aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/more-itertools/py2/more_itertools/more.py
diff options
context:
space:
mode:
authornkozlovskiy <nmk@ydb.tech>2023-09-29 12:24:06 +0300
committernkozlovskiy <nmk@ydb.tech>2023-09-29 12:41:34 +0300
commite0e3e1717e3d33762ce61950504f9637a6e669ed (patch)
treebca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/python/more-itertools/py2/more_itertools/more.py
parent38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff)
downloadydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz
add ydb deps
Diffstat (limited to 'contrib/python/more-itertools/py2/more_itertools/more.py')
-rw-r--r--contrib/python/more-itertools/py2/more_itertools/more.py2333
1 files changed, 2333 insertions, 0 deletions
diff --git a/contrib/python/more-itertools/py2/more_itertools/more.py b/contrib/python/more-itertools/py2/more_itertools/more.py
new file mode 100644
index 0000000000..bd32a26130
--- /dev/null
+++ b/contrib/python/more-itertools/py2/more_itertools/more.py
@@ -0,0 +1,2333 @@
+from __future__ import print_function
+
+from collections import Counter, defaultdict, deque
+from functools import partial, wraps
+from heapq import merge
+from itertools import (
+ chain,
+ compress,
+ count,
+ cycle,
+ dropwhile,
+ groupby,
+ islice,
+ repeat,
+ starmap,
+ takewhile,
+ tee
+)
+from operator import itemgetter, lt, gt, sub
+from sys import maxsize, version_info
+try:
+ from collections.abc import Sequence
+except ImportError:
+ from collections import Sequence
+
+from six import binary_type, string_types, text_type
+from six.moves import filter, map, range, zip, zip_longest
+
+from .recipes import consume, flatten, take
+
+__all__ = [
+ 'adjacent',
+ 'always_iterable',
+ 'always_reversible',
+ 'bucket',
+ 'chunked',
+ 'circular_shifts',
+ 'collapse',
+ 'collate',
+ 'consecutive_groups',
+ 'consumer',
+ 'count_cycle',
+ 'difference',
+ 'distinct_permutations',
+ 'distribute',
+ 'divide',
+ 'exactly_n',
+ 'first',
+ 'groupby_transform',
+ 'ilen',
+ 'interleave_longest',
+ 'interleave',
+ 'intersperse',
+ 'islice_extended',
+ 'iterate',
+ 'last',
+ 'locate',
+ 'lstrip',
+ 'make_decorator',
+ 'map_reduce',
+ 'numeric_range',
+ 'one',
+ 'padded',
+ 'peekable',
+ 'replace',
+ 'rlocate',
+ 'rstrip',
+ 'run_length',
+ 'seekable',
+ 'SequenceView',
+ 'side_effect',
+ 'sliced',
+ 'sort_together',
+ 'split_at',
+ 'split_after',
+ 'split_before',
+ 'split_into',
+ 'spy',
+ 'stagger',
+ 'strip',
+ 'substrings',
+ 'unique_to_each',
+ 'unzip',
+ 'windowed',
+ 'with_iter',
+ 'zip_offset',
+]
+
+_marker = object()
+
+
+def chunked(iterable, n):
+ """Break *iterable* into lists of length *n*:
+
+ >>> list(chunked([1, 2, 3, 4, 5, 6], 3))
+ [[1, 2, 3], [4, 5, 6]]
+
+ If the length of *iterable* is not evenly divisible by *n*, the last
+ returned list will be shorter:
+
+ >>> list(chunked([1, 2, 3, 4, 5, 6, 7, 8], 3))
+ [[1, 2, 3], [4, 5, 6], [7, 8]]
+
+ To use a fill-in value instead, see the :func:`grouper` recipe.
+
+ :func:`chunked` is useful for splitting up a computation on a large number
+ of keys into batches, to be pickled and sent off to worker processes. One
+ example is operations on rows in MySQL, which does not implement
+ server-side cursors properly and would otherwise load the entire dataset
+ into RAM on the client.
+
+ """
+ return iter(partial(take, n, iter(iterable)), [])
+
+
+def first(iterable, default=_marker):
+ """Return the first item of *iterable*, or *default* if *iterable* is
+ empty.
+
+ >>> first([0, 1, 2, 3])
+ 0
+ >>> first([], 'some default')
+ 'some default'
+
+ If *default* is not provided and there are no items in the iterable,
+ raise ``ValueError``.
+
+ :func:`first` is useful when you have a generator of expensive-to-retrieve
+ values and want any arbitrary one. It is marginally shorter than
+ ``next(iter(iterable), default)``.
+
+ """
+ try:
+ return next(iter(iterable))
+ except StopIteration:
+ # I'm on the edge about raising ValueError instead of StopIteration. At
+ # the moment, ValueError wins, because the caller could conceivably
+ # want to do something different with flow control when I raise the
+ # exception, and it's weird to explicitly catch StopIteration.
+ if default is _marker:
+ raise ValueError('first() was called on an empty iterable, and no '
+ 'default value was provided.')
+ return default
+
+
+def last(iterable, default=_marker):
+ """Return the last item of *iterable*, or *default* if *iterable* is
+ empty.
+
+ >>> last([0, 1, 2, 3])
+ 3
+ >>> last([], 'some default')
+ 'some default'
+
+ If *default* is not provided and there are no items in the iterable,
+ raise ``ValueError``.
+ """
+ try:
+ try:
+ # Try to access the last item directly
+ return iterable[-1]
+ except (TypeError, AttributeError, KeyError):
+ # If not slice-able, iterate entirely using length-1 deque
+ return deque(iterable, maxlen=1)[0]
+ except IndexError: # If the iterable was empty
+ if default is _marker:
+ raise ValueError('last() was called on an empty iterable, and no '
+ 'default value was provided.')
+ return default
+
+
+class peekable(object):
+ """Wrap an iterator to allow lookahead and prepending elements.
+
+ Call :meth:`peek` on the result to get the value that will be returned
+ by :func:`next`. This won't advance the iterator:
+
+ >>> p = peekable(['a', 'b'])
+ >>> p.peek()
+ 'a'
+ >>> next(p)
+ 'a'
+
+ Pass :meth:`peek` a default value to return that instead of raising
+ ``StopIteration`` when the iterator is exhausted.
+
+ >>> p = peekable([])
+ >>> p.peek('hi')
+ 'hi'
+
+ peekables also offer a :meth:`prepend` method, which "inserts" items
+ at the head of the iterable:
+
+ >>> p = peekable([1, 2, 3])
+ >>> p.prepend(10, 11, 12)
+ >>> next(p)
+ 10
+ >>> p.peek()
+ 11
+ >>> list(p)
+ [11, 12, 1, 2, 3]
+
+ peekables can be indexed. Index 0 is the item that will be returned by
+ :func:`next`, index 1 is the item after that, and so on:
+ The values up to the given index will be cached.
+
+ >>> p = peekable(['a', 'b', 'c', 'd'])
+ >>> p[0]
+ 'a'
+ >>> p[1]
+ 'b'
+ >>> next(p)
+ 'a'
+
+ Negative indexes are supported, but be aware that they will cache the
+ remaining items in the source iterator, which may require significant
+ storage.
+
+ To check whether a peekable is exhausted, check its truth value:
+
+ >>> p = peekable(['a', 'b'])
+ >>> if p: # peekable has items
+ ... list(p)
+ ['a', 'b']
+ >>> if not p: # peekable is exhaused
+ ... list(p)
+ []
+
+ """
+ def __init__(self, iterable):
+ self._it = iter(iterable)
+ self._cache = deque()
+
+ def __iter__(self):
+ return self
+
+ def __bool__(self):
+ try:
+ self.peek()
+ except StopIteration:
+ return False
+ return True
+
+ def __nonzero__(self):
+ # For Python 2 compatibility
+ return self.__bool__()
+
+ def peek(self, default=_marker):
+ """Return the item that will be next returned from ``next()``.
+
+ Return ``default`` if there are no items left. If ``default`` is not
+ provided, raise ``StopIteration``.
+
+ """
+ if not self._cache:
+ try:
+ self._cache.append(next(self._it))
+ except StopIteration:
+ if default is _marker:
+ raise
+ return default
+ return self._cache[0]
+
+ def prepend(self, *items):
+ """Stack up items to be the next ones returned from ``next()`` or
+ ``self.peek()``. The items will be returned in
+ first in, first out order::
+
+ >>> p = peekable([1, 2, 3])
+ >>> p.prepend(10, 11, 12)
+ >>> next(p)
+ 10
+ >>> list(p)
+ [11, 12, 1, 2, 3]
+
+ It is possible, by prepending items, to "resurrect" a peekable that
+ previously raised ``StopIteration``.
+
+ >>> p = peekable([])
+ >>> next(p)
+ Traceback (most recent call last):
+ ...
+ StopIteration
+ >>> p.prepend(1)
+ >>> next(p)
+ 1
+ >>> next(p)
+ Traceback (most recent call last):
+ ...
+ StopIteration
+
+ """
+ self._cache.extendleft(reversed(items))
+
+ def __next__(self):
+ if self._cache:
+ return self._cache.popleft()
+
+ return next(self._it)
+
+ next = __next__ # For Python 2 compatibility
+
+ def _get_slice(self, index):
+ # Normalize the slice's arguments
+ step = 1 if (index.step is None) else index.step
+ if step > 0:
+ start = 0 if (index.start is None) else index.start
+ stop = maxsize if (index.stop is None) else index.stop
+ elif step < 0:
+ start = -1 if (index.start is None) else index.start
+ stop = (-maxsize - 1) if (index.stop is None) else index.stop
+ else:
+ raise ValueError('slice step cannot be zero')
+
+ # If either the start or stop index is negative, we'll need to cache
+ # the rest of the iterable in order to slice from the right side.
+ if (start < 0) or (stop < 0):
+ self._cache.extend(self._it)
+ # Otherwise we'll need to find the rightmost index and cache to that
+ # point.
+ else:
+ n = min(max(start, stop) + 1, maxsize)
+ cache_len = len(self._cache)
+ if n >= cache_len:
+ self._cache.extend(islice(self._it, n - cache_len))
+
+ return list(self._cache)[index]
+
+ def __getitem__(self, index):
+ if isinstance(index, slice):
+ return self._get_slice(index)
+
+ cache_len = len(self._cache)
+ if index < 0:
+ self._cache.extend(self._it)
+ elif index >= cache_len:
+ self._cache.extend(islice(self._it, index + 1 - cache_len))
+
+ return self._cache[index]
+
+
+def _collate(*iterables, **kwargs):
+ """Helper for ``collate()``, called when the user is using the ``reverse``
+ or ``key`` keyword arguments on Python versions below 3.5.
+
+ """
+ key = kwargs.pop('key', lambda a: a)
+ reverse = kwargs.pop('reverse', False)
+
+ min_or_max = partial(max if reverse else min, key=itemgetter(0))
+ peekables = [peekable(it) for it in iterables]
+ peekables = [p for p in peekables if p] # Kill empties.
+ while peekables:
+ _, p = min_or_max((key(p.peek()), p) for p in peekables)
+ yield next(p)
+ peekables = [x for x in peekables if x]
+
+
+def collate(*iterables, **kwargs):
+ """Return a sorted merge of the items from each of several already-sorted
+ *iterables*.
+
+ >>> list(collate('ACDZ', 'AZ', 'JKL'))
+ ['A', 'A', 'C', 'D', 'J', 'K', 'L', 'Z', 'Z']
+
+ Works lazily, keeping only the next value from each iterable in memory. Use
+ :func:`collate` to, for example, perform a n-way mergesort of items that
+ don't fit in memory.
+
+ If a *key* function is specified, the iterables will be sorted according
+ to its result:
+
+ >>> key = lambda s: int(s) # Sort by numeric value, not by string
+ >>> list(collate(['1', '10'], ['2', '11'], key=key))
+ ['1', '2', '10', '11']
+
+
+ If the *iterables* are sorted in descending order, set *reverse* to
+ ``True``:
+
+ >>> list(collate([5, 3, 1], [4, 2, 0], reverse=True))
+ [5, 4, 3, 2, 1, 0]
+
+ If the elements of the passed-in iterables are out of order, you might get
+ unexpected results.
+
+ On Python 2.7, this function delegates to :func:`heapq.merge` if neither
+ of the keyword arguments are specified. On Python 3.5+, this function
+ is an alias for :func:`heapq.merge`.
+
+ """
+ if not kwargs:
+ return merge(*iterables)
+
+ return _collate(*iterables, **kwargs)
+
+
+# If using Python version 3.5 or greater, heapq.merge() will be faster than
+# collate - use that instead.
+if version_info >= (3, 5, 0):
+ _collate_docstring = collate.__doc__
+ collate = partial(merge)
+ collate.__doc__ = _collate_docstring
+
+
+def consumer(func):
+ """Decorator that automatically advances a PEP-342-style "reverse iterator"
+ to its first yield point so you don't have to call ``next()`` on it
+ manually.
+
+ >>> @consumer
+ ... def tally():
+ ... i = 0
+ ... while True:
+ ... print('Thing number %s is %s.' % (i, (yield)))
+ ... i += 1
+ ...
+ >>> t = tally()
+ >>> t.send('red')
+ Thing number 0 is red.
+ >>> t.send('fish')
+ Thing number 1 is fish.
+
+ Without the decorator, you would have to call ``next(t)`` before
+ ``t.send()`` could be used.
+
+ """
+ @wraps(func)
+ def wrapper(*args, **kwargs):
+ gen = func(*args, **kwargs)
+ next(gen)
+ return gen
+ return wrapper
+
+
+def ilen(iterable):
+ """Return the number of items in *iterable*.
+
+ >>> ilen(x for x in range(1000000) if x % 3 == 0)
+ 333334
+
+ This consumes the iterable, so handle with care.
+
+ """
+ # This approach was selected because benchmarks showed it's likely the
+ # fastest of the known implementations at the time of writing.
+ # See GitHub tracker: #236, #230.
+ counter = count()
+ deque(zip(iterable, counter), maxlen=0)
+ return next(counter)
+
+
+def iterate(func, start):
+ """Return ``start``, ``func(start)``, ``func(func(start))``, ...
+
+ >>> from itertools import islice
+ >>> list(islice(iterate(lambda x: 2*x, 1), 10))
+ [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
+
+ """
+ while True:
+ yield start
+ start = func(start)
+
+
+def with_iter(context_manager):
+ """Wrap an iterable in a ``with`` statement, so it closes once exhausted.
+
+ For example, this will close the file when the iterator is exhausted::
+
+ upper_lines = (line.upper() for line in with_iter(open('foo')))
+
+ Any context manager which returns an iterable is a candidate for
+ ``with_iter``.
+
+ """
+ with context_manager as iterable:
+ for item in iterable:
+ yield item
+
+
+def one(iterable, too_short=None, too_long=None):
+ """Return the first item from *iterable*, which is expected to contain only
+ that item. Raise an exception if *iterable* is empty or has more than one
+ item.
+
+ :func:`one` is useful for ensuring that an iterable contains only one item.
+ For example, it can be used to retrieve the result of a database query
+ that is expected to return a single row.
+
+ If *iterable* is empty, ``ValueError`` will be raised. You may specify a
+ different exception with the *too_short* keyword:
+
+ >>> it = []
+ >>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL
+ Traceback (most recent call last):
+ ...
+ ValueError: too many items in iterable (expected 1)'
+ >>> too_short = IndexError('too few items')
+ >>> one(it, too_short=too_short) # doctest: +IGNORE_EXCEPTION_DETAIL
+ Traceback (most recent call last):
+ ...
+ IndexError: too few items
+
+ Similarly, if *iterable* contains more than one item, ``ValueError`` will
+ be raised. You may specify a different exception with the *too_long*
+ keyword:
+
+ >>> it = ['too', 'many']
+ >>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL
+ Traceback (most recent call last):
+ ...
+ ValueError: too many items in iterable (expected 1)'
+ >>> too_long = RuntimeError
+ >>> one(it, too_long=too_long) # doctest: +IGNORE_EXCEPTION_DETAIL
+ Traceback (most recent call last):
+ ...
+ RuntimeError
+
+ Note that :func:`one` attempts to advance *iterable* twice to ensure there
+ is only one item. If there is more than one, both items will be discarded.
+ See :func:`spy` or :func:`peekable` to check iterable contents less
+ destructively.
+
+ """
+ it = iter(iterable)
+
+ try:
+ value = next(it)
+ except StopIteration:
+ raise too_short or ValueError('too few items in iterable (expected 1)')
+
+ try:
+ next(it)
+ except StopIteration:
+ pass
+ else:
+ raise too_long or ValueError('too many items in iterable (expected 1)')
+
+ return value
+
+
+def distinct_permutations(iterable):
+ """Yield successive distinct permutations of the elements in *iterable*.
+
+ >>> sorted(distinct_permutations([1, 0, 1]))
+ [(0, 1, 1), (1, 0, 1), (1, 1, 0)]
+
+ Equivalent to ``set(permutations(iterable))``, except duplicates are not
+ generated and thrown away. For larger input sequences this is much more
+ efficient.
+
+ Duplicate permutations arise when there are duplicated elements in the
+ input iterable. The number of items returned is
+ `n! / (x_1! * x_2! * ... * x_n!)`, where `n` is the total number of
+ items input, and each `x_i` is the count of a distinct item in the input
+ sequence.
+
+ """
+ def perm_unique_helper(item_counts, perm, i):
+ """Internal helper function
+
+ :arg item_counts: Stores the unique items in ``iterable`` and how many
+ times they are repeated
+ :arg perm: The permutation that is being built for output
+ :arg i: The index of the permutation being modified
+
+ The output permutations are built up recursively; the distinct items
+ are placed until their repetitions are exhausted.
+ """
+ if i < 0:
+ yield tuple(perm)
+ else:
+ for item in item_counts:
+ if item_counts[item] <= 0:
+ continue
+ perm[i] = item
+ item_counts[item] -= 1
+ for x in perm_unique_helper(item_counts, perm, i - 1):
+ yield x
+ item_counts[item] += 1
+
+ item_counts = Counter(iterable)
+ length = sum(item_counts.values())
+
+ return perm_unique_helper(item_counts, [None] * length, length - 1)
+
+
+def intersperse(e, iterable, n=1):
+ """Intersperse filler element *e* among the items in *iterable*, leaving
+ *n* items between each filler element.
+
+ >>> list(intersperse('!', [1, 2, 3, 4, 5]))
+ [1, '!', 2, '!', 3, '!', 4, '!', 5]
+
+ >>> list(intersperse(None, [1, 2, 3, 4, 5], n=2))
+ [1, 2, None, 3, 4, None, 5]
+
+ """
+ if n == 0:
+ raise ValueError('n must be > 0')
+ elif n == 1:
+ # interleave(repeat(e), iterable) -> e, x_0, e, e, x_1, e, x_2...
+ # islice(..., 1, None) -> x_0, e, e, x_1, e, x_2...
+ return islice(interleave(repeat(e), iterable), 1, None)
+ else:
+ # interleave(filler, chunks) -> [e], [x_0, x_1], [e], [x_2, x_3]...
+ # islice(..., 1, None) -> [x_0, x_1], [e], [x_2, x_3]...
+ # flatten(...) -> x_0, x_1, e, x_2, x_3...
+ filler = repeat([e])
+ chunks = chunked(iterable, n)
+ return flatten(islice(interleave(filler, chunks), 1, None))
+
+
+def unique_to_each(*iterables):
+ """Return the elements from each of the input iterables that aren't in the
+ other input iterables.
+
+ For example, suppose you have a set of packages, each with a set of
+ dependencies::
+
+ {'pkg_1': {'A', 'B'}, 'pkg_2': {'B', 'C'}, 'pkg_3': {'B', 'D'}}
+
+ If you remove one package, which dependencies can also be removed?
+
+ If ``pkg_1`` is removed, then ``A`` is no longer necessary - it is not
+ associated with ``pkg_2`` or ``pkg_3``. Similarly, ``C`` is only needed for
+ ``pkg_2``, and ``D`` is only needed for ``pkg_3``::
+
+ >>> unique_to_each({'A', 'B'}, {'B', 'C'}, {'B', 'D'})
+ [['A'], ['C'], ['D']]
+
+ If there are duplicates in one input iterable that aren't in the others
+ they will be duplicated in the output. Input order is preserved::
+
+ >>> unique_to_each("mississippi", "missouri")
+ [['p', 'p'], ['o', 'u', 'r']]
+
+ It is assumed that the elements of each iterable are hashable.
+
+ """
+ pool = [list(it) for it in iterables]
+ counts = Counter(chain.from_iterable(map(set, pool)))
+ uniques = {element for element in counts if counts[element] == 1}
+ return [list(filter(uniques.__contains__, it)) for it in pool]
+
+
+def windowed(seq, n, fillvalue=None, step=1):
+ """Return a sliding window of width *n* over the given iterable.
+
+ >>> all_windows = windowed([1, 2, 3, 4, 5], 3)
+ >>> list(all_windows)
+ [(1, 2, 3), (2, 3, 4), (3, 4, 5)]
+
+ When the window is larger than the iterable, *fillvalue* is used in place
+ of missing values::
+
+ >>> list(windowed([1, 2, 3], 4))
+ [(1, 2, 3, None)]
+
+ Each window will advance in increments of *step*:
+
+ >>> list(windowed([1, 2, 3, 4, 5, 6], 3, fillvalue='!', step=2))
+ [(1, 2, 3), (3, 4, 5), (5, 6, '!')]
+
+ """
+ if n < 0:
+ raise ValueError('n must be >= 0')
+ if n == 0:
+ yield tuple()
+ return
+ if step < 1:
+ raise ValueError('step must be >= 1')
+
+ it = iter(seq)
+ window = deque([], n)
+ append = window.append
+
+ # Initial deque fill
+ for _ in range(n):
+ append(next(it, fillvalue))
+ yield tuple(window)
+
+ # Appending new items to the right causes old items to fall off the left
+ i = 0
+ for item in it:
+ append(item)
+ i = (i + 1) % step
+ if i % step == 0:
+ yield tuple(window)
+
+ # If there are items from the iterable in the window, pad with the given
+ # value and emit them.
+ if (i % step) and (step - i < n):
+ for _ in range(step - i):
+ append(fillvalue)
+ yield tuple(window)
+
+
+def substrings(iterable, join_func=None):
+ """Yield all of the substrings of *iterable*.
+
+ >>> [''.join(s) for s in substrings('more')]
+ ['m', 'o', 'r', 'e', 'mo', 'or', 're', 'mor', 'ore', 'more']
+
+ Note that non-string iterables can also be subdivided.
+
+ >>> list(substrings([0, 1, 2]))
+ [(0,), (1,), (2,), (0, 1), (1, 2), (0, 1, 2)]
+
+ """
+ # The length-1 substrings
+ seq = []
+ for item in iter(iterable):
+ seq.append(item)
+ yield (item,)
+ seq = tuple(seq)
+ item_count = len(seq)
+
+ # And the rest
+ for n in range(2, item_count + 1):
+ for i in range(item_count - n + 1):
+ yield seq[i:i + n]
+
+
+class bucket(object):
+ """Wrap *iterable* and return an object that buckets it iterable into
+ child iterables based on a *key* function.
+
+ >>> iterable = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2', 'b3']
+ >>> s = bucket(iterable, key=lambda x: x[0])
+ >>> a_iterable = s['a']
+ >>> next(a_iterable)
+ 'a1'
+ >>> next(a_iterable)
+ 'a2'
+ >>> list(s['b'])
+ ['b1', 'b2', 'b3']
+
+ The original iterable will be advanced and its items will be cached until
+ they are used by the child iterables. This may require significant storage.
+
+ By default, attempting to select a bucket to which no items belong will
+ exhaust the iterable and cache all values.
+ If you specify a *validator* function, selected buckets will instead be
+ checked against it.
+
+ >>> from itertools import count
+ >>> it = count(1, 2) # Infinite sequence of odd numbers
+ >>> key = lambda x: x % 10 # Bucket by last digit
+ >>> validator = lambda x: x in {1, 3, 5, 7, 9} # Odd digits only
+ >>> s = bucket(it, key=key, validator=validator)
+ >>> 2 in s
+ False
+ >>> list(s[2])
+ []
+
+ """
+ def __init__(self, iterable, key, validator=None):
+ self._it = iter(iterable)
+ self._key = key
+ self._cache = defaultdict(deque)
+ self._validator = validator or (lambda x: True)
+
+ def __contains__(self, value):
+ if not self._validator(value):
+ return False
+
+ try:
+ item = next(self[value])
+ except StopIteration:
+ return False
+ else:
+ self._cache[value].appendleft(item)
+
+ return True
+
+ def _get_values(self, value):
+ """
+ Helper to yield items from the parent iterator that match *value*.
+ Items that don't match are stored in the local cache as they
+ are encountered.
+ """
+ while True:
+ # If we've cached some items that match the target value, emit
+ # the first one and evict it from the cache.
+ if self._cache[value]:
+ yield self._cache[value].popleft()
+ # Otherwise we need to advance the parent iterator to search for
+ # a matching item, caching the rest.
+ else:
+ while True:
+ try:
+ item = next(self._it)
+ except StopIteration:
+ return
+ item_value = self._key(item)
+ if item_value == value:
+ yield item
+ break
+ elif self._validator(item_value):
+ self._cache[item_value].append(item)
+
+ def __getitem__(self, value):
+ if not self._validator(value):
+ return iter(())
+
+ return self._get_values(value)
+
+
+def spy(iterable, n=1):
+ """Return a 2-tuple with a list containing the first *n* elements of
+ *iterable*, and an iterator with the same items as *iterable*.
+ This allows you to "look ahead" at the items in the iterable without
+ advancing it.
+
+ There is one item in the list by default:
+
+ >>> iterable = 'abcdefg'
+ >>> head, iterable = spy(iterable)
+ >>> head
+ ['a']
+ >>> list(iterable)
+ ['a', 'b', 'c', 'd', 'e', 'f', 'g']
+
+ You may use unpacking to retrieve items instead of lists:
+
+ >>> (head,), iterable = spy('abcdefg')
+ >>> head
+ 'a'
+ >>> (first, second), iterable = spy('abcdefg', 2)
+ >>> first
+ 'a'
+ >>> second
+ 'b'
+
+ The number of items requested can be larger than the number of items in
+ the iterable:
+
+ >>> iterable = [1, 2, 3, 4, 5]
+ >>> head, iterable = spy(iterable, 10)
+ >>> head
+ [1, 2, 3, 4, 5]
+ >>> list(iterable)
+ [1, 2, 3, 4, 5]
+
+ """
+ it = iter(iterable)
+ head = take(n, it)
+
+ return head, chain(head, it)
+
+
+def interleave(*iterables):
+ """Return a new iterable yielding from each iterable in turn,
+ until the shortest is exhausted.
+
+ >>> list(interleave([1, 2, 3], [4, 5], [6, 7, 8]))
+ [1, 4, 6, 2, 5, 7]
+
+ For a version that doesn't terminate after the shortest iterable is
+ exhausted, see :func:`interleave_longest`.
+
+ """
+ return chain.from_iterable(zip(*iterables))
+
+
+def interleave_longest(*iterables):
+ """Return a new iterable yielding from each iterable in turn,
+ skipping any that are exhausted.
+
+ >>> list(interleave_longest([1, 2, 3], [4, 5], [6, 7, 8]))
+ [1, 4, 6, 2, 5, 7, 3, 8]
+
+ This function produces the same output as :func:`roundrobin`, but may
+ perform better for some inputs (in particular when the number of iterables
+ is large).
+
+ """
+ i = chain.from_iterable(zip_longest(*iterables, fillvalue=_marker))
+ return (x for x in i if x is not _marker)
+
+
+def collapse(iterable, base_type=None, levels=None):
+ """Flatten an iterable with multiple levels of nesting (e.g., a list of
+ lists of tuples) into non-iterable types.
+
+ >>> iterable = [(1, 2), ([3, 4], [[5], [6]])]
+ >>> list(collapse(iterable))
+ [1, 2, 3, 4, 5, 6]
+
+ String types are not considered iterable and will not be collapsed.
+ To avoid collapsing other types, specify *base_type*:
+
+ >>> iterable = ['ab', ('cd', 'ef'), ['gh', 'ij']]
+ >>> list(collapse(iterable, base_type=tuple))
+ ['ab', ('cd', 'ef'), 'gh', 'ij']
+
+ Specify *levels* to stop flattening after a certain level:
+
+ >>> iterable = [('a', ['b']), ('c', ['d'])]
+ >>> list(collapse(iterable)) # Fully flattened
+ ['a', 'b', 'c', 'd']
+ >>> list(collapse(iterable, levels=1)) # Only one level flattened
+ ['a', ['b'], 'c', ['d']]
+
+ """
+ def walk(node, level):
+ if (
+ ((levels is not None) and (level > levels)) or
+ isinstance(node, string_types) or
+ ((base_type is not None) and isinstance(node, base_type))
+ ):
+ yield node
+ return
+
+ try:
+ tree = iter(node)
+ except TypeError:
+ yield node
+ return
+ else:
+ for child in tree:
+ for x in walk(child, level + 1):
+ yield x
+
+ for x in walk(iterable, 0):
+ yield x
+
+
+def side_effect(func, iterable, chunk_size=None, before=None, after=None):
+ """Invoke *func* on each item in *iterable* (or on each *chunk_size* group
+ of items) before yielding the item.
+
+ `func` must be a function that takes a single argument. Its return value
+ will be discarded.
+
+ *before* and *after* are optional functions that take no arguments. They
+ will be executed before iteration starts and after it ends, respectively.
+
+ `side_effect` can be used for logging, updating progress bars, or anything
+ that is not functionally "pure."
+
+ Emitting a status message:
+
+ >>> from more_itertools import consume
+ >>> func = lambda item: print('Received {}'.format(item))
+ >>> consume(side_effect(func, range(2)))
+ Received 0
+ Received 1
+
+ Operating on chunks of items:
+
+ >>> pair_sums = []
+ >>> func = lambda chunk: pair_sums.append(sum(chunk))
+ >>> list(side_effect(func, [0, 1, 2, 3, 4, 5], 2))
+ [0, 1, 2, 3, 4, 5]
+ >>> list(pair_sums)
+ [1, 5, 9]
+
+ Writing to a file-like object:
+
+ >>> from io import StringIO
+ >>> from more_itertools import consume
+ >>> f = StringIO()
+ >>> func = lambda x: print(x, file=f)
+ >>> before = lambda: print(u'HEADER', file=f)
+ >>> after = f.close
+ >>> it = [u'a', u'b', u'c']
+ >>> consume(side_effect(func, it, before=before, after=after))
+ >>> f.closed
+ True
+
+ """
+ try:
+ if before is not None:
+ before()
+
+ if chunk_size is None:
+ for item in iterable:
+ func(item)
+ yield item
+ else:
+ for chunk in chunked(iterable, chunk_size):
+ func(chunk)
+ for item in chunk:
+ yield item
+ finally:
+ if after is not None:
+ after()
+
+
+def sliced(seq, n):
+ """Yield slices of length *n* from the sequence *seq*.
+
+ >>> list(sliced((1, 2, 3, 4, 5, 6), 3))
+ [(1, 2, 3), (4, 5, 6)]
+
+ If the length of the sequence is not divisible by the requested slice
+ length, the last slice will be shorter.
+
+ >>> list(sliced((1, 2, 3, 4, 5, 6, 7, 8), 3))
+ [(1, 2, 3), (4, 5, 6), (7, 8)]
+
+ This function will only work for iterables that support slicing.
+ For non-sliceable iterables, see :func:`chunked`.
+
+ """
+ return takewhile(bool, (seq[i: i + n] for i in count(0, n)))
+
+
+def split_at(iterable, pred):
+ """Yield lists of items from *iterable*, where each list is delimited by
+ an item where callable *pred* returns ``True``. The lists do not include
+ the delimiting items.
+
+ >>> list(split_at('abcdcba', lambda x: x == 'b'))
+ [['a'], ['c', 'd', 'c'], ['a']]
+
+ >>> list(split_at(range(10), lambda n: n % 2 == 1))
+ [[0], [2], [4], [6], [8], []]
+ """
+ buf = []
+ for item in iterable:
+ if pred(item):
+ yield buf
+ buf = []
+ else:
+ buf.append(item)
+ yield buf
+
+
+def split_before(iterable, pred):
+ """Yield lists of items from *iterable*, where each list starts with an
+ item where callable *pred* returns ``True``:
+
+ >>> list(split_before('OneTwo', lambda s: s.isupper()))
+ [['O', 'n', 'e'], ['T', 'w', 'o']]
+
+ >>> list(split_before(range(10), lambda n: n % 3 == 0))
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
+
+ """
+ buf = []
+ for item in iterable:
+ if pred(item) and buf:
+ yield buf
+ buf = []
+ buf.append(item)
+ yield buf
+
+
+def split_after(iterable, pred):
+ """Yield lists of items from *iterable*, where each list ends with an
+ item where callable *pred* returns ``True``:
+
+ >>> list(split_after('one1two2', lambda s: s.isdigit()))
+ [['o', 'n', 'e', '1'], ['t', 'w', 'o', '2']]
+
+ >>> list(split_after(range(10), lambda n: n % 3 == 0))
+ [[0], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
+
+ """
+ buf = []
+ for item in iterable:
+ buf.append(item)
+ if pred(item) and buf:
+ yield buf
+ buf = []
+ if buf:
+ yield buf
+
+
+def split_into(iterable, sizes):
+ """Yield a list of sequential items from *iterable* of length 'n' for each
+ integer 'n' in *sizes*.
+
+ >>> list(split_into([1,2,3,4,5,6], [1,2,3]))
+ [[1], [2, 3], [4, 5, 6]]
+
+ If the sum of *sizes* is smaller than the length of *iterable*, then the
+ remaining items of *iterable* will not be returned.
+
+ >>> list(split_into([1,2,3,4,5,6], [2,3]))
+ [[1, 2], [3, 4, 5]]
+
+ If the sum of *sizes* is larger than the length of *iterable*, fewer items
+ will be returned in the iteration that overruns *iterable* and further
+ lists will be empty:
+
+ >>> list(split_into([1,2,3,4], [1,2,3,4]))
+ [[1], [2, 3], [4], []]
+
+ When a ``None`` object is encountered in *sizes*, the returned list will
+ contain items up to the end of *iterable* the same way that itertools.slice
+ does:
+
+ >>> list(split_into([1,2,3,4,5,6,7,8,9,0], [2,3,None]))
+ [[1, 2], [3, 4, 5], [6, 7, 8, 9, 0]]
+
+ :func:`split_into` can be useful for grouping a series of items where the
+ sizes of the groups are not uniform. An example would be where in a row
+ from a table, multiple columns represent elements of the same feature
+ (e.g. a point represented by x,y,z) but, the format is not the same for
+ all columns.
+ """
+ # convert the iterable argument into an iterator so its contents can
+ # be consumed by islice in case it is a generator
+ it = iter(iterable)
+
+ for size in sizes:
+ if size is None:
+ yield list(it)
+ return
+ else:
+ yield list(islice(it, size))
+
+
+def padded(iterable, fillvalue=None, n=None, next_multiple=False):
+ """Yield the elements from *iterable*, followed by *fillvalue*, such that
+ at least *n* items are emitted.
+
+ >>> list(padded([1, 2, 3], '?', 5))
+ [1, 2, 3, '?', '?']
+
+ If *next_multiple* is ``True``, *fillvalue* will be emitted until the
+ number of items emitted is a multiple of *n*::
+
+ >>> list(padded([1, 2, 3, 4], n=3, next_multiple=True))
+ [1, 2, 3, 4, None, None]
+
+ If *n* is ``None``, *fillvalue* will be emitted indefinitely.
+
+ """
+ it = iter(iterable)
+ if n is None:
+ for item in chain(it, repeat(fillvalue)):
+ yield item
+ elif n < 1:
+ raise ValueError('n must be at least 1')
+ else:
+ item_count = 0
+ for item in it:
+ yield item
+ item_count += 1
+
+ remaining = (n - item_count) % n if next_multiple else n - item_count
+ for _ in range(remaining):
+ yield fillvalue
+
+
+def distribute(n, iterable):
+ """Distribute the items from *iterable* among *n* smaller iterables.
+
+ >>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6])
+ >>> list(group_1)
+ [1, 3, 5]
+ >>> list(group_2)
+ [2, 4, 6]
+
+ If the length of *iterable* is not evenly divisible by *n*, then the
+ length of the returned iterables will not be identical:
+
+ >>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7])
+ >>> [list(c) for c in children]
+ [[1, 4, 7], [2, 5], [3, 6]]
+
+ If the length of *iterable* is smaller than *n*, then the last returned
+ iterables will be empty:
+
+ >>> children = distribute(5, [1, 2, 3])
+ >>> [list(c) for c in children]
+ [[1], [2], [3], [], []]
+
+ This function uses :func:`itertools.tee` and may require significant
+ storage. If you need the order items in the smaller iterables to match the
+ original iterable, see :func:`divide`.
+
+ """
+ if n < 1:
+ raise ValueError('n must be at least 1')
+
+ children = tee(iterable, n)
+ return [islice(it, index, None, n) for index, it in enumerate(children)]
+
+
+def stagger(iterable, offsets=(-1, 0, 1), longest=False, fillvalue=None):
+ """Yield tuples whose elements are offset from *iterable*.
+ The amount by which the `i`-th item in each tuple is offset is given by
+ the `i`-th item in *offsets*.
+
+ >>> list(stagger([0, 1, 2, 3]))
+ [(None, 0, 1), (0, 1, 2), (1, 2, 3)]
+ >>> list(stagger(range(8), offsets=(0, 2, 4)))
+ [(0, 2, 4), (1, 3, 5), (2, 4, 6), (3, 5, 7)]
+
+ By default, the sequence will end when the final element of a tuple is the
+ last item in the iterable. To continue until the first element of a tuple
+ is the last item in the iterable, set *longest* to ``True``::
+
+ >>> list(stagger([0, 1, 2, 3], longest=True))
+ [(None, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, None), (3, None, None)]
+
+ By default, ``None`` will be used to replace offsets beyond the end of the
+ sequence. Specify *fillvalue* to use some other value.
+
+ """
+ children = tee(iterable, len(offsets))
+
+ return zip_offset(
+ *children, offsets=offsets, longest=longest, fillvalue=fillvalue
+ )
+
+
+def zip_offset(*iterables, **kwargs):
+ """``zip`` the input *iterables* together, but offset the `i`-th iterable
+ by the `i`-th item in *offsets*.
+
+ >>> list(zip_offset('0123', 'abcdef', offsets=(0, 1)))
+ [('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e')]
+
+ This can be used as a lightweight alternative to SciPy or pandas to analyze
+ data sets in which some series have a lead or lag relationship.
+
+ By default, the sequence will end when the shortest iterable is exhausted.
+ To continue until the longest iterable is exhausted, set *longest* to
+ ``True``.
+
+ >>> list(zip_offset('0123', 'abcdef', offsets=(0, 1), longest=True))
+ [('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e'), (None, 'f')]
+
+ By default, ``None`` will be used to replace offsets beyond the end of the
+ sequence. Specify *fillvalue* to use some other value.
+
+ """
+ offsets = kwargs['offsets']
+ longest = kwargs.get('longest', False)
+ fillvalue = kwargs.get('fillvalue', None)
+
+ if len(iterables) != len(offsets):
+ raise ValueError("Number of iterables and offsets didn't match")
+
+ staggered = []
+ for it, n in zip(iterables, offsets):
+ if n < 0:
+ staggered.append(chain(repeat(fillvalue, -n), it))
+ elif n > 0:
+ staggered.append(islice(it, n, None))
+ else:
+ staggered.append(it)
+
+ if longest:
+ return zip_longest(*staggered, fillvalue=fillvalue)
+
+ return zip(*staggered)
+
+
+def sort_together(iterables, key_list=(0,), reverse=False):
+ """Return the input iterables sorted together, with *key_list* as the
+ priority for sorting. All iterables are trimmed to the length of the
+ shortest one.
+
+ This can be used like the sorting function in a spreadsheet. If each
+ iterable represents a column of data, the key list determines which
+ columns are used for sorting.
+
+ By default, all iterables are sorted using the ``0``-th iterable::
+
+ >>> iterables = [(4, 3, 2, 1), ('a', 'b', 'c', 'd')]
+ >>> sort_together(iterables)
+ [(1, 2, 3, 4), ('d', 'c', 'b', 'a')]
+
+ Set a different key list to sort according to another iterable.
+ Specifying multiple keys dictates how ties are broken::
+
+ >>> iterables = [(3, 1, 2), (0, 1, 0), ('c', 'b', 'a')]
+ >>> sort_together(iterables, key_list=(1, 2))
+ [(2, 3, 1), (0, 0, 1), ('a', 'c', 'b')]
+
+ Set *reverse* to ``True`` to sort in descending order.
+
+ >>> sort_together([(1, 2, 3), ('c', 'b', 'a')], reverse=True)
+ [(3, 2, 1), ('a', 'b', 'c')]
+
+ """
+ return list(zip(*sorted(zip(*iterables),
+ key=itemgetter(*key_list),
+ reverse=reverse)))
+
+
+def unzip(iterable):
+ """The inverse of :func:`zip`, this function disaggregates the elements
+ of the zipped *iterable*.
+
+ The ``i``-th iterable contains the ``i``-th element from each element
+ of the zipped iterable. The first element is used to to determine the
+ length of the remaining elements.
+
+ >>> iterable = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
+ >>> letters, numbers = unzip(iterable)
+ >>> list(letters)
+ ['a', 'b', 'c', 'd']
+ >>> list(numbers)
+ [1, 2, 3, 4]
+
+ This is similar to using ``zip(*iterable)``, but it avoids reading
+ *iterable* into memory. Note, however, that this function uses
+ :func:`itertools.tee` and thus may require significant storage.
+
+ """
+ head, iterable = spy(iter(iterable))
+ if not head:
+ # empty iterable, e.g. zip([], [], [])
+ return ()
+ # spy returns a one-length iterable as head
+ head = head[0]
+ iterables = tee(iterable, len(head))
+
+ def itemgetter(i):
+ def getter(obj):
+ try:
+ return obj[i]
+ except IndexError:
+ # basically if we have an iterable like
+ # iter([(1, 2, 3), (4, 5), (6,)])
+ # the second unzipped iterable would fail at the third tuple
+ # since it would try to access tup[1]
+ # same with the third unzipped iterable and the second tuple
+ # to support these "improperly zipped" iterables,
+ # we create a custom itemgetter
+ # which just stops the unzipped iterables
+ # at first length mismatch
+ raise StopIteration
+ return getter
+
+ return tuple(map(itemgetter(i), it) for i, it in enumerate(iterables))
+
+
+def divide(n, iterable):
+ """Divide the elements from *iterable* into *n* parts, maintaining
+ order.
+
+ >>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6])
+ >>> list(group_1)
+ [1, 2, 3]
+ >>> list(group_2)
+ [4, 5, 6]
+
+ If the length of *iterable* is not evenly divisible by *n*, then the
+ length of the returned iterables will not be identical:
+
+ >>> children = divide(3, [1, 2, 3, 4, 5, 6, 7])
+ >>> [list(c) for c in children]
+ [[1, 2, 3], [4, 5], [6, 7]]
+
+ If the length of the iterable is smaller than n, then the last returned
+ iterables will be empty:
+
+ >>> children = divide(5, [1, 2, 3])
+ >>> [list(c) for c in children]
+ [[1], [2], [3], [], []]
+
+ This function will exhaust the iterable before returning and may require
+ significant storage. If order is not important, see :func:`distribute`,
+ which does not first pull the iterable into memory.
+
+ """
+ if n < 1:
+ raise ValueError('n must be at least 1')
+
+ seq = tuple(iterable)
+ q, r = divmod(len(seq), n)
+
+ ret = []
+ for i in range(n):
+ start = (i * q) + (i if i < r else r)
+ stop = ((i + 1) * q) + (i + 1 if i + 1 < r else r)
+ ret.append(iter(seq[start:stop]))
+
+ return ret
+
+
+def always_iterable(obj, base_type=(text_type, binary_type)):
+ """If *obj* is iterable, return an iterator over its items::
+
+ >>> obj = (1, 2, 3)
+ >>> list(always_iterable(obj))
+ [1, 2, 3]
+
+ If *obj* is not iterable, return a one-item iterable containing *obj*::
+
+ >>> obj = 1
+ >>> list(always_iterable(obj))
+ [1]
+
+ If *obj* is ``None``, return an empty iterable:
+
+ >>> obj = None
+ >>> list(always_iterable(None))
+ []
+
+ By default, binary and text strings are not considered iterable::
+
+ >>> obj = 'foo'
+ >>> list(always_iterable(obj))
+ ['foo']
+
+ If *base_type* is set, objects for which ``isinstance(obj, base_type)``
+ returns ``True`` won't be considered iterable.
+
+ >>> obj = {'a': 1}
+ >>> list(always_iterable(obj)) # Iterate over the dict's keys
+ ['a']
+ >>> list(always_iterable(obj, base_type=dict)) # Treat dicts as a unit
+ [{'a': 1}]
+
+ Set *base_type* to ``None`` to avoid any special handling and treat objects
+ Python considers iterable as iterable:
+
+ >>> obj = 'foo'
+ >>> list(always_iterable(obj, base_type=None))
+ ['f', 'o', 'o']
+ """
+ if obj is None:
+ return iter(())
+
+ if (base_type is not None) and isinstance(obj, base_type):
+ return iter((obj,))
+
+ try:
+ return iter(obj)
+ except TypeError:
+ return iter((obj,))
+
+
+def adjacent(predicate, iterable, distance=1):
+ """Return an iterable over `(bool, item)` tuples where the `item` is
+ drawn from *iterable* and the `bool` indicates whether
+ that item satisfies the *predicate* or is adjacent to an item that does.
+
+ For example, to find whether items are adjacent to a ``3``::
+
+ >>> list(adjacent(lambda x: x == 3, range(6)))
+ [(False, 0), (False, 1), (True, 2), (True, 3), (True, 4), (False, 5)]
+
+ Set *distance* to change what counts as adjacent. For example, to find
+ whether items are two places away from a ``3``:
+
+ >>> list(adjacent(lambda x: x == 3, range(6), distance=2))
+ [(False, 0), (True, 1), (True, 2), (True, 3), (True, 4), (True, 5)]
+
+ This is useful for contextualizing the results of a search function.
+ For example, a code comparison tool might want to identify lines that
+ have changed, but also surrounding lines to give the viewer of the diff
+ context.
+
+ The predicate function will only be called once for each item in the
+ iterable.
+
+ See also :func:`groupby_transform`, which can be used with this function
+ to group ranges of items with the same `bool` value.
+
+ """
+ # Allow distance=0 mainly for testing that it reproduces results with map()
+ if distance < 0:
+ raise ValueError('distance must be at least 0')
+
+ i1, i2 = tee(iterable)
+ padding = [False] * distance
+ selected = chain(padding, map(predicate, i1), padding)
+ adjacent_to_selected = map(any, windowed(selected, 2 * distance + 1))
+ return zip(adjacent_to_selected, i2)
+
+
+def groupby_transform(iterable, keyfunc=None, valuefunc=None):
+ """An extension of :func:`itertools.groupby` that transforms the values of
+ *iterable* after grouping them.
+ *keyfunc* is a function used to compute a grouping key for each item.
+ *valuefunc* is a function for transforming the items after grouping.
+
+ >>> iterable = 'AaaABbBCcA'
+ >>> keyfunc = lambda x: x.upper()
+ >>> valuefunc = lambda x: x.lower()
+ >>> grouper = groupby_transform(iterable, keyfunc, valuefunc)
+ >>> [(k, ''.join(g)) for k, g in grouper]
+ [('A', 'aaaa'), ('B', 'bbb'), ('C', 'cc'), ('A', 'a')]
+
+ *keyfunc* and *valuefunc* default to identity functions if they are not
+ specified.
+
+ :func:`groupby_transform` is useful when grouping elements of an iterable
+ using a separate iterable as the key. To do this, :func:`zip` the iterables
+ and pass a *keyfunc* that extracts the first element and a *valuefunc*
+ that extracts the second element::
+
+ >>> from operator import itemgetter
+ >>> keys = [0, 0, 1, 1, 1, 2, 2, 2, 3]
+ >>> values = 'abcdefghi'
+ >>> iterable = zip(keys, values)
+ >>> grouper = groupby_transform(iterable, itemgetter(0), itemgetter(1))
+ >>> [(k, ''.join(g)) for k, g in grouper]
+ [(0, 'ab'), (1, 'cde'), (2, 'fgh'), (3, 'i')]
+
+ Note that the order of items in the iterable is significant.
+ Only adjacent items are grouped together, so if you don't want any
+ duplicate groups, you should sort the iterable by the key function.
+
+ """
+ valuefunc = (lambda x: x) if valuefunc is None else valuefunc
+ return ((k, map(valuefunc, g)) for k, g in groupby(iterable, keyfunc))
+
+
+def numeric_range(*args):
+ """An extension of the built-in ``range()`` function whose arguments can
+ be any orderable numeric type.
+
+ With only *stop* specified, *start* defaults to ``0`` and *step*
+ defaults to ``1``. The output items will match the type of *stop*:
+
+ >>> list(numeric_range(3.5))
+ [0.0, 1.0, 2.0, 3.0]
+
+ With only *start* and *stop* specified, *step* defaults to ``1``. The
+ output items will match the type of *start*:
+
+ >>> from decimal import Decimal
+ >>> start = Decimal('2.1')
+ >>> stop = Decimal('5.1')
+ >>> list(numeric_range(start, stop))
+ [Decimal('2.1'), Decimal('3.1'), Decimal('4.1')]
+
+ With *start*, *stop*, and *step* specified the output items will match
+ the type of ``start + step``:
+
+ >>> from fractions import Fraction
+ >>> start = Fraction(1, 2) # Start at 1/2
+ >>> stop = Fraction(5, 2) # End at 5/2
+ >>> step = Fraction(1, 2) # Count by 1/2
+ >>> list(numeric_range(start, stop, step))
+ [Fraction(1, 2), Fraction(1, 1), Fraction(3, 2), Fraction(2, 1)]
+
+ If *step* is zero, ``ValueError`` is raised. Negative steps are supported:
+
+ >>> list(numeric_range(3, -1, -1.0))
+ [3.0, 2.0, 1.0, 0.0]
+
+ Be aware of the limitations of floating point numbers; the representation
+ of the yielded numbers may be surprising.
+
+ """
+ argc = len(args)
+ if argc == 1:
+ stop, = args
+ start = type(stop)(0)
+ step = 1
+ elif argc == 2:
+ start, stop = args
+ step = 1
+ elif argc == 3:
+ start, stop, step = args
+ else:
+ err_msg = 'numeric_range takes at most 3 arguments, got {}'
+ raise TypeError(err_msg.format(argc))
+
+ values = (start + (step * n) for n in count())
+ if step > 0:
+ return takewhile(partial(gt, stop), values)
+ elif step < 0:
+ return takewhile(partial(lt, stop), values)
+ else:
+ raise ValueError('numeric_range arg 3 must not be zero')
+
+
+def count_cycle(iterable, n=None):
+ """Cycle through the items from *iterable* up to *n* times, yielding
+ the number of completed cycles along with each item. If *n* is omitted the
+ process repeats indefinitely.
+
+ >>> list(count_cycle('AB', 3))
+ [(0, 'A'), (0, 'B'), (1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')]
+
+ """
+ iterable = tuple(iterable)
+ if not iterable:
+ return iter(())
+ counter = count() if n is None else range(n)
+ return ((i, item) for i in counter for item in iterable)
+
+
+def locate(iterable, pred=bool, window_size=None):
+ """Yield the index of each item in *iterable* for which *pred* returns
+ ``True``.
+
+ *pred* defaults to :func:`bool`, which will select truthy items:
+
+ >>> list(locate([0, 1, 1, 0, 1, 0, 0]))
+ [1, 2, 4]
+
+ Set *pred* to a custom function to, e.g., find the indexes for a particular
+ item.
+
+ >>> list(locate(['a', 'b', 'c', 'b'], lambda x: x == 'b'))
+ [1, 3]
+
+ If *window_size* is given, then the *pred* function will be called with
+ that many items. This enables searching for sub-sequences:
+
+ >>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
+ >>> pred = lambda *args: args == (1, 2, 3)
+ >>> list(locate(iterable, pred=pred, window_size=3))
+ [1, 5, 9]
+
+ Use with :func:`seekable` to find indexes and then retrieve the associated
+ items:
+
+ >>> from itertools import count
+ >>> from more_itertools import seekable
+ >>> source = (3 * n + 1 if (n % 2) else n // 2 for n in count())
+ >>> it = seekable(source)
+ >>> pred = lambda x: x > 100
+ >>> indexes = locate(it, pred=pred)
+ >>> i = next(indexes)
+ >>> it.seek(i)
+ >>> next(it)
+ 106
+
+ """
+ if window_size is None:
+ return compress(count(), map(pred, iterable))
+
+ if window_size < 1:
+ raise ValueError('window size must be at least 1')
+
+ it = windowed(iterable, window_size, fillvalue=_marker)
+ return compress(count(), starmap(pred, it))
+
+
+def lstrip(iterable, pred):
+ """Yield the items from *iterable*, but strip any from the beginning
+ for which *pred* returns ``True``.
+
+ For example, to remove a set of items from the start of an iterable:
+
+ >>> iterable = (None, False, None, 1, 2, None, 3, False, None)
+ >>> pred = lambda x: x in {None, False, ''}
+ >>> list(lstrip(iterable, pred))
+ [1, 2, None, 3, False, None]
+
+ This function is analogous to to :func:`str.lstrip`, and is essentially
+ an wrapper for :func:`itertools.dropwhile`.
+
+ """
+ return dropwhile(pred, iterable)
+
+
+def rstrip(iterable, pred):
+ """Yield the items from *iterable*, but strip any from the end
+ for which *pred* returns ``True``.
+
+ For example, to remove a set of items from the end of an iterable:
+
+ >>> iterable = (None, False, None, 1, 2, None, 3, False, None)
+ >>> pred = lambda x: x in {None, False, ''}
+ >>> list(rstrip(iterable, pred))
+ [None, False, None, 1, 2, None, 3]
+
+ This function is analogous to :func:`str.rstrip`.
+
+ """
+ cache = []
+ cache_append = cache.append
+ for x in iterable:
+ if pred(x):
+ cache_append(x)
+ else:
+ for y in cache:
+ yield y
+ del cache[:]
+ yield x
+
+
+def strip(iterable, pred):
+ """Yield the items from *iterable*, but strip any from the
+ beginning and end for which *pred* returns ``True``.
+
+ For example, to remove a set of items from both ends of an iterable:
+
+ >>> iterable = (None, False, None, 1, 2, None, 3, False, None)
+ >>> pred = lambda x: x in {None, False, ''}
+ >>> list(strip(iterable, pred))
+ [1, 2, None, 3]
+
+ This function is analogous to :func:`str.strip`.
+
+ """
+ return rstrip(lstrip(iterable, pred), pred)
+
+
+def islice_extended(iterable, *args):
+ """An extension of :func:`itertools.islice` that supports negative values
+ for *stop*, *start*, and *step*.
+
+ >>> iterable = iter('abcdefgh')
+ >>> list(islice_extended(iterable, -4, -1))
+ ['e', 'f', 'g']
+
+ Slices with negative values require some caching of *iterable*, but this
+ function takes care to minimize the amount of memory required.
+
+ For example, you can use a negative step with an infinite iterator:
+
+ >>> from itertools import count
+ >>> list(islice_extended(count(), 110, 99, -2))
+ [110, 108, 106, 104, 102, 100]
+
+ """
+ s = slice(*args)
+ start = s.start
+ stop = s.stop
+ if s.step == 0:
+ raise ValueError('step argument must be a non-zero integer or None.')
+ step = s.step or 1
+
+ it = iter(iterable)
+
+ if step > 0:
+ start = 0 if (start is None) else start
+
+ if (start < 0):
+ # Consume all but the last -start items
+ cache = deque(enumerate(it, 1), maxlen=-start)
+ len_iter = cache[-1][0] if cache else 0
+
+ # Adjust start to be positive
+ i = max(len_iter + start, 0)
+
+ # Adjust stop to be positive
+ if stop is None:
+ j = len_iter
+ elif stop >= 0:
+ j = min(stop, len_iter)
+ else:
+ j = max(len_iter + stop, 0)
+
+ # Slice the cache
+ n = j - i
+ if n <= 0:
+ return
+
+ for index, item in islice(cache, 0, n, step):
+ yield item
+ elif (stop is not None) and (stop < 0):
+ # Advance to the start position
+ next(islice(it, start, start), None)
+
+ # When stop is negative, we have to carry -stop items while
+ # iterating
+ cache = deque(islice(it, -stop), maxlen=-stop)
+
+ for index, item in enumerate(it):
+ cached_item = cache.popleft()
+ if index % step == 0:
+ yield cached_item
+ cache.append(item)
+ else:
+ # When both start and stop are positive we have the normal case
+ for item in islice(it, start, stop, step):
+ yield item
+ else:
+ start = -1 if (start is None) else start
+
+ if (stop is not None) and (stop < 0):
+ # Consume all but the last items
+ n = -stop - 1
+ cache = deque(enumerate(it, 1), maxlen=n)
+ len_iter = cache[-1][0] if cache else 0
+
+ # If start and stop are both negative they are comparable and
+ # we can just slice. Otherwise we can adjust start to be negative
+ # and then slice.
+ if start < 0:
+ i, j = start, stop
+ else:
+ i, j = min(start - len_iter, -1), None
+
+ for index, item in list(cache)[i:j:step]:
+ yield item
+ else:
+ # Advance to the stop position
+ if stop is not None:
+ m = stop + 1
+ next(islice(it, m, m), None)
+
+ # stop is positive, so if start is negative they are not comparable
+ # and we need the rest of the items.
+ if start < 0:
+ i = start
+ n = None
+ # stop is None and start is positive, so we just need items up to
+ # the start index.
+ elif stop is None:
+ i = None
+ n = start + 1
+ # Both stop and start are positive, so they are comparable.
+ else:
+ i = None
+ n = start - stop
+ if n <= 0:
+ return
+
+ cache = list(islice(it, n))
+
+ for item in cache[i::step]:
+ yield item
+
+
+def always_reversible(iterable):
+ """An extension of :func:`reversed` that supports all iterables, not
+ just those which implement the ``Reversible`` or ``Sequence`` protocols.
+
+ >>> print(*always_reversible(x for x in range(3)))
+ 2 1 0
+
+ If the iterable is already reversible, this function returns the
+ result of :func:`reversed()`. If the iterable is not reversible,
+ this function will cache the remaining items in the iterable and
+ yield them in reverse order, which may require significant storage.
+ """
+ try:
+ return reversed(iterable)
+ except TypeError:
+ return reversed(list(iterable))
+
+
+def consecutive_groups(iterable, ordering=lambda x: x):
+ """Yield groups of consecutive items using :func:`itertools.groupby`.
+ The *ordering* function determines whether two items are adjacent by
+ returning their position.
+
+ By default, the ordering function is the identity function. This is
+ suitable for finding runs of numbers:
+
+ >>> iterable = [1, 10, 11, 12, 20, 30, 31, 32, 33, 40]
+ >>> for group in consecutive_groups(iterable):
+ ... print(list(group))
+ [1]
+ [10, 11, 12]
+ [20]
+ [30, 31, 32, 33]
+ [40]
+
+ For finding runs of adjacent letters, try using the :meth:`index` method
+ of a string of letters:
+
+ >>> from string import ascii_lowercase
+ >>> iterable = 'abcdfgilmnop'
+ >>> ordering = ascii_lowercase.index
+ >>> for group in consecutive_groups(iterable, ordering):
+ ... print(list(group))
+ ['a', 'b', 'c', 'd']
+ ['f', 'g']
+ ['i']
+ ['l', 'm', 'n', 'o', 'p']
+
+ """
+ for k, g in groupby(
+ enumerate(iterable), key=lambda x: x[0] - ordering(x[1])
+ ):
+ yield map(itemgetter(1), g)
+
+
+def difference(iterable, func=sub):
+ """By default, compute the first difference of *iterable* using
+ :func:`operator.sub`.
+
+ >>> iterable = [0, 1, 3, 6, 10]
+ >>> list(difference(iterable))
+ [0, 1, 2, 3, 4]
+
+ This is the opposite of :func:`accumulate`'s default behavior:
+
+ >>> from more_itertools import accumulate
+ >>> iterable = [0, 1, 2, 3, 4]
+ >>> list(accumulate(iterable))
+ [0, 1, 3, 6, 10]
+ >>> list(difference(accumulate(iterable)))
+ [0, 1, 2, 3, 4]
+
+ By default *func* is :func:`operator.sub`, but other functions can be
+ specified. They will be applied as follows::
+
+ A, B, C, D, ... --> A, func(B, A), func(C, B), func(D, C), ...
+
+ For example, to do progressive division:
+
+ >>> iterable = [1, 2, 6, 24, 120] # Factorial sequence
+ >>> func = lambda x, y: x // y
+ >>> list(difference(iterable, func))
+ [1, 2, 3, 4, 5]
+
+ """
+ a, b = tee(iterable)
+ try:
+ item = next(b)
+ except StopIteration:
+ return iter([])
+ return chain([item], map(lambda x: func(x[1], x[0]), zip(a, b)))
+
+
+class SequenceView(Sequence):
+ """Return a read-only view of the sequence object *target*.
+
+ :class:`SequenceView` objects are analogous to Python's built-in
+ "dictionary view" types. They provide a dynamic view of a sequence's items,
+ meaning that when the sequence updates, so does the view.
+
+ >>> seq = ['0', '1', '2']
+ >>> view = SequenceView(seq)
+ >>> view
+ SequenceView(['0', '1', '2'])
+ >>> seq.append('3')
+ >>> view
+ SequenceView(['0', '1', '2', '3'])
+
+ Sequence views support indexing, slicing, and length queries. They act
+ like the underlying sequence, except they don't allow assignment:
+
+ >>> view[1]
+ '1'
+ >>> view[1:-1]
+ ['1', '2']
+ >>> len(view)
+ 4
+
+ Sequence views are useful as an alternative to copying, as they don't
+ require (much) extra storage.
+
+ """
+ def __init__(self, target):
+ if not isinstance(target, Sequence):
+ raise TypeError
+ self._target = target
+
+ def __getitem__(self, index):
+ return self._target[index]
+
+ def __len__(self):
+ return len(self._target)
+
+ def __repr__(self):
+ return '{}({})'.format(self.__class__.__name__, repr(self._target))
+
+
+class seekable(object):
+ """Wrap an iterator to allow for seeking backward and forward. This
+ progressively caches the items in the source iterable so they can be
+ re-visited.
+
+ Call :meth:`seek` with an index to seek to that position in the source
+ iterable.
+
+ To "reset" an iterator, seek to ``0``:
+
+ >>> from itertools import count
+ >>> it = seekable((str(n) for n in count()))
+ >>> next(it), next(it), next(it)
+ ('0', '1', '2')
+ >>> it.seek(0)
+ >>> next(it), next(it), next(it)
+ ('0', '1', '2')
+ >>> next(it)
+ '3'
+
+ You can also seek forward:
+
+ >>> it = seekable((str(n) for n in range(20)))
+ >>> it.seek(10)
+ >>> next(it)
+ '10'
+ >>> it.seek(20) # Seeking past the end of the source isn't a problem
+ >>> list(it)
+ []
+ >>> it.seek(0) # Resetting works even after hitting the end
+ >>> next(it), next(it), next(it)
+ ('0', '1', '2')
+
+ The cache grows as the source iterable progresses, so beware of wrapping
+ very large or infinite iterables.
+
+ You may view the contents of the cache with the :meth:`elements` method.
+ That returns a :class:`SequenceView`, a view that updates automatically:
+
+ >>> it = seekable((str(n) for n in range(10)))
+ >>> next(it), next(it), next(it)
+ ('0', '1', '2')
+ >>> elements = it.elements()
+ >>> elements
+ SequenceView(['0', '1', '2'])
+ >>> next(it)
+ '3'
+ >>> elements
+ SequenceView(['0', '1', '2', '3'])
+
+ """
+
+ def __init__(self, iterable):
+ self._source = iter(iterable)
+ self._cache = []
+ self._index = None
+
+ def __iter__(self):
+ return self
+
+ def __next__(self):
+ if self._index is not None:
+ try:
+ item = self._cache[self._index]
+ except IndexError:
+ self._index = None
+ else:
+ self._index += 1
+ return item
+
+ item = next(self._source)
+ self._cache.append(item)
+ return item
+
+ next = __next__
+
+ def elements(self):
+ return SequenceView(self._cache)
+
+ def seek(self, index):
+ self._index = index
+ remainder = index - len(self._cache)
+ if remainder > 0:
+ consume(self, remainder)
+
+
+class run_length(object):
+ """
+ :func:`run_length.encode` compresses an iterable with run-length encoding.
+ It yields groups of repeated items with the count of how many times they
+ were repeated:
+
+ >>> uncompressed = 'abbcccdddd'
+ >>> list(run_length.encode(uncompressed))
+ [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
+
+ :func:`run_length.decode` decompresses an iterable that was previously
+ compressed with run-length encoding. It yields the items of the
+ decompressed iterable:
+
+ >>> compressed = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
+ >>> list(run_length.decode(compressed))
+ ['a', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'd', 'd']
+
+ """
+
+ @staticmethod
+ def encode(iterable):
+ return ((k, ilen(g)) for k, g in groupby(iterable))
+
+ @staticmethod
+ def decode(iterable):
+ return chain.from_iterable(repeat(k, n) for k, n in iterable)
+
+
+def exactly_n(iterable, n, predicate=bool):
+ """Return ``True`` if exactly ``n`` items in the iterable are ``True``
+ according to the *predicate* function.
+
+ >>> exactly_n([True, True, False], 2)
+ True
+ >>> exactly_n([True, True, False], 1)
+ False
+ >>> exactly_n([0, 1, 2, 3, 4, 5], 3, lambda x: x < 3)
+ True
+
+ The iterable will be advanced until ``n + 1`` truthy items are encountered,
+ so avoid calling it on infinite iterables.
+
+ """
+ return len(take(n + 1, filter(predicate, iterable))) == n
+
+
+def circular_shifts(iterable):
+ """Return a list of circular shifts of *iterable*.
+
+ >>> circular_shifts(range(4))
+ [(0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1), (3, 0, 1, 2)]
+ """
+ lst = list(iterable)
+ return take(len(lst), windowed(cycle(lst), len(lst)))
+
+
+def make_decorator(wrapping_func, result_index=0):
+ """Return a decorator version of *wrapping_func*, which is a function that
+ modifies an iterable. *result_index* is the position in that function's
+ signature where the iterable goes.
+
+ This lets you use itertools on the "production end," i.e. at function
+ definition. This can augment what the function returns without changing the
+ function's code.
+
+ For example, to produce a decorator version of :func:`chunked`:
+
+ >>> from more_itertools import chunked
+ >>> chunker = make_decorator(chunked, result_index=0)
+ >>> @chunker(3)
+ ... def iter_range(n):
+ ... return iter(range(n))
+ ...
+ >>> list(iter_range(9))
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
+
+ To only allow truthy items to be returned:
+
+ >>> truth_serum = make_decorator(filter, result_index=1)
+ >>> @truth_serum(bool)
+ ... def boolean_test():
+ ... return [0, 1, '', ' ', False, True]
+ ...
+ >>> list(boolean_test())
+ [1, ' ', True]
+
+ The :func:`peekable` and :func:`seekable` wrappers make for practical
+ decorators:
+
+ >>> from more_itertools import peekable
+ >>> peekable_function = make_decorator(peekable)
+ >>> @peekable_function()
+ ... def str_range(*args):
+ ... return (str(x) for x in range(*args))
+ ...
+ >>> it = str_range(1, 20, 2)
+ >>> next(it), next(it), next(it)
+ ('1', '3', '5')
+ >>> it.peek()
+ '7'
+ >>> next(it)
+ '7'
+
+ """
+ # See https://sites.google.com/site/bbayles/index/decorator_factory for
+ # notes on how this works.
+ def decorator(*wrapping_args, **wrapping_kwargs):
+ def outer_wrapper(f):
+ def inner_wrapper(*args, **kwargs):
+ result = f(*args, **kwargs)
+ wrapping_args_ = list(wrapping_args)
+ wrapping_args_.insert(result_index, result)
+ return wrapping_func(*wrapping_args_, **wrapping_kwargs)
+
+ return inner_wrapper
+
+ return outer_wrapper
+
+ return decorator
+
+
+def map_reduce(iterable, keyfunc, valuefunc=None, reducefunc=None):
+ """Return a dictionary that maps the items in *iterable* to categories
+ defined by *keyfunc*, transforms them with *valuefunc*, and
+ then summarizes them by category with *reducefunc*.
+
+ *valuefunc* defaults to the identity function if it is unspecified.
+ If *reducefunc* is unspecified, no summarization takes place:
+
+ >>> keyfunc = lambda x: x.upper()
+ >>> result = map_reduce('abbccc', keyfunc)
+ >>> sorted(result.items())
+ [('A', ['a']), ('B', ['b', 'b']), ('C', ['c', 'c', 'c'])]
+
+ Specifying *valuefunc* transforms the categorized items:
+
+ >>> keyfunc = lambda x: x.upper()
+ >>> valuefunc = lambda x: 1
+ >>> result = map_reduce('abbccc', keyfunc, valuefunc)
+ >>> sorted(result.items())
+ [('A', [1]), ('B', [1, 1]), ('C', [1, 1, 1])]
+
+ Specifying *reducefunc* summarizes the categorized items:
+
+ >>> keyfunc = lambda x: x.upper()
+ >>> valuefunc = lambda x: 1
+ >>> reducefunc = sum
+ >>> result = map_reduce('abbccc', keyfunc, valuefunc, reducefunc)
+ >>> sorted(result.items())
+ [('A', 1), ('B', 2), ('C', 3)]
+
+ You may want to filter the input iterable before applying the map/reduce
+ procedure:
+
+ >>> all_items = range(30)
+ >>> items = [x for x in all_items if 10 <= x <= 20] # Filter
+ >>> keyfunc = lambda x: x % 2 # Evens map to 0; odds to 1
+ >>> categories = map_reduce(items, keyfunc=keyfunc)
+ >>> sorted(categories.items())
+ [(0, [10, 12, 14, 16, 18, 20]), (1, [11, 13, 15, 17, 19])]
+ >>> summaries = map_reduce(items, keyfunc=keyfunc, reducefunc=sum)
+ >>> sorted(summaries.items())
+ [(0, 90), (1, 75)]
+
+ Note that all items in the iterable are gathered into a list before the
+ summarization step, which may require significant storage.
+
+ The returned object is a :obj:`collections.defaultdict` with the
+ ``default_factory`` set to ``None``, such that it behaves like a normal
+ dictionary.
+
+ """
+ valuefunc = (lambda x: x) if (valuefunc is None) else valuefunc
+
+ ret = defaultdict(list)
+ for item in iterable:
+ key = keyfunc(item)
+ value = valuefunc(item)
+ ret[key].append(value)
+
+ if reducefunc is not None:
+ for key, value_list in ret.items():
+ ret[key] = reducefunc(value_list)
+
+ ret.default_factory = None
+ return ret
+
+
+def rlocate(iterable, pred=bool, window_size=None):
+ """Yield the index of each item in *iterable* for which *pred* returns
+ ``True``, starting from the right and moving left.
+
+ *pred* defaults to :func:`bool`, which will select truthy items:
+
+ >>> list(rlocate([0, 1, 1, 0, 1, 0, 0])) # Truthy at 1, 2, and 4
+ [4, 2, 1]
+
+ Set *pred* to a custom function to, e.g., find the indexes for a particular
+ item:
+
+ >>> iterable = iter('abcb')
+ >>> pred = lambda x: x == 'b'
+ >>> list(rlocate(iterable, pred))
+ [3, 1]
+
+ If *window_size* is given, then the *pred* function will be called with
+ that many items. This enables searching for sub-sequences:
+
+ >>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
+ >>> pred = lambda *args: args == (1, 2, 3)
+ >>> list(rlocate(iterable, pred=pred, window_size=3))
+ [9, 5, 1]
+
+ Beware, this function won't return anything for infinite iterables.
+ If *iterable* is reversible, ``rlocate`` will reverse it and search from
+ the right. Otherwise, it will search from the left and return the results
+ in reverse order.
+
+ See :func:`locate` to for other example applications.
+
+ """
+ if window_size is None:
+ try:
+ len_iter = len(iterable)
+ return (
+ len_iter - i - 1 for i in locate(reversed(iterable), pred)
+ )
+ except TypeError:
+ pass
+
+ return reversed(list(locate(iterable, pred, window_size)))
+
+
+def replace(iterable, pred, substitutes, count=None, window_size=1):
+ """Yield the items from *iterable*, replacing the items for which *pred*
+ returns ``True`` with the items from the iterable *substitutes*.
+
+ >>> iterable = [1, 1, 0, 1, 1, 0, 1, 1]
+ >>> pred = lambda x: x == 0
+ >>> substitutes = (2, 3)
+ >>> list(replace(iterable, pred, substitutes))
+ [1, 1, 2, 3, 1, 1, 2, 3, 1, 1]
+
+ If *count* is given, the number of replacements will be limited:
+
+ >>> iterable = [1, 1, 0, 1, 1, 0, 1, 1, 0]
+ >>> pred = lambda x: x == 0
+ >>> substitutes = [None]
+ >>> list(replace(iterable, pred, substitutes, count=2))
+ [1, 1, None, 1, 1, None, 1, 1, 0]
+
+ Use *window_size* to control the number of items passed as arguments to
+ *pred*. This allows for locating and replacing subsequences.
+
+ >>> iterable = [0, 1, 2, 5, 0, 1, 2, 5]
+ >>> window_size = 3
+ >>> pred = lambda *args: args == (0, 1, 2) # 3 items passed to pred
+ >>> substitutes = [3, 4] # Splice in these items
+ >>> list(replace(iterable, pred, substitutes, window_size=window_size))
+ [3, 4, 5, 3, 4, 5]
+
+ """
+ if window_size < 1:
+ raise ValueError('window_size must be at least 1')
+
+ # Save the substitutes iterable, since it's used more than once
+ substitutes = tuple(substitutes)
+
+ # Add padding such that the number of windows matches the length of the
+ # iterable
+ it = chain(iterable, [_marker] * (window_size - 1))
+ windows = windowed(it, window_size)
+
+ n = 0
+ for w in windows:
+ # If the current window matches our predicate (and we haven't hit
+ # our maximum number of replacements), splice in the substitutes
+ # and then consume the following windows that overlap with this one.
+ # For example, if the iterable is (0, 1, 2, 3, 4...)
+ # and the window size is 2, we have (0, 1), (1, 2), (2, 3)...
+ # If the predicate matches on (0, 1), we need to zap (0, 1) and (1, 2)
+ if pred(*w):
+ if (count is None) or (n < count):
+ n += 1
+ for s in substitutes:
+ yield s
+ consume(windows, window_size - 1)
+ continue
+
+ # If there was no match (or we've reached the replacement limit),
+ # yield the first item from the window.
+ if w and (w[0] is not _marker):
+ yield w[0]