diff options
author | heretic <heretic@yandex-team.ru> | 2022-02-10 16:45:43 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:43 +0300 |
commit | 397cbe258b9e064f49c4ca575279f02f39fef76e (patch) | |
tree | a0b0eb3cca6a14e4e8ea715393637672fa651284 /contrib/restricted/abseil-cpp-tstring/y_absl/container | |
parent | 43f5a35593ebc9f6bcea619bb170394ea7ae468e (diff) | |
download | ydb-397cbe258b9e064f49c4ca575279f02f39fef76e.tar.gz |
Restoring authorship annotation for <heretic@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/restricted/abseil-cpp-tstring/y_absl/container')
31 files changed, 1500 insertions, 1500 deletions
diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/.yandex_meta/licenses.list.txt b/contrib/restricted/abseil-cpp-tstring/y_absl/container/.yandex_meta/licenses.list.txt index f39e683596..27eb40bafa 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/.yandex_meta/licenses.list.txt +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/.yandex_meta/licenses.list.txt @@ -1,24 +1,24 @@ -====================Apache-2.0==================== -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// https://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - - -====================COPYRIGHT==================== -// Copyright 2017 The Abseil Authors. - - -====================COPYRIGHT==================== -// Copyright 2018 The Abseil Authors. - - -====================COPYRIGHT==================== -// Copyright 2019 The Abseil Authors. +====================Apache-2.0==================== +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + + +====================COPYRIGHT==================== +// Copyright 2017 The Abseil Authors. + + +====================COPYRIGHT==================== +// Copyright 2018 The Abseil Authors. + + +====================COPYRIGHT==================== +// Copyright 2019 The Abseil Authors. diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_map.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_map.h index 3f46c541b8..298b259885 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_map.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_map.h @@ -185,7 +185,7 @@ class btree_map // template <typename K> size_type erase(const K& key): // // Erases the element with the matching key, if it exists, returning the - // number of elements erased (0 or 1). + // number of elements erased (0 or 1). using Base::erase; // btree_map::insert() @@ -318,18 +318,18 @@ class btree_map // Extracts the element at the indicated position and returns a node handle // owning that extracted data. // - // template <typename K> node_type extract(const K& k): + // template <typename K> node_type extract(const K& k): // // Extracts the element with the key matching the passed key value and // returns a node handle owning that extracted data. If the `btree_map` // does not contain an element with a matching key, this function returns an // empty node handle. // - // NOTE: when compiled in an earlier version of C++ than C++17, - // `node_type::key()` returns a const reference to the key instead of a - // mutable reference. We cannot safely return a mutable reference without - // std::launder (which is not available before C++17). - // + // NOTE: when compiled in an earlier version of C++ than C++17, + // `node_type::key()` returns a const reference to the key instead of a + // mutable reference. We cannot safely return a mutable reference without + // std::launder (which is not available before C++17). + // // NOTE: In this context, `node_type` refers to the C++17 concept of a // move-only type that owns and provides access to the elements in associative // containers (https://en.cppreference.com/w/cpp/container/node_handle). @@ -384,8 +384,8 @@ class btree_map // btree_map::equal_range() // - // Returns a half-open range [first, last), defined by a `std::pair` of two - // iterators, containing all elements with the passed key in the `btree_map`. + // Returns a half-open range [first, last), defined by a `std::pair` of two + // iterators, containing all elements with the passed key in the `btree_map`. using Base::equal_range; // btree_map::find() @@ -673,18 +673,18 @@ class btree_multimap // Extracts the element at the indicated position and returns a node handle // owning that extracted data. // - // template <typename K> node_type extract(const K& k): + // template <typename K> node_type extract(const K& k): // // Extracts the element with the key matching the passed key value and // returns a node handle owning that extracted data. If the `btree_multimap` // does not contain an element with a matching key, this function returns an // empty node handle. // - // NOTE: when compiled in an earlier version of C++ than C++17, - // `node_type::key()` returns a const reference to the key instead of a - // mutable reference. We cannot safely return a mutable reference without - // std::launder (which is not available before C++17). - // + // NOTE: when compiled in an earlier version of C++ than C++17, + // `node_type::key()` returns a const reference to the key instead of a + // mutable reference. We cannot safely return a mutable reference without + // std::launder (which is not available before C++17). + // // NOTE: In this context, `node_type` refers to the C++17 concept of a // move-only type that owns and provides access to the elements in associative // containers (https://en.cppreference.com/w/cpp/container/node_handle). @@ -731,7 +731,7 @@ class btree_multimap // btree_multimap::equal_range() // - // Returns a half-open range [first, last), defined by a `std::pair` of two + // Returns a half-open range [first, last), defined by a `std::pair` of two // iterators, containing all elements with the passed key in the // `btree_multimap`. using Base::equal_range; diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_set.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_set.h index 905fb8e964..0c51f24be7 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_set.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_set.h @@ -183,7 +183,7 @@ class btree_set // template <typename K> size_type erase(const K& key): // // Erases the element with the matching key, if it exists, returning the - // number of elements erased (0 or 1). + // number of elements erased (0 or 1). using Base::erase; // btree_set::insert() @@ -263,7 +263,7 @@ class btree_set // Extracts the element at the indicated position and returns a node handle // owning that extracted data. // - // template <typename K> node_type extract(const K& k): + // template <typename K> node_type extract(const K& k): // // Extracts the element with the key matching the passed key value and // returns a node handle owning that extracted data. If the `btree_set` @@ -589,7 +589,7 @@ class btree_multiset // Extracts the element at the indicated position and returns a node handle // owning that extracted data. // - // template <typename K> node_type extract(const K& k): + // template <typename K> node_type extract(const K& k): // // Extracts the element with the key matching the passed key value and // returns a node handle owning that extracted data. If the `btree_multiset` diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_test.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_test.h index 97ed054ce8..76e2a4fd05 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_test.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/btree_test.h @@ -25,7 +25,7 @@ #include "y_absl/container/btree_map.h" #include "y_absl/container/btree_set.h" #include "y_absl/container/flat_hash_set.h" -#include "y_absl/strings/cord.h" +#include "y_absl/strings/cord.h" #include "y_absl/time/time.h" namespace y_absl { @@ -101,16 +101,16 @@ struct Generator<TString> { } }; -template <> -struct Generator<Cord> { - int maxval; - explicit Generator(int m) : maxval(m) {} - Cord operator()(int i) const { - char buf[16]; - return Cord(GenerateDigits(buf, i, maxval)); - } -}; - +template <> +struct Generator<Cord> { + int maxval; + explicit Generator(int m) : maxval(m) {} + Cord operator()(int i) const { + char buf[16]; + return Cord(GenerateDigits(buf, i, maxval)); + } +}; + template <typename T, typename U> struct Generator<std::pair<T, U> > { Generator<typename remove_pair_const<T>::type> tgen; diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/fixed_array.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/fixed_array.h index 33b6caf00d..afa8cc35b7 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/fixed_array.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/fixed_array.h @@ -41,7 +41,7 @@ #include <type_traits> #include "y_absl/algorithm/algorithm.h" -#include "y_absl/base/config.h" +#include "y_absl/base/config.h" #include "y_absl/base/dynamic_annotations.h" #include "y_absl/base/internal/throw_delegate.h" #include "y_absl/base/macros.h" @@ -102,13 +102,13 @@ class FixedArray { public: using allocator_type = typename AllocatorTraits::allocator_type; - using value_type = typename AllocatorTraits::value_type; - using pointer = typename AllocatorTraits::pointer; - using const_pointer = typename AllocatorTraits::const_pointer; - using reference = value_type&; - using const_reference = const value_type&; - using size_type = typename AllocatorTraits::size_type; - using difference_type = typename AllocatorTraits::difference_type; + using value_type = typename AllocatorTraits::value_type; + using pointer = typename AllocatorTraits::pointer; + using const_pointer = typename AllocatorTraits::const_pointer; + using reference = value_type&; + using const_reference = const value_type&; + using size_type = typename AllocatorTraits::size_type; + using difference_type = typename AllocatorTraits::difference_type; using iterator = pointer; using const_iterator = const_pointer; using reverse_iterator = std::reverse_iterator<iterator>; @@ -213,7 +213,7 @@ class FixedArray { // Returns a reference the ith element of the fixed array. // REQUIRES: 0 <= i < size() reference operator[](size_type i) { - ABSL_HARDENING_ASSERT(i < size()); + ABSL_HARDENING_ASSERT(i < size()); return data()[i]; } @@ -221,14 +221,14 @@ class FixedArray { // ith element of the fixed array. // REQUIRES: 0 <= i < size() const_reference operator[](size_type i) const { - ABSL_HARDENING_ASSERT(i < size()); + ABSL_HARDENING_ASSERT(i < size()); return data()[i]; } // FixedArray::at // - // Bounds-checked access. Returns a reference to the ith element of the fixed - // array, or throws std::out_of_range + // Bounds-checked access. Returns a reference to the ith element of the fixed + // array, or throws std::out_of_range reference at(size_type i) { if (ABSL_PREDICT_FALSE(i >= size())) { base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); @@ -248,32 +248,32 @@ class FixedArray { // FixedArray::front() // // Returns a reference to the first element of the fixed array. - reference front() { - ABSL_HARDENING_ASSERT(!empty()); - return data()[0]; - } + reference front() { + ABSL_HARDENING_ASSERT(!empty()); + return data()[0]; + } // Overload of FixedArray::front() to return a reference to the first element // of a fixed array of const values. - const_reference front() const { - ABSL_HARDENING_ASSERT(!empty()); - return data()[0]; - } + const_reference front() const { + ABSL_HARDENING_ASSERT(!empty()); + return data()[0]; + } // FixedArray::back() // // Returns a reference to the last element of the fixed array. - reference back() { - ABSL_HARDENING_ASSERT(!empty()); - return data()[size() - 1]; - } + reference back() { + ABSL_HARDENING_ASSERT(!empty()); + return data()[size() - 1]; + } // Overload of FixedArray::back() to return a reference to the last element // of a fixed array of const values. - const_reference back() const { - ABSL_HARDENING_ASSERT(!empty()); - return data()[size() - 1]; - } + const_reference back() const { + ABSL_HARDENING_ASSERT(!empty()); + return data()[size() - 1]; + } // FixedArray::begin() // @@ -418,15 +418,15 @@ class FixedArray { void AnnotateConstruct(size_type n); void AnnotateDestruct(size_type n); -#ifdef ABSL_HAVE_ADDRESS_SANITIZER +#ifdef ABSL_HAVE_ADDRESS_SANITIZER void* RedzoneBegin() { return &redzone_begin_; } void* RedzoneEnd() { return &redzone_end_ + 1; } -#endif // ABSL_HAVE_ADDRESS_SANITIZER +#endif // ABSL_HAVE_ADDRESS_SANITIZER private: - ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_); + ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_); alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])]; - ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_); + ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_); }; class EmptyInlinedStorage { @@ -499,26 +499,26 @@ constexpr typename FixedArray<T, N, A>::size_type template <typename T, size_t N, typename A> void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct( typename FixedArray<T, N, A>::size_type n) { -#ifdef ABSL_HAVE_ADDRESS_SANITIZER +#ifdef ABSL_HAVE_ADDRESS_SANITIZER if (!n) return; - ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), - data() + n); - ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), - RedzoneBegin()); -#endif // ABSL_HAVE_ADDRESS_SANITIZER + ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), + data() + n); + ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), + RedzoneBegin()); +#endif // ABSL_HAVE_ADDRESS_SANITIZER static_cast<void>(n); // Mark used when not in asan mode } template <typename T, size_t N, typename A> void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct( typename FixedArray<T, N, A>::size_type n) { -#ifdef ABSL_HAVE_ADDRESS_SANITIZER +#ifdef ABSL_HAVE_ADDRESS_SANITIZER if (!n) return; - ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, - RedzoneEnd()); - ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), - data()); -#endif // ABSL_HAVE_ADDRESS_SANITIZER + ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, + RedzoneEnd()); + ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), + data()); +#endif // ABSL_HAVE_ADDRESS_SANITIZER static_cast<void>(n); // Mark used when not in asan mode } ABSL_NAMESPACE_END diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/flat_hash_map.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/flat_hash_map.h index eb3f09f06d..94e84ab363 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/flat_hash_map.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/flat_hash_map.h @@ -234,8 +234,8 @@ class flat_hash_map : public y_absl::container_internal::raw_hash_map< // // size_type erase(const key_type& key): // - // Erases the element with the matching key, if it exists, returning the - // number of elements erased (0 or 1). + // Erases the element with the matching key, if it exists, returning the + // number of elements erased (0 or 1). using Base::erase; // flat_hash_map::insert() @@ -384,11 +384,11 @@ class flat_hash_map : public y_absl::container_internal::raw_hash_map< // key value and returns a node handle owning that extracted data. If the // `flat_hash_map` does not contain an element with a matching key, this // function returns an empty node handle. - // - // NOTE: when compiled in an earlier version of C++ than C++17, - // `node_type::key()` returns a const reference to the key instead of a - // mutable reference. We cannot safely return a mutable reference without - // std::launder (which is not available before C++17). + // + // NOTE: when compiled in an earlier version of C++ than C++17, + // `node_type::key()` returns a const reference to the key instead of a + // mutable reference. We cannot safely return a mutable reference without + // std::launder (which is not available before C++17). using Base::extract; // flat_hash_map::merge() diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/flat_hash_set.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/flat_hash_set.h index 23fe02a950..576bd2808d 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/flat_hash_set.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/flat_hash_set.h @@ -227,8 +227,8 @@ class flat_hash_set // // size_type erase(const key_type& key): // - // Erases the element with the matching key, if it exists, returning the - // number of elements erased (0 or 1). + // Erases the element with the matching key, if it exists, returning the + // number of elements erased (0 or 1). using Base::erase; // flat_hash_set::insert() @@ -324,7 +324,7 @@ class flat_hash_set // flat_hash_set::merge() // - // Extracts elements from a given `source` flat hash set into this + // Extracts elements from a given `source` flat hash set into this // `flat_hash_set`. If the destination `flat_hash_set` already contains an // element with an equivalent key, that element is not extracted. using Base::merge; diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/inlined_vector.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/inlined_vector.h index 34af121cf7..1b177f8197 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/inlined_vector.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/inlined_vector.h @@ -48,7 +48,7 @@ #include "y_absl/algorithm/algorithm.h" #include "y_absl/base/internal/throw_delegate.h" -#include "y_absl/base/macros.h" +#include "y_absl/base/macros.h" #include "y_absl/base/optimization.h" #include "y_absl/base/port.h" #include "y_absl/container/internal/inlined_vector.h" @@ -64,7 +64,7 @@ ABSL_NAMESPACE_BEGIN // `std::vector` for use cases where the vector's size is sufficiently small // that it can be inlined. If the inlined vector does grow beyond its estimated // capacity, it will trigger an initial allocation on the heap, and will behave -// as a `std::vector`. The API of the `y_absl::InlinedVector` within this file is +// as a `std::vector`. The API of the `y_absl::InlinedVector` within this file is // designed to cover the same API footprint as covered by `std::vector`. template <typename T, size_t N, typename A = std::allocator<T>> class InlinedVector { @@ -174,13 +174,13 @@ class InlinedVector { // provided `allocator`. InlinedVector(const InlinedVector& other, const allocator_type& allocator) : storage_(allocator) { - if (other.empty()) { - // Empty; nothing to do. + if (other.empty()) { + // Empty; nothing to do. } else if (IsMemcpyOk<A>::value && !other.storage_.GetIsAllocated()) { - // Memcpy-able and do not need allocation. + // Memcpy-able and do not need allocation. storage_.MemcpyFrom(other.storage_); } else { - storage_.InitFrom(other.storage_); + storage_.InitFrom(other.storage_); } } @@ -319,14 +319,14 @@ class InlinedVector { // // Returns a `reference` to the `i`th element of the inlined vector. reference operator[](size_type i) { - ABSL_HARDENING_ASSERT(i < size()); + ABSL_HARDENING_ASSERT(i < size()); return data()[i]; } // Overload of `InlinedVector::operator[](...)` that returns a // `const_reference` to the `i`th element of the inlined vector. const_reference operator[](size_type i) const { - ABSL_HARDENING_ASSERT(i < size()); + ABSL_HARDENING_ASSERT(i < size()); return data()[i]; } @@ -361,30 +361,30 @@ class InlinedVector { // // Returns a `reference` to the first element of the inlined vector. reference front() { - ABSL_HARDENING_ASSERT(!empty()); - return data()[0]; + ABSL_HARDENING_ASSERT(!empty()); + return data()[0]; } // Overload of `InlinedVector::front()` that returns a `const_reference` to // the first element of the inlined vector. const_reference front() const { - ABSL_HARDENING_ASSERT(!empty()); - return data()[0]; + ABSL_HARDENING_ASSERT(!empty()); + return data()[0]; } // `InlinedVector::back()` // // Returns a `reference` to the last element of the inlined vector. reference back() { - ABSL_HARDENING_ASSERT(!empty()); - return data()[size() - 1]; + ABSL_HARDENING_ASSERT(!empty()); + return data()[size() - 1]; } // Overload of `InlinedVector::back()` that returns a `const_reference` to the // last element of the inlined vector. const_reference back() const { - ABSL_HARDENING_ASSERT(!empty()); - return data()[size() - 1]; + ABSL_HARDENING_ASSERT(!empty()); + return data()[size() - 1]; } // `InlinedVector::begin()` @@ -535,7 +535,7 @@ class InlinedVector { void assign(InputIterator first, InputIterator last) { size_type i = 0; for (; i < size() && first != last; ++i, static_cast<void>(++first)) { - data()[i] = *first; + data()[i] = *first; } erase(data() + i, data() + size()); @@ -546,12 +546,12 @@ class InlinedVector { // // Resizes the inlined vector to contain `n` elements. // - // NOTE: If `n` is smaller than `size()`, extra elements are destroyed. If `n` + // NOTE: If `n` is smaller than `size()`, extra elements are destroyed. If `n` // is larger than `size()`, new elements are value-initialized. - void resize(size_type n) { - ABSL_HARDENING_ASSERT(n <= max_size()); + void resize(size_type n) { + ABSL_HARDENING_ASSERT(n <= max_size()); storage_.Resize(DefaultValueAdapter<A>(), n); - } + } // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to // contain `n` elements. @@ -559,7 +559,7 @@ class InlinedVector { // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n` // is larger than `size()`, new elements are copied-constructed from `v`. void resize(size_type n, const_reference v) { - ABSL_HARDENING_ASSERT(n <= max_size()); + ABSL_HARDENING_ASSERT(n <= max_size()); storage_.Resize(CopyValueAdapter<A>(std::addressof(v)), n); } @@ -581,8 +581,8 @@ class InlinedVector { // of `v` starting at `pos`, returning an `iterator` pointing to the first of // the newly inserted elements. iterator insert(const_iterator pos, size_type n, const_reference v) { - ABSL_HARDENING_ASSERT(pos >= begin()); - ABSL_HARDENING_ASSERT(pos <= end()); + ABSL_HARDENING_ASSERT(pos >= begin()); + ABSL_HARDENING_ASSERT(pos <= end()); if (ABSL_PREDICT_TRUE(n != 0)) { value_type dealias = v; @@ -609,8 +609,8 @@ class InlinedVector { EnableIfAtLeastForwardIterator<ForwardIterator> = 0> iterator insert(const_iterator pos, ForwardIterator first, ForwardIterator last) { - ABSL_HARDENING_ASSERT(pos >= begin()); - ABSL_HARDENING_ASSERT(pos <= end()); + ABSL_HARDENING_ASSERT(pos >= begin()); + ABSL_HARDENING_ASSERT(pos <= end()); if (ABSL_PREDICT_TRUE(first != last)) { return storage_.Insert(pos, @@ -629,8 +629,8 @@ class InlinedVector { template <typename InputIterator, DisableIfAtLeastForwardIterator<InputIterator> = 0> iterator insert(const_iterator pos, InputIterator first, InputIterator last) { - ABSL_HARDENING_ASSERT(pos >= begin()); - ABSL_HARDENING_ASSERT(pos <= end()); + ABSL_HARDENING_ASSERT(pos >= begin()); + ABSL_HARDENING_ASSERT(pos <= end()); size_type index = std::distance(cbegin(), pos); for (size_type i = index; first != last; ++i, static_cast<void>(++first)) { @@ -646,8 +646,8 @@ class InlinedVector { // `pos`, returning an `iterator` pointing to the newly emplaced element. template <typename... Args> iterator emplace(const_iterator pos, Args&&... args) { - ABSL_HARDENING_ASSERT(pos >= begin()); - ABSL_HARDENING_ASSERT(pos <= end()); + ABSL_HARDENING_ASSERT(pos >= begin()); + ABSL_HARDENING_ASSERT(pos <= end()); value_type dealias(std::forward<Args>(args)...); return storage_.Insert(pos, @@ -680,7 +680,7 @@ class InlinedVector { // // Destroys the element at `back()`, reducing the size by `1`. void pop_back() noexcept { - ABSL_HARDENING_ASSERT(!empty()); + ABSL_HARDENING_ASSERT(!empty()); AllocatorTraits<A>::destroy(storage_.GetAllocator(), data() + (size() - 1)); storage_.SubtractSize(1); @@ -693,8 +693,8 @@ class InlinedVector { // // NOTE: may return `end()`, which is not dereferencable. iterator erase(const_iterator pos) { - ABSL_HARDENING_ASSERT(pos >= begin()); - ABSL_HARDENING_ASSERT(pos < end()); + ABSL_HARDENING_ASSERT(pos >= begin()); + ABSL_HARDENING_ASSERT(pos < end()); return storage_.Erase(pos, pos + 1); } @@ -705,9 +705,9 @@ class InlinedVector { // // NOTE: may return `end()`, which is not dereferencable. iterator erase(const_iterator from, const_iterator to) { - ABSL_HARDENING_ASSERT(from >= begin()); - ABSL_HARDENING_ASSERT(from <= to); - ABSL_HARDENING_ASSERT(to <= end()); + ABSL_HARDENING_ASSERT(from >= begin()); + ABSL_HARDENING_ASSERT(from <= to); + ABSL_HARDENING_ASSERT(to <= end()); if (ABSL_PREDICT_TRUE(from != to)) { return storage_.Erase(from, to); diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/absl_hashtablez_sampler/ya.make b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/absl_hashtablez_sampler/ya.make index 54874c0466..f0651b0b41 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/absl_hashtablez_sampler/ya.make +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/absl_hashtablez_sampler/ya.make @@ -1,49 +1,49 @@ -# Generated by devtools/yamaker. - -LIBRARY() - -WITHOUT_LICENSE_TEXTS() - -OWNER( - somov - g:cpp-contrib -) - -LICENSE(Apache-2.0) - -PEERDIR( - contrib/restricted/abseil-cpp-tstring/y_absl/base +# Generated by devtools/yamaker. + +LIBRARY() + +WITHOUT_LICENSE_TEXTS() + +OWNER( + somov + g:cpp-contrib +) + +LICENSE(Apache-2.0) + +PEERDIR( + contrib/restricted/abseil-cpp-tstring/y_absl/base contrib/restricted/abseil-cpp-tstring/y_absl/base/internal/low_level_alloc - contrib/restricted/abseil-cpp-tstring/y_absl/base/internal/raw_logging - contrib/restricted/abseil-cpp-tstring/y_absl/base/internal/spinlock_wait - contrib/restricted/abseil-cpp-tstring/y_absl/base/internal/throw_delegate - contrib/restricted/abseil-cpp-tstring/y_absl/base/log_severity + contrib/restricted/abseil-cpp-tstring/y_absl/base/internal/raw_logging + contrib/restricted/abseil-cpp-tstring/y_absl/base/internal/spinlock_wait + contrib/restricted/abseil-cpp-tstring/y_absl/base/internal/throw_delegate + contrib/restricted/abseil-cpp-tstring/y_absl/base/log_severity contrib/restricted/abseil-cpp-tstring/y_absl/debugging contrib/restricted/abseil-cpp-tstring/y_absl/debugging/stacktrace contrib/restricted/abseil-cpp-tstring/y_absl/debugging/symbolize contrib/restricted/abseil-cpp-tstring/y_absl/demangle - contrib/restricted/abseil-cpp-tstring/y_absl/numeric + contrib/restricted/abseil-cpp-tstring/y_absl/numeric contrib/restricted/abseil-cpp-tstring/y_absl/profiling/internal/exponential_biased - contrib/restricted/abseil-cpp-tstring/y_absl/strings + contrib/restricted/abseil-cpp-tstring/y_absl/strings contrib/restricted/abseil-cpp-tstring/y_absl/strings/internal/absl_strings_internal contrib/restricted/abseil-cpp-tstring/y_absl/synchronization contrib/restricted/abseil-cpp-tstring/y_absl/synchronization/internal contrib/restricted/abseil-cpp-tstring/y_absl/time contrib/restricted/abseil-cpp-tstring/y_absl/time/civil_time contrib/restricted/abseil-cpp-tstring/y_absl/time/time_zone -) - -ADDINCL( - GLOBAL contrib/restricted/abseil-cpp-tstring -) - -NO_COMPILER_WARNINGS() - +) + +ADDINCL( + GLOBAL contrib/restricted/abseil-cpp-tstring +) + +NO_COMPILER_WARNINGS() + SRCDIR(contrib/restricted/abseil-cpp-tstring/y_absl/container/internal) - -SRCS( + +SRCS( hashtablez_sampler.cc hashtablez_sampler_force_weak_definition.cc -) - -END() +) + +END() diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree.h index a249260811..40e81d5cae 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree.h @@ -65,7 +65,7 @@ #include "y_absl/container/internal/layout.h" #include "y_absl/memory/memory.h" #include "y_absl/meta/type_traits.h" -#include "y_absl/strings/cord.h" +#include "y_absl/strings/cord.h" #include "y_absl/strings/string_view.h" #include "y_absl/types/compare.h" #include "y_absl/utility/utility.h" @@ -99,19 +99,19 @@ struct StringBtreeDefaultLess { y_absl::string_view rhs) const { return compare_internal::compare_result_as_ordering(lhs.compare(rhs)); } - StringBtreeDefaultLess(std::less<y_absl::Cord>) {} // NOLINT - y_absl::weak_ordering operator()(const y_absl::Cord &lhs, - const y_absl::Cord &rhs) const { - return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); - } - y_absl::weak_ordering operator()(const y_absl::Cord &lhs, - y_absl::string_view rhs) const { - return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); - } - y_absl::weak_ordering operator()(y_absl::string_view lhs, - const y_absl::Cord &rhs) const { - return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs)); - } + StringBtreeDefaultLess(std::less<y_absl::Cord>) {} // NOLINT + y_absl::weak_ordering operator()(const y_absl::Cord &lhs, + const y_absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); + } + y_absl::weak_ordering operator()(const y_absl::Cord &lhs, + y_absl::string_view rhs) const { + return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); + } + y_absl::weak_ordering operator()(y_absl::string_view lhs, + const y_absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs)); + } }; struct StringBtreeDefaultGreater { @@ -131,30 +131,30 @@ struct StringBtreeDefaultGreater { y_absl::string_view rhs) const { return compare_internal::compare_result_as_ordering(rhs.compare(lhs)); } - StringBtreeDefaultGreater(std::greater<y_absl::Cord>) {} // NOLINT - y_absl::weak_ordering operator()(const y_absl::Cord &lhs, - const y_absl::Cord &rhs) const { - return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); - } - y_absl::weak_ordering operator()(const y_absl::Cord &lhs, - y_absl::string_view rhs) const { - return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs)); - } - y_absl::weak_ordering operator()(y_absl::string_view lhs, - const y_absl::Cord &rhs) const { - return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); - } + StringBtreeDefaultGreater(std::greater<y_absl::Cord>) {} // NOLINT + y_absl::weak_ordering operator()(const y_absl::Cord &lhs, + const y_absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); + } + y_absl::weak_ordering operator()(const y_absl::Cord &lhs, + y_absl::string_view rhs) const { + return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs)); + } + y_absl::weak_ordering operator()(y_absl::string_view lhs, + const y_absl::Cord &rhs) const { + return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); + } }; // A helper class to convert a boolean comparison into a three-way "compare-to" -// comparison that returns an `y_absl::weak_ordering`. This helper +// comparison that returns an `y_absl::weak_ordering`. This helper // class is specialized for less<TString>, greater<TString>, -// less<string_view>, greater<string_view>, less<y_absl::Cord>, and -// greater<y_absl::Cord>. +// less<string_view>, greater<string_view>, less<y_absl::Cord>, and +// greater<y_absl::Cord>. // // key_compare_to_adapter is provided so that btree users // automatically get the more efficient compare-to code when using common -// Abseil string types with common comparison functors. +// Abseil string types with common comparison functors. // These string-like specializations also turn on heterogeneous lookup by // default. template <typename Compare> @@ -182,54 +182,54 @@ struct key_compare_to_adapter<std::greater<y_absl::string_view>> { using type = StringBtreeDefaultGreater; }; -template <> -struct key_compare_to_adapter<std::less<y_absl::Cord>> { - using type = StringBtreeDefaultLess; -}; - -template <> -struct key_compare_to_adapter<std::greater<y_absl::Cord>> { - using type = StringBtreeDefaultGreater; -}; - -// Detects an 'absl_btree_prefer_linear_node_search' member. This is -// a protocol used as an opt-in or opt-out of linear search. -// -// For example, this would be useful for key types that wrap an integer -// and define their own cheap operator<(). For example: -// -// class K { -// public: -// using absl_btree_prefer_linear_node_search = std::true_type; -// ... -// private: -// friend bool operator<(K a, K b) { return a.k_ < b.k_; } -// int k_; -// }; -// -// btree_map<K, V> m; // Uses linear search -// -// If T has the preference tag, then it has a preference. -// Btree will use the tag's truth value. -template <typename T, typename = void> -struct has_linear_node_search_preference : std::false_type {}; -template <typename T, typename = void> -struct prefers_linear_node_search : std::false_type {}; -template <typename T> -struct has_linear_node_search_preference< - T, y_absl::void_t<typename T::absl_btree_prefer_linear_node_search>> - : std::true_type {}; -template <typename T> -struct prefers_linear_node_search< - T, y_absl::void_t<typename T::absl_btree_prefer_linear_node_search>> - : T::absl_btree_prefer_linear_node_search {}; - +template <> +struct key_compare_to_adapter<std::less<y_absl::Cord>> { + using type = StringBtreeDefaultLess; +}; + +template <> +struct key_compare_to_adapter<std::greater<y_absl::Cord>> { + using type = StringBtreeDefaultGreater; +}; + +// Detects an 'absl_btree_prefer_linear_node_search' member. This is +// a protocol used as an opt-in or opt-out of linear search. +// +// For example, this would be useful for key types that wrap an integer +// and define their own cheap operator<(). For example: +// +// class K { +// public: +// using absl_btree_prefer_linear_node_search = std::true_type; +// ... +// private: +// friend bool operator<(K a, K b) { return a.k_ < b.k_; } +// int k_; +// }; +// +// btree_map<K, V> m; // Uses linear search +// +// If T has the preference tag, then it has a preference. +// Btree will use the tag's truth value. +template <typename T, typename = void> +struct has_linear_node_search_preference : std::false_type {}; +template <typename T, typename = void> +struct prefers_linear_node_search : std::false_type {}; +template <typename T> +struct has_linear_node_search_preference< + T, y_absl::void_t<typename T::absl_btree_prefer_linear_node_search>> + : std::true_type {}; +template <typename T> +struct prefers_linear_node_search< + T, y_absl::void_t<typename T::absl_btree_prefer_linear_node_search>> + : T::absl_btree_prefer_linear_node_search {}; + template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, bool Multi, typename SlotPolicy> struct common_params { using original_key_compare = Compare; - // If Compare is a common comparator for a string-like type, then we adapt it + // If Compare is a common comparator for a string-like type, then we adapt it // to use heterogeneous lookup and to be a key-compare-to comparator. using key_compare = typename key_compare_to_adapter<Compare>::type; // A type which indicates if we have a key-compare-to functor or a plain old @@ -250,23 +250,23 @@ struct common_params { using reference = value_type &; using const_reference = const value_type &; - // For the given lookup key type, returns whether we can have multiple - // equivalent keys in the btree. If this is a multi-container, then we can. - // Otherwise, we can have multiple equivalent keys only if all of the - // following conditions are met: - // - The comparator is transparent. - // - The lookup key type is not the same as key_type. - // - The comparator is not a StringBtreeDefault{Less,Greater} comparator - // that we know has the same equivalence classes for all lookup types. - template <typename LookupKey> - constexpr static bool can_have_multiple_equivalent_keys() { - return Multi || - (IsTransparent<key_compare>::value && - !std::is_same<LookupKey, Key>::value && - !std::is_same<key_compare, StringBtreeDefaultLess>::value && - !std::is_same<key_compare, StringBtreeDefaultGreater>::value); - } - + // For the given lookup key type, returns whether we can have multiple + // equivalent keys in the btree. If this is a multi-container, then we can. + // Otherwise, we can have multiple equivalent keys only if all of the + // following conditions are met: + // - The comparator is transparent. + // - The lookup key type is not the same as key_type. + // - The comparator is not a StringBtreeDefault{Less,Greater} comparator + // that we know has the same equivalence classes for all lookup types. + template <typename LookupKey> + constexpr static bool can_have_multiple_equivalent_keys() { + return Multi || + (IsTransparent<key_compare>::value && + !std::is_same<LookupKey, Key>::value && + !std::is_same<key_compare, StringBtreeDefaultLess>::value && + !std::is_same<key_compare, StringBtreeDefaultGreater>::value); + } + enum { kTargetNodeSize = TargetNodeSize, @@ -348,17 +348,17 @@ struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi, }; using is_map_container = std::true_type; - template <typename V> - static auto key(const V &value) -> decltype(value.first) { - return value.first; - } - static const Key &key(const slot_type *s) { return slot_policy::key(s); } - static const Key &key(slot_type *s) { return slot_policy::key(s); } - // For use in node handle. - static auto mutable_key(slot_type *s) - -> decltype(slot_policy::mutable_key(s)) { - return slot_policy::mutable_key(s); - } + template <typename V> + static auto key(const V &value) -> decltype(value.first) { + return value.first; + } + static const Key &key(const slot_type *s) { return slot_policy::key(s); } + static const Key &key(slot_type *s) { return slot_policy::key(s); } + // For use in node handle. + static auto mutable_key(slot_type *s) + -> decltype(slot_policy::mutable_key(s)) { + return slot_policy::mutable_key(s); + } static mapped_type &value(value_type *value) { return value->second; } }; @@ -413,10 +413,10 @@ struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi, typename set_params::common_params::original_key_compare; using is_map_container = std::false_type; - template <typename V> - static const V &key(const V &value) { return value; } - static const Key &key(const slot_type *slot) { return *slot; } - static const Key &key(slot_type *slot) { return *slot; } + template <typename V> + static const V &key(const V &value) { return value; } + static const Key &key(const slot_type *slot) { return *slot; } + static const Key &key(slot_type *slot) { return *slot; } }; // An adapter class that converts a lower-bound compare into an upper-bound @@ -426,8 +426,8 @@ struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi, template <typename Compare> struct upper_bound_adapter { explicit upper_bound_adapter(const Compare &c) : comp(c) {} - template <typename K1, typename K2> - bool operator()(const K1 &a, const K2 &b) const { + template <typename K1, typename K2> + bool operator()(const K1 &a, const K2 &b) const { // Returns true when a is not greater than b. return !compare_internal::compare_result_as_less_than(comp(b, a)); } @@ -452,10 +452,10 @@ struct SearchResult { // useful information. template <typename V> struct SearchResult<V, false> { - SearchResult() {} - explicit SearchResult(V value) : value(value) {} - SearchResult(V value, MatchKind /*match*/) : value(value) {} - + SearchResult() {} + explicit SearchResult(V value) : value(value) {} + SearchResult(V value, MatchKind /*match*/) : value(value) {} + V value; static constexpr bool HasMatch() { return false; } @@ -485,22 +485,22 @@ class btree_node { using difference_type = typename Params::difference_type; // Btree decides whether to use linear node search as follows: - // - If the comparator expresses a preference, use that. - // - If the key expresses a preference, use that. + // - If the comparator expresses a preference, use that. + // - If the key expresses a preference, use that. // - If the key is arithmetic and the comparator is std::less or // std::greater, choose linear. // - Otherwise, choose binary. // TODO(ezb): Might make sense to add condition(s) based on node-size. using use_linear_search = std::integral_constant< bool, - has_linear_node_search_preference<key_compare>::value - ? prefers_linear_node_search<key_compare>::value - : has_linear_node_search_preference<key_type>::value - ? prefers_linear_node_search<key_type>::value - : std::is_arithmetic<key_type>::value && - (std::is_same<std::less<key_type>, key_compare>::value || - std::is_same<std::greater<key_type>, - key_compare>::value)>; + has_linear_node_search_preference<key_compare>::value + ? prefers_linear_node_search<key_compare>::value + : has_linear_node_search_preference<key_type>::value + ? prefers_linear_node_search<key_type>::value + : std::is_arithmetic<key_type>::value && + (std::is_same<std::less<key_type>, key_compare>::value || + std::is_same<std::greater<key_type>, + key_compare>::value)>; // This class is organized by y_absl::container_internal::Layout as if it had // the following structure: @@ -517,23 +517,23 @@ class btree_node { // // is the same as the count of values. // field_type finish; // // The maximum number of values the node can hold. This is an integer in - // // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf + // // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal - // // nodes (even though there are still kNodeSlots values in the node). + // // nodes (even though there are still kNodeSlots values in the node). // // TODO(ezb): make max_count use only 4 bits and record log2(capacity) // // to free extra bits for is_root, etc. // field_type max_count; // // // The array of values. The capacity is `max_count` for leaf nodes and - // // kNodeSlots for internal nodes. Only the values in + // // kNodeSlots for internal nodes. Only the values in // // [start, finish) have been initialized and are valid. // slot_type values[max_count]; // // // The array of child pointers. The keys in children[i] are all less // // than key(i). The keys in children[i + 1] are all greater than key(i). - // // There are 0 children for leaf nodes and kNodeSlots + 1 children for + // // There are 0 children for leaf nodes and kNodeSlots + 1 children for // // internal nodes. - // btree_node *children[kNodeSlots + 1]; + // btree_node *children[kNodeSlots + 1]; // // This class is only constructed by EmptyNodeType. Normally, pointers to the // layout above are allocated, cast to btree_node*, and de-allocated within @@ -555,62 +555,62 @@ class btree_node { private: using layout_type = y_absl::container_internal::Layout<btree_node *, field_type, slot_type, btree_node *>; - constexpr static size_type SizeWithNSlots(size_type n) { + constexpr static size_type SizeWithNSlots(size_type n) { return layout_type(/*parent*/ 1, /*position, start, finish, max_count*/ 4, - /*slots*/ n, + /*slots*/ n, /*children*/ 0) .AllocSize(); } // A lower bound for the overhead of fields other than values in a leaf node. constexpr static size_type MinimumOverhead() { - return SizeWithNSlots(1) - sizeof(value_type); + return SizeWithNSlots(1) - sizeof(value_type); } // Compute how many values we can fit onto a leaf node taking into account // padding. - constexpr static size_type NodeTargetSlots(const int begin, const int end) { + constexpr static size_type NodeTargetSlots(const int begin, const int end) { return begin == end ? begin - : SizeWithNSlots((begin + end) / 2 + 1) > + : SizeWithNSlots((begin + end) / 2 + 1) > params_type::kTargetNodeSize - ? NodeTargetSlots(begin, (begin + end) / 2) - : NodeTargetSlots((begin + end) / 2 + 1, end); + ? NodeTargetSlots(begin, (begin + end) / 2) + : NodeTargetSlots((begin + end) / 2 + 1, end); } enum { kTargetNodeSize = params_type::kTargetNodeSize, - kNodeTargetSlots = NodeTargetSlots(0, params_type::kTargetNodeSize), + kNodeTargetSlots = NodeTargetSlots(0, params_type::kTargetNodeSize), - // We need a minimum of 3 slots per internal node in order to perform + // We need a minimum of 3 slots per internal node in order to perform // splitting (1 value for the two nodes involved in the split and 1 value - // propagated to the parent as the delimiter for the split). For performance - // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy - // of 1/3 (for a node, not a b-tree). - kMinNodeSlots = 4, - - kNodeSlots = - kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots, - + // propagated to the parent as the delimiter for the split). For performance + // reasons, we don't allow 3 slots-per-node due to bad worst case occupancy + // of 1/3 (for a node, not a b-tree). + kMinNodeSlots = 4, + + kNodeSlots = + kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots, + // The node is internal (i.e. is not a leaf node) if and only if `max_count` // has this value. kInternalNodeMaxCount = 0, }; - // Leaves can have less than kNodeSlots values. - constexpr static layout_type LeafLayout(const int slot_count = kNodeSlots) { + // Leaves can have less than kNodeSlots values. + constexpr static layout_type LeafLayout(const int slot_count = kNodeSlots) { return layout_type(/*parent*/ 1, /*position, start, finish, max_count*/ 4, - /*slots*/ slot_count, + /*slots*/ slot_count, /*children*/ 0); } constexpr static layout_type InternalLayout() { return layout_type(/*parent*/ 1, /*position, start, finish, max_count*/ 4, - /*slots*/ kNodeSlots, - /*children*/ kNodeSlots + 1); + /*slots*/ kNodeSlots, + /*children*/ kNodeSlots + 1); } - constexpr static size_type LeafSize(const int slot_count = kNodeSlots) { - return LeafLayout(slot_count).AllocSize(); + constexpr static size_type LeafSize(const int slot_count = kNodeSlots) { + return LeafLayout(slot_count).AllocSize(); } constexpr static size_type InternalSize() { return InternalLayout().AllocSize(); @@ -667,10 +667,10 @@ class btree_node { } field_type max_count() const { // Internal nodes have max_count==kInternalNodeMaxCount. - // Leaf nodes have max_count in [1, kNodeSlots]. + // Leaf nodes have max_count in [1, kNodeSlots]. const field_type max_count = GetField<1>()[3]; return max_count == field_type{kInternalNodeMaxCount} - ? field_type{kNodeSlots} + ? field_type{kNodeSlots} : max_count; } @@ -748,7 +748,7 @@ class btree_node { } ++s; } - return SearchResult<int, false>{s}; + return SearchResult<int, false>{s}; } // Returns the position of the first value whose key is not less than k using @@ -783,7 +783,7 @@ class btree_node { e = mid; } } - return SearchResult<int, false>{s}; + return SearchResult<int, false>{s}; } // Returns the position of the first value whose key is not less than k using @@ -792,7 +792,7 @@ class btree_node { SearchResult<int, true> binary_search_impl( const K &k, int s, int e, const CompareTo &comp, std::true_type /* IsCompareTo */) const { - if (params_type::template can_have_multiple_equivalent_keys<K>()) { + if (params_type::template can_have_multiple_equivalent_keys<K>()) { MatchKind exact_match = MatchKind::kNe; while (s != e) { const int mid = (s + e) >> 1; @@ -803,14 +803,14 @@ class btree_node { e = mid; if (c == 0) { // Need to return the first value whose key is not less than k, - // which requires continuing the binary search if there could be - // multiple equivalent keys. + // which requires continuing the binary search if there could be + // multiple equivalent keys. exact_match = MatchKind::kEq; } } } return {s, exact_match}; - } else { // Can't have multiple equivalent keys. + } else { // Can't have multiple equivalent keys. while (s != e) { const int mid = (s + e) >> 1; const y_absl::weak_ordering c = comp(key(mid), k); @@ -831,10 +831,10 @@ class btree_node { template <typename... Args> void emplace_value(size_type i, allocator_type *alloc, Args &&... args); - // Removes the values at positions [i, i + to_erase), shifting all existing - // values and children after that range to the left by to_erase. Clears all - // children between [i, i + to_erase). - void remove_values(field_type i, field_type to_erase, allocator_type *alloc); + // Removes the values at positions [i, i + to_erase), shifting all existing + // values and children after that range to the left by to_erase. Clears all + // children between [i, i + to_erase). + void remove_values(field_type i, field_type to_erase, allocator_type *alloc); // Rebalances a node with its right sibling. void rebalance_right_to_left(int to_move, btree_node *right, @@ -846,87 +846,87 @@ class btree_node { void split(int insert_position, btree_node *dest, allocator_type *alloc); // Merges a node with its right sibling, moving all of the values and the - // delimiting key in the parent node onto itself, and deleting the src node. - void merge(btree_node *src, allocator_type *alloc); + // delimiting key in the parent node onto itself, and deleting the src node. + void merge(btree_node *src, allocator_type *alloc); // Node allocation/deletion routines. - void init_leaf(btree_node *parent, int max_count) { - set_parent(parent); - set_position(0); - set_start(0); - set_finish(0); - set_max_count(max_count); + void init_leaf(btree_node *parent, int max_count) { + set_parent(parent); + set_position(0); + set_start(0); + set_finish(0); + set_max_count(max_count); y_absl::container_internal::SanitizerPoisonMemoryRegion( - start_slot(), max_count * sizeof(slot_type)); + start_slot(), max_count * sizeof(slot_type)); } - void init_internal(btree_node *parent) { - init_leaf(parent, kNodeSlots); + void init_internal(btree_node *parent) { + init_leaf(parent, kNodeSlots); // Set `max_count` to a sentinel value to indicate that this node is // internal. - set_max_count(kInternalNodeMaxCount); + set_max_count(kInternalNodeMaxCount); y_absl::container_internal::SanitizerPoisonMemoryRegion( - &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *)); + &mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *)); } - static void deallocate(const size_type size, btree_node *node, - allocator_type *alloc) { - y_absl::container_internal::Deallocate<Alignment()>(alloc, node, size); + static void deallocate(const size_type size, btree_node *node, + allocator_type *alloc) { + y_absl::container_internal::Deallocate<Alignment()>(alloc, node, size); } - // Deletes a node and all of its children. - static void clear_and_delete(btree_node *node, allocator_type *alloc); - + // Deletes a node and all of its children. + static void clear_and_delete(btree_node *node, allocator_type *alloc); + private: template <typename... Args> - void value_init(const field_type i, allocator_type *alloc, Args &&... args) { + void value_init(const field_type i, allocator_type *alloc, Args &&... args) { y_absl::container_internal::SanitizerUnpoisonObject(slot(i)); params_type::construct(alloc, slot(i), std::forward<Args>(args)...); } - void value_destroy(const field_type i, allocator_type *alloc) { + void value_destroy(const field_type i, allocator_type *alloc) { params_type::destroy(alloc, slot(i)); y_absl::container_internal::SanitizerPoisonObject(slot(i)); } - void value_destroy_n(const field_type i, const field_type n, - allocator_type *alloc) { - for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) { - params_type::destroy(alloc, s); - y_absl::container_internal::SanitizerPoisonObject(s); - } - } - - static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) { - y_absl::container_internal::SanitizerUnpoisonObject(dest); - params_type::transfer(alloc, dest, src); - y_absl::container_internal::SanitizerPoisonObject(src); - } - - // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`. - void transfer(const size_type dest_i, const size_type src_i, - btree_node *src_node, allocator_type *alloc) { - transfer(slot(dest_i), src_node->slot(src_i), alloc); - } - - // Transfers `n` values starting at value `src_i` in `src_node` into the - // values starting at value `dest_i` in `this`. - void transfer_n(const size_type n, const size_type dest_i, - const size_type src_i, btree_node *src_node, - allocator_type *alloc) { - for (slot_type *src = src_node->slot(src_i), *end = src + n, - *dest = slot(dest_i); + void value_destroy_n(const field_type i, const field_type n, + allocator_type *alloc) { + for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) { + params_type::destroy(alloc, s); + y_absl::container_internal::SanitizerPoisonObject(s); + } + } + + static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) { + y_absl::container_internal::SanitizerUnpoisonObject(dest); + params_type::transfer(alloc, dest, src); + y_absl::container_internal::SanitizerPoisonObject(src); + } + + // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`. + void transfer(const size_type dest_i, const size_type src_i, + btree_node *src_node, allocator_type *alloc) { + transfer(slot(dest_i), src_node->slot(src_i), alloc); + } + + // Transfers `n` values starting at value `src_i` in `src_node` into the + // values starting at value `dest_i` in `this`. + void transfer_n(const size_type n, const size_type dest_i, + const size_type src_i, btree_node *src_node, + allocator_type *alloc) { + for (slot_type *src = src_node->slot(src_i), *end = src + n, + *dest = slot(dest_i); src != end; ++src, ++dest) { - transfer(dest, src, alloc); + transfer(dest, src, alloc); } } - // Same as above, except that we start at the end and work our way to the - // beginning. - void transfer_n_backward(const size_type n, const size_type dest_i, - const size_type src_i, btree_node *src_node, - allocator_type *alloc) { - for (slot_type *src = src_node->slot(src_i + n - 1), *end = src - n, - *dest = slot(dest_i + n - 1); - src != end; --src, --dest) { - transfer(dest, src, alloc); + // Same as above, except that we start at the end and work our way to the + // beginning. + void transfer_n_backward(const size_type n, const size_type dest_i, + const size_type src_i, btree_node *src_node, + allocator_type *alloc) { + for (slot_type *src = src_node->slot(src_i + n - 1), *end = src - n, + *dest = slot(dest_i + n - 1); + src != end; --src, --dest) { + transfer(dest, src, alloc); } } @@ -943,7 +943,7 @@ struct btree_iterator { using key_type = typename Node::key_type; using size_type = typename Node::size_type; using params_type = typename Node::params_type; - using is_map_container = typename params_type::is_map_container; + using is_map_container = typename params_type::is_map_container; using node_type = Node; using normal_node = typename std::remove_const<Node>::type; @@ -955,7 +955,7 @@ struct btree_iterator { using slot_type = typename params_type::slot_type; using iterator = - btree_iterator<normal_node, normal_reference, normal_pointer>; + btree_iterator<normal_node, normal_reference, normal_pointer>; using const_iterator = btree_iterator<const_node, const_reference, const_pointer>; @@ -972,19 +972,19 @@ struct btree_iterator { btree_iterator(Node *n, int p) : node(n), position(p) {} // NOTE: this SFINAE allows for implicit conversions from iterator to - // const_iterator, but it specifically avoids hiding the copy constructor so - // that the trivial one will be used when possible. + // const_iterator, but it specifically avoids hiding the copy constructor so + // that the trivial one will be used when possible. template <typename N, typename R, typename P, y_absl::enable_if_t< std::is_same<btree_iterator<N, R, P>, iterator>::value && std::is_same<btree_iterator, const_iterator>::value, int> = 0> - btree_iterator(const btree_iterator<N, R, P> other) // NOLINT - : node(other.node), position(other.position) {} + btree_iterator(const btree_iterator<N, R, P> other) // NOLINT + : node(other.node), position(other.position) {} private: // This SFINAE allows explicit conversions from const_iterator to - // iterator, but also avoids hiding the copy constructor. + // iterator, but also avoids hiding the copy constructor. // NOTE: the const_cast is safe because this constructor is only called by // non-const methods and the container owns the nodes. template <typename N, typename R, typename P, @@ -992,8 +992,8 @@ struct btree_iterator { std::is_same<btree_iterator<N, R, P>, const_iterator>::value && std::is_same<btree_iterator, iterator>::value, int> = 0> - explicit btree_iterator(const btree_iterator<N, R, P> other) - : node(const_cast<node_type *>(other.node)), position(other.position) {} + explicit btree_iterator(const btree_iterator<N, R, P> other) + : node(const_cast<node_type *>(other.node)), position(other.position) {} // Increment/decrement the iterator. void increment() { @@ -1013,27 +1013,27 @@ struct btree_iterator { void decrement_slow(); public: - bool operator==(const iterator &other) const { - return node == other.node && position == other.position; + bool operator==(const iterator &other) const { + return node == other.node && position == other.position; } - bool operator==(const const_iterator &other) const { - return node == other.node && position == other.position; - } - bool operator!=(const iterator &other) const { - return node != other.node || position != other.position; - } - bool operator!=(const const_iterator &other) const { - return node != other.node || position != other.position; + bool operator==(const const_iterator &other) const { + return node == other.node && position == other.position; } + bool operator!=(const iterator &other) const { + return node != other.node || position != other.position; + } + bool operator!=(const const_iterator &other) const { + return node != other.node || position != other.position; + } // Accessors for the key/value the iterator is pointing at. - reference operator*() const { - ABSL_HARDENING_ASSERT(node != nullptr); - ABSL_HARDENING_ASSERT(node->start() <= position); - ABSL_HARDENING_ASSERT(node->finish() > position); - return node->value(position); - } - pointer operator->() const { return &operator*(); } + reference operator*() const { + ABSL_HARDENING_ASSERT(node != nullptr); + ABSL_HARDENING_ASSERT(node->start() <= position); + ABSL_HARDENING_ASSERT(node->finish() > position); + return node->value(position); + } + pointer operator->() const { return &operator*(); } btree_iterator &operator++() { increment(); @@ -1055,8 +1055,8 @@ struct btree_iterator { } private: - friend iterator; - friend const_iterator; + friend iterator; + friend const_iterator; template <typename Params> friend class btree; template <typename Tree> @@ -1076,8 +1076,8 @@ struct btree_iterator { // The node in the tree the iterator is pointing at. Node *node; // The position within the node of the tree the iterator is pointing at. - // NOTE: this is an int rather than a field_type because iterators can point - // to invalid positions (such as -1) in certain circumstances. + // NOTE: this is an int rather than a field_type because iterators can point + // to invalid positions (such as -1) in certain circumstances. int position; }; @@ -1085,8 +1085,8 @@ template <typename Params> class btree { using node_type = btree_node<Params>; using is_key_compare_to = typename Params::is_key_compare_to; - using init_type = typename Params::init_type; - using field_type = typename node_type::field_type; + using init_type = typename Params::init_type; + using field_type = typename node_type::field_type; // We use a static empty node for the root/leftmost/rightmost of empty btrees // in order to avoid branching in begin()/end(). @@ -1121,9 +1121,9 @@ class btree { #endif } - enum : uint32_t { - kNodeSlots = node_type::kNodeSlots, - kMinNodeValues = kNodeSlots / 2, + enum : uint32_t { + kNodeSlots = node_type::kNodeSlots, + kMinNodeValues = kNodeSlots / 2, }; struct node_stats { @@ -1131,9 +1131,9 @@ class btree { node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {} - node_stats &operator+=(const node_stats &other) { - leaf_nodes += other.leaf_nodes; - internal_nodes += other.internal_nodes; + node_stats &operator+=(const node_stats &other) { + leaf_nodes += other.leaf_nodes; + internal_nodes += other.internal_nodes; return *this; } @@ -1154,8 +1154,8 @@ class btree { using const_reference = typename Params::const_reference; using pointer = typename Params::pointer; using const_pointer = typename Params::const_pointer; - using iterator = - typename btree_iterator<node_type, reference, pointer>::iterator; + using iterator = + typename btree_iterator<node_type, reference, pointer>::iterator; using const_iterator = typename iterator::const_iterator; using reverse_iterator = std::reverse_iterator<iterator>; using const_reverse_iterator = std::reverse_iterator<const_iterator>; @@ -1167,47 +1167,47 @@ class btree { private: // For use in copy_or_move_values_in_order. - const value_type &maybe_move_from_iterator(const_iterator it) { return *it; } - value_type &&maybe_move_from_iterator(iterator it) { - // This is a destructive operation on the other container so it's safe for - // us to const_cast and move from the keys here even if it's a set. - return std::move(const_cast<value_type &>(*it)); - } + const value_type &maybe_move_from_iterator(const_iterator it) { return *it; } + value_type &&maybe_move_from_iterator(iterator it) { + // This is a destructive operation on the other container so it's safe for + // us to const_cast and move from the keys here even if it's a set. + return std::move(const_cast<value_type &>(*it)); + } // Copies or moves (depending on the template parameter) the values in - // other into this btree in their order in other. This btree must be empty - // before this method is called. This method is used in copy construction, - // copy assignment, and move assignment. + // other into this btree in their order in other. This btree must be empty + // before this method is called. This method is used in copy construction, + // copy assignment, and move assignment. template <typename Btree> - void copy_or_move_values_in_order(Btree &other); + void copy_or_move_values_in_order(Btree &other); // Validates that various assumptions/requirements are true at compile time. constexpr static bool static_assert_validation(); public: - btree(const key_compare &comp, const allocator_type &alloc) - : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {} - - btree(const btree &other) : btree(other, other.allocator()) {} - btree(const btree &other, const allocator_type &alloc) - : btree(other.key_comp(), alloc) { - copy_or_move_values_in_order(other); - } - btree(btree &&other) noexcept - : root_(std::move(other.root_)), - rightmost_(y_absl::exchange(other.rightmost_, EmptyNode())), - size_(y_absl::exchange(other.size_, 0)) { - other.mutable_root() = EmptyNode(); - } - btree(btree &&other, const allocator_type &alloc) - : btree(other.key_comp(), alloc) { - if (alloc == other.allocator()) { - swap(other); - } else { - // Move values from `other` one at a time when allocators are different. - copy_or_move_values_in_order(other); - } - } + btree(const key_compare &comp, const allocator_type &alloc) + : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {} + + btree(const btree &other) : btree(other, other.allocator()) {} + btree(const btree &other, const allocator_type &alloc) + : btree(other.key_comp(), alloc) { + copy_or_move_values_in_order(other); + } + btree(btree &&other) noexcept + : root_(std::move(other.root_)), + rightmost_(y_absl::exchange(other.rightmost_, EmptyNode())), + size_(y_absl::exchange(other.size_, 0)) { + other.mutable_root() = EmptyNode(); + } + btree(btree &&other, const allocator_type &alloc) + : btree(other.key_comp(), alloc) { + if (alloc == other.allocator()) { + swap(other); + } else { + // Move values from `other` one at a time when allocators are different. + copy_or_move_values_in_order(other); + } + } ~btree() { // Put static_asserts in destructor to avoid triggering them before the type @@ -1216,9 +1216,9 @@ class btree { clear(); } - // Assign the contents of other to *this. - btree &operator=(const btree &other); - btree &operator=(btree &&other) noexcept; + // Assign the contents of other to *this. + btree &operator=(const btree &other); + btree &operator=(btree &&other) noexcept; iterator begin() { return iterator(leftmost()); } const_iterator begin() const { return const_iterator(leftmost()); } @@ -1235,23 +1235,23 @@ class btree { return const_reverse_iterator(begin()); } - // Finds the first element whose key is not less than `key`. + // Finds the first element whose key is not less than `key`. template <typename K> iterator lower_bound(const K &key) { - return internal_end(internal_lower_bound(key).value); + return internal_end(internal_lower_bound(key).value); } template <typename K> const_iterator lower_bound(const K &key) const { - return internal_end(internal_lower_bound(key).value); + return internal_end(internal_lower_bound(key).value); } - // Finds the first element whose key is not less than `key` and also returns - // whether that element is equal to `key`. - template <typename K> - std::pair<iterator, bool> lower_bound_equal(const K &key) const; - - // Finds the first element whose key is greater than `key`. + // Finds the first element whose key is not less than `key` and also returns + // whether that element is equal to `key`. template <typename K> + std::pair<iterator, bool> lower_bound_equal(const K &key) const; + + // Finds the first element whose key is greater than `key`. + template <typename K> iterator upper_bound(const K &key) { return internal_end(internal_upper_bound(key)); } @@ -1261,21 +1261,21 @@ class btree { } // Finds the range of values which compare equal to key. The first member of - // the returned pair is equal to lower_bound(key). The second member of the - // pair is equal to upper_bound(key). + // the returned pair is equal to lower_bound(key). The second member of the + // pair is equal to upper_bound(key). template <typename K> - std::pair<iterator, iterator> equal_range(const K &key); + std::pair<iterator, iterator> equal_range(const K &key); template <typename K> std::pair<const_iterator, const_iterator> equal_range(const K &key) const { - return const_cast<btree *>(this)->equal_range(key); + return const_cast<btree *>(this)->equal_range(key); } // Inserts a value into the btree only if it does not already exist. The // boolean return value indicates whether insertion succeeded or failed. // Requirement: if `key` already exists in the btree, does not consume `args`. // Requirement: `key` is never referenced after consuming `args`. - template <typename K, typename... Args> - std::pair<iterator, bool> insert_unique(const K &key, Args &&... args); + template <typename K, typename... Args> + std::pair<iterator, bool> insert_unique(const K &key, Args &&... args); // Inserts with hint. Checks to see if the value should be placed immediately // before `position` in the tree. If so, then the insertion will take @@ -1283,23 +1283,23 @@ class btree { // logarithmic time as if a call to insert_unique() were made. // Requirement: if `key` already exists in the btree, does not consume `args`. // Requirement: `key` is never referenced after consuming `args`. - template <typename K, typename... Args> + template <typename K, typename... Args> std::pair<iterator, bool> insert_hint_unique(iterator position, - const K &key, + const K &key, Args &&... args); // Insert a range of values into the btree. - // Note: the first overload avoids constructing a value_type if the key - // already exists in the btree. - template <typename InputIterator, - typename = decltype(std::declval<const key_compare &>()( - params_type::key(*std::declval<InputIterator>()), - std::declval<const key_type &>()))> - void insert_iterator_unique(InputIterator b, InputIterator e, int); - // We need the second overload for cases in which we need to construct a - // value_type in order to compare it with the keys already in the btree. + // Note: the first overload avoids constructing a value_type if the key + // already exists in the btree. + template <typename InputIterator, + typename = decltype(std::declval<const key_compare &>()( + params_type::key(*std::declval<InputIterator>()), + std::declval<const key_type &>()))> + void insert_iterator_unique(InputIterator b, InputIterator e, int); + // We need the second overload for cases in which we need to construct a + // value_type in order to compare it with the keys already in the btree. template <typename InputIterator> - void insert_iterator_unique(InputIterator b, InputIterator e, char); + void insert_iterator_unique(InputIterator b, InputIterator e, char); // Inserts a value into the btree. template <typename ValueType> @@ -1332,8 +1332,8 @@ class btree { // to the element after the last erased element. std::pair<size_type, iterator> erase_range(iterator begin, iterator end); - // Finds an element with key equivalent to `key` or returns `end()` if `key` - // is not present. + // Finds an element with key equivalent to `key` or returns `end()` if `key` + // is not present. template <typename K> iterator find(const K &key) { return internal_end(internal_find(key)); @@ -1346,15 +1346,15 @@ class btree { // Clear the btree, deleting all of the values it contains. void clear(); - // Swaps the contents of `this` and `other`. - void swap(btree &other); + // Swaps the contents of `this` and `other`. + void swap(btree &other); const key_compare &key_comp() const noexcept { return root_.template get<0>(); } - template <typename K1, typename K2> - bool compare_keys(const K1 &a, const K2 &b) const { - return compare_internal::compare_result_as_less_than(key_comp()(a, b)); + template <typename K1, typename K2> + bool compare_keys(const K1 &a, const K2 &b) const { + return compare_internal::compare_result_as_less_than(key_comp()(a, b)); } value_compare value_comp() const { @@ -1407,14 +1407,14 @@ class btree { } } - // The average number of bytes used per value stored in the btree assuming - // random insertion order. + // The average number of bytes used per value stored in the btree assuming + // random insertion order. static double average_bytes_per_value() { - // The expected number of values per node with random insertion order is the - // average of the maximum and minimum numbers of values per node. - const double expected_values_per_node = - (kNodeSlots + kMinNodeValues) / 2.0; - return node_type::LeafSize() / expected_values_per_node; + // The expected number of values per node with random insertion order is the + // average of the maximum and minimum numbers of values per node. + const double expected_values_per_node = + (kNodeSlots + kMinNodeValues) / 2.0; + return node_type::LeafSize() / expected_values_per_node; } // The fullness of the btree. Computed as the number of elements in the btree @@ -1424,7 +1424,7 @@ class btree { // Returns 0 for empty trees. double fullness() const { if (empty()) return 0.0; - return static_cast<double>(size()) / (nodes() * kNodeSlots); + return static_cast<double>(size()) / (nodes() * kNodeSlots); } // The overhead of the btree structure in bytes per node. Computed as the // total number of bytes used by the btree minus the number of bytes used for @@ -1468,19 +1468,19 @@ class btree { // Node creation/deletion routines. node_type *new_internal_node(node_type *parent) { - node_type *n = allocate(node_type::InternalSize()); - n->init_internal(parent); - return n; + node_type *n = allocate(node_type::InternalSize()); + n->init_internal(parent); + return n; } node_type *new_leaf_node(node_type *parent) { - node_type *n = allocate(node_type::LeafSize()); - n->init_leaf(parent, kNodeSlots); - return n; + node_type *n = allocate(node_type::LeafSize()); + n->init_leaf(parent, kNodeSlots); + return n; } node_type *new_leaf_root_node(const int max_count) { - node_type *n = allocate(node_type::LeafSize(max_count)); - n->init_leaf(/*parent=*/n, max_count); - return n; + node_type *n = allocate(node_type::LeafSize(max_count)); + n->init_leaf(/*parent=*/n, max_count); + return n; } // Deletion helper routines. @@ -1523,19 +1523,19 @@ class btree { static IterType internal_last(IterType iter); // Returns an iterator pointing to the leaf position at which key would - // reside in the tree, unless there is an exact match - in which case, the - // result may not be on a leaf. When there's a three-way comparator, we can - // return whether there was an exact match. This allows the caller to avoid a - // subsequent comparison to determine if an exact match was made, which is - // important for keys with expensive comparison, such as strings. + // reside in the tree, unless there is an exact match - in which case, the + // result may not be on a leaf. When there's a three-way comparator, we can + // return whether there was an exact match. This allows the caller to avoid a + // subsequent comparison to determine if an exact match was made, which is + // important for keys with expensive comparison, such as strings. template <typename K> SearchResult<iterator, is_key_compare_to::value> internal_locate( const K &key) const; // Internal routine which implements lower_bound(). template <typename K> - SearchResult<iterator, is_key_compare_to::value> internal_lower_bound( - const K &key) const; + SearchResult<iterator, is_key_compare_to::value> internal_lower_bound( + const K &key) const; // Internal routine which implements upper_bound(). template <typename K> @@ -1590,8 +1590,8 @@ inline void btree_node<P>::emplace_value(const size_type i, // Shift old values to create space for new value and then construct it in // place. if (i < finish()) { - transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this, - alloc); + transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this, + alloc); } value_init(i, alloc, std::forward<Args>(args)...); set_finish(finish() + 1); @@ -1605,27 +1605,27 @@ inline void btree_node<P>::emplace_value(const size_type i, } template <typename P> -inline void btree_node<P>::remove_values(const field_type i, - const field_type to_erase, - allocator_type *alloc) { - // Transfer values after the removed range into their new places. - value_destroy_n(i, to_erase, alloc); - const field_type orig_finish = finish(); - const field_type src_i = i + to_erase; - transfer_n(orig_finish - src_i, i, src_i, this, alloc); - - if (!leaf()) { - // Delete all children between begin and end. - for (int j = 0; j < to_erase; ++j) { - clear_and_delete(child(i + j + 1), alloc); - } - // Rotate children after end into new positions. - for (int j = i + to_erase + 1; j <= orig_finish; ++j) { - set_child(j - to_erase, child(j)); - clear_child(j); +inline void btree_node<P>::remove_values(const field_type i, + const field_type to_erase, + allocator_type *alloc) { + // Transfer values after the removed range into their new places. + value_destroy_n(i, to_erase, alloc); + const field_type orig_finish = finish(); + const field_type src_i = i + to_erase; + transfer_n(orig_finish - src_i, i, src_i, this, alloc); + + if (!leaf()) { + // Delete all children between begin and end. + for (int j = 0; j < to_erase; ++j) { + clear_and_delete(child(i + j + 1), alloc); } + // Rotate children after end into new positions. + for (int j = i + to_erase + 1; j <= orig_finish; ++j) { + set_child(j - to_erase, child(j)); + clear_child(j); + } } - set_finish(orig_finish - to_erase); + set_finish(orig_finish - to_erase); } template <typename P> @@ -1639,17 +1639,17 @@ void btree_node<P>::rebalance_right_to_left(const int to_move, assert(to_move <= right->count()); // 1) Move the delimiting value in the parent to the left node. - transfer(finish(), position(), parent(), alloc); + transfer(finish(), position(), parent(), alloc); // 2) Move the (to_move - 1) values from the right node to the left node. - transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc); + transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc); // 3) Move the new delimiting value to the parent from the right node. - parent()->transfer(position(), right->start() + to_move - 1, right, alloc); + parent()->transfer(position(), right->start() + to_move - 1, right, alloc); - // 4) Shift the values in the right node to their correct positions. - right->transfer_n(right->count() - to_move, right->start(), - right->start() + to_move, right, alloc); + // 4) Shift the values in the right node to their correct positions. + right->transfer_n(right->count() - to_move, right->start(), + right->start() + to_move, right, alloc); if (!leaf()) { // Move the child pointers from the right to the left node. @@ -1684,19 +1684,19 @@ void btree_node<P>::rebalance_left_to_right(const int to_move, // Lastly, a new delimiting value is moved from the left node into the // parent, and the remaining empty left node entries are destroyed. - // 1) Shift existing values in the right node to their correct positions. - right->transfer_n_backward(right->count(), right->start() + to_move, - right->start(), right, alloc); + // 1) Shift existing values in the right node to their correct positions. + right->transfer_n_backward(right->count(), right->start() + to_move, + right->start(), right, alloc); - // 2) Move the delimiting value in the parent to the right node. - right->transfer(right->start() + to_move - 1, position(), parent(), alloc); + // 2) Move the delimiting value in the parent to the right node. + right->transfer(right->start() + to_move - 1, position(), parent(), alloc); - // 3) Move the (to_move - 1) values from the left node to the right node. - right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this, - alloc); + // 3) Move the (to_move - 1) values from the left node to the right node. + right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this, + alloc); // 4) Move the new delimiting value to the parent from the left node. - parent()->transfer(position(), finish() - to_move, this, alloc); + parent()->transfer(position(), finish() - to_move, this, alloc); if (!leaf()) { // Move the child pointers from the left to the right node. @@ -1719,7 +1719,7 @@ template <typename P> void btree_node<P>::split(const int insert_position, btree_node *dest, allocator_type *alloc) { assert(dest->count() == 0); - assert(max_count() == kNodeSlots); + assert(max_count() == kNodeSlots); // We bias the split based on the position being inserted. If we're // inserting at the beginning of the left node then bias the split to put @@ -1727,7 +1727,7 @@ void btree_node<P>::split(const int insert_position, btree_node *dest, // right node then bias the split to put more values on the left node. if (insert_position == start()) { dest->set_finish(dest->start() + finish() - 1); - } else if (insert_position == kNodeSlots) { + } else if (insert_position == kNodeSlots) { dest->set_finish(dest->start()); } else { dest->set_finish(dest->start() + count() / 2); @@ -1736,7 +1736,7 @@ void btree_node<P>::split(const int insert_position, btree_node *dest, assert(count() >= 1); // Move values from the left sibling to the right sibling. - dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc); + dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc); // The split key is the largest value in the left sibling. --mutable_finish(); @@ -1763,7 +1763,7 @@ void btree_node<P>::merge(btree_node *src, allocator_type *alloc) { value_init(finish(), alloc, parent()->slot(position())); // Move the values from the right to the left node. - transfer_n(src->count(), finish() + 1, src->start(), src, alloc); + transfer_n(src->count(), finish() + 1, src->start(), src, alloc); if (!leaf()) { // Move the child pointers from the right to the left node. @@ -1777,58 +1777,58 @@ void btree_node<P>::merge(btree_node *src, allocator_type *alloc) { set_finish(start() + 1 + count() + src->count()); src->set_finish(src->start()); - // Remove the value on the parent node and delete the src node. - parent()->remove_values(position(), /*to_erase=*/1, alloc); + // Remove the value on the parent node and delete the src node. + parent()->remove_values(position(), /*to_erase=*/1, alloc); } template <typename P> -void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) { - if (node->leaf()) { - node->value_destroy_n(node->start(), node->count(), alloc); - deallocate(LeafSize(node->max_count()), node, alloc); - return; - } - if (node->count() == 0) { - deallocate(InternalSize(), node, alloc); - return; - } - - // The parent of the root of the subtree we are deleting. - btree_node *delete_root_parent = node->parent(); - - // Navigate to the leftmost leaf under node, and then delete upwards. - while (!node->leaf()) node = node->start_child(); - // Use `int` because `pos` needs to be able to hold `kNodeSlots+1`, which - // isn't guaranteed to be a valid `field_type`. - int pos = node->position(); - btree_node *parent = node->parent(); - for (;;) { - // In each iteration of the next loop, we delete one leaf node and go right. - assert(pos <= parent->finish()); - do { - node = parent->child(pos); - if (!node->leaf()) { - // Navigate to the leftmost leaf under node. - while (!node->leaf()) node = node->start_child(); - pos = node->position(); - parent = node->parent(); - } - node->value_destroy_n(node->start(), node->count(), alloc); - deallocate(LeafSize(node->max_count()), node, alloc); - ++pos; - } while (pos <= parent->finish()); - - // Once we've deleted all children of parent, delete parent and go up/right. - assert(pos > parent->finish()); - do { - node = parent; - pos = node->position(); - parent = node->parent(); - node->value_destroy_n(node->start(), node->count(), alloc); - deallocate(InternalSize(), node, alloc); - if (parent == delete_root_parent) return; - ++pos; - } while (pos > parent->finish()); +void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) { + if (node->leaf()) { + node->value_destroy_n(node->start(), node->count(), alloc); + deallocate(LeafSize(node->max_count()), node, alloc); + return; + } + if (node->count() == 0) { + deallocate(InternalSize(), node, alloc); + return; + } + + // The parent of the root of the subtree we are deleting. + btree_node *delete_root_parent = node->parent(); + + // Navigate to the leftmost leaf under node, and then delete upwards. + while (!node->leaf()) node = node->start_child(); + // Use `int` because `pos` needs to be able to hold `kNodeSlots+1`, which + // isn't guaranteed to be a valid `field_type`. + int pos = node->position(); + btree_node *parent = node->parent(); + for (;;) { + // In each iteration of the next loop, we delete one leaf node and go right. + assert(pos <= parent->finish()); + do { + node = parent->child(pos); + if (!node->leaf()) { + // Navigate to the leftmost leaf under node. + while (!node->leaf()) node = node->start_child(); + pos = node->position(); + parent = node->parent(); + } + node->value_destroy_n(node->start(), node->count(), alloc); + deallocate(LeafSize(node->max_count()), node, alloc); + ++pos; + } while (pos <= parent->finish()); + + // Once we've deleted all children of parent, delete parent and go up/right. + assert(pos > parent->finish()); + do { + node = parent; + pos = node->position(); + parent = node->parent(); + node->value_destroy_n(node->start(), node->count(), alloc); + deallocate(InternalSize(), node, alloc); + if (parent == delete_root_parent) return; + ++pos; + } while (pos > parent->finish()); } } @@ -1844,7 +1844,7 @@ void btree_iterator<N, R, P>::increment_slow() { position = node->position(); node = node->parent(); } - // TODO(ezb): assert we aren't incrementing end() instead of handling. + // TODO(ezb): assert we aren't incrementing end() instead of handling. if (position == node->finish()) { *this = save; } @@ -1868,7 +1868,7 @@ void btree_iterator<N, R, P>::decrement_slow() { position = node->position() - 1; node = node->parent(); } - // TODO(ezb): assert we aren't decrementing begin() instead of handling. + // TODO(ezb): assert we aren't decrementing begin() instead of handling. if (position < node->start()) { *this = save; } @@ -1886,7 +1886,7 @@ void btree_iterator<N, R, P>::decrement_slow() { // btree methods template <typename P> template <typename Btree> -void btree<P>::copy_or_move_values_in_order(Btree &other) { +void btree<P>::copy_or_move_values_in_order(Btree &other) { static_assert(std::is_same<btree, Btree>::value || std::is_same<const btree, Btree>::value, "Btree type must be same or const."); @@ -1894,11 +1894,11 @@ void btree<P>::copy_or_move_values_in_order(Btree &other) { // We can avoid key comparisons because we know the order of the // values is the same order we'll store them in. - auto iter = other.begin(); - if (iter == other.end()) return; + auto iter = other.begin(); + if (iter == other.end()) return; insert_multi(maybe_move_from_iterator(iter)); ++iter; - for (; iter != other.end(); ++iter) { + for (; iter != other.end(); ++iter) { // If the btree is not empty, we can just insert the new value at the end // of the tree. internal_emplace(end(), maybe_move_from_iterator(iter)); @@ -1917,7 +1917,7 @@ constexpr bool btree<P>::static_assert_validation() { // Note: We assert that kTargetValues, which is computed from // Params::kTargetNodeSize, must fit the node_type::field_type. static_assert( - kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))), + kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))), "target node size too large"); // Verify that key_compare returns an y_absl::{weak,strong}_ordering or bool. @@ -1937,57 +1937,57 @@ constexpr bool btree<P>::static_assert_validation() { } template <typename P> -template <typename K> -auto btree<P>::lower_bound_equal(const K &key) const - -> std::pair<iterator, bool> { - const SearchResult<iterator, is_key_compare_to::value> res = - internal_lower_bound(key); - const iterator lower = iterator(internal_end(res.value)); - const bool equal = res.HasMatch() - ? res.IsEq() - : lower != end() && !compare_keys(key, lower.key()); - return {lower, equal}; -} +template <typename K> +auto btree<P>::lower_bound_equal(const K &key) const + -> std::pair<iterator, bool> { + const SearchResult<iterator, is_key_compare_to::value> res = + internal_lower_bound(key); + const iterator lower = iterator(internal_end(res.value)); + const bool equal = res.HasMatch() + ? res.IsEq() + : lower != end() && !compare_keys(key, lower.key()); + return {lower, equal}; +} template <typename P> -template <typename K> -auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> { - const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key); - const iterator lower = lower_and_equal.first; - if (!lower_and_equal.second) { - return {lower, lower}; - } - - const iterator next = std::next(lower); - if (!params_type::template can_have_multiple_equivalent_keys<K>()) { - // The next iterator after lower must point to a key greater than `key`. - // Note: if this assert fails, then it may indicate that the comparator does - // not meet the equivalence requirements for Compare - // (see https://en.cppreference.com/w/cpp/named_req/Compare). - assert(next == end() || compare_keys(key, next.key())); - return {lower, next}; - } - // Try once more to avoid the call to upper_bound() if there's only one - // equivalent key. This should prevent all calls to upper_bound() in cases of - // unique-containers with heterogeneous comparators in which all comparison - // operators have the same equivalence classes. - if (next == end() || compare_keys(key, next.key())) return {lower, next}; - - // In this case, we need to call upper_bound() to avoid worst case O(N) - // behavior if we were to iterate over equal keys. - return {lower, upper_bound(key)}; +template <typename K> +auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> { + const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key); + const iterator lower = lower_and_equal.first; + if (!lower_and_equal.second) { + return {lower, lower}; + } + + const iterator next = std::next(lower); + if (!params_type::template can_have_multiple_equivalent_keys<K>()) { + // The next iterator after lower must point to a key greater than `key`. + // Note: if this assert fails, then it may indicate that the comparator does + // not meet the equivalence requirements for Compare + // (see https://en.cppreference.com/w/cpp/named_req/Compare). + assert(next == end() || compare_keys(key, next.key())); + return {lower, next}; + } + // Try once more to avoid the call to upper_bound() if there's only one + // equivalent key. This should prevent all calls to upper_bound() in cases of + // unique-containers with heterogeneous comparators in which all comparison + // operators have the same equivalence classes. + if (next == end() || compare_keys(key, next.key())) return {lower, next}; + + // In this case, we need to call upper_bound() to avoid worst case O(N) + // behavior if we were to iterate over equal keys. + return {lower, upper_bound(key)}; } template <typename P> -template <typename K, typename... Args> -auto btree<P>::insert_unique(const K &key, Args &&... args) +template <typename K, typename... Args> +auto btree<P>::insert_unique(const K &key, Args &&... args) -> std::pair<iterator, bool> { if (empty()) { mutable_root() = rightmost_ = new_leaf_root_node(1); } - SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); - iterator iter = res.value; + SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); + iterator iter = res.value; if (res.HasMatch()) { if (res.IsEq()) { @@ -2005,8 +2005,8 @@ auto btree<P>::insert_unique(const K &key, Args &&... args) } template <typename P> -template <typename K, typename... Args> -inline auto btree<P>::insert_hint_unique(iterator position, const K &key, +template <typename K, typename... Args> +inline auto btree<P>::insert_hint_unique(iterator position, const K &key, Args &&... args) -> std::pair<iterator, bool> { if (!empty()) { @@ -2030,23 +2030,23 @@ inline auto btree<P>::insert_hint_unique(iterator position, const K &key, } template <typename P> -template <typename InputIterator, typename> -void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) { +template <typename InputIterator, typename> +void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) { for (; b != e; ++b) { insert_hint_unique(end(), params_type::key(*b), *b); } } template <typename P> -template <typename InputIterator> -void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) { - for (; b != e; ++b) { - init_type value(*b); - insert_hint_unique(end(), params_type::key(value), std::move(value)); - } -} - -template <typename P> +template <typename InputIterator> +void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) { + for (; b != e; ++b) { + init_type value(*b); + insert_hint_unique(end(), params_type::key(value), std::move(value)); + } +} + +template <typename P> template <typename ValueType> auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator { if (empty()) { @@ -2091,47 +2091,47 @@ void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) { } template <typename P> -auto btree<P>::operator=(const btree &other) -> btree & { - if (this != &other) { +auto btree<P>::operator=(const btree &other) -> btree & { + if (this != &other) { clear(); - *mutable_key_comp() = other.key_comp(); + *mutable_key_comp() = other.key_comp(); if (y_absl::allocator_traits< allocator_type>::propagate_on_container_copy_assignment::value) { - *mutable_allocator() = other.allocator(); + *mutable_allocator() = other.allocator(); } - copy_or_move_values_in_order(other); + copy_or_move_values_in_order(other); } return *this; } template <typename P> -auto btree<P>::operator=(btree &&other) noexcept -> btree & { - if (this != &other) { +auto btree<P>::operator=(btree &&other) noexcept -> btree & { + if (this != &other) { clear(); using std::swap; if (y_absl::allocator_traits< allocator_type>::propagate_on_container_copy_assignment::value) { // Note: `root_` also contains the allocator and the key comparator. - swap(root_, other.root_); - swap(rightmost_, other.rightmost_); - swap(size_, other.size_); + swap(root_, other.root_); + swap(rightmost_, other.rightmost_); + swap(size_, other.size_); } else { - if (allocator() == other.allocator()) { - swap(mutable_root(), other.mutable_root()); - swap(*mutable_key_comp(), *other.mutable_key_comp()); - swap(rightmost_, other.rightmost_); - swap(size_, other.size_); + if (allocator() == other.allocator()) { + swap(mutable_root(), other.mutable_root()); + swap(*mutable_key_comp(), *other.mutable_key_comp()); + swap(rightmost_, other.rightmost_); + swap(size_, other.size_); } else { // We aren't allowed to propagate the allocator and the allocator is // different so we can't take over its memory. We must move each element - // individually. We need both `other` and `this` to have `other`s key - // comparator while moving the values so we can't swap the key - // comparators. - *mutable_key_comp() = other.key_comp(); - copy_or_move_values_in_order(other); + // individually. We need both `other` and `this` to have `other`s key + // comparator while moving the values so we can't swap the key + // comparators. + *mutable_key_comp() = other.key_comp(); + copy_or_move_values_in_order(other); } } } @@ -2143,7 +2143,7 @@ auto btree<P>::erase(iterator iter) -> iterator { bool internal_delete = false; if (!iter.node->leaf()) { // Deletion of a value on an internal node. First, move the largest value - // from our left child here, then delete that position (in remove_values() + // from our left child here, then delete that position (in remove_values() // below). We can get to the largest value from our left child by // decrementing iter. iterator internal_iter(iter); @@ -2155,7 +2155,7 @@ auto btree<P>::erase(iterator iter) -> iterator { } // Delete the key from the leaf. - iter.node->remove_values(iter.position, /*to_erase=*/1, mutable_allocator()); + iter.node->remove_values(iter.position, /*to_erase=*/1, mutable_allocator()); --size_; // We want to return the next value after the one we just erased. If we @@ -2230,9 +2230,9 @@ auto btree<P>::erase_range(iterator begin, iterator end) } if (begin.node == end.node) { - assert(end.position > begin.position); - begin.node->remove_values(begin.position, end.position - begin.position, - mutable_allocator()); + assert(end.position > begin.position); + begin.node->remove_values(begin.position, end.position - begin.position, + mutable_allocator()); size_ -= count; return {count, rebalance_after_delete(begin)}; } @@ -2242,11 +2242,11 @@ auto btree<P>::erase_range(iterator begin, iterator end) if (begin.node->leaf()) { const size_type remaining_to_erase = size_ - target_size; const size_type remaining_in_node = begin.node->finish() - begin.position; - const size_type to_erase = - (std::min)(remaining_to_erase, remaining_in_node); - begin.node->remove_values(begin.position, to_erase, mutable_allocator()); - size_ -= to_erase; - begin = rebalance_after_delete(begin); + const size_type to_erase = + (std::min)(remaining_to_erase, remaining_in_node); + begin.node->remove_values(begin.position, to_erase, mutable_allocator()); + size_ -= to_erase; + begin = rebalance_after_delete(begin); } else { begin = erase(begin); } @@ -2257,7 +2257,7 @@ auto btree<P>::erase_range(iterator begin, iterator end) template <typename P> void btree<P>::clear() { if (!empty()) { - node_type::clear_and_delete(root(), mutable_allocator()); + node_type::clear_and_delete(root(), mutable_allocator()); } mutable_root() = EmptyNode(); rightmost_ = EmptyNode(); @@ -2265,20 +2265,20 @@ void btree<P>::clear() { } template <typename P> -void btree<P>::swap(btree &other) { +void btree<P>::swap(btree &other) { using std::swap; if (y_absl::allocator_traits< allocator_type>::propagate_on_container_swap::value) { // Note: `root_` also contains the allocator and the key comparator. - swap(root_, other.root_); + swap(root_, other.root_); } else { // It's undefined behavior if the allocators are unequal here. - assert(allocator() == other.allocator()); - swap(mutable_root(), other.mutable_root()); - swap(*mutable_key_comp(), *other.mutable_key_comp()); + assert(allocator() == other.allocator()); + swap(mutable_root(), other.mutable_root()); + swap(*mutable_key_comp(), *other.mutable_key_comp()); } - swap(rightmost_, other.rightmost_); - swap(size_, other.size_); + swap(rightmost_, other.rightmost_); + swap(size_, other.size_); } template <typename P> @@ -2298,7 +2298,7 @@ void btree<P>::rebalance_or_split(iterator *iter) { node_type *&node = iter->node; int &insert_position = iter->position; assert(node->count() == node->max_count()); - assert(kNodeSlots == node->max_count()); + assert(kNodeSlots == node->max_count()); // First try to make room on the node by rebalancing. node_type *parent = node->parent(); @@ -2306,17 +2306,17 @@ void btree<P>::rebalance_or_split(iterator *iter) { if (node->position() > parent->start()) { // Try rebalancing with our left sibling. node_type *left = parent->child(node->position() - 1); - assert(left->max_count() == kNodeSlots); - if (left->count() < kNodeSlots) { + assert(left->max_count() == kNodeSlots); + if (left->count() < kNodeSlots) { // We bias rebalancing based on the position being inserted. If we're // inserting at the end of the right node then we bias rebalancing to // fill up the left node. - int to_move = (kNodeSlots - left->count()) / - (1 + (insert_position < static_cast<int>(kNodeSlots))); + int to_move = (kNodeSlots - left->count()) / + (1 + (insert_position < static_cast<int>(kNodeSlots))); to_move = (std::max)(1, to_move); if (insert_position - to_move >= node->start() || - left->count() + to_move < static_cast<int>(kNodeSlots)) { + left->count() + to_move < static_cast<int>(kNodeSlots)) { left->rebalance_right_to_left(to_move, node, mutable_allocator()); assert(node->max_count() - node->count() == to_move); @@ -2335,17 +2335,17 @@ void btree<P>::rebalance_or_split(iterator *iter) { if (node->position() < parent->finish()) { // Try rebalancing with our right sibling. node_type *right = parent->child(node->position() + 1); - assert(right->max_count() == kNodeSlots); - if (right->count() < kNodeSlots) { + assert(right->max_count() == kNodeSlots); + if (right->count() < kNodeSlots) { // We bias rebalancing based on the position being inserted. If we're // inserting at the beginning of the left node then we bias rebalancing // to fill up the right node. - int to_move = (static_cast<int>(kNodeSlots) - right->count()) / + int to_move = (static_cast<int>(kNodeSlots) - right->count()) / (1 + (insert_position > node->start())); to_move = (std::max)(1, to_move); if (insert_position <= node->finish() - to_move || - right->count() + to_move < static_cast<int>(kNodeSlots)) { + right->count() + to_move < static_cast<int>(kNodeSlots)) { node->rebalance_left_to_right(to_move, right, mutable_allocator()); if (insert_position > node->finish()) { @@ -2361,8 +2361,8 @@ void btree<P>::rebalance_or_split(iterator *iter) { // Rebalancing failed, make sure there is room on the parent node for a new // value. - assert(parent->max_count() == kNodeSlots); - if (parent->count() == kNodeSlots) { + assert(parent->max_count() == kNodeSlots); + if (parent->count() == kNodeSlots) { iterator parent_iter(node->parent(), node->position()); rebalance_or_split(&parent_iter); } @@ -2398,7 +2398,7 @@ void btree<P>::rebalance_or_split(iterator *iter) { template <typename P> void btree<P>::merge_nodes(node_type *left, node_type *right) { left->merge(right, mutable_allocator()); - if (rightmost_ == right) rightmost_ = left; + if (rightmost_ == right) rightmost_ = left; } template <typename P> @@ -2407,8 +2407,8 @@ bool btree<P>::try_merge_or_rebalance(iterator *iter) { if (iter->node->position() > parent->start()) { // Try merging with our left sibling. node_type *left = parent->child(iter->node->position() - 1); - assert(left->max_count() == kNodeSlots); - if (1U + left->count() + iter->node->count() <= kNodeSlots) { + assert(left->max_count() == kNodeSlots); + if (1U + left->count() + iter->node->count() <= kNodeSlots) { iter->position += 1 + left->count(); merge_nodes(left, iter->node); iter->node = left; @@ -2418,8 +2418,8 @@ bool btree<P>::try_merge_or_rebalance(iterator *iter) { if (iter->node->position() < parent->finish()) { // Try merging with our right sibling. node_type *right = parent->child(iter->node->position() + 1); - assert(right->max_count() == kNodeSlots); - if (1U + iter->node->count() + right->count() <= kNodeSlots) { + assert(right->max_count() == kNodeSlots); + if (1U + iter->node->count() + right->count() <= kNodeSlots) { merge_nodes(iter->node, right); return true; } @@ -2455,20 +2455,20 @@ bool btree<P>::try_merge_or_rebalance(iterator *iter) { template <typename P> void btree<P>::try_shrink() { - node_type *orig_root = root(); - if (orig_root->count() > 0) { + node_type *orig_root = root(); + if (orig_root->count() > 0) { return; } // Deleted the last item on the root node, shrink the height of the tree. - if (orig_root->leaf()) { + if (orig_root->leaf()) { assert(size() == 0); - mutable_root() = rightmost_ = EmptyNode(); + mutable_root() = rightmost_ = EmptyNode(); } else { - node_type *child = orig_root->start_child(); + node_type *child = orig_root->start_child(); child->make_root(); mutable_root() = child; } - node_type::clear_and_delete(orig_root, mutable_allocator()); + node_type::clear_and_delete(orig_root, mutable_allocator()); } template <typename P> @@ -2496,30 +2496,30 @@ inline auto btree<P>::internal_emplace(iterator iter, Args &&... args) --iter; ++iter.position; } - const field_type max_count = iter.node->max_count(); - allocator_type *alloc = mutable_allocator(); + const field_type max_count = iter.node->max_count(); + allocator_type *alloc = mutable_allocator(); if (iter.node->count() == max_count) { // Make room in the leaf for the new item. - if (max_count < kNodeSlots) { + if (max_count < kNodeSlots) { // Insertion into the root where the root is smaller than the full node // size. Simply grow the size of the root node. assert(iter.node == root()); iter.node = - new_leaf_root_node((std::min<int>)(kNodeSlots, 2 * max_count)); - // Transfer the values from the old root to the new root. - node_type *old_root = root(); - node_type *new_root = iter.node; - new_root->transfer_n(old_root->count(), new_root->start(), - old_root->start(), old_root, alloc); - new_root->set_finish(old_root->finish()); - old_root->set_finish(old_root->start()); - node_type::clear_and_delete(old_root, alloc); - mutable_root() = rightmost_ = new_root; + new_leaf_root_node((std::min<int>)(kNodeSlots, 2 * max_count)); + // Transfer the values from the old root to the new root. + node_type *old_root = root(); + node_type *new_root = iter.node; + new_root->transfer_n(old_root->count(), new_root->start(), + old_root->start(), old_root, alloc); + new_root->set_finish(old_root->finish()); + old_root->set_finish(old_root->start()); + node_type::clear_and_delete(old_root, alloc); + mutable_root() = rightmost_ = new_root; } else { rebalance_or_split(&iter); } } - iter.node->emplace_value(iter.position, alloc, std::forward<Args>(args)...); + iter.node->emplace_value(iter.position, alloc, std::forward<Args>(args)...); ++size_; return iter; } @@ -2530,49 +2530,49 @@ inline auto btree<P>::internal_locate(const K &key) const -> SearchResult<iterator, is_key_compare_to::value> { iterator iter(const_cast<node_type *>(root())); for (;;) { - SearchResult<int, is_key_compare_to::value> res = - iter.node->lower_bound(key, key_comp()); + SearchResult<int, is_key_compare_to::value> res = + iter.node->lower_bound(key, key_comp()); iter.position = res.value; - if (res.IsEq()) { + if (res.IsEq()) { return {iter, MatchKind::kEq}; } - // Note: in the non-key-compare-to case, we don't need to walk all the way - // down the tree if the keys are equal, but determining equality would - // require doing an extra comparison on each node on the way down, and we - // will need to go all the way to the leaf node in the expected case. + // Note: in the non-key-compare-to case, we don't need to walk all the way + // down the tree if the keys are equal, but determining equality would + // require doing an extra comparison on each node on the way down, and we + // will need to go all the way to the leaf node in the expected case. if (iter.node->leaf()) { break; } iter.node = iter.node->child(iter.position); } - // Note: in the non-key-compare-to case, the key may actually be equivalent - // here (and the MatchKind::kNe is ignored). + // Note: in the non-key-compare-to case, the key may actually be equivalent + // here (and the MatchKind::kNe is ignored). return {iter, MatchKind::kNe}; } template <typename P> template <typename K> -auto btree<P>::internal_lower_bound(const K &key) const - -> SearchResult<iterator, is_key_compare_to::value> { - if (!params_type::template can_have_multiple_equivalent_keys<K>()) { - SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key); - ret.value = internal_last(ret.value); - return ret; - } +auto btree<P>::internal_lower_bound(const K &key) const + -> SearchResult<iterator, is_key_compare_to::value> { + if (!params_type::template can_have_multiple_equivalent_keys<K>()) { + SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key); + ret.value = internal_last(ret.value); + return ret; + } iterator iter(const_cast<node_type *>(root())); - SearchResult<int, is_key_compare_to::value> res; - bool seen_eq = false; + SearchResult<int, is_key_compare_to::value> res; + bool seen_eq = false; for (;;) { - res = iter.node->lower_bound(key, key_comp()); - iter.position = res.value; + res = iter.node->lower_bound(key, key_comp()); + iter.position = res.value; if (iter.node->leaf()) { break; } - seen_eq = seen_eq || res.IsEq(); + seen_eq = seen_eq || res.IsEq(); iter.node = iter.node->child(iter.position); } - if (res.IsEq()) return {iter, MatchKind::kEq}; - return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe}; + if (res.IsEq()) return {iter, MatchKind::kEq}; + return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe}; } template <typename P> @@ -2592,7 +2592,7 @@ auto btree<P>::internal_upper_bound(const K &key) const -> iterator { template <typename P> template <typename K> auto btree<P>::internal_find(const K &key) const -> iterator { - SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); + SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key); if (res.HasMatch()) { if (res.IsEq()) { return res.value; diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree_container.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree_container.h index d23feff31b..d67a7fe890 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree_container.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree_container.h @@ -24,7 +24,7 @@ #include "y_absl/base/internal/throw_delegate.h" #include "y_absl/container/internal/btree.h" // IWYU pragma: export #include "y_absl/container/internal/common.h" -#include "y_absl/memory/memory.h" +#include "y_absl/memory/memory.h" #include "y_absl/meta/type_traits.h" namespace y_absl { @@ -70,23 +70,23 @@ class btree_container { explicit btree_container(const key_compare &comp, const allocator_type &alloc = allocator_type()) : tree_(comp, alloc) {} - explicit btree_container(const allocator_type &alloc) - : tree_(key_compare(), alloc) {} - - btree_container(const btree_container &other) - : btree_container(other, y_absl::allocator_traits<allocator_type>:: - select_on_container_copy_construction( - other.get_allocator())) {} - btree_container(const btree_container &other, const allocator_type &alloc) - : tree_(other.tree_, alloc) {} - - btree_container(btree_container &&other) noexcept( - std::is_nothrow_move_constructible<Tree>::value) = default; - btree_container(btree_container &&other, const allocator_type &alloc) - : tree_(std::move(other.tree_), alloc) {} - - btree_container &operator=(const btree_container &other) = default; - btree_container &operator=(btree_container &&other) noexcept( + explicit btree_container(const allocator_type &alloc) + : tree_(key_compare(), alloc) {} + + btree_container(const btree_container &other) + : btree_container(other, y_absl::allocator_traits<allocator_type>:: + select_on_container_copy_construction( + other.get_allocator())) {} + btree_container(const btree_container &other, const allocator_type &alloc) + : tree_(other.tree_, alloc) {} + + btree_container(btree_container &&other) noexcept( + std::is_nothrow_move_constructible<Tree>::value) = default; + btree_container(btree_container &&other, const allocator_type &alloc) + : tree_(std::move(other.tree_), alloc) {} + + btree_container &operator=(const btree_container &other) = default; + btree_container &operator=(btree_container &&other) noexcept( std::is_nothrow_move_assignable<Tree>::value) = default; // Iterator routines. @@ -105,11 +105,11 @@ class btree_container { // Lookup routines. template <typename K = key_type> - size_type count(const key_arg<K> &key) const { - auto equal_range = this->equal_range(key); - return std::distance(equal_range.first, equal_range.second); - } - template <typename K = key_type> + size_type count(const key_arg<K> &key) const { + auto equal_range = this->equal_range(key); + return std::distance(equal_range.first, equal_range.second); + } + template <typename K = key_type> iterator find(const key_arg<K> &key) { return tree_.find(key); } @@ -158,11 +158,11 @@ class btree_container { iterator erase(const_iterator first, const_iterator last) { return tree_.erase_range(iterator(first), iterator(last)).second; } - template <typename K = key_type> - size_type erase(const key_arg<K> &key) { - auto equal_range = this->equal_range(key); - return tree_.erase_range(equal_range.first, equal_range.second).first; - } + template <typename K = key_type> + size_type erase(const key_arg<K> &key) { + auto equal_range = this->equal_range(key); + return tree_.erase_range(equal_range.first, equal_range.second).first; + } // Extract routines. node_type extract(iterator position) { @@ -178,7 +178,7 @@ class btree_container { // Utility routines. ABSL_ATTRIBUTE_REINITIALIZES void clear() { tree_.clear(); } - void swap(btree_container &other) { tree_.swap(other.tree_); } + void swap(btree_container &other) { tree_.swap(other.tree_); } void verify() const { tree_.verify(); } // Size routines. @@ -259,7 +259,7 @@ class btree_set_container : public btree_container<Tree> { using super_type::super_type; btree_set_container() {} - // Range constructors. + // Range constructors. template <class InputIterator> btree_set_container(InputIterator b, InputIterator e, const key_compare &comp = key_compare(), @@ -267,55 +267,55 @@ class btree_set_container : public btree_container<Tree> { : super_type(comp, alloc) { insert(b, e); } - template <class InputIterator> - btree_set_container(InputIterator b, InputIterator e, - const allocator_type &alloc) - : btree_set_container(b, e, key_compare(), alloc) {} + template <class InputIterator> + btree_set_container(InputIterator b, InputIterator e, + const allocator_type &alloc) + : btree_set_container(b, e, key_compare(), alloc) {} - // Initializer list constructors. + // Initializer list constructors. btree_set_container(std::initializer_list<init_type> init, const key_compare &comp = key_compare(), const allocator_type &alloc = allocator_type()) : btree_set_container(init.begin(), init.end(), comp, alloc) {} - btree_set_container(std::initializer_list<init_type> init, - const allocator_type &alloc) - : btree_set_container(init.begin(), init.end(), alloc) {} + btree_set_container(std::initializer_list<init_type> init, + const allocator_type &alloc) + : btree_set_container(init.begin(), init.end(), alloc) {} // Insertion routines. - std::pair<iterator, bool> insert(const value_type &v) { - return this->tree_.insert_unique(params_type::key(v), v); + std::pair<iterator, bool> insert(const value_type &v) { + return this->tree_.insert_unique(params_type::key(v), v); } - std::pair<iterator, bool> insert(value_type &&v) { - return this->tree_.insert_unique(params_type::key(v), std::move(v)); + std::pair<iterator, bool> insert(value_type &&v) { + return this->tree_.insert_unique(params_type::key(v), std::move(v)); } template <typename... Args> std::pair<iterator, bool> emplace(Args &&... args) { init_type v(std::forward<Args>(args)...); return this->tree_.insert_unique(params_type::key(v), std::move(v)); } - iterator insert(const_iterator hint, const value_type &v) { + iterator insert(const_iterator hint, const value_type &v) { return this->tree_ - .insert_hint_unique(iterator(hint), params_type::key(v), v) + .insert_hint_unique(iterator(hint), params_type::key(v), v) .first; } - iterator insert(const_iterator hint, value_type &&v) { + iterator insert(const_iterator hint, value_type &&v) { return this->tree_ - .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v)) + .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v)) .first; } template <typename... Args> - iterator emplace_hint(const_iterator hint, Args &&... args) { + iterator emplace_hint(const_iterator hint, Args &&... args) { init_type v(std::forward<Args>(args)...); return this->tree_ - .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v)) + .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v)) .first; } template <typename InputIterator> void insert(InputIterator b, InputIterator e) { - this->tree_.insert_iterator_unique(b, e, 0); + this->tree_.insert_iterator_unique(b, e, 0); } void insert(std::initializer_list<init_type> init) { - this->tree_.insert_iterator_unique(init.begin(), init.end(), 0); + this->tree_.insert_iterator_unique(init.begin(), init.end(), 0); } insert_return_type insert(node_type &&node) { if (!node) return {this->end(), false, node_type()}; @@ -341,10 +341,10 @@ class btree_set_container : public btree_container<Tree> { // Node extraction routines. template <typename K = key_type> node_type extract(const key_arg<K> &key) { - const std::pair<iterator, bool> lower_and_equal = - this->tree_.lower_bound_equal(key); - return lower_and_equal.second ? extract(lower_and_equal.first) - : node_type(); + const std::pair<iterator, bool> lower_and_equal = + this->tree_.lower_bound_equal(key); + return lower_and_equal.second ? extract(lower_and_equal.first) + : node_type(); } using super_type::extract; @@ -362,7 +362,7 @@ class btree_set_container : public btree_container<Tree> { int> = 0> void merge(btree_container<T> &src) { // NOLINT for (auto src_it = src.begin(); src_it != src.end();) { - if (insert(std::move(params_type::element(src_it.slot()))).second) { + if (insert(std::move(params_type::element(src_it.slot()))).second) { src_it = src.erase(src_it); } else { ++src_it; @@ -389,7 +389,7 @@ template <typename Tree> class btree_map_container : public btree_set_container<Tree> { using super_type = btree_set_container<Tree>; using params_type = typename Tree::params_type; - friend class BtreeNodePeer; + friend class BtreeNodePeer; private: template <class K> @@ -411,72 +411,72 @@ class btree_map_container : public btree_set_container<Tree> { // Insertion routines. // Note: the nullptr template arguments and extra `const M&` overloads allow // for supporting bitfield arguments. - template <typename K = key_type, class M> - std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k, - const M &obj) { - return insert_or_assign_impl(k, obj); + template <typename K = key_type, class M> + std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k, + const M &obj) { + return insert_or_assign_impl(k, obj); } - template <typename K = key_type, class M, K * = nullptr> - std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, const M &obj) { - return insert_or_assign_impl(std::forward<K>(k), obj); + template <typename K = key_type, class M, K * = nullptr> + std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, const M &obj) { + return insert_or_assign_impl(std::forward<K>(k), obj); } - template <typename K = key_type, class M, M * = nullptr> - std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k, M &&obj) { - return insert_or_assign_impl(k, std::forward<M>(obj)); + template <typename K = key_type, class M, M * = nullptr> + std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k, M &&obj) { + return insert_or_assign_impl(k, std::forward<M>(obj)); } - template <typename K = key_type, class M, K * = nullptr, M * = nullptr> - std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, M &&obj) { - return insert_or_assign_impl(std::forward<K>(k), std::forward<M>(obj)); + template <typename K = key_type, class M, K * = nullptr, M * = nullptr> + std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, M &&obj) { + return insert_or_assign_impl(std::forward<K>(k), std::forward<M>(obj)); } - template <typename K = key_type, class M> - iterator insert_or_assign(const_iterator hint, const key_arg<K> &k, + template <typename K = key_type, class M> + iterator insert_or_assign(const_iterator hint, const key_arg<K> &k, const M &obj) { - return insert_or_assign_hint_impl(hint, k, obj); - } - template <typename K = key_type, class M, K * = nullptr> - iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, const M &obj) { - return insert_or_assign_hint_impl(hint, std::forward<K>(k), obj); - } - template <typename K = key_type, class M, M * = nullptr> - iterator insert_or_assign(const_iterator hint, const key_arg<K> &k, M &&obj) { - return insert_or_assign_hint_impl(hint, k, std::forward<M>(obj)); - } - template <typename K = key_type, class M, K * = nullptr, M * = nullptr> - iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, M &&obj) { - return insert_or_assign_hint_impl(hint, std::forward<K>(k), - std::forward<M>(obj)); - } - - template <typename K = key_type, typename... Args, - typename y_absl::enable_if_t< - !std::is_convertible<K, const_iterator>::value, int> = 0> - std::pair<iterator, bool> try_emplace(const key_arg<K> &k, Args &&... args) { - return try_emplace_impl(k, std::forward<Args>(args)...); - } - template <typename K = key_type, typename... Args, - typename y_absl::enable_if_t< - !std::is_convertible<K, const_iterator>::value, int> = 0> - std::pair<iterator, bool> try_emplace(key_arg<K> &&k, Args &&... args) { - return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...); - } - template <typename K = key_type, typename... Args> - iterator try_emplace(const_iterator hint, const key_arg<K> &k, + return insert_or_assign_hint_impl(hint, k, obj); + } + template <typename K = key_type, class M, K * = nullptr> + iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, const M &obj) { + return insert_or_assign_hint_impl(hint, std::forward<K>(k), obj); + } + template <typename K = key_type, class M, M * = nullptr> + iterator insert_or_assign(const_iterator hint, const key_arg<K> &k, M &&obj) { + return insert_or_assign_hint_impl(hint, k, std::forward<M>(obj)); + } + template <typename K = key_type, class M, K * = nullptr, M * = nullptr> + iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, M &&obj) { + return insert_or_assign_hint_impl(hint, std::forward<K>(k), + std::forward<M>(obj)); + } + + template <typename K = key_type, typename... Args, + typename y_absl::enable_if_t< + !std::is_convertible<K, const_iterator>::value, int> = 0> + std::pair<iterator, bool> try_emplace(const key_arg<K> &k, Args &&... args) { + return try_emplace_impl(k, std::forward<Args>(args)...); + } + template <typename K = key_type, typename... Args, + typename y_absl::enable_if_t< + !std::is_convertible<K, const_iterator>::value, int> = 0> + std::pair<iterator, bool> try_emplace(key_arg<K> &&k, Args &&... args) { + return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...); + } + template <typename K = key_type, typename... Args> + iterator try_emplace(const_iterator hint, const key_arg<K> &k, Args &&... args) { - return try_emplace_hint_impl(hint, k, std::forward<Args>(args)...); + return try_emplace_hint_impl(hint, k, std::forward<Args>(args)...); } - template <typename K = key_type, typename... Args> - iterator try_emplace(const_iterator hint, key_arg<K> &&k, Args &&... args) { - return try_emplace_hint_impl(hint, std::forward<K>(k), - std::forward<Args>(args)...); + template <typename K = key_type, typename... Args> + iterator try_emplace(const_iterator hint, key_arg<K> &&k, Args &&... args) { + return try_emplace_hint_impl(hint, std::forward<K>(k), + std::forward<Args>(args)...); } - - template <typename K = key_type> - mapped_type &operator[](const key_arg<K> &k) { + + template <typename K = key_type> + mapped_type &operator[](const key_arg<K> &k) { return try_emplace(k).first->second; } - template <typename K = key_type> - mapped_type &operator[](key_arg<K> &&k) { - return try_emplace(std::forward<K>(k)).first->second; + template <typename K = key_type> + mapped_type &operator[](key_arg<K> &&k) { + return try_emplace(std::forward<K>(k)).first->second; } template <typename K = key_type> @@ -493,40 +493,40 @@ class btree_map_container : public btree_set_container<Tree> { base_internal::ThrowStdOutOfRange("y_absl::btree_map::at"); return it->second; } - - private: - // Note: when we call `std::forward<M>(obj)` twice, it's safe because - // insert_unique/insert_hint_unique are guaranteed to not consume `obj` when - // `ret.second` is false. - template <class K, class M> - std::pair<iterator, bool> insert_or_assign_impl(K &&k, M &&obj) { - const std::pair<iterator, bool> ret = - this->tree_.insert_unique(k, std::forward<K>(k), std::forward<M>(obj)); - if (!ret.second) ret.first->second = std::forward<M>(obj); - return ret; - } - template <class K, class M> - iterator insert_or_assign_hint_impl(const_iterator hint, K &&k, M &&obj) { - const std::pair<iterator, bool> ret = this->tree_.insert_hint_unique( - iterator(hint), k, std::forward<K>(k), std::forward<M>(obj)); - if (!ret.second) ret.first->second = std::forward<M>(obj); - return ret.first; - } - - template <class K, class... Args> - std::pair<iterator, bool> try_emplace_impl(K &&k, Args &&... args) { - return this->tree_.insert_unique( - k, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(k)), - std::forward_as_tuple(std::forward<Args>(args)...)); - } - template <class K, class... Args> - iterator try_emplace_hint_impl(const_iterator hint, K &&k, Args &&... args) { - return this->tree_ - .insert_hint_unique(iterator(hint), k, std::piecewise_construct, - std::forward_as_tuple(std::forward<K>(k)), - std::forward_as_tuple(std::forward<Args>(args)...)) - .first; - } + + private: + // Note: when we call `std::forward<M>(obj)` twice, it's safe because + // insert_unique/insert_hint_unique are guaranteed to not consume `obj` when + // `ret.second` is false. + template <class K, class M> + std::pair<iterator, bool> insert_or_assign_impl(K &&k, M &&obj) { + const std::pair<iterator, bool> ret = + this->tree_.insert_unique(k, std::forward<K>(k), std::forward<M>(obj)); + if (!ret.second) ret.first->second = std::forward<M>(obj); + return ret; + } + template <class K, class M> + iterator insert_or_assign_hint_impl(const_iterator hint, K &&k, M &&obj) { + const std::pair<iterator, bool> ret = this->tree_.insert_hint_unique( + iterator(hint), k, std::forward<K>(k), std::forward<M>(obj)); + if (!ret.second) ret.first->second = std::forward<M>(obj); + return ret.first; + } + + template <class K, class... Args> + std::pair<iterator, bool> try_emplace_impl(K &&k, Args &&... args) { + return this->tree_.insert_unique( + k, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(k)), + std::forward_as_tuple(std::forward<Args>(args)...)); + } + template <class K, class... Args> + iterator try_emplace_hint_impl(const_iterator hint, K &&k, Args &&... args) { + return this->tree_ + .insert_hint_unique(iterator(hint), k, std::piecewise_construct, + std::forward_as_tuple(std::forward<K>(k)), + std::forward_as_tuple(std::forward<Args>(args)...)) + .first; + } }; // A common base class for btree_multiset and btree_multimap. @@ -554,7 +554,7 @@ class btree_multiset_container : public btree_container<Tree> { using super_type::super_type; btree_multiset_container() {} - // Range constructors. + // Range constructors. template <class InputIterator> btree_multiset_container(InputIterator b, InputIterator e, const key_compare &comp = key_compare(), @@ -562,30 +562,30 @@ class btree_multiset_container : public btree_container<Tree> { : super_type(comp, alloc) { insert(b, e); } - template <class InputIterator> - btree_multiset_container(InputIterator b, InputIterator e, - const allocator_type &alloc) - : btree_multiset_container(b, e, key_compare(), alloc) {} + template <class InputIterator> + btree_multiset_container(InputIterator b, InputIterator e, + const allocator_type &alloc) + : btree_multiset_container(b, e, key_compare(), alloc) {} - // Initializer list constructors. + // Initializer list constructors. btree_multiset_container(std::initializer_list<init_type> init, const key_compare &comp = key_compare(), const allocator_type &alloc = allocator_type()) : btree_multiset_container(init.begin(), init.end(), comp, alloc) {} - btree_multiset_container(std::initializer_list<init_type> init, - const allocator_type &alloc) - : btree_multiset_container(init.begin(), init.end(), alloc) {} + btree_multiset_container(std::initializer_list<init_type> init, + const allocator_type &alloc) + : btree_multiset_container(init.begin(), init.end(), alloc) {} // Insertion routines. - iterator insert(const value_type &v) { return this->tree_.insert_multi(v); } - iterator insert(value_type &&v) { - return this->tree_.insert_multi(std::move(v)); + iterator insert(const value_type &v) { return this->tree_.insert_multi(v); } + iterator insert(value_type &&v) { + return this->tree_.insert_multi(std::move(v)); } - iterator insert(const_iterator hint, const value_type &v) { - return this->tree_.insert_hint_multi(iterator(hint), v); + iterator insert(const_iterator hint, const value_type &v) { + return this->tree_.insert_hint_multi(iterator(hint), v); } - iterator insert(const_iterator hint, value_type &&v) { - return this->tree_.insert_hint_multi(iterator(hint), std::move(v)); + iterator insert(const_iterator hint, value_type &&v) { + return this->tree_.insert_hint_multi(iterator(hint), std::move(v)); } template <typename InputIterator> void insert(InputIterator b, InputIterator e) { @@ -599,9 +599,9 @@ class btree_multiset_container : public btree_container<Tree> { return this->tree_.insert_multi(init_type(std::forward<Args>(args)...)); } template <typename... Args> - iterator emplace_hint(const_iterator hint, Args &&... args) { + iterator emplace_hint(const_iterator hint, Args &&... args) { return this->tree_.insert_hint_multi( - iterator(hint), init_type(std::forward<Args>(args)...)); + iterator(hint), init_type(std::forward<Args>(args)...)); } iterator insert(node_type &&node) { if (!node) return this->end(); @@ -623,10 +623,10 @@ class btree_multiset_container : public btree_container<Tree> { // Node extraction routines. template <typename K = key_type> node_type extract(const key_arg<K> &key) { - const std::pair<iterator, bool> lower_and_equal = - this->tree_.lower_bound_equal(key); - return lower_and_equal.second ? extract(lower_and_equal.first) - : node_type(); + const std::pair<iterator, bool> lower_and_equal = + this->tree_.lower_bound_equal(key); + return lower_and_equal.second ? extract(lower_and_equal.first) + : node_type(); } using super_type::extract; @@ -642,9 +642,9 @@ class btree_multiset_container : public btree_container<Tree> { typename T::params_type::is_map_container>>::value, int> = 0> void merge(btree_container<T> &src) { // NOLINT - for (auto src_it = src.begin(), end = src.end(); src_it != end; ++src_it) { - insert(std::move(params_type::element(src_it.slot()))); - } + for (auto src_it = src.begin(), end = src.end(); src_it != end; ++src_it) { + insert(std::move(params_type::element(src_it.slot()))); + } src.clear(); } diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/common.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/common.h index ec84f975e5..1e02f0ca34 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/common.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/common.h @@ -138,7 +138,7 @@ class node_handle<Policy, PolicyTraits, Alloc, y_absl::void_t<typename Policy::mapped_type>> : public node_handle_base<PolicyTraits, Alloc> { using Base = node_handle_base<PolicyTraits, Alloc>; - using slot_type = typename PolicyTraits::slot_type; + using slot_type = typename PolicyTraits::slot_type; public: using key_type = typename Policy::key_type; @@ -146,11 +146,11 @@ class node_handle<Policy, PolicyTraits, Alloc, constexpr node_handle() {} - // When C++17 is available, we can use std::launder to provide mutable - // access to the key. Otherwise, we provide const access. - auto key() const - -> decltype(PolicyTraits::mutable_key(std::declval<slot_type*>())) { - return PolicyTraits::mutable_key(this->slot()); + // When C++17 is available, we can use std::launder to provide mutable + // access to the key. Otherwise, we provide const access. + auto key() const + -> decltype(PolicyTraits::mutable_key(std::declval<slot_type*>())) { + return PolicyTraits::mutable_key(this->slot()); } mapped_type& mapped() const { diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/compressed_tuple.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/compressed_tuple.h index 735b738a9b..e12cc50a81 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/compressed_tuple.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/compressed_tuple.h @@ -169,34 +169,34 @@ constexpr bool ShouldAnyUseBase() { } template <typename T, typename V> -using TupleElementMoveConstructible = - typename std::conditional<std::is_reference<T>::value, - std::is_convertible<V, T>, - std::is_constructible<T, V&&>>::type; - -template <bool SizeMatches, class T, class... Vs> -struct TupleMoveConstructible : std::false_type {}; - -template <class... Ts, class... Vs> -struct TupleMoveConstructible<true, CompressedTuple<Ts...>, Vs...> - : std::integral_constant< - bool, y_absl::conjunction< - TupleElementMoveConstructible<Ts, Vs&&>...>::value> {}; - -template <typename T> -struct compressed_tuple_size; - -template <typename... Es> -struct compressed_tuple_size<CompressedTuple<Es...>> - : public std::integral_constant<std::size_t, sizeof...(Es)> {}; - -template <class T, class... Vs> -struct TupleItemsMoveConstructible - : std::integral_constant< - bool, TupleMoveConstructible<compressed_tuple_size<T>::value == - sizeof...(Vs), - T, Vs...>::value> {}; - +using TupleElementMoveConstructible = + typename std::conditional<std::is_reference<T>::value, + std::is_convertible<V, T>, + std::is_constructible<T, V&&>>::type; + +template <bool SizeMatches, class T, class... Vs> +struct TupleMoveConstructible : std::false_type {}; + +template <class... Ts, class... Vs> +struct TupleMoveConstructible<true, CompressedTuple<Ts...>, Vs...> + : std::integral_constant< + bool, y_absl::conjunction< + TupleElementMoveConstructible<Ts, Vs&&>...>::value> {}; + +template <typename T> +struct compressed_tuple_size; + +template <typename... Es> +struct compressed_tuple_size<CompressedTuple<Es...>> + : public std::integral_constant<std::size_t, sizeof...(Es)> {}; + +template <class T, class... Vs> +struct TupleItemsMoveConstructible + : std::integral_constant< + bool, TupleMoveConstructible<compressed_tuple_size<T>::value == + sizeof...(Vs), + T, Vs...>::value> {}; + } // namespace internal_compressed_tuple // Helper class to perform the Empty Base Class Optimization. @@ -241,23 +241,23 @@ class ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple explicit constexpr CompressedTuple(const Ts&... base) : CompressedTuple::CompressedTupleImpl(y_absl::in_place, base...) {} - template <typename First, typename... Vs, + template <typename First, typename... Vs, y_absl::enable_if_t< y_absl::conjunction< // Ensure we are not hiding default copy/move constructors. y_absl::negation<std::is_same<void(CompressedTuple), - void(y_absl::decay_t<First>)>>, - internal_compressed_tuple::TupleItemsMoveConstructible< - CompressedTuple<Ts...>, First, Vs...>>::value, + void(y_absl::decay_t<First>)>>, + internal_compressed_tuple::TupleItemsMoveConstructible< + CompressedTuple<Ts...>, First, Vs...>>::value, bool> = true> - explicit constexpr CompressedTuple(First&& first, Vs&&... base) + explicit constexpr CompressedTuple(First&& first, Vs&&... base) : CompressedTuple::CompressedTupleImpl(y_absl::in_place, - y_absl::forward<First>(first), + y_absl::forward<First>(first), y_absl::forward<Vs>(base)...) {} template <int I> ElemT<I>& get() & { - return StorageT<I>::get(); + return StorageT<I>::get(); } template <int I> diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/container_memory.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/container_memory.h index 348bc8c0d0..669c8965ab 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/container_memory.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/container_memory.h @@ -18,31 +18,31 @@ #include <cassert> #include <cstddef> #include <memory> -#include <new> +#include <new> #include <tuple> #include <type_traits> #include <utility> -#include "y_absl/base/config.h" +#include "y_absl/base/config.h" #include "y_absl/memory/memory.h" -#include "y_absl/meta/type_traits.h" +#include "y_absl/meta/type_traits.h" #include "y_absl/utility/utility.h" -#ifdef ABSL_HAVE_ADDRESS_SANITIZER -#include <sanitizer/asan_interface.h> -#endif - -#ifdef ABSL_HAVE_MEMORY_SANITIZER -#include <sanitizer/msan_interface.h> -#endif - +#ifdef ABSL_HAVE_ADDRESS_SANITIZER +#include <sanitizer/asan_interface.h> +#endif + +#ifdef ABSL_HAVE_MEMORY_SANITIZER +#include <sanitizer/msan_interface.h> +#endif + namespace y_absl { ABSL_NAMESPACE_BEGIN namespace container_internal { -template <size_t Alignment> -struct alignas(Alignment) AlignedType {}; - +template <size_t Alignment> +struct alignas(Alignment) AlignedType {}; + // Allocates at least n bytes aligned to the specified alignment. // Alignment must be a power of 2. It must be positive. // @@ -54,14 +54,14 @@ template <size_t Alignment, class Alloc> void* Allocate(Alloc* alloc, size_t n) { static_assert(Alignment > 0, ""); assert(n && "n must be positive"); - using M = AlignedType<Alignment>; + using M = AlignedType<Alignment>; using A = typename y_absl::allocator_traits<Alloc>::template rebind_alloc<M>; using AT = typename y_absl::allocator_traits<Alloc>::template rebind_traits<M>; - // On macOS, "mem_alloc" is a #define with one argument defined in - // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it - // with the "foo(bar)" syntax. - A my_mem_alloc(*alloc); - void* p = AT::allocate(my_mem_alloc, (n + sizeof(M) - 1) / sizeof(M)); + // On macOS, "mem_alloc" is a #define with one argument defined in + // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it + // with the "foo(bar)" syntax. + A my_mem_alloc(*alloc); + void* p = AT::allocate(my_mem_alloc, (n + sizeof(M) - 1) / sizeof(M)); assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 && "allocator does not respect alignment"); return p; @@ -73,14 +73,14 @@ template <size_t Alignment, class Alloc> void Deallocate(Alloc* alloc, void* p, size_t n) { static_assert(Alignment > 0, ""); assert(n && "n must be positive"); - using M = AlignedType<Alignment>; + using M = AlignedType<Alignment>; using A = typename y_absl::allocator_traits<Alloc>::template rebind_alloc<M>; using AT = typename y_absl::allocator_traits<Alloc>::template rebind_traits<M>; - // On macOS, "mem_alloc" is a #define with one argument defined in - // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it - // with the "foo(bar)" syntax. - A my_mem_alloc(*alloc); - AT::deallocate(my_mem_alloc, static_cast<M*>(p), + // On macOS, "mem_alloc" is a #define with one argument defined in + // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it + // with the "foo(bar)" syntax. + A my_mem_alloc(*alloc); + AT::deallocate(my_mem_alloc, static_cast<M*>(p), (n + sizeof(M) - 1) / sizeof(M)); } @@ -217,10 +217,10 @@ DecomposeValue(F&& f, Arg&& arg) { // Helper functions for asan and msan. inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) { -#ifdef ABSL_HAVE_ADDRESS_SANITIZER +#ifdef ABSL_HAVE_ADDRESS_SANITIZER ASAN_POISON_MEMORY_REGION(m, s); #endif -#ifdef ABSL_HAVE_MEMORY_SANITIZER +#ifdef ABSL_HAVE_MEMORY_SANITIZER __msan_poison(m, s); #endif (void)m; @@ -228,10 +228,10 @@ inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) { } inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) { -#ifdef ABSL_HAVE_ADDRESS_SANITIZER +#ifdef ABSL_HAVE_ADDRESS_SANITIZER ASAN_UNPOISON_MEMORY_REGION(m, s); #endif -#ifdef ABSL_HAVE_MEMORY_SANITIZER +#ifdef ABSL_HAVE_MEMORY_SANITIZER __msan_unpoison(m, s); #endif (void)m; @@ -258,8 +258,8 @@ namespace memory_internal { // type, which is non-portable. template <class Pair, class = std::true_type> struct OffsetOf { - static constexpr size_t kFirst = static_cast<size_t>(-1); - static constexpr size_t kSecond = static_cast<size_t>(-1); + static constexpr size_t kFirst = static_cast<size_t>(-1); + static constexpr size_t kSecond = static_cast<size_t>(-1); }; template <class Pair> @@ -328,12 +328,12 @@ union map_slot_type { map_slot_type() {} ~map_slot_type() = delete; using value_type = std::pair<const K, V>; - using mutable_value_type = - std::pair<y_absl::remove_const_t<K>, y_absl::remove_const_t<V>>; + using mutable_value_type = + std::pair<y_absl::remove_const_t<K>, y_absl::remove_const_t<V>>; value_type value; mutable_value_type mutable_value; - y_absl::remove_const_t<K> key; + y_absl::remove_const_t<K> key; }; template <class K, class V> @@ -359,20 +359,20 @@ struct map_slot_policy { return slot->value; } - // When C++17 is available, we can use std::launder to provide mutable - // access to the key for use in node handle. -#if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 - static K& mutable_key(slot_type* slot) { - // Still check for kMutableKeys so that we can avoid calling std::launder - // unless necessary because it can interfere with optimizations. - return kMutableKeys::value ? slot->key - : *std::launder(const_cast<K*>( - std::addressof(slot->value.first))); - } -#else // !(defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606) - static const K& mutable_key(slot_type* slot) { return key(slot); } -#endif - + // When C++17 is available, we can use std::launder to provide mutable + // access to the key for use in node handle. +#if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 + static K& mutable_key(slot_type* slot) { + // Still check for kMutableKeys so that we can avoid calling std::launder + // unless necessary because it can interfere with optimizations. + return kMutableKeys::value ? slot->key + : *std::launder(const_cast<K*>( + std::addressof(slot->value.first))); + } +#else // !(defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606) + static const K& mutable_key(slot_type* slot) { return key(slot); } +#endif + static const K& key(const slot_type* slot) { return kMutableKeys::value ? slot->key : slot->value.first; } diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/counting_allocator.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/counting_allocator.h index c8975dbd90..ae486af9dc 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/counting_allocator.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/counting_allocator.h @@ -30,63 +30,63 @@ namespace container_internal { // containers - that chain of allocators uses the same state and is // thus easier to query for aggregate allocation information. template <typename T> -class CountingAllocator { +class CountingAllocator { public: - using Allocator = std::allocator<T>; - using AllocatorTraits = std::allocator_traits<Allocator>; - using value_type = typename AllocatorTraits::value_type; - using pointer = typename AllocatorTraits::pointer; - using const_pointer = typename AllocatorTraits::const_pointer; - using size_type = typename AllocatorTraits::size_type; - using difference_type = typename AllocatorTraits::difference_type; - - CountingAllocator() = default; - explicit CountingAllocator(int64_t* bytes_used) : bytes_used_(bytes_used) {} - CountingAllocator(int64_t* bytes_used, int64_t* instance_count) - : bytes_used_(bytes_used), instance_count_(instance_count) {} + using Allocator = std::allocator<T>; + using AllocatorTraits = std::allocator_traits<Allocator>; + using value_type = typename AllocatorTraits::value_type; + using pointer = typename AllocatorTraits::pointer; + using const_pointer = typename AllocatorTraits::const_pointer; + using size_type = typename AllocatorTraits::size_type; + using difference_type = typename AllocatorTraits::difference_type; + + CountingAllocator() = default; + explicit CountingAllocator(int64_t* bytes_used) : bytes_used_(bytes_used) {} + CountingAllocator(int64_t* bytes_used, int64_t* instance_count) + : bytes_used_(bytes_used), instance_count_(instance_count) {} template <typename U> CountingAllocator(const CountingAllocator<U>& x) - : bytes_used_(x.bytes_used_), instance_count_(x.instance_count_) {} - - pointer allocate( - size_type n, - typename AllocatorTraits::const_void_pointer hint = nullptr) { - Allocator allocator; - pointer ptr = AllocatorTraits::allocate(allocator, n, hint); - if (bytes_used_ != nullptr) { - *bytes_used_ += n * sizeof(T); - } - return ptr; + : bytes_used_(x.bytes_used_), instance_count_(x.instance_count_) {} + + pointer allocate( + size_type n, + typename AllocatorTraits::const_void_pointer hint = nullptr) { + Allocator allocator; + pointer ptr = AllocatorTraits::allocate(allocator, n, hint); + if (bytes_used_ != nullptr) { + *bytes_used_ += n * sizeof(T); + } + return ptr; } void deallocate(pointer p, size_type n) { - Allocator allocator; - AllocatorTraits::deallocate(allocator, p, n); - if (bytes_used_ != nullptr) { - *bytes_used_ -= n * sizeof(T); - } - } - - template <typename U, typename... Args> - void construct(U* p, Args&&... args) { - Allocator allocator; - AllocatorTraits::construct(allocator, p, std::forward<Args>(args)...); - if (instance_count_ != nullptr) { - *instance_count_ += 1; - } + Allocator allocator; + AllocatorTraits::deallocate(allocator, p, n); + if (bytes_used_ != nullptr) { + *bytes_used_ -= n * sizeof(T); + } } - template <typename U> - void destroy(U* p) { - Allocator allocator; - AllocatorTraits::destroy(allocator, p); - if (instance_count_ != nullptr) { - *instance_count_ -= 1; - } - } - - template <typename U> + template <typename U, typename... Args> + void construct(U* p, Args&&... args) { + Allocator allocator; + AllocatorTraits::construct(allocator, p, std::forward<Args>(args)...); + if (instance_count_ != nullptr) { + *instance_count_ += 1; + } + } + + template <typename U> + void destroy(U* p) { + Allocator allocator; + AllocatorTraits::destroy(allocator, p); + if (instance_count_ != nullptr) { + *instance_count_ -= 1; + } + } + + template <typename U> class rebind { public: using other = CountingAllocator<U>; @@ -94,8 +94,8 @@ class CountingAllocator { friend bool operator==(const CountingAllocator& a, const CountingAllocator& b) { - return a.bytes_used_ == b.bytes_used_ && - a.instance_count_ == b.instance_count_; + return a.bytes_used_ == b.bytes_used_ && + a.instance_count_ == b.instance_count_; } friend bool operator!=(const CountingAllocator& a, @@ -103,8 +103,8 @@ class CountingAllocator { return !(a == b); } - int64_t* bytes_used_ = nullptr; - int64_t* instance_count_ = nullptr; + int64_t* bytes_used_ = nullptr; + int64_t* instance_count_ = nullptr; }; } // namespace container_internal diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hash_function_defaults.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hash_function_defaults.h index 68a18058d1..1407979619 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hash_function_defaults.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hash_function_defaults.h @@ -53,7 +53,7 @@ #include "y_absl/base/config.h" #include "y_absl/hash/hash.h" -#include "y_absl/strings/cord.h" +#include "y_absl/strings/cord.h" #include "y_absl/strings/string_view.h" namespace y_absl { @@ -73,9 +73,9 @@ struct StringHash { size_t operator()(y_absl::string_view v) const { return y_absl::Hash<y_absl::string_view>{}(v); } - size_t operator()(const y_absl::Cord& v) const { - return y_absl::Hash<y_absl::Cord>{}(v); - } + size_t operator()(const y_absl::Cord& v) const { + return y_absl::Hash<y_absl::Cord>{}(v); + } }; struct StringEq { @@ -104,8 +104,8 @@ template <> struct HashEq<TString> : StringHashEq {}; template <> struct HashEq<y_absl::string_view> : StringHashEq {}; -template <> -struct HashEq<y_absl::Cord> : StringHashEq {}; +template <> +struct HashEq<y_absl::Cord> : StringHashEq {}; // Supports heterogeneous lookup for pointers and smart pointers. template <class T> diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hash_policy_traits.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hash_policy_traits.h index 33f704fc4b..b4d8d913ee 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hash_policy_traits.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hash_policy_traits.h @@ -17,7 +17,7 @@ #include <cstddef> #include <memory> -#include <new> +#include <new> #include <type_traits> #include <utility> @@ -30,34 +30,34 @@ namespace container_internal { // Defines how slots are initialized/destroyed/moved. template <class Policy, class = void> struct hash_policy_traits { - // The type of the keys stored in the hashtable. - using key_type = typename Policy::key_type; - + // The type of the keys stored in the hashtable. + using key_type = typename Policy::key_type; + private: struct ReturnKey { - // When C++17 is available, we can use std::launder to provide mutable - // access to the key for use in node handle. -#if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 - template <class Key, - y_absl::enable_if_t<std::is_lvalue_reference<Key>::value, int> = 0> - static key_type& Impl(Key&& k, int) { - return *std::launder( - const_cast<key_type*>(std::addressof(std::forward<Key>(k)))); - } -#endif - - template <class Key> - static Key Impl(Key&& k, char) { - return std::forward<Key>(k); - } - + // When C++17 is available, we can use std::launder to provide mutable + // access to the key for use in node handle. +#if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 + template <class Key, + y_absl::enable_if_t<std::is_lvalue_reference<Key>::value, int> = 0> + static key_type& Impl(Key&& k, int) { + return *std::launder( + const_cast<key_type*>(std::addressof(std::forward<Key>(k)))); + } +#endif + + template <class Key> + static Key Impl(Key&& k, char) { + return std::forward<Key>(k); + } + // When Key=T&, we forward the lvalue reference. // When Key=T, we return by value to avoid a dangling reference. // eg, for string_hash_map. template <class Key, class... Args> - auto operator()(Key&& k, const Args&...) const - -> decltype(Impl(std::forward<Key>(k), 0)) { - return Impl(std::forward<Key>(k), 0); + auto operator()(Key&& k, const Args&...) const + -> decltype(Impl(std::forward<Key>(k), 0)) { + return Impl(std::forward<Key>(k), 0); } }; @@ -173,7 +173,7 @@ struct hash_policy_traits { // Returns the "key" portion of the slot. // Used for node handle manipulation. template <class P = Policy> - static auto mutable_key(slot_type* slot) + static auto mutable_key(slot_type* slot) -> decltype(P::apply(ReturnKey(), element(slot))) { return P::apply(ReturnKey(), element(slot)); } diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler.cc b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler.cc index 6017ac9bb0..e20e5642d6 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler.cc +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler.cc @@ -65,12 +65,12 @@ void HashtablezInfo::PrepareForSampling() { capacity.store(0, std::memory_order_relaxed); size.store(0, std::memory_order_relaxed); num_erases.store(0, std::memory_order_relaxed); - num_rehashes.store(0, std::memory_order_relaxed); + num_rehashes.store(0, std::memory_order_relaxed); max_probe_length.store(0, std::memory_order_relaxed); total_probe_length.store(0, std::memory_order_relaxed); hashes_bitwise_or.store(0, std::memory_order_relaxed); hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed); - hashes_bitwise_xor.store(0, std::memory_order_relaxed); + hashes_bitwise_xor.store(0, std::memory_order_relaxed); max_reserve.store(0, std::memory_order_relaxed); create_time = y_absl::Now(); @@ -93,9 +93,9 @@ static bool ShouldForceSampling() { if (ABSL_PREDICT_TRUE(state == kDontForce)) return false; if (state == kUninitialized) { - state = ABSL_INTERNAL_C_SYMBOL(AbslContainerInternalSampleEverything)() - ? kForce - : kDontForce; + state = ABSL_INTERNAL_C_SYMBOL(AbslContainerInternalSampleEverything)() + ? kForce + : kDontForce; global_state.store(state, std::memory_order_relaxed); } return state == kForce; @@ -146,7 +146,7 @@ void RecordInsertSlow(HashtablezInfo* info, size_t hash, // SwissTables probe in groups of 16, so scale this to count items probes and // not offset from desired. size_t probe_length = distance_from_desired; -#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 probe_length /= 16; #else probe_length /= 8; @@ -154,7 +154,7 @@ void RecordInsertSlow(HashtablezInfo* info, size_t hash, info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed); info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed); - info->hashes_bitwise_xor.fetch_xor(hash, std::memory_order_relaxed); + info->hashes_bitwise_xor.fetch_xor(hash, std::memory_order_relaxed); info->max_probe_length.store( std::max(info->max_probe_length.load(std::memory_order_relaxed), probe_length), diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler.h index 8521ee754a..656be23f07 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler.h @@ -74,12 +74,12 @@ struct HashtablezInfo : public profiling_internal::Sample<HashtablezInfo> { std::atomic<size_t> capacity; std::atomic<size_t> size; std::atomic<size_t> num_erases; - std::atomic<size_t> num_rehashes; + std::atomic<size_t> num_rehashes; std::atomic<size_t> max_probe_length; std::atomic<size_t> total_probe_length; std::atomic<size_t> hashes_bitwise_or; std::atomic<size_t> hashes_bitwise_and; - std::atomic<size_t> hashes_bitwise_xor; + std::atomic<size_t> hashes_bitwise_xor; std::atomic<size_t> max_reserve; // All of the fields below are set by `PrepareForSampling`, they must not be @@ -95,18 +95,18 @@ struct HashtablezInfo : public profiling_internal::Sample<HashtablezInfo> { }; inline void RecordRehashSlow(HashtablezInfo* info, size_t total_probe_length) { -#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 total_probe_length /= 16; #else total_probe_length /= 8; #endif info->total_probe_length.store(total_probe_length, std::memory_order_relaxed); info->num_erases.store(0, std::memory_order_relaxed); - // There is only one concurrent writer, so `load` then `store` is sufficient - // instead of using `fetch_add`. - info->num_rehashes.store( - 1 + info->num_rehashes.load(std::memory_order_relaxed), - std::memory_order_relaxed); + // There is only one concurrent writer, so `load` then `store` is sufficient + // instead of using `fetch_add`. + info->num_rehashes.store( + 1 + info->num_rehashes.load(std::memory_order_relaxed), + std::memory_order_relaxed); } inline void RecordReservationSlow(HashtablezInfo* info, @@ -127,8 +127,8 @@ inline void RecordStorageChangedSlow(HashtablezInfo* info, size_t size, info->capacity.store(capacity, std::memory_order_relaxed); if (size == 0) { // This is a clear, reset the total/num_erases too. - info->total_probe_length.store(0, std::memory_order_relaxed); - info->num_erases.store(0, std::memory_order_relaxed); + info->total_probe_length.store(0, std::memory_order_relaxed); + info->num_erases.store(0, std::memory_order_relaxed); } } @@ -137,21 +137,21 @@ void RecordInsertSlow(HashtablezInfo* info, size_t hash, inline void RecordEraseSlow(HashtablezInfo* info) { info->size.fetch_sub(1, std::memory_order_relaxed); - // There is only one concurrent writer, so `load` then `store` is sufficient - // instead of using `fetch_add`. - info->num_erases.store( - 1 + info->num_erases.load(std::memory_order_relaxed), - std::memory_order_relaxed); + // There is only one concurrent writer, so `load` then `store` is sufficient + // instead of using `fetch_add`. + info->num_erases.store( + 1 + info->num_erases.load(std::memory_order_relaxed), + std::memory_order_relaxed); } HashtablezInfo* SampleSlow(int64_t* next_sample, size_t inline_element_size); void UnsampleSlow(HashtablezInfo* info); -#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) -#error ABSL_INTERNAL_HASHTABLEZ_SAMPLE cannot be directly set -#endif // defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) - -#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) +#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) +#error ABSL_INTERNAL_HASHTABLEZ_SAMPLE cannot be directly set +#endif // defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) + +#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) class HashtablezInfoHandle { public: explicit HashtablezInfoHandle() : info_(nullptr) {} @@ -213,29 +213,29 @@ class HashtablezInfoHandle { friend class HashtablezInfoHandlePeer; HashtablezInfo* info_; }; -#else -// Ensure that when Hashtablez is turned off at compile time, HashtablezInfo can -// be removed by the linker, in order to reduce the binary size. -class HashtablezInfoHandle { - public: - explicit HashtablezInfoHandle() = default; - explicit HashtablezInfoHandle(std::nullptr_t) {} - - inline void RecordStorageChanged(size_t /*size*/, size_t /*capacity*/) {} - inline void RecordRehash(size_t /*total_probe_length*/) {} +#else +// Ensure that when Hashtablez is turned off at compile time, HashtablezInfo can +// be removed by the linker, in order to reduce the binary size. +class HashtablezInfoHandle { + public: + explicit HashtablezInfoHandle() = default; + explicit HashtablezInfoHandle(std::nullptr_t) {} + + inline void RecordStorageChanged(size_t /*size*/, size_t /*capacity*/) {} + inline void RecordRehash(size_t /*total_probe_length*/) {} inline void RecordReservation(size_t /*target_capacity*/) {} inline void RecordClearedReservation() {} - inline void RecordInsert(size_t /*hash*/, size_t /*distance_from_desired*/) {} - inline void RecordErase() {} - - friend inline void swap(HashtablezInfoHandle& /*lhs*/, - HashtablezInfoHandle& /*rhs*/) {} -}; + inline void RecordInsert(size_t /*hash*/, size_t /*distance_from_desired*/) {} + inline void RecordErase() {} + + friend inline void swap(HashtablezInfoHandle& /*lhs*/, + HashtablezInfoHandle& /*rhs*/) {} +}; #endif // defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) #if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) extern ABSL_PER_THREAD_TLS_KEYWORD int64_t global_next_sample; -#endif // defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) +#endif // defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) // Returns an RAII sampling handle that manages registration and unregistation // with the global sampler. @@ -272,7 +272,7 @@ void SetHashtablezMaxSamples(int32_t max); // initialization of static storage duration objects. // The definition of this constant is weak, which allows us to inject a // different value for it at link time. -extern "C" bool ABSL_INTERNAL_C_SYMBOL(AbslContainerInternalSampleEverything)(); +extern "C" bool ABSL_INTERNAL_C_SYMBOL(AbslContainerInternalSampleEverything)(); } // namespace container_internal ABSL_NAMESPACE_END diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler_force_weak_definition.cc b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler_force_weak_definition.cc index 79a3122981..4536de40c8 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler_force_weak_definition.cc +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/hashtablez_sampler_force_weak_definition.cc @@ -21,8 +21,8 @@ ABSL_NAMESPACE_BEGIN namespace container_internal { // See hashtablez_sampler.h for details. -extern "C" ABSL_ATTRIBUTE_WEAK bool ABSL_INTERNAL_C_SYMBOL( - AbslContainerInternalSampleEverything)() { +extern "C" ABSL_ATTRIBUTE_WEAK bool ABSL_INTERNAL_C_SYMBOL( + AbslContainerInternalSampleEverything)() { return false; } diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/have_sse.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/have_sse.h index e75e1a16d3..58da3b3163 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/have_sse.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/have_sse.h @@ -16,34 +16,34 @@ #ifndef ABSL_CONTAINER_INTERNAL_HAVE_SSE_H_ #define ABSL_CONTAINER_INTERNAL_HAVE_SSE_H_ -#ifndef ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +#ifndef ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 #if defined(__SSE2__) || \ (defined(_MSC_VER) && \ (defined(_M_X64) || (defined(_M_IX86) && _M_IX86_FP >= 2))) -#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 1 +#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 1 #else -#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 0 +#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 0 #endif #endif -#ifndef ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 +#ifndef ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 #ifdef __SSSE3__ -#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 1 +#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 1 #else -#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 0 +#define ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 0 #endif #endif -#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 && \ - !ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 && \ + !ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 #error "Bad configuration!" #endif -#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 #include <emmintrin.h> #endif -#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 #include <tmmintrin.h> #endif diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/inlined_vector.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/inlined_vector.h index e6488e843e..b5cd516154 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/inlined_vector.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/inlined_vector.h @@ -36,13 +36,13 @@ namespace y_absl { ABSL_NAMESPACE_BEGIN namespace inlined_vector_internal { -// GCC does not deal very well with the below code -#if !defined(__clang__) && defined(__GNUC__) -#pragma GCC diagnostic push +// GCC does not deal very well with the below code +#if !defined(__clang__) && defined(__GNUC__) +#pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Warray-bounds" -#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" -#endif - +#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" +#endif + template <typename A> using AllocatorTraits = std::allocator_traits<A>; template <typename A> @@ -110,7 +110,7 @@ struct Allocation { Pointer<A> data; SizeType<A> capacity; }; - + template <typename A, bool IsOverAligned = (alignof(ValueType<A>) > ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT)> @@ -119,13 +119,13 @@ struct MallocAdapter { return {AllocatorTraits<A>::allocate(allocator, requested_capacity), requested_capacity}; } - + static void Deallocate(A& allocator, Pointer<A> pointer, SizeType<A> capacity) { AllocatorTraits<A>::deallocate(allocator, pointer, capacity); } }; - + template <typename A, typename ValueAdapter> void ConstructElements(NoTypeDeduction<A>& allocator, Pointer<A> construct_first, ValueAdapter& values, @@ -303,14 +303,14 @@ class Storage { : metadata_(allocator, /* size and is_allocated */ 0) {} ~Storage() { - if (GetSizeAndIsAllocated() == 0) { - // Empty and not allocated; nothing to do. + if (GetSizeAndIsAllocated() == 0) { + // Empty and not allocated; nothing to do. } else if (IsMemcpyOk<A>::value) { - // No destructors need to be run; just deallocate if necessary. - DeallocateIfAllocated(); - } else { - DestroyContents(); - } + // No destructors need to be run; just deallocate if necessary. + DeallocateIfAllocated(); + } else { + DestroyContents(); + } } // --------------------------------------------------------------------------- @@ -364,8 +364,8 @@ class Storage { // Storage Member Mutators // --------------------------------------------------------------------------- - ABSL_ATTRIBUTE_NOINLINE void InitFrom(const Storage& other); - + ABSL_ATTRIBUTE_NOINLINE void InitFrom(const Storage& other); + template <typename ValueAdapter> void Initialize(ValueAdapter values, SizeType<A> new_size); @@ -441,8 +441,8 @@ class Storage { } private: - ABSL_ATTRIBUTE_NOINLINE void DestroyContents(); - + ABSL_ATTRIBUTE_NOINLINE void DestroyContents(); + using Metadata = container_internal::CompressedTuple<A, SizeType<A>>; struct Allocated { @@ -459,51 +459,51 @@ class Storage { Inlined inlined; }; - template <typename... Args> + template <typename... Args> ABSL_ATTRIBUTE_NOINLINE Reference<A> EmplaceBackSlow(Args&&... args); - + Metadata metadata_; Data data_; }; template <typename T, size_t N, typename A> -void Storage<T, N, A>::DestroyContents() { +void Storage<T, N, A>::DestroyContents() { Pointer<A> data = GetIsAllocated() ? GetAllocatedData() : GetInlinedData(); DestroyElements<A>(GetAllocator(), data, GetSize()); - DeallocateIfAllocated(); -} - -template <typename T, size_t N, typename A> -void Storage<T, N, A>::InitFrom(const Storage& other) { + DeallocateIfAllocated(); +} + +template <typename T, size_t N, typename A> +void Storage<T, N, A>::InitFrom(const Storage& other) { const SizeType<A> n = other.GetSize(); - assert(n > 0); // Empty sources handled handled in caller. + assert(n > 0); // Empty sources handled handled in caller. ConstPointer<A> src; Pointer<A> dst; - if (!other.GetIsAllocated()) { - dst = GetInlinedData(); - src = other.GetInlinedData(); - } else { - // Because this is only called from the `InlinedVector` constructors, it's - // safe to take on the allocation with size `0`. If `ConstructElements(...)` - // throws, deallocation will be automatically handled by `~Storage()`. + if (!other.GetIsAllocated()) { + dst = GetInlinedData(); + src = other.GetInlinedData(); + } else { + // Because this is only called from the `InlinedVector` constructors, it's + // safe to take on the allocation with size `0`. If `ConstructElements(...)` + // throws, deallocation will be automatically handled by `~Storage()`. SizeType<A> requested_capacity = ComputeCapacity(GetInlinedCapacity(), n); Allocation<A> allocation = MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity); SetAllocation(allocation); dst = allocation.data; - src = other.GetAllocatedData(); - } + src = other.GetAllocatedData(); + } if (IsMemcpyOk<A>::value) { std::memcpy(reinterpret_cast<char*>(dst), reinterpret_cast<const char*>(src), n * sizeof(ValueType<A>)); - } else { + } else { auto values = IteratorValueAdapter<A, ConstPointer<A>>(src); ConstructElements<A>(GetAllocator(), dst, values, n); - } - GetSizeAndIsAllocated() = other.GetSizeAndIsAllocated(); -} - -template <typename T, size_t N, typename A> + } + GetSizeAndIsAllocated() = other.GetSizeAndIsAllocated(); +} + +template <typename T, size_t N, typename A> template <typename ValueAdapter> auto Storage<T, N, A>::Initialize(ValueAdapter values, SizeType<A> new_size) -> void { @@ -585,20 +585,20 @@ auto Storage<T, N, A>::Resize(ValueAdapter values, SizeType<A> new_size) Pointer<A> const base = storage_view.data; const SizeType<A> size = storage_view.size; A& alloc = GetAllocator(); - if (new_size <= size) { - // Destroy extra old elements. + if (new_size <= size) { + // Destroy extra old elements. DestroyElements<A>(alloc, base + new_size, size - new_size); - } else if (new_size <= storage_view.capacity) { - // Construct new elements in place. + } else if (new_size <= storage_view.capacity) { + // Construct new elements in place. ConstructElements<A>(alloc, base + size, values, new_size - size); - } else { - // Steps: - // a. Allocate new backing store. - // b. Construct new elements in new backing store. - // c. Move existing elements from old backing store to now. - // d. Destroy all elements in old backing store. - // Use transactional wrappers for the first two steps so we can roll - // back if necessary due to exceptions. + } else { + // Steps: + // a. Allocate new backing store. + // b. Construct new elements in new backing store. + // c. Move existing elements from old backing store to now. + // d. Destroy all elements in old backing store. + // Use transactional wrappers for the first two steps so we can roll + // back if necessary due to exceptions. AllocationTransaction<A> allocation_tx(alloc); SizeType<A> requested_capacity = ComputeCapacity(storage_view.capacity, new_size); @@ -717,20 +717,20 @@ template <typename... Args> auto Storage<T, N, A>::EmplaceBack(Args&&... args) -> Reference<A> { StorageView<A> storage_view = MakeStorageView(); const SizeType<A> n = storage_view.size; - if (ABSL_PREDICT_TRUE(n != storage_view.capacity)) { - // Fast path; new element fits. + if (ABSL_PREDICT_TRUE(n != storage_view.capacity)) { + // Fast path; new element fits. Pointer<A> last_ptr = storage_view.data + n; AllocatorTraits<A>::construct(GetAllocator(), last_ptr, std::forward<Args>(args)...); - AddSize(1); - return *last_ptr; - } - // TODO(b/173712035): Annotate with musttail attribute to prevent regression. - return EmplaceBackSlow(std::forward<Args>(args)...); -} - -template <typename T, size_t N, typename A> -template <typename... Args> + AddSize(1); + return *last_ptr; + } + // TODO(b/173712035): Annotate with musttail attribute to prevent regression. + return EmplaceBackSlow(std::forward<Args>(args)...); +} + +template <typename T, size_t N, typename A> +template <typename... Args> auto Storage<T, N, A>::EmplaceBackSlow(Args&&... args) -> Reference<A> { StorageView<A> storage_view = MakeStorageView(); AllocationTransaction<A> allocation_tx(GetAllocator()); @@ -740,24 +740,24 @@ auto Storage<T, N, A>::EmplaceBackSlow(Args&&... args) -> Reference<A> { Pointer<A> construct_data = allocation_tx.Allocate(requested_capacity); Pointer<A> last_ptr = construct_data + storage_view.size; - // Construct new element. + // Construct new element. AllocatorTraits<A>::construct(GetAllocator(), last_ptr, std::forward<Args>(args)...); - // Move elements from old backing store to new backing store. - ABSL_INTERNAL_TRY { + // Move elements from old backing store to new backing store. + ABSL_INTERNAL_TRY { ConstructElements<A>(GetAllocator(), allocation_tx.GetData(), move_values, storage_view.size); } - ABSL_INTERNAL_CATCH_ANY { + ABSL_INTERNAL_CATCH_ANY { AllocatorTraits<A>::destroy(GetAllocator(), last_ptr); - ABSL_INTERNAL_RETHROW; - } - // Destroy elements in old backing store. + ABSL_INTERNAL_RETHROW; + } + // Destroy elements in old backing store. DestroyElements<A>(GetAllocator(), storage_view.data, storage_view.size); - DeallocateIfAllocated(); + DeallocateIfAllocated(); SetAllocation(std::move(allocation_tx).Release()); - SetIsAllocated(); + SetIsAllocated(); AddSize(1); return *last_ptr; } @@ -921,10 +921,10 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void { } // End ignore "array-bounds" and "maybe-uninitialized" -#if !defined(__clang__) && defined(__GNUC__) -#pragma GCC diagnostic pop -#endif - +#if !defined(__clang__) && defined(__GNUC__) +#pragma GCC diagnostic pop +#endif + } // namespace inlined_vector_internal ABSL_NAMESPACE_END } // namespace y_absl diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/layout.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/layout.h index 4c3f668943..327d910d60 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/layout.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/layout.h @@ -163,7 +163,7 @@ #include <assert.h> #include <stddef.h> #include <stdint.h> - + #include <ostream> #include <util/generic/string.h> #include <tuple> @@ -171,16 +171,16 @@ #include <typeinfo> #include <utility> -#include "y_absl/base/config.h" +#include "y_absl/base/config.h" #include "y_absl/meta/type_traits.h" #include "y_absl/strings/str_cat.h" #include "y_absl/types/span.h" #include "y_absl/utility/utility.h" -#ifdef ABSL_HAVE_ADDRESS_SANITIZER -#include <sanitizer/asan_interface.h> -#endif - +#ifdef ABSL_HAVE_ADDRESS_SANITIZER +#include <sanitizer/asan_interface.h> +#endif + #if defined(__GXX_RTTI) #define ABSL_INTERNAL_HAS_CXA_DEMANGLE #endif @@ -404,7 +404,7 @@ class LayoutImpl<std::tuple<Elements...>, y_absl::index_sequence<SizeSeq...>, constexpr size_t Offset() const { static_assert(N < NumOffsets, "Index out of bounds"); return adl_barrier::Align( - Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1], + Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1], ElementAlignment<N>::value); } @@ -597,7 +597,7 @@ class LayoutImpl<std::tuple<Elements...>, y_absl::index_sequence<SizeSeq...>, constexpr size_t AllocSize() const { static_assert(NumTypes == NumSizes, "You must specify sizes of all fields"); return Offset<NumTypes - 1>() + - SizeOf<ElementType<NumTypes - 1>>::value * size_[NumTypes - 1]; + SizeOf<ElementType<NumTypes - 1>>::value * size_[NumTypes - 1]; } // If built with --config=asan, poisons padding bytes (if any) in the @@ -616,12 +616,12 @@ class LayoutImpl<std::tuple<Elements...>, y_absl::index_sequence<SizeSeq...>, void PoisonPadding(const Char* p) const { static_assert(N < NumOffsets, "Index out of bounds"); (void)p; -#ifdef ABSL_HAVE_ADDRESS_SANITIZER +#ifdef ABSL_HAVE_ADDRESS_SANITIZER PoisonPadding<Char, N - 1>(p); // The `if` is an optimization. It doesn't affect the observable behaviour. if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) { size_t start = - Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1]; + Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1]; ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start); } #endif @@ -645,7 +645,7 @@ class LayoutImpl<std::tuple<Elements...>, y_absl::index_sequence<SizeSeq...>, // produce "unsigned*" where another produces "unsigned int *". TString DebugString() const { const auto offsets = Offsets(); - const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>::value...}; + const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>::value...}; const TString types[] = { adl_barrier::TypeName<ElementType<OffsetSeq>>()...}; TString res = y_absl::StrCat("@0", types[0], "(", sizes[0], ")"); diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set.cc b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set.cc index bf2a15a678..5da7c92dbc 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set.cc +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set.cc @@ -33,7 +33,7 @@ constexpr size_t Group::kWidth; // Returns "random" seed. inline size_t RandomSeed() { -#ifdef ABSL_HAVE_THREAD_LOCAL +#ifdef ABSL_HAVE_THREAD_LOCAL static thread_local size_t counter = 0; size_t value = ++counter; #else // ABSL_HAVE_THREAD_LOCAL @@ -51,17 +51,17 @@ bool ShouldInsertBackwards(size_t hash, const ctrl_t* ctrl) { void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity) { assert(ctrl[capacity] == ctrl_t::kSentinel); - assert(IsValidCapacity(capacity)); + assert(IsValidCapacity(capacity)); for (ctrl_t* pos = ctrl; pos < ctrl + capacity; pos += Group::kWidth) { - Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos); - } - // Copy the cloned ctrl bytes. + Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos); + } + // Copy the cloned ctrl bytes. std::memcpy(ctrl + capacity + 1, ctrl, NumClonedBytes()); ctrl[capacity] = ctrl_t::kSentinel; -} +} // Extern template instantiotion for inline function. template FindInfo find_first_non_full(const ctrl_t*, size_t, size_t); - + } // namespace container_internal ABSL_NAMESPACE_END } // namespace y_absl diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set.h index 8f45559b31..a493faea66 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set.h @@ -114,7 +114,7 @@ #include <utility> #include "y_absl/base/internal/endian.h" -#include "y_absl/base/optimization.h" +#include "y_absl/base/optimization.h" #include "y_absl/base/port.h" #include "y_absl/container/internal/common.h" #include "y_absl/container/internal/compressed_tuple.h" @@ -125,23 +125,23 @@ #include "y_absl/container/internal/have_sse.h" #include "y_absl/memory/memory.h" #include "y_absl/meta/type_traits.h" -#include "y_absl/numeric/bits.h" +#include "y_absl/numeric/bits.h" #include "y_absl/utility/utility.h" namespace y_absl { ABSL_NAMESPACE_BEGIN namespace container_internal { -template <typename AllocType> -void SwapAlloc(AllocType& lhs, AllocType& rhs, - std::true_type /* propagate_on_container_swap */) { - using std::swap; - swap(lhs, rhs); -} -template <typename AllocType> -void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/, - std::false_type /* propagate_on_container_swap */) {} - +template <typename AllocType> +void SwapAlloc(AllocType& lhs, AllocType& rhs, + std::true_type /* propagate_on_container_swap */) { + using std::swap; + swap(lhs, rhs); +} +template <typename AllocType> +void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/, + std::false_type /* propagate_on_container_swap */) {} + template <size_t Width> class probe_seq { public: @@ -189,19 +189,19 @@ struct IsDecomposable< // TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it. template <class T> -constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) { +constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) { using std::swap; return noexcept(swap(std::declval<T&>(), std::declval<T&>())); } -template <class T> -constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) { - return false; +template <class T> +constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) { + return false; } template <typename T> -uint32_t TrailingZeros(T x) { - ABSL_INTERNAL_ASSUME(x != 0); - return countr_zero(x); +uint32_t TrailingZeros(T x) { + ABSL_INTERNAL_ASSUME(x != 0); + return countr_zero(x); } // An abstraction over a bitmask. It provides an easy way to iterate through the @@ -231,24 +231,24 @@ class BitMask { } explicit operator bool() const { return mask_ != 0; } int operator*() const { return LowestBitSet(); } - uint32_t LowestBitSet() const { + uint32_t LowestBitSet() const { return container_internal::TrailingZeros(mask_) >> Shift; } - uint32_t HighestBitSet() const { - return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift); + uint32_t HighestBitSet() const { + return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift); } BitMask begin() const { return *this; } BitMask end() const { return BitMask(0); } - uint32_t TrailingZeros() const { + uint32_t TrailingZeros() const { return container_internal::TrailingZeros(mask_) >> Shift; } - uint32_t LeadingZeros() const { + uint32_t LeadingZeros() const { constexpr int total_significant_bits = SignificantBits << Shift; constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits; - return countl_zero(mask_ << extra_bits) >> Shift; + return countl_zero(mask_ << extra_bits) >> Shift; } private: @@ -331,7 +331,7 @@ inline bool IsFull(ctrl_t c) { return c >= static_cast<ctrl_t>(0); } inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; } inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; } -#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 // https://github.com/abseil/abseil-cpp/issues/209 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853 @@ -365,7 +365,7 @@ struct GroupSse2Impl { // Returns a bitmask representing the positions of empty slots. BitMask<uint32_t, kWidth> MatchEmpty() const { -#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 // This only works because ctrl_t::kEmpty is -128. return BitMask<uint32_t, kWidth>( _mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl))); @@ -384,14 +384,14 @@ struct GroupSse2Impl { // Returns the number of trailing empty or deleted elements in the group. uint32_t CountLeadingEmptyOrDeleted() const { auto special = _mm_set1_epi8(static_cast<int8_t>(ctrl_t::kSentinel)); - return TrailingZeros(static_cast<uint32_t>( - _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1)); + return TrailingZeros(static_cast<uint32_t>( + _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1)); } void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { auto msbs = _mm_set1_epi8(static_cast<char>(-128)); auto x126 = _mm_set1_epi8(126); -#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs); #else auto zero = _mm_setzero_si128(); @@ -403,7 +403,7 @@ struct GroupSse2Impl { __m128i ctrl; }; -#endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +#endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 struct GroupPortableImpl { static constexpr size_t kWidth = 8; @@ -457,7 +457,7 @@ struct GroupPortableImpl { uint64_t ctrl; }; -#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 +#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 using Group = GroupSse2Impl; #else using Group = GroupPortableImpl; @@ -480,23 +480,23 @@ inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; } // DELETED -> EMPTY // EMPTY -> EMPTY // FULL -> DELETED -void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity); +void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity); // Rounds up the capacity to the next power of 2 minus 1, with a minimum of 1. inline size_t NormalizeCapacity(size_t n) { - return n ? ~size_t{} >> countl_zero(n) : 1; + return n ? ~size_t{} >> countl_zero(n) : 1; } -// General notes on capacity/growth methods below: -// - We use 7/8th as maximum load factor. For 16-wide groups, that gives an -// average of two empty slots per group. -// - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity. -// - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we -// never need to probe (the whole table fits in one group) so we don't need a -// load factor less than 1. - -// Given `capacity` of the table, returns the size (i.e. number of full slots) -// at which we should grow the capacity. +// General notes on capacity/growth methods below: +// - We use 7/8th as maximum load factor. For 16-wide groups, that gives an +// average of two empty slots per group. +// - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity. +// - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we +// never need to probe (the whole table fits in one group) so we don't need a +// load factor less than 1. + +// Given `capacity` of the table, returns the size (i.e. number of full slots) +// at which we should grow the capacity. inline size_t CapacityToGrowth(size_t capacity) { assert(IsValidCapacity(capacity)); // `capacity*7/8` @@ -507,7 +507,7 @@ inline size_t CapacityToGrowth(size_t capacity) { return capacity - capacity / 8; } // From desired "growth" to a lowerbound of the necessary capacity. -// Might not be a valid one and requires NormalizeCapacity(). +// Might not be a valid one and requires NormalizeCapacity(). inline size_t GrowthToLowerboundCapacity(size_t growth) { // `growth*8/7` if (Group::kWidth == 8 && growth == 7) { @@ -533,78 +533,78 @@ size_t SelectBucketCountForIterRange(InputIter first, InputIter last, return 0; } -inline void AssertIsFull(ctrl_t* ctrl) { - ABSL_HARDENING_ASSERT((ctrl != nullptr && IsFull(*ctrl)) && - "Invalid operation on iterator. The element might have " - "been erased, or the table might have rehashed."); -} - -inline void AssertIsValid(ctrl_t* ctrl) { - ABSL_HARDENING_ASSERT((ctrl == nullptr || IsFull(*ctrl)) && - "Invalid operation on iterator. The element might have " - "been erased, or the table might have rehashed."); -} - -struct FindInfo { - size_t offset; - size_t probe_length; -}; - -// The representation of the object has two modes: -// - small: For capacities < kWidth-1 -// - large: For the rest. -// -// Differences: -// - In small mode we are able to use the whole capacity. The extra control -// bytes give us at least one "empty" control byte to stop the iteration. -// This is important to make 1 a valid capacity. -// -// - In small mode only the first `capacity()` control bytes after the +inline void AssertIsFull(ctrl_t* ctrl) { + ABSL_HARDENING_ASSERT((ctrl != nullptr && IsFull(*ctrl)) && + "Invalid operation on iterator. The element might have " + "been erased, or the table might have rehashed."); +} + +inline void AssertIsValid(ctrl_t* ctrl) { + ABSL_HARDENING_ASSERT((ctrl == nullptr || IsFull(*ctrl)) && + "Invalid operation on iterator. The element might have " + "been erased, or the table might have rehashed."); +} + +struct FindInfo { + size_t offset; + size_t probe_length; +}; + +// The representation of the object has two modes: +// - small: For capacities < kWidth-1 +// - large: For the rest. +// +// Differences: +// - In small mode we are able to use the whole capacity. The extra control +// bytes give us at least one "empty" control byte to stop the iteration. +// This is important to make 1 a valid capacity. +// +// - In small mode only the first `capacity()` control bytes after the // sentinel are valid. The rest contain dummy ctrl_t::kEmpty values that do not -// represent a real slot. This is important to take into account on -// find_first_non_full(), where we never try ShouldInsertBackwards() for -// small tables. -inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; } - +// represent a real slot. This is important to take into account on +// find_first_non_full(), where we never try ShouldInsertBackwards() for +// small tables. +inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; } + inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, size_t hash, - size_t capacity) { - return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity); -} - -// Probes the raw_hash_set with the probe sequence for hash and returns the -// pointer to the first empty or deleted slot. + size_t capacity) { + return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity); +} + +// Probes the raw_hash_set with the probe sequence for hash and returns the +// pointer to the first empty or deleted slot. // NOTE: this function must work with tables having both ctrl_t::kEmpty and // ctrl_t::kDeleted in one group. Such tables appears during // drop_deletes_without_resize. -// -// This function is very useful when insertions happen and: -// - the input is already a set -// - there are enough slots -// - the element with the hash is not in the table +// +// This function is very useful when insertions happen and: +// - the input is already a set +// - there are enough slots +// - the element with the hash is not in the table template <typename = void> inline FindInfo find_first_non_full(const ctrl_t* ctrl, size_t hash, - size_t capacity) { - auto seq = probe(ctrl, hash, capacity); - while (true) { - Group g{ctrl + seq.offset()}; - auto mask = g.MatchEmptyOrDeleted(); - if (mask) { -#if !defined(NDEBUG) - // We want to add entropy even when ASLR is not enabled. - // In debug build we will randomly insert in either the front or back of - // the group. - // TODO(kfm,sbenza): revisit after we do unconditional mixing - if (!is_small(capacity) && ShouldInsertBackwards(hash, ctrl)) { - return {seq.offset(mask.HighestBitSet()), seq.index()}; - } -#endif - return {seq.offset(mask.LowestBitSet()), seq.index()}; - } - seq.next(); + size_t capacity) { + auto seq = probe(ctrl, hash, capacity); + while (true) { + Group g{ctrl + seq.offset()}; + auto mask = g.MatchEmptyOrDeleted(); + if (mask) { +#if !defined(NDEBUG) + // We want to add entropy even when ASLR is not enabled. + // In debug build we will randomly insert in either the front or back of + // the group. + // TODO(kfm,sbenza): revisit after we do unconditional mixing + if (!is_small(capacity) && ShouldInsertBackwards(hash, ctrl)) { + return {seq.offset(mask.HighestBitSet()), seq.index()}; + } +#endif + return {seq.offset(mask.LowestBitSet()), seq.index()}; + } + seq.next(); assert(seq.index() <= capacity && "full table!"); - } -} - + } +} + // Extern template for inline function keep possibility of inlining. // When compiler decided to not inline, no symbols will be added to the // corresponding translation unit. @@ -669,8 +669,8 @@ inline size_t AllocSize(size_t capacity, size_t slot_size, size_t slot_align) { // if they are equal, false if they are not. If two keys compare equal, then // their hash values as defined by Hash MUST be equal. // -// Allocator: an Allocator -// [https://en.cppreference.com/w/cpp/named_req/Allocator] with which +// Allocator: an Allocator +// [https://en.cppreference.com/w/cpp/named_req/Allocator] with which // the storage of the hashtable will be allocated and the elements will be // constructed and destroyed. template <class Policy, class Hash, class Eq, class Alloc> @@ -769,7 +769,7 @@ class raw_hash_set { // PRECONDITION: not an end() iterator. reference operator*() const { - AssertIsFull(ctrl_); + AssertIsFull(ctrl_); return PolicyTraits::element(slot_); } @@ -778,7 +778,7 @@ class raw_hash_set { // PRECONDITION: not an end() iterator. iterator& operator++() { - AssertIsFull(ctrl_); + AssertIsFull(ctrl_); ++ctrl_; ++slot_; skip_empty_or_deleted(); @@ -792,8 +792,8 @@ class raw_hash_set { } friend bool operator==(const iterator& a, const iterator& b) { - AssertIsValid(a.ctrl_); - AssertIsValid(b.ctrl_); + AssertIsValid(a.ctrl_); + AssertIsValid(b.ctrl_); return a.ctrl_ == b.ctrl_; } friend bool operator!=(const iterator& a, const iterator& b) { @@ -801,10 +801,10 @@ class raw_hash_set { } private: - iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) { - // This assumption helps the compiler know that any non-end iterator is - // not equal to any end iterator. - ABSL_INTERNAL_ASSUME(ctrl != nullptr); + iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) { + // This assumption helps the compiler know that any non-end iterator is + // not equal to any end iterator. + ABSL_INTERNAL_ASSUME(ctrl != nullptr); } void skip_empty_or_deleted() { @@ -872,8 +872,8 @@ class raw_hash_set { explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(), const key_equal& eq = key_equal(), const allocator_type& alloc = allocator_type()) - : ctrl_(EmptyGroup()), - settings_(0, HashtablezInfoHandle(), hash, eq, alloc) { + : ctrl_(EmptyGroup()), + settings_(0, HashtablezInfoHandle(), hash, eq, alloc) { if (bucket_count) { capacity_ = NormalizeCapacity(bucket_count); initialize_slots(); @@ -982,11 +982,11 @@ class raw_hash_set { // than a full `insert`. for (const auto& v : that) { const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v); - auto target = find_first_non_full(ctrl_, hash, capacity_); + auto target = find_first_non_full(ctrl_, hash, capacity_); SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type)); emplace_at(target.offset, v); - infoz().RecordInsert(hash, target.probe_length); + infoz().RecordInsert(hash, target.probe_length); } size_ = that.size(); growth_left() -= that.size(); @@ -1003,24 +1003,24 @@ class raw_hash_set { // Hash, equality and allocator are copied instead of moved because // `that` must be left valid. If Hash is std::function<Key>, moving it // would create a nullptr functor that cannot be called. - settings_(y_absl::exchange(that.growth_left(), 0), - y_absl::exchange(that.infoz(), HashtablezInfoHandle()), - that.hash_ref(), that.eq_ref(), that.alloc_ref()) {} + settings_(y_absl::exchange(that.growth_left(), 0), + y_absl::exchange(that.infoz(), HashtablezInfoHandle()), + that.hash_ref(), that.eq_ref(), that.alloc_ref()) {} raw_hash_set(raw_hash_set&& that, const allocator_type& a) : ctrl_(EmptyGroup()), slots_(nullptr), size_(0), capacity_(0), - settings_(0, HashtablezInfoHandle(), that.hash_ref(), that.eq_ref(), - a) { + settings_(0, HashtablezInfoHandle(), that.hash_ref(), that.eq_ref(), + a) { if (a == that.alloc_ref()) { std::swap(ctrl_, that.ctrl_); std::swap(slots_, that.slots_); std::swap(size_, that.size_); std::swap(capacity_, that.capacity_); std::swap(growth_left(), that.growth_left()); - std::swap(infoz(), that.infoz()); + std::swap(infoz(), that.infoz()); } else { reserve(that.size()); // Note: this will copy elements of dense_set and unordered_set instead of @@ -1056,12 +1056,12 @@ class raw_hash_set { it.skip_empty_or_deleted(); return it; } - iterator end() { return {}; } + iterator end() { return {}; } const_iterator begin() const { return const_cast<raw_hash_set*>(this)->begin(); } - const_iterator end() const { return {}; } + const_iterator end() const { return {}; } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } @@ -1093,7 +1093,7 @@ class raw_hash_set { reset_growth_left(); } assert(empty()); - infoz().RecordStorageChanged(0, capacity_); + infoz().RecordStorageChanged(0, capacity_); } // This overload kicks in when the argument is an rvalue of insertable and @@ -1166,7 +1166,7 @@ class raw_hash_set { template <class InputIt> void insert(InputIt first, InputIt last) { - for (; first != last; ++first) emplace(*first); + for (; first != last; ++first) emplace(*first); } template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0> @@ -1193,9 +1193,9 @@ class raw_hash_set { } iterator insert(const_iterator, node_type&& node) { - auto res = insert(std::move(node)); - node = std::move(res.node); - return res.position; + auto res = insert(std::move(node)); + node = std::move(res.node); + return res.position; } // This overload kicks in if we can deduce the key from args. This enables us @@ -1324,7 +1324,7 @@ class raw_hash_set { // This overload is necessary because otherwise erase<K>(const K&) would be // a better match if non-const iterator is passed as an argument. void erase(iterator it) { - AssertIsFull(it.ctrl_); + AssertIsFull(it.ctrl_); PolicyTraits::destroy(&alloc_ref(), it.slot_); erase_meta_only(it); } @@ -1358,7 +1358,7 @@ class raw_hash_set { } node_type extract(const_iterator position) { - AssertIsFull(position.inner_.ctrl_); + AssertIsFull(position.inner_.ctrl_); auto node = CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_); erase_meta_only(position); @@ -1375,8 +1375,8 @@ class raw_hash_set { void swap(raw_hash_set& that) noexcept( IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() && - IsNoThrowSwappable<allocator_type>( - typename AllocTraits::propagate_on_container_swap{})) { + IsNoThrowSwappable<allocator_type>( + typename AllocTraits::propagate_on_container_swap{})) { using std::swap; swap(ctrl_, that.ctrl_); swap(slots_, that.slots_); @@ -1385,16 +1385,16 @@ class raw_hash_set { swap(growth_left(), that.growth_left()); swap(hash_ref(), that.hash_ref()); swap(eq_ref(), that.eq_ref()); - swap(infoz(), that.infoz()); - SwapAlloc(alloc_ref(), that.alloc_ref(), - typename AllocTraits::propagate_on_container_swap{}); + swap(infoz(), that.infoz()); + SwapAlloc(alloc_ref(), that.alloc_ref(), + typename AllocTraits::propagate_on_container_swap{}); } void rehash(size_t n) { if (n == 0 && capacity_ == 0) return; if (n == 0 && size_ == 0) { destroy_slots(); - infoz().RecordStorageChanged(0, 0); + infoz().RecordStorageChanged(0, 0); infoz().RecordClearedReservation(); return; } @@ -1412,16 +1412,16 @@ class raw_hash_set { } } - void reserve(size_t n) { + void reserve(size_t n) { if (n > size() + growth_left()) { size_t m = GrowthToLowerboundCapacity(n); - resize(NormalizeCapacity(m)); + resize(NormalizeCapacity(m)); // This is after resize, to ensure that we have completed the allocation // and have potentially sampled the hashtable. infoz().RecordReservation(n); - } - } + } + } // Extension API: support for heterogeneous keys. // @@ -1447,7 +1447,7 @@ class raw_hash_set { (void)key; #if defined(__GNUC__) prefetch_heap_block(); - auto seq = probe(ctrl_, hash_ref()(key), capacity_); + auto seq = probe(ctrl_, hash_ref()(key), capacity_); __builtin_prefetch(static_cast<const void*>(ctrl_ + seq.offset())); __builtin_prefetch(static_cast<const void*>(slots_ + seq.offset())); #endif // __GNUC__ @@ -1462,7 +1462,7 @@ class raw_hash_set { // called heterogeneous key support. template <class K = key_type> iterator find(const key_arg<K>& key, size_t hash) { - auto seq = probe(ctrl_, hash, capacity_); + auto seq = probe(ctrl_, hash, capacity_); while (true) { Group g{ctrl_ + seq.offset()}; for (int i : g.Match(H2(hash))) { @@ -1626,7 +1626,7 @@ class raw_hash_set { SetCtrl(index, was_never_full ? ctrl_t::kEmpty : ctrl_t::kDeleted, capacity_, ctrl_, slots_, sizeof(slot_type)); growth_left() += was_never_full; - infoz().RecordErase(); + infoz().RecordErase(); } void initialize_slots() { @@ -1654,7 +1654,7 @@ class raw_hash_set { mem + SlotOffset(capacity_, alignof(slot_type))); ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type)); reset_growth_left(); - infoz().RecordStorageChanged(size_, capacity_); + infoz().RecordStorageChanged(size_, capacity_); } void destroy_slots() { @@ -1690,7 +1690,7 @@ class raw_hash_set { if (IsFull(old_ctrl[i])) { size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, PolicyTraits::element(old_slots + i)); - auto target = find_first_non_full(ctrl_, hash, capacity_); + auto target = find_first_non_full(ctrl_, hash, capacity_); size_t new_i = target.offset; total_probe_length += target.probe_length; SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type)); @@ -1704,12 +1704,12 @@ class raw_hash_set { &alloc_ref(), old_ctrl, AllocSize(old_capacity, sizeof(slot_type), alignof(slot_type))); } - infoz().RecordRehash(total_probe_length); + infoz().RecordRehash(total_probe_length); } void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE { assert(IsValidCapacity(capacity_)); - assert(!is_small(capacity_)); + assert(!is_small(capacity_)); // Algorithm: // - mark all DELETED slots as EMPTY // - mark all FULL slots as DELETED @@ -1770,7 +1770,7 @@ class raw_hash_set { } } reset_growth_left(); - infoz().RecordRehash(total_probe_length); + infoz().RecordRehash(total_probe_length); } void rehash_and_grow_if_necessary() { @@ -1829,7 +1829,7 @@ class raw_hash_set { bool has_element(const value_type& elem) const { size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem); - auto seq = probe(ctrl_, hash, capacity_); + auto seq = probe(ctrl_, hash, capacity_); while (true) { Group g{ctrl_ + seq.offset()}; for (int i : g.Match(H2(hash))) { @@ -1861,7 +1861,7 @@ class raw_hash_set { std::pair<size_t, bool> find_or_prepare_insert(const K& key) { prefetch_heap_block(); auto hash = hash_ref()(key); - auto seq = probe(ctrl_, hash, capacity_); + auto seq = probe(ctrl_, hash, capacity_); while (true) { Group g{ctrl_ + seq.offset()}; for (int i : g.Match(H2(hash))) { @@ -1878,17 +1878,17 @@ class raw_hash_set { } size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE { - auto target = find_first_non_full(ctrl_, hash, capacity_); + auto target = find_first_non_full(ctrl_, hash, capacity_); if (ABSL_PREDICT_FALSE(growth_left() == 0 && !IsDeleted(ctrl_[target.offset]))) { rehash_and_grow_if_necessary(); - target = find_first_non_full(ctrl_, hash, capacity_); + target = find_first_non_full(ctrl_, hash, capacity_); } ++size_; growth_left() -= IsEmpty(ctrl_[target.offset]); SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type)); - infoz().RecordInsert(hash, target.probe_length); + infoz().RecordInsert(hash, target.probe_length); return target.offset; } @@ -1931,15 +1931,15 @@ class raw_hash_set { #endif // __GNUC__ } - HashtablezInfoHandle& infoz() { return settings_.template get<1>(); } + HashtablezInfoHandle& infoz() { return settings_.template get<1>(); } - hasher& hash_ref() { return settings_.template get<2>(); } - const hasher& hash_ref() const { return settings_.template get<2>(); } - key_equal& eq_ref() { return settings_.template get<3>(); } - const key_equal& eq_ref() const { return settings_.template get<3>(); } - allocator_type& alloc_ref() { return settings_.template get<4>(); } + hasher& hash_ref() { return settings_.template get<2>(); } + const hasher& hash_ref() const { return settings_.template get<2>(); } + key_equal& eq_ref() { return settings_.template get<3>(); } + const key_equal& eq_ref() const { return settings_.template get<3>(); } + allocator_type& alloc_ref() { return settings_.template get<4>(); } const allocator_type& alloc_ref() const { - return settings_.template get<4>(); + return settings_.template get<4>(); } // TODO(alkis): Investigate removing some of these fields: @@ -1949,11 +1949,11 @@ class raw_hash_set { slot_type* slots_ = nullptr; // [capacity * slot_type] size_t size_ = 0; // number of full slots size_t capacity_ = 0; // total number of slots - y_absl::container_internal::CompressedTuple<size_t /* growth_left */, - HashtablezInfoHandle, hasher, + y_absl::container_internal::CompressedTuple<size_t /* growth_left */, + HashtablezInfoHandle, hasher, key_equal, allocator_type> - settings_{0, HashtablezInfoHandle{}, hasher{}, key_equal{}, - allocator_type{}}; + settings_{0, HashtablezInfoHandle{}, hasher{}, key_equal{}, + allocator_type{}}; }; // Erases all elements that satisfy the predicate `pred` from the container `c`. @@ -1978,7 +1978,7 @@ struct HashtableDebugAccess<Set, y_absl::void_t<typename Set::raw_hash_set>> { const typename Set::key_type& key) { size_t num_probes = 0; size_t hash = set.hash_ref()(key); - auto seq = probe(set.ctrl_, hash, set.capacity_); + auto seq = probe(set.ctrl_, hash, set.capacity_); while (true) { container_internal::Group g{set.ctrl_ + seq.offset()}; for (int i : g.Match(container_internal::H2(hash))) { diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set/ya.make b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set/ya.make index d636929b87..8091b96b3c 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set/ya.make +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/raw_hash_set/ya.make @@ -2,13 +2,13 @@ LIBRARY() -WITHOUT_LICENSE_TEXTS() - -OWNER( - somov - g:cpp-contrib -) +WITHOUT_LICENSE_TEXTS() +OWNER( + somov + g:cpp-contrib +) + LICENSE(Apache-2.0) PEERDIR( diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/unordered_map_constructor_test.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/unordered_map_constructor_test.h index f55d6293ae..8d75094512 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/unordered_map_constructor_test.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/unordered_map_constructor_test.h @@ -16,7 +16,7 @@ #define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_ #include <algorithm> -#include <unordered_map> +#include <unordered_map> #include <vector> #include "gmock/gmock.h" diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/unordered_map_modifiers_test.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/unordered_map_modifiers_test.h index 725cfdc345..fd4e3977a2 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/unordered_map_modifiers_test.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/unordered_map_modifiers_test.h @@ -319,8 +319,8 @@ class UniquePtrModifiersTest : public ::testing::Test { } }; -GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(UniquePtrModifiersTest); - +GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(UniquePtrModifiersTest); + TYPED_TEST_SUITE_P(UniquePtrModifiersTest); // Test that we do not move from rvalue arguments if an insertion does not diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/node_hash_map.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/node_hash_map.h index 07e26def79..f3cdce8f22 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/node_hash_map.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/node_hash_map.h @@ -225,8 +225,8 @@ class node_hash_map // // size_type erase(const key_type& key): // - // Erases the element with the matching key, if it exists, returning the - // number of elements erased (0 or 1). + // Erases the element with the matching key, if it exists, returning the + // number of elements erased (0 or 1). using Base::erase; // node_hash_map::insert() @@ -375,11 +375,11 @@ class node_hash_map // key value and returns a node handle owning that extracted data. If the // `node_hash_map` does not contain an element with a matching key, this // function returns an empty node handle. - // - // NOTE: when compiled in an earlier version of C++ than C++17, - // `node_type::key()` returns a const reference to the key instead of a - // mutable reference. We cannot safely return a mutable reference without - // std::launder (which is not available before C++17). + // + // NOTE: when compiled in an earlier version of C++ than C++17, + // `node_type::key()` returns a const reference to the key instead of a + // mutable reference. We cannot safely return a mutable reference without + // std::launder (which is not available before C++17). using Base::extract; // node_hash_map::merge() diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/node_hash_set.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/node_hash_set.h index aa98bb29b8..bd8fe21a70 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/node_hash_set.h +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/node_hash_set.h @@ -18,7 +18,7 @@ // // An `y_absl::node_hash_set<T>` is an unordered associative container designed to // be a more efficient replacement for `std::unordered_set`. Like -// `unordered_set`, search, insertion, and deletion of set elements can be done +// `unordered_set`, search, insertion, and deletion of set elements can be done // as an `O(1)` operation. However, `node_hash_set` (and other unordered // associative containers known as the collection of Abseil "Swiss tables") // contain other optimizations that result in both memory and computation @@ -60,7 +60,7 @@ struct NodeHashSetPolicy; // following notable differences: // // * Supports heterogeneous lookup, through `find()`, `operator[]()` and -// `insert()`, provided that the set is provided a compatible heterogeneous +// `insert()`, provided that the set is provided a compatible heterogeneous // hashing function and equality operator. // * Contains a `capacity()` member function indicating the number of element // slots (open, deleted, and empty) within the hash set. @@ -76,13 +76,13 @@ struct NodeHashSetPolicy; // Example: // // // Create a node hash set of three strings -// y_absl::node_hash_set<TString> ducks = +// y_absl::node_hash_set<TString> ducks = // {"huey", "dewey", "louie"}; // -// // Insert a new element into the node hash set -// ducks.insert("donald"); +// // Insert a new element into the node hash set +// ducks.insert("donald"); // -// // Force a rehash of the node hash set +// // Force a rehash of the node hash set // ducks.rehash(0); // // // See if "dewey" is present @@ -100,7 +100,7 @@ class node_hash_set public: // Constructors and Assignment Operators // - // A node_hash_set supports the same overload set as `std::unordered_set` + // A node_hash_set supports the same overload set as `std::unordered_set` // for construction and assignment: // // * Default constructor @@ -167,7 +167,7 @@ class node_hash_set // available within the `node_hash_set`. // // NOTE: this member function is particular to `y_absl::node_hash_set` and is - // not provided in the `std::unordered_set` API. + // not provided in the `std::unordered_set` API. using Base::capacity; // node_hash_set::empty() @@ -208,7 +208,7 @@ class node_hash_set // `void`. // // NOTE: this return behavior is different than that of STL containers in - // general and `std::unordered_set` in particular. + // general and `std::unordered_set` in particular. // // iterator erase(const_iterator first, const_iterator last): // @@ -217,8 +217,8 @@ class node_hash_set // // size_type erase(const key_type& key): // - // Erases the element with the matching key, if it exists, returning the - // number of elements erased (0 or 1). + // Erases the element with the matching key, if it exists, returning the + // number of elements erased (0 or 1). using Base::erase; // node_hash_set::insert() @@ -314,7 +314,7 @@ class node_hash_set // node_hash_set::merge() // - // Extracts elements from a given `source` node hash set into this + // Extracts elements from a given `source` node hash set into this // `node_hash_set`. If the destination `node_hash_set` already contains an // element with an equivalent key, that element is not extracted. using Base::merge; @@ -322,15 +322,15 @@ class node_hash_set // node_hash_set::swap(node_hash_set& other) // // Exchanges the contents of this `node_hash_set` with those of the `other` - // node hash set, avoiding invocation of any move, copy, or swap operations on + // node hash set, avoiding invocation of any move, copy, or swap operations on // individual elements. // // All iterators and references on the `node_hash_set` remain valid, excepting // for the past-the-end iterator, which is invalidated. // - // `swap()` requires that the node hash set's hashing and key equivalence + // `swap()` requires that the node hash set's hashing and key equivalence // functions be Swappable, and are exchaged using unqualified calls to - // non-member `swap()`. If the set's allocator has + // non-member `swap()`. If the set's allocator has // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value` // set to `true`, the allocators are also exchanged using an unqualified call // to non-member `swap()`; otherwise, the allocators are not swapped. @@ -385,14 +385,14 @@ class node_hash_set // node_hash_set::bucket_count() // // Returns the number of "buckets" within the `node_hash_set`. Note that - // because a node hash set contains all elements within its internal storage, + // because a node hash set contains all elements within its internal storage, // this value simply equals the current capacity of the `node_hash_set`. using Base::bucket_count; // node_hash_set::load_factor() // // Returns the current load factor of the `node_hash_set` (the average number - // of slots occupied with a value within the hash set). + // of slots occupied with a value within the hash set). using Base::load_factor; // node_hash_set::max_load_factor() diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/ya.make b/contrib/restricted/abseil-cpp-tstring/y_absl/container/ya.make index b5ead45856..9a44988749 100644 --- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/ya.make +++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/ya.make @@ -1,14 +1,14 @@ -# Generated by devtools/yamaker. - -LIBRARY() - -OWNER( - somov - g:cpp-contrib -) - -LICENSE(Apache-2.0) - -LICENSE_TEXTS(.yandex_meta/licenses.list.txt) - -END() +# Generated by devtools/yamaker. + +LIBRARY() + +OWNER( + somov + g:cpp-contrib +) + +LICENSE(Apache-2.0) + +LICENSE_TEXTS(.yandex_meta/licenses.list.txt) + +END() |