diff options
author | monster <monster@ydb.tech> | 2022-07-07 14:41:37 +0300 |
---|---|---|
committer | monster <monster@ydb.tech> | 2022-07-07 14:41:37 +0300 |
commit | 06e5c21a835c0e923506c4ff27929f34e00761c2 (patch) | |
tree | 75efcbc6854ef9bd476eb8bf00cc5c900da436a2 /contrib/python/pytest/py3/_pytest/python_api.py | |
parent | 03f024c4412e3aa613bb543cf1660176320ba8f4 (diff) | |
download | ydb-06e5c21a835c0e923506c4ff27929f34e00761c2.tar.gz |
fix ya.make
Diffstat (limited to 'contrib/python/pytest/py3/_pytest/python_api.py')
-rw-r--r-- | contrib/python/pytest/py3/_pytest/python_api.py | 975 |
1 files changed, 0 insertions, 975 deletions
diff --git a/contrib/python/pytest/py3/_pytest/python_api.py b/contrib/python/pytest/py3/_pytest/python_api.py deleted file mode 100644 index 5fa2196192..0000000000 --- a/contrib/python/pytest/py3/_pytest/python_api.py +++ /dev/null @@ -1,975 +0,0 @@ -import math -import pprint -from collections.abc import Collection -from collections.abc import Sized -from decimal import Decimal -from numbers import Complex -from types import TracebackType -from typing import Any -from typing import Callable -from typing import cast -from typing import Generic -from typing import List -from typing import Mapping -from typing import Optional -from typing import overload -from typing import Pattern -from typing import Sequence -from typing import Tuple -from typing import Type -from typing import TYPE_CHECKING -from typing import TypeVar -from typing import Union - -if TYPE_CHECKING: - from numpy import ndarray - - -import _pytest._code -from _pytest.compat import final -from _pytest.compat import STRING_TYPES -from _pytest.outcomes import fail - - -def _non_numeric_type_error(value, at: Optional[str]) -> TypeError: - at_str = f" at {at}" if at else "" - return TypeError( - "cannot make approximate comparisons to non-numeric values: {!r} {}".format( - value, at_str - ) - ) - - -def _compare_approx( - full_object: object, - message_data: Sequence[Tuple[str, str, str]], - number_of_elements: int, - different_ids: Sequence[object], - max_abs_diff: float, - max_rel_diff: float, -) -> List[str]: - message_list = list(message_data) - message_list.insert(0, ("Index", "Obtained", "Expected")) - max_sizes = [0, 0, 0] - for index, obtained, expected in message_list: - max_sizes[0] = max(max_sizes[0], len(index)) - max_sizes[1] = max(max_sizes[1], len(obtained)) - max_sizes[2] = max(max_sizes[2], len(expected)) - explanation = [ - f"comparison failed. Mismatched elements: {len(different_ids)} / {number_of_elements}:", - f"Max absolute difference: {max_abs_diff}", - f"Max relative difference: {max_rel_diff}", - ] + [ - f"{indexes:<{max_sizes[0]}} | {obtained:<{max_sizes[1]}} | {expected:<{max_sizes[2]}}" - for indexes, obtained, expected in message_list - ] - return explanation - - -# builtin pytest.approx helper - - -class ApproxBase: - """Provide shared utilities for making approximate comparisons between - numbers or sequences of numbers.""" - - # Tell numpy to use our `__eq__` operator instead of its. - __array_ufunc__ = None - __array_priority__ = 100 - - def __init__(self, expected, rel=None, abs=None, nan_ok: bool = False) -> None: - __tracebackhide__ = True - self.expected = expected - self.abs = abs - self.rel = rel - self.nan_ok = nan_ok - self._check_type() - - def __repr__(self) -> str: - raise NotImplementedError - - def _repr_compare(self, other_side: Any) -> List[str]: - return [ - "comparison failed", - f"Obtained: {other_side}", - f"Expected: {self}", - ] - - def __eq__(self, actual) -> bool: - return all( - a == self._approx_scalar(x) for a, x in self._yield_comparisons(actual) - ) - - def __bool__(self): - __tracebackhide__ = True - raise AssertionError( - "approx() is not supported in a boolean context.\nDid you mean: `assert a == approx(b)`?" - ) - - # Ignore type because of https://github.com/python/mypy/issues/4266. - __hash__ = None # type: ignore - - def __ne__(self, actual) -> bool: - return not (actual == self) - - def _approx_scalar(self, x) -> "ApproxScalar": - if isinstance(x, Decimal): - return ApproxDecimal(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok) - return ApproxScalar(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok) - - def _yield_comparisons(self, actual): - """Yield all the pairs of numbers to be compared. - - This is used to implement the `__eq__` method. - """ - raise NotImplementedError - - def _check_type(self) -> None: - """Raise a TypeError if the expected value is not a valid type.""" - # This is only a concern if the expected value is a sequence. In every - # other case, the approx() function ensures that the expected value has - # a numeric type. For this reason, the default is to do nothing. The - # classes that deal with sequences should reimplement this method to - # raise if there are any non-numeric elements in the sequence. - - -def _recursive_list_map(f, x): - if isinstance(x, list): - return [_recursive_list_map(f, xi) for xi in x] - else: - return f(x) - - -class ApproxNumpy(ApproxBase): - """Perform approximate comparisons where the expected value is numpy array.""" - - def __repr__(self) -> str: - list_scalars = _recursive_list_map(self._approx_scalar, self.expected.tolist()) - return f"approx({list_scalars!r})" - - def _repr_compare(self, other_side: "ndarray") -> List[str]: - import itertools - import math - - def get_value_from_nested_list( - nested_list: List[Any], nd_index: Tuple[Any, ...] - ) -> Any: - """ - Helper function to get the value out of a nested list, given an n-dimensional index. - This mimics numpy's indexing, but for raw nested python lists. - """ - value: Any = nested_list - for i in nd_index: - value = value[i] - return value - - np_array_shape = self.expected.shape - approx_side_as_list = _recursive_list_map( - self._approx_scalar, self.expected.tolist() - ) - - if np_array_shape != other_side.shape: - return [ - "Impossible to compare arrays with different shapes.", - f"Shapes: {np_array_shape} and {other_side.shape}", - ] - - number_of_elements = self.expected.size - max_abs_diff = -math.inf - max_rel_diff = -math.inf - different_ids = [] - for index in itertools.product(*(range(i) for i in np_array_shape)): - approx_value = get_value_from_nested_list(approx_side_as_list, index) - other_value = get_value_from_nested_list(other_side, index) - if approx_value != other_value: - abs_diff = abs(approx_value.expected - other_value) - max_abs_diff = max(max_abs_diff, abs_diff) - if other_value == 0.0: - max_rel_diff = math.inf - else: - max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value)) - different_ids.append(index) - - message_data = [ - ( - str(index), - str(get_value_from_nested_list(other_side, index)), - str(get_value_from_nested_list(approx_side_as_list, index)), - ) - for index in different_ids - ] - return _compare_approx( - self.expected, - message_data, - number_of_elements, - different_ids, - max_abs_diff, - max_rel_diff, - ) - - def __eq__(self, actual) -> bool: - import numpy as np - - # self.expected is supposed to always be an array here. - - if not np.isscalar(actual): - try: - actual = np.asarray(actual) - except Exception as e: - raise TypeError(f"cannot compare '{actual}' to numpy.ndarray") from e - - if not np.isscalar(actual) and actual.shape != self.expected.shape: - return False - - return super().__eq__(actual) - - def _yield_comparisons(self, actual): - import numpy as np - - # `actual` can either be a numpy array or a scalar, it is treated in - # `__eq__` before being passed to `ApproxBase.__eq__`, which is the - # only method that calls this one. - - if np.isscalar(actual): - for i in np.ndindex(self.expected.shape): - yield actual, self.expected[i].item() - else: - for i in np.ndindex(self.expected.shape): - yield actual[i].item(), self.expected[i].item() - - -class ApproxMapping(ApproxBase): - """Perform approximate comparisons where the expected value is a mapping - with numeric values (the keys can be anything).""" - - def __repr__(self) -> str: - return "approx({!r})".format( - {k: self._approx_scalar(v) for k, v in self.expected.items()} - ) - - def _repr_compare(self, other_side: Mapping[object, float]) -> List[str]: - import math - - approx_side_as_map = { - k: self._approx_scalar(v) for k, v in self.expected.items() - } - - number_of_elements = len(approx_side_as_map) - max_abs_diff = -math.inf - max_rel_diff = -math.inf - different_ids = [] - for (approx_key, approx_value), other_value in zip( - approx_side_as_map.items(), other_side.values() - ): - if approx_value != other_value: - max_abs_diff = max( - max_abs_diff, abs(approx_value.expected - other_value) - ) - max_rel_diff = max( - max_rel_diff, - abs((approx_value.expected - other_value) / approx_value.expected), - ) - different_ids.append(approx_key) - - message_data = [ - (str(key), str(other_side[key]), str(approx_side_as_map[key])) - for key in different_ids - ] - - return _compare_approx( - self.expected, - message_data, - number_of_elements, - different_ids, - max_abs_diff, - max_rel_diff, - ) - - def __eq__(self, actual) -> bool: - try: - if set(actual.keys()) != set(self.expected.keys()): - return False - except AttributeError: - return False - - return super().__eq__(actual) - - def _yield_comparisons(self, actual): - for k in self.expected.keys(): - yield actual[k], self.expected[k] - - def _check_type(self) -> None: - __tracebackhide__ = True - for key, value in self.expected.items(): - if isinstance(value, type(self.expected)): - msg = "pytest.approx() does not support nested dictionaries: key={!r} value={!r}\n full mapping={}" - raise TypeError(msg.format(key, value, pprint.pformat(self.expected))) - - -class ApproxSequenceLike(ApproxBase): - """Perform approximate comparisons where the expected value is a sequence of numbers.""" - - def __repr__(self) -> str: - seq_type = type(self.expected) - if seq_type not in (tuple, list): - seq_type = list - return "approx({!r})".format( - seq_type(self._approx_scalar(x) for x in self.expected) - ) - - def _repr_compare(self, other_side: Sequence[float]) -> List[str]: - import math - - if len(self.expected) != len(other_side): - return [ - "Impossible to compare lists with different sizes.", - f"Lengths: {len(self.expected)} and {len(other_side)}", - ] - - approx_side_as_map = _recursive_list_map(self._approx_scalar, self.expected) - - number_of_elements = len(approx_side_as_map) - max_abs_diff = -math.inf - max_rel_diff = -math.inf - different_ids = [] - for i, (approx_value, other_value) in enumerate( - zip(approx_side_as_map, other_side) - ): - if approx_value != other_value: - abs_diff = abs(approx_value.expected - other_value) - max_abs_diff = max(max_abs_diff, abs_diff) - if other_value == 0.0: - max_rel_diff = math.inf - else: - max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value)) - different_ids.append(i) - - message_data = [ - (str(i), str(other_side[i]), str(approx_side_as_map[i])) - for i in different_ids - ] - - return _compare_approx( - self.expected, - message_data, - number_of_elements, - different_ids, - max_abs_diff, - max_rel_diff, - ) - - def __eq__(self, actual) -> bool: - try: - if len(actual) != len(self.expected): - return False - except TypeError: - return False - return super().__eq__(actual) - - def _yield_comparisons(self, actual): - return zip(actual, self.expected) - - def _check_type(self) -> None: - __tracebackhide__ = True - for index, x in enumerate(self.expected): - if isinstance(x, type(self.expected)): - msg = "pytest.approx() does not support nested data structures: {!r} at index {}\n full sequence: {}" - raise TypeError(msg.format(x, index, pprint.pformat(self.expected))) - - -class ApproxScalar(ApproxBase): - """Perform approximate comparisons where the expected value is a single number.""" - - # Using Real should be better than this Union, but not possible yet: - # https://github.com/python/typeshed/pull/3108 - DEFAULT_ABSOLUTE_TOLERANCE: Union[float, Decimal] = 1e-12 - DEFAULT_RELATIVE_TOLERANCE: Union[float, Decimal] = 1e-6 - - def __repr__(self) -> str: - """Return a string communicating both the expected value and the - tolerance for the comparison being made. - - For example, ``1.0 ± 1e-6``, ``(3+4j) ± 5e-6 ∠ ±180°``. - """ - # Don't show a tolerance for values that aren't compared using - # tolerances, i.e. non-numerics and infinities. Need to call abs to - # handle complex numbers, e.g. (inf + 1j). - if (not isinstance(self.expected, (Complex, Decimal))) or math.isinf( - abs(self.expected) # type: ignore[arg-type] - ): - return str(self.expected) - - # If a sensible tolerance can't be calculated, self.tolerance will - # raise a ValueError. In this case, display '???'. - try: - vetted_tolerance = f"{self.tolerance:.1e}" - if ( - isinstance(self.expected, Complex) - and self.expected.imag - and not math.isinf(self.tolerance) - ): - vetted_tolerance += " ∠ ±180°" - except ValueError: - vetted_tolerance = "???" - - return f"{self.expected} ± {vetted_tolerance}" - - def __eq__(self, actual) -> bool: - """Return whether the given value is equal to the expected value - within the pre-specified tolerance.""" - asarray = _as_numpy_array(actual) - if asarray is not None: - # Call ``__eq__()`` manually to prevent infinite-recursion with - # numpy<1.13. See #3748. - return all(self.__eq__(a) for a in asarray.flat) - - # Short-circuit exact equality. - if actual == self.expected: - return True - - # If either type is non-numeric, fall back to strict equality. - # NB: we need Complex, rather than just Number, to ensure that __abs__, - # __sub__, and __float__ are defined. - if not ( - isinstance(self.expected, (Complex, Decimal)) - and isinstance(actual, (Complex, Decimal)) - ): - return False - - # Allow the user to control whether NaNs are considered equal to each - # other or not. The abs() calls are for compatibility with complex - # numbers. - if math.isnan(abs(self.expected)): # type: ignore[arg-type] - return self.nan_ok and math.isnan(abs(actual)) # type: ignore[arg-type] - - # Infinity shouldn't be approximately equal to anything but itself, but - # if there's a relative tolerance, it will be infinite and infinity - # will seem approximately equal to everything. The equal-to-itself - # case would have been short circuited above, so here we can just - # return false if the expected value is infinite. The abs() call is - # for compatibility with complex numbers. - if math.isinf(abs(self.expected)): # type: ignore[arg-type] - return False - - # Return true if the two numbers are within the tolerance. - result: bool = abs(self.expected - actual) <= self.tolerance - return result - - # Ignore type because of https://github.com/python/mypy/issues/4266. - __hash__ = None # type: ignore - - @property - def tolerance(self): - """Return the tolerance for the comparison. - - This could be either an absolute tolerance or a relative tolerance, - depending on what the user specified or which would be larger. - """ - - def set_default(x, default): - return x if x is not None else default - - # Figure out what the absolute tolerance should be. ``self.abs`` is - # either None or a value specified by the user. - absolute_tolerance = set_default(self.abs, self.DEFAULT_ABSOLUTE_TOLERANCE) - - if absolute_tolerance < 0: - raise ValueError( - f"absolute tolerance can't be negative: {absolute_tolerance}" - ) - if math.isnan(absolute_tolerance): - raise ValueError("absolute tolerance can't be NaN.") - - # If the user specified an absolute tolerance but not a relative one, - # just return the absolute tolerance. - if self.rel is None: - if self.abs is not None: - return absolute_tolerance - - # Figure out what the relative tolerance should be. ``self.rel`` is - # either None or a value specified by the user. This is done after - # we've made sure the user didn't ask for an absolute tolerance only, - # because we don't want to raise errors about the relative tolerance if - # we aren't even going to use it. - relative_tolerance = set_default( - self.rel, self.DEFAULT_RELATIVE_TOLERANCE - ) * abs(self.expected) - - if relative_tolerance < 0: - raise ValueError( - f"relative tolerance can't be negative: {relative_tolerance}" - ) - if math.isnan(relative_tolerance): - raise ValueError("relative tolerance can't be NaN.") - - # Return the larger of the relative and absolute tolerances. - return max(relative_tolerance, absolute_tolerance) - - -class ApproxDecimal(ApproxScalar): - """Perform approximate comparisons where the expected value is a Decimal.""" - - DEFAULT_ABSOLUTE_TOLERANCE = Decimal("1e-12") - DEFAULT_RELATIVE_TOLERANCE = Decimal("1e-6") - - -def approx(expected, rel=None, abs=None, nan_ok: bool = False) -> ApproxBase: - """Assert that two numbers (or two ordered sequences of numbers) are equal to each other - within some tolerance. - - Due to the :std:doc:`tutorial/floatingpoint`, numbers that we - would intuitively expect to be equal are not always so:: - - >>> 0.1 + 0.2 == 0.3 - False - - This problem is commonly encountered when writing tests, e.g. when making - sure that floating-point values are what you expect them to be. One way to - deal with this problem is to assert that two floating-point numbers are - equal to within some appropriate tolerance:: - - >>> abs((0.1 + 0.2) - 0.3) < 1e-6 - True - - However, comparisons like this are tedious to write and difficult to - understand. Furthermore, absolute comparisons like the one above are - usually discouraged because there's no tolerance that works well for all - situations. ``1e-6`` is good for numbers around ``1``, but too small for - very big numbers and too big for very small ones. It's better to express - the tolerance as a fraction of the expected value, but relative comparisons - like that are even more difficult to write correctly and concisely. - - The ``approx`` class performs floating-point comparisons using a syntax - that's as intuitive as possible:: - - >>> from pytest import approx - >>> 0.1 + 0.2 == approx(0.3) - True - - The same syntax also works for ordered sequences of numbers:: - - >>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6)) - True - - ``numpy`` arrays:: - - >>> import numpy as np # doctest: +SKIP - >>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6])) # doctest: +SKIP - True - - And for a ``numpy`` array against a scalar:: - - >>> import numpy as np # doctest: +SKIP - >>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3) # doctest: +SKIP - True - - Only ordered sequences are supported, because ``approx`` needs - to infer the relative position of the sequences without ambiguity. This means - ``sets`` and other unordered sequences are not supported. - - Finally, dictionary *values* can also be compared:: - - >>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6}) - True - - The comparison will be true if both mappings have the same keys and their - respective values match the expected tolerances. - - **Tolerances** - - By default, ``approx`` considers numbers within a relative tolerance of - ``1e-6`` (i.e. one part in a million) of its expected value to be equal. - This treatment would lead to surprising results if the expected value was - ``0.0``, because nothing but ``0.0`` itself is relatively close to ``0.0``. - To handle this case less surprisingly, ``approx`` also considers numbers - within an absolute tolerance of ``1e-12`` of its expected value to be - equal. Infinity and NaN are special cases. Infinity is only considered - equal to itself, regardless of the relative tolerance. NaN is not - considered equal to anything by default, but you can make it be equal to - itself by setting the ``nan_ok`` argument to True. (This is meant to - facilitate comparing arrays that use NaN to mean "no data".) - - Both the relative and absolute tolerances can be changed by passing - arguments to the ``approx`` constructor:: - - >>> 1.0001 == approx(1) - False - >>> 1.0001 == approx(1, rel=1e-3) - True - >>> 1.0001 == approx(1, abs=1e-3) - True - - If you specify ``abs`` but not ``rel``, the comparison will not consider - the relative tolerance at all. In other words, two numbers that are within - the default relative tolerance of ``1e-6`` will still be considered unequal - if they exceed the specified absolute tolerance. If you specify both - ``abs`` and ``rel``, the numbers will be considered equal if either - tolerance is met:: - - >>> 1 + 1e-8 == approx(1) - True - >>> 1 + 1e-8 == approx(1, abs=1e-12) - False - >>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12) - True - - You can also use ``approx`` to compare nonnumeric types, or dicts and - sequences containing nonnumeric types, in which case it falls back to - strict equality. This can be useful for comparing dicts and sequences that - can contain optional values:: - - >>> {"required": 1.0000005, "optional": None} == approx({"required": 1, "optional": None}) - True - >>> [None, 1.0000005] == approx([None,1]) - True - >>> ["foo", 1.0000005] == approx([None,1]) - False - - If you're thinking about using ``approx``, then you might want to know how - it compares to other good ways of comparing floating-point numbers. All of - these algorithms are based on relative and absolute tolerances and should - agree for the most part, but they do have meaningful differences: - - - ``math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0)``: True if the relative - tolerance is met w.r.t. either ``a`` or ``b`` or if the absolute - tolerance is met. Because the relative tolerance is calculated w.r.t. - both ``a`` and ``b``, this test is symmetric (i.e. neither ``a`` nor - ``b`` is a "reference value"). You have to specify an absolute tolerance - if you want to compare to ``0.0`` because there is no tolerance by - default. More information: :py:func:`math.isclose`. - - - ``numpy.isclose(a, b, rtol=1e-5, atol=1e-8)``: True if the difference - between ``a`` and ``b`` is less that the sum of the relative tolerance - w.r.t. ``b`` and the absolute tolerance. Because the relative tolerance - is only calculated w.r.t. ``b``, this test is asymmetric and you can - think of ``b`` as the reference value. Support for comparing sequences - is provided by :py:func:`numpy.allclose`. More information: - :std:doc:`numpy:reference/generated/numpy.isclose`. - - - ``unittest.TestCase.assertAlmostEqual(a, b)``: True if ``a`` and ``b`` - are within an absolute tolerance of ``1e-7``. No relative tolerance is - considered , so this function is not appropriate for very large or very - small numbers. Also, it's only available in subclasses of ``unittest.TestCase`` - and it's ugly because it doesn't follow PEP8. More information: - :py:meth:`unittest.TestCase.assertAlmostEqual`. - - - ``a == pytest.approx(b, rel=1e-6, abs=1e-12)``: True if the relative - tolerance is met w.r.t. ``b`` or if the absolute tolerance is met. - Because the relative tolerance is only calculated w.r.t. ``b``, this test - is asymmetric and you can think of ``b`` as the reference value. In the - special case that you explicitly specify an absolute tolerance but not a - relative tolerance, only the absolute tolerance is considered. - - .. note:: - - ``approx`` can handle numpy arrays, but we recommend the - specialised test helpers in :std:doc:`numpy:reference/routines.testing` - if you need support for comparisons, NaNs, or ULP-based tolerances. - - .. warning:: - - .. versionchanged:: 3.2 - - In order to avoid inconsistent behavior, :py:exc:`TypeError` is - raised for ``>``, ``>=``, ``<`` and ``<=`` comparisons. - The example below illustrates the problem:: - - assert approx(0.1) > 0.1 + 1e-10 # calls approx(0.1).__gt__(0.1 + 1e-10) - assert 0.1 + 1e-10 > approx(0.1) # calls approx(0.1).__lt__(0.1 + 1e-10) - - In the second example one expects ``approx(0.1).__le__(0.1 + 1e-10)`` - to be called. But instead, ``approx(0.1).__lt__(0.1 + 1e-10)`` is used to - comparison. This is because the call hierarchy of rich comparisons - follows a fixed behavior. More information: :py:meth:`object.__ge__` - - .. versionchanged:: 3.7.1 - ``approx`` raises ``TypeError`` when it encounters a dict value or - sequence element of nonnumeric type. - - .. versionchanged:: 6.1.0 - ``approx`` falls back to strict equality for nonnumeric types instead - of raising ``TypeError``. - """ - - # Delegate the comparison to a class that knows how to deal with the type - # of the expected value (e.g. int, float, list, dict, numpy.array, etc). - # - # The primary responsibility of these classes is to implement ``__eq__()`` - # and ``__repr__()``. The former is used to actually check if some - # "actual" value is equivalent to the given expected value within the - # allowed tolerance. The latter is used to show the user the expected - # value and tolerance, in the case that a test failed. - # - # The actual logic for making approximate comparisons can be found in - # ApproxScalar, which is used to compare individual numbers. All of the - # other Approx classes eventually delegate to this class. The ApproxBase - # class provides some convenient methods and overloads, but isn't really - # essential. - - __tracebackhide__ = True - - if isinstance(expected, Decimal): - cls: Type[ApproxBase] = ApproxDecimal - elif isinstance(expected, Mapping): - cls = ApproxMapping - elif _is_numpy_array(expected): - expected = _as_numpy_array(expected) - cls = ApproxNumpy - elif ( - hasattr(expected, "__getitem__") - and isinstance(expected, Sized) - # Type ignored because the error is wrong -- not unreachable. - and not isinstance(expected, STRING_TYPES) # type: ignore[unreachable] - ): - cls = ApproxSequenceLike - elif ( - isinstance(expected, Collection) - # Type ignored because the error is wrong -- not unreachable. - and not isinstance(expected, STRING_TYPES) # type: ignore[unreachable] - ): - msg = f"pytest.approx() only supports ordered sequences, but got: {repr(expected)}" - raise TypeError(msg) - else: - cls = ApproxScalar - - return cls(expected, rel, abs, nan_ok) - - -def _is_numpy_array(obj: object) -> bool: - """ - Return true if the given object is implicitly convertible to ndarray, - and numpy is already imported. - """ - return _as_numpy_array(obj) is not None - - -def _as_numpy_array(obj: object) -> Optional["ndarray"]: - """ - Return an ndarray if the given object is implicitly convertible to ndarray, - and numpy is already imported, otherwise None. - """ - import sys - - np: Any = sys.modules.get("numpy") - if np is not None: - # avoid infinite recursion on numpy scalars, which have __array__ - if np.isscalar(obj): - return None - elif isinstance(obj, np.ndarray): - return obj - elif hasattr(obj, "__array__") or hasattr("obj", "__array_interface__"): - return np.asarray(obj) - return None - - -# builtin pytest.raises helper - -E = TypeVar("E", bound=BaseException) - - -@overload -def raises( - expected_exception: Union[Type[E], Tuple[Type[E], ...]], - *, - match: Optional[Union[str, Pattern[str]]] = ..., -) -> "RaisesContext[E]": - ... - - -@overload -def raises( - expected_exception: Union[Type[E], Tuple[Type[E], ...]], - func: Callable[..., Any], - *args: Any, - **kwargs: Any, -) -> _pytest._code.ExceptionInfo[E]: - ... - - -def raises( - expected_exception: Union[Type[E], Tuple[Type[E], ...]], *args: Any, **kwargs: Any -) -> Union["RaisesContext[E]", _pytest._code.ExceptionInfo[E]]: - r"""Assert that a code block/function call raises ``expected_exception`` - or raise a failure exception otherwise. - - :kwparam match: - If specified, a string containing a regular expression, - or a regular expression object, that is tested against the string - representation of the exception using :py:func:`re.search`. To match a literal - string that may contain :std:ref:`special characters <re-syntax>`, the pattern can - first be escaped with :py:func:`re.escape`. - - (This is only used when :py:func:`pytest.raises` is used as a context manager, - and passed through to the function otherwise. - When using :py:func:`pytest.raises` as a function, you can use: - ``pytest.raises(Exc, func, match="passed on").match("my pattern")``.) - - .. currentmodule:: _pytest._code - - Use ``pytest.raises`` as a context manager, which will capture the exception of the given - type:: - - >>> import pytest - >>> with pytest.raises(ZeroDivisionError): - ... 1/0 - - If the code block does not raise the expected exception (``ZeroDivisionError`` in the example - above), or no exception at all, the check will fail instead. - - You can also use the keyword argument ``match`` to assert that the - exception matches a text or regex:: - - >>> with pytest.raises(ValueError, match='must be 0 or None'): - ... raise ValueError("value must be 0 or None") - - >>> with pytest.raises(ValueError, match=r'must be \d+$'): - ... raise ValueError("value must be 42") - - The context manager produces an :class:`ExceptionInfo` object which can be used to inspect the - details of the captured exception:: - - >>> with pytest.raises(ValueError) as exc_info: - ... raise ValueError("value must be 42") - >>> assert exc_info.type is ValueError - >>> assert exc_info.value.args[0] == "value must be 42" - - .. note:: - - When using ``pytest.raises`` as a context manager, it's worthwhile to - note that normal context manager rules apply and that the exception - raised *must* be the final line in the scope of the context manager. - Lines of code after that, within the scope of the context manager will - not be executed. For example:: - - >>> value = 15 - >>> with pytest.raises(ValueError) as exc_info: - ... if value > 10: - ... raise ValueError("value must be <= 10") - ... assert exc_info.type is ValueError # this will not execute - - Instead, the following approach must be taken (note the difference in - scope):: - - >>> with pytest.raises(ValueError) as exc_info: - ... if value > 10: - ... raise ValueError("value must be <= 10") - ... - >>> assert exc_info.type is ValueError - - **Using with** ``pytest.mark.parametrize`` - - When using :ref:`pytest.mark.parametrize ref` - it is possible to parametrize tests such that - some runs raise an exception and others do not. - - See :ref:`parametrizing_conditional_raising` for an example. - - **Legacy form** - - It is possible to specify a callable by passing a to-be-called lambda:: - - >>> raises(ZeroDivisionError, lambda: 1/0) - <ExceptionInfo ...> - - or you can specify an arbitrary callable with arguments:: - - >>> def f(x): return 1/x - ... - >>> raises(ZeroDivisionError, f, 0) - <ExceptionInfo ...> - >>> raises(ZeroDivisionError, f, x=0) - <ExceptionInfo ...> - - The form above is fully supported but discouraged for new code because the - context manager form is regarded as more readable and less error-prone. - - .. note:: - Similar to caught exception objects in Python, explicitly clearing - local references to returned ``ExceptionInfo`` objects can - help the Python interpreter speed up its garbage collection. - - Clearing those references breaks a reference cycle - (``ExceptionInfo`` --> caught exception --> frame stack raising - the exception --> current frame stack --> local variables --> - ``ExceptionInfo``) which makes Python keep all objects referenced - from that cycle (including all local variables in the current - frame) alive until the next cyclic garbage collection run. - More detailed information can be found in the official Python - documentation for :ref:`the try statement <python:try>`. - """ - __tracebackhide__ = True - - if isinstance(expected_exception, type): - excepted_exceptions: Tuple[Type[E], ...] = (expected_exception,) - else: - excepted_exceptions = expected_exception - for exc in excepted_exceptions: - if not isinstance(exc, type) or not issubclass(exc, BaseException): - msg = "expected exception must be a BaseException type, not {}" # type: ignore[unreachable] - not_a = exc.__name__ if isinstance(exc, type) else type(exc).__name__ - raise TypeError(msg.format(not_a)) - - message = f"DID NOT RAISE {expected_exception}" - - if not args: - match: Optional[Union[str, Pattern[str]]] = kwargs.pop("match", None) - if kwargs: - msg = "Unexpected keyword arguments passed to pytest.raises: " - msg += ", ".join(sorted(kwargs)) - msg += "\nUse context-manager form instead?" - raise TypeError(msg) - return RaisesContext(expected_exception, message, match) - else: - func = args[0] - if not callable(func): - raise TypeError(f"{func!r} object (type: {type(func)}) must be callable") - try: - func(*args[1:], **kwargs) - except expected_exception as e: - # We just caught the exception - there is a traceback. - assert e.__traceback__ is not None - return _pytest._code.ExceptionInfo.from_exc_info( - (type(e), e, e.__traceback__) - ) - fail(message) - - -# This doesn't work with mypy for now. Use fail.Exception instead. -raises.Exception = fail.Exception # type: ignore - - -@final -class RaisesContext(Generic[E]): - def __init__( - self, - expected_exception: Union[Type[E], Tuple[Type[E], ...]], - message: str, - match_expr: Optional[Union[str, Pattern[str]]] = None, - ) -> None: - self.expected_exception = expected_exception - self.message = message - self.match_expr = match_expr - self.excinfo: Optional[_pytest._code.ExceptionInfo[E]] = None - - def __enter__(self) -> _pytest._code.ExceptionInfo[E]: - self.excinfo = _pytest._code.ExceptionInfo.for_later() - return self.excinfo - - def __exit__( - self, - exc_type: Optional[Type[BaseException]], - exc_val: Optional[BaseException], - exc_tb: Optional[TracebackType], - ) -> bool: - __tracebackhide__ = True - if exc_type is None: - fail(self.message) - assert self.excinfo is not None - if not issubclass(exc_type, self.expected_exception): - return False - # Cast to narrow the exception type now that it's verified. - exc_info = cast(Tuple[Type[E], E, TracebackType], (exc_type, exc_val, exc_tb)) - self.excinfo.fill_unfilled(exc_info) - if self.match_expr is not None: - self.excinfo.match(self.match_expr) - return True |