diff options
author | maxim-yurchuk <maxim-yurchuk@yandex-team.com> | 2024-10-09 12:29:46 +0300 |
---|---|---|
committer | maxim-yurchuk <maxim-yurchuk@yandex-team.com> | 2024-10-09 13:14:22 +0300 |
commit | 9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80 (patch) | |
tree | a8fb3181d5947c0d78cf402aa56e686130179049 /contrib/restricted/abseil-cpp/absl/container/internal/btree.h | |
parent | a44b779cd359f06c3ebbef4ec98c6b38609d9d85 (diff) | |
download | ydb-9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80.tar.gz |
publishFullContrib: true for ydb
<HIDDEN_URL>
commit_hash:c82a80ac4594723cebf2c7387dec9c60217f603e
Diffstat (limited to 'contrib/restricted/abseil-cpp/absl/container/internal/btree.h')
-rw-r--r-- | contrib/restricted/abseil-cpp/absl/container/internal/btree.h | 3046 |
1 files changed, 3046 insertions, 0 deletions
diff --git a/contrib/restricted/abseil-cpp/absl/container/internal/btree.h b/contrib/restricted/abseil-cpp/absl/container/internal/btree.h new file mode 100644 index 0000000000..689e71a5ce --- /dev/null +++ b/contrib/restricted/abseil-cpp/absl/container/internal/btree.h @@ -0,0 +1,3046 @@ +// Copyright 2018 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// A btree implementation of the STL set and map interfaces. A btree is smaller +// and generally also faster than STL set/map (refer to the benchmarks below). +// The red-black tree implementation of STL set/map has an overhead of 3 +// pointers (left, right and parent) plus the node color information for each +// stored value. So a set<int32_t> consumes 40 bytes for each value stored in +// 64-bit mode. This btree implementation stores multiple values on fixed +// size nodes (usually 256 bytes) and doesn't store child pointers for leaf +// nodes. The result is that a btree_set<int32_t> may use much less memory per +// stored value. For the random insertion benchmark in btree_bench.cc, a +// btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value. +// +// The packing of multiple values on to each node of a btree has another effect +// besides better space utilization: better cache locality due to fewer cache +// lines being accessed. Better cache locality translates into faster +// operations. +// +// CAVEATS +// +// Insertions and deletions on a btree can cause splitting, merging or +// rebalancing of btree nodes. And even without these operations, insertions +// and deletions on a btree will move values around within a node. In both +// cases, the result is that insertions and deletions can invalidate iterators +// pointing to values other than the one being inserted/deleted. Therefore, this +// container does not provide pointer stability. This is notably different from +// STL set/map which takes care to not invalidate iterators on insert/erase +// except, of course, for iterators pointing to the value being erased. A +// partial workaround when erasing is available: erase() returns an iterator +// pointing to the item just after the one that was erased (or end() if none +// exists). + +#ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_ +#define ABSL_CONTAINER_INTERNAL_BTREE_H_ + +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstring> +#include <functional> +#include <iterator> +#include <limits> +#include <string> +#include <type_traits> +#include <utility> + +#include "absl/base/config.h" +#include "absl/base/internal/raw_logging.h" +#include "absl/base/macros.h" +#include "absl/container/internal/common.h" +#include "absl/container/internal/common_policy_traits.h" +#include "absl/container/internal/compressed_tuple.h" +#include "absl/container/internal/container_memory.h" +#include "absl/container/internal/layout.h" +#include "absl/memory/memory.h" +#include "absl/meta/type_traits.h" +#include "absl/strings/cord.h" +#include "absl/strings/string_view.h" +#include "absl/types/compare.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace container_internal { + +#ifdef ABSL_BTREE_ENABLE_GENERATIONS +#error ABSL_BTREE_ENABLE_GENERATIONS cannot be directly set +#elif (defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ + defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \ + defined(ABSL_HAVE_MEMORY_SANITIZER)) && \ + !defined(NDEBUG_SANITIZER) // If defined, performance is important. +// When compiled in sanitizer mode, we add generation integers to the nodes and +// iterators. When iterators are used, we validate that the container has not +// been mutated since the iterator was constructed. +#define ABSL_BTREE_ENABLE_GENERATIONS +#endif + +#ifdef ABSL_BTREE_ENABLE_GENERATIONS +constexpr bool BtreeGenerationsEnabled() { return true; } +#else +constexpr bool BtreeGenerationsEnabled() { return false; } +#endif + +template <typename Compare, typename T, typename U> +using compare_result_t = absl::result_of_t<const Compare(const T &, const U &)>; + +// A helper class that indicates if the Compare parameter is a key-compare-to +// comparator. +template <typename Compare, typename T> +using btree_is_key_compare_to = + std::is_convertible<compare_result_t<Compare, T, T>, absl::weak_ordering>; + +struct StringBtreeDefaultLess { + using is_transparent = void; + + StringBtreeDefaultLess() = default; + + // Compatibility constructor. + StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT + StringBtreeDefaultLess(std::less<absl::string_view>) {} // NOLINT + + // Allow converting to std::less for use in key_comp()/value_comp(). + explicit operator std::less<std::string>() const { return {}; } + explicit operator std::less<absl::string_view>() const { return {}; } + explicit operator std::less<absl::Cord>() const { return {}; } + + absl::weak_ordering operator()(absl::string_view lhs, + absl::string_view rhs) const { + return compare_internal::compare_result_as_ordering(lhs.compare(rhs)); + } + StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT + absl::weak_ordering operator()(const absl::Cord &lhs, + const absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); + } + absl::weak_ordering operator()(const absl::Cord &lhs, + absl::string_view rhs) const { + return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); + } + absl::weak_ordering operator()(absl::string_view lhs, + const absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs)); + } +}; + +struct StringBtreeDefaultGreater { + using is_transparent = void; + + StringBtreeDefaultGreater() = default; + + StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT + StringBtreeDefaultGreater(std::greater<absl::string_view>) {} // NOLINT + + // Allow converting to std::greater for use in key_comp()/value_comp(). + explicit operator std::greater<std::string>() const { return {}; } + explicit operator std::greater<absl::string_view>() const { return {}; } + explicit operator std::greater<absl::Cord>() const { return {}; } + + absl::weak_ordering operator()(absl::string_view lhs, + absl::string_view rhs) const { + return compare_internal::compare_result_as_ordering(rhs.compare(lhs)); + } + StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT + absl::weak_ordering operator()(const absl::Cord &lhs, + const absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); + } + absl::weak_ordering operator()(const absl::Cord &lhs, + absl::string_view rhs) const { + return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs)); + } + absl::weak_ordering operator()(absl::string_view lhs, + const absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); + } +}; + +// See below comments for checked_compare. +template <typename Compare, bool is_class = std::is_class<Compare>::value> +struct checked_compare_base : Compare { + using Compare::Compare; + explicit checked_compare_base(Compare c) : Compare(std::move(c)) {} + const Compare &comp() const { return *this; } +}; +template <typename Compare> +struct checked_compare_base<Compare, false> { + explicit checked_compare_base(Compare c) : compare(std::move(c)) {} + const Compare &comp() const { return compare; } + Compare compare; +}; + +// A mechanism for opting out of checked_compare for use only in btree_test.cc. +struct BtreeTestOnlyCheckedCompareOptOutBase {}; + +// A helper class to adapt the specified comparator for two use cases: +// (1) When using common Abseil string types with common comparison functors, +// convert a boolean comparison into a three-way comparison that returns an +// `absl::weak_ordering`. This helper class is specialized for +// less<std::string>, greater<std::string>, less<string_view>, +// greater<string_view>, less<absl::Cord>, and greater<absl::Cord>. +// (2) Adapt the comparator to diagnose cases of non-strict-weak-ordering (see +// https://en.cppreference.com/w/cpp/named_req/Compare) in debug mode. Whenever +// a comparison is made, we will make assertions to verify that the comparator +// is valid. +template <typename Compare, typename Key> +struct key_compare_adapter { + // Inherit from checked_compare_base to support function pointers and also + // keep empty-base-optimization (EBO) support for classes. + // Note: we can't use CompressedTuple here because that would interfere + // with the EBO for `btree::rightmost_`. `btree::rightmost_` is itself a + // CompressedTuple and nested `CompressedTuple`s don't support EBO. + // TODO(b/214288561): use CompressedTuple instead once it supports EBO for + // nested `CompressedTuple`s. + struct checked_compare : checked_compare_base<Compare> { + private: + using Base = typename checked_compare::checked_compare_base; + using Base::comp; + + // If possible, returns whether `t` is equivalent to itself. We can only do + // this for `Key`s because we can't be sure that it's safe to call + // `comp()(k, k)` otherwise. Even if SFINAE allows it, there could be a + // compilation failure inside the implementation of the comparison operator. + bool is_self_equivalent(const Key &k) const { + // Note: this works for both boolean and three-way comparators. + return comp()(k, k) == 0; + } + // If we can't compare `t` with itself, returns true unconditionally. + template <typename T> + bool is_self_equivalent(const T &) const { + return true; + } + + public: + using Base::Base; + checked_compare(Compare comp) : Base(std::move(comp)) {} // NOLINT + + // Allow converting to Compare for use in key_comp()/value_comp(). + explicit operator Compare() const { return comp(); } + + template <typename T, typename U, + absl::enable_if_t< + std::is_same<bool, compare_result_t<Compare, T, U>>::value, + int> = 0> + bool operator()(const T &lhs, const U &rhs) const { + // NOTE: if any of these assertions fail, then the comparator does not + // establish a strict-weak-ordering (see + // https://en.cppreference.com/w/cpp/named_req/Compare). + assert(is_self_equivalent(lhs)); + assert(is_self_equivalent(rhs)); + const bool lhs_comp_rhs = comp()(lhs, rhs); + assert(!lhs_comp_rhs || !comp()(rhs, lhs)); + return lhs_comp_rhs; + } + + template < + typename T, typename U, + absl::enable_if_t<std::is_convertible<compare_result_t<Compare, T, U>, + absl::weak_ordering>::value, + int> = 0> + absl::weak_ordering operator()(const T &lhs, const U &rhs) const { + // NOTE: if any of these assertions fail, then the comparator does not + // establish a strict-weak-ordering (see + // https://en.cppreference.com/w/cpp/named_req/Compare). + assert(is_self_equivalent(lhs)); + assert(is_self_equivalent(rhs)); + const absl::weak_ordering lhs_comp_rhs = comp()(lhs, rhs); +#ifndef NDEBUG + const absl::weak_ordering rhs_comp_lhs = comp()(rhs, lhs); + if (lhs_comp_rhs > 0) { + assert(rhs_comp_lhs < 0 && "lhs_comp_rhs > 0 -> rhs_comp_lhs < 0"); + } else if (lhs_comp_rhs == 0) { + assert(rhs_comp_lhs == 0 && "lhs_comp_rhs == 0 -> rhs_comp_lhs == 0"); + } else { + assert(rhs_comp_lhs > 0 && "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0"); + } +#endif + return lhs_comp_rhs; + } + }; + using type = absl::conditional_t< + std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value, + Compare, checked_compare>; +}; + +template <> +struct key_compare_adapter<std::less<std::string>, std::string> { + using type = StringBtreeDefaultLess; +}; + +template <> +struct key_compare_adapter<std::greater<std::string>, std::string> { + using type = StringBtreeDefaultGreater; +}; + +template <> +struct key_compare_adapter<std::less<absl::string_view>, absl::string_view> { + using type = StringBtreeDefaultLess; +}; + +template <> +struct key_compare_adapter<std::greater<absl::string_view>, absl::string_view> { + using type = StringBtreeDefaultGreater; +}; + +template <> +struct key_compare_adapter<std::less<absl::Cord>, absl::Cord> { + using type = StringBtreeDefaultLess; +}; + +template <> +struct key_compare_adapter<std::greater<absl::Cord>, absl::Cord> { + using type = StringBtreeDefaultGreater; +}; + +// Detects an 'absl_btree_prefer_linear_node_search' member. This is +// a protocol used as an opt-in or opt-out of linear search. +// +// For example, this would be useful for key types that wrap an integer +// and define their own cheap operator<(). For example: +// +// class K { +// public: +// using absl_btree_prefer_linear_node_search = std::true_type; +// ... +// private: +// friend bool operator<(K a, K b) { return a.k_ < b.k_; } +// int k_; +// }; +// +// btree_map<K, V> m; // Uses linear search +// +// If T has the preference tag, then it has a preference. +// Btree will use the tag's truth value. +template <typename T, typename = void> +struct has_linear_node_search_preference : std::false_type {}; +template <typename T, typename = void> +struct prefers_linear_node_search : std::false_type {}; +template <typename T> +struct has_linear_node_search_preference< + T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> + : std::true_type {}; +template <typename T> +struct prefers_linear_node_search< + T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>> + : T::absl_btree_prefer_linear_node_search {}; + +template <typename Compare, typename Key> +constexpr bool compare_has_valid_result_type() { + using compare_result_type = compare_result_t<Compare, Key, Key>; + return std::is_same<compare_result_type, bool>::value || + std::is_convertible<compare_result_type, absl::weak_ordering>::value; +} + +template <typename original_key_compare, typename value_type> +class map_value_compare { + template <typename Params> + friend class btree; + + // Note: this `protected` is part of the API of std::map::value_compare. See + // https://en.cppreference.com/w/cpp/container/map/value_compare. + protected: + explicit map_value_compare(original_key_compare c) : comp(std::move(c)) {} + + original_key_compare comp; // NOLINT + + public: + auto operator()(const value_type &lhs, const value_type &rhs) const + -> decltype(comp(lhs.first, rhs.first)) { + return comp(lhs.first, rhs.first); + } +}; + +template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, + bool IsMulti, bool IsMap, typename SlotPolicy> +struct common_params : common_policy_traits<SlotPolicy> { + using original_key_compare = Compare; + + // If Compare is a common comparator for a string-like type, then we adapt it + // to use heterogeneous lookup and to be a key-compare-to comparator. + // We also adapt the comparator to diagnose invalid comparators in debug mode. + // We disable this when `Compare` is invalid in a way that will cause + // adaptation to fail (having invalid return type) so that we can give a + // better compilation failure in static_assert_validation. If we don't do + // this, then there will be cascading compilation failures that are confusing + // for users. + using key_compare = + absl::conditional_t<!compare_has_valid_result_type<Compare, Key>(), + Compare, + typename key_compare_adapter<Compare, Key>::type>; + + static constexpr bool kIsKeyCompareStringAdapted = + std::is_same<key_compare, StringBtreeDefaultLess>::value || + std::is_same<key_compare, StringBtreeDefaultGreater>::value; + static constexpr bool kIsKeyCompareTransparent = + IsTransparent<original_key_compare>::value || kIsKeyCompareStringAdapted; + + // A type which indicates if we have a key-compare-to functor or a plain old + // key-compare functor. + using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>; + + using allocator_type = Alloc; + using key_type = Key; + using size_type = size_t; + using difference_type = ptrdiff_t; + + using slot_policy = SlotPolicy; + using slot_type = typename slot_policy::slot_type; + using value_type = typename slot_policy::value_type; + using init_type = typename slot_policy::mutable_value_type; + using pointer = value_type *; + using const_pointer = const value_type *; + using reference = value_type &; + using const_reference = const value_type &; + + using value_compare = + absl::conditional_t<IsMap, + map_value_compare<original_key_compare, value_type>, + original_key_compare>; + using is_map_container = std::integral_constant<bool, IsMap>; + + // For the given lookup key type, returns whether we can have multiple + // equivalent keys in the btree. If this is a multi-container, then we can. + // Otherwise, we can have multiple equivalent keys only if all of the + // following conditions are met: + // - The comparator is transparent. + // - The lookup key type is not the same as key_type. + // - The comparator is not a StringBtreeDefault{Less,Greater} comparator + // that we know has the same equivalence classes for all lookup types. + template <typename LookupKey> + constexpr static bool can_have_multiple_equivalent_keys() { + return IsMulti || (IsTransparent<key_compare>::value && + !std::is_same<LookupKey, Key>::value && + !kIsKeyCompareStringAdapted); + } + + enum { + kTargetNodeSize = TargetNodeSize, + + // Upper bound for the available space for slots. This is largest for leaf + // nodes, which have overhead of at least a pointer + 4 bytes (for storing + // 3 field_types and an enum). + kNodeSlotSpace = TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4), + }; + + // This is an integral type large enough to hold as many slots as will fit a + // node of TargetNodeSize bytes. + using node_count_type = + absl::conditional_t<(kNodeSlotSpace / sizeof(slot_type) > + (std::numeric_limits<uint8_t>::max)()), + uint16_t, uint8_t>; // NOLINT +}; + +// An adapter class that converts a lower-bound compare into an upper-bound +// compare. Note: there is no need to make a version of this adapter specialized +// for key-compare-to functors because the upper-bound (the first value greater +// than the input) is never an exact match. +template <typename Compare> +struct upper_bound_adapter { + explicit upper_bound_adapter(const Compare &c) : comp(c) {} + template <typename K1, typename K2> + bool operator()(const K1 &a, const K2 &b) const { + // Returns true when a is not greater than b. + return !compare_internal::compare_result_as_less_than(comp(b, a)); + } + + private: + Compare comp; +}; + +enum class MatchKind : uint8_t { kEq, kNe }; + +template <typename V, bool IsCompareTo> +struct SearchResult { + V value; + MatchKind match; + + static constexpr bool HasMatch() { return true; } + bool IsEq() const { return match == MatchKind::kEq; } +}; + +// When we don't use CompareTo, `match` is not present. +// This ensures that callers can't use it accidentally when it provides no +// useful information. +template <typename V> +struct SearchResult<V, false> { + SearchResult() = default; + explicit SearchResult(V v) : value(v) {} + SearchResult(V v, MatchKind /*match*/) : value(v) {} + + V value; + + static constexpr bool HasMatch() { return false; } + static constexpr bool IsEq() { return false; } +}; + +// A node in the btree holding. The same node type is used for both internal +// and leaf nodes in the btree, though the nodes are allocated in such a way +// that the children array is only valid in internal nodes. +template <typename Params> +class btree_node { + using is_key_compare_to = typename Params::is_key_compare_to; + using field_type = typename Params::node_count_type; + using allocator_type = typename Params::allocator_type; + using slot_type = typename Params::slot_type; + using original_key_compare = typename Params::original_key_compare; + + public: + using params_type = Params; + using key_type = typename Params::key_type; + using value_type = typename Params::value_type; + using pointer = typename Params::pointer; + using const_pointer = typename Params::const_pointer; + using reference = typename Params::reference; + using const_reference = typename Params::const_reference; + using key_compare = typename Params::key_compare; + using size_type = typename Params::size_type; + using difference_type = typename Params::difference_type; + + // Btree decides whether to use linear node search as follows: + // - If the comparator expresses a preference, use that. + // - If the key expresses a preference, use that. + // - If the key is arithmetic and the comparator is std::less or + // std::greater, choose linear. + // - Otherwise, choose binary. + // TODO(ezb): Might make sense to add condition(s) based on node-size. + using use_linear_search = std::integral_constant< + bool, has_linear_node_search_preference<original_key_compare>::value + ? prefers_linear_node_search<original_key_compare>::value + : has_linear_node_search_preference<key_type>::value + ? prefers_linear_node_search<key_type>::value + : std::is_arithmetic<key_type>::value && + (std::is_same<std::less<key_type>, + original_key_compare>::value || + std::is_same<std::greater<key_type>, + original_key_compare>::value)>; + + // This class is organized by absl::container_internal::Layout as if it had + // the following structure: + // // A pointer to the node's parent. + // btree_node *parent; + // + // // When ABSL_BTREE_ENABLE_GENERATIONS is defined, we also have a + // // generation integer in order to check that when iterators are + // // used, they haven't been invalidated already. Only the generation on + // // the root is used, but we have one on each node because whether a node + // // is root or not can change. + // uint32_t generation; + // + // // The position of the node in the node's parent. + // field_type position; + // // The index of the first populated value in `values`. + // // TODO(ezb): right now, `start` is always 0. Update insertion/merge + // // logic to allow for floating storage within nodes. + // field_type start; + // // The index after the last populated value in `values`. Currently, this + // // is the same as the count of values. + // field_type finish; + // // The maximum number of values the node can hold. This is an integer in + // // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf + // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal + // // nodes (even though there are still kNodeSlots values in the node). + // // TODO(ezb): make max_count use only 4 bits and record log2(capacity) + // // to free extra bits for is_root, etc. + // field_type max_count; + // + // // The array of values. The capacity is `max_count` for leaf nodes and + // // kNodeSlots for internal nodes. Only the values in + // // [start, finish) have been initialized and are valid. + // slot_type values[max_count]; + // + // // The array of child pointers. The keys in children[i] are all less + // // than key(i). The keys in children[i + 1] are all greater than key(i). + // // There are 0 children for leaf nodes and kNodeSlots + 1 children for + // // internal nodes. + // btree_node *children[kNodeSlots + 1]; + // + // This class is only constructed by EmptyNodeType. Normally, pointers to the + // layout above are allocated, cast to btree_node*, and de-allocated within + // the btree implementation. + ~btree_node() = default; + btree_node(btree_node const &) = delete; + btree_node &operator=(btree_node const &) = delete; + + protected: + btree_node() = default; + + private: + using layout_type = + absl::container_internal::Layout<btree_node *, uint32_t, field_type, + slot_type, btree_node *>; + using leaf_layout_type = typename layout_type::template WithStaticSizes< + /*parent*/ 1, + /*generation*/ BtreeGenerationsEnabled() ? 1 : 0, + /*position, start, finish, max_count*/ 4>; + constexpr static size_type SizeWithNSlots(size_type n) { + return leaf_layout_type(/*slots*/ n, /*children*/ 0).AllocSize(); + } + // A lower bound for the overhead of fields other than slots in a leaf node. + constexpr static size_type MinimumOverhead() { + return SizeWithNSlots(1) - sizeof(slot_type); + } + + // Compute how many values we can fit onto a leaf node taking into account + // padding. + constexpr static size_type NodeTargetSlots(const size_type begin, + const size_type end) { + return begin == end ? begin + : SizeWithNSlots((begin + end) / 2 + 1) > + params_type::kTargetNodeSize + ? NodeTargetSlots(begin, (begin + end) / 2) + : NodeTargetSlots((begin + end) / 2 + 1, end); + } + + constexpr static size_type kTargetNodeSize = params_type::kTargetNodeSize; + constexpr static size_type kNodeTargetSlots = + NodeTargetSlots(0, kTargetNodeSize); + + // We need a minimum of 3 slots per internal node in order to perform + // splitting (1 value for the two nodes involved in the split and 1 value + // propagated to the parent as the delimiter for the split). For performance + // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy of + // 1/3 (for a node, not a b-tree). + constexpr static size_type kMinNodeSlots = 4; + + constexpr static size_type kNodeSlots = + kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots; + + using internal_layout_type = typename layout_type::template WithStaticSizes< + /*parent*/ 1, + /*generation*/ BtreeGenerationsEnabled() ? 1 : 0, + /*position, start, finish, max_count*/ 4, /*slots*/ kNodeSlots, + /*children*/ kNodeSlots + 1>; + + // The node is internal (i.e. is not a leaf node) if and only if `max_count` + // has this value. + constexpr static field_type kInternalNodeMaxCount = 0; + + // Leaves can have less than kNodeSlots values. + constexpr static leaf_layout_type LeafLayout( + const size_type slot_count = kNodeSlots) { + return leaf_layout_type(slot_count, 0); + } + constexpr static auto InternalLayout() { return internal_layout_type(); } + constexpr static size_type LeafSize(const size_type slot_count = kNodeSlots) { + return LeafLayout(slot_count).AllocSize(); + } + constexpr static size_type InternalSize() { + return InternalLayout().AllocSize(); + } + + constexpr static size_type Alignment() { + static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(), + "Alignment of all nodes must be equal."); + return InternalLayout().Alignment(); + } + + // N is the index of the type in the Layout definition. + // ElementType<N> is the Nth type in the Layout definition. + template <size_type N> + inline typename layout_type::template ElementType<N> *GetField() { + // We assert that we don't read from values that aren't there. + assert(N < 4 || is_internal()); + return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this)); + } + template <size_type N> + inline const typename layout_type::template ElementType<N> *GetField() const { + assert(N < 4 || is_internal()); + return InternalLayout().template Pointer<N>( + reinterpret_cast<const char *>(this)); + } + void set_parent(btree_node *p) { *GetField<0>() = p; } + field_type &mutable_finish() { return GetField<2>()[2]; } + slot_type *slot(size_type i) { return &GetField<3>()[i]; } + slot_type *start_slot() { return slot(start()); } + slot_type *finish_slot() { return slot(finish()); } + const slot_type *slot(size_type i) const { return &GetField<3>()[i]; } + void set_position(field_type v) { GetField<2>()[0] = v; } + void set_start(field_type v) { GetField<2>()[1] = v; } + void set_finish(field_type v) { GetField<2>()[2] = v; } + // This method is only called by the node init methods. + void set_max_count(field_type v) { GetField<2>()[3] = v; } + + public: + // Whether this is a leaf node or not. This value doesn't change after the + // node is created. + bool is_leaf() const { return GetField<2>()[3] != kInternalNodeMaxCount; } + // Whether this is an internal node or not. This value doesn't change after + // the node is created. + bool is_internal() const { return !is_leaf(); } + + // Getter for the position of this node in its parent. + field_type position() const { return GetField<2>()[0]; } + + // Getter for the offset of the first value in the `values` array. + field_type start() const { + // TODO(ezb): when floating storage is implemented, return GetField<2>()[1]; + assert(GetField<2>()[1] == 0); + return 0; + } + + // Getter for the offset after the last value in the `values` array. + field_type finish() const { return GetField<2>()[2]; } + + // Getters for the number of values stored in this node. + field_type count() const { + assert(finish() >= start()); + return finish() - start(); + } + field_type max_count() const { + // Internal nodes have max_count==kInternalNodeMaxCount. + // Leaf nodes have max_count in [1, kNodeSlots]. + const field_type max_count = GetField<2>()[3]; + return max_count == field_type{kInternalNodeMaxCount} + ? field_type{kNodeSlots} + : max_count; + } + + // Getter for the parent of this node. + btree_node *parent() const { return *GetField<0>(); } + // Getter for whether the node is the root of the tree. The parent of the + // root of the tree is the leftmost node in the tree which is guaranteed to + // be a leaf. + bool is_root() const { return parent()->is_leaf(); } + void make_root() { + assert(parent()->is_root()); + set_generation(parent()->generation()); + set_parent(parent()->parent()); + } + + // Gets the root node's generation integer, which is the one used by the tree. + uint32_t *get_root_generation() const { + assert(BtreeGenerationsEnabled()); + const btree_node *curr = this; + for (; !curr->is_root(); curr = curr->parent()) continue; + return const_cast<uint32_t *>(&curr->GetField<1>()[0]); + } + + // Returns the generation for iterator validation. + uint32_t generation() const { + return BtreeGenerationsEnabled() ? *get_root_generation() : 0; + } + // Updates generation. Should only be called on a root node or during node + // initialization. + void set_generation(uint32_t generation) { + if (BtreeGenerationsEnabled()) GetField<1>()[0] = generation; + } + // Updates the generation. We do this whenever the node is mutated. + void next_generation() { + if (BtreeGenerationsEnabled()) ++*get_root_generation(); + } + + // Getters for the key/value at position i in the node. + const key_type &key(size_type i) const { return params_type::key(slot(i)); } + reference value(size_type i) { return params_type::element(slot(i)); } + const_reference value(size_type i) const { + return params_type::element(slot(i)); + } + + // Getters/setter for the child at position i in the node. + btree_node *child(field_type i) const { return GetField<4>()[i]; } + btree_node *start_child() const { return child(start()); } + btree_node *&mutable_child(field_type i) { return GetField<4>()[i]; } + void clear_child(field_type i) { + absl::container_internal::SanitizerPoisonObject(&mutable_child(i)); + } + void set_child_noupdate_position(field_type i, btree_node *c) { + absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i)); + mutable_child(i) = c; + } + void set_child(field_type i, btree_node *c) { + set_child_noupdate_position(i, c); + c->set_position(i); + } + void init_child(field_type i, btree_node *c) { + set_child(i, c); + c->set_parent(this); + } + + // Returns the position of the first value whose key is not less than k. + template <typename K> + SearchResult<size_type, is_key_compare_to::value> lower_bound( + const K &k, const key_compare &comp) const { + return use_linear_search::value ? linear_search(k, comp) + : binary_search(k, comp); + } + // Returns the position of the first value whose key is greater than k. + template <typename K> + size_type upper_bound(const K &k, const key_compare &comp) const { + auto upper_compare = upper_bound_adapter<key_compare>(comp); + return use_linear_search::value ? linear_search(k, upper_compare).value + : binary_search(k, upper_compare).value; + } + + template <typename K, typename Compare> + SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value> + linear_search(const K &k, const Compare &comp) const { + return linear_search_impl(k, start(), finish(), comp, + btree_is_key_compare_to<Compare, key_type>()); + } + + template <typename K, typename Compare> + SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value> + binary_search(const K &k, const Compare &comp) const { + return binary_search_impl(k, start(), finish(), comp, + btree_is_key_compare_to<Compare, key_type>()); + } + + // Returns the position of the first value whose key is not less than k using + // linear search performed using plain compare. + template <typename K, typename Compare> + SearchResult<size_type, false> linear_search_impl( + const K &k, size_type s, const size_type e, const Compare &comp, + std::false_type /* IsCompareTo */) const { + while (s < e) { + if (!comp(key(s), k)) { + break; + } + ++s; + } + return SearchResult<size_type, false>{s}; + } + + // Returns the position of the first value whose key is not less than k using + // linear search performed using compare-to. + template <typename K, typename Compare> + SearchResult<size_type, true> linear_search_impl( + const K &k, size_type s, const size_type e, const Compare &comp, + std::true_type /* IsCompareTo */) const { + while (s < e) { + const absl::weak_ordering c = comp(key(s), k); + if (c == 0) { + return {s, MatchKind::kEq}; + } else if (c > 0) { + break; + } + ++s; + } + return {s, MatchKind::kNe}; + } + + // Returns the position of the first value whose key is not less than k using + // binary search performed using plain compare. + template <typename K, typename Compare> + SearchResult<size_type, false> binary_search_impl( + const K &k, size_type s, size_type e, const Compare &comp, + std::false_type /* IsCompareTo */) const { + while (s != e) { + const size_type mid = (s + e) >> 1; + if (comp(key(mid), k)) { + s = mid + 1; + } else { + e = mid; + } + } + return SearchResult<size_type, false>{s}; + } + + // Returns the position of the first value whose key is not less than k using + // binary search performed using compare-to. + template <typename K, typename CompareTo> + SearchResult<size_type, true> binary_search_impl( + const K &k, size_type s, size_type e, const CompareTo &comp, + std::true_type /* IsCompareTo */) const { + if (params_type::template can_have_multiple_equivalent_keys<K>()) { + MatchKind exact_match = MatchKind::kNe; + while (s != e) { + const size_type mid = (s + e) >> 1; + const absl::weak_ordering c = comp(key(mid), k); + if (c < 0) { + s = mid + 1; + } else { + e = mid; + if (c == 0) { + // Need to return the first value whose key is not less than k, + // which requires continuing the binary search if there could be + // multiple equivalent keys. + exact_match = MatchKind::kEq; + } + } + } + return {s, exact_match}; + } else { // Can't have multiple equivalent keys. + while (s != e) { + const size_type mid = (s + e) >> 1; + const absl::weak_ordering c = comp(key(mid), k); + if (c < 0) { + s = mid + 1; + } else if (c > 0) { + e = mid; + } else { + return {mid, MatchKind::kEq}; + } + } + return {s, MatchKind::kNe}; + } + } + + // Returns whether key i is ordered correctly with respect to the other keys + // in the node. The motivation here is to detect comparators that violate + // transitivity. Note: we only do comparisons of keys on this node rather than + // the whole tree so that this is constant time. + template <typename Compare> + bool is_ordered_correctly(field_type i, const Compare &comp) const { + if (std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, + Compare>::value || + params_type::kIsKeyCompareStringAdapted) { + return true; + } + + const auto compare = [&](field_type a, field_type b) { + const absl::weak_ordering cmp = + compare_internal::do_three_way_comparison(comp, key(a), key(b)); + return cmp < 0 ? -1 : cmp > 0 ? 1 : 0; + }; + int cmp = -1; + constexpr bool kCanHaveEquivKeys = + params_type::template can_have_multiple_equivalent_keys<key_type>(); + for (field_type j = start(); j < finish(); ++j) { + if (j == i) { + if (cmp > 0) return false; + continue; + } + int new_cmp = compare(j, i); + if (new_cmp < cmp || (!kCanHaveEquivKeys && new_cmp == 0)) return false; + cmp = new_cmp; + } + return true; + } + + // Emplaces a value at position i, shifting all existing values and + // children at positions >= i to the right by 1. + template <typename... Args> + void emplace_value(field_type i, allocator_type *alloc, Args &&...args); + + // Removes the values at positions [i, i + to_erase), shifting all existing + // values and children after that range to the left by to_erase. Clears all + // children between [i, i + to_erase). + void remove_values(field_type i, field_type to_erase, allocator_type *alloc); + + // Rebalances a node with its right sibling. + void rebalance_right_to_left(field_type to_move, btree_node *right, + allocator_type *alloc); + void rebalance_left_to_right(field_type to_move, btree_node *right, + allocator_type *alloc); + + // Splits a node, moving a portion of the node's values to its right sibling. + void split(int insert_position, btree_node *dest, allocator_type *alloc); + + // Merges a node with its right sibling, moving all of the values and the + // delimiting key in the parent node onto itself, and deleting the src node. + void merge(btree_node *src, allocator_type *alloc); + + // Node allocation/deletion routines. + void init_leaf(field_type position, field_type max_count, + btree_node *parent) { + set_generation(0); + set_parent(parent); + set_position(position); + set_start(0); + set_finish(0); + set_max_count(max_count); + absl::container_internal::SanitizerPoisonMemoryRegion( + start_slot(), max_count * sizeof(slot_type)); + } + void init_internal(field_type position, btree_node *parent) { + init_leaf(position, kNodeSlots, parent); + // Set `max_count` to a sentinel value to indicate that this node is + // internal. + set_max_count(kInternalNodeMaxCount); + absl::container_internal::SanitizerPoisonMemoryRegion( + &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *)); + } + + static void deallocate(const size_type size, btree_node *node, + allocator_type *alloc) { + absl::container_internal::SanitizerUnpoisonMemoryRegion(node, size); + absl::container_internal::Deallocate<Alignment()>(alloc, node, size); + } + + // Deletes a node and all of its children. + static void clear_and_delete(btree_node *node, allocator_type *alloc); + + private: + template <typename... Args> + void value_init(const field_type i, allocator_type *alloc, Args &&...args) { + next_generation(); + absl::container_internal::SanitizerUnpoisonObject(slot(i)); + params_type::construct(alloc, slot(i), std::forward<Args>(args)...); + } + void value_destroy(const field_type i, allocator_type *alloc) { + next_generation(); + params_type::destroy(alloc, slot(i)); + absl::container_internal::SanitizerPoisonObject(slot(i)); + } + void value_destroy_n(const field_type i, const field_type n, + allocator_type *alloc) { + next_generation(); + for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) { + params_type::destroy(alloc, s); + absl::container_internal::SanitizerPoisonObject(s); + } + } + + static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) { + absl::container_internal::SanitizerUnpoisonObject(dest); + params_type::transfer(alloc, dest, src); + absl::container_internal::SanitizerPoisonObject(src); + } + + // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`. + void transfer(const size_type dest_i, const size_type src_i, + btree_node *src_node, allocator_type *alloc) { + next_generation(); + transfer(slot(dest_i), src_node->slot(src_i), alloc); + } + + // Transfers `n` values starting at value `src_i` in `src_node` into the + // values starting at value `dest_i` in `this`. + void transfer_n(const size_type n, const size_type dest_i, + const size_type src_i, btree_node *src_node, + allocator_type *alloc) { + next_generation(); + for (slot_type *src = src_node->slot(src_i), *end = src + n, + *dest = slot(dest_i); + src != end; ++src, ++dest) { + transfer(dest, src, alloc); + } + } + + // Same as above, except that we start at the end and work our way to the + // beginning. + void transfer_n_backward(const size_type n, const size_type dest_i, + const size_type src_i, btree_node *src_node, + allocator_type *alloc) { + next_generation(); + for (slot_type *src = src_node->slot(src_i + n), *end = src - n, + *dest = slot(dest_i + n); + src != end; --src, --dest) { + // If we modified the loop index calculations above to avoid the -1s here, + // it would result in UB in the computation of `end` (and possibly `src` + // as well, if n == 0), since slot() is effectively an array index and it + // is UB to compute the address of any out-of-bounds array element except + // for one-past-the-end. + transfer(dest - 1, src - 1, alloc); + } + } + + template <typename P> + friend class btree; + template <typename N, typename R, typename P> + friend class btree_iterator; + friend class BtreeNodePeer; + friend struct btree_access; +}; + +template <typename Node> +bool AreNodesFromSameContainer(const Node *node_a, const Node *node_b) { + // If either node is null, then give up on checking whether they're from the + // same container. (If exactly one is null, then we'll trigger the + // default-constructed assert in Equals.) + if (node_a == nullptr || node_b == nullptr) return true; + while (!node_a->is_root()) node_a = node_a->parent(); + while (!node_b->is_root()) node_b = node_b->parent(); + return node_a == node_b; +} + +class btree_iterator_generation_info_enabled { + public: + explicit btree_iterator_generation_info_enabled(uint32_t g) + : generation_(g) {} + + // Updates the generation. For use internally right before we return an + // iterator to the user. + template <typename Node> + void update_generation(const Node *node) { + if (node != nullptr) generation_ = node->generation(); + } + uint32_t generation() const { return generation_; } + + template <typename Node> + void assert_valid_generation(const Node *node) const { + if (node != nullptr && node->generation() != generation_) { + ABSL_INTERNAL_LOG( + FATAL, + "Attempting to use an invalidated iterator. The corresponding b-tree " + "container has been mutated since this iterator was constructed."); + } + } + + private: + // Used to check that the iterator hasn't been invalidated. + uint32_t generation_; +}; + +class btree_iterator_generation_info_disabled { + public: + explicit btree_iterator_generation_info_disabled(uint32_t) {} + static void update_generation(const void *) {} + static uint32_t generation() { return 0; } + static void assert_valid_generation(const void *) {} +}; + +#ifdef ABSL_BTREE_ENABLE_GENERATIONS +using btree_iterator_generation_info = btree_iterator_generation_info_enabled; +#else +using btree_iterator_generation_info = btree_iterator_generation_info_disabled; +#endif + +template <typename Node, typename Reference, typename Pointer> +class btree_iterator : private btree_iterator_generation_info { + using field_type = typename Node::field_type; + using key_type = typename Node::key_type; + using size_type = typename Node::size_type; + using params_type = typename Node::params_type; + using is_map_container = typename params_type::is_map_container; + + using node_type = Node; + using normal_node = typename std::remove_const<Node>::type; + using const_node = const Node; + using normal_pointer = typename params_type::pointer; + using normal_reference = typename params_type::reference; + using const_pointer = typename params_type::const_pointer; + using const_reference = typename params_type::const_reference; + using slot_type = typename params_type::slot_type; + + // In sets, all iterators are const. + using iterator = absl::conditional_t< + is_map_container::value, + btree_iterator<normal_node, normal_reference, normal_pointer>, + btree_iterator<normal_node, const_reference, const_pointer>>; + using const_iterator = + btree_iterator<const_node, const_reference, const_pointer>; + + public: + // These aliases are public for std::iterator_traits. + using difference_type = typename Node::difference_type; + using value_type = typename params_type::value_type; + using pointer = Pointer; + using reference = Reference; + using iterator_category = std::bidirectional_iterator_tag; + + btree_iterator() : btree_iterator(nullptr, -1) {} + explicit btree_iterator(Node *n) : btree_iterator(n, n->start()) {} + btree_iterator(Node *n, int p) + : btree_iterator_generation_info(n != nullptr ? n->generation() + : ~uint32_t{}), + node_(n), + position_(p) {} + + // NOTE: this SFINAE allows for implicit conversions from iterator to + // const_iterator, but it specifically avoids hiding the copy constructor so + // that the trivial one will be used when possible. + template <typename N, typename R, typename P, + absl::enable_if_t< + std::is_same<btree_iterator<N, R, P>, iterator>::value && + std::is_same<btree_iterator, const_iterator>::value, + int> = 0> + btree_iterator(const btree_iterator<N, R, P> other) // NOLINT + : btree_iterator_generation_info(other), + node_(other.node_), + position_(other.position_) {} + + bool operator==(const iterator &other) const { + return Equals(other); + } + bool operator==(const const_iterator &other) const { + return Equals(other); + } + bool operator!=(const iterator &other) const { + return !Equals(other); + } + bool operator!=(const const_iterator &other) const { + return !Equals(other); + } + + // Returns n such that n calls to ++other yields *this. + // Precondition: n exists. + difference_type operator-(const_iterator other) const { + if (node_ == other.node_) { + if (node_->is_leaf()) return position_ - other.position_; + if (position_ == other.position_) return 0; + } + return distance_slow(other); + } + + // Accessors for the key/value the iterator is pointing at. + reference operator*() const { + ABSL_HARDENING_ASSERT(node_ != nullptr); + assert_valid_generation(node_); + ABSL_HARDENING_ASSERT(position_ >= node_->start()); + if (position_ >= node_->finish()) { + ABSL_HARDENING_ASSERT(!IsEndIterator() && "Dereferencing end() iterator"); + ABSL_HARDENING_ASSERT(position_ < node_->finish()); + } + return node_->value(static_cast<field_type>(position_)); + } + pointer operator->() const { return &operator*(); } + + btree_iterator &operator++() { + increment(); + return *this; + } + btree_iterator &operator--() { + decrement(); + return *this; + } + btree_iterator operator++(int) { + btree_iterator tmp = *this; + ++*this; + return tmp; + } + btree_iterator operator--(int) { + btree_iterator tmp = *this; + --*this; + return tmp; + } + + private: + friend iterator; + friend const_iterator; + template <typename Params> + friend class btree; + template <typename Tree> + friend class btree_container; + template <typename Tree> + friend class btree_set_container; + template <typename Tree> + friend class btree_map_container; + template <typename Tree> + friend class btree_multiset_container; + template <typename TreeType, typename CheckerType> + friend class base_checker; + friend struct btree_access; + + // This SFINAE allows explicit conversions from const_iterator to + // iterator, but also avoids hiding the copy constructor. + // NOTE: the const_cast is safe because this constructor is only called by + // non-const methods and the container owns the nodes. + template <typename N, typename R, typename P, + absl::enable_if_t< + std::is_same<btree_iterator<N, R, P>, const_iterator>::value && + std::is_same<btree_iterator, iterator>::value, + int> = 0> + explicit btree_iterator(const btree_iterator<N, R, P> other) + : btree_iterator_generation_info(other.generation()), + node_(const_cast<node_type *>(other.node_)), + position_(other.position_) {} + + bool Equals(const const_iterator other) const { + ABSL_HARDENING_ASSERT(((node_ == nullptr && other.node_ == nullptr) || + (node_ != nullptr && other.node_ != nullptr)) && + "Comparing default-constructed iterator with " + "non-default-constructed iterator."); + // Note: we use assert instead of ABSL_HARDENING_ASSERT here because this + // changes the complexity of Equals from O(1) to O(log(N) + log(M)) where + // N/M are sizes of the containers containing node_/other.node_. + assert(AreNodesFromSameContainer(node_, other.node_) && + "Comparing iterators from different containers."); + assert_valid_generation(node_); + other.assert_valid_generation(other.node_); + return node_ == other.node_ && position_ == other.position_; + } + + bool IsEndIterator() const { + if (position_ != node_->finish()) return false; + node_type *node = node_; + while (!node->is_root()) { + if (node->position() != node->parent()->finish()) return false; + node = node->parent(); + } + return true; + } + + // Returns n such that n calls to ++other yields *this. + // Precondition: n exists && (this->node_ != other.node_ || + // !this->node_->is_leaf() || this->position_ != other.position_). + difference_type distance_slow(const_iterator other) const; + + // Increment/decrement the iterator. + void increment() { + assert_valid_generation(node_); + if (node_->is_leaf() && ++position_ < node_->finish()) { + return; + } + increment_slow(); + } + void increment_slow(); + + void decrement() { + assert_valid_generation(node_); + if (node_->is_leaf() && --position_ >= node_->start()) { + return; + } + decrement_slow(); + } + void decrement_slow(); + + const key_type &key() const { + return node_->key(static_cast<size_type>(position_)); + } + decltype(std::declval<Node *>()->slot(0)) slot() { + return node_->slot(static_cast<size_type>(position_)); + } + + void update_generation() { + btree_iterator_generation_info::update_generation(node_); + } + + // The node in the tree the iterator is pointing at. + Node *node_; + // The position within the node of the tree the iterator is pointing at. + // NOTE: this is an int rather than a field_type because iterators can point + // to invalid positions (such as -1) in certain circumstances. + int position_; +}; + +template <typename Params> +class btree { + using node_type = btree_node<Params>; + using is_key_compare_to = typename Params::is_key_compare_to; + using field_type = typename node_type::field_type; + + // We use a static empty node for the root/leftmost/rightmost of empty btrees + // in order to avoid branching in begin()/end(). + struct EmptyNodeType : node_type { + using field_type = typename node_type::field_type; + node_type *parent; +#ifdef ABSL_BTREE_ENABLE_GENERATIONS + uint32_t generation = 0; +#endif + field_type position = 0; + field_type start = 0; + field_type finish = 0; + // max_count must be != kInternalNodeMaxCount (so that this node is regarded + // as a leaf node). max_count() is never called when the tree is empty. + field_type max_count = node_type::kInternalNodeMaxCount + 1; + + constexpr EmptyNodeType() : parent(this) {} + }; + + static node_type *EmptyNode() { + alignas(node_type::Alignment()) static constexpr EmptyNodeType empty_node; + return const_cast<EmptyNodeType *>(&empty_node); + } + + enum : uint32_t { + kNodeSlots = node_type::kNodeSlots, + kMinNodeValues = kNodeSlots / 2, + }; + + struct node_stats { + using size_type = typename Params::size_type; + + node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {} + + node_stats &operator+=(const node_stats &other) { + leaf_nodes += other.leaf_nodes; + internal_nodes += other.internal_nodes; + return *this; + } + + size_type leaf_nodes; + size_type internal_nodes; + }; + + public: + using key_type = typename Params::key_type; + using value_type = typename Params::value_type; + using size_type = typename Params::size_type; + using difference_type = typename Params::difference_type; + using key_compare = typename Params::key_compare; + using original_key_compare = typename Params::original_key_compare; + using value_compare = typename Params::value_compare; + using allocator_type = typename Params::allocator_type; + using reference = typename Params::reference; + using const_reference = typename Params::const_reference; + using pointer = typename Params::pointer; + using const_pointer = typename Params::const_pointer; + using iterator = + typename btree_iterator<node_type, reference, pointer>::iterator; + using const_iterator = typename iterator::const_iterator; + using reverse_iterator = std::reverse_iterator<iterator>; + using const_reverse_iterator = std::reverse_iterator<const_iterator>; + using node_handle_type = node_handle<Params, Params, allocator_type>; + + // Internal types made public for use by btree_container types. + using params_type = Params; + using slot_type = typename Params::slot_type; + + private: + // Copies or moves (depending on the template parameter) the values in + // other into this btree in their order in other. This btree must be empty + // before this method is called. This method is used in copy construction, + // copy assignment, and move assignment. + template <typename Btree> + void copy_or_move_values_in_order(Btree &other); + + // Validates that various assumptions/requirements are true at compile time. + constexpr static bool static_assert_validation(); + + public: + btree(const key_compare &comp, const allocator_type &alloc) + : root_(EmptyNode()), rightmost_(comp, alloc, EmptyNode()), size_(0) {} + + btree(const btree &other) : btree(other, other.allocator()) {} + btree(const btree &other, const allocator_type &alloc) + : btree(other.key_comp(), alloc) { + copy_or_move_values_in_order(other); + } + btree(btree &&other) noexcept + : root_(std::exchange(other.root_, EmptyNode())), + rightmost_(std::move(other.rightmost_)), + size_(std::exchange(other.size_, 0u)) { + other.mutable_rightmost() = EmptyNode(); + } + btree(btree &&other, const allocator_type &alloc) + : btree(other.key_comp(), alloc) { + if (alloc == other.allocator()) { + swap(other); + } else { + // Move values from `other` one at a time when allocators are different. + copy_or_move_values_in_order(other); + } + } + + ~btree() { + // Put static_asserts in destructor to avoid triggering them before the type + // is complete. + static_assert(static_assert_validation(), "This call must be elided."); + clear(); + } + + // Assign the contents of other to *this. + btree &operator=(const btree &other); + btree &operator=(btree &&other) noexcept; + + iterator begin() { return iterator(leftmost()); } + const_iterator begin() const { return const_iterator(leftmost()); } + iterator end() { return iterator(rightmost(), rightmost()->finish()); } + const_iterator end() const { + return const_iterator(rightmost(), rightmost()->finish()); + } + reverse_iterator rbegin() { return reverse_iterator(end()); } + const_reverse_iterator rbegin() const { + return const_reverse_iterator(end()); + } + reverse_iterator rend() { return reverse_iterator(begin()); } + const_reverse_iterator rend() const { + return const_reverse_iterator(begin()); + } + + // Finds the first element whose key is not less than `key`. + template <typename K> + iterator lower_bound(const K &key) { + return internal_end(internal_lower_bound(key).value); + } + template <typename K> + const_iterator lower_bound(const K &key) const { + return internal_end(internal_lower_bound(key).value); + } + + // Finds the first element whose key is not less than `key` and also returns + // whether that element is equal to `key`. + template <typename K> + std::pair<iterator, bool> lower_bound_equal(const K &key) const; + + // Finds the first element whose key is greater than `key`. + template <typename K> + iterator upper_bound(const K &key) { + return internal_end(internal_upper_bound(key)); + } + template <typename K> + const_iterator upper_bound(const K &key) const { + return internal_end(internal_upper_bound(key)); + } + + // Finds the range of values which compare equal to key. The first member of + // the returned pair is equal to lower_bound(key). The second member of the + // pair is equal to upper_bound(key). + template <typename K> + std::pair<iterator, iterator> equal_range(const K &key); + template <typename K> + std::pair<const_iterator, const_iterator> equal_range(const K &key) const { + return const_cast<btree *>(this)->equal_range(key); + } + + // Inserts a value into the btree only if it does not already exist. The + // boolean return value indicates whether insertion succeeded or failed. + // Requirement: if `key` already exists in the btree, does not consume `args`. + // Requirement: `key` is never referenced after consuming `args`. + template <typename K, typename... Args> + std::pair<iterator, bool> insert_unique(const K &key, Args &&...args); + + // Inserts with hint. Checks to see if the value should be placed immediately + // before `position` in the tree. If so, then the insertion will take + // amortized constant time. If not, the insertion will take amortized + // logarithmic time as if a call to insert_unique() were made. + // Requirement: if `key` already exists in the btree, does not consume `args`. + // Requirement: `key` is never referenced after consuming `args`. + template <typename K, typename... Args> + std::pair<iterator, bool> insert_hint_unique(iterator position, const K &key, + Args &&...args); + + // Insert a range of values into the btree. + // Note: the first overload avoids constructing a value_type if the key + // already exists in the btree. + template <typename InputIterator, + typename = decltype(std::declval<const key_compare &>()( + params_type::key(*std::declval<InputIterator>()), + std::declval<const key_type &>()))> + void insert_iterator_unique(InputIterator b, InputIterator e, int); + // We need the second overload for cases in which we need to construct a + // value_type in order to compare it with the keys already in the btree. + template <typename InputIterator> + void insert_iterator_unique(InputIterator b, InputIterator e, char); + + // Inserts a value into the btree. + template <typename ValueType> + iterator insert_multi(const key_type &key, ValueType &&v); + + // Inserts a value into the btree. + template <typename ValueType> + iterator insert_multi(ValueType &&v) { + return insert_multi(params_type::key(v), std::forward<ValueType>(v)); + } + + // Insert with hint. Check to see if the value should be placed immediately + // before position in the tree. If it does, then the insertion will take + // amortized constant time. If not, the insertion will take amortized + // logarithmic time as if a call to insert_multi(v) were made. + template <typename ValueType> + iterator insert_hint_multi(iterator position, ValueType &&v); + + // Insert a range of values into the btree. + template <typename InputIterator> + void insert_iterator_multi(InputIterator b, + InputIterator e); + + // Erase the specified iterator from the btree. The iterator must be valid + // (i.e. not equal to end()). Return an iterator pointing to the node after + // the one that was erased (or end() if none exists). + // Requirement: does not read the value at `*iter`. + iterator erase(iterator iter); + + // Erases range. Returns the number of keys erased and an iterator pointing + // to the element after the last erased element. + std::pair<size_type, iterator> erase_range(iterator begin, iterator end); + + // Finds an element with key equivalent to `key` or returns `end()` if `key` + // is not present. + template <typename K> + iterator find(const K &key) { + return internal_end(internal_find(key)); + } + template <typename K> + const_iterator find(const K &key) const { + return internal_end(internal_find(key)); + } + + // Clear the btree, deleting all of the values it contains. + void clear(); + + // Swaps the contents of `this` and `other`. + void swap(btree &other); + + const key_compare &key_comp() const noexcept { + return rightmost_.template get<0>(); + } + template <typename K1, typename K2> + bool compare_keys(const K1 &a, const K2 &b) const { + return compare_internal::compare_result_as_less_than(key_comp()(a, b)); + } + + value_compare value_comp() const { + return value_compare(original_key_compare(key_comp())); + } + + // Verifies the structure of the btree. + void verify() const; + + // Size routines. + size_type size() const { return size_; } + size_type max_size() const { return (std::numeric_limits<size_type>::max)(); } + bool empty() const { return size_ == 0; } + + // The height of the btree. An empty tree will have height 0. + size_type height() const { + size_type h = 0; + if (!empty()) { + // Count the length of the chain from the leftmost node up to the + // root. We actually count from the root back around to the level below + // the root, but the calculation is the same because of the circularity + // of that traversal. + const node_type *n = root(); + do { + ++h; + n = n->parent(); + } while (n != root()); + } + return h; + } + + // The number of internal, leaf and total nodes used by the btree. + size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; } + size_type internal_nodes() const { + return internal_stats(root()).internal_nodes; + } + size_type nodes() const { + node_stats stats = internal_stats(root()); + return stats.leaf_nodes + stats.internal_nodes; + } + + // The total number of bytes used by the btree. + // TODO(b/169338300): update to support node_btree_*. + size_type bytes_used() const { + node_stats stats = internal_stats(root()); + if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) { + return sizeof(*this) + node_type::LeafSize(root()->max_count()); + } else { + return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() + + stats.internal_nodes * node_type::InternalSize(); + } + } + + // The average number of bytes used per value stored in the btree assuming + // random insertion order. + static double average_bytes_per_value() { + // The expected number of values per node with random insertion order is the + // average of the maximum and minimum numbers of values per node. + const double expected_values_per_node = (kNodeSlots + kMinNodeValues) / 2.0; + return node_type::LeafSize() / expected_values_per_node; + } + + // The fullness of the btree. Computed as the number of elements in the btree + // divided by the maximum number of elements a tree with the current number + // of nodes could hold. A value of 1 indicates perfect space + // utilization. Smaller values indicate space wastage. + // Returns 0 for empty trees. + double fullness() const { + if (empty()) return 0.0; + return static_cast<double>(size()) / (nodes() * kNodeSlots); + } + // The overhead of the btree structure in bytes per node. Computed as the + // total number of bytes used by the btree minus the number of bytes used for + // storing elements divided by the number of elements. + // Returns 0 for empty trees. + double overhead() const { + if (empty()) return 0.0; + return (bytes_used() - size() * sizeof(value_type)) / + static_cast<double>(size()); + } + + // The allocator used by the btree. + allocator_type get_allocator() const { return allocator(); } + + private: + friend struct btree_access; + + // Internal accessor routines. + node_type *root() { return root_; } + const node_type *root() const { return root_; } + node_type *&mutable_root() noexcept { return root_; } + node_type *rightmost() { return rightmost_.template get<2>(); } + const node_type *rightmost() const { return rightmost_.template get<2>(); } + node_type *&mutable_rightmost() noexcept { + return rightmost_.template get<2>(); + } + key_compare *mutable_key_comp() noexcept { + return &rightmost_.template get<0>(); + } + + // The leftmost node is stored as the parent of the root node. + node_type *leftmost() { return root()->parent(); } + const node_type *leftmost() const { return root()->parent(); } + + // Allocator routines. + allocator_type *mutable_allocator() noexcept { + return &rightmost_.template get<1>(); + } + const allocator_type &allocator() const noexcept { + return rightmost_.template get<1>(); + } + + // Allocates a correctly aligned node of at least size bytes using the + // allocator. + node_type *allocate(size_type size) { + return reinterpret_cast<node_type *>( + absl::container_internal::Allocate<node_type::Alignment()>( + mutable_allocator(), size)); + } + + // Node creation/deletion routines. + node_type *new_internal_node(field_type position, node_type *parent) { + node_type *n = allocate(node_type::InternalSize()); + n->init_internal(position, parent); + return n; + } + node_type *new_leaf_node(field_type position, node_type *parent) { + node_type *n = allocate(node_type::LeafSize()); + n->init_leaf(position, kNodeSlots, parent); + return n; + } + node_type *new_leaf_root_node(field_type max_count) { + node_type *n = allocate(node_type::LeafSize(max_count)); + n->init_leaf(/*position=*/0, max_count, /*parent=*/n); + return n; + } + + // Deletion helper routines. + iterator rebalance_after_delete(iterator iter); + + // Rebalances or splits the node iter points to. + void rebalance_or_split(iterator *iter); + + // Merges the values of left, right and the delimiting key on their parent + // onto left, removing the delimiting key and deleting right. + void merge_nodes(node_type *left, node_type *right); + + // Tries to merge node with its left or right sibling, and failing that, + // rebalance with its left or right sibling. Returns true if a merge + // occurred, at which point it is no longer valid to access node. Returns + // false if no merging took place. + bool try_merge_or_rebalance(iterator *iter); + + // Tries to shrink the height of the tree by 1. + void try_shrink(); + + iterator internal_end(iterator iter) { + return iter.node_ != nullptr ? iter : end(); + } + const_iterator internal_end(const_iterator iter) const { + return iter.node_ != nullptr ? iter : end(); + } + + // Emplaces a value into the btree immediately before iter. Requires that + // key(v) <= iter.key() and (--iter).key() <= key(v). + template <typename... Args> + iterator internal_emplace(iterator iter, Args &&...args); + + // Returns an iterator pointing to the first value >= the value "iter" is + // pointing at. Note that "iter" might be pointing to an invalid location such + // as iter.position_ == iter.node_->finish(). This routine simply moves iter + // up in the tree to a valid location. Requires: iter.node_ is non-null. + template <typename IterType> + static IterType internal_last(IterType iter); + + // Returns an iterator pointing to the leaf position at which key would + // reside in the tree, unless there is an exact match - in which case, the + // result may not be on a leaf. When there's a three-way comparator, we can + // return whether there was an exact match. This allows the caller to avoid a + // subsequent comparison to determine if an exact match was made, which is + // important for keys with expensive comparison, such as strings. + template <typename K> + SearchResult<iterator, is_key_compare_to::value> internal_locate( + const K &key) const; + + // Internal routine which implements lower_bound(). + template <typename K> + SearchResult<iterator, is_key_compare_to::value> internal_lower_bound( + const K &key) const; + + // Internal routine which implements upper_bound(). + template <typename K> + iterator internal_upper_bound(const K &key) const; + + // Internal routine which implements find(). + template <typename K> + iterator internal_find(const K &key) const; + + // Verifies the tree structure of node. + size_type internal_verify(const node_type *node, const key_type *lo, + const key_type *hi) const; + + node_stats internal_stats(const node_type *node) const { + // The root can be a static empty node. + if (node == nullptr || (node == root() && empty())) { + return node_stats(0, 0); + } + if (node->is_leaf()) { + return node_stats(1, 0); + } + node_stats res(0, 1); + for (int i = node->start(); i <= node->finish(); ++i) { + res += internal_stats(node->child(i)); + } + return res; + } + + node_type *root_; + + // A pointer to the rightmost node. Note that the leftmost node is stored as + // the root's parent. We use compressed tuple in order to save space because + // key_compare and allocator_type are usually empty. + absl::container_internal::CompressedTuple<key_compare, allocator_type, + node_type *> + rightmost_; + + // Number of values. + size_type size_; +}; + +//// +// btree_node methods +template <typename P> +template <typename... Args> +inline void btree_node<P>::emplace_value(const field_type i, + allocator_type *alloc, + Args &&...args) { + assert(i >= start()); + assert(i <= finish()); + // Shift old values to create space for new value and then construct it in + // place. + if (i < finish()) { + transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this, + alloc); + } + value_init(static_cast<field_type>(i), alloc, std::forward<Args>(args)...); + set_finish(finish() + 1); + + if (is_internal() && finish() > i + 1) { + for (field_type j = finish(); j > i + 1; --j) { + set_child(j, child(j - 1)); + } + clear_child(i + 1); + } +} + +template <typename P> +inline void btree_node<P>::remove_values(const field_type i, + const field_type to_erase, + allocator_type *alloc) { + // Transfer values after the removed range into their new places. + value_destroy_n(i, to_erase, alloc); + const field_type orig_finish = finish(); + const field_type src_i = i + to_erase; + transfer_n(orig_finish - src_i, i, src_i, this, alloc); + + if (is_internal()) { + // Delete all children between begin and end. + for (field_type j = 0; j < to_erase; ++j) { + clear_and_delete(child(i + j + 1), alloc); + } + // Rotate children after end into new positions. + for (field_type j = i + to_erase + 1; j <= orig_finish; ++j) { + set_child(j - to_erase, child(j)); + clear_child(j); + } + } + set_finish(orig_finish - to_erase); +} + +template <typename P> +void btree_node<P>::rebalance_right_to_left(field_type to_move, + btree_node *right, + allocator_type *alloc) { + assert(parent() == right->parent()); + assert(position() + 1 == right->position()); + assert(right->count() >= count()); + assert(to_move >= 1); + assert(to_move <= right->count()); + + // 1) Move the delimiting value in the parent to the left node. + transfer(finish(), position(), parent(), alloc); + + // 2) Move the (to_move - 1) values from the right node to the left node. + transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc); + + // 3) Move the new delimiting value to the parent from the right node. + parent()->transfer(position(), right->start() + to_move - 1, right, alloc); + + // 4) Shift the values in the right node to their correct positions. + right->transfer_n(right->count() - to_move, right->start(), + right->start() + to_move, right, alloc); + + if (is_internal()) { + // Move the child pointers from the right to the left node. + for (field_type i = 0; i < to_move; ++i) { + init_child(finish() + i + 1, right->child(i)); + } + for (field_type i = right->start(); i <= right->finish() - to_move; ++i) { + assert(i + to_move <= right->max_count()); + right->init_child(i, right->child(i + to_move)); + right->clear_child(i + to_move); + } + } + + // Fixup `finish` on the left and right nodes. + set_finish(finish() + to_move); + right->set_finish(right->finish() - to_move); +} + +template <typename P> +void btree_node<P>::rebalance_left_to_right(field_type to_move, + btree_node *right, + allocator_type *alloc) { + assert(parent() == right->parent()); + assert(position() + 1 == right->position()); + assert(count() >= right->count()); + assert(to_move >= 1); + assert(to_move <= count()); + + // Values in the right node are shifted to the right to make room for the + // new to_move values. Then, the delimiting value in the parent and the + // other (to_move - 1) values in the left node are moved into the right node. + // Lastly, a new delimiting value is moved from the left node into the + // parent, and the remaining empty left node entries are destroyed. + + // 1) Shift existing values in the right node to their correct positions. + right->transfer_n_backward(right->count(), right->start() + to_move, + right->start(), right, alloc); + + // 2) Move the delimiting value in the parent to the right node. + right->transfer(right->start() + to_move - 1, position(), parent(), alloc); + + // 3) Move the (to_move - 1) values from the left node to the right node. + right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this, + alloc); + + // 4) Move the new delimiting value to the parent from the left node. + parent()->transfer(position(), finish() - to_move, this, alloc); + + if (is_internal()) { + // Move the child pointers from the left to the right node. + for (field_type i = right->finish() + 1; i > right->start(); --i) { + right->init_child(i - 1 + to_move, right->child(i - 1)); + right->clear_child(i - 1); + } + for (field_type i = 1; i <= to_move; ++i) { + right->init_child(i - 1, child(finish() - to_move + i)); + clear_child(finish() - to_move + i); + } + } + + // Fixup the counts on the left and right nodes. + set_finish(finish() - to_move); + right->set_finish(right->finish() + to_move); +} + +template <typename P> +void btree_node<P>::split(const int insert_position, btree_node *dest, + allocator_type *alloc) { + assert(dest->count() == 0); + assert(max_count() == kNodeSlots); + assert(position() + 1 == dest->position()); + assert(parent() == dest->parent()); + + // We bias the split based on the position being inserted. If we're + // inserting at the beginning of the left node then bias the split to put + // more values on the right node. If we're inserting at the end of the + // right node then bias the split to put more values on the left node. + if (insert_position == start()) { + dest->set_finish(dest->start() + finish() - 1); + } else if (insert_position == kNodeSlots) { + dest->set_finish(dest->start()); + } else { + dest->set_finish(dest->start() + count() / 2); + } + set_finish(finish() - dest->count()); + assert(count() >= 1); + + // Move values from the left sibling to the right sibling. + dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc); + + // The split key is the largest value in the left sibling. + --mutable_finish(); + parent()->emplace_value(position(), alloc, finish_slot()); + value_destroy(finish(), alloc); + parent()->set_child_noupdate_position(position() + 1, dest); + + if (is_internal()) { + for (field_type i = dest->start(), j = finish() + 1; i <= dest->finish(); + ++i, ++j) { + assert(child(j) != nullptr); + dest->init_child(i, child(j)); + clear_child(j); + } + } +} + +template <typename P> +void btree_node<P>::merge(btree_node *src, allocator_type *alloc) { + assert(parent() == src->parent()); + assert(position() + 1 == src->position()); + + // Move the delimiting value to the left node. + value_init(finish(), alloc, parent()->slot(position())); + + // Move the values from the right to the left node. + transfer_n(src->count(), finish() + 1, src->start(), src, alloc); + + if (is_internal()) { + // Move the child pointers from the right to the left node. + for (field_type i = src->start(), j = finish() + 1; i <= src->finish(); + ++i, ++j) { + init_child(j, src->child(i)); + src->clear_child(i); + } + } + + // Fixup `finish` on the src and dest nodes. + set_finish(start() + 1 + count() + src->count()); + src->set_finish(src->start()); + + // Remove the value on the parent node and delete the src node. + parent()->remove_values(position(), /*to_erase=*/1, alloc); +} + +template <typename P> +void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) { + if (node->is_leaf()) { + node->value_destroy_n(node->start(), node->count(), alloc); + deallocate(LeafSize(node->max_count()), node, alloc); + return; + } + if (node->count() == 0) { + deallocate(InternalSize(), node, alloc); + return; + } + + // The parent of the root of the subtree we are deleting. + btree_node *delete_root_parent = node->parent(); + + // Navigate to the leftmost leaf under node, and then delete upwards. + while (node->is_internal()) node = node->start_child(); +#ifdef ABSL_BTREE_ENABLE_GENERATIONS + // When generations are enabled, we delete the leftmost leaf last in case it's + // the parent of the root and we need to check whether it's a leaf before we + // can update the root's generation. + // TODO(ezb): if we change btree_node::is_root to check a bool inside the node + // instead of checking whether the parent is a leaf, we can remove this logic. + btree_node *leftmost_leaf = node; +#endif + // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`, + // which isn't guaranteed to be a valid `field_type`. + size_type pos = node->position(); + btree_node *parent = node->parent(); + for (;;) { + // In each iteration of the next loop, we delete one leaf node and go right. + assert(pos <= parent->finish()); + do { + node = parent->child(static_cast<field_type>(pos)); + if (node->is_internal()) { + // Navigate to the leftmost leaf under node. + while (node->is_internal()) node = node->start_child(); + pos = node->position(); + parent = node->parent(); + } + node->value_destroy_n(node->start(), node->count(), alloc); +#ifdef ABSL_BTREE_ENABLE_GENERATIONS + if (leftmost_leaf != node) +#endif + deallocate(LeafSize(node->max_count()), node, alloc); + ++pos; + } while (pos <= parent->finish()); + + // Once we've deleted all children of parent, delete parent and go up/right. + assert(pos > parent->finish()); + do { + node = parent; + pos = node->position(); + parent = node->parent(); + node->value_destroy_n(node->start(), node->count(), alloc); + deallocate(InternalSize(), node, alloc); + if (parent == delete_root_parent) { +#ifdef ABSL_BTREE_ENABLE_GENERATIONS + deallocate(LeafSize(leftmost_leaf->max_count()), leftmost_leaf, alloc); +#endif + return; + } + ++pos; + } while (pos > parent->finish()); + } +} + +//// +// btree_iterator methods + +// Note: the implementation here is based on btree_node::clear_and_delete. +template <typename N, typename R, typename P> +auto btree_iterator<N, R, P>::distance_slow(const_iterator other) const + -> difference_type { + const_iterator begin = other; + const_iterator end = *this; + assert(begin.node_ != end.node_ || !begin.node_->is_leaf() || + begin.position_ != end.position_); + + const node_type *node = begin.node_; + // We need to compensate for double counting if begin.node_ is a leaf node. + difference_type count = node->is_leaf() ? -begin.position_ : 0; + + // First navigate to the leftmost leaf node past begin. + if (node->is_internal()) { + ++count; + node = node->child(begin.position_ + 1); + } + while (node->is_internal()) node = node->start_child(); + + // Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`, + // which isn't guaranteed to be a valid `field_type`. + size_type pos = node->position(); + const node_type *parent = node->parent(); + for (;;) { + // In each iteration of the next loop, we count one leaf node and go right. + assert(pos <= parent->finish()); + do { + node = parent->child(static_cast<field_type>(pos)); + if (node->is_internal()) { + // Navigate to the leftmost leaf under node. + while (node->is_internal()) node = node->start_child(); + pos = node->position(); + parent = node->parent(); + } + if (node == end.node_) return count + end.position_; + if (parent == end.node_ && pos == static_cast<size_type>(end.position_)) + return count + node->count(); + // +1 is for the next internal node value. + count += node->count() + 1; + ++pos; + } while (pos <= parent->finish()); + + // Once we've counted all children of parent, go up/right. + assert(pos > parent->finish()); + do { + node = parent; + pos = node->position(); + parent = node->parent(); + // -1 because we counted the value at end and shouldn't. + if (parent == end.node_ && pos == static_cast<size_type>(end.position_)) + return count - 1; + ++pos; + } while (pos > parent->finish()); + } +} + +template <typename N, typename R, typename P> +void btree_iterator<N, R, P>::increment_slow() { + if (node_->is_leaf()) { + assert(position_ >= node_->finish()); + btree_iterator save(*this); + while (position_ == node_->finish() && !node_->is_root()) { + assert(node_->parent()->child(node_->position()) == node_); + position_ = node_->position(); + node_ = node_->parent(); + } + // TODO(ezb): assert we aren't incrementing end() instead of handling. + if (position_ == node_->finish()) { + *this = save; + } + } else { + assert(position_ < node_->finish()); + node_ = node_->child(static_cast<field_type>(position_ + 1)); + while (node_->is_internal()) { + node_ = node_->start_child(); + } + position_ = node_->start(); + } +} + +template <typename N, typename R, typename P> +void btree_iterator<N, R, P>::decrement_slow() { + if (node_->is_leaf()) { + assert(position_ <= -1); + btree_iterator save(*this); + while (position_ < node_->start() && !node_->is_root()) { + assert(node_->parent()->child(node_->position()) == node_); + position_ = node_->position() - 1; + node_ = node_->parent(); + } + // TODO(ezb): assert we aren't decrementing begin() instead of handling. + if (position_ < node_->start()) { + *this = save; + } + } else { + assert(position_ >= node_->start()); + node_ = node_->child(static_cast<field_type>(position_)); + while (node_->is_internal()) { + node_ = node_->child(node_->finish()); + } + position_ = node_->finish() - 1; + } +} + +//// +// btree methods +template <typename P> +template <typename Btree> +void btree<P>::copy_or_move_values_in_order(Btree &other) { + static_assert(std::is_same<btree, Btree>::value || + std::is_same<const btree, Btree>::value, + "Btree type must be same or const."); + assert(empty()); + + // We can avoid key comparisons because we know the order of the + // values is the same order we'll store them in. + auto iter = other.begin(); + if (iter == other.end()) return; + insert_multi(iter.slot()); + ++iter; + for (; iter != other.end(); ++iter) { + // If the btree is not empty, we can just insert the new value at the end + // of the tree. + internal_emplace(end(), iter.slot()); + } +} + +template <typename P> +constexpr bool btree<P>::static_assert_validation() { + static_assert(std::is_nothrow_copy_constructible<key_compare>::value, + "Key comparison must be nothrow copy constructible"); + static_assert(std::is_nothrow_copy_constructible<allocator_type>::value, + "Allocator must be nothrow copy constructible"); + static_assert(std::is_trivially_copyable<iterator>::value, + "iterator not trivially copyable."); + + // Note: We assert that kTargetValues, which is computed from + // Params::kTargetNodeSize, must fit the node_type::field_type. + static_assert( + kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))), + "target node size too large"); + + // Verify that key_compare returns an absl::{weak,strong}_ordering or bool. + static_assert( + compare_has_valid_result_type<key_compare, key_type>(), + "key comparison function must return absl::{weak,strong}_ordering or " + "bool."); + + // Test the assumption made in setting kNodeSlotSpace. + static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4, + "node space assumption incorrect"); + + return true; +} + +template <typename P> +template <typename K> +auto btree<P>::lower_bound_equal(const K &key) const + -> std::pair<iterator, bool> { + const SearchResult<iterator, is_key_compare_to::value> res = + internal_lower_bound(key); + const iterator lower = iterator(internal_end(res.value)); + const bool equal = res.HasMatch() + ? res.IsEq() + : lower != end() && !compare_keys(key, lower.key()); + return {lower, equal}; +} + +template <typename P> +template <typename K> +auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> { + const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key); + const iterator lower = lower_and_equal.first; + if (!lower_and_equal.second) { + return {lower, lower}; + } + + const iterator next = std::next(lower); + if (!params_type::template can_have_multiple_equivalent_keys<K>()) { + // The next iterator after lower must point to a key greater than `key`. + // Note: if this assert fails, then it may indicate that the comparator does + // not meet the equivalence requirements for Compare + // (see https://en.cppreference.com/w/cpp/named_req/Compare). + assert(next == end() || compare_keys(key, next.key())); + return {lower, next}; + } + // Try once more to avoid the call to upper_bound() if there's only one + // equivalent key. This should prevent all calls to upper_bound() in cases of + // unique-containers with heterogeneous comparators in which all comparison + // operators have the same equivalence classes. + if (next == end() || compare_keys(key, next.key())) return {lower, next}; + + // In this case, we need to call upper_bound() to avoid worst case O(N) + // behavior if we were to iterate over equal keys. + return {lower, upper_bound(key)}; +} + +template <typename P> +template <typename K, typename... Args> +auto btree<P>::insert_unique(const K &key, Args &&...args) + -> std::pair<iterator, bool> { + if (empty()) { + mutable_root() = mutable_rightmost() = new_leaf_root_node(1); + } + + SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); + iterator iter = res.value; + + if (res.HasMatch()) { + if (res.IsEq()) { + // The key already exists in the tree, do nothing. + return {iter, false}; + } + } else { + iterator last = internal_last(iter); + if (last.node_ && !compare_keys(key, last.key())) { + // The key already exists in the tree, do nothing. + return {last, false}; + } + } + return {internal_emplace(iter, std::forward<Args>(args)...), true}; +} + +template <typename P> +template <typename K, typename... Args> +inline auto btree<P>::insert_hint_unique(iterator position, const K &key, + Args &&...args) + -> std::pair<iterator, bool> { + if (!empty()) { + if (position == end() || compare_keys(key, position.key())) { + if (position == begin() || compare_keys(std::prev(position).key(), key)) { + // prev.key() < key < position.key() + return {internal_emplace(position, std::forward<Args>(args)...), true}; + } + } else if (compare_keys(position.key(), key)) { + ++position; + if (position == end() || compare_keys(key, position.key())) { + // {original `position`}.key() < key < {current `position`}.key() + return {internal_emplace(position, std::forward<Args>(args)...), true}; + } + } else { + // position.key() == key + return {position, false}; + } + } + return insert_unique(key, std::forward<Args>(args)...); +} + +template <typename P> +template <typename InputIterator, typename> +void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) { + for (; b != e; ++b) { + insert_hint_unique(end(), params_type::key(*b), *b); + } +} + +template <typename P> +template <typename InputIterator> +void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) { + for (; b != e; ++b) { + // Use a node handle to manage a temp slot. + auto node_handle = + CommonAccess::Construct<node_handle_type>(get_allocator(), *b); + slot_type *slot = CommonAccess::GetSlot(node_handle); + insert_hint_unique(end(), params_type::key(slot), slot); + } +} + +template <typename P> +template <typename ValueType> +auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator { + if (empty()) { + mutable_root() = mutable_rightmost() = new_leaf_root_node(1); + } + + iterator iter = internal_upper_bound(key); + if (iter.node_ == nullptr) { + iter = end(); + } + return internal_emplace(iter, std::forward<ValueType>(v)); +} + +template <typename P> +template <typename ValueType> +auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator { + if (!empty()) { + const key_type &key = params_type::key(v); + if (position == end() || !compare_keys(position.key(), key)) { + if (position == begin() || + !compare_keys(key, std::prev(position).key())) { + // prev.key() <= key <= position.key() + return internal_emplace(position, std::forward<ValueType>(v)); + } + } else { + ++position; + if (position == end() || !compare_keys(position.key(), key)) { + // {original `position`}.key() < key < {current `position`}.key() + return internal_emplace(position, std::forward<ValueType>(v)); + } + } + } + return insert_multi(std::forward<ValueType>(v)); +} + +template <typename P> +template <typename InputIterator> +void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) { + for (; b != e; ++b) { + insert_hint_multi(end(), *b); + } +} + +template <typename P> +auto btree<P>::operator=(const btree &other) -> btree & { + if (this != &other) { + clear(); + + *mutable_key_comp() = other.key_comp(); + if (absl::allocator_traits< + allocator_type>::propagate_on_container_copy_assignment::value) { + *mutable_allocator() = other.allocator(); + } + + copy_or_move_values_in_order(other); + } + return *this; +} + +template <typename P> +auto btree<P>::operator=(btree &&other) noexcept -> btree & { + if (this != &other) { + clear(); + + using std::swap; + if (absl::allocator_traits< + allocator_type>::propagate_on_container_move_assignment::value) { + swap(root_, other.root_); + // Note: `rightmost_` also contains the allocator and the key comparator. + swap(rightmost_, other.rightmost_); + swap(size_, other.size_); + } else { + if (allocator() == other.allocator()) { + swap(mutable_root(), other.mutable_root()); + swap(*mutable_key_comp(), *other.mutable_key_comp()); + swap(mutable_rightmost(), other.mutable_rightmost()); + swap(size_, other.size_); + } else { + // We aren't allowed to propagate the allocator and the allocator is + // different so we can't take over its memory. We must move each element + // individually. We need both `other` and `this` to have `other`s key + // comparator while moving the values so we can't swap the key + // comparators. + *mutable_key_comp() = other.key_comp(); + copy_or_move_values_in_order(other); + } + } + } + return *this; +} + +template <typename P> +auto btree<P>::erase(iterator iter) -> iterator { + iter.node_->value_destroy(static_cast<field_type>(iter.position_), + mutable_allocator()); + iter.update_generation(); + + const bool internal_delete = iter.node_->is_internal(); + if (internal_delete) { + // Deletion of a value on an internal node. First, transfer the largest + // value from our left child here, then erase/rebalance from that position. + // We can get to the largest value from our left child by decrementing iter. + iterator internal_iter(iter); + --iter; + assert(iter.node_->is_leaf()); + internal_iter.node_->transfer( + static_cast<size_type>(internal_iter.position_), + static_cast<size_type>(iter.position_), iter.node_, + mutable_allocator()); + } else { + // Shift values after erased position in leaf. In the internal case, we + // don't need to do this because the leaf position is the end of the node. + const field_type transfer_from = + static_cast<field_type>(iter.position_ + 1); + const field_type num_to_transfer = iter.node_->finish() - transfer_from; + iter.node_->transfer_n(num_to_transfer, + static_cast<size_type>(iter.position_), + transfer_from, iter.node_, mutable_allocator()); + } + // Update node finish and container size. + iter.node_->set_finish(iter.node_->finish() - 1); + --size_; + + // We want to return the next value after the one we just erased. If we + // erased from an internal node (internal_delete == true), then the next + // value is ++(++iter). If we erased from a leaf node (internal_delete == + // false) then the next value is ++iter. Note that ++iter may point to an + // internal node and the value in the internal node may move to a leaf node + // (iter.node_) when rebalancing is performed at the leaf level. + + iterator res = rebalance_after_delete(iter); + + // If we erased from an internal node, advance the iterator. + if (internal_delete) { + ++res; + } + return res; +} + +template <typename P> +auto btree<P>::rebalance_after_delete(iterator iter) -> iterator { + // Merge/rebalance as we walk back up the tree. + iterator res(iter); + bool first_iteration = true; + for (;;) { + if (iter.node_ == root()) { + try_shrink(); + if (empty()) { + return end(); + } + break; + } + if (iter.node_->count() >= kMinNodeValues) { + break; + } + bool merged = try_merge_or_rebalance(&iter); + // On the first iteration, we should update `res` with `iter` because `res` + // may have been invalidated. + if (first_iteration) { + res = iter; + first_iteration = false; + } + if (!merged) { + break; + } + iter.position_ = iter.node_->position(); + iter.node_ = iter.node_->parent(); + } + res.update_generation(); + + // Adjust our return value. If we're pointing at the end of a node, advance + // the iterator. + if (res.position_ == res.node_->finish()) { + res.position_ = res.node_->finish() - 1; + ++res; + } + + return res; +} + +// Note: we tried implementing this more efficiently by erasing all of the +// elements in [begin, end) at once and then doing rebalancing once at the end +// (rather than interleaving deletion and rebalancing), but that adds a lot of +// complexity, which seems to outweigh the performance win. +template <typename P> +auto btree<P>::erase_range(iterator begin, iterator end) + -> std::pair<size_type, iterator> { + size_type count = static_cast<size_type>(end - begin); + assert(count >= 0); + + if (count == 0) { + return {0, begin}; + } + + if (static_cast<size_type>(count) == size_) { + clear(); + return {count, this->end()}; + } + + if (begin.node_ == end.node_) { + assert(end.position_ > begin.position_); + begin.node_->remove_values( + static_cast<field_type>(begin.position_), + static_cast<field_type>(end.position_ - begin.position_), + mutable_allocator()); + size_ -= count; + return {count, rebalance_after_delete(begin)}; + } + + const size_type target_size = size_ - count; + while (size_ > target_size) { + if (begin.node_->is_leaf()) { + const size_type remaining_to_erase = size_ - target_size; + const size_type remaining_in_node = + static_cast<size_type>(begin.node_->finish() - begin.position_); + const field_type to_erase = static_cast<field_type>( + (std::min)(remaining_to_erase, remaining_in_node)); + begin.node_->remove_values(static_cast<field_type>(begin.position_), + to_erase, mutable_allocator()); + size_ -= to_erase; + begin = rebalance_after_delete(begin); + } else { + begin = erase(begin); + } + } + begin.update_generation(); + return {count, begin}; +} + +template <typename P> +void btree<P>::clear() { + if (!empty()) { + node_type::clear_and_delete(root(), mutable_allocator()); + } + mutable_root() = mutable_rightmost() = EmptyNode(); + size_ = 0; +} + +template <typename P> +void btree<P>::swap(btree &other) { + using std::swap; + if (absl::allocator_traits< + allocator_type>::propagate_on_container_swap::value) { + // Note: `rightmost_` also contains the allocator and the key comparator. + swap(rightmost_, other.rightmost_); + } else { + // It's undefined behavior if the allocators are unequal here. + assert(allocator() == other.allocator()); + swap(mutable_rightmost(), other.mutable_rightmost()); + swap(*mutable_key_comp(), *other.mutable_key_comp()); + } + swap(mutable_root(), other.mutable_root()); + swap(size_, other.size_); +} + +template <typename P> +void btree<P>::verify() const { + assert(root() != nullptr); + assert(leftmost() != nullptr); + assert(rightmost() != nullptr); + assert(empty() || size() == internal_verify(root(), nullptr, nullptr)); + assert(leftmost() == (++const_iterator(root(), -1)).node_); + assert(rightmost() == (--const_iterator(root(), root()->finish())).node_); + assert(leftmost()->is_leaf()); + assert(rightmost()->is_leaf()); +} + +template <typename P> +void btree<P>::rebalance_or_split(iterator *iter) { + node_type *&node = iter->node_; + int &insert_position = iter->position_; + assert(node->count() == node->max_count()); + assert(kNodeSlots == node->max_count()); + + // First try to make room on the node by rebalancing. + node_type *parent = node->parent(); + if (node != root()) { + if (node->position() > parent->start()) { + // Try rebalancing with our left sibling. + node_type *left = parent->child(node->position() - 1); + assert(left->max_count() == kNodeSlots); + if (left->count() < kNodeSlots) { + // We bias rebalancing based on the position being inserted. If we're + // inserting at the end of the right node then we bias rebalancing to + // fill up the left node. + field_type to_move = + (kNodeSlots - left->count()) / + (1 + (static_cast<field_type>(insert_position) < kNodeSlots)); + to_move = (std::max)(field_type{1}, to_move); + + if (static_cast<field_type>(insert_position) - to_move >= + node->start() || + left->count() + to_move < kNodeSlots) { + left->rebalance_right_to_left(to_move, node, mutable_allocator()); + + assert(node->max_count() - node->count() == to_move); + insert_position = static_cast<int>( + static_cast<field_type>(insert_position) - to_move); + if (insert_position < node->start()) { + insert_position = insert_position + left->count() + 1; + node = left; + } + + assert(node->count() < node->max_count()); + return; + } + } + } + + if (node->position() < parent->finish()) { + // Try rebalancing with our right sibling. + node_type *right = parent->child(node->position() + 1); + assert(right->max_count() == kNodeSlots); + if (right->count() < kNodeSlots) { + // We bias rebalancing based on the position being inserted. If we're + // inserting at the beginning of the left node then we bias rebalancing + // to fill up the right node. + field_type to_move = (kNodeSlots - right->count()) / + (1 + (insert_position > node->start())); + to_move = (std::max)(field_type{1}, to_move); + + if (static_cast<field_type>(insert_position) <= + node->finish() - to_move || + right->count() + to_move < kNodeSlots) { + node->rebalance_left_to_right(to_move, right, mutable_allocator()); + + if (insert_position > node->finish()) { + insert_position = insert_position - node->count() - 1; + node = right; + } + + assert(node->count() < node->max_count()); + return; + } + } + } + + // Rebalancing failed, make sure there is room on the parent node for a new + // value. + assert(parent->max_count() == kNodeSlots); + if (parent->count() == kNodeSlots) { + iterator parent_iter(parent, node->position()); + rebalance_or_split(&parent_iter); + parent = node->parent(); + } + } else { + // Rebalancing not possible because this is the root node. + // Create a new root node and set the current root node as the child of the + // new root. + parent = new_internal_node(/*position=*/0, parent); + parent->set_generation(root()->generation()); + parent->init_child(parent->start(), node); + mutable_root() = parent; + // If the former root was a leaf node, then it's now the rightmost node. + assert(parent->start_child()->is_internal() || + parent->start_child() == rightmost()); + } + + // Split the node. + node_type *split_node; + if (node->is_leaf()) { + split_node = new_leaf_node(node->position() + 1, parent); + node->split(insert_position, split_node, mutable_allocator()); + if (rightmost() == node) mutable_rightmost() = split_node; + } else { + split_node = new_internal_node(node->position() + 1, parent); + node->split(insert_position, split_node, mutable_allocator()); + } + + if (insert_position > node->finish()) { + insert_position = insert_position - node->count() - 1; + node = split_node; + } +} + +template <typename P> +void btree<P>::merge_nodes(node_type *left, node_type *right) { + left->merge(right, mutable_allocator()); + if (rightmost() == right) mutable_rightmost() = left; +} + +template <typename P> +bool btree<P>::try_merge_or_rebalance(iterator *iter) { + node_type *parent = iter->node_->parent(); + if (iter->node_->position() > parent->start()) { + // Try merging with our left sibling. + node_type *left = parent->child(iter->node_->position() - 1); + assert(left->max_count() == kNodeSlots); + if (1U + left->count() + iter->node_->count() <= kNodeSlots) { + iter->position_ += 1 + left->count(); + merge_nodes(left, iter->node_); + iter->node_ = left; + return true; + } + } + if (iter->node_->position() < parent->finish()) { + // Try merging with our right sibling. + node_type *right = parent->child(iter->node_->position() + 1); + assert(right->max_count() == kNodeSlots); + if (1U + iter->node_->count() + right->count() <= kNodeSlots) { + merge_nodes(iter->node_, right); + return true; + } + // Try rebalancing with our right sibling. We don't perform rebalancing if + // we deleted the first element from iter->node_ and the node is not + // empty. This is a small optimization for the common pattern of deleting + // from the front of the tree. + if (right->count() > kMinNodeValues && + (iter->node_->count() == 0 || iter->position_ > iter->node_->start())) { + field_type to_move = (right->count() - iter->node_->count()) / 2; + to_move = + (std::min)(to_move, static_cast<field_type>(right->count() - 1)); + iter->node_->rebalance_right_to_left(to_move, right, mutable_allocator()); + return false; + } + } + if (iter->node_->position() > parent->start()) { + // Try rebalancing with our left sibling. We don't perform rebalancing if + // we deleted the last element from iter->node_ and the node is not + // empty. This is a small optimization for the common pattern of deleting + // from the back of the tree. + node_type *left = parent->child(iter->node_->position() - 1); + if (left->count() > kMinNodeValues && + (iter->node_->count() == 0 || + iter->position_ < iter->node_->finish())) { + field_type to_move = (left->count() - iter->node_->count()) / 2; + to_move = (std::min)(to_move, static_cast<field_type>(left->count() - 1)); + left->rebalance_left_to_right(to_move, iter->node_, mutable_allocator()); + iter->position_ += to_move; + return false; + } + } + return false; +} + +template <typename P> +void btree<P>::try_shrink() { + node_type *orig_root = root(); + if (orig_root->count() > 0) { + return; + } + // Deleted the last item on the root node, shrink the height of the tree. + if (orig_root->is_leaf()) { + assert(size() == 0); + mutable_root() = mutable_rightmost() = EmptyNode(); + } else { + node_type *child = orig_root->start_child(); + child->make_root(); + mutable_root() = child; + } + node_type::clear_and_delete(orig_root, mutable_allocator()); +} + +template <typename P> +template <typename IterType> +inline IterType btree<P>::internal_last(IterType iter) { + assert(iter.node_ != nullptr); + while (iter.position_ == iter.node_->finish()) { + iter.position_ = iter.node_->position(); + iter.node_ = iter.node_->parent(); + if (iter.node_->is_leaf()) { + iter.node_ = nullptr; + break; + } + } + iter.update_generation(); + return iter; +} + +template <typename P> +template <typename... Args> +inline auto btree<P>::internal_emplace(iterator iter, Args &&...args) + -> iterator { + if (iter.node_->is_internal()) { + // We can't insert on an internal node. Instead, we'll insert after the + // previous value which is guaranteed to be on a leaf node. + --iter; + ++iter.position_; + } + const field_type max_count = iter.node_->max_count(); + allocator_type *alloc = mutable_allocator(); + + const auto transfer_and_delete = [&](node_type *old_node, + node_type *new_node) { + new_node->transfer_n(old_node->count(), new_node->start(), + old_node->start(), old_node, alloc); + new_node->set_finish(old_node->finish()); + old_node->set_finish(old_node->start()); + new_node->set_generation(old_node->generation()); + node_type::clear_and_delete(old_node, alloc); + }; + const auto replace_leaf_root_node = [&](field_type new_node_size) { + assert(iter.node_ == root()); + node_type *old_root = iter.node_; + node_type *new_root = iter.node_ = new_leaf_root_node(new_node_size); + transfer_and_delete(old_root, new_root); + mutable_root() = mutable_rightmost() = new_root; + }; + + bool replaced_node = false; + if (iter.node_->count() == max_count) { + // Make room in the leaf for the new item. + if (max_count < kNodeSlots) { + // Insertion into the root where the root is smaller than the full node + // size. Simply grow the size of the root node. + replace_leaf_root_node(static_cast<field_type>( + (std::min)(static_cast<int>(kNodeSlots), 2 * max_count))); + replaced_node = true; + } else { + rebalance_or_split(&iter); + } + } + (void)replaced_node; +#if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ + defined(ABSL_HAVE_HWADDRESS_SANITIZER) + if (!replaced_node) { + assert(iter.node_->is_leaf()); + if (iter.node_->is_root()) { + replace_leaf_root_node(max_count); + } else { + node_type *old_node = iter.node_; + const bool was_rightmost = rightmost() == old_node; + const bool was_leftmost = leftmost() == old_node; + node_type *parent = old_node->parent(); + const field_type position = old_node->position(); + node_type *new_node = iter.node_ = new_leaf_node(position, parent); + parent->set_child_noupdate_position(position, new_node); + transfer_and_delete(old_node, new_node); + if (was_rightmost) mutable_rightmost() = new_node; + // The leftmost node is stored as the parent of the root node. + if (was_leftmost) root()->set_parent(new_node); + } + } +#endif + iter.node_->emplace_value(static_cast<field_type>(iter.position_), alloc, + std::forward<Args>(args)...); + assert( + iter.node_->is_ordered_correctly(static_cast<field_type>(iter.position_), + original_key_compare(key_comp())) && + "If this assert fails, then either (1) the comparator may violate " + "transitivity, i.e. comp(a,b) && comp(b,c) -> comp(a,c) (see " + "https://en.cppreference.com/w/cpp/named_req/Compare), or (2) a " + "key may have been mutated after it was inserted into the tree."); + ++size_; + iter.update_generation(); + return iter; +} + +template <typename P> +template <typename K> +inline auto btree<P>::internal_locate(const K &key) const + -> SearchResult<iterator, is_key_compare_to::value> { + iterator iter(const_cast<node_type *>(root())); + for (;;) { + SearchResult<size_type, is_key_compare_to::value> res = + iter.node_->lower_bound(key, key_comp()); + iter.position_ = static_cast<int>(res.value); + if (res.IsEq()) { + return {iter, MatchKind::kEq}; + } + // Note: in the non-key-compare-to case, we don't need to walk all the way + // down the tree if the keys are equal, but determining equality would + // require doing an extra comparison on each node on the way down, and we + // will need to go all the way to the leaf node in the expected case. + if (iter.node_->is_leaf()) { + break; + } + iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); + } + // Note: in the non-key-compare-to case, the key may actually be equivalent + // here (and the MatchKind::kNe is ignored). + return {iter, MatchKind::kNe}; +} + +template <typename P> +template <typename K> +auto btree<P>::internal_lower_bound(const K &key) const + -> SearchResult<iterator, is_key_compare_to::value> { + if (!params_type::template can_have_multiple_equivalent_keys<K>()) { + SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key); + ret.value = internal_last(ret.value); + return ret; + } + iterator iter(const_cast<node_type *>(root())); + SearchResult<size_type, is_key_compare_to::value> res; + bool seen_eq = false; + for (;;) { + res = iter.node_->lower_bound(key, key_comp()); + iter.position_ = static_cast<int>(res.value); + if (iter.node_->is_leaf()) { + break; + } + seen_eq = seen_eq || res.IsEq(); + iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); + } + if (res.IsEq()) return {iter, MatchKind::kEq}; + return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe}; +} + +template <typename P> +template <typename K> +auto btree<P>::internal_upper_bound(const K &key) const -> iterator { + iterator iter(const_cast<node_type *>(root())); + for (;;) { + iter.position_ = static_cast<int>(iter.node_->upper_bound(key, key_comp())); + if (iter.node_->is_leaf()) { + break; + } + iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_)); + } + return internal_last(iter); +} + +template <typename P> +template <typename K> +auto btree<P>::internal_find(const K &key) const -> iterator { + SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); + if (res.HasMatch()) { + if (res.IsEq()) { + return res.value; + } + } else { + const iterator iter = internal_last(res.value); + if (iter.node_ != nullptr && !compare_keys(key, iter.key())) { + return iter; + } + } + return {nullptr, 0}; +} + +template <typename P> +typename btree<P>::size_type btree<P>::internal_verify( + const node_type *node, const key_type *lo, const key_type *hi) const { + assert(node->count() > 0); + assert(node->count() <= node->max_count()); + if (lo) { + assert(!compare_keys(node->key(node->start()), *lo)); + } + if (hi) { + assert(!compare_keys(*hi, node->key(node->finish() - 1))); + } + for (int i = node->start() + 1; i < node->finish(); ++i) { + assert(!compare_keys(node->key(i), node->key(i - 1))); + } + size_type count = node->count(); + if (node->is_internal()) { + for (field_type i = node->start(); i <= node->finish(); ++i) { + assert(node->child(i) != nullptr); + assert(node->child(i)->parent() == node); + assert(node->child(i)->position() == i); + count += internal_verify(node->child(i), + i == node->start() ? lo : &node->key(i - 1), + i == node->finish() ? hi : &node->key(i)); + } + } + return count; +} + +struct btree_access { + template <typename BtreeContainer, typename Pred> + static auto erase_if(BtreeContainer &container, Pred pred) -> + typename BtreeContainer::size_type { + const auto initial_size = container.size(); + auto &tree = container.tree_; + auto *alloc = tree.mutable_allocator(); + for (auto it = container.begin(); it != container.end();) { + if (!pred(*it)) { + ++it; + continue; + } + auto *node = it.node_; + if (node->is_internal()) { + // Handle internal nodes normally. + it = container.erase(it); + continue; + } + // If this is a leaf node, then we do all the erases from this node + // at once before doing rebalancing. + + // The current position to transfer slots to. + int to_pos = it.position_; + node->value_destroy(it.position_, alloc); + while (++it.position_ < node->finish()) { + it.update_generation(); + if (pred(*it)) { + node->value_destroy(it.position_, alloc); + } else { + node->transfer(node->slot(to_pos++), node->slot(it.position_), alloc); + } + } + const int num_deleted = node->finish() - to_pos; + tree.size_ -= num_deleted; + node->set_finish(to_pos); + it.position_ = to_pos; + it = tree.rebalance_after_delete(it); + } + return initial_size - container.size(); + } +}; + +#undef ABSL_BTREE_ENABLE_GENERATIONS + +} // namespace container_internal +ABSL_NAMESPACE_END +} // namespace absl + +#endif // ABSL_CONTAINER_INTERNAL_BTREE_H_ |