aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/pytest/py3/_pytest/python_api.py
diff options
context:
space:
mode:
authornkozlovskiy <nmk@ydb.tech>2023-09-29 12:24:06 +0300
committernkozlovskiy <nmk@ydb.tech>2023-09-29 12:41:34 +0300
commite0e3e1717e3d33762ce61950504f9637a6e669ed (patch)
treebca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/python/pytest/py3/_pytest/python_api.py
parent38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff)
downloadydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz
add ydb deps
Diffstat (limited to 'contrib/python/pytest/py3/_pytest/python_api.py')
-rw-r--r--contrib/python/pytest/py3/_pytest/python_api.py996
1 files changed, 996 insertions, 0 deletions
diff --git a/contrib/python/pytest/py3/_pytest/python_api.py b/contrib/python/pytest/py3/_pytest/python_api.py
new file mode 100644
index 0000000000..183356100c
--- /dev/null
+++ b/contrib/python/pytest/py3/_pytest/python_api.py
@@ -0,0 +1,996 @@
+import math
+import pprint
+from collections.abc import Collection
+from collections.abc import Sized
+from decimal import Decimal
+from numbers import Complex
+from types import TracebackType
+from typing import Any
+from typing import Callable
+from typing import cast
+from typing import ContextManager
+from typing import List
+from typing import Mapping
+from typing import Optional
+from typing import Pattern
+from typing import Sequence
+from typing import Tuple
+from typing import Type
+from typing import TYPE_CHECKING
+from typing import TypeVar
+from typing import Union
+
+if TYPE_CHECKING:
+ from numpy import ndarray
+
+
+import _pytest._code
+from _pytest.compat import final
+from _pytest.compat import STRING_TYPES
+from _pytest.compat import overload
+from _pytest.outcomes import fail
+
+
+def _non_numeric_type_error(value, at: Optional[str]) -> TypeError:
+ at_str = f" at {at}" if at else ""
+ return TypeError(
+ "cannot make approximate comparisons to non-numeric values: {!r} {}".format(
+ value, at_str
+ )
+ )
+
+
+def _compare_approx(
+ full_object: object,
+ message_data: Sequence[Tuple[str, str, str]],
+ number_of_elements: int,
+ different_ids: Sequence[object],
+ max_abs_diff: float,
+ max_rel_diff: float,
+) -> List[str]:
+ message_list = list(message_data)
+ message_list.insert(0, ("Index", "Obtained", "Expected"))
+ max_sizes = [0, 0, 0]
+ for index, obtained, expected in message_list:
+ max_sizes[0] = max(max_sizes[0], len(index))
+ max_sizes[1] = max(max_sizes[1], len(obtained))
+ max_sizes[2] = max(max_sizes[2], len(expected))
+ explanation = [
+ f"comparison failed. Mismatched elements: {len(different_ids)} / {number_of_elements}:",
+ f"Max absolute difference: {max_abs_diff}",
+ f"Max relative difference: {max_rel_diff}",
+ ] + [
+ f"{indexes:<{max_sizes[0]}} | {obtained:<{max_sizes[1]}} | {expected:<{max_sizes[2]}}"
+ for indexes, obtained, expected in message_list
+ ]
+ return explanation
+
+
+# builtin pytest.approx helper
+
+
+class ApproxBase:
+ """Provide shared utilities for making approximate comparisons between
+ numbers or sequences of numbers."""
+
+ # Tell numpy to use our `__eq__` operator instead of its.
+ __array_ufunc__ = None
+ __array_priority__ = 100
+
+ def __init__(self, expected, rel=None, abs=None, nan_ok: bool = False) -> None:
+ __tracebackhide__ = True
+ self.expected = expected
+ self.abs = abs
+ self.rel = rel
+ self.nan_ok = nan_ok
+ self._check_type()
+
+ def __repr__(self) -> str:
+ raise NotImplementedError
+
+ def _repr_compare(self, other_side: Any) -> List[str]:
+ return [
+ "comparison failed",
+ f"Obtained: {other_side}",
+ f"Expected: {self}",
+ ]
+
+ def __eq__(self, actual) -> bool:
+ return all(
+ a == self._approx_scalar(x) for a, x in self._yield_comparisons(actual)
+ )
+
+ def __bool__(self):
+ __tracebackhide__ = True
+ raise AssertionError(
+ "approx() is not supported in a boolean context.\nDid you mean: `assert a == approx(b)`?"
+ )
+
+ # Ignore type because of https://github.com/python/mypy/issues/4266.
+ __hash__ = None # type: ignore
+
+ def __ne__(self, actual) -> bool:
+ return not (actual == self)
+
+ def _approx_scalar(self, x) -> "ApproxScalar":
+ if isinstance(x, Decimal):
+ return ApproxDecimal(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok)
+ return ApproxScalar(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok)
+
+ def _yield_comparisons(self, actual):
+ """Yield all the pairs of numbers to be compared.
+
+ This is used to implement the `__eq__` method.
+ """
+ raise NotImplementedError
+
+ def _check_type(self) -> None:
+ """Raise a TypeError if the expected value is not a valid type."""
+ # This is only a concern if the expected value is a sequence. In every
+ # other case, the approx() function ensures that the expected value has
+ # a numeric type. For this reason, the default is to do nothing. The
+ # classes that deal with sequences should reimplement this method to
+ # raise if there are any non-numeric elements in the sequence.
+
+
+def _recursive_sequence_map(f, x):
+ """Recursively map a function over a sequence of arbitrary depth"""
+ if isinstance(x, (list, tuple)):
+ seq_type = type(x)
+ return seq_type(_recursive_sequence_map(f, xi) for xi in x)
+ else:
+ return f(x)
+
+
+class ApproxNumpy(ApproxBase):
+ """Perform approximate comparisons where the expected value is numpy array."""
+
+ def __repr__(self) -> str:
+ list_scalars = _recursive_sequence_map(
+ self._approx_scalar, self.expected.tolist()
+ )
+ return f"approx({list_scalars!r})"
+
+ def _repr_compare(self, other_side: "ndarray") -> List[str]:
+ import itertools
+ import math
+
+ def get_value_from_nested_list(
+ nested_list: List[Any], nd_index: Tuple[Any, ...]
+ ) -> Any:
+ """
+ Helper function to get the value out of a nested list, given an n-dimensional index.
+ This mimics numpy's indexing, but for raw nested python lists.
+ """
+ value: Any = nested_list
+ for i in nd_index:
+ value = value[i]
+ return value
+
+ np_array_shape = self.expected.shape
+ approx_side_as_seq = _recursive_sequence_map(
+ self._approx_scalar, self.expected.tolist()
+ )
+
+ if np_array_shape != other_side.shape:
+ return [
+ "Impossible to compare arrays with different shapes.",
+ f"Shapes: {np_array_shape} and {other_side.shape}",
+ ]
+
+ number_of_elements = self.expected.size
+ max_abs_diff = -math.inf
+ max_rel_diff = -math.inf
+ different_ids = []
+ for index in itertools.product(*(range(i) for i in np_array_shape)):
+ approx_value = get_value_from_nested_list(approx_side_as_seq, index)
+ other_value = get_value_from_nested_list(other_side, index)
+ if approx_value != other_value:
+ abs_diff = abs(approx_value.expected - other_value)
+ max_abs_diff = max(max_abs_diff, abs_diff)
+ if other_value == 0.0:
+ max_rel_diff = math.inf
+ else:
+ max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value))
+ different_ids.append(index)
+
+ message_data = [
+ (
+ str(index),
+ str(get_value_from_nested_list(other_side, index)),
+ str(get_value_from_nested_list(approx_side_as_seq, index)),
+ )
+ for index in different_ids
+ ]
+ return _compare_approx(
+ self.expected,
+ message_data,
+ number_of_elements,
+ different_ids,
+ max_abs_diff,
+ max_rel_diff,
+ )
+
+ def __eq__(self, actual) -> bool:
+ import numpy as np
+
+ # self.expected is supposed to always be an array here.
+
+ if not np.isscalar(actual):
+ try:
+ actual = np.asarray(actual)
+ except Exception as e:
+ raise TypeError(f"cannot compare '{actual}' to numpy.ndarray") from e
+
+ if not np.isscalar(actual) and actual.shape != self.expected.shape:
+ return False
+
+ return super().__eq__(actual)
+
+ def _yield_comparisons(self, actual):
+ import numpy as np
+
+ # `actual` can either be a numpy array or a scalar, it is treated in
+ # `__eq__` before being passed to `ApproxBase.__eq__`, which is the
+ # only method that calls this one.
+
+ if np.isscalar(actual):
+ for i in np.ndindex(self.expected.shape):
+ yield actual, self.expected[i].item()
+ else:
+ for i in np.ndindex(self.expected.shape):
+ yield actual[i].item(), self.expected[i].item()
+
+
+class ApproxMapping(ApproxBase):
+ """Perform approximate comparisons where the expected value is a mapping
+ with numeric values (the keys can be anything)."""
+
+ def __repr__(self) -> str:
+ return "approx({!r})".format(
+ {k: self._approx_scalar(v) for k, v in self.expected.items()}
+ )
+
+ def _repr_compare(self, other_side: Mapping[object, float]) -> List[str]:
+ import math
+
+ approx_side_as_map = {
+ k: self._approx_scalar(v) for k, v in self.expected.items()
+ }
+
+ number_of_elements = len(approx_side_as_map)
+ max_abs_diff = -math.inf
+ max_rel_diff = -math.inf
+ different_ids = []
+ for (approx_key, approx_value), other_value in zip(
+ approx_side_as_map.items(), other_side.values()
+ ):
+ if approx_value != other_value:
+ if approx_value.expected is not None and other_value is not None:
+ max_abs_diff = max(
+ max_abs_diff, abs(approx_value.expected - other_value)
+ )
+ if approx_value.expected == 0.0:
+ max_rel_diff = math.inf
+ else:
+ max_rel_diff = max(
+ max_rel_diff,
+ abs(
+ (approx_value.expected - other_value)
+ / approx_value.expected
+ ),
+ )
+ different_ids.append(approx_key)
+
+ message_data = [
+ (str(key), str(other_side[key]), str(approx_side_as_map[key]))
+ for key in different_ids
+ ]
+
+ return _compare_approx(
+ self.expected,
+ message_data,
+ number_of_elements,
+ different_ids,
+ max_abs_diff,
+ max_rel_diff,
+ )
+
+ def __eq__(self, actual) -> bool:
+ try:
+ if set(actual.keys()) != set(self.expected.keys()):
+ return False
+ except AttributeError:
+ return False
+
+ return super().__eq__(actual)
+
+ def _yield_comparisons(self, actual):
+ for k in self.expected.keys():
+ yield actual[k], self.expected[k]
+
+ def _check_type(self) -> None:
+ __tracebackhide__ = True
+ for key, value in self.expected.items():
+ if isinstance(value, type(self.expected)):
+ msg = "pytest.approx() does not support nested dictionaries: key={!r} value={!r}\n full mapping={}"
+ raise TypeError(msg.format(key, value, pprint.pformat(self.expected)))
+
+
+class ApproxSequenceLike(ApproxBase):
+ """Perform approximate comparisons where the expected value is a sequence of numbers."""
+
+ def __repr__(self) -> str:
+ seq_type = type(self.expected)
+ if seq_type not in (tuple, list):
+ seq_type = list
+ return "approx({!r})".format(
+ seq_type(self._approx_scalar(x) for x in self.expected)
+ )
+
+ def _repr_compare(self, other_side: Sequence[float]) -> List[str]:
+ import math
+
+ if len(self.expected) != len(other_side):
+ return [
+ "Impossible to compare lists with different sizes.",
+ f"Lengths: {len(self.expected)} and {len(other_side)}",
+ ]
+
+ approx_side_as_map = _recursive_sequence_map(self._approx_scalar, self.expected)
+
+ number_of_elements = len(approx_side_as_map)
+ max_abs_diff = -math.inf
+ max_rel_diff = -math.inf
+ different_ids = []
+ for i, (approx_value, other_value) in enumerate(
+ zip(approx_side_as_map, other_side)
+ ):
+ if approx_value != other_value:
+ abs_diff = abs(approx_value.expected - other_value)
+ max_abs_diff = max(max_abs_diff, abs_diff)
+ if other_value == 0.0:
+ max_rel_diff = math.inf
+ else:
+ max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value))
+ different_ids.append(i)
+
+ message_data = [
+ (str(i), str(other_side[i]), str(approx_side_as_map[i]))
+ for i in different_ids
+ ]
+
+ return _compare_approx(
+ self.expected,
+ message_data,
+ number_of_elements,
+ different_ids,
+ max_abs_diff,
+ max_rel_diff,
+ )
+
+ def __eq__(self, actual) -> bool:
+ try:
+ if len(actual) != len(self.expected):
+ return False
+ except TypeError:
+ return False
+ return super().__eq__(actual)
+
+ def _yield_comparisons(self, actual):
+ return zip(actual, self.expected)
+
+ def _check_type(self) -> None:
+ __tracebackhide__ = True
+ for index, x in enumerate(self.expected):
+ if isinstance(x, type(self.expected)):
+ msg = "pytest.approx() does not support nested data structures: {!r} at index {}\n full sequence: {}"
+ raise TypeError(msg.format(x, index, pprint.pformat(self.expected)))
+
+
+class ApproxScalar(ApproxBase):
+ """Perform approximate comparisons where the expected value is a single number."""
+
+ # Using Real should be better than this Union, but not possible yet:
+ # https://github.com/python/typeshed/pull/3108
+ DEFAULT_ABSOLUTE_TOLERANCE: Union[float, Decimal] = 1e-12
+ DEFAULT_RELATIVE_TOLERANCE: Union[float, Decimal] = 1e-6
+
+ def __repr__(self) -> str:
+ """Return a string communicating both the expected value and the
+ tolerance for the comparison being made.
+
+ For example, ``1.0 ± 1e-6``, ``(3+4j) ± 5e-6 ∠ ±180°``.
+ """
+ # Don't show a tolerance for values that aren't compared using
+ # tolerances, i.e. non-numerics and infinities. Need to call abs to
+ # handle complex numbers, e.g. (inf + 1j).
+ if (not isinstance(self.expected, (Complex, Decimal))) or math.isinf(
+ abs(self.expected) # type: ignore[arg-type]
+ ):
+ return str(self.expected)
+
+ # If a sensible tolerance can't be calculated, self.tolerance will
+ # raise a ValueError. In this case, display '???'.
+ try:
+ vetted_tolerance = f"{self.tolerance:.1e}"
+ if (
+ isinstance(self.expected, Complex)
+ and self.expected.imag
+ and not math.isinf(self.tolerance)
+ ):
+ vetted_tolerance += " ∠ ±180°"
+ except ValueError:
+ vetted_tolerance = "???"
+
+ return f"{self.expected} ± {vetted_tolerance}"
+
+ def __eq__(self, actual) -> bool:
+ """Return whether the given value is equal to the expected value
+ within the pre-specified tolerance."""
+ asarray = _as_numpy_array(actual)
+ if asarray is not None:
+ # Call ``__eq__()`` manually to prevent infinite-recursion with
+ # numpy<1.13. See #3748.
+ return all(self.__eq__(a) for a in asarray.flat)
+
+ # Short-circuit exact equality.
+ if actual == self.expected:
+ return True
+
+ # If either type is non-numeric, fall back to strict equality.
+ # NB: we need Complex, rather than just Number, to ensure that __abs__,
+ # __sub__, and __float__ are defined.
+ if not (
+ isinstance(self.expected, (Complex, Decimal))
+ and isinstance(actual, (Complex, Decimal))
+ ):
+ return False
+
+ # Allow the user to control whether NaNs are considered equal to each
+ # other or not. The abs() calls are for compatibility with complex
+ # numbers.
+ if math.isnan(abs(self.expected)): # type: ignore[arg-type]
+ return self.nan_ok and math.isnan(abs(actual)) # type: ignore[arg-type]
+
+ # Infinity shouldn't be approximately equal to anything but itself, but
+ # if there's a relative tolerance, it will be infinite and infinity
+ # will seem approximately equal to everything. The equal-to-itself
+ # case would have been short circuited above, so here we can just
+ # return false if the expected value is infinite. The abs() call is
+ # for compatibility with complex numbers.
+ if math.isinf(abs(self.expected)): # type: ignore[arg-type]
+ return False
+
+ # Return true if the two numbers are within the tolerance.
+ result: bool = abs(self.expected - actual) <= self.tolerance
+ return result
+
+ # Ignore type because of https://github.com/python/mypy/issues/4266.
+ __hash__ = None # type: ignore
+
+ @property
+ def tolerance(self):
+ """Return the tolerance for the comparison.
+
+ This could be either an absolute tolerance or a relative tolerance,
+ depending on what the user specified or which would be larger.
+ """
+
+ def set_default(x, default):
+ return x if x is not None else default
+
+ # Figure out what the absolute tolerance should be. ``self.abs`` is
+ # either None or a value specified by the user.
+ absolute_tolerance = set_default(self.abs, self.DEFAULT_ABSOLUTE_TOLERANCE)
+
+ if absolute_tolerance < 0:
+ raise ValueError(
+ f"absolute tolerance can't be negative: {absolute_tolerance}"
+ )
+ if math.isnan(absolute_tolerance):
+ raise ValueError("absolute tolerance can't be NaN.")
+
+ # If the user specified an absolute tolerance but not a relative one,
+ # just return the absolute tolerance.
+ if self.rel is None:
+ if self.abs is not None:
+ return absolute_tolerance
+
+ # Figure out what the relative tolerance should be. ``self.rel`` is
+ # either None or a value specified by the user. This is done after
+ # we've made sure the user didn't ask for an absolute tolerance only,
+ # because we don't want to raise errors about the relative tolerance if
+ # we aren't even going to use it.
+ relative_tolerance = set_default(
+ self.rel, self.DEFAULT_RELATIVE_TOLERANCE
+ ) * abs(self.expected)
+
+ if relative_tolerance < 0:
+ raise ValueError(
+ f"relative tolerance can't be negative: {relative_tolerance}"
+ )
+ if math.isnan(relative_tolerance):
+ raise ValueError("relative tolerance can't be NaN.")
+
+ # Return the larger of the relative and absolute tolerances.
+ return max(relative_tolerance, absolute_tolerance)
+
+
+class ApproxDecimal(ApproxScalar):
+ """Perform approximate comparisons where the expected value is a Decimal."""
+
+ DEFAULT_ABSOLUTE_TOLERANCE = Decimal("1e-12")
+ DEFAULT_RELATIVE_TOLERANCE = Decimal("1e-6")
+
+
+def approx(expected, rel=None, abs=None, nan_ok: bool = False) -> ApproxBase:
+ """Assert that two numbers (or two ordered sequences of numbers) are equal to each other
+ within some tolerance.
+
+ Due to the :doc:`python:tutorial/floatingpoint`, numbers that we
+ would intuitively expect to be equal are not always so::
+
+ >>> 0.1 + 0.2 == 0.3
+ False
+
+ This problem is commonly encountered when writing tests, e.g. when making
+ sure that floating-point values are what you expect them to be. One way to
+ deal with this problem is to assert that two floating-point numbers are
+ equal to within some appropriate tolerance::
+
+ >>> abs((0.1 + 0.2) - 0.3) < 1e-6
+ True
+
+ However, comparisons like this are tedious to write and difficult to
+ understand. Furthermore, absolute comparisons like the one above are
+ usually discouraged because there's no tolerance that works well for all
+ situations. ``1e-6`` is good for numbers around ``1``, but too small for
+ very big numbers and too big for very small ones. It's better to express
+ the tolerance as a fraction of the expected value, but relative comparisons
+ like that are even more difficult to write correctly and concisely.
+
+ The ``approx`` class performs floating-point comparisons using a syntax
+ that's as intuitive as possible::
+
+ >>> from pytest import approx
+ >>> 0.1 + 0.2 == approx(0.3)
+ True
+
+ The same syntax also works for ordered sequences of numbers::
+
+ >>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
+ True
+
+ ``numpy`` arrays::
+
+ >>> import numpy as np # doctest: +SKIP
+ >>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6])) # doctest: +SKIP
+ True
+
+ And for a ``numpy`` array against a scalar::
+
+ >>> import numpy as np # doctest: +SKIP
+ >>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3) # doctest: +SKIP
+ True
+
+ Only ordered sequences are supported, because ``approx`` needs
+ to infer the relative position of the sequences without ambiguity. This means
+ ``sets`` and other unordered sequences are not supported.
+
+ Finally, dictionary *values* can also be compared::
+
+ >>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
+ True
+
+ The comparison will be true if both mappings have the same keys and their
+ respective values match the expected tolerances.
+
+ **Tolerances**
+
+ By default, ``approx`` considers numbers within a relative tolerance of
+ ``1e-6`` (i.e. one part in a million) of its expected value to be equal.
+ This treatment would lead to surprising results if the expected value was
+ ``0.0``, because nothing but ``0.0`` itself is relatively close to ``0.0``.
+ To handle this case less surprisingly, ``approx`` also considers numbers
+ within an absolute tolerance of ``1e-12`` of its expected value to be
+ equal. Infinity and NaN are special cases. Infinity is only considered
+ equal to itself, regardless of the relative tolerance. NaN is not
+ considered equal to anything by default, but you can make it be equal to
+ itself by setting the ``nan_ok`` argument to True. (This is meant to
+ facilitate comparing arrays that use NaN to mean "no data".)
+
+ Both the relative and absolute tolerances can be changed by passing
+ arguments to the ``approx`` constructor::
+
+ >>> 1.0001 == approx(1)
+ False
+ >>> 1.0001 == approx(1, rel=1e-3)
+ True
+ >>> 1.0001 == approx(1, abs=1e-3)
+ True
+
+ If you specify ``abs`` but not ``rel``, the comparison will not consider
+ the relative tolerance at all. In other words, two numbers that are within
+ the default relative tolerance of ``1e-6`` will still be considered unequal
+ if they exceed the specified absolute tolerance. If you specify both
+ ``abs`` and ``rel``, the numbers will be considered equal if either
+ tolerance is met::
+
+ >>> 1 + 1e-8 == approx(1)
+ True
+ >>> 1 + 1e-8 == approx(1, abs=1e-12)
+ False
+ >>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
+ True
+
+ You can also use ``approx`` to compare nonnumeric types, or dicts and
+ sequences containing nonnumeric types, in which case it falls back to
+ strict equality. This can be useful for comparing dicts and sequences that
+ can contain optional values::
+
+ >>> {"required": 1.0000005, "optional": None} == approx({"required": 1, "optional": None})
+ True
+ >>> [None, 1.0000005] == approx([None,1])
+ True
+ >>> ["foo", 1.0000005] == approx([None,1])
+ False
+
+ If you're thinking about using ``approx``, then you might want to know how
+ it compares to other good ways of comparing floating-point numbers. All of
+ these algorithms are based on relative and absolute tolerances and should
+ agree for the most part, but they do have meaningful differences:
+
+ - ``math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0)``: True if the relative
+ tolerance is met w.r.t. either ``a`` or ``b`` or if the absolute
+ tolerance is met. Because the relative tolerance is calculated w.r.t.
+ both ``a`` and ``b``, this test is symmetric (i.e. neither ``a`` nor
+ ``b`` is a "reference value"). You have to specify an absolute tolerance
+ if you want to compare to ``0.0`` because there is no tolerance by
+ default. More information: :py:func:`math.isclose`.
+
+ - ``numpy.isclose(a, b, rtol=1e-5, atol=1e-8)``: True if the difference
+ between ``a`` and ``b`` is less that the sum of the relative tolerance
+ w.r.t. ``b`` and the absolute tolerance. Because the relative tolerance
+ is only calculated w.r.t. ``b``, this test is asymmetric and you can
+ think of ``b`` as the reference value. Support for comparing sequences
+ is provided by :py:func:`numpy.allclose`. More information:
+ :std:doc:`numpy:reference/generated/numpy.isclose`.
+
+ - ``unittest.TestCase.assertAlmostEqual(a, b)``: True if ``a`` and ``b``
+ are within an absolute tolerance of ``1e-7``. No relative tolerance is
+ considered , so this function is not appropriate for very large or very
+ small numbers. Also, it's only available in subclasses of ``unittest.TestCase``
+ and it's ugly because it doesn't follow PEP8. More information:
+ :py:meth:`unittest.TestCase.assertAlmostEqual`.
+
+ - ``a == pytest.approx(b, rel=1e-6, abs=1e-12)``: True if the relative
+ tolerance is met w.r.t. ``b`` or if the absolute tolerance is met.
+ Because the relative tolerance is only calculated w.r.t. ``b``, this test
+ is asymmetric and you can think of ``b`` as the reference value. In the
+ special case that you explicitly specify an absolute tolerance but not a
+ relative tolerance, only the absolute tolerance is considered.
+
+ .. note::
+
+ ``approx`` can handle numpy arrays, but we recommend the
+ specialised test helpers in :std:doc:`numpy:reference/routines.testing`
+ if you need support for comparisons, NaNs, or ULP-based tolerances.
+
+ To match strings using regex, you can use
+ `Matches <https://github.com/asottile/re-assert#re_assertmatchespattern-str-args-kwargs>`_
+ from the
+ `re_assert package <https://github.com/asottile/re-assert>`_.
+
+ .. warning::
+
+ .. versionchanged:: 3.2
+
+ In order to avoid inconsistent behavior, :py:exc:`TypeError` is
+ raised for ``>``, ``>=``, ``<`` and ``<=`` comparisons.
+ The example below illustrates the problem::
+
+ assert approx(0.1) > 0.1 + 1e-10 # calls approx(0.1).__gt__(0.1 + 1e-10)
+ assert 0.1 + 1e-10 > approx(0.1) # calls approx(0.1).__lt__(0.1 + 1e-10)
+
+ In the second example one expects ``approx(0.1).__le__(0.1 + 1e-10)``
+ to be called. But instead, ``approx(0.1).__lt__(0.1 + 1e-10)`` is used to
+ comparison. This is because the call hierarchy of rich comparisons
+ follows a fixed behavior. More information: :py:meth:`object.__ge__`
+
+ .. versionchanged:: 3.7.1
+ ``approx`` raises ``TypeError`` when it encounters a dict value or
+ sequence element of nonnumeric type.
+
+ .. versionchanged:: 6.1.0
+ ``approx`` falls back to strict equality for nonnumeric types instead
+ of raising ``TypeError``.
+ """
+
+ # Delegate the comparison to a class that knows how to deal with the type
+ # of the expected value (e.g. int, float, list, dict, numpy.array, etc).
+ #
+ # The primary responsibility of these classes is to implement ``__eq__()``
+ # and ``__repr__()``. The former is used to actually check if some
+ # "actual" value is equivalent to the given expected value within the
+ # allowed tolerance. The latter is used to show the user the expected
+ # value and tolerance, in the case that a test failed.
+ #
+ # The actual logic for making approximate comparisons can be found in
+ # ApproxScalar, which is used to compare individual numbers. All of the
+ # other Approx classes eventually delegate to this class. The ApproxBase
+ # class provides some convenient methods and overloads, but isn't really
+ # essential.
+
+ __tracebackhide__ = True
+
+ if isinstance(expected, Decimal):
+ cls: Type[ApproxBase] = ApproxDecimal
+ elif isinstance(expected, Mapping):
+ cls = ApproxMapping
+ elif _is_numpy_array(expected):
+ expected = _as_numpy_array(expected)
+ cls = ApproxNumpy
+ elif (
+ hasattr(expected, "__getitem__")
+ and isinstance(expected, Sized)
+ # Type ignored because the error is wrong -- not unreachable.
+ and not isinstance(expected, STRING_TYPES) # type: ignore[unreachable]
+ ):
+ cls = ApproxSequenceLike
+ elif (
+ isinstance(expected, Collection)
+ # Type ignored because the error is wrong -- not unreachable.
+ and not isinstance(expected, STRING_TYPES) # type: ignore[unreachable]
+ ):
+ msg = f"pytest.approx() only supports ordered sequences, but got: {repr(expected)}"
+ raise TypeError(msg)
+ else:
+ cls = ApproxScalar
+
+ return cls(expected, rel, abs, nan_ok)
+
+
+def _is_numpy_array(obj: object) -> bool:
+ """
+ Return true if the given object is implicitly convertible to ndarray,
+ and numpy is already imported.
+ """
+ return _as_numpy_array(obj) is not None
+
+
+def _as_numpy_array(obj: object) -> Optional["ndarray"]:
+ """
+ Return an ndarray if the given object is implicitly convertible to ndarray,
+ and numpy is already imported, otherwise None.
+ """
+ import sys
+
+ np: Any = sys.modules.get("numpy")
+ if np is not None:
+ # avoid infinite recursion on numpy scalars, which have __array__
+ if np.isscalar(obj):
+ return None
+ elif isinstance(obj, np.ndarray):
+ return obj
+ elif hasattr(obj, "__array__") or hasattr("obj", "__array_interface__"):
+ return np.asarray(obj)
+ return None
+
+
+# builtin pytest.raises helper
+
+E = TypeVar("E", bound=BaseException)
+
+
+@overload
+def raises(
+ expected_exception: Union[Type[E], Tuple[Type[E], ...]],
+ *,
+ match: Optional[Union[str, Pattern[str]]] = ...,
+) -> "RaisesContext[E]":
+ ...
+
+
+@overload
+def raises( # noqa: F811
+ expected_exception: Union[Type[E], Tuple[Type[E], ...]],
+ func: Callable[..., Any],
+ *args: Any,
+ **kwargs: Any,
+) -> _pytest._code.ExceptionInfo[E]:
+ ...
+
+
+def raises( # noqa: F811
+ expected_exception: Union[Type[E], Tuple[Type[E], ...]], *args: Any, **kwargs: Any
+) -> Union["RaisesContext[E]", _pytest._code.ExceptionInfo[E]]:
+ r"""Assert that a code block/function call raises an exception.
+
+ :param typing.Type[E] | typing.Tuple[typing.Type[E], ...] expected_exception:
+ The expected exception type, or a tuple if one of multiple possible
+ exception types are expected.
+ :kwparam str | typing.Pattern[str] | None match:
+ If specified, a string containing a regular expression,
+ or a regular expression object, that is tested against the string
+ representation of the exception using :func:`re.search`.
+
+ To match a literal string that may contain :ref:`special characters
+ <re-syntax>`, the pattern can first be escaped with :func:`re.escape`.
+
+ (This is only used when :py:func:`pytest.raises` is used as a context manager,
+ and passed through to the function otherwise.
+ When using :py:func:`pytest.raises` as a function, you can use:
+ ``pytest.raises(Exc, func, match="passed on").match("my pattern")``.)
+
+ .. currentmodule:: _pytest._code
+
+ Use ``pytest.raises`` as a context manager, which will capture the exception of the given
+ type::
+
+ >>> import pytest
+ >>> with pytest.raises(ZeroDivisionError):
+ ... 1/0
+
+ If the code block does not raise the expected exception (``ZeroDivisionError`` in the example
+ above), or no exception at all, the check will fail instead.
+
+ You can also use the keyword argument ``match`` to assert that the
+ exception matches a text or regex::
+
+ >>> with pytest.raises(ValueError, match='must be 0 or None'):
+ ... raise ValueError("value must be 0 or None")
+
+ >>> with pytest.raises(ValueError, match=r'must be \d+$'):
+ ... raise ValueError("value must be 42")
+
+ The context manager produces an :class:`ExceptionInfo` object which can be used to inspect the
+ details of the captured exception::
+
+ >>> with pytest.raises(ValueError) as exc_info:
+ ... raise ValueError("value must be 42")
+ >>> assert exc_info.type is ValueError
+ >>> assert exc_info.value.args[0] == "value must be 42"
+
+ .. note::
+
+ When using ``pytest.raises`` as a context manager, it's worthwhile to
+ note that normal context manager rules apply and that the exception
+ raised *must* be the final line in the scope of the context manager.
+ Lines of code after that, within the scope of the context manager will
+ not be executed. For example::
+
+ >>> value = 15
+ >>> with pytest.raises(ValueError) as exc_info:
+ ... if value > 10:
+ ... raise ValueError("value must be <= 10")
+ ... assert exc_info.type is ValueError # this will not execute
+
+ Instead, the following approach must be taken (note the difference in
+ scope)::
+
+ >>> with pytest.raises(ValueError) as exc_info:
+ ... if value > 10:
+ ... raise ValueError("value must be <= 10")
+ ...
+ >>> assert exc_info.type is ValueError
+
+ **Using with** ``pytest.mark.parametrize``
+
+ When using :ref:`pytest.mark.parametrize ref`
+ it is possible to parametrize tests such that
+ some runs raise an exception and others do not.
+
+ See :ref:`parametrizing_conditional_raising` for an example.
+
+ **Legacy form**
+
+ It is possible to specify a callable by passing a to-be-called lambda::
+
+ >>> raises(ZeroDivisionError, lambda: 1/0)
+ <ExceptionInfo ...>
+
+ or you can specify an arbitrary callable with arguments::
+
+ >>> def f(x): return 1/x
+ ...
+ >>> raises(ZeroDivisionError, f, 0)
+ <ExceptionInfo ...>
+ >>> raises(ZeroDivisionError, f, x=0)
+ <ExceptionInfo ...>
+
+ The form above is fully supported but discouraged for new code because the
+ context manager form is regarded as more readable and less error-prone.
+
+ .. note::
+ Similar to caught exception objects in Python, explicitly clearing
+ local references to returned ``ExceptionInfo`` objects can
+ help the Python interpreter speed up its garbage collection.
+
+ Clearing those references breaks a reference cycle
+ (``ExceptionInfo`` --> caught exception --> frame stack raising
+ the exception --> current frame stack --> local variables -->
+ ``ExceptionInfo``) which makes Python keep all objects referenced
+ from that cycle (including all local variables in the current
+ frame) alive until the next cyclic garbage collection run.
+ More detailed information can be found in the official Python
+ documentation for :ref:`the try statement <python:try>`.
+ """
+ __tracebackhide__ = True
+
+ if not expected_exception:
+ raise ValueError(
+ f"Expected an exception type or a tuple of exception types, but got `{expected_exception!r}`. "
+ f"Raising exceptions is already understood as failing the test, so you don't need "
+ f"any special code to say 'this should never raise an exception'."
+ )
+ if isinstance(expected_exception, type):
+ expected_exceptions: Tuple[Type[E], ...] = (expected_exception,)
+ else:
+ expected_exceptions = expected_exception
+ for exc in expected_exceptions:
+ if not isinstance(exc, type) or not issubclass(exc, BaseException):
+ msg = "expected exception must be a BaseException type, not {}" # type: ignore[unreachable]
+ not_a = exc.__name__ if isinstance(exc, type) else type(exc).__name__
+ raise TypeError(msg.format(not_a))
+
+ message = f"DID NOT RAISE {expected_exception}"
+
+ if not args:
+ match: Optional[Union[str, Pattern[str]]] = kwargs.pop("match", None)
+ if kwargs:
+ msg = "Unexpected keyword arguments passed to pytest.raises: "
+ msg += ", ".join(sorted(kwargs))
+ msg += "\nUse context-manager form instead?"
+ raise TypeError(msg)
+ return RaisesContext(expected_exception, message, match)
+ else:
+ func = args[0]
+ if not callable(func):
+ raise TypeError(f"{func!r} object (type: {type(func)}) must be callable")
+ try:
+ func(*args[1:], **kwargs)
+ except expected_exception as e:
+ return _pytest._code.ExceptionInfo.from_exception(e)
+ fail(message)
+
+
+# This doesn't work with mypy for now. Use fail.Exception instead.
+raises.Exception = fail.Exception # type: ignore
+
+
+@final
+class RaisesContext(ContextManager[_pytest._code.ExceptionInfo[E]]):
+ def __init__(
+ self,
+ expected_exception: Union[Type[E], Tuple[Type[E], ...]],
+ message: str,
+ match_expr: Optional[Union[str, Pattern[str]]] = None,
+ ) -> None:
+ self.expected_exception = expected_exception
+ self.message = message
+ self.match_expr = match_expr
+ self.excinfo: Optional[_pytest._code.ExceptionInfo[E]] = None
+
+ def __enter__(self) -> _pytest._code.ExceptionInfo[E]:
+ self.excinfo = _pytest._code.ExceptionInfo.for_later()
+ return self.excinfo
+
+ def __exit__(
+ self,
+ exc_type: Optional[Type[BaseException]],
+ exc_val: Optional[BaseException],
+ exc_tb: Optional[TracebackType],
+ ) -> bool:
+ __tracebackhide__ = True
+ if exc_type is None:
+ fail(self.message)
+ assert self.excinfo is not None
+ if not issubclass(exc_type, self.expected_exception):
+ return False
+ # Cast to narrow the exception type now that it's verified.
+ exc_info = cast(Tuple[Type[E], E, TracebackType], (exc_type, exc_val, exc_tb))
+ self.excinfo.fill_unfilled(exc_info)
+ if self.match_expr is not None:
+ self.excinfo.match(self.match_expr)
+ return True