diff options
author | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:24:06 +0300 |
---|---|---|
committer | nkozlovskiy <nmk@ydb.tech> | 2023-09-29 12:41:34 +0300 |
commit | e0e3e1717e3d33762ce61950504f9637a6e669ed (patch) | |
tree | bca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/python/pytest/py3/_pytest/python_api.py | |
parent | 38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff) | |
download | ydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz |
add ydb deps
Diffstat (limited to 'contrib/python/pytest/py3/_pytest/python_api.py')
-rw-r--r-- | contrib/python/pytest/py3/_pytest/python_api.py | 996 |
1 files changed, 996 insertions, 0 deletions
diff --git a/contrib/python/pytest/py3/_pytest/python_api.py b/contrib/python/pytest/py3/_pytest/python_api.py new file mode 100644 index 0000000000..183356100c --- /dev/null +++ b/contrib/python/pytest/py3/_pytest/python_api.py @@ -0,0 +1,996 @@ +import math +import pprint +from collections.abc import Collection +from collections.abc import Sized +from decimal import Decimal +from numbers import Complex +from types import TracebackType +from typing import Any +from typing import Callable +from typing import cast +from typing import ContextManager +from typing import List +from typing import Mapping +from typing import Optional +from typing import Pattern +from typing import Sequence +from typing import Tuple +from typing import Type +from typing import TYPE_CHECKING +from typing import TypeVar +from typing import Union + +if TYPE_CHECKING: + from numpy import ndarray + + +import _pytest._code +from _pytest.compat import final +from _pytest.compat import STRING_TYPES +from _pytest.compat import overload +from _pytest.outcomes import fail + + +def _non_numeric_type_error(value, at: Optional[str]) -> TypeError: + at_str = f" at {at}" if at else "" + return TypeError( + "cannot make approximate comparisons to non-numeric values: {!r} {}".format( + value, at_str + ) + ) + + +def _compare_approx( + full_object: object, + message_data: Sequence[Tuple[str, str, str]], + number_of_elements: int, + different_ids: Sequence[object], + max_abs_diff: float, + max_rel_diff: float, +) -> List[str]: + message_list = list(message_data) + message_list.insert(0, ("Index", "Obtained", "Expected")) + max_sizes = [0, 0, 0] + for index, obtained, expected in message_list: + max_sizes[0] = max(max_sizes[0], len(index)) + max_sizes[1] = max(max_sizes[1], len(obtained)) + max_sizes[2] = max(max_sizes[2], len(expected)) + explanation = [ + f"comparison failed. Mismatched elements: {len(different_ids)} / {number_of_elements}:", + f"Max absolute difference: {max_abs_diff}", + f"Max relative difference: {max_rel_diff}", + ] + [ + f"{indexes:<{max_sizes[0]}} | {obtained:<{max_sizes[1]}} | {expected:<{max_sizes[2]}}" + for indexes, obtained, expected in message_list + ] + return explanation + + +# builtin pytest.approx helper + + +class ApproxBase: + """Provide shared utilities for making approximate comparisons between + numbers or sequences of numbers.""" + + # Tell numpy to use our `__eq__` operator instead of its. + __array_ufunc__ = None + __array_priority__ = 100 + + def __init__(self, expected, rel=None, abs=None, nan_ok: bool = False) -> None: + __tracebackhide__ = True + self.expected = expected + self.abs = abs + self.rel = rel + self.nan_ok = nan_ok + self._check_type() + + def __repr__(self) -> str: + raise NotImplementedError + + def _repr_compare(self, other_side: Any) -> List[str]: + return [ + "comparison failed", + f"Obtained: {other_side}", + f"Expected: {self}", + ] + + def __eq__(self, actual) -> bool: + return all( + a == self._approx_scalar(x) for a, x in self._yield_comparisons(actual) + ) + + def __bool__(self): + __tracebackhide__ = True + raise AssertionError( + "approx() is not supported in a boolean context.\nDid you mean: `assert a == approx(b)`?" + ) + + # Ignore type because of https://github.com/python/mypy/issues/4266. + __hash__ = None # type: ignore + + def __ne__(self, actual) -> bool: + return not (actual == self) + + def _approx_scalar(self, x) -> "ApproxScalar": + if isinstance(x, Decimal): + return ApproxDecimal(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok) + return ApproxScalar(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok) + + def _yield_comparisons(self, actual): + """Yield all the pairs of numbers to be compared. + + This is used to implement the `__eq__` method. + """ + raise NotImplementedError + + def _check_type(self) -> None: + """Raise a TypeError if the expected value is not a valid type.""" + # This is only a concern if the expected value is a sequence. In every + # other case, the approx() function ensures that the expected value has + # a numeric type. For this reason, the default is to do nothing. The + # classes that deal with sequences should reimplement this method to + # raise if there are any non-numeric elements in the sequence. + + +def _recursive_sequence_map(f, x): + """Recursively map a function over a sequence of arbitrary depth""" + if isinstance(x, (list, tuple)): + seq_type = type(x) + return seq_type(_recursive_sequence_map(f, xi) for xi in x) + else: + return f(x) + + +class ApproxNumpy(ApproxBase): + """Perform approximate comparisons where the expected value is numpy array.""" + + def __repr__(self) -> str: + list_scalars = _recursive_sequence_map( + self._approx_scalar, self.expected.tolist() + ) + return f"approx({list_scalars!r})" + + def _repr_compare(self, other_side: "ndarray") -> List[str]: + import itertools + import math + + def get_value_from_nested_list( + nested_list: List[Any], nd_index: Tuple[Any, ...] + ) -> Any: + """ + Helper function to get the value out of a nested list, given an n-dimensional index. + This mimics numpy's indexing, but for raw nested python lists. + """ + value: Any = nested_list + for i in nd_index: + value = value[i] + return value + + np_array_shape = self.expected.shape + approx_side_as_seq = _recursive_sequence_map( + self._approx_scalar, self.expected.tolist() + ) + + if np_array_shape != other_side.shape: + return [ + "Impossible to compare arrays with different shapes.", + f"Shapes: {np_array_shape} and {other_side.shape}", + ] + + number_of_elements = self.expected.size + max_abs_diff = -math.inf + max_rel_diff = -math.inf + different_ids = [] + for index in itertools.product(*(range(i) for i in np_array_shape)): + approx_value = get_value_from_nested_list(approx_side_as_seq, index) + other_value = get_value_from_nested_list(other_side, index) + if approx_value != other_value: + abs_diff = abs(approx_value.expected - other_value) + max_abs_diff = max(max_abs_diff, abs_diff) + if other_value == 0.0: + max_rel_diff = math.inf + else: + max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value)) + different_ids.append(index) + + message_data = [ + ( + str(index), + str(get_value_from_nested_list(other_side, index)), + str(get_value_from_nested_list(approx_side_as_seq, index)), + ) + for index in different_ids + ] + return _compare_approx( + self.expected, + message_data, + number_of_elements, + different_ids, + max_abs_diff, + max_rel_diff, + ) + + def __eq__(self, actual) -> bool: + import numpy as np + + # self.expected is supposed to always be an array here. + + if not np.isscalar(actual): + try: + actual = np.asarray(actual) + except Exception as e: + raise TypeError(f"cannot compare '{actual}' to numpy.ndarray") from e + + if not np.isscalar(actual) and actual.shape != self.expected.shape: + return False + + return super().__eq__(actual) + + def _yield_comparisons(self, actual): + import numpy as np + + # `actual` can either be a numpy array or a scalar, it is treated in + # `__eq__` before being passed to `ApproxBase.__eq__`, which is the + # only method that calls this one. + + if np.isscalar(actual): + for i in np.ndindex(self.expected.shape): + yield actual, self.expected[i].item() + else: + for i in np.ndindex(self.expected.shape): + yield actual[i].item(), self.expected[i].item() + + +class ApproxMapping(ApproxBase): + """Perform approximate comparisons where the expected value is a mapping + with numeric values (the keys can be anything).""" + + def __repr__(self) -> str: + return "approx({!r})".format( + {k: self._approx_scalar(v) for k, v in self.expected.items()} + ) + + def _repr_compare(self, other_side: Mapping[object, float]) -> List[str]: + import math + + approx_side_as_map = { + k: self._approx_scalar(v) for k, v in self.expected.items() + } + + number_of_elements = len(approx_side_as_map) + max_abs_diff = -math.inf + max_rel_diff = -math.inf + different_ids = [] + for (approx_key, approx_value), other_value in zip( + approx_side_as_map.items(), other_side.values() + ): + if approx_value != other_value: + if approx_value.expected is not None and other_value is not None: + max_abs_diff = max( + max_abs_diff, abs(approx_value.expected - other_value) + ) + if approx_value.expected == 0.0: + max_rel_diff = math.inf + else: + max_rel_diff = max( + max_rel_diff, + abs( + (approx_value.expected - other_value) + / approx_value.expected + ), + ) + different_ids.append(approx_key) + + message_data = [ + (str(key), str(other_side[key]), str(approx_side_as_map[key])) + for key in different_ids + ] + + return _compare_approx( + self.expected, + message_data, + number_of_elements, + different_ids, + max_abs_diff, + max_rel_diff, + ) + + def __eq__(self, actual) -> bool: + try: + if set(actual.keys()) != set(self.expected.keys()): + return False + except AttributeError: + return False + + return super().__eq__(actual) + + def _yield_comparisons(self, actual): + for k in self.expected.keys(): + yield actual[k], self.expected[k] + + def _check_type(self) -> None: + __tracebackhide__ = True + for key, value in self.expected.items(): + if isinstance(value, type(self.expected)): + msg = "pytest.approx() does not support nested dictionaries: key={!r} value={!r}\n full mapping={}" + raise TypeError(msg.format(key, value, pprint.pformat(self.expected))) + + +class ApproxSequenceLike(ApproxBase): + """Perform approximate comparisons where the expected value is a sequence of numbers.""" + + def __repr__(self) -> str: + seq_type = type(self.expected) + if seq_type not in (tuple, list): + seq_type = list + return "approx({!r})".format( + seq_type(self._approx_scalar(x) for x in self.expected) + ) + + def _repr_compare(self, other_side: Sequence[float]) -> List[str]: + import math + + if len(self.expected) != len(other_side): + return [ + "Impossible to compare lists with different sizes.", + f"Lengths: {len(self.expected)} and {len(other_side)}", + ] + + approx_side_as_map = _recursive_sequence_map(self._approx_scalar, self.expected) + + number_of_elements = len(approx_side_as_map) + max_abs_diff = -math.inf + max_rel_diff = -math.inf + different_ids = [] + for i, (approx_value, other_value) in enumerate( + zip(approx_side_as_map, other_side) + ): + if approx_value != other_value: + abs_diff = abs(approx_value.expected - other_value) + max_abs_diff = max(max_abs_diff, abs_diff) + if other_value == 0.0: + max_rel_diff = math.inf + else: + max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value)) + different_ids.append(i) + + message_data = [ + (str(i), str(other_side[i]), str(approx_side_as_map[i])) + for i in different_ids + ] + + return _compare_approx( + self.expected, + message_data, + number_of_elements, + different_ids, + max_abs_diff, + max_rel_diff, + ) + + def __eq__(self, actual) -> bool: + try: + if len(actual) != len(self.expected): + return False + except TypeError: + return False + return super().__eq__(actual) + + def _yield_comparisons(self, actual): + return zip(actual, self.expected) + + def _check_type(self) -> None: + __tracebackhide__ = True + for index, x in enumerate(self.expected): + if isinstance(x, type(self.expected)): + msg = "pytest.approx() does not support nested data structures: {!r} at index {}\n full sequence: {}" + raise TypeError(msg.format(x, index, pprint.pformat(self.expected))) + + +class ApproxScalar(ApproxBase): + """Perform approximate comparisons where the expected value is a single number.""" + + # Using Real should be better than this Union, but not possible yet: + # https://github.com/python/typeshed/pull/3108 + DEFAULT_ABSOLUTE_TOLERANCE: Union[float, Decimal] = 1e-12 + DEFAULT_RELATIVE_TOLERANCE: Union[float, Decimal] = 1e-6 + + def __repr__(self) -> str: + """Return a string communicating both the expected value and the + tolerance for the comparison being made. + + For example, ``1.0 ± 1e-6``, ``(3+4j) ± 5e-6 ∠ ±180°``. + """ + # Don't show a tolerance for values that aren't compared using + # tolerances, i.e. non-numerics and infinities. Need to call abs to + # handle complex numbers, e.g. (inf + 1j). + if (not isinstance(self.expected, (Complex, Decimal))) or math.isinf( + abs(self.expected) # type: ignore[arg-type] + ): + return str(self.expected) + + # If a sensible tolerance can't be calculated, self.tolerance will + # raise a ValueError. In this case, display '???'. + try: + vetted_tolerance = f"{self.tolerance:.1e}" + if ( + isinstance(self.expected, Complex) + and self.expected.imag + and not math.isinf(self.tolerance) + ): + vetted_tolerance += " ∠ ±180°" + except ValueError: + vetted_tolerance = "???" + + return f"{self.expected} ± {vetted_tolerance}" + + def __eq__(self, actual) -> bool: + """Return whether the given value is equal to the expected value + within the pre-specified tolerance.""" + asarray = _as_numpy_array(actual) + if asarray is not None: + # Call ``__eq__()`` manually to prevent infinite-recursion with + # numpy<1.13. See #3748. + return all(self.__eq__(a) for a in asarray.flat) + + # Short-circuit exact equality. + if actual == self.expected: + return True + + # If either type is non-numeric, fall back to strict equality. + # NB: we need Complex, rather than just Number, to ensure that __abs__, + # __sub__, and __float__ are defined. + if not ( + isinstance(self.expected, (Complex, Decimal)) + and isinstance(actual, (Complex, Decimal)) + ): + return False + + # Allow the user to control whether NaNs are considered equal to each + # other or not. The abs() calls are for compatibility with complex + # numbers. + if math.isnan(abs(self.expected)): # type: ignore[arg-type] + return self.nan_ok and math.isnan(abs(actual)) # type: ignore[arg-type] + + # Infinity shouldn't be approximately equal to anything but itself, but + # if there's a relative tolerance, it will be infinite and infinity + # will seem approximately equal to everything. The equal-to-itself + # case would have been short circuited above, so here we can just + # return false if the expected value is infinite. The abs() call is + # for compatibility with complex numbers. + if math.isinf(abs(self.expected)): # type: ignore[arg-type] + return False + + # Return true if the two numbers are within the tolerance. + result: bool = abs(self.expected - actual) <= self.tolerance + return result + + # Ignore type because of https://github.com/python/mypy/issues/4266. + __hash__ = None # type: ignore + + @property + def tolerance(self): + """Return the tolerance for the comparison. + + This could be either an absolute tolerance or a relative tolerance, + depending on what the user specified or which would be larger. + """ + + def set_default(x, default): + return x if x is not None else default + + # Figure out what the absolute tolerance should be. ``self.abs`` is + # either None or a value specified by the user. + absolute_tolerance = set_default(self.abs, self.DEFAULT_ABSOLUTE_TOLERANCE) + + if absolute_tolerance < 0: + raise ValueError( + f"absolute tolerance can't be negative: {absolute_tolerance}" + ) + if math.isnan(absolute_tolerance): + raise ValueError("absolute tolerance can't be NaN.") + + # If the user specified an absolute tolerance but not a relative one, + # just return the absolute tolerance. + if self.rel is None: + if self.abs is not None: + return absolute_tolerance + + # Figure out what the relative tolerance should be. ``self.rel`` is + # either None or a value specified by the user. This is done after + # we've made sure the user didn't ask for an absolute tolerance only, + # because we don't want to raise errors about the relative tolerance if + # we aren't even going to use it. + relative_tolerance = set_default( + self.rel, self.DEFAULT_RELATIVE_TOLERANCE + ) * abs(self.expected) + + if relative_tolerance < 0: + raise ValueError( + f"relative tolerance can't be negative: {relative_tolerance}" + ) + if math.isnan(relative_tolerance): + raise ValueError("relative tolerance can't be NaN.") + + # Return the larger of the relative and absolute tolerances. + return max(relative_tolerance, absolute_tolerance) + + +class ApproxDecimal(ApproxScalar): + """Perform approximate comparisons where the expected value is a Decimal.""" + + DEFAULT_ABSOLUTE_TOLERANCE = Decimal("1e-12") + DEFAULT_RELATIVE_TOLERANCE = Decimal("1e-6") + + +def approx(expected, rel=None, abs=None, nan_ok: bool = False) -> ApproxBase: + """Assert that two numbers (or two ordered sequences of numbers) are equal to each other + within some tolerance. + + Due to the :doc:`python:tutorial/floatingpoint`, numbers that we + would intuitively expect to be equal are not always so:: + + >>> 0.1 + 0.2 == 0.3 + False + + This problem is commonly encountered when writing tests, e.g. when making + sure that floating-point values are what you expect them to be. One way to + deal with this problem is to assert that two floating-point numbers are + equal to within some appropriate tolerance:: + + >>> abs((0.1 + 0.2) - 0.3) < 1e-6 + True + + However, comparisons like this are tedious to write and difficult to + understand. Furthermore, absolute comparisons like the one above are + usually discouraged because there's no tolerance that works well for all + situations. ``1e-6`` is good for numbers around ``1``, but too small for + very big numbers and too big for very small ones. It's better to express + the tolerance as a fraction of the expected value, but relative comparisons + like that are even more difficult to write correctly and concisely. + + The ``approx`` class performs floating-point comparisons using a syntax + that's as intuitive as possible:: + + >>> from pytest import approx + >>> 0.1 + 0.2 == approx(0.3) + True + + The same syntax also works for ordered sequences of numbers:: + + >>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6)) + True + + ``numpy`` arrays:: + + >>> import numpy as np # doctest: +SKIP + >>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6])) # doctest: +SKIP + True + + And for a ``numpy`` array against a scalar:: + + >>> import numpy as np # doctest: +SKIP + >>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3) # doctest: +SKIP + True + + Only ordered sequences are supported, because ``approx`` needs + to infer the relative position of the sequences without ambiguity. This means + ``sets`` and other unordered sequences are not supported. + + Finally, dictionary *values* can also be compared:: + + >>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6}) + True + + The comparison will be true if both mappings have the same keys and their + respective values match the expected tolerances. + + **Tolerances** + + By default, ``approx`` considers numbers within a relative tolerance of + ``1e-6`` (i.e. one part in a million) of its expected value to be equal. + This treatment would lead to surprising results if the expected value was + ``0.0``, because nothing but ``0.0`` itself is relatively close to ``0.0``. + To handle this case less surprisingly, ``approx`` also considers numbers + within an absolute tolerance of ``1e-12`` of its expected value to be + equal. Infinity and NaN are special cases. Infinity is only considered + equal to itself, regardless of the relative tolerance. NaN is not + considered equal to anything by default, but you can make it be equal to + itself by setting the ``nan_ok`` argument to True. (This is meant to + facilitate comparing arrays that use NaN to mean "no data".) + + Both the relative and absolute tolerances can be changed by passing + arguments to the ``approx`` constructor:: + + >>> 1.0001 == approx(1) + False + >>> 1.0001 == approx(1, rel=1e-3) + True + >>> 1.0001 == approx(1, abs=1e-3) + True + + If you specify ``abs`` but not ``rel``, the comparison will not consider + the relative tolerance at all. In other words, two numbers that are within + the default relative tolerance of ``1e-6`` will still be considered unequal + if they exceed the specified absolute tolerance. If you specify both + ``abs`` and ``rel``, the numbers will be considered equal if either + tolerance is met:: + + >>> 1 + 1e-8 == approx(1) + True + >>> 1 + 1e-8 == approx(1, abs=1e-12) + False + >>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12) + True + + You can also use ``approx`` to compare nonnumeric types, or dicts and + sequences containing nonnumeric types, in which case it falls back to + strict equality. This can be useful for comparing dicts and sequences that + can contain optional values:: + + >>> {"required": 1.0000005, "optional": None} == approx({"required": 1, "optional": None}) + True + >>> [None, 1.0000005] == approx([None,1]) + True + >>> ["foo", 1.0000005] == approx([None,1]) + False + + If you're thinking about using ``approx``, then you might want to know how + it compares to other good ways of comparing floating-point numbers. All of + these algorithms are based on relative and absolute tolerances and should + agree for the most part, but they do have meaningful differences: + + - ``math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0)``: True if the relative + tolerance is met w.r.t. either ``a`` or ``b`` or if the absolute + tolerance is met. Because the relative tolerance is calculated w.r.t. + both ``a`` and ``b``, this test is symmetric (i.e. neither ``a`` nor + ``b`` is a "reference value"). You have to specify an absolute tolerance + if you want to compare to ``0.0`` because there is no tolerance by + default. More information: :py:func:`math.isclose`. + + - ``numpy.isclose(a, b, rtol=1e-5, atol=1e-8)``: True if the difference + between ``a`` and ``b`` is less that the sum of the relative tolerance + w.r.t. ``b`` and the absolute tolerance. Because the relative tolerance + is only calculated w.r.t. ``b``, this test is asymmetric and you can + think of ``b`` as the reference value. Support for comparing sequences + is provided by :py:func:`numpy.allclose`. More information: + :std:doc:`numpy:reference/generated/numpy.isclose`. + + - ``unittest.TestCase.assertAlmostEqual(a, b)``: True if ``a`` and ``b`` + are within an absolute tolerance of ``1e-7``. No relative tolerance is + considered , so this function is not appropriate for very large or very + small numbers. Also, it's only available in subclasses of ``unittest.TestCase`` + and it's ugly because it doesn't follow PEP8. More information: + :py:meth:`unittest.TestCase.assertAlmostEqual`. + + - ``a == pytest.approx(b, rel=1e-6, abs=1e-12)``: True if the relative + tolerance is met w.r.t. ``b`` or if the absolute tolerance is met. + Because the relative tolerance is only calculated w.r.t. ``b``, this test + is asymmetric and you can think of ``b`` as the reference value. In the + special case that you explicitly specify an absolute tolerance but not a + relative tolerance, only the absolute tolerance is considered. + + .. note:: + + ``approx`` can handle numpy arrays, but we recommend the + specialised test helpers in :std:doc:`numpy:reference/routines.testing` + if you need support for comparisons, NaNs, or ULP-based tolerances. + + To match strings using regex, you can use + `Matches <https://github.com/asottile/re-assert#re_assertmatchespattern-str-args-kwargs>`_ + from the + `re_assert package <https://github.com/asottile/re-assert>`_. + + .. warning:: + + .. versionchanged:: 3.2 + + In order to avoid inconsistent behavior, :py:exc:`TypeError` is + raised for ``>``, ``>=``, ``<`` and ``<=`` comparisons. + The example below illustrates the problem:: + + assert approx(0.1) > 0.1 + 1e-10 # calls approx(0.1).__gt__(0.1 + 1e-10) + assert 0.1 + 1e-10 > approx(0.1) # calls approx(0.1).__lt__(0.1 + 1e-10) + + In the second example one expects ``approx(0.1).__le__(0.1 + 1e-10)`` + to be called. But instead, ``approx(0.1).__lt__(0.1 + 1e-10)`` is used to + comparison. This is because the call hierarchy of rich comparisons + follows a fixed behavior. More information: :py:meth:`object.__ge__` + + .. versionchanged:: 3.7.1 + ``approx`` raises ``TypeError`` when it encounters a dict value or + sequence element of nonnumeric type. + + .. versionchanged:: 6.1.0 + ``approx`` falls back to strict equality for nonnumeric types instead + of raising ``TypeError``. + """ + + # Delegate the comparison to a class that knows how to deal with the type + # of the expected value (e.g. int, float, list, dict, numpy.array, etc). + # + # The primary responsibility of these classes is to implement ``__eq__()`` + # and ``__repr__()``. The former is used to actually check if some + # "actual" value is equivalent to the given expected value within the + # allowed tolerance. The latter is used to show the user the expected + # value and tolerance, in the case that a test failed. + # + # The actual logic for making approximate comparisons can be found in + # ApproxScalar, which is used to compare individual numbers. All of the + # other Approx classes eventually delegate to this class. The ApproxBase + # class provides some convenient methods and overloads, but isn't really + # essential. + + __tracebackhide__ = True + + if isinstance(expected, Decimal): + cls: Type[ApproxBase] = ApproxDecimal + elif isinstance(expected, Mapping): + cls = ApproxMapping + elif _is_numpy_array(expected): + expected = _as_numpy_array(expected) + cls = ApproxNumpy + elif ( + hasattr(expected, "__getitem__") + and isinstance(expected, Sized) + # Type ignored because the error is wrong -- not unreachable. + and not isinstance(expected, STRING_TYPES) # type: ignore[unreachable] + ): + cls = ApproxSequenceLike + elif ( + isinstance(expected, Collection) + # Type ignored because the error is wrong -- not unreachable. + and not isinstance(expected, STRING_TYPES) # type: ignore[unreachable] + ): + msg = f"pytest.approx() only supports ordered sequences, but got: {repr(expected)}" + raise TypeError(msg) + else: + cls = ApproxScalar + + return cls(expected, rel, abs, nan_ok) + + +def _is_numpy_array(obj: object) -> bool: + """ + Return true if the given object is implicitly convertible to ndarray, + and numpy is already imported. + """ + return _as_numpy_array(obj) is not None + + +def _as_numpy_array(obj: object) -> Optional["ndarray"]: + """ + Return an ndarray if the given object is implicitly convertible to ndarray, + and numpy is already imported, otherwise None. + """ + import sys + + np: Any = sys.modules.get("numpy") + if np is not None: + # avoid infinite recursion on numpy scalars, which have __array__ + if np.isscalar(obj): + return None + elif isinstance(obj, np.ndarray): + return obj + elif hasattr(obj, "__array__") or hasattr("obj", "__array_interface__"): + return np.asarray(obj) + return None + + +# builtin pytest.raises helper + +E = TypeVar("E", bound=BaseException) + + +@overload +def raises( + expected_exception: Union[Type[E], Tuple[Type[E], ...]], + *, + match: Optional[Union[str, Pattern[str]]] = ..., +) -> "RaisesContext[E]": + ... + + +@overload +def raises( # noqa: F811 + expected_exception: Union[Type[E], Tuple[Type[E], ...]], + func: Callable[..., Any], + *args: Any, + **kwargs: Any, +) -> _pytest._code.ExceptionInfo[E]: + ... + + +def raises( # noqa: F811 + expected_exception: Union[Type[E], Tuple[Type[E], ...]], *args: Any, **kwargs: Any +) -> Union["RaisesContext[E]", _pytest._code.ExceptionInfo[E]]: + r"""Assert that a code block/function call raises an exception. + + :param typing.Type[E] | typing.Tuple[typing.Type[E], ...] expected_exception: + The expected exception type, or a tuple if one of multiple possible + exception types are expected. + :kwparam str | typing.Pattern[str] | None match: + If specified, a string containing a regular expression, + or a regular expression object, that is tested against the string + representation of the exception using :func:`re.search`. + + To match a literal string that may contain :ref:`special characters + <re-syntax>`, the pattern can first be escaped with :func:`re.escape`. + + (This is only used when :py:func:`pytest.raises` is used as a context manager, + and passed through to the function otherwise. + When using :py:func:`pytest.raises` as a function, you can use: + ``pytest.raises(Exc, func, match="passed on").match("my pattern")``.) + + .. currentmodule:: _pytest._code + + Use ``pytest.raises`` as a context manager, which will capture the exception of the given + type:: + + >>> import pytest + >>> with pytest.raises(ZeroDivisionError): + ... 1/0 + + If the code block does not raise the expected exception (``ZeroDivisionError`` in the example + above), or no exception at all, the check will fail instead. + + You can also use the keyword argument ``match`` to assert that the + exception matches a text or regex:: + + >>> with pytest.raises(ValueError, match='must be 0 or None'): + ... raise ValueError("value must be 0 or None") + + >>> with pytest.raises(ValueError, match=r'must be \d+$'): + ... raise ValueError("value must be 42") + + The context manager produces an :class:`ExceptionInfo` object which can be used to inspect the + details of the captured exception:: + + >>> with pytest.raises(ValueError) as exc_info: + ... raise ValueError("value must be 42") + >>> assert exc_info.type is ValueError + >>> assert exc_info.value.args[0] == "value must be 42" + + .. note:: + + When using ``pytest.raises`` as a context manager, it's worthwhile to + note that normal context manager rules apply and that the exception + raised *must* be the final line in the scope of the context manager. + Lines of code after that, within the scope of the context manager will + not be executed. For example:: + + >>> value = 15 + >>> with pytest.raises(ValueError) as exc_info: + ... if value > 10: + ... raise ValueError("value must be <= 10") + ... assert exc_info.type is ValueError # this will not execute + + Instead, the following approach must be taken (note the difference in + scope):: + + >>> with pytest.raises(ValueError) as exc_info: + ... if value > 10: + ... raise ValueError("value must be <= 10") + ... + >>> assert exc_info.type is ValueError + + **Using with** ``pytest.mark.parametrize`` + + When using :ref:`pytest.mark.parametrize ref` + it is possible to parametrize tests such that + some runs raise an exception and others do not. + + See :ref:`parametrizing_conditional_raising` for an example. + + **Legacy form** + + It is possible to specify a callable by passing a to-be-called lambda:: + + >>> raises(ZeroDivisionError, lambda: 1/0) + <ExceptionInfo ...> + + or you can specify an arbitrary callable with arguments:: + + >>> def f(x): return 1/x + ... + >>> raises(ZeroDivisionError, f, 0) + <ExceptionInfo ...> + >>> raises(ZeroDivisionError, f, x=0) + <ExceptionInfo ...> + + The form above is fully supported but discouraged for new code because the + context manager form is regarded as more readable and less error-prone. + + .. note:: + Similar to caught exception objects in Python, explicitly clearing + local references to returned ``ExceptionInfo`` objects can + help the Python interpreter speed up its garbage collection. + + Clearing those references breaks a reference cycle + (``ExceptionInfo`` --> caught exception --> frame stack raising + the exception --> current frame stack --> local variables --> + ``ExceptionInfo``) which makes Python keep all objects referenced + from that cycle (including all local variables in the current + frame) alive until the next cyclic garbage collection run. + More detailed information can be found in the official Python + documentation for :ref:`the try statement <python:try>`. + """ + __tracebackhide__ = True + + if not expected_exception: + raise ValueError( + f"Expected an exception type or a tuple of exception types, but got `{expected_exception!r}`. " + f"Raising exceptions is already understood as failing the test, so you don't need " + f"any special code to say 'this should never raise an exception'." + ) + if isinstance(expected_exception, type): + expected_exceptions: Tuple[Type[E], ...] = (expected_exception,) + else: + expected_exceptions = expected_exception + for exc in expected_exceptions: + if not isinstance(exc, type) or not issubclass(exc, BaseException): + msg = "expected exception must be a BaseException type, not {}" # type: ignore[unreachable] + not_a = exc.__name__ if isinstance(exc, type) else type(exc).__name__ + raise TypeError(msg.format(not_a)) + + message = f"DID NOT RAISE {expected_exception}" + + if not args: + match: Optional[Union[str, Pattern[str]]] = kwargs.pop("match", None) + if kwargs: + msg = "Unexpected keyword arguments passed to pytest.raises: " + msg += ", ".join(sorted(kwargs)) + msg += "\nUse context-manager form instead?" + raise TypeError(msg) + return RaisesContext(expected_exception, message, match) + else: + func = args[0] + if not callable(func): + raise TypeError(f"{func!r} object (type: {type(func)}) must be callable") + try: + func(*args[1:], **kwargs) + except expected_exception as e: + return _pytest._code.ExceptionInfo.from_exception(e) + fail(message) + + +# This doesn't work with mypy for now. Use fail.Exception instead. +raises.Exception = fail.Exception # type: ignore + + +@final +class RaisesContext(ContextManager[_pytest._code.ExceptionInfo[E]]): + def __init__( + self, + expected_exception: Union[Type[E], Tuple[Type[E], ...]], + message: str, + match_expr: Optional[Union[str, Pattern[str]]] = None, + ) -> None: + self.expected_exception = expected_exception + self.message = message + self.match_expr = match_expr + self.excinfo: Optional[_pytest._code.ExceptionInfo[E]] = None + + def __enter__(self) -> _pytest._code.ExceptionInfo[E]: + self.excinfo = _pytest._code.ExceptionInfo.for_later() + return self.excinfo + + def __exit__( + self, + exc_type: Optional[Type[BaseException]], + exc_val: Optional[BaseException], + exc_tb: Optional[TracebackType], + ) -> bool: + __tracebackhide__ = True + if exc_type is None: + fail(self.message) + assert self.excinfo is not None + if not issubclass(exc_type, self.expected_exception): + return False + # Cast to narrow the exception type now that it's verified. + exc_info = cast(Tuple[Type[E], E, TracebackType], (exc_type, exc_val, exc_tb)) + self.excinfo.fill_unfilled(exc_info) + if self.match_expr is not None: + self.excinfo.match(self.match_expr) + return True |