diff options
author | prime <prime@yandex-team.ru> | 2022-02-10 16:46:01 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:46:01 +0300 |
commit | e34f3f0e381020a427f44fbd50463d9a04089db3 (patch) | |
tree | 1a2c5ffcf89eb53ecd79dbc9bc0a195c27404d0c /contrib/restricted/abseil-cpp/absl/container/internal | |
parent | 3695a7cd42b74a4987d8d5a8f2e2443556998943 (diff) | |
download | ydb-e34f3f0e381020a427f44fbd50463d9a04089db3.tar.gz |
Restoring authorship annotation for <prime@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/restricted/abseil-cpp/absl/container/internal')
12 files changed, 562 insertions, 562 deletions
diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/absl_hashtablez_sampler/ya.make b/contrib/restricted/abseil-cpp/absl/container/internal/absl_hashtablez_sampler/ya.make index 5a37c14c4a..1933289a6d 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/absl_hashtablez_sampler/ya.make +++ b/contrib/restricted/abseil-cpp/absl/container/internal/absl_hashtablez_sampler/ya.make @@ -1,52 +1,52 @@ -# Generated by devtools/yamaker. - -LIBRARY() - +# Generated by devtools/yamaker. + +LIBRARY() + WITHOUT_LICENSE_TEXTS() -OWNER(g:cpp-contrib) - -LICENSE(Apache-2.0) - -PEERDIR( - contrib/restricted/abseil-cpp/absl/base +OWNER(g:cpp-contrib) + +LICENSE(Apache-2.0) + +PEERDIR( + contrib/restricted/abseil-cpp/absl/base contrib/restricted/abseil-cpp/absl/base/internal/low_level_alloc - contrib/restricted/abseil-cpp/absl/base/internal/raw_logging - contrib/restricted/abseil-cpp/absl/base/internal/spinlock_wait - contrib/restricted/abseil-cpp/absl/base/internal/throw_delegate - contrib/restricted/abseil-cpp/absl/base/log_severity + contrib/restricted/abseil-cpp/absl/base/internal/raw_logging + contrib/restricted/abseil-cpp/absl/base/internal/spinlock_wait + contrib/restricted/abseil-cpp/absl/base/internal/throw_delegate + contrib/restricted/abseil-cpp/absl/base/log_severity contrib/restricted/abseil-cpp/absl/debugging contrib/restricted/abseil-cpp/absl/debugging/stacktrace contrib/restricted/abseil-cpp/absl/debugging/symbolize contrib/restricted/abseil-cpp/absl/demangle - contrib/restricted/abseil-cpp/absl/numeric + contrib/restricted/abseil-cpp/absl/numeric contrib/restricted/abseil-cpp/absl/profiling/internal/exponential_biased - contrib/restricted/abseil-cpp/absl/strings + contrib/restricted/abseil-cpp/absl/strings contrib/restricted/abseil-cpp/absl/strings/internal/absl_strings_internal contrib/restricted/abseil-cpp/absl/synchronization contrib/restricted/abseil-cpp/absl/synchronization/internal contrib/restricted/abseil-cpp/absl/time contrib/restricted/abseil-cpp/absl/time/civil_time contrib/restricted/abseil-cpp/absl/time/time_zone -) - -ADDINCL( - GLOBAL contrib/restricted/abseil-cpp -) - -NO_COMPILER_WARNINGS() - -NO_UTIL() - -CFLAGS( - -DNOMINMAX -) - +) + +ADDINCL( + GLOBAL contrib/restricted/abseil-cpp +) + +NO_COMPILER_WARNINGS() + +NO_UTIL() + +CFLAGS( + -DNOMINMAX +) + SRCDIR(contrib/restricted/abseil-cpp/absl/container/internal) - -SRCS( + +SRCS( hashtablez_sampler.cc hashtablez_sampler_force_weak_definition.cc -) - -END() +) + +END() diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/btree.h b/contrib/restricted/abseil-cpp/absl/container/internal/btree.h index 60d6979c0f..f636c5fc73 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/btree.h +++ b/contrib/restricted/abseil-cpp/absl/container/internal/btree.h @@ -192,38 +192,38 @@ struct key_compare_to_adapter<std::greater<absl::Cord>> { using type = StringBtreeDefaultGreater; }; -// Detects an 'absl_btree_prefer_linear_node_search' member. This is -// a protocol used as an opt-in or opt-out of linear search. -// -// For example, this would be useful for key types that wrap an integer -// and define their own cheap operator<(). For example: -// -// class K { -// public: -// using absl_btree_prefer_linear_node_search = std::true_type; -// ... -// private: -// friend bool operator<(K a, K b) { return a.k_ < b.k_; } -// int k_; -// }; -// -// btree_map<K, V> m; // Uses linear search -// -// If T has the preference tag, then it has a preference. -// Btree will use the tag's truth value. -template <typename T, typename = void> -struct has_linear_node_search_preference : std::false_type {}; -template <typename T, typename = void> -struct prefers_linear_node_search : std::false_type {}; -template <typename T> -struct has_linear_node_search_preference< - T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> - : std::true_type {}; -template <typename T> -struct prefers_linear_node_search< - T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> - : T::absl_btree_prefer_linear_node_search {}; - +// Detects an 'absl_btree_prefer_linear_node_search' member. This is +// a protocol used as an opt-in or opt-out of linear search. +// +// For example, this would be useful for key types that wrap an integer +// and define their own cheap operator<(). For example: +// +// class K { +// public: +// using absl_btree_prefer_linear_node_search = std::true_type; +// ... +// private: +// friend bool operator<(K a, K b) { return a.k_ < b.k_; } +// int k_; +// }; +// +// btree_map<K, V> m; // Uses linear search +// +// If T has the preference tag, then it has a preference. +// Btree will use the tag's truth value. +template <typename T, typename = void> +struct has_linear_node_search_preference : std::false_type {}; +template <typename T, typename = void> +struct prefers_linear_node_search : std::false_type {}; +template <typename T> +struct has_linear_node_search_preference< + T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> + : std::true_type {}; +template <typename T> +struct prefers_linear_node_search< + T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> + : T::absl_btree_prefer_linear_node_search {}; + template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, bool Multi, typename SlotPolicy> struct common_params { @@ -250,23 +250,23 @@ struct common_params { using reference = value_type &; using const_reference = const value_type &; - // For the given lookup key type, returns whether we can have multiple - // equivalent keys in the btree. If this is a multi-container, then we can. - // Otherwise, we can have multiple equivalent keys only if all of the - // following conditions are met: - // - The comparator is transparent. - // - The lookup key type is not the same as key_type. - // - The comparator is not a StringBtreeDefault{Less,Greater} comparator - // that we know has the same equivalence classes for all lookup types. - template <typename LookupKey> - constexpr static bool can_have_multiple_equivalent_keys() { - return Multi || - (IsTransparent<key_compare>::value && - !std::is_same<LookupKey, Key>::value && - !std::is_same<key_compare, StringBtreeDefaultLess>::value && - !std::is_same<key_compare, StringBtreeDefaultGreater>::value); - } - + // For the given lookup key type, returns whether we can have multiple + // equivalent keys in the btree. If this is a multi-container, then we can. + // Otherwise, we can have multiple equivalent keys only if all of the + // following conditions are met: + // - The comparator is transparent. + // - The lookup key type is not the same as key_type. + // - The comparator is not a StringBtreeDefault{Less,Greater} comparator + // that we know has the same equivalence classes for all lookup types. + template <typename LookupKey> + constexpr static bool can_have_multiple_equivalent_keys() { + return Multi || + (IsTransparent<key_compare>::value && + !std::is_same<LookupKey, Key>::value && + !std::is_same<key_compare, StringBtreeDefaultLess>::value && + !std::is_same<key_compare, StringBtreeDefaultGreater>::value); + } + enum { kTargetNodeSize = TargetNodeSize, @@ -452,7 +452,7 @@ struct SearchResult { // useful information. template <typename V> struct SearchResult<V, false> { - SearchResult() {} + SearchResult() {} explicit SearchResult(V value) : value(value) {} SearchResult(V value, MatchKind /*match*/) : value(value) {} @@ -485,22 +485,22 @@ class btree_node { using difference_type = typename Params::difference_type; // Btree decides whether to use linear node search as follows: - // - If the comparator expresses a preference, use that. - // - If the key expresses a preference, use that. + // - If the comparator expresses a preference, use that. + // - If the key expresses a preference, use that. // - If the key is arithmetic and the comparator is std::less or // std::greater, choose linear. // - Otherwise, choose binary. // TODO(ezb): Might make sense to add condition(s) based on node-size. using use_linear_search = std::integral_constant< bool, - has_linear_node_search_preference<key_compare>::value - ? prefers_linear_node_search<key_compare>::value - : has_linear_node_search_preference<key_type>::value - ? prefers_linear_node_search<key_type>::value - : std::is_arithmetic<key_type>::value && - (std::is_same<std::less<key_type>, key_compare>::value || - std::is_same<std::greater<key_type>, - key_compare>::value)>; + has_linear_node_search_preference<key_compare>::value + ? prefers_linear_node_search<key_compare>::value + : has_linear_node_search_preference<key_type>::value + ? prefers_linear_node_search<key_type>::value + : std::is_arithmetic<key_type>::value && + (std::is_same<std::less<key_type>, key_compare>::value || + std::is_same<std::greater<key_type>, + key_compare>::value)>; // This class is organized by absl::container_internal::Layout as if it had // the following structure: @@ -517,23 +517,23 @@ class btree_node { // // is the same as the count of values. // field_type finish; // // The maximum number of values the node can hold. This is an integer in - // // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf + // // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal - // // nodes (even though there are still kNodeSlots values in the node). + // // nodes (even though there are still kNodeSlots values in the node). // // TODO(ezb): make max_count use only 4 bits and record log2(capacity) // // to free extra bits for is_root, etc. // field_type max_count; // // // The array of values. The capacity is `max_count` for leaf nodes and - // // kNodeSlots for internal nodes. Only the values in + // // kNodeSlots for internal nodes. Only the values in // // [start, finish) have been initialized and are valid. // slot_type values[max_count]; // // // The array of child pointers. The keys in children[i] are all less // // than key(i). The keys in children[i + 1] are all greater than key(i). - // // There are 0 children for leaf nodes and kNodeSlots + 1 children for + // // There are 0 children for leaf nodes and kNodeSlots + 1 children for // // internal nodes. - // btree_node *children[kNodeSlots + 1]; + // btree_node *children[kNodeSlots + 1]; // // This class is only constructed by EmptyNodeType. Normally, pointers to the // layout above are allocated, cast to btree_node*, and de-allocated within @@ -555,62 +555,62 @@ class btree_node { private: using layout_type = absl::container_internal::Layout<btree_node *, field_type, slot_type, btree_node *>; - constexpr static size_type SizeWithNSlots(size_type n) { + constexpr static size_type SizeWithNSlots(size_type n) { return layout_type(/*parent*/ 1, /*position, start, finish, max_count*/ 4, - /*slots*/ n, + /*slots*/ n, /*children*/ 0) .AllocSize(); } // A lower bound for the overhead of fields other than values in a leaf node. constexpr static size_type MinimumOverhead() { - return SizeWithNSlots(1) - sizeof(value_type); + return SizeWithNSlots(1) - sizeof(value_type); } // Compute how many values we can fit onto a leaf node taking into account // padding. - constexpr static size_type NodeTargetSlots(const int begin, const int end) { + constexpr static size_type NodeTargetSlots(const int begin, const int end) { return begin == end ? begin - : SizeWithNSlots((begin + end) / 2 + 1) > + : SizeWithNSlots((begin + end) / 2 + 1) > params_type::kTargetNodeSize - ? NodeTargetSlots(begin, (begin + end) / 2) - : NodeTargetSlots((begin + end) / 2 + 1, end); + ? NodeTargetSlots(begin, (begin + end) / 2) + : NodeTargetSlots((begin + end) / 2 + 1, end); } enum { kTargetNodeSize = params_type::kTargetNodeSize, - kNodeTargetSlots = NodeTargetSlots(0, params_type::kTargetNodeSize), + kNodeTargetSlots = NodeTargetSlots(0, params_type::kTargetNodeSize), - // We need a minimum of 3 slots per internal node in order to perform + // We need a minimum of 3 slots per internal node in order to perform // splitting (1 value for the two nodes involved in the split and 1 value - // propagated to the parent as the delimiter for the split). For performance - // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy - // of 1/3 (for a node, not a b-tree). - kMinNodeSlots = 4, - - kNodeSlots = - kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots, - + // propagated to the parent as the delimiter for the split). For performance + // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy + // of 1/3 (for a node, not a b-tree). + kMinNodeSlots = 4, + + kNodeSlots = + kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots, + // The node is internal (i.e. is not a leaf node) if and only if `max_count` // has this value. kInternalNodeMaxCount = 0, }; - // Leaves can have less than kNodeSlots values. - constexpr static layout_type LeafLayout(const int slot_count = kNodeSlots) { + // Leaves can have less than kNodeSlots values. + constexpr static layout_type LeafLayout(const int slot_count = kNodeSlots) { return layout_type(/*parent*/ 1, /*position, start, finish, max_count*/ 4, - /*slots*/ slot_count, + /*slots*/ slot_count, /*children*/ 0); } constexpr static layout_type InternalLayout() { return layout_type(/*parent*/ 1, /*position, start, finish, max_count*/ 4, - /*slots*/ kNodeSlots, - /*children*/ kNodeSlots + 1); + /*slots*/ kNodeSlots, + /*children*/ kNodeSlots + 1); } - constexpr static size_type LeafSize(const int slot_count = kNodeSlots) { - return LeafLayout(slot_count).AllocSize(); + constexpr static size_type LeafSize(const int slot_count = kNodeSlots) { + return LeafLayout(slot_count).AllocSize(); } constexpr static size_type InternalSize() { return InternalLayout().AllocSize(); @@ -667,10 +667,10 @@ class btree_node { } field_type max_count() const { // Internal nodes have max_count==kInternalNodeMaxCount. - // Leaf nodes have max_count in [1, kNodeSlots]. + // Leaf nodes have max_count in [1, kNodeSlots]. const field_type max_count = GetField<1>()[3]; return max_count == field_type{kInternalNodeMaxCount} - ? field_type{kNodeSlots} + ? field_type{kNodeSlots} : max_count; } @@ -792,7 +792,7 @@ class btree_node { SearchResult<int, true> binary_search_impl( const K &k, int s, int e, const CompareTo &comp, std::true_type /* IsCompareTo */) const { - if (params_type::template can_have_multiple_equivalent_keys<K>()) { + if (params_type::template can_have_multiple_equivalent_keys<K>()) { MatchKind exact_match = MatchKind::kNe; while (s != e) { const int mid = (s + e) >> 1; @@ -803,14 +803,14 @@ class btree_node { e = mid; if (c == 0) { // Need to return the first value whose key is not less than k, - // which requires continuing the binary search if there could be - // multiple equivalent keys. + // which requires continuing the binary search if there could be + // multiple equivalent keys. exact_match = MatchKind::kEq; } } } return {s, exact_match}; - } else { // Can't have multiple equivalent keys. + } else { // Can't have multiple equivalent keys. while (s != e) { const int mid = (s + e) >> 1; const absl::weak_ordering c = comp(key(mid), k); @@ -860,12 +860,12 @@ class btree_node { start_slot(), max_count * sizeof(slot_type)); } void init_internal(btree_node *parent) { - init_leaf(parent, kNodeSlots); + init_leaf(parent, kNodeSlots); // Set `max_count` to a sentinel value to indicate that this node is // internal. set_max_count(kInternalNodeMaxCount); absl::container_internal::SanitizerPoisonMemoryRegion( - &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *)); + &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *)); } static void deallocate(const size_type size, btree_node *node, @@ -943,7 +943,7 @@ struct btree_iterator { using key_type = typename Node::key_type; using size_type = typename Node::size_type; using params_type = typename Node::params_type; - using is_map_container = typename params_type::is_map_container; + using is_map_container = typename params_type::is_map_container; using node_type = Node; using normal_node = typename std::remove_const<Node>::type; @@ -955,7 +955,7 @@ struct btree_iterator { using slot_type = typename params_type::slot_type; using iterator = - btree_iterator<normal_node, normal_reference, normal_pointer>; + btree_iterator<normal_node, normal_reference, normal_pointer>; using const_iterator = btree_iterator<const_node, const_reference, const_pointer>; @@ -972,19 +972,19 @@ struct btree_iterator { btree_iterator(Node *n, int p) : node(n), position(p) {} // NOTE: this SFINAE allows for implicit conversions from iterator to - // const_iterator, but it specifically avoids hiding the copy constructor so - // that the trivial one will be used when possible. + // const_iterator, but it specifically avoids hiding the copy constructor so + // that the trivial one will be used when possible. template <typename N, typename R, typename P, absl::enable_if_t< std::is_same<btree_iterator<N, R, P>, iterator>::value && std::is_same<btree_iterator, const_iterator>::value, int> = 0> - btree_iterator(const btree_iterator<N, R, P> other) // NOLINT + btree_iterator(const btree_iterator<N, R, P> other) // NOLINT : node(other.node), position(other.position) {} private: // This SFINAE allows explicit conversions from const_iterator to - // iterator, but also avoids hiding the copy constructor. + // iterator, but also avoids hiding the copy constructor. // NOTE: the const_cast is safe because this constructor is only called by // non-const methods and the container owns the nodes. template <typename N, typename R, typename P, @@ -992,7 +992,7 @@ struct btree_iterator { std::is_same<btree_iterator<N, R, P>, const_iterator>::value && std::is_same<btree_iterator, iterator>::value, int> = 0> - explicit btree_iterator(const btree_iterator<N, R, P> other) + explicit btree_iterator(const btree_iterator<N, R, P> other) : node(const_cast<node_type *>(other.node)), position(other.position) {} // Increment/decrement the iterator. @@ -1055,8 +1055,8 @@ struct btree_iterator { } private: - friend iterator; - friend const_iterator; + friend iterator; + friend const_iterator; template <typename Params> friend class btree; template <typename Tree> @@ -1122,8 +1122,8 @@ class btree { } enum : uint32_t { - kNodeSlots = node_type::kNodeSlots, - kMinNodeValues = kNodeSlots / 2, + kNodeSlots = node_type::kNodeSlots, + kMinNodeValues = kNodeSlots / 2, }; struct node_stats { @@ -1154,8 +1154,8 @@ class btree { using const_reference = typename Params::const_reference; using pointer = typename Params::pointer; using const_pointer = typename Params::const_pointer; - using iterator = - typename btree_iterator<node_type, reference, pointer>::iterator; + using iterator = + typename btree_iterator<node_type, reference, pointer>::iterator; using const_iterator = typename iterator::const_iterator; using reverse_iterator = std::reverse_iterator<iterator>; using const_reverse_iterator = std::reverse_iterator<const_iterator>; @@ -1168,46 +1168,46 @@ class btree { private: // For use in copy_or_move_values_in_order. const value_type &maybe_move_from_iterator(const_iterator it) { return *it; } - value_type &&maybe_move_from_iterator(iterator it) { - // This is a destructive operation on the other container so it's safe for - // us to const_cast and move from the keys here even if it's a set. - return std::move(const_cast<value_type &>(*it)); - } + value_type &&maybe_move_from_iterator(iterator it) { + // This is a destructive operation on the other container so it's safe for + // us to const_cast and move from the keys here even if it's a set. + return std::move(const_cast<value_type &>(*it)); + } // Copies or moves (depending on the template parameter) the values in // other into this btree in their order in other. This btree must be empty // before this method is called. This method is used in copy construction, // copy assignment, and move assignment. template <typename Btree> - void copy_or_move_values_in_order(Btree &other); + void copy_or_move_values_in_order(Btree &other); // Validates that various assumptions/requirements are true at compile time. constexpr static bool static_assert_validation(); public: - btree(const key_compare &comp, const allocator_type &alloc) - : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {} - - btree(const btree &other) : btree(other, other.allocator()) {} - btree(const btree &other, const allocator_type &alloc) - : btree(other.key_comp(), alloc) { - copy_or_move_values_in_order(other); - } + btree(const key_compare &comp, const allocator_type &alloc) + : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {} + + btree(const btree &other) : btree(other, other.allocator()) {} + btree(const btree &other, const allocator_type &alloc) + : btree(other.key_comp(), alloc) { + copy_or_move_values_in_order(other); + } btree(btree &&other) noexcept : root_(std::move(other.root_)), rightmost_(absl::exchange(other.rightmost_, EmptyNode())), size_(absl::exchange(other.size_, 0)) { other.mutable_root() = EmptyNode(); } - btree(btree &&other, const allocator_type &alloc) - : btree(other.key_comp(), alloc) { - if (alloc == other.allocator()) { - swap(other); - } else { - // Move values from `other` one at a time when allocators are different. - copy_or_move_values_in_order(other); - } - } + btree(btree &&other, const allocator_type &alloc) + : btree(other.key_comp(), alloc) { + if (alloc == other.allocator()) { + swap(other); + } else { + // Move values from `other` one at a time when allocators are different. + copy_or_move_values_in_order(other); + } + } ~btree() { // Put static_asserts in destructor to avoid triggering them before the type @@ -1235,23 +1235,23 @@ class btree { return const_reverse_iterator(begin()); } - // Finds the first element whose key is not less than `key`. + // Finds the first element whose key is not less than `key`. template <typename K> iterator lower_bound(const K &key) { - return internal_end(internal_lower_bound(key).value); + return internal_end(internal_lower_bound(key).value); } template <typename K> const_iterator lower_bound(const K &key) const { - return internal_end(internal_lower_bound(key).value); + return internal_end(internal_lower_bound(key).value); } - // Finds the first element whose key is not less than `key` and also returns - // whether that element is equal to `key`. + // Finds the first element whose key is not less than `key` and also returns + // whether that element is equal to `key`. + template <typename K> + std::pair<iterator, bool> lower_bound_equal(const K &key) const; + + // Finds the first element whose key is greater than `key`. template <typename K> - std::pair<iterator, bool> lower_bound_equal(const K &key) const; - - // Finds the first element whose key is greater than `key`. - template <typename K> iterator upper_bound(const K &key) { return internal_end(internal_upper_bound(key)); } @@ -1332,8 +1332,8 @@ class btree { // to the element after the last erased element. std::pair<size_type, iterator> erase_range(iterator begin, iterator end); - // Finds an element with key equivalent to `key` or returns `end()` if `key` - // is not present. + // Finds an element with key equivalent to `key` or returns `end()` if `key` + // is not present. template <typename K> iterator find(const K &key) { return internal_end(internal_find(key)); @@ -1407,14 +1407,14 @@ class btree { } } - // The average number of bytes used per value stored in the btree assuming - // random insertion order. + // The average number of bytes used per value stored in the btree assuming + // random insertion order. static double average_bytes_per_value() { - // The expected number of values per node with random insertion order is the - // average of the maximum and minimum numbers of values per node. - const double expected_values_per_node = - (kNodeSlots + kMinNodeValues) / 2.0; - return node_type::LeafSize() / expected_values_per_node; + // The expected number of values per node with random insertion order is the + // average of the maximum and minimum numbers of values per node. + const double expected_values_per_node = + (kNodeSlots + kMinNodeValues) / 2.0; + return node_type::LeafSize() / expected_values_per_node; } // The fullness of the btree. Computed as the number of elements in the btree @@ -1424,7 +1424,7 @@ class btree { // Returns 0 for empty trees. double fullness() const { if (empty()) return 0.0; - return static_cast<double>(size()) / (nodes() * kNodeSlots); + return static_cast<double>(size()) / (nodes() * kNodeSlots); } // The overhead of the btree structure in bytes per node. Computed as the // total number of bytes used by the btree minus the number of bytes used for @@ -1474,7 +1474,7 @@ class btree { } node_type *new_leaf_node(node_type *parent) { node_type *n = allocate(node_type::LeafSize()); - n->init_leaf(parent, kNodeSlots); + n->init_leaf(parent, kNodeSlots); return n; } node_type *new_leaf_root_node(const int max_count) { @@ -1534,8 +1534,8 @@ class btree { // Internal routine which implements lower_bound(). template <typename K> - SearchResult<iterator, is_key_compare_to::value> internal_lower_bound( - const K &key) const; + SearchResult<iterator, is_key_compare_to::value> internal_lower_bound( + const K &key) const; // Internal routine which implements upper_bound(). template <typename K> @@ -1719,7 +1719,7 @@ template <typename P> void btree_node<P>::split(const int insert_position, btree_node *dest, allocator_type *alloc) { assert(dest->count() == 0); - assert(max_count() == kNodeSlots); + assert(max_count() == kNodeSlots); // We bias the split based on the position being inserted. If we're // inserting at the beginning of the left node then bias the split to put @@ -1727,7 +1727,7 @@ void btree_node<P>::split(const int insert_position, btree_node *dest, // right node then bias the split to put more values on the left node. if (insert_position == start()) { dest->set_finish(dest->start() + finish() - 1); - } else if (insert_position == kNodeSlots) { + } else if (insert_position == kNodeSlots) { dest->set_finish(dest->start()); } else { dest->set_finish(dest->start() + count() / 2); @@ -1798,7 +1798,7 @@ void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) { // Navigate to the leftmost leaf under node, and then delete upwards. while (!node->leaf()) node = node->start_child(); - // Use `int` because `pos` needs to be able to hold `kNodeSlots+1`, which + // Use `int` because `pos` needs to be able to hold `kNodeSlots+1`, which // isn't guaranteed to be a valid `field_type`. int pos = node->position(); btree_node *parent = node->parent(); @@ -1886,7 +1886,7 @@ void btree_iterator<N, R, P>::decrement_slow() { // btree methods template <typename P> template <typename Btree> -void btree<P>::copy_or_move_values_in_order(Btree &other) { +void btree<P>::copy_or_move_values_in_order(Btree &other) { static_assert(std::is_same<btree, Btree>::value || std::is_same<const btree, Btree>::value, "Btree type must be same or const."); @@ -1894,11 +1894,11 @@ void btree<P>::copy_or_move_values_in_order(Btree &other) { // We can avoid key comparisons because we know the order of the // values is the same order we'll store them in. - auto iter = other.begin(); - if (iter == other.end()) return; + auto iter = other.begin(); + if (iter == other.end()) return; insert_multi(maybe_move_from_iterator(iter)); ++iter; - for (; iter != other.end(); ++iter) { + for (; iter != other.end(); ++iter) { // If the btree is not empty, we can just insert the new value at the end // of the tree. internal_emplace(end(), maybe_move_from_iterator(iter)); @@ -1917,7 +1917,7 @@ constexpr bool btree<P>::static_assert_validation() { // Note: We assert that kTargetValues, which is computed from // Params::kTargetNodeSize, must fit the node_type::field_type. static_assert( - kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))), + kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))), "target node size too large"); // Verify that key_compare returns an absl::{weak,strong}_ordering or bool. @@ -1937,29 +1937,29 @@ constexpr bool btree<P>::static_assert_validation() { } template <typename P> -template <typename K> -auto btree<P>::lower_bound_equal(const K &key) const - -> std::pair<iterator, bool> { - const SearchResult<iterator, is_key_compare_to::value> res = - internal_lower_bound(key); - const iterator lower = iterator(internal_end(res.value)); - const bool equal = res.HasMatch() - ? res.IsEq() - : lower != end() && !compare_keys(key, lower.key()); - return {lower, equal}; +template <typename K> +auto btree<P>::lower_bound_equal(const K &key) const + -> std::pair<iterator, bool> { + const SearchResult<iterator, is_key_compare_to::value> res = + internal_lower_bound(key); + const iterator lower = iterator(internal_end(res.value)); + const bool equal = res.HasMatch() + ? res.IsEq() + : lower != end() && !compare_keys(key, lower.key()); + return {lower, equal}; } template <typename P> template <typename K> auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> { - const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key); - const iterator lower = lower_and_equal.first; - if (!lower_and_equal.second) { - return {lower, lower}; - } + const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key); + const iterator lower = lower_and_equal.first; + if (!lower_and_equal.second) { + return {lower, lower}; + } const iterator next = std::next(lower); - if (!params_type::template can_have_multiple_equivalent_keys<K>()) { + if (!params_type::template can_have_multiple_equivalent_keys<K>()) { // The next iterator after lower must point to a key greater than `key`. // Note: if this assert fails, then it may indicate that the comparator does // not meet the equivalence requirements for Compare @@ -1970,7 +1970,7 @@ auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> { // Try once more to avoid the call to upper_bound() if there's only one // equivalent key. This should prevent all calls to upper_bound() in cases of // unique-containers with heterogeneous comparators in which all comparison - // operators have the same equivalence classes. + // operators have the same equivalence classes. if (next == end() || compare_keys(key, next.key())) return {lower, next}; // In this case, we need to call upper_bound() to avoid worst case O(N) @@ -2101,7 +2101,7 @@ auto btree<P>::operator=(const btree &other) -> btree & { *mutable_allocator() = other.allocator(); } - copy_or_move_values_in_order(other); + copy_or_move_values_in_order(other); } return *this; } @@ -2131,7 +2131,7 @@ auto btree<P>::operator=(btree &&other) noexcept -> btree & { // comparator while moving the values so we can't swap the key // comparators. *mutable_key_comp() = other.key_comp(); - copy_or_move_values_in_order(other); + copy_or_move_values_in_order(other); } } } @@ -2298,7 +2298,7 @@ void btree<P>::rebalance_or_split(iterator *iter) { node_type *&node = iter->node; int &insert_position = iter->position; assert(node->count() == node->max_count()); - assert(kNodeSlots == node->max_count()); + assert(kNodeSlots == node->max_count()); // First try to make room on the node by rebalancing. node_type *parent = node->parent(); @@ -2306,17 +2306,17 @@ void btree<P>::rebalance_or_split(iterator *iter) { if (node->position() > parent->start()) { // Try rebalancing with our left sibling. node_type *left = parent->child(node->position() - 1); - assert(left->max_count() == kNodeSlots); - if (left->count() < kNodeSlots) { + assert(left->max_count() == kNodeSlots); + if (left->count() < kNodeSlots) { // We bias rebalancing based on the position being inserted. If we're // inserting at the end of the right node then we bias rebalancing to // fill up the left node. - int to_move = (kNodeSlots - left->count()) / - (1 + (insert_position < static_cast<int>(kNodeSlots))); + int to_move = (kNodeSlots - left->count()) / + (1 + (insert_position < static_cast<int>(kNodeSlots))); to_move = (std::max)(1, to_move); if (insert_position - to_move >= node->start() || - left->count() + to_move < static_cast<int>(kNodeSlots)) { + left->count() + to_move < static_cast<int>(kNodeSlots)) { left->rebalance_right_to_left(to_move, node, mutable_allocator()); assert(node->max_count() - node->count() == to_move); @@ -2335,17 +2335,17 @@ void btree<P>::rebalance_or_split(iterator *iter) { if (node->position() < parent->finish()) { // Try rebalancing with our right sibling. node_type *right = parent->child(node->position() + 1); - assert(right->max_count() == kNodeSlots); - if (right->count() < kNodeSlots) { + assert(right->max_count() == kNodeSlots); + if (right->count() < kNodeSlots) { // We bias rebalancing based on the position being inserted. If we're // inserting at the beginning of the left node then we bias rebalancing // to fill up the right node. - int to_move = (static_cast<int>(kNodeSlots) - right->count()) / + int to_move = (static_cast<int>(kNodeSlots) - right->count()) / (1 + (insert_position > node->start())); to_move = (std::max)(1, to_move); if (insert_position <= node->finish() - to_move || - right->count() + to_move < static_cast<int>(kNodeSlots)) { + right->count() + to_move < static_cast<int>(kNodeSlots)) { node->rebalance_left_to_right(to_move, right, mutable_allocator()); if (insert_position > node->finish()) { @@ -2361,8 +2361,8 @@ void btree<P>::rebalance_or_split(iterator *iter) { // Rebalancing failed, make sure there is room on the parent node for a new // value. - assert(parent->max_count() == kNodeSlots); - if (parent->count() == kNodeSlots) { + assert(parent->max_count() == kNodeSlots); + if (parent->count() == kNodeSlots) { iterator parent_iter(node->parent(), node->position()); rebalance_or_split(&parent_iter); } @@ -2407,8 +2407,8 @@ bool btree<P>::try_merge_or_rebalance(iterator *iter) { if (iter->node->position() > parent->start()) { // Try merging with our left sibling. node_type *left = parent->child(iter->node->position() - 1); - assert(left->max_count() == kNodeSlots); - if (1U + left->count() + iter->node->count() <= kNodeSlots) { + assert(left->max_count() == kNodeSlots); + if (1U + left->count() + iter->node->count() <= kNodeSlots) { iter->position += 1 + left->count(); merge_nodes(left, iter->node); iter->node = left; @@ -2418,8 +2418,8 @@ bool btree<P>::try_merge_or_rebalance(iterator *iter) { if (iter->node->position() < parent->finish()) { // Try merging with our right sibling. node_type *right = parent->child(iter->node->position() + 1); - assert(right->max_count() == kNodeSlots); - if (1U + iter->node->count() + right->count() <= kNodeSlots) { + assert(right->max_count() == kNodeSlots); + if (1U + iter->node->count() + right->count() <= kNodeSlots) { merge_nodes(iter->node, right); return true; } @@ -2500,12 +2500,12 @@ inline auto btree<P>::internal_emplace(iterator iter, Args &&... args) allocator_type *alloc = mutable_allocator(); if (iter.node->count() == max_count) { // Make room in the leaf for the new item. - if (max_count < kNodeSlots) { + if (max_count < kNodeSlots) { // Insertion into the root where the root is smaller than the full node // size. Simply grow the size of the root node. assert(iter.node == root()); iter.node = - new_leaf_root_node((std::min<int>)(kNodeSlots, 2 * max_count)); + new_leaf_root_node((std::min<int>)(kNodeSlots, 2 * max_count)); // Transfer the values from the old root to the new root. node_type *old_root = root(); node_type *new_root = iter.node; @@ -2552,27 +2552,27 @@ inline auto btree<P>::internal_locate(const K &key) const template <typename P> template <typename K> -auto btree<P>::internal_lower_bound(const K &key) const - -> SearchResult<iterator, is_key_compare_to::value> { - if (!params_type::template can_have_multiple_equivalent_keys<K>()) { - SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key); - ret.value = internal_last(ret.value); - return ret; - } +auto btree<P>::internal_lower_bound(const K &key) const + -> SearchResult<iterator, is_key_compare_to::value> { + if (!params_type::template can_have_multiple_equivalent_keys<K>()) { + SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key); + ret.value = internal_last(ret.value); + return ret; + } iterator iter(const_cast<node_type *>(root())); - SearchResult<int, is_key_compare_to::value> res; - bool seen_eq = false; + SearchResult<int, is_key_compare_to::value> res; + bool seen_eq = false; for (;;) { - res = iter.node->lower_bound(key, key_comp()); - iter.position = res.value; + res = iter.node->lower_bound(key, key_comp()); + iter.position = res.value; if (iter.node->leaf()) { break; } - seen_eq = seen_eq || res.IsEq(); + seen_eq = seen_eq || res.IsEq(); iter.node = iter.node->child(iter.position); } - if (res.IsEq()) return {iter, MatchKind::kEq}; - return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe}; + if (res.IsEq()) return {iter, MatchKind::kEq}; + return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe}; } template <typename P> diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/btree_container.h b/contrib/restricted/abseil-cpp/absl/container/internal/btree_container.h index 83c411a6e2..a99668c713 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/btree_container.h +++ b/contrib/restricted/abseil-cpp/absl/container/internal/btree_container.h @@ -24,7 +24,7 @@ #include "absl/base/internal/throw_delegate.h" #include "absl/container/internal/btree.h" // IWYU pragma: export #include "absl/container/internal/common.h" -#include "absl/memory/memory.h" +#include "absl/memory/memory.h" #include "absl/meta/type_traits.h" namespace absl { @@ -70,21 +70,21 @@ class btree_container { explicit btree_container(const key_compare &comp, const allocator_type &alloc = allocator_type()) : tree_(comp, alloc) {} - explicit btree_container(const allocator_type &alloc) - : tree_(key_compare(), alloc) {} - - btree_container(const btree_container &other) - : btree_container(other, absl::allocator_traits<allocator_type>:: - select_on_container_copy_construction( - other.get_allocator())) {} - btree_container(const btree_container &other, const allocator_type &alloc) - : tree_(other.tree_, alloc) {} - - btree_container(btree_container &&other) noexcept( - std::is_nothrow_move_constructible<Tree>::value) = default; - btree_container(btree_container &&other, const allocator_type &alloc) - : tree_(std::move(other.tree_), alloc) {} - + explicit btree_container(const allocator_type &alloc) + : tree_(key_compare(), alloc) {} + + btree_container(const btree_container &other) + : btree_container(other, absl::allocator_traits<allocator_type>:: + select_on_container_copy_construction( + other.get_allocator())) {} + btree_container(const btree_container &other, const allocator_type &alloc) + : tree_(other.tree_, alloc) {} + + btree_container(btree_container &&other) noexcept( + std::is_nothrow_move_constructible<Tree>::value) = default; + btree_container(btree_container &&other, const allocator_type &alloc) + : tree_(std::move(other.tree_), alloc) {} + btree_container &operator=(const btree_container &other) = default; btree_container &operator=(btree_container &&other) noexcept( std::is_nothrow_move_assignable<Tree>::value) = default; @@ -105,11 +105,11 @@ class btree_container { // Lookup routines. template <typename K = key_type> - size_type count(const key_arg<K> &key) const { - auto equal_range = this->equal_range(key); - return std::distance(equal_range.first, equal_range.second); - } - template <typename K = key_type> + size_type count(const key_arg<K> &key) const { + auto equal_range = this->equal_range(key); + return std::distance(equal_range.first, equal_range.second); + } + template <typename K = key_type> iterator find(const key_arg<K> &key) { return tree_.find(key); } @@ -158,11 +158,11 @@ class btree_container { iterator erase(const_iterator first, const_iterator last) { return tree_.erase_range(iterator(first), iterator(last)).second; } - template <typename K = key_type> - size_type erase(const key_arg<K> &key) { - auto equal_range = this->equal_range(key); - return tree_.erase_range(equal_range.first, equal_range.second).first; - } + template <typename K = key_type> + size_type erase(const key_arg<K> &key) { + auto equal_range = this->equal_range(key); + return tree_.erase_range(equal_range.first, equal_range.second).first; + } // Extract routines. node_type extract(iterator position) { @@ -259,7 +259,7 @@ class btree_set_container : public btree_container<Tree> { using super_type::super_type; btree_set_container() {} - // Range constructors. + // Range constructors. template <class InputIterator> btree_set_container(InputIterator b, InputIterator e, const key_compare &comp = key_compare(), @@ -267,19 +267,19 @@ class btree_set_container : public btree_container<Tree> { : super_type(comp, alloc) { insert(b, e); } - template <class InputIterator> - btree_set_container(InputIterator b, InputIterator e, - const allocator_type &alloc) - : btree_set_container(b, e, key_compare(), alloc) {} + template <class InputIterator> + btree_set_container(InputIterator b, InputIterator e, + const allocator_type &alloc) + : btree_set_container(b, e, key_compare(), alloc) {} - // Initializer list constructors. + // Initializer list constructors. btree_set_container(std::initializer_list<init_type> init, const key_compare &comp = key_compare(), const allocator_type &alloc = allocator_type()) : btree_set_container(init.begin(), init.end(), comp, alloc) {} - btree_set_container(std::initializer_list<init_type> init, - const allocator_type &alloc) - : btree_set_container(init.begin(), init.end(), alloc) {} + btree_set_container(std::initializer_list<init_type> init, + const allocator_type &alloc) + : btree_set_container(init.begin(), init.end(), alloc) {} // Insertion routines. std::pair<iterator, bool> insert(const value_type &v) { @@ -341,10 +341,10 @@ class btree_set_container : public btree_container<Tree> { // Node extraction routines. template <typename K = key_type> node_type extract(const key_arg<K> &key) { - const std::pair<iterator, bool> lower_and_equal = - this->tree_.lower_bound_equal(key); - return lower_and_equal.second ? extract(lower_and_equal.first) - : node_type(); + const std::pair<iterator, bool> lower_and_equal = + this->tree_.lower_bound_equal(key); + return lower_and_equal.second ? extract(lower_and_equal.first) + : node_type(); } using super_type::extract; @@ -389,7 +389,7 @@ template <typename Tree> class btree_map_container : public btree_set_container<Tree> { using super_type = btree_set_container<Tree>; using params_type = typename Tree::params_type; - friend class BtreeNodePeer; + friend class BtreeNodePeer; private: template <class K> @@ -554,7 +554,7 @@ class btree_multiset_container : public btree_container<Tree> { using super_type::super_type; btree_multiset_container() {} - // Range constructors. + // Range constructors. template <class InputIterator> btree_multiset_container(InputIterator b, InputIterator e, const key_compare &comp = key_compare(), @@ -562,19 +562,19 @@ class btree_multiset_container : public btree_container<Tree> { : super_type(comp, alloc) { insert(b, e); } - template <class InputIterator> - btree_multiset_container(InputIterator b, InputIterator e, - const allocator_type &alloc) - : btree_multiset_container(b, e, key_compare(), alloc) {} + template <class InputIterator> + btree_multiset_container(InputIterator b, InputIterator e, + const allocator_type &alloc) + : btree_multiset_container(b, e, key_compare(), alloc) {} - // Initializer list constructors. + // Initializer list constructors. btree_multiset_container(std::initializer_list<init_type> init, const key_compare &comp = key_compare(), const allocator_type &alloc = allocator_type()) : btree_multiset_container(init.begin(), init.end(), comp, alloc) {} - btree_multiset_container(std::initializer_list<init_type> init, - const allocator_type &alloc) - : btree_multiset_container(init.begin(), init.end(), alloc) {} + btree_multiset_container(std::initializer_list<init_type> init, + const allocator_type &alloc) + : btree_multiset_container(init.begin(), init.end(), alloc) {} // Insertion routines. iterator insert(const value_type &v) { return this->tree_.insert_multi(v); } @@ -623,10 +623,10 @@ class btree_multiset_container : public btree_container<Tree> { // Node extraction routines. template <typename K = key_type> node_type extract(const key_arg<K> &key) { - const std::pair<iterator, bool> lower_and_equal = - this->tree_.lower_bound_equal(key); - return lower_and_equal.second ? extract(lower_and_equal.first) - : node_type(); + const std::pair<iterator, bool> lower_and_equal = + this->tree_.lower_bound_equal(key); + return lower_and_equal.second ? extract(lower_and_equal.first) + : node_type(); } using super_type::extract; diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler.cc b/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler.cc index f1c72287ef..40cce0479e 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler.cc +++ b/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler.cc @@ -70,7 +70,7 @@ void HashtablezInfo::PrepareForSampling() { total_probe_length.store(0, std::memory_order_relaxed); hashes_bitwise_or.store(0, std::memory_order_relaxed); hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed); - hashes_bitwise_xor.store(0, std::memory_order_relaxed); + hashes_bitwise_xor.store(0, std::memory_order_relaxed); max_reserve.store(0, std::memory_order_relaxed); create_time = absl::Now(); @@ -93,9 +93,9 @@ static bool ShouldForceSampling() { if (ABSL_PREDICT_TRUE(state == kDontForce)) return false; if (state == kUninitialized) { - state = ABSL_INTERNAL_C_SYMBOL(AbslContainerInternalSampleEverything)() - ? kForce - : kDontForce; + state = ABSL_INTERNAL_C_SYMBOL(AbslContainerInternalSampleEverything)() + ? kForce + : kDontForce; global_state.store(state, std::memory_order_relaxed); } return state == kForce; @@ -154,7 +154,7 @@ void RecordInsertSlow(HashtablezInfo* info, size_t hash, info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed); info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed); - info->hashes_bitwise_xor.fetch_xor(hash, std::memory_order_relaxed); + info->hashes_bitwise_xor.fetch_xor(hash, std::memory_order_relaxed); info->max_probe_length.store( std::max(info->max_probe_length.load(std::memory_order_relaxed), probe_length), diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler.h b/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler.h index 0064307c9a..91fcdb34a3 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler.h +++ b/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler.h @@ -79,7 +79,7 @@ struct HashtablezInfo : public profiling_internal::Sample<HashtablezInfo> { std::atomic<size_t> total_probe_length; std::atomic<size_t> hashes_bitwise_or; std::atomic<size_t> hashes_bitwise_and; - std::atomic<size_t> hashes_bitwise_xor; + std::atomic<size_t> hashes_bitwise_xor; std::atomic<size_t> max_reserve; // All of the fields below are set by `PrepareForSampling`, they must not be @@ -272,7 +272,7 @@ void SetHashtablezMaxSamples(int32_t max); // initialization of static storage duration objects. // The definition of this constant is weak, which allows us to inject a // different value for it at link time. -extern "C" bool ABSL_INTERNAL_C_SYMBOL(AbslContainerInternalSampleEverything)(); +extern "C" bool ABSL_INTERNAL_C_SYMBOL(AbslContainerInternalSampleEverything)(); } // namespace container_internal ABSL_NAMESPACE_END diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler_force_weak_definition.cc b/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler_force_weak_definition.cc index 2166c3f189..ed35a7eec3 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler_force_weak_definition.cc +++ b/contrib/restricted/abseil-cpp/absl/container/internal/hashtablez_sampler_force_weak_definition.cc @@ -21,8 +21,8 @@ ABSL_NAMESPACE_BEGIN namespace container_internal { // See hashtablez_sampler.h for details. -extern "C" ABSL_ATTRIBUTE_WEAK bool ABSL_INTERNAL_C_SYMBOL( - AbslContainerInternalSampleEverything)() { +extern "C" ABSL_ATTRIBUTE_WEAK bool ABSL_INTERNAL_C_SYMBOL( + AbslContainerInternalSampleEverything)() { return false; } diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/inlined_vector.h b/contrib/restricted/abseil-cpp/absl/container/internal/inlined_vector.h index 34a78e0498..1d7d6cda72 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/inlined_vector.h +++ b/contrib/restricted/abseil-cpp/absl/container/internal/inlined_vector.h @@ -36,13 +36,13 @@ namespace absl { ABSL_NAMESPACE_BEGIN namespace inlined_vector_internal { -// GCC does not deal very well with the below code -#if !defined(__clang__) && defined(__GNUC__) -#pragma GCC diagnostic push +// GCC does not deal very well with the below code +#if !defined(__clang__) && defined(__GNUC__) +#pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Warray-bounds" -#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" -#endif - +#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" +#endif + template <typename A> using AllocatorTraits = std::allocator_traits<A>; template <typename A> @@ -110,7 +110,7 @@ struct Allocation { Pointer<A> data; SizeType<A> capacity; }; - + template <typename A, bool IsOverAligned = (alignof(ValueType<A>) > ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT)> @@ -119,13 +119,13 @@ struct MallocAdapter { return {AllocatorTraits<A>::allocate(allocator, requested_capacity), requested_capacity}; } - + static void Deallocate(A& allocator, Pointer<A> pointer, SizeType<A> capacity) { AllocatorTraits<A>::deallocate(allocator, pointer, capacity); } }; - + template <typename A, typename ValueAdapter> void ConstructElements(NoTypeDeduction<A>& allocator, Pointer<A> construct_first, ValueAdapter& values, @@ -303,14 +303,14 @@ class Storage { : metadata_(allocator, /* size and is_allocated */ 0) {} ~Storage() { - if (GetSizeAndIsAllocated() == 0) { - // Empty and not allocated; nothing to do. + if (GetSizeAndIsAllocated() == 0) { + // Empty and not allocated; nothing to do. } else if (IsMemcpyOk<A>::value) { - // No destructors need to be run; just deallocate if necessary. - DeallocateIfAllocated(); - } else { - DestroyContents(); - } + // No destructors need to be run; just deallocate if necessary. + DeallocateIfAllocated(); + } else { + DestroyContents(); + } } // --------------------------------------------------------------------------- @@ -364,8 +364,8 @@ class Storage { // Storage Member Mutators // --------------------------------------------------------------------------- - ABSL_ATTRIBUTE_NOINLINE void InitFrom(const Storage& other); - + ABSL_ATTRIBUTE_NOINLINE void InitFrom(const Storage& other); + template <typename ValueAdapter> void Initialize(ValueAdapter values, SizeType<A> new_size); @@ -441,8 +441,8 @@ class Storage { } private: - ABSL_ATTRIBUTE_NOINLINE void DestroyContents(); - + ABSL_ATTRIBUTE_NOINLINE void DestroyContents(); + using Metadata = container_internal::CompressedTuple<A, SizeType<A>>; struct Allocated { @@ -459,51 +459,51 @@ class Storage { Inlined inlined; }; - template <typename... Args> + template <typename... Args> ABSL_ATTRIBUTE_NOINLINE Reference<A> EmplaceBackSlow(Args&&... args); - + Metadata metadata_; Data data_; }; template <typename T, size_t N, typename A> -void Storage<T, N, A>::DestroyContents() { +void Storage<T, N, A>::DestroyContents() { Pointer<A> data = GetIsAllocated() ? GetAllocatedData() : GetInlinedData(); DestroyElements<A>(GetAllocator(), data, GetSize()); - DeallocateIfAllocated(); -} - -template <typename T, size_t N, typename A> -void Storage<T, N, A>::InitFrom(const Storage& other) { + DeallocateIfAllocated(); +} + +template <typename T, size_t N, typename A> +void Storage<T, N, A>::InitFrom(const Storage& other) { const SizeType<A> n = other.GetSize(); - assert(n > 0); // Empty sources handled handled in caller. + assert(n > 0); // Empty sources handled handled in caller. ConstPointer<A> src; Pointer<A> dst; - if (!other.GetIsAllocated()) { - dst = GetInlinedData(); - src = other.GetInlinedData(); - } else { - // Because this is only called from the `InlinedVector` constructors, it's - // safe to take on the allocation with size `0`. If `ConstructElements(...)` - // throws, deallocation will be automatically handled by `~Storage()`. + if (!other.GetIsAllocated()) { + dst = GetInlinedData(); + src = other.GetInlinedData(); + } else { + // Because this is only called from the `InlinedVector` constructors, it's + // safe to take on the allocation with size `0`. If `ConstructElements(...)` + // throws, deallocation will be automatically handled by `~Storage()`. SizeType<A> requested_capacity = ComputeCapacity(GetInlinedCapacity(), n); Allocation<A> allocation = MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity); SetAllocation(allocation); dst = allocation.data; - src = other.GetAllocatedData(); - } + src = other.GetAllocatedData(); + } if (IsMemcpyOk<A>::value) { std::memcpy(reinterpret_cast<char*>(dst), reinterpret_cast<const char*>(src), n * sizeof(ValueType<A>)); - } else { + } else { auto values = IteratorValueAdapter<A, ConstPointer<A>>(src); ConstructElements<A>(GetAllocator(), dst, values, n); - } - GetSizeAndIsAllocated() = other.GetSizeAndIsAllocated(); -} - -template <typename T, size_t N, typename A> + } + GetSizeAndIsAllocated() = other.GetSizeAndIsAllocated(); +} + +template <typename T, size_t N, typename A> template <typename ValueAdapter> auto Storage<T, N, A>::Initialize(ValueAdapter values, SizeType<A> new_size) -> void { @@ -585,20 +585,20 @@ auto Storage<T, N, A>::Resize(ValueAdapter values, SizeType<A> new_size) Pointer<A> const base = storage_view.data; const SizeType<A> size = storage_view.size; A& alloc = GetAllocator(); - if (new_size <= size) { - // Destroy extra old elements. + if (new_size <= size) { + // Destroy extra old elements. DestroyElements<A>(alloc, base + new_size, size - new_size); - } else if (new_size <= storage_view.capacity) { - // Construct new elements in place. + } else if (new_size <= storage_view.capacity) { + // Construct new elements in place. ConstructElements<A>(alloc, base + size, values, new_size - size); - } else { - // Steps: - // a. Allocate new backing store. - // b. Construct new elements in new backing store. - // c. Move existing elements from old backing store to now. - // d. Destroy all elements in old backing store. - // Use transactional wrappers for the first two steps so we can roll - // back if necessary due to exceptions. + } else { + // Steps: + // a. Allocate new backing store. + // b. Construct new elements in new backing store. + // c. Move existing elements from old backing store to now. + // d. Destroy all elements in old backing store. + // Use transactional wrappers for the first two steps so we can roll + // back if necessary due to exceptions. AllocationTransaction<A> allocation_tx(alloc); SizeType<A> requested_capacity = ComputeCapacity(storage_view.capacity, new_size); @@ -717,20 +717,20 @@ template <typename... Args> auto Storage<T, N, A>::EmplaceBack(Args&&... args) -> Reference<A> { StorageView<A> storage_view = MakeStorageView(); const SizeType<A> n = storage_view.size; - if (ABSL_PREDICT_TRUE(n != storage_view.capacity)) { - // Fast path; new element fits. + if (ABSL_PREDICT_TRUE(n != storage_view.capacity)) { + // Fast path; new element fits. Pointer<A> last_ptr = storage_view.data + n; AllocatorTraits<A>::construct(GetAllocator(), last_ptr, std::forward<Args>(args)...); - AddSize(1); - return *last_ptr; - } - // TODO(b/173712035): Annotate with musttail attribute to prevent regression. - return EmplaceBackSlow(std::forward<Args>(args)...); -} - -template <typename T, size_t N, typename A> -template <typename... Args> + AddSize(1); + return *last_ptr; + } + // TODO(b/173712035): Annotate with musttail attribute to prevent regression. + return EmplaceBackSlow(std::forward<Args>(args)...); +} + +template <typename T, size_t N, typename A> +template <typename... Args> auto Storage<T, N, A>::EmplaceBackSlow(Args&&... args) -> Reference<A> { StorageView<A> storage_view = MakeStorageView(); AllocationTransaction<A> allocation_tx(GetAllocator()); @@ -740,24 +740,24 @@ auto Storage<T, N, A>::EmplaceBackSlow(Args&&... args) -> Reference<A> { Pointer<A> construct_data = allocation_tx.Allocate(requested_capacity); Pointer<A> last_ptr = construct_data + storage_view.size; - // Construct new element. + // Construct new element. AllocatorTraits<A>::construct(GetAllocator(), last_ptr, std::forward<Args>(args)...); - // Move elements from old backing store to new backing store. - ABSL_INTERNAL_TRY { + // Move elements from old backing store to new backing store. + ABSL_INTERNAL_TRY { ConstructElements<A>(GetAllocator(), allocation_tx.GetData(), move_values, storage_view.size); } - ABSL_INTERNAL_CATCH_ANY { + ABSL_INTERNAL_CATCH_ANY { AllocatorTraits<A>::destroy(GetAllocator(), last_ptr); - ABSL_INTERNAL_RETHROW; - } - // Destroy elements in old backing store. + ABSL_INTERNAL_RETHROW; + } + // Destroy elements in old backing store. DestroyElements<A>(GetAllocator(), storage_view.data, storage_view.size); - DeallocateIfAllocated(); + DeallocateIfAllocated(); SetAllocation(std::move(allocation_tx).Release()); - SetIsAllocated(); + SetIsAllocated(); AddSize(1); return *last_ptr; } @@ -921,10 +921,10 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void { } // End ignore "array-bounds" and "maybe-uninitialized" -#if !defined(__clang__) && defined(__GNUC__) -#pragma GCC diagnostic pop -#endif - +#if !defined(__clang__) && defined(__GNUC__) +#pragma GCC diagnostic pop +#endif + } // namespace inlined_vector_internal ABSL_NAMESPACE_END } // namespace absl diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/layout.h b/contrib/restricted/abseil-cpp/absl/container/internal/layout.h index 23d44d7793..a59a243059 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/layout.h +++ b/contrib/restricted/abseil-cpp/absl/container/internal/layout.h @@ -404,7 +404,7 @@ class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>, constexpr size_t Offset() const { static_assert(N < NumOffsets, "Index out of bounds"); return adl_barrier::Align( - Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1], + Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1], ElementAlignment<N>::value); } @@ -597,7 +597,7 @@ class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>, constexpr size_t AllocSize() const { static_assert(NumTypes == NumSizes, "You must specify sizes of all fields"); return Offset<NumTypes - 1>() + - SizeOf<ElementType<NumTypes - 1>>::value * size_[NumTypes - 1]; + SizeOf<ElementType<NumTypes - 1>>::value * size_[NumTypes - 1]; } // If built with --config=asan, poisons padding bytes (if any) in the @@ -621,7 +621,7 @@ class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>, // The `if` is an optimization. It doesn't affect the observable behaviour. if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) { size_t start = - Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1]; + Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1]; ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start); } #endif @@ -645,7 +645,7 @@ class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>, // produce "unsigned*" where another produces "unsigned int *". std::string DebugString() const { const auto offsets = Offsets(); - const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>::value...}; + const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>::value...}; const std::string types[] = { adl_barrier::TypeName<ElementType<OffsetSeq>>()...}; std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")"); diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set.cc b/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set.cc index eea9f6ee4e..687bcb8a4d 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set.cc +++ b/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set.cc @@ -33,7 +33,7 @@ constexpr size_t Group::kWidth; // Returns "random" seed. inline size_t RandomSeed() { -#ifdef ABSL_HAVE_THREAD_LOCAL +#ifdef ABSL_HAVE_THREAD_LOCAL static thread_local size_t counter = 0; size_t value = ++counter; #else // ABSL_HAVE_THREAD_LOCAL @@ -51,17 +51,17 @@ bool ShouldInsertBackwards(size_t hash, const ctrl_t* ctrl) { void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity) { assert(ctrl[capacity] == ctrl_t::kSentinel); - assert(IsValidCapacity(capacity)); + assert(IsValidCapacity(capacity)); for (ctrl_t* pos = ctrl; pos < ctrl + capacity; pos += Group::kWidth) { - Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos); - } - // Copy the cloned ctrl bytes. + Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos); + } + // Copy the cloned ctrl bytes. std::memcpy(ctrl + capacity + 1, ctrl, NumClonedBytes()); ctrl[capacity] = ctrl_t::kSentinel; -} +} // Extern template instantiotion for inline function. template FindInfo find_first_non_full(const ctrl_t*, size_t, size_t); - + } // namespace container_internal ABSL_NAMESPACE_END } // namespace absl diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set.h b/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set.h index 24cf740296..12682b3532 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set.h +++ b/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set.h @@ -125,7 +125,7 @@ #include "absl/container/internal/have_sse.h" #include "absl/memory/memory.h" #include "absl/meta/type_traits.h" -#include "absl/numeric/bits.h" +#include "absl/numeric/bits.h" #include "absl/utility/utility.h" namespace absl { @@ -199,9 +199,9 @@ constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) { } template <typename T> -uint32_t TrailingZeros(T x) { - ABSL_INTERNAL_ASSUME(x != 0); - return countr_zero(x); +uint32_t TrailingZeros(T x) { + ABSL_INTERNAL_ASSUME(x != 0); + return countr_zero(x); } // An abstraction over a bitmask. It provides an easy way to iterate through the @@ -231,24 +231,24 @@ class BitMask { } explicit operator bool() const { return mask_ != 0; } int operator*() const { return LowestBitSet(); } - uint32_t LowestBitSet() const { + uint32_t LowestBitSet() const { return container_internal::TrailingZeros(mask_) >> Shift; } - uint32_t HighestBitSet() const { - return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift); + uint32_t HighestBitSet() const { + return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift); } BitMask begin() const { return *this; } BitMask end() const { return BitMask(0); } - uint32_t TrailingZeros() const { + uint32_t TrailingZeros() const { return container_internal::TrailingZeros(mask_) >> Shift; } - uint32_t LeadingZeros() const { + uint32_t LeadingZeros() const { constexpr int total_significant_bits = SignificantBits << Shift; constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits; - return countl_zero(mask_ << extra_bits) >> Shift; + return countl_zero(mask_ << extra_bits) >> Shift; } private: @@ -384,8 +384,8 @@ struct GroupSse2Impl { // Returns the number of trailing empty or deleted elements in the group. uint32_t CountLeadingEmptyOrDeleted() const { auto special = _mm_set1_epi8(static_cast<int8_t>(ctrl_t::kSentinel)); - return TrailingZeros(static_cast<uint32_t>( - _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1)); + return TrailingZeros(static_cast<uint32_t>( + _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1)); } void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { @@ -480,23 +480,23 @@ inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; } // DELETED -> EMPTY // EMPTY -> EMPTY // FULL -> DELETED -void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity); +void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity); // Rounds up the capacity to the next power of 2 minus 1, with a minimum of 1. inline size_t NormalizeCapacity(size_t n) { - return n ? ~size_t{} >> countl_zero(n) : 1; + return n ? ~size_t{} >> countl_zero(n) : 1; } -// General notes on capacity/growth methods below: -// - We use 7/8th as maximum load factor. For 16-wide groups, that gives an -// average of two empty slots per group. -// - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity. -// - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we -// never need to probe (the whole table fits in one group) so we don't need a -// load factor less than 1. - -// Given `capacity` of the table, returns the size (i.e. number of full slots) -// at which we should grow the capacity. +// General notes on capacity/growth methods below: +// - We use 7/8th as maximum load factor. For 16-wide groups, that gives an +// average of two empty slots per group. +// - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity. +// - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we +// never need to probe (the whole table fits in one group) so we don't need a +// load factor less than 1. + +// Given `capacity` of the table, returns the size (i.e. number of full slots) +// at which we should grow the capacity. inline size_t CapacityToGrowth(size_t capacity) { assert(IsValidCapacity(capacity)); // `capacity*7/8` @@ -507,7 +507,7 @@ inline size_t CapacityToGrowth(size_t capacity) { return capacity - capacity / 8; } // From desired "growth" to a lowerbound of the necessary capacity. -// Might not be a valid one and requires NormalizeCapacity(). +// Might not be a valid one and requires NormalizeCapacity(). inline size_t GrowthToLowerboundCapacity(size_t growth) { // `growth*8/7` if (Group::kWidth == 8 && growth == 7) { @@ -545,66 +545,66 @@ inline void AssertIsValid(ctrl_t* ctrl) { "been erased, or the table might have rehashed."); } -struct FindInfo { - size_t offset; - size_t probe_length; -}; - -// The representation of the object has two modes: -// - small: For capacities < kWidth-1 -// - large: For the rest. -// -// Differences: -// - In small mode we are able to use the whole capacity. The extra control -// bytes give us at least one "empty" control byte to stop the iteration. -// This is important to make 1 a valid capacity. -// -// - In small mode only the first `capacity()` control bytes after the +struct FindInfo { + size_t offset; + size_t probe_length; +}; + +// The representation of the object has two modes: +// - small: For capacities < kWidth-1 +// - large: For the rest. +// +// Differences: +// - In small mode we are able to use the whole capacity. The extra control +// bytes give us at least one "empty" control byte to stop the iteration. +// This is important to make 1 a valid capacity. +// +// - In small mode only the first `capacity()` control bytes after the // sentinel are valid. The rest contain dummy ctrl_t::kEmpty values that do not -// represent a real slot. This is important to take into account on -// find_first_non_full(), where we never try ShouldInsertBackwards() for -// small tables. -inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; } - +// represent a real slot. This is important to take into account on +// find_first_non_full(), where we never try ShouldInsertBackwards() for +// small tables. +inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; } + inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, size_t hash, - size_t capacity) { - return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity); -} - -// Probes the raw_hash_set with the probe sequence for hash and returns the -// pointer to the first empty or deleted slot. + size_t capacity) { + return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity); +} + +// Probes the raw_hash_set with the probe sequence for hash and returns the +// pointer to the first empty or deleted slot. // NOTE: this function must work with tables having both ctrl_t::kEmpty and // ctrl_t::kDeleted in one group. Such tables appears during // drop_deletes_without_resize. -// -// This function is very useful when insertions happen and: -// - the input is already a set -// - there are enough slots -// - the element with the hash is not in the table +// +// This function is very useful when insertions happen and: +// - the input is already a set +// - there are enough slots +// - the element with the hash is not in the table template <typename = void> inline FindInfo find_first_non_full(const ctrl_t* ctrl, size_t hash, - size_t capacity) { - auto seq = probe(ctrl, hash, capacity); - while (true) { - Group g{ctrl + seq.offset()}; - auto mask = g.MatchEmptyOrDeleted(); - if (mask) { -#if !defined(NDEBUG) - // We want to add entropy even when ASLR is not enabled. - // In debug build we will randomly insert in either the front or back of - // the group. - // TODO(kfm,sbenza): revisit after we do unconditional mixing - if (!is_small(capacity) && ShouldInsertBackwards(hash, ctrl)) { - return {seq.offset(mask.HighestBitSet()), seq.index()}; - } -#endif - return {seq.offset(mask.LowestBitSet()), seq.index()}; - } - seq.next(); + size_t capacity) { + auto seq = probe(ctrl, hash, capacity); + while (true) { + Group g{ctrl + seq.offset()}; + auto mask = g.MatchEmptyOrDeleted(); + if (mask) { +#if !defined(NDEBUG) + // We want to add entropy even when ASLR is not enabled. + // In debug build we will randomly insert in either the front or back of + // the group. + // TODO(kfm,sbenza): revisit after we do unconditional mixing + if (!is_small(capacity) && ShouldInsertBackwards(hash, ctrl)) { + return {seq.offset(mask.HighestBitSet()), seq.index()}; + } +#endif + return {seq.offset(mask.LowestBitSet()), seq.index()}; + } + seq.next(); assert(seq.index() <= capacity && "full table!"); - } -} - + } +} + // Extern template for inline function keep possibility of inlining. // When compiler decided to not inline, no symbols will be added to the // corresponding translation unit. @@ -872,8 +872,8 @@ class raw_hash_set { explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(), const key_equal& eq = key_equal(), const allocator_type& alloc = allocator_type()) - : ctrl_(EmptyGroup()), - settings_(0, HashtablezInfoHandle(), hash, eq, alloc) { + : ctrl_(EmptyGroup()), + settings_(0, HashtablezInfoHandle(), hash, eq, alloc) { if (bucket_count) { capacity_ = NormalizeCapacity(bucket_count); initialize_slots(); @@ -982,11 +982,11 @@ class raw_hash_set { // than a full `insert`. for (const auto& v : that) { const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v); - auto target = find_first_non_full(ctrl_, hash, capacity_); + auto target = find_first_non_full(ctrl_, hash, capacity_); SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type)); emplace_at(target.offset, v); - infoz().RecordInsert(hash, target.probe_length); + infoz().RecordInsert(hash, target.probe_length); } size_ = that.size(); growth_left() -= that.size(); @@ -1003,24 +1003,24 @@ class raw_hash_set { // Hash, equality and allocator are copied instead of moved because // `that` must be left valid. If Hash is std::function<Key>, moving it // would create a nullptr functor that cannot be called. - settings_(absl::exchange(that.growth_left(), 0), - absl::exchange(that.infoz(), HashtablezInfoHandle()), - that.hash_ref(), that.eq_ref(), that.alloc_ref()) {} + settings_(absl::exchange(that.growth_left(), 0), + absl::exchange(that.infoz(), HashtablezInfoHandle()), + that.hash_ref(), that.eq_ref(), that.alloc_ref()) {} raw_hash_set(raw_hash_set&& that, const allocator_type& a) : ctrl_(EmptyGroup()), slots_(nullptr), size_(0), capacity_(0), - settings_(0, HashtablezInfoHandle(), that.hash_ref(), that.eq_ref(), - a) { + settings_(0, HashtablezInfoHandle(), that.hash_ref(), that.eq_ref(), + a) { if (a == that.alloc_ref()) { std::swap(ctrl_, that.ctrl_); std::swap(slots_, that.slots_); std::swap(size_, that.size_); std::swap(capacity_, that.capacity_); std::swap(growth_left(), that.growth_left()); - std::swap(infoz(), that.infoz()); + std::swap(infoz(), that.infoz()); } else { reserve(that.size()); // Note: this will copy elements of dense_set and unordered_set instead of @@ -1093,7 +1093,7 @@ class raw_hash_set { reset_growth_left(); } assert(empty()); - infoz().RecordStorageChanged(0, capacity_); + infoz().RecordStorageChanged(0, capacity_); } // This overload kicks in when the argument is an rvalue of insertable and @@ -1166,7 +1166,7 @@ class raw_hash_set { template <class InputIt> void insert(InputIt first, InputIt last) { - for (; first != last; ++first) emplace(*first); + for (; first != last; ++first) emplace(*first); } template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0> @@ -1193,9 +1193,9 @@ class raw_hash_set { } iterator insert(const_iterator, node_type&& node) { - auto res = insert(std::move(node)); - node = std::move(res.node); - return res.position; + auto res = insert(std::move(node)); + node = std::move(res.node); + return res.position; } // This overload kicks in if we can deduce the key from args. This enables us @@ -1385,7 +1385,7 @@ class raw_hash_set { swap(growth_left(), that.growth_left()); swap(hash_ref(), that.hash_ref()); swap(eq_ref(), that.eq_ref()); - swap(infoz(), that.infoz()); + swap(infoz(), that.infoz()); SwapAlloc(alloc_ref(), that.alloc_ref(), typename AllocTraits::propagate_on_container_swap{}); } @@ -1394,7 +1394,7 @@ class raw_hash_set { if (n == 0 && capacity_ == 0) return; if (n == 0 && size_ == 0) { destroy_slots(); - infoz().RecordStorageChanged(0, 0); + infoz().RecordStorageChanged(0, 0); infoz().RecordClearedReservation(); return; } @@ -1412,16 +1412,16 @@ class raw_hash_set { } } - void reserve(size_t n) { + void reserve(size_t n) { if (n > size() + growth_left()) { size_t m = GrowthToLowerboundCapacity(n); - resize(NormalizeCapacity(m)); + resize(NormalizeCapacity(m)); // This is after resize, to ensure that we have completed the allocation // and have potentially sampled the hashtable. infoz().RecordReservation(n); - } - } + } + } // Extension API: support for heterogeneous keys. // @@ -1447,7 +1447,7 @@ class raw_hash_set { (void)key; #if defined(__GNUC__) prefetch_heap_block(); - auto seq = probe(ctrl_, hash_ref()(key), capacity_); + auto seq = probe(ctrl_, hash_ref()(key), capacity_); __builtin_prefetch(static_cast<const void*>(ctrl_ + seq.offset())); __builtin_prefetch(static_cast<const void*>(slots_ + seq.offset())); #endif // __GNUC__ @@ -1462,7 +1462,7 @@ class raw_hash_set { // called heterogeneous key support. template <class K = key_type> iterator find(const key_arg<K>& key, size_t hash) { - auto seq = probe(ctrl_, hash, capacity_); + auto seq = probe(ctrl_, hash, capacity_); while (true) { Group g{ctrl_ + seq.offset()}; for (int i : g.Match(H2(hash))) { @@ -1626,7 +1626,7 @@ class raw_hash_set { SetCtrl(index, was_never_full ? ctrl_t::kEmpty : ctrl_t::kDeleted, capacity_, ctrl_, slots_, sizeof(slot_type)); growth_left() += was_never_full; - infoz().RecordErase(); + infoz().RecordErase(); } void initialize_slots() { @@ -1654,7 +1654,7 @@ class raw_hash_set { mem + SlotOffset(capacity_, alignof(slot_type))); ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type)); reset_growth_left(); - infoz().RecordStorageChanged(size_, capacity_); + infoz().RecordStorageChanged(size_, capacity_); } void destroy_slots() { @@ -1690,7 +1690,7 @@ class raw_hash_set { if (IsFull(old_ctrl[i])) { size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, PolicyTraits::element(old_slots + i)); - auto target = find_first_non_full(ctrl_, hash, capacity_); + auto target = find_first_non_full(ctrl_, hash, capacity_); size_t new_i = target.offset; total_probe_length += target.probe_length; SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type)); @@ -1704,12 +1704,12 @@ class raw_hash_set { &alloc_ref(), old_ctrl, AllocSize(old_capacity, sizeof(slot_type), alignof(slot_type))); } - infoz().RecordRehash(total_probe_length); + infoz().RecordRehash(total_probe_length); } void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE { assert(IsValidCapacity(capacity_)); - assert(!is_small(capacity_)); + assert(!is_small(capacity_)); // Algorithm: // - mark all DELETED slots as EMPTY // - mark all FULL slots as DELETED @@ -1770,7 +1770,7 @@ class raw_hash_set { } } reset_growth_left(); - infoz().RecordRehash(total_probe_length); + infoz().RecordRehash(total_probe_length); } void rehash_and_grow_if_necessary() { @@ -1829,7 +1829,7 @@ class raw_hash_set { bool has_element(const value_type& elem) const { size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem); - auto seq = probe(ctrl_, hash, capacity_); + auto seq = probe(ctrl_, hash, capacity_); while (true) { Group g{ctrl_ + seq.offset()}; for (int i : g.Match(H2(hash))) { @@ -1861,7 +1861,7 @@ class raw_hash_set { std::pair<size_t, bool> find_or_prepare_insert(const K& key) { prefetch_heap_block(); auto hash = hash_ref()(key); - auto seq = probe(ctrl_, hash, capacity_); + auto seq = probe(ctrl_, hash, capacity_); while (true) { Group g{ctrl_ + seq.offset()}; for (int i : g.Match(H2(hash))) { @@ -1878,17 +1878,17 @@ class raw_hash_set { } size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE { - auto target = find_first_non_full(ctrl_, hash, capacity_); + auto target = find_first_non_full(ctrl_, hash, capacity_); if (ABSL_PREDICT_FALSE(growth_left() == 0 && !IsDeleted(ctrl_[target.offset]))) { rehash_and_grow_if_necessary(); - target = find_first_non_full(ctrl_, hash, capacity_); + target = find_first_non_full(ctrl_, hash, capacity_); } ++size_; growth_left() -= IsEmpty(ctrl_[target.offset]); SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type)); - infoz().RecordInsert(hash, target.probe_length); + infoz().RecordInsert(hash, target.probe_length); return target.offset; } @@ -1931,15 +1931,15 @@ class raw_hash_set { #endif // __GNUC__ } - HashtablezInfoHandle& infoz() { return settings_.template get<1>(); } + HashtablezInfoHandle& infoz() { return settings_.template get<1>(); } - hasher& hash_ref() { return settings_.template get<2>(); } - const hasher& hash_ref() const { return settings_.template get<2>(); } - key_equal& eq_ref() { return settings_.template get<3>(); } - const key_equal& eq_ref() const { return settings_.template get<3>(); } - allocator_type& alloc_ref() { return settings_.template get<4>(); } + hasher& hash_ref() { return settings_.template get<2>(); } + const hasher& hash_ref() const { return settings_.template get<2>(); } + key_equal& eq_ref() { return settings_.template get<3>(); } + const key_equal& eq_ref() const { return settings_.template get<3>(); } + allocator_type& alloc_ref() { return settings_.template get<4>(); } const allocator_type& alloc_ref() const { - return settings_.template get<4>(); + return settings_.template get<4>(); } // TODO(alkis): Investigate removing some of these fields: @@ -1949,11 +1949,11 @@ class raw_hash_set { slot_type* slots_ = nullptr; // [capacity * slot_type] size_t size_ = 0; // number of full slots size_t capacity_ = 0; // total number of slots - absl::container_internal::CompressedTuple<size_t /* growth_left */, - HashtablezInfoHandle, hasher, + absl::container_internal::CompressedTuple<size_t /* growth_left */, + HashtablezInfoHandle, hasher, key_equal, allocator_type> - settings_{0, HashtablezInfoHandle{}, hasher{}, key_equal{}, - allocator_type{}}; + settings_{0, HashtablezInfoHandle{}, hasher{}, key_equal{}, + allocator_type{}}; }; // Erases all elements that satisfy the predicate `pred` from the container `c`. @@ -1978,7 +1978,7 @@ struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> { const typename Set::key_type& key) { size_t num_probes = 0; size_t hash = set.hash_ref()(key); - auto seq = probe(set.ctrl_, hash, set.capacity_); + auto seq = probe(set.ctrl_, hash, set.capacity_); while (true) { container_internal::Group g{set.ctrl_ + seq.offset()}; for (int i : g.Match(container_internal::H2(hash))) { diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set/ya.make b/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set/ya.make index 28951c5549..3fe7e7b5c0 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set/ya.make +++ b/contrib/restricted/abseil-cpp/absl/container/internal/raw_hash_set/ya.make @@ -1,29 +1,29 @@ -# Generated by devtools/yamaker. - -LIBRARY() - +# Generated by devtools/yamaker. + +LIBRARY() + WITHOUT_LICENSE_TEXTS() -OWNER(g:cpp-contrib) - -LICENSE(Apache-2.0) - -PEERDIR( - contrib/restricted/abseil-cpp/absl/base +OWNER(g:cpp-contrib) + +LICENSE(Apache-2.0) + +PEERDIR( + contrib/restricted/abseil-cpp/absl/base contrib/restricted/abseil-cpp/absl/base/internal/low_level_alloc - contrib/restricted/abseil-cpp/absl/base/internal/raw_logging - contrib/restricted/abseil-cpp/absl/base/internal/spinlock_wait - contrib/restricted/abseil-cpp/absl/base/internal/throw_delegate - contrib/restricted/abseil-cpp/absl/base/log_severity + contrib/restricted/abseil-cpp/absl/base/internal/raw_logging + contrib/restricted/abseil-cpp/absl/base/internal/spinlock_wait + contrib/restricted/abseil-cpp/absl/base/internal/throw_delegate + contrib/restricted/abseil-cpp/absl/base/log_severity contrib/restricted/abseil-cpp/absl/container/internal/absl_hashtablez_sampler contrib/restricted/abseil-cpp/absl/debugging contrib/restricted/abseil-cpp/absl/debugging/stacktrace contrib/restricted/abseil-cpp/absl/debugging/symbolize contrib/restricted/abseil-cpp/absl/demangle contrib/restricted/abseil-cpp/absl/hash - contrib/restricted/abseil-cpp/absl/numeric + contrib/restricted/abseil-cpp/absl/numeric contrib/restricted/abseil-cpp/absl/profiling/internal/exponential_biased - contrib/restricted/abseil-cpp/absl/strings + contrib/restricted/abseil-cpp/absl/strings contrib/restricted/abseil-cpp/absl/strings/internal/absl_strings_internal contrib/restricted/abseil-cpp/absl/synchronization contrib/restricted/abseil-cpp/absl/synchronization/internal @@ -31,25 +31,25 @@ PEERDIR( contrib/restricted/abseil-cpp/absl/time/civil_time contrib/restricted/abseil-cpp/absl/time/time_zone contrib/restricted/abseil-cpp/absl/types - contrib/restricted/abseil-cpp/absl/types/bad_optional_access -) - -ADDINCL( - GLOBAL contrib/restricted/abseil-cpp -) - -NO_COMPILER_WARNINGS() - -NO_UTIL() - -CFLAGS( - -DNOMINMAX -) - + contrib/restricted/abseil-cpp/absl/types/bad_optional_access +) + +ADDINCL( + GLOBAL contrib/restricted/abseil-cpp +) + +NO_COMPILER_WARNINGS() + +NO_UTIL() + +CFLAGS( + -DNOMINMAX +) + SRCDIR(contrib/restricted/abseil-cpp/absl/container/internal) - -SRCS( + +SRCS( raw_hash_set.cc -) - -END() +) + +END() diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/unordered_map_constructor_test.h b/contrib/restricted/abseil-cpp/absl/container/internal/unordered_map_constructor_test.h index f1f7369ff3..c1d20f3c52 100644 --- a/contrib/restricted/abseil-cpp/absl/container/internal/unordered_map_constructor_test.h +++ b/contrib/restricted/abseil-cpp/absl/container/internal/unordered_map_constructor_test.h @@ -16,7 +16,7 @@ #define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_ #include <algorithm> -#include <unordered_map> +#include <unordered_map> #include <vector> #include "gmock/gmock.h" |