_buf *buffer, size_t requested_capacity) {
- AWS_ERROR_PRECONDITION(buffer->allocator);
- AWS_ERROR_PRECONDITION(aws_byte_buf_is_valid(buffer));
+ AWS_ERROR_PRECONDITION(buffer->allocator);
+ AWS_ERROR_PRECONDITION(aws_byte_buf_is_valid(buffer));
if (requested_capacity <= buffer->capacity) {
AWS_POSTCONDITION(aws_byte_buf_is_valid(buffer));
@@ -762,8 +762,8 @@ int aws_byte_buf_reserve(struct aws_byte_buf *buffer, size_t requested_capacity)
}
int aws_byte_buf_reserve_relative(struct aws_byte_buf *buffer, size_t additional_length) {
- AWS_ERROR_PRECONDITION(buffer->allocator);
- AWS_ERROR_PRECONDITION(aws_byte_buf_is_valid(buffer));
+ AWS_ERROR_PRECONDITION(buffer->allocator);
+ AWS_ERROR_PRECONDITION(aws_byte_buf_is_valid(buffer));
size_t requested_capacity = 0;
if (AWS_UNLIKELY(aws_add_size_checked(buffer->len, additional_length, &requested_capacity))) {
@@ -777,852 +777,852 @@ int aws_byte_buf_reserve_relative(struct aws_byte_buf *buffer, size_t additional
struct aws_byte_cursor aws_byte_cursor_right_trim_pred(
const struct aws_byte_cursor *source,
aws_byte_predicate_fn *predicate) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(source));
- AWS_PRECONDITION(predicate != NULL);
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(source));
+ AWS_PRECONDITION(predicate != NULL);
struct aws_byte_cursor trimmed = *source;
while (trimmed.len > 0 && predicate(*(trimmed.ptr + trimmed.len - 1))) {
--trimmed.len;
}
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(&trimmed));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(&trimmed));
return trimmed;
}
struct aws_byte_cursor aws_byte_cursor_left_trim_pred(
const struct aws_byte_cursor *source,
aws_byte_predicate_fn *predicate) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(source));
- AWS_PRECONDITION(predicate != NULL);
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(source));
+ AWS_PRECONDITION(predicate != NULL);
struct aws_byte_cursor trimmed = *source;
while (trimmed.len > 0 && predicate(*(trimmed.ptr))) {
--trimmed.len;
++trimmed.ptr;
}
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(&trimmed));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(&trimmed));
return trimmed;
}
struct aws_byte_cursor aws_byte_cursor_trim_pred(
const struct aws_byte_cursor *source,
aws_byte_predicate_fn *predicate) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(source));
- AWS_PRECONDITION(predicate != NULL);
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(source));
+ AWS_PRECONDITION(predicate != NULL);
struct aws_byte_cursor left_trimmed = aws_byte_cursor_left_trim_pred(source, predicate);
- struct aws_byte_cursor dest = aws_byte_cursor_right_trim_pred(&left_trimmed, predicate);
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(&dest));
- return dest;
+ struct aws_byte_cursor dest = aws_byte_cursor_right_trim_pred(&left_trimmed, predicate);
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(&dest));
+ return dest;
}
bool aws_byte_cursor_satisfies_pred(const struct aws_byte_cursor *source, aws_byte_predicate_fn *predicate) {
struct aws_byte_cursor trimmed = aws_byte_cursor_left_trim_pred(source, predicate);
- bool rval = (trimmed.len == 0);
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
- return rval;
-}
-
-int aws_byte_cursor_compare_lexical(const struct aws_byte_cursor *lhs, const struct aws_byte_cursor *rhs) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(lhs));
- AWS_PRECONDITION(aws_byte_cursor_is_valid(rhs));
- /* make sure we don't pass NULL pointers to memcmp */
- AWS_PRECONDITION(lhs->ptr != NULL);
- AWS_PRECONDITION(rhs->ptr != NULL);
- size_t comparison_length = lhs->len;
- if (comparison_length > rhs->len) {
- comparison_length = rhs->len;
- }
-
- int result = memcmp(lhs->ptr, rhs->ptr, comparison_length);
-
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(lhs));
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(rhs));
- if (result != 0) {
- return result;
- }
-
- if (lhs->len != rhs->len) {
- return comparison_length == lhs->len ? -1 : 1;
- }
-
- return 0;
-}
-
-int aws_byte_cursor_compare_lookup(
- const struct aws_byte_cursor *lhs,
- const struct aws_byte_cursor *rhs,
- const uint8_t *lookup_table) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(lhs));
- AWS_PRECONDITION(aws_byte_cursor_is_valid(rhs));
- AWS_PRECONDITION(AWS_MEM_IS_READABLE(lookup_table, 256));
- const uint8_t *lhs_curr = lhs->ptr;
- const uint8_t *lhs_end = lhs_curr + lhs->len;
-
- const uint8_t *rhs_curr = rhs->ptr;
- const uint8_t *rhs_end = rhs_curr + rhs->len;
-
- while (lhs_curr < lhs_end && rhs_curr < rhs_end) {
- uint8_t lhc = lookup_table[*lhs_curr];
- uint8_t rhc = lookup_table[*rhs_curr];
-
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(lhs));
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(rhs));
- if (lhc < rhc) {
- return -1;
- }
-
- if (lhc > rhc) {
- return 1;
- }
-
- lhs_curr++;
- rhs_curr++;
- }
-
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(lhs));
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(rhs));
- if (lhs_curr < lhs_end) {
- return 1;
- }
-
- if (rhs_curr < rhs_end) {
- return -1;
- }
-
- return 0;
-}
-
-/**
- * For creating a byte buffer from a null-terminated string literal.
- */
-struct aws_byte_buf aws_byte_buf_from_c_str(const char *c_str) {
- struct aws_byte_buf buf;
- buf.len = (!c_str) ? 0 : strlen(c_str);
- buf.capacity = buf.len;
- buf.buffer = (buf.capacity == 0) ? NULL : (uint8_t *)c_str;
- buf.allocator = NULL;
- AWS_POSTCONDITION(aws_byte_buf_is_valid(&buf));
- return buf;
-}
-
-struct aws_byte_buf aws_byte_buf_from_array(const void *bytes, size_t len) {
- AWS_PRECONDITION(AWS_MEM_IS_WRITABLE(bytes, len), "Input array [bytes] must be writable up to [len] bytes.");
- struct aws_byte_buf buf;
- buf.buffer = (len > 0) ? (uint8_t *)bytes : NULL;
- buf.len = len;
- buf.capacity = len;
- buf.allocator = NULL;
- AWS_POSTCONDITION(aws_byte_buf_is_valid(&buf));
- return buf;
-}
-
-struct aws_byte_buf aws_byte_buf_from_empty_array(const void *bytes, size_t capacity) {
- AWS_PRECONDITION(
- AWS_MEM_IS_WRITABLE(bytes, capacity), "Input array [bytes] must be writable up to [capacity] bytes.");
- struct aws_byte_buf buf;
- buf.buffer = (capacity > 0) ? (uint8_t *)bytes : NULL;
- buf.len = 0;
- buf.capacity = capacity;
- buf.allocator = NULL;
- AWS_POSTCONDITION(aws_byte_buf_is_valid(&buf));
- return buf;
-}
-
-struct aws_byte_cursor aws_byte_cursor_from_buf(const struct aws_byte_buf *const buf) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- struct aws_byte_cursor cur;
- cur.ptr = buf->buffer;
- cur.len = buf->len;
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(&cur));
- return cur;
-}
-
-struct aws_byte_cursor aws_byte_cursor_from_c_str(const char *c_str) {
- struct aws_byte_cursor cur;
- cur.ptr = (uint8_t *)c_str;
- cur.len = (cur.ptr) ? strlen(c_str) : 0;
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(&cur));
- return cur;
-}
-
-struct aws_byte_cursor aws_byte_cursor_from_array(const void *const bytes, const size_t len) {
- AWS_PRECONDITION(len == 0 || AWS_MEM_IS_READABLE(bytes, len), "Input array [bytes] must be readable up to [len].");
- struct aws_byte_cursor cur;
- cur.ptr = (uint8_t *)bytes;
- cur.len = len;
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(&cur));
- return cur;
-}
-
-#ifdef CBMC
-# pragma CPROVER check push
-# pragma CPROVER check disable "unsigned-overflow"
-#endif
-/**
- * If index >= bound, bound > (SIZE_MAX / 2), or index > (SIZE_MAX / 2), returns
- * 0. Otherwise, returns UINTPTR_MAX. This function is designed to return the correct
- * value even under CPU speculation conditions, and is intended to be used for
- * SPECTRE mitigation purposes.
- */
-size_t aws_nospec_mask(size_t index, size_t bound) {
- /*
- * SPECTRE mitigation - we compute a mask that will be zero if len < 0
- * or len >= buf->len, and all-ones otherwise, and AND it into the index.
- * It is critical that we avoid any branches in this logic.
- */
-
- /*
- * Hide the index value from the optimizer. This helps ensure that all this
- * logic doesn't get eliminated.
- */
-#if defined(__GNUC__) || defined(__clang__)
- __asm__ __volatile__("" : "+r"(index));
-#endif
-#if defined(_MSVC_LANG)
- /*
- * MSVC doesn't have a good way for us to blind the optimizer, and doesn't
- * even have inline asm on x64. Some experimentation indicates that this
- * hack seems to confuse it sufficiently for our needs.
- */
- *((volatile uint8_t *)&index) += 0;
-#endif
-
- /*
- * If len > (SIZE_MAX / 2), then we can end up with len - buf->len being
- * positive simply because the sign bit got inverted away. So we also check
- * that the sign bit isn't set from the start.
- *
- * We also check that bound <= (SIZE_MAX / 2) to catch cases where the
- * buffer is _already_ out of bounds.
- */
- size_t negative_mask = index | bound;
- size_t toobig_mask = bound - index - (uintptr_t)1;
- size_t combined_mask = negative_mask | toobig_mask;
-
- /*
- * combined_mask needs to have its sign bit OFF for us to be in range.
- * We'd like to expand this to a mask we can AND into our index, so flip
- * that bit (and everything else), shift it over so it's the only bit in the
- * ones position, and multiply across the entire register.
- *
- * First, extract the (inverse) top bit and move it to the lowest bit.
- * Because there's no standard SIZE_BIT in C99, we'll divide by a mask with
- * just the top bit set instead.
- */
-
- combined_mask = (~combined_mask) / (SIZE_MAX - (SIZE_MAX >> 1));
-
- /*
- * Now multiply it to replicate it across all bits.
- *
- * Note that GCC is smart enough to optimize the divide-and-multiply into
- * an arithmetic right shift operation on x86.
- */
- combined_mask = combined_mask * UINTPTR_MAX;
-
- return combined_mask;
-}
-#ifdef CBMC
-# pragma CPROVER check pop
-#endif
-
-/**
- * Tests if the given aws_byte_cursor has at least len bytes remaining. If so,
- * *buf is advanced by len bytes (incrementing ->ptr and decrementing ->len),
- * and an aws_byte_cursor referring to the first len bytes of the original *buf
- * is returned. Otherwise, an aws_byte_cursor with ->ptr = NULL, ->len = 0 is
- * returned.
- *
- * Note that if len is above (SIZE_MAX / 2), this function will also treat it as
- * a buffer overflow, and return NULL without changing *buf.
- */
-struct aws_byte_cursor aws_byte_cursor_advance(struct aws_byte_cursor *const cursor, const size_t len) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));
- struct aws_byte_cursor rv;
- if (cursor->len > (SIZE_MAX >> 1) || len > (SIZE_MAX >> 1) || len > cursor->len) {
- rv.ptr = NULL;
- rv.len = 0;
- } else {
- rv.ptr = cursor->ptr;
- rv.len = len;
-
- cursor->ptr += len;
- cursor->len -= len;
- }
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(&rv));
- return rv;
-}
-
-/**
- * Behaves identically to aws_byte_cursor_advance, but avoids speculative
- * execution potentially reading out-of-bounds pointers (by returning an
- * empty ptr in such speculated paths).
- *
- * This should generally be done when using an untrusted or
- * data-dependent value for 'len', to avoid speculating into a path where
- * cursor->ptr points outside the true ptr length.
- */
-
-struct aws_byte_cursor aws_byte_cursor_advance_nospec(struct aws_byte_cursor *const cursor, size_t len) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));
-
- struct aws_byte_cursor rv;
-
- if (len <= cursor->len && len <= (SIZE_MAX >> 1) && cursor->len <= (SIZE_MAX >> 1)) {
- /*
- * If we're speculating past a failed bounds check, null out the pointer. This ensures
- * that we don't try to read past the end of the buffer and leak information about other
- * memory through timing side-channels.
- */
- uintptr_t mask = aws_nospec_mask(len, cursor->len + 1);
-
- /* Make sure we don't speculate-underflow len either */
- len = len & mask;
- cursor->ptr = (uint8_t *)((uintptr_t)cursor->ptr & mask);
- /* Make sure subsequent nospec accesses don't advance ptr past NULL */
- cursor->len = cursor->len & mask;
-
- rv.ptr = cursor->ptr;
- /* Make sure anything acting upon the returned cursor _also_ doesn't advance past NULL */
- rv.len = len & mask;
-
- cursor->ptr += len;
- cursor->len -= len;
- } else {
- rv.ptr = NULL;
- rv.len = 0;
- }
-
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(&rv));
- return rv;
-}
-
-/**
- * Reads specified length of data from byte cursor and copies it to the
- * destination array.
- *
- * On success, returns true and updates the cursor pointer/length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_cursor_read(struct aws_byte_cursor *AWS_RESTRICT cur, void *AWS_RESTRICT dest, const size_t len) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
- AWS_PRECONDITION(AWS_MEM_IS_WRITABLE(dest, len));
- if (len == 0) {
- return true;
- }
-
- struct aws_byte_cursor slice = aws_byte_cursor_advance_nospec(cur, len);
-
- if (slice.ptr) {
- memcpy(dest, slice.ptr, len);
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- AWS_POSTCONDITION(AWS_MEM_IS_READABLE(dest, len));
- return true;
- }
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- return false;
-}
-
-/**
- * Reads as many bytes from cursor as size of buffer, and copies them to buffer.
- *
- * On success, returns true and updates the cursor pointer/length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_cursor_read_and_fill_buffer(
- struct aws_byte_cursor *AWS_RESTRICT cur,
- struct aws_byte_buf *AWS_RESTRICT dest) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
- AWS_PRECONDITION(aws_byte_buf_is_valid(dest));
- if (aws_byte_cursor_read(cur, dest->buffer, dest->capacity)) {
- dest->len = dest->capacity;
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
- return true;
- }
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
- return false;
-}
-
-/**
- * Reads a single byte from cursor, placing it in *var.
- *
- * On success, returns true and updates the cursor pointer/length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_cursor_read_u8(struct aws_byte_cursor *AWS_RESTRICT cur, uint8_t *AWS_RESTRICT var) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
- AWS_PRECONDITION(AWS_MEM_IS_WRITABLE(var, 1));
- bool rv = aws_byte_cursor_read(cur, var, 1);
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- return rv;
-}
-
-/**
- * Reads a 16-bit value in network byte order from cur, and places it in host
- * byte order into var.
- *
- * On success, returns true and updates the cursor pointer/length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_cursor_read_be16(struct aws_byte_cursor *cur, uint16_t *var) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
- AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
- bool rv = aws_byte_cursor_read(cur, var, 2);
-
- if (AWS_LIKELY(rv)) {
- *var = aws_ntoh16(*var);
- }
-
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- return rv;
-}
-
-/**
- * Reads an unsigned 24-bit value (3 bytes) in network byte order from cur,
- * and places it in host byte order into 32-bit var.
- * Ex: if cur's next 3 bytes are {0xAA, 0xBB, 0xCC}, then var becomes 0x00AABBCC.
- *
- * On success, returns true and updates the cursor pointer/length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_cursor_read_be24(struct aws_byte_cursor *cur, uint32_t *var) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
- AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
-
- uint8_t *var_bytes = (void *)var;
-
- /* read into "lower" 3 bytes */
- bool rv = aws_byte_cursor_read(cur, &var_bytes[1], 3);
-
- if (AWS_LIKELY(rv)) {
- /* zero out "highest" 4th byte*/
- var_bytes[0] = 0;
-
- *var = aws_ntoh32(*var);
- }
-
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- return rv;
-}
-
-/**
- * Reads a 32-bit value in network byte order from cur, and places it in host
- * byte order into var.
- *
- * On success, returns true and updates the cursor pointer/length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_cursor_read_be32(struct aws_byte_cursor *cur, uint32_t *var) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
- AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
- bool rv = aws_byte_cursor_read(cur, var, 4);
-
- if (AWS_LIKELY(rv)) {
- *var = aws_ntoh32(*var);
- }
-
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- return rv;
-}
-
-/**
- * Reads a 32-bit value in network byte order from cur, and places it in host
- * byte order into var.
- *
- * On success, returns true and updates the cursor pointer/length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_cursor_read_float_be32(struct aws_byte_cursor *cur, float *var) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
- AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
- bool rv = aws_byte_cursor_read(cur, var, sizeof(float));
-
- if (AWS_LIKELY(rv)) {
- *var = aws_ntohf32(*var);
- }
-
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- return rv;
-}
-
-/**
- * Reads a 64-bit value in network byte order from cur, and places it in host
- * byte order into var.
- *
- * On success, returns true and updates the cursor pointer/length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_cursor_read_float_be64(struct aws_byte_cursor *cur, double *var) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
- AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
- bool rv = aws_byte_cursor_read(cur, var, sizeof(double));
-
- if (AWS_LIKELY(rv)) {
- *var = aws_ntohf64(*var);
- }
-
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- return rv;
-}
-
-/**
- * Reads a 64-bit value in network byte order from cur, and places it in host
- * byte order into var.
- *
- * On success, returns true and updates the cursor pointer/length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_cursor_read_be64(struct aws_byte_cursor *cur, uint64_t *var) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
- AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
- bool rv = aws_byte_cursor_read(cur, var, sizeof(*var));
-
- if (AWS_LIKELY(rv)) {
- *var = aws_ntoh64(*var);
- }
-
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- return rv;
-}
-
-/* Lookup from '0' -> 0, 'f' -> 0xf, 'F' -> 0xF, etc
- * invalid characters have value 255 */
-/* clang-format off */
-static const uint8_t s_hex_to_num_table[] = {
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255,
- /* 0 - 9 */
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 255, 255, 255, 255, 255, 255, 255,
- /* A - F */
- 0xA, 0xB, 0xC, 0xD, 0xE, 0xF,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255,
- /* a - f */
- 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
- 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
-};
-AWS_STATIC_ASSERT(AWS_ARRAY_SIZE(s_hex_to_num_table) == 256);
-/* clang-format on */
-
-const uint8_t *aws_lookup_table_hex_to_num_get(void) {
- return s_hex_to_num_table;
-}
-
-bool aws_byte_cursor_read_hex_u8(struct aws_byte_cursor *cur, uint8_t *var) {
- AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
- AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
-
- bool success = false;
- if (AWS_LIKELY(cur->len >= 2)) {
- const uint8_t hi = s_hex_to_num_table[cur->ptr[0]];
- const uint8_t lo = s_hex_to_num_table[cur->ptr[1]];
-
- /* table maps invalid characters to 255 */
- if (AWS_LIKELY(hi != 255 && lo != 255)) {
- *var = (hi << 4) | lo;
- cur->ptr += 2;
- cur->len -= 2;
- success = true;
- }
- }
-
- AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
- return success;
-}
-
-/**
- * Appends a sub-buffer to the specified buffer.
- *
- * If the buffer has at least `len' bytes remaining (buffer->capacity - buffer->len >= len),
- * then buffer->len is incremented by len, and an aws_byte_buf is assigned to *output corresponding
- * to the last len bytes of the input buffer. The aws_byte_buf at *output will have a null
- * allocator, a zero initial length, and a capacity of 'len'. The function then returns true.
- *
- * If there is insufficient space, then this function nulls all fields in *output and returns
- * false.
- */
-bool aws_byte_buf_advance(
- struct aws_byte_buf *const AWS_RESTRICT buffer,
- struct aws_byte_buf *const AWS_RESTRICT output,
- const size_t len) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buffer));
- AWS_PRECONDITION(aws_byte_buf_is_valid(output));
- if (buffer->capacity - buffer->len >= len) {
- *output = aws_byte_buf_from_array(buffer->buffer + buffer->len, len);
- buffer->len += len;
- output->len = 0;
- AWS_POSTCONDITION(aws_byte_buf_is_valid(buffer));
- AWS_POSTCONDITION(aws_byte_buf_is_valid(output));
- return true;
- } else {
- AWS_ZERO_STRUCT(*output);
- AWS_POSTCONDITION(aws_byte_buf_is_valid(buffer));
- AWS_POSTCONDITION(aws_byte_buf_is_valid(output));
- return false;
- }
-}
-
-/**
- * Write specified number of bytes from array to byte buffer.
- *
- * On success, returns true and updates the buffer length accordingly.
- * If there is insufficient space in the buffer, returns false, leaving the
- * buffer unchanged.
- */
-bool aws_byte_buf_write(struct aws_byte_buf *AWS_RESTRICT buf, const uint8_t *AWS_RESTRICT src, size_t len) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- AWS_PRECONDITION(AWS_MEM_IS_READABLE(src, len), "Input array [src] must be readable up to [len] bytes.");
-
- if (len == 0) {
- AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
- return true;
- }
-
- if (buf->len > (SIZE_MAX >> 1) || len > (SIZE_MAX >> 1) || buf->len + len > buf->capacity) {
- AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
- return false;
- }
-
- memcpy(buf->buffer + buf->len, src, len);
- buf->len += len;
-
- AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
- return true;
-}
-
-/**
- * Copies all bytes from buffer to buffer.
- *
- * On success, returns true and updates the buffer /length accordingly.
- * If there is insufficient space in the buffer, returns false, leaving the
- * buffer unchanged.
- */
-bool aws_byte_buf_write_from_whole_buffer(struct aws_byte_buf *AWS_RESTRICT buf, struct aws_byte_buf src) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- AWS_PRECONDITION(aws_byte_buf_is_valid(&src));
- return aws_byte_buf_write(buf, src.buffer, src.len);
-}
-
-/**
- * Copies all bytes from buffer to buffer.
- *
- * On success, returns true and updates the buffer /length accordingly.
- * If there is insufficient space in the buffer, returns false, leaving the
- * buffer unchanged.
- */
-bool aws_byte_buf_write_from_whole_cursor(struct aws_byte_buf *AWS_RESTRICT buf, struct aws_byte_cursor src) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- AWS_PRECONDITION(aws_byte_cursor_is_valid(&src));
- return aws_byte_buf_write(buf, src.ptr, src.len);
-}
-
-struct aws_byte_cursor aws_byte_buf_write_to_capacity(
- struct aws_byte_buf *buf,
- struct aws_byte_cursor *advancing_cursor) {
-
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- AWS_PRECONDITION(aws_byte_cursor_is_valid(advancing_cursor));
-
- size_t available = buf->capacity - buf->len;
- size_t write_size = aws_min_size(available, advancing_cursor->len);
- struct aws_byte_cursor write_cursor = aws_byte_cursor_advance(advancing_cursor, write_size);
- aws_byte_buf_write_from_whole_cursor(buf, write_cursor);
- return write_cursor;
-}
-
-/**
- * Copies one byte to buffer.
- *
- * On success, returns true and updates the cursor /length
- accordingly.
-
- * If there is insufficient space in the cursor, returns false, leaving the
- cursor unchanged.
- */
-bool aws_byte_buf_write_u8(struct aws_byte_buf *AWS_RESTRICT buf, uint8_t c) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- return aws_byte_buf_write(buf, &c, 1);
-}
-
-/**
- * Writes one byte repeatedly to buffer (like memset)
- *
- * If there is insufficient space in the buffer, returns false, leaving the
- * buffer unchanged.
- */
-bool aws_byte_buf_write_u8_n(struct aws_byte_buf *buf, uint8_t c, size_t count) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
-
- if (buf->len > (SIZE_MAX >> 1) || count > (SIZE_MAX >> 1) || buf->len + count > buf->capacity) {
- AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
- return false;
- }
-
- memset(buf->buffer + buf->len, c, count);
- buf->len += count;
-
- AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
- return true;
-}
-
-/**
- * Writes a 16-bit integer in network byte order (big endian) to buffer.
- *
- * On success, returns true and updates the cursor /length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_buf_write_be16(struct aws_byte_buf *buf, uint16_t x) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- x = aws_hton16(x);
- return aws_byte_buf_write(buf, (uint8_t *)&x, 2);
-}
-
-/**
- * Writes low 24-bits (3 bytes) of an unsigned integer in network byte order (big endian) to buffer.
- * Ex: If x is 0x00AABBCC then {0xAA, 0xBB, 0xCC} is written to buffer.
- *
- * On success, returns true and updates the buffer /length accordingly.
- * If there is insufficient space in the buffer, or x's value cannot fit in 3 bytes,
- * returns false, leaving the buffer unchanged.
- */
-bool aws_byte_buf_write_be24(struct aws_byte_buf *buf, uint32_t x) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
-
- if (x > 0x00FFFFFF) {
- return false;
- }
-
- uint32_t be32 = aws_hton32(x);
- uint8_t *be32_bytes = (uint8_t *)&be32;
-
- /* write "lower" 3 bytes */
- return aws_byte_buf_write(buf, &be32_bytes[1], 3);
-}
-
-/**
- * Writes a 32-bit integer in network byte order (big endian) to buffer.
- *
- * On success, returns true and updates the cursor /length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_buf_write_be32(struct aws_byte_buf *buf, uint32_t x) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- x = aws_hton32(x);
- return aws_byte_buf_write(buf, (uint8_t *)&x, 4);
-}
-
-/**
- * Writes a 32-bit float in network byte order (big endian) to buffer.
- *
- * On success, returns true and updates the cursor /length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_buf_write_float_be32(struct aws_byte_buf *buf, float x) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- x = aws_htonf32(x);
- return aws_byte_buf_write(buf, (uint8_t *)&x, 4);
-}
-
-/**
- * Writes a 64-bit integer in network byte order (big endian) to buffer.
- *
- * On success, returns true and updates the cursor /length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_buf_write_be64(struct aws_byte_buf *buf, uint64_t x) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- x = aws_hton64(x);
- return aws_byte_buf_write(buf, (uint8_t *)&x, 8);
-}
-
-/**
- * Writes a 64-bit float in network byte order (big endian) to buffer.
- *
- * On success, returns true and updates the cursor /length accordingly.
- * If there is insufficient space in the cursor, returns false, leaving the
- * cursor unchanged.
- */
-bool aws_byte_buf_write_float_be64(struct aws_byte_buf *buf, double x) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
- x = aws_htonf64(x);
- return aws_byte_buf_write(buf, (uint8_t *)&x, 8);
-}
-
-int aws_byte_buf_append_and_update(struct aws_byte_buf *to, struct aws_byte_cursor *from_and_update) {
- AWS_PRECONDITION(aws_byte_buf_is_valid(to));
- AWS_PRECONDITION(aws_byte_cursor_is_valid(from_and_update));
-
- if (aws_byte_buf_append(to, from_and_update)) {
- return AWS_OP_ERR;
- }
-
- from_and_update->ptr = to->buffer + (to->len - from_and_update->len);
- return AWS_OP_SUCCESS;
-}
-
-static struct aws_byte_cursor s_null_terminator_cursor = AWS_BYTE_CUR_INIT_FROM_STRING_LITERAL("\0");
-int aws_byte_buf_append_null_terminator(struct aws_byte_buf *buf) {
- return aws_byte_buf_append_dynamic(buf, &s_null_terminator_cursor);
-}
-
-bool aws_isalnum(uint8_t ch) {
- return (ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') || (ch >= '0' && ch <= '9');
-}
-
-bool aws_isalpha(uint8_t ch) {
- return (ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z');
-}
-
-bool aws_isdigit(uint8_t ch) {
- return (ch >= '0' && ch <= '9');
-}
-
-bool aws_isxdigit(uint8_t ch) {
- return (ch >= '0' && ch <= '9') || (ch >= 'a' && ch <= 'f') || (ch >= 'A' && ch <= 'F');
-}
-
-bool aws_isspace(uint8_t ch) {
- switch (ch) {
- case 0x20: /* ' ' - space */
- return true;
- case 0x09: /* '\t' - horizontal tab */
- return true;
- case 0x0A: /* '\n' - line feed */
- return true;
- case 0x0B: /* '\v' - vertical tab */
- return true;
- case 0x0C: /* '\f' - form feed */
- return true;
- case 0x0D: /* '\r' - carriage return */
- return true;
- default:
- return false;
- }
-}
+ bool rval = (trimmed.len == 0);
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
+ return rval;
+}
+
+int aws_byte_cursor_compare_lexical(const struct aws_byte_cursor *lhs, const struct aws_byte_cursor *rhs) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(lhs));
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(rhs));
+ /* make sure we don't pass NULL pointers to memcmp */
+ AWS_PRECONDITION(lhs->ptr != NULL);
+ AWS_PRECONDITION(rhs->ptr != NULL);
+ size_t comparison_length = lhs->len;
+ if (comparison_length > rhs->len) {
+ comparison_length = rhs->len;
+ }
+
+ int result = memcmp(lhs->ptr, rhs->ptr, comparison_length);
+
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(lhs));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(rhs));
+ if (result != 0) {
+ return result;
+ }
+
+ if (lhs->len != rhs->len) {
+ return comparison_length == lhs->len ? -1 : 1;
+ }
+
+ return 0;
+}
+
+int aws_byte_cursor_compare_lookup(
+ const struct aws_byte_cursor *lhs,
+ const struct aws_byte_cursor *rhs,
+ const uint8_t *lookup_table) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(lhs));
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(rhs));
+ AWS_PRECONDITION(AWS_MEM_IS_READABLE(lookup_table, 256));
+ const uint8_t *lhs_curr = lhs->ptr;
+ const uint8_t *lhs_end = lhs_curr + lhs->len;
+
+ const uint8_t *rhs_curr = rhs->ptr;
+ const uint8_t *rhs_end = rhs_curr + rhs->len;
+
+ while (lhs_curr < lhs_end && rhs_curr < rhs_end) {
+ uint8_t lhc = lookup_table[*lhs_curr];
+ uint8_t rhc = lookup_table[*rhs_curr];
+
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(lhs));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(rhs));
+ if (lhc < rhc) {
+ return -1;
+ }
+
+ if (lhc > rhc) {
+ return 1;
+ }
+
+ lhs_curr++;
+ rhs_curr++;
+ }
+
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(lhs));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(rhs));
+ if (lhs_curr < lhs_end) {
+ return 1;
+ }
+
+ if (rhs_curr < rhs_end) {
+ return -1;
+ }
+
+ return 0;
+}
+
+/**
+ * For creating a byte buffer from a null-terminated string literal.
+ */
+struct aws_byte_buf aws_byte_buf_from_c_str(const char *c_str) {
+ struct aws_byte_buf buf;
+ buf.len = (!c_str) ? 0 : strlen(c_str);
+ buf.capacity = buf.len;
+ buf.buffer = (buf.capacity == 0) ? NULL : (uint8_t *)c_str;
+ buf.allocator = NULL;
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(&buf));
+ return buf;
+}
+
+struct aws_byte_buf aws_byte_buf_from_array(const void *bytes, size_t len) {
+ AWS_PRECONDITION(AWS_MEM_IS_WRITABLE(bytes, len), "Input array [bytes] must be writable up to [len] bytes.");
+ struct aws_byte_buf buf;
+ buf.buffer = (len > 0) ? (uint8_t *)bytes : NULL;
+ buf.len = len;
+ buf.capacity = len;
+ buf.allocator = NULL;
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(&buf));
+ return buf;
+}
+
+struct aws_byte_buf aws_byte_buf_from_empty_array(const void *bytes, size_t capacity) {
+ AWS_PRECONDITION(
+ AWS_MEM_IS_WRITABLE(bytes, capacity), "Input array [bytes] must be writable up to [capacity] bytes.");
+ struct aws_byte_buf buf;
+ buf.buffer = (capacity > 0) ? (uint8_t *)bytes : NULL;
+ buf.len = 0;
+ buf.capacity = capacity;
+ buf.allocator = NULL;
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(&buf));
+ return buf;
+}
+
+struct aws_byte_cursor aws_byte_cursor_from_buf(const struct aws_byte_buf *const buf) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ struct aws_byte_cursor cur;
+ cur.ptr = buf->buffer;
+ cur.len = buf->len;
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(&cur));
+ return cur;
+}
+
+struct aws_byte_cursor aws_byte_cursor_from_c_str(const char *c_str) {
+ struct aws_byte_cursor cur;
+ cur.ptr = (uint8_t *)c_str;
+ cur.len = (cur.ptr) ? strlen(c_str) : 0;
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(&cur));
+ return cur;
+}
+
+struct aws_byte_cursor aws_byte_cursor_from_array(const void *const bytes, const size_t len) {
+ AWS_PRECONDITION(len == 0 || AWS_MEM_IS_READABLE(bytes, len), "Input array [bytes] must be readable up to [len].");
+ struct aws_byte_cursor cur;
+ cur.ptr = (uint8_t *)bytes;
+ cur.len = len;
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(&cur));
+ return cur;
+}
+
+#ifdef CBMC
+# pragma CPROVER check push
+# pragma CPROVER check disable "unsigned-overflow"
+#endif
+/**
+ * If index >= bound, bound > (SIZE_MAX / 2), or index > (SIZE_MAX / 2), returns
+ * 0. Otherwise, returns UINTPTR_MAX. This function is designed to return the correct
+ * value even under CPU speculation conditions, and is intended to be used for
+ * SPECTRE mitigation purposes.
+ */
+size_t aws_nospec_mask(size_t index, size_t bound) {
+ /*
+ * SPECTRE mitigation - we compute a mask that will be zero if len < 0
+ * or len >= buf->len, and all-ones otherwise, and AND it into the index.
+ * It is critical that we avoid any branches in this logic.
+ */
+
+ /*
+ * Hide the index value from the optimizer. This helps ensure that all this
+ * logic doesn't get eliminated.
+ */
+#if defined(__GNUC__) || defined(__clang__)
+ __asm__ __volatile__("" : "+r"(index));
+#endif
+#if defined(_MSVC_LANG)
+ /*
+ * MSVC doesn't have a good way for us to blind the optimizer, and doesn't
+ * even have inline asm on x64. Some experimentation indicates that this
+ * hack seems to confuse it sufficiently for our needs.
+ */
+ *((volatile uint8_t *)&index) += 0;
+#endif
+
+ /*
+ * If len > (SIZE_MAX / 2), then we can end up with len - buf->len being
+ * positive simply because the sign bit got inverted away. So we also check
+ * that the sign bit isn't set from the start.
+ *
+ * We also check that bound <= (SIZE_MAX / 2) to catch cases where the
+ * buffer is _already_ out of bounds.
+ */
+ size_t negative_mask = index | bound;
+ size_t toobig_mask = bound - index - (uintptr_t)1;
+ size_t combined_mask = negative_mask | toobig_mask;
+
+ /*
+ * combined_mask needs to have its sign bit OFF for us to be in range.
+ * We'd like to expand this to a mask we can AND into our index, so flip
+ * that bit (and everything else), shift it over so it's the only bit in the
+ * ones position, and multiply across the entire register.
+ *
+ * First, extract the (inverse) top bit and move it to the lowest bit.
+ * Because there's no standard SIZE_BIT in C99, we'll divide by a mask with
+ * just the top bit set instead.
+ */
+
+ combined_mask = (~combined_mask) / (SIZE_MAX - (SIZE_MAX >> 1));
+
+ /*
+ * Now multiply it to replicate it across all bits.
+ *
+ * Note that GCC is smart enough to optimize the divide-and-multiply into
+ * an arithmetic right shift operation on x86.
+ */
+ combined_mask = combined_mask * UINTPTR_MAX;
+
+ return combined_mask;
+}
+#ifdef CBMC
+# pragma CPROVER check pop
+#endif
+
+/**
+ * Tests if the given aws_byte_cursor has at least len bytes remaining. If so,
+ * *buf is advanced by len bytes (incrementing ->ptr and decrementing ->len),
+ * and an aws_byte_cursor referring to the first len bytes of the original *buf
+ * is returned. Otherwise, an aws_byte_cursor with ->ptr = NULL, ->len = 0 is
+ * returned.
+ *
+ * Note that if len is above (SIZE_MAX / 2), this function will also treat it as
+ * a buffer overflow, and return NULL without changing *buf.
+ */
+struct aws_byte_cursor aws_byte_cursor_advance(struct aws_byte_cursor *const cursor, const size_t len) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));
+ struct aws_byte_cursor rv;
+ if (cursor->len > (SIZE_MAX >> 1) || len > (SIZE_MAX >> 1) || len > cursor->len) {
+ rv.ptr = NULL;
+ rv.len = 0;
+ } else {
+ rv.ptr = cursor->ptr;
+ rv.len = len;
+
+ cursor->ptr += len;
+ cursor->len -= len;
+ }
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(&rv));
+ return rv;
+}
+
+/**
+ * Behaves identically to aws_byte_cursor_advance, but avoids speculative
+ * execution potentially reading out-of-bounds pointers (by returning an
+ * empty ptr in such speculated paths).
+ *
+ * This should generally be done when using an untrusted or
+ * data-dependent value for 'len', to avoid speculating into a path where
+ * cursor->ptr points outside the true ptr length.
+ */
+
+struct aws_byte_cursor aws_byte_cursor_advance_nospec(struct aws_byte_cursor *const cursor, size_t len) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));
+
+ struct aws_byte_cursor rv;
+
+ if (len <= cursor->len && len <= (SIZE_MAX >> 1) && cursor->len <= (SIZE_MAX >> 1)) {
+ /*
+ * If we're speculating past a failed bounds check, null out the pointer. This ensures
+ * that we don't try to read past the end of the buffer and leak information about other
+ * memory through timing side-channels.
+ */
+ uintptr_t mask = aws_nospec_mask(len, cursor->len + 1);
+
+ /* Make sure we don't speculate-underflow len either */
+ len = len & mask;
+ cursor->ptr = (uint8_t *)((uintptr_t)cursor->ptr & mask);
+ /* Make sure subsequent nospec accesses don't advance ptr past NULL */
+ cursor->len = cursor->len & mask;
+
+ rv.ptr = cursor->ptr;
+ /* Make sure anything acting upon the returned cursor _also_ doesn't advance past NULL */
+ rv.len = len & mask;
+
+ cursor->ptr += len;
+ cursor->len -= len;
+ } else {
+ rv.ptr = NULL;
+ rv.len = 0;
+ }
+
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(&rv));
+ return rv;
+}
+
+/**
+ * Reads specified length of data from byte cursor and copies it to the
+ * destination array.
+ *
+ * On success, returns true and updates the cursor pointer/length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_cursor_read(struct aws_byte_cursor *AWS_RESTRICT cur, void *AWS_RESTRICT dest, const size_t len) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_PRECONDITION(AWS_MEM_IS_WRITABLE(dest, len));
+ if (len == 0) {
+ return true;
+ }
+
+ struct aws_byte_cursor slice = aws_byte_cursor_advance_nospec(cur, len);
+
+ if (slice.ptr) {
+ memcpy(dest, slice.ptr, len);
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_POSTCONDITION(AWS_MEM_IS_READABLE(dest, len));
+ return true;
+ }
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ return false;
+}
+
+/**
+ * Reads as many bytes from cursor as size of buffer, and copies them to buffer.
+ *
+ * On success, returns true and updates the cursor pointer/length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_cursor_read_and_fill_buffer(
+ struct aws_byte_cursor *AWS_RESTRICT cur,
+ struct aws_byte_buf *AWS_RESTRICT dest) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_PRECONDITION(aws_byte_buf_is_valid(dest));
+ if (aws_byte_cursor_read(cur, dest->buffer, dest->capacity)) {
+ dest->len = dest->capacity;
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
+ return true;
+ }
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
+ return false;
+}
+
+/**
+ * Reads a single byte from cursor, placing it in *var.
+ *
+ * On success, returns true and updates the cursor pointer/length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_cursor_read_u8(struct aws_byte_cursor *AWS_RESTRICT cur, uint8_t *AWS_RESTRICT var) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_PRECONDITION(AWS_MEM_IS_WRITABLE(var, 1));
+ bool rv = aws_byte_cursor_read(cur, var, 1);
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ return rv;
+}
+
+/**
+ * Reads a 16-bit value in network byte order from cur, and places it in host
+ * byte order into var.
+ *
+ * On success, returns true and updates the cursor pointer/length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_cursor_read_be16(struct aws_byte_cursor *cur, uint16_t *var) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
+ bool rv = aws_byte_cursor_read(cur, var, 2);
+
+ if (AWS_LIKELY(rv)) {
+ *var = aws_ntoh16(*var);
+ }
+
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ return rv;
+}
+
+/**
+ * Reads an unsigned 24-bit value (3 bytes) in network byte order from cur,
+ * and places it in host byte order into 32-bit var.
+ * Ex: if cur's next 3 bytes are {0xAA, 0xBB, 0xCC}, then var becomes 0x00AABBCC.
+ *
+ * On success, returns true and updates the cursor pointer/length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_cursor_read_be24(struct aws_byte_cursor *cur, uint32_t *var) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
+
+ uint8_t *var_bytes = (void *)var;
+
+ /* read into "lower" 3 bytes */
+ bool rv = aws_byte_cursor_read(cur, &var_bytes[1], 3);
+
+ if (AWS_LIKELY(rv)) {
+ /* zero out "highest" 4th byte*/
+ var_bytes[0] = 0;
+
+ *var = aws_ntoh32(*var);
+ }
+
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ return rv;
+}
+
+/**
+ * Reads a 32-bit value in network byte order from cur, and places it in host
+ * byte order into var.
+ *
+ * On success, returns true and updates the cursor pointer/length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_cursor_read_be32(struct aws_byte_cursor *cur, uint32_t *var) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
+ bool rv = aws_byte_cursor_read(cur, var, 4);
+
+ if (AWS_LIKELY(rv)) {
+ *var = aws_ntoh32(*var);
+ }
+
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ return rv;
+}
+
+/**
+ * Reads a 32-bit value in network byte order from cur, and places it in host
+ * byte order into var.
+ *
+ * On success, returns true and updates the cursor pointer/length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_cursor_read_float_be32(struct aws_byte_cursor *cur, float *var) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
+ bool rv = aws_byte_cursor_read(cur, var, sizeof(float));
+
+ if (AWS_LIKELY(rv)) {
+ *var = aws_ntohf32(*var);
+ }
+
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ return rv;
+}
+
+/**
+ * Reads a 64-bit value in network byte order from cur, and places it in host
+ * byte order into var.
+ *
+ * On success, returns true and updates the cursor pointer/length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_cursor_read_float_be64(struct aws_byte_cursor *cur, double *var) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
+ bool rv = aws_byte_cursor_read(cur, var, sizeof(double));
+
+ if (AWS_LIKELY(rv)) {
+ *var = aws_ntohf64(*var);
+ }
+
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ return rv;
+}
+
+/**
+ * Reads a 64-bit value in network byte order from cur, and places it in host
+ * byte order into var.
+ *
+ * On success, returns true and updates the cursor pointer/length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_cursor_read_be64(struct aws_byte_cursor *cur, uint64_t *var) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
+ bool rv = aws_byte_cursor_read(cur, var, sizeof(*var));
+
+ if (AWS_LIKELY(rv)) {
+ *var = aws_ntoh64(*var);
+ }
+
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ return rv;
+}
+
+/* Lookup from '0' -> 0, 'f' -> 0xf, 'F' -> 0xF, etc
+ * invalid characters have value 255 */
+/* clang-format off */
+static const uint8_t s_hex_to_num_table[] = {
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255,
+ /* 0 - 9 */
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 255, 255, 255, 255, 255, 255, 255,
+ /* A - F */
+ 0xA, 0xB, 0xC, 0xD, 0xE, 0xF,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255,
+ /* a - f */
+ 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+};
+AWS_STATIC_ASSERT(AWS_ARRAY_SIZE(s_hex_to_num_table) == 256);
+/* clang-format on */
+
+const uint8_t *aws_lookup_table_hex_to_num_get(void) {
+ return s_hex_to_num_table;
+}
+
+bool aws_byte_cursor_read_hex_u8(struct aws_byte_cursor *cur, uint8_t *var) {
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
+ AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
+
+ bool success = false;
+ if (AWS_LIKELY(cur->len >= 2)) {
+ const uint8_t hi = s_hex_to_num_table[cur->ptr[0]];
+ const uint8_t lo = s_hex_to_num_table[cur->ptr[1]];
+
+ /* table maps invalid characters to 255 */
+ if (AWS_LIKELY(hi != 255 && lo != 255)) {
+ *var = (hi << 4) | lo;
+ cur->ptr += 2;
+ cur->len -= 2;
+ success = true;
+ }
+ }
+
+ AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
+ return success;
+}
+
+/**
+ * Appends a sub-buffer to the specified buffer.
+ *
+ * If the buffer has at least `len' bytes remaining (buffer->capacity - buffer->len >= len),
+ * then buffer->len is incremented by len, and an aws_byte_buf is assigned to *output corresponding
+ * to the last len bytes of the input buffer. The aws_byte_buf at *output will have a null
+ * allocator, a zero initial length, and a capacity of 'len'. The function then returns true.
+ *
+ * If there is insufficient space, then this function nulls all fields in *output and returns
+ * false.
+ */
+bool aws_byte_buf_advance(
+ struct aws_byte_buf *const AWS_RESTRICT buffer,
+ struct aws_byte_buf *const AWS_RESTRICT output,
+ const size_t len) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buffer));
+ AWS_PRECONDITION(aws_byte_buf_is_valid(output));
+ if (buffer->capacity - buffer->len >= len) {
+ *output = aws_byte_buf_from_array(buffer->buffer + buffer->len, len);
+ buffer->len += len;
+ output->len = 0;
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(buffer));
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(output));
+ return true;
+ } else {
+ AWS_ZERO_STRUCT(*output);
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(buffer));
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(output));
+ return false;
+ }
+}
+
+/**
+ * Write specified number of bytes from array to byte buffer.
+ *
+ * On success, returns true and updates the buffer length accordingly.
+ * If there is insufficient space in the buffer, returns false, leaving the
+ * buffer unchanged.
+ */
+bool aws_byte_buf_write(struct aws_byte_buf *AWS_RESTRICT buf, const uint8_t *AWS_RESTRICT src, size_t len) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ AWS_PRECONDITION(AWS_MEM_IS_READABLE(src, len), "Input array [src] must be readable up to [len] bytes.");
+
+ if (len == 0) {
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
+ return true;
+ }
+
+ if (buf->len > (SIZE_MAX >> 1) || len > (SIZE_MAX >> 1) || buf->len + len > buf->capacity) {
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
+ return false;
+ }
+
+ memcpy(buf->buffer + buf->len, src, len);
+ buf->len += len;
+
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
+ return true;
+}
+
+/**
+ * Copies all bytes from buffer to buffer.
+ *
+ * On success, returns true and updates the buffer /length accordingly.
+ * If there is insufficient space in the buffer, returns false, leaving the
+ * buffer unchanged.
+ */
+bool aws_byte_buf_write_from_whole_buffer(struct aws_byte_buf *AWS_RESTRICT buf, struct aws_byte_buf src) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ AWS_PRECONDITION(aws_byte_buf_is_valid(&src));
+ return aws_byte_buf_write(buf, src.buffer, src.len);
+}
+
+/**
+ * Copies all bytes from buffer to buffer.
+ *
+ * On success, returns true and updates the buffer /length accordingly.
+ * If there is insufficient space in the buffer, returns false, leaving the
+ * buffer unchanged.
+ */
+bool aws_byte_buf_write_from_whole_cursor(struct aws_byte_buf *AWS_RESTRICT buf, struct aws_byte_cursor src) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(&src));
+ return aws_byte_buf_write(buf, src.ptr, src.len);
+}
+
+struct aws_byte_cursor aws_byte_buf_write_to_capacity(
+ struct aws_byte_buf *buf,
+ struct aws_byte_cursor *advancing_cursor) {
+
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(advancing_cursor));
+
+ size_t available = buf->capacity - buf->len;
+ size_t write_size = aws_min_size(available, advancing_cursor->len);
+ struct aws_byte_cursor write_cursor = aws_byte_cursor_advance(advancing_cursor, write_size);
+ aws_byte_buf_write_from_whole_cursor(buf, write_cursor);
+ return write_cursor;
+}
+
+/**
+ * Copies one byte to buffer.
+ *
+ * On success, returns true and updates the cursor /length
+ accordingly.
+
+ * If there is insufficient space in the cursor, returns false, leaving the
+ cursor unchanged.
+ */
+bool aws_byte_buf_write_u8(struct aws_byte_buf *AWS_RESTRICT buf, uint8_t c) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ return aws_byte_buf_write(buf, &c, 1);
+}
+
+/**
+ * Writes one byte repeatedly to buffer (like memset)
+ *
+ * If there is insufficient space in the buffer, returns false, leaving the
+ * buffer unchanged.
+ */
+bool aws_byte_buf_write_u8_n(struct aws_byte_buf *buf, uint8_t c, size_t count) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+
+ if (buf->len > (SIZE_MAX >> 1) || count > (SIZE_MAX >> 1) || buf->len + count > buf->capacity) {
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
+ return false;
+ }
+
+ memset(buf->buffer + buf->len, c, count);
+ buf->len += count;
+
+ AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
+ return true;
+}
+
+/**
+ * Writes a 16-bit integer in network byte order (big endian) to buffer.
+ *
+ * On success, returns true and updates the cursor /length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_buf_write_be16(struct aws_byte_buf *buf, uint16_t x) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ x = aws_hton16(x);
+ return aws_byte_buf_write(buf, (uint8_t *)&x, 2);
+}
+
+/**
+ * Writes low 24-bits (3 bytes) of an unsigned integer in network byte order (big endian) to buffer.
+ * Ex: If x is 0x00AABBCC then {0xAA, 0xBB, 0xCC} is written to buffer.
+ *
+ * On success, returns true and updates the buffer /length accordingly.
+ * If there is insufficient space in the buffer, or x's value cannot fit in 3 bytes,
+ * returns false, leaving the buffer unchanged.
+ */
+bool aws_byte_buf_write_be24(struct aws_byte_buf *buf, uint32_t x) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+
+ if (x > 0x00FFFFFF) {
+ return false;
+ }
+
+ uint32_t be32 = aws_hton32(x);
+ uint8_t *be32_bytes = (uint8_t *)&be32;
+
+ /* write "lower" 3 bytes */
+ return aws_byte_buf_write(buf, &be32_bytes[1], 3);
+}
+
+/**
+ * Writes a 32-bit integer in network byte order (big endian) to buffer.
+ *
+ * On success, returns true and updates the cursor /length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_buf_write_be32(struct aws_byte_buf *buf, uint32_t x) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ x = aws_hton32(x);
+ return aws_byte_buf_write(buf, (uint8_t *)&x, 4);
+}
+
+/**
+ * Writes a 32-bit float in network byte order (big endian) to buffer.
+ *
+ * On success, returns true and updates the cursor /length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_buf_write_float_be32(struct aws_byte_buf *buf, float x) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ x = aws_htonf32(x);
+ return aws_byte_buf_write(buf, (uint8_t *)&x, 4);
+}
+
+/**
+ * Writes a 64-bit integer in network byte order (big endian) to buffer.
+ *
+ * On success, returns true and updates the cursor /length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_buf_write_be64(struct aws_byte_buf *buf, uint64_t x) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ x = aws_hton64(x);
+ return aws_byte_buf_write(buf, (uint8_t *)&x, 8);
+}
+
+/**
+ * Writes a 64-bit float in network byte order (big endian) to buffer.
+ *
+ * On success, returns true and updates the cursor /length accordingly.
+ * If there is insufficient space in the cursor, returns false, leaving the
+ * cursor unchanged.
+ */
+bool aws_byte_buf_write_float_be64(struct aws_byte_buf *buf, double x) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
+ x = aws_htonf64(x);
+ return aws_byte_buf_write(buf, (uint8_t *)&x, 8);
+}
+
+int aws_byte_buf_append_and_update(struct aws_byte_buf *to, struct aws_byte_cursor *from_and_update) {
+ AWS_PRECONDITION(aws_byte_buf_is_valid(to));
+ AWS_PRECONDITION(aws_byte_cursor_is_valid(from_and_update));
+
+ if (aws_byte_buf_append(to, from_and_update)) {
+ return AWS_OP_ERR;
+ }
+
+ from_and_update->ptr = to->buffer + (to->len - from_and_update->len);
+ return AWS_OP_SUCCESS;
+}
+
+static struct aws_byte_cursor s_null_terminator_cursor = AWS_BYTE_CUR_INIT_FROM_STRING_LITERAL("\0");
+int aws_byte_buf_append_null_terminator(struct aws_byte_buf *buf) {
+ return aws_byte_buf_append_dynamic(buf, &s_null_terminator_cursor);
+}
+
+bool aws_isalnum(uint8_t ch) {
+ return (ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') || (ch >= '0' && ch <= '9');
+}
+
+bool aws_isalpha(uint8_t ch) {
+ return (ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z');
+}
+
+bool aws_isdigit(uint8_t ch) {
+ return (ch >= '0' && ch <= '9');
+}
+
+bool aws_isxdigit(uint8_t ch) {
+ return (ch >= '0' && ch <= '9') || (ch >= 'a' && ch <= 'f') || (ch >= 'A' && ch <= 'F');
+}
+
+bool aws_isspace(uint8_t ch) {
+ switch (ch) {
+ case 0x20: /* ' ' - space */
+ return true;
+ case 0x09: /* '\t' - horizontal tab */
+ return true;
+ case 0x0A: /* '\n' - line feed */
+ return true;
+ case 0x0B: /* '\v' - vertical tab */
+ return true;
+ case 0x0C: /* '\f' - form feed */
+ return true;
+ case 0x0D: /* '\r' - carriage return */
+ return true;
+ default:
+ return false;
+ }
+}