diff options
author | maxim-yurchuk <maxim-yurchuk@yandex-team.com> | 2024-10-09 12:29:46 +0300 |
---|---|---|
committer | maxim-yurchuk <maxim-yurchuk@yandex-team.com> | 2024-10-09 13:14:22 +0300 |
commit | 9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80 (patch) | |
tree | a8fb3181d5947c0d78cf402aa56e686130179049 /contrib/python/numpy/py2/numpy/fft/tests/test_helper.py | |
parent | a44b779cd359f06c3ebbef4ec98c6b38609d9d85 (diff) | |
download | ydb-9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80.tar.gz |
publishFullContrib: true for ydb
<HIDDEN_URL>
commit_hash:c82a80ac4594723cebf2c7387dec9c60217f603e
Diffstat (limited to 'contrib/python/numpy/py2/numpy/fft/tests/test_helper.py')
-rw-r--r-- | contrib/python/numpy/py2/numpy/fft/tests/test_helper.py | 248 |
1 files changed, 248 insertions, 0 deletions
diff --git a/contrib/python/numpy/py2/numpy/fft/tests/test_helper.py b/contrib/python/numpy/py2/numpy/fft/tests/test_helper.py new file mode 100644 index 0000000000..8d315fa020 --- /dev/null +++ b/contrib/python/numpy/py2/numpy/fft/tests/test_helper.py @@ -0,0 +1,248 @@ +"""Test functions for fftpack.helper module + +Copied from fftpack.helper by Pearu Peterson, October 2005 + +""" +from __future__ import division, absolute_import, print_function +import numpy as np +from numpy.testing import assert_array_almost_equal, assert_equal +from numpy import fft, pi +from numpy.fft.helper import _FFTCache + + +class TestFFTShift(object): + + def test_definition(self): + x = [0, 1, 2, 3, 4, -4, -3, -2, -1] + y = [-4, -3, -2, -1, 0, 1, 2, 3, 4] + assert_array_almost_equal(fft.fftshift(x), y) + assert_array_almost_equal(fft.ifftshift(y), x) + x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] + y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] + assert_array_almost_equal(fft.fftshift(x), y) + assert_array_almost_equal(fft.ifftshift(y), x) + + def test_inverse(self): + for n in [1, 4, 9, 100, 211]: + x = np.random.random((n,)) + assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x) + + def test_axes_keyword(self): + freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]] + shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]] + assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted) + assert_array_almost_equal(fft.fftshift(freqs, axes=0), + fft.fftshift(freqs, axes=(0,))) + assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs) + assert_array_almost_equal(fft.ifftshift(shifted, axes=0), + fft.ifftshift(shifted, axes=(0,))) + + assert_array_almost_equal(fft.fftshift(freqs), shifted) + assert_array_almost_equal(fft.ifftshift(shifted), freqs) + + def test_uneven_dims(self): + """ Test 2D input, which has uneven dimension sizes """ + freqs = [ + [0, 1], + [2, 3], + [4, 5] + ] + + # shift in dimension 0 + shift_dim0 = [ + [4, 5], + [0, 1], + [2, 3] + ] + assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0) + assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs) + assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0) + assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs) + + # shift in dimension 1 + shift_dim1 = [ + [1, 0], + [3, 2], + [5, 4] + ] + assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1) + assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs) + + # shift in both dimensions + shift_dim_both = [ + [5, 4], + [1, 0], + [3, 2] + ] + assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both) + assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs) + assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both) + assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs) + + # axes=None (default) shift in all dimensions + assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both) + assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs) + assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both) + assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs) + + def test_equal_to_original(self): + """ Test that the new (>=v1.15) implementation (see #10073) is equal to the original (<=v1.14) """ + from numpy.compat import integer_types + from numpy.core import asarray, concatenate, arange, take + + def original_fftshift(x, axes=None): + """ How fftshift was implemented in v1.14""" + tmp = asarray(x) + ndim = tmp.ndim + if axes is None: + axes = list(range(ndim)) + elif isinstance(axes, integer_types): + axes = (axes,) + y = tmp + for k in axes: + n = tmp.shape[k] + p2 = (n + 1) // 2 + mylist = concatenate((arange(p2, n), arange(p2))) + y = take(y, mylist, k) + return y + + def original_ifftshift(x, axes=None): + """ How ifftshift was implemented in v1.14 """ + tmp = asarray(x) + ndim = tmp.ndim + if axes is None: + axes = list(range(ndim)) + elif isinstance(axes, integer_types): + axes = (axes,) + y = tmp + for k in axes: + n = tmp.shape[k] + p2 = n - (n + 1) // 2 + mylist = concatenate((arange(p2, n), arange(p2))) + y = take(y, mylist, k) + return y + + # create possible 2d array combinations and try all possible keywords + # compare output to original functions + for i in range(16): + for j in range(16): + for axes_keyword in [0, 1, None, (0,), (0, 1)]: + inp = np.random.rand(i, j) + + assert_array_almost_equal(fft.fftshift(inp, axes_keyword), + original_fftshift(inp, axes_keyword)) + + assert_array_almost_equal(fft.ifftshift(inp, axes_keyword), + original_ifftshift(inp, axes_keyword)) + + +class TestFFTFreq(object): + + def test_definition(self): + x = [0, 1, 2, 3, 4, -4, -3, -2, -1] + assert_array_almost_equal(9*fft.fftfreq(9), x) + assert_array_almost_equal(9*pi*fft.fftfreq(9, pi), x) + x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] + assert_array_almost_equal(10*fft.fftfreq(10), x) + assert_array_almost_equal(10*pi*fft.fftfreq(10, pi), x) + + +class TestRFFTFreq(object): + + def test_definition(self): + x = [0, 1, 2, 3, 4] + assert_array_almost_equal(9*fft.rfftfreq(9), x) + assert_array_almost_equal(9*pi*fft.rfftfreq(9, pi), x) + x = [0, 1, 2, 3, 4, 5] + assert_array_almost_equal(10*fft.rfftfreq(10), x) + assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x) + + +class TestIRFFTN(object): + + def test_not_last_axis_success(self): + ar, ai = np.random.random((2, 16, 8, 32)) + a = ar + 1j*ai + + axes = (-2,) + + # Should not raise error + fft.irfftn(a, axes=axes) + + +class TestFFTCache(object): + + def test_basic_behaviour(self): + c = _FFTCache(max_size_in_mb=1, max_item_count=4) + + # Put + c.put_twiddle_factors(1, np.ones(2, dtype=np.float32)) + c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32)) + + # Get + assert_array_almost_equal(c.pop_twiddle_factors(1), + np.ones(2, dtype=np.float32)) + assert_array_almost_equal(c.pop_twiddle_factors(2), + np.zeros(2, dtype=np.float32)) + + # Nothing should be left. + assert_equal(len(c._dict), 0) + + # Now put everything in twice so it can be retrieved once and each will + # still have one item left. + for _ in range(2): + c.put_twiddle_factors(1, np.ones(2, dtype=np.float32)) + c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32)) + assert_array_almost_equal(c.pop_twiddle_factors(1), + np.ones(2, dtype=np.float32)) + assert_array_almost_equal(c.pop_twiddle_factors(2), + np.zeros(2, dtype=np.float32)) + assert_equal(len(c._dict), 2) + + def test_automatic_pruning(self): + # That's around 2600 single precision samples. + c = _FFTCache(max_size_in_mb=0.01, max_item_count=4) + + c.put_twiddle_factors(1, np.ones(200, dtype=np.float32)) + c.put_twiddle_factors(2, np.ones(200, dtype=np.float32)) + assert_equal(list(c._dict.keys()), [1, 2]) + + # This is larger than the limit but should still be kept. + c.put_twiddle_factors(3, np.ones(3000, dtype=np.float32)) + assert_equal(list(c._dict.keys()), [1, 2, 3]) + # Add one more. + c.put_twiddle_factors(4, np.ones(3000, dtype=np.float32)) + # The other three should no longer exist. + assert_equal(list(c._dict.keys()), [4]) + + # Now test the max item count pruning. + c = _FFTCache(max_size_in_mb=0.01, max_item_count=2) + c.put_twiddle_factors(2, np.empty(2)) + c.put_twiddle_factors(1, np.empty(2)) + # Can still be accessed. + assert_equal(list(c._dict.keys()), [2, 1]) + + c.put_twiddle_factors(3, np.empty(2)) + # 1 and 3 can still be accessed - c[2] has been touched least recently + # and is thus evicted. + assert_equal(list(c._dict.keys()), [1, 3]) + + # One last test. We will add a single large item that is slightly + # bigger then the cache size. Some small items can still be added. + c = _FFTCache(max_size_in_mb=0.01, max_item_count=5) + c.put_twiddle_factors(1, np.ones(3000, dtype=np.float32)) + c.put_twiddle_factors(2, np.ones(2, dtype=np.float32)) + c.put_twiddle_factors(3, np.ones(2, dtype=np.float32)) + c.put_twiddle_factors(4, np.ones(2, dtype=np.float32)) + assert_equal(list(c._dict.keys()), [1, 2, 3, 4]) + + # One more big item. This time it is 6 smaller ones but they are + # counted as one big item. + for _ in range(6): + c.put_twiddle_factors(5, np.ones(500, dtype=np.float32)) + # '1' no longer in the cache. Rest still in the cache. + assert_equal(list(c._dict.keys()), [2, 3, 4, 5]) + + # Another big item - should now be the only item in the cache. + c.put_twiddle_factors(6, np.ones(4000, dtype=np.float32)) + assert_equal(list(c._dict.keys()), [6]) |