aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib/py3/src/tri
diff options
context:
space:
mode:
authorshumkovnd <shumkovnd@yandex-team.com>2023-11-10 14:39:34 +0300
committershumkovnd <shumkovnd@yandex-team.com>2023-11-10 16:42:24 +0300
commit77eb2d3fdcec5c978c64e025ced2764c57c00285 (patch)
treec51edb0748ca8d4a08d7c7323312c27ba1a8b79a /contrib/python/matplotlib/py3/src/tri
parentdd6d20cadb65582270ac23f4b3b14ae189704b9d (diff)
downloadydb-77eb2d3fdcec5c978c64e025ced2764c57c00285.tar.gz
KIKIMR-19287: add task_stats_drawing script
Diffstat (limited to 'contrib/python/matplotlib/py3/src/tri')
-rw-r--r--contrib/python/matplotlib/py3/src/tri/_tri.cpp2074
-rw-r--r--contrib/python/matplotlib/py3/src/tri/_tri.h799
-rw-r--r--contrib/python/matplotlib/py3/src/tri/_tri_wrapper.cpp58
3 files changed, 2931 insertions, 0 deletions
diff --git a/contrib/python/matplotlib/py3/src/tri/_tri.cpp b/contrib/python/matplotlib/py3/src/tri/_tri.cpp
new file mode 100644
index 00000000000..2674a3140b3
--- /dev/null
+++ b/contrib/python/matplotlib/py3/src/tri/_tri.cpp
@@ -0,0 +1,2074 @@
+/* This file contains liberal use of asserts to assist code development and
+ * debugging. Standard matplotlib builds disable asserts so they cause no
+ * performance reduction. To enable the asserts, you need to undefine the
+ * NDEBUG macro, which is achieved by adding the following
+ * undef_macros=['NDEBUG']
+ * to the appropriate make_extension call in setupext.py, and then rebuilding.
+ */
+#include "../mplutils.h"
+#include "_tri.h"
+
+#include <algorithm>
+#include <random>
+#include <set>
+
+
+TriEdge::TriEdge()
+ : tri(-1), edge(-1)
+{}
+
+TriEdge::TriEdge(int tri_, int edge_)
+ : tri(tri_), edge(edge_)
+{}
+
+bool TriEdge::operator<(const TriEdge& other) const
+{
+ if (tri != other.tri)
+ return tri < other.tri;
+ else
+ return edge < other.edge;
+}
+
+bool TriEdge::operator==(const TriEdge& other) const
+{
+ return tri == other.tri && edge == other.edge;
+}
+
+bool TriEdge::operator!=(const TriEdge& other) const
+{
+ return !operator==(other);
+}
+
+std::ostream& operator<<(std::ostream& os, const TriEdge& tri_edge)
+{
+ return os << tri_edge.tri << ' ' << tri_edge.edge;
+}
+
+
+
+XY::XY()
+{}
+
+XY::XY(const double& x_, const double& y_)
+ : x(x_), y(y_)
+{}
+
+double XY::angle() const
+{
+ return atan2(y, x);
+}
+
+double XY::cross_z(const XY& other) const
+{
+ return x*other.y - y*other.x;
+}
+
+bool XY::is_right_of(const XY& other) const
+{
+ if (x == other.x)
+ return y > other.y;
+ else
+ return x > other.x;
+}
+
+bool XY::operator==(const XY& other) const
+{
+ return x == other.x && y == other.y;
+}
+
+bool XY::operator!=(const XY& other) const
+{
+ return x != other.x || y != other.y;
+}
+
+XY XY::operator*(const double& multiplier) const
+{
+ return XY(x*multiplier, y*multiplier);
+}
+
+const XY& XY::operator+=(const XY& other)
+{
+ x += other.x;
+ y += other.y;
+ return *this;
+}
+
+const XY& XY::operator-=(const XY& other)
+{
+ x -= other.x;
+ y -= other.y;
+ return *this;
+}
+
+XY XY::operator+(const XY& other) const
+{
+ return XY(x + other.x, y + other.y);
+}
+
+XY XY::operator-(const XY& other) const
+{
+ return XY(x - other.x, y - other.y);
+}
+
+std::ostream& operator<<(std::ostream& os, const XY& xy)
+{
+ return os << '(' << xy.x << ' ' << xy.y << ')';
+}
+
+
+
+XYZ::XYZ(const double& x_, const double& y_, const double& z_)
+ : x(x_), y(y_), z(z_)
+{}
+
+XYZ XYZ::cross(const XYZ& other) const
+{
+ return XYZ(y*other.z - z*other.y,
+ z*other.x - x*other.z,
+ x*other.y - y*other.x);
+}
+
+double XYZ::dot(const XYZ& other) const
+{
+ return x*other.x + y*other.y + z*other.z;
+}
+
+XYZ XYZ::operator-(const XYZ& other) const
+{
+ return XYZ(x - other.x, y - other.y, z - other.z);
+}
+
+std::ostream& operator<<(std::ostream& os, const XYZ& xyz)
+{
+ return os << '(' << xyz.x << ' ' << xyz.y << ' ' << xyz.z << ')';
+}
+
+
+
+BoundingBox::BoundingBox()
+ : empty(true), lower(0.0, 0.0), upper(0.0, 0.0)
+{}
+
+void BoundingBox::add(const XY& point)
+{
+ if (empty) {
+ empty = false;
+ lower = upper = point;
+ } else {
+ if (point.x < lower.x) lower.x = point.x;
+ else if (point.x > upper.x) upper.x = point.x;
+
+ if (point.y < lower.y) lower.y = point.y;
+ else if (point.y > upper.y) upper.y = point.y;
+ }
+}
+
+void BoundingBox::expand(const XY& delta)
+{
+ if (!empty) {
+ lower -= delta;
+ upper += delta;
+ }
+}
+
+
+
+ContourLine::ContourLine()
+ : std::vector<XY>()
+{}
+
+void ContourLine::push_back(const XY& point)
+{
+ if (empty() || point != back())
+ std::vector<XY>::push_back(point);
+}
+
+void ContourLine::write() const
+{
+ std::cout << "ContourLine of " << size() << " points:";
+ for (const_iterator it = begin(); it != end(); ++it)
+ std::cout << ' ' << *it;
+ std::cout << std::endl;
+}
+
+
+
+void write_contour(const Contour& contour)
+{
+ std::cout << "Contour of " << contour.size() << " lines." << std::endl;
+ for (Contour::const_iterator it = contour.begin(); it != contour.end(); ++it)
+ it->write();
+}
+
+
+
+Triangulation::Triangulation(const CoordinateArray& x,
+ const CoordinateArray& y,
+ const TriangleArray& triangles,
+ const MaskArray& mask,
+ const EdgeArray& edges,
+ const NeighborArray& neighbors,
+ bool correct_triangle_orientations)
+ : _x(x),
+ _y(y),
+ _triangles(triangles),
+ _mask(mask),
+ _edges(edges),
+ _neighbors(neighbors)
+{
+ if (_x.ndim() != 1 || _y.ndim() != 1 || _x.shape(0) != _y.shape(0))
+ throw std::invalid_argument("x and y must be 1D arrays of the same length");
+
+ if (_triangles.ndim() != 2 || _triangles.shape(1) != 3)
+ throw std::invalid_argument("triangles must be a 2D array of shape (?,3)");
+
+ // Optional mask.
+ if (_mask.size() > 0 &&
+ (_mask.ndim() != 1 || _mask.shape(0) != _triangles.shape(0)))
+ throw std::invalid_argument(
+ "mask must be a 1D array with the same length as the triangles array");
+
+ // Optional edges.
+ if (_edges.size() > 0 &&
+ (_edges.ndim() != 2 || _edges.shape(1) != 2))
+ throw std::invalid_argument("edges must be a 2D array with shape (?,2)");
+
+ // Optional neighbors.
+ if (_neighbors.size() > 0 &&
+ (_neighbors.ndim() != 2 || _neighbors.shape() != _triangles.shape()))
+ throw std::invalid_argument(
+ "neighbors must be a 2D array with the same shape as the triangles array");
+
+ if (correct_triangle_orientations)
+ correct_triangles();
+}
+
+void Triangulation::calculate_boundaries()
+{
+ get_neighbors(); // Ensure _neighbors has been created.
+
+ // Create set of all boundary TriEdges, which are those which do not
+ // have a neighbor triangle.
+ typedef std::set<TriEdge> BoundaryEdges;
+ BoundaryEdges boundary_edges;
+ for (int tri = 0; tri < get_ntri(); ++tri) {
+ if (!is_masked(tri)) {
+ for (int edge = 0; edge < 3; ++edge) {
+ if (get_neighbor(tri, edge) == -1) {
+ boundary_edges.insert(TriEdge(tri, edge));
+ }
+ }
+ }
+ }
+
+ // Take any boundary edge and follow the boundary until return to start
+ // point, removing edges from boundary_edges as they are used. At the same
+ // time, initialise the _tri_edge_to_boundary_map.
+ while (!boundary_edges.empty()) {
+ // Start of new boundary.
+ BoundaryEdges::iterator it = boundary_edges.begin();
+ int tri = it->tri;
+ int edge = it->edge;
+ _boundaries.push_back(Boundary());
+ Boundary& boundary = _boundaries.back();
+
+ while (true) {
+ boundary.push_back(TriEdge(tri, edge));
+ boundary_edges.erase(it);
+ _tri_edge_to_boundary_map[TriEdge(tri, edge)] =
+ BoundaryEdge(_boundaries.size()-1, boundary.size()-1);
+
+ // Move to next edge of current triangle.
+ edge = (edge+1) % 3;
+
+ // Find start point index of boundary edge.
+ int point = get_triangle_point(tri, edge);
+
+ // Find next TriEdge by traversing neighbors until find one
+ // without a neighbor.
+ while (get_neighbor(tri, edge) != -1) {
+ tri = get_neighbor(tri, edge);
+ edge = get_edge_in_triangle(tri, point);
+ }
+
+ if (TriEdge(tri,edge) == boundary.front())
+ break; // Reached beginning of this boundary, so finished it.
+ else
+ it = boundary_edges.find(TriEdge(tri, edge));
+ }
+ }
+}
+
+void Triangulation::calculate_edges()
+{
+ assert(!has_edges() && "Expected empty edges array");
+
+ // Create set of all edges, storing them with start point index less than
+ // end point index.
+ typedef std::set<Edge> EdgeSet;
+ EdgeSet edge_set;
+ for (int tri = 0; tri < get_ntri(); ++tri) {
+ if (!is_masked(tri)) {
+ for (int edge = 0; edge < 3; edge++) {
+ int start = get_triangle_point(tri, edge);
+ int end = get_triangle_point(tri, (edge+1)%3);
+ edge_set.insert(start > end ? Edge(start,end) : Edge(end,start));
+ }
+ }
+ }
+
+ // Convert to python _edges array.
+ py::ssize_t dims[2] = {static_cast<py::ssize_t>(edge_set.size()), 2};
+ _edges = EdgeArray(dims);
+ auto edges = _edges.mutable_data();
+
+ int i = 0;
+ for (EdgeSet::const_iterator it = edge_set.begin(); it != edge_set.end(); ++it) {
+ edges[i++] = it->start;
+ edges[i++] = it->end;
+ }
+}
+
+void Triangulation::calculate_neighbors()
+{
+ assert(!has_neighbors() && "Expected empty neighbors array");
+
+ // Create _neighbors array with shape (ntri,3) and initialise all to -1.
+ py::ssize_t dims[2] = {get_ntri(), 3};
+ _neighbors = NeighborArray(dims);
+ auto* neighbors = _neighbors.mutable_data();
+
+ int tri, edge;
+ std::fill(neighbors, neighbors+3*get_ntri(), -1);
+
+ // For each triangle edge (start to end point), find corresponding neighbor
+ // edge from end to start point. Do this by traversing all edges and
+ // storing them in a map from edge to TriEdge. If corresponding neighbor
+ // edge is already in the map, don't need to store new edge as neighbor
+ // already found.
+ typedef std::map<Edge, TriEdge> EdgeToTriEdgeMap;
+ EdgeToTriEdgeMap edge_to_tri_edge_map;
+ for (tri = 0; tri < get_ntri(); ++tri) {
+ if (!is_masked(tri)) {
+ for (edge = 0; edge < 3; ++edge) {
+ int start = get_triangle_point(tri, edge);
+ int end = get_triangle_point(tri, (edge+1)%3);
+ EdgeToTriEdgeMap::iterator it =
+ edge_to_tri_edge_map.find(Edge(end,start));
+ if (it == edge_to_tri_edge_map.end()) {
+ // No neighbor edge exists in the edge_to_tri_edge_map, so
+ // add this edge to it.
+ edge_to_tri_edge_map[Edge(start,end)] = TriEdge(tri,edge);
+ } else {
+ // Neighbor edge found, set the two elements of _neighbors
+ // and remove edge from edge_to_tri_edge_map.
+ neighbors[3*tri + edge] = it->second.tri;
+ neighbors[3*it->second.tri + it->second.edge] = tri;
+ edge_to_tri_edge_map.erase(it);
+ }
+ }
+ }
+ }
+
+ // Note that remaining edges in the edge_to_tri_edge_map correspond to
+ // boundary edges, but the boundaries are calculated separately elsewhere.
+}
+
+Triangulation::TwoCoordinateArray Triangulation::calculate_plane_coefficients(
+ const CoordinateArray& z)
+{
+ if (z.ndim() != 1 || z.shape(0) != _x.shape(0))
+ throw std::invalid_argument(
+ "z must be a 1D array with the same length as the triangulation x and y arrays");
+
+ int dims[2] = {get_ntri(), 3};
+ Triangulation::TwoCoordinateArray planes_array(dims);
+ auto planes = planes_array.mutable_unchecked<2>();
+ auto triangles = _triangles.unchecked<2>();
+ auto x = _x.unchecked<1>();
+ auto y = _y.unchecked<1>();
+ auto z_ptr = z.unchecked<1>();
+
+ int point;
+ for (int tri = 0; tri < get_ntri(); ++tri) {
+ if (is_masked(tri)) {
+ planes(tri, 0) = 0.0;
+ planes(tri, 1) = 0.0;
+ planes(tri, 2) = 0.0;
+ }
+ else {
+ // Equation of plane for all points r on plane is r.normal = p
+ // where normal is vector normal to the plane, and p is a
+ // constant. Rewrite as
+ // r_x*normal_x + r_y*normal_y + r_z*normal_z = p
+ // and rearrange to give
+ // r_z = (-normal_x/normal_z)*r_x + (-normal_y/normal_z)*r_y +
+ // p/normal_z
+ point = triangles(tri, 0);
+ XYZ point0(x(point), y(point), z_ptr(point));
+ point = triangles(tri, 1);
+ XYZ side01 = XYZ(x(point), y(point), z_ptr(point)) - point0;
+ point = triangles(tri, 2);
+ XYZ side02 = XYZ(x(point), y(point), z_ptr(point)) - point0;
+
+ XYZ normal = side01.cross(side02);
+
+ if (normal.z == 0.0) {
+ // Normal is in x-y plane which means triangle consists of
+ // colinear points. To avoid dividing by zero, we use the
+ // Moore-Penrose pseudo-inverse.
+ double sum2 = (side01.x*side01.x + side01.y*side01.y +
+ side02.x*side02.x + side02.y*side02.y);
+ double a = (side01.x*side01.z + side02.x*side02.z) / sum2;
+ double b = (side01.y*side01.z + side02.y*side02.z) / sum2;
+ planes(tri, 0) = a;
+ planes(tri, 1) = b;
+ planes(tri, 2) = point0.z - a*point0.x - b*point0.y;
+ }
+ else {
+ planes(tri, 0) = -normal.x / normal.z; // x
+ planes(tri, 1) = -normal.y / normal.z; // y
+ planes(tri, 2) = normal.dot(point0) / normal.z; // constant
+ }
+ }
+ }
+
+ return planes_array;
+}
+
+void Triangulation::correct_triangles()
+{
+ auto triangles = _triangles.mutable_data();
+ auto neighbors = _neighbors.mutable_data();
+
+ for (int tri = 0; tri < get_ntri(); ++tri) {
+ XY point0 = get_point_coords(triangles[3*tri]);
+ XY point1 = get_point_coords(triangles[3*tri+1]);
+ XY point2 = get_point_coords(triangles[3*tri+2]);
+ if ( (point1 - point0).cross_z(point2 - point0) < 0.0) {
+ // Triangle points are clockwise, so change them to anticlockwise.
+ std::swap(triangles[3*tri+1], triangles[3*tri+2]);
+ if (has_neighbors())
+ std::swap(neighbors[3*tri+1], neighbors[3*tri+2]);
+ }
+ }
+}
+
+const Triangulation::Boundaries& Triangulation::get_boundaries() const
+{
+ if (_boundaries.empty())
+ const_cast<Triangulation*>(this)->calculate_boundaries();
+ return _boundaries;
+}
+
+void Triangulation::get_boundary_edge(const TriEdge& triEdge,
+ int& boundary,
+ int& edge) const
+{
+ get_boundaries(); // Ensure _tri_edge_to_boundary_map has been created.
+ TriEdgeToBoundaryMap::const_iterator it =
+ _tri_edge_to_boundary_map.find(triEdge);
+ assert(it != _tri_edge_to_boundary_map.end() &&
+ "TriEdge is not on a boundary");
+ boundary = it->second.boundary;
+ edge = it->second.edge;
+}
+
+int Triangulation::get_edge_in_triangle(int tri, int point) const
+{
+ assert(tri >= 0 && tri < get_ntri() && "Triangle index out of bounds");
+ assert(point >= 0 && point < get_npoints() && "Point index out of bounds.");
+
+ auto triangles = _triangles.data();
+
+ for (int edge = 0; edge < 3; ++edge) {
+ if (triangles[3*tri + edge] == point)
+ return edge;
+ }
+ return -1; // point is not in triangle.
+}
+
+Triangulation::EdgeArray& Triangulation::get_edges()
+{
+ if (!has_edges())
+ calculate_edges();
+ return _edges;
+}
+
+int Triangulation::get_neighbor(int tri, int edge) const
+{
+ assert(tri >= 0 && tri < get_ntri() && "Triangle index out of bounds");
+ assert(edge >= 0 && edge < 3 && "Edge index out of bounds");
+ if (!has_neighbors())
+ const_cast<Triangulation&>(*this).calculate_neighbors();
+ return _neighbors.data()[3*tri + edge];
+}
+
+TriEdge Triangulation::get_neighbor_edge(int tri, int edge) const
+{
+ int neighbor_tri = get_neighbor(tri, edge);
+ if (neighbor_tri == -1)
+ return TriEdge(-1,-1);
+ else
+ return TriEdge(neighbor_tri,
+ get_edge_in_triangle(neighbor_tri,
+ get_triangle_point(tri,
+ (edge+1)%3)));
+}
+
+Triangulation::NeighborArray& Triangulation::get_neighbors()
+{
+ if (!has_neighbors())
+ calculate_neighbors();
+ return _neighbors;
+}
+
+int Triangulation::get_npoints() const
+{
+ return _x.shape(0);
+}
+
+int Triangulation::get_ntri() const
+{
+ return _triangles.shape(0);
+}
+
+XY Triangulation::get_point_coords(int point) const
+{
+ assert(point >= 0 && point < get_npoints() && "Point index out of bounds.");
+ return XY(_x.data()[point], _y.data()[point]);
+}
+
+int Triangulation::get_triangle_point(int tri, int edge) const
+{
+ assert(tri >= 0 && tri < get_ntri() && "Triangle index out of bounds");
+ assert(edge >= 0 && edge < 3 && "Edge index out of bounds");
+ return _triangles.data()[3*tri + edge];
+}
+
+int Triangulation::get_triangle_point(const TriEdge& tri_edge) const
+{
+ return get_triangle_point(tri_edge.tri, tri_edge.edge);
+}
+
+bool Triangulation::has_edges() const
+{
+ return _edges.size() > 0;
+}
+
+bool Triangulation::has_mask() const
+{
+ return _mask.size() > 0;
+}
+
+bool Triangulation::has_neighbors() const
+{
+ return _neighbors.size() > 0;
+}
+
+bool Triangulation::is_masked(int tri) const
+{
+ assert(tri >= 0 && tri < get_ntri() && "Triangle index out of bounds.");
+ return has_mask() && _mask.data()[tri];
+}
+
+void Triangulation::set_mask(const MaskArray& mask)
+{
+ if (mask.size() > 0 &&
+ (mask.ndim() != 1 || mask.shape(0) != _triangles.shape(0)))
+ throw std::invalid_argument(
+ "mask must be a 1D array with the same length as the triangles array");
+
+ _mask = mask;
+
+ // Clear derived fields so they are recalculated when needed.
+ _edges = EdgeArray();
+ _neighbors = NeighborArray();
+ _boundaries.clear();
+}
+
+void Triangulation::write_boundaries() const
+{
+ const Boundaries& bs = get_boundaries();
+ std::cout << "Number of boundaries: " << bs.size() << std::endl;
+ for (Boundaries::const_iterator it = bs.begin(); it != bs.end(); ++it) {
+ const Boundary& b = *it;
+ std::cout << " Boundary of " << b.size() << " points: ";
+ for (Boundary::const_iterator itb = b.begin(); itb != b.end(); ++itb) {
+ std::cout << *itb << ", ";
+ }
+ std::cout << std::endl;
+ }
+}
+
+
+
+TriContourGenerator::TriContourGenerator(Triangulation& triangulation,
+ const CoordinateArray& z)
+ : _triangulation(triangulation),
+ _z(z),
+ _interior_visited(2*_triangulation.get_ntri()),
+ _boundaries_visited(0),
+ _boundaries_used(0)
+{
+ if (_z.ndim() != 1 || _z.shape(0) != _triangulation.get_npoints())
+ throw std::invalid_argument(
+ "z must be a 1D array with the same length as the x and y arrays");
+}
+
+void TriContourGenerator::clear_visited_flags(bool include_boundaries)
+{
+ // Clear _interiorVisited.
+ std::fill(_interior_visited.begin(), _interior_visited.end(), false);
+
+ if (include_boundaries) {
+ if (_boundaries_visited.empty()) {
+ const Boundaries& boundaries = get_boundaries();
+
+ // Initialise _boundaries_visited.
+ _boundaries_visited.reserve(boundaries.size());
+ for (Boundaries::const_iterator it = boundaries.begin();
+ it != boundaries.end(); ++it)
+ _boundaries_visited.push_back(BoundaryVisited(it->size()));
+
+ // Initialise _boundaries_used.
+ _boundaries_used = BoundariesUsed(boundaries.size());
+ }
+
+ // Clear _boundaries_visited.
+ for (BoundariesVisited::iterator it = _boundaries_visited.begin();
+ it != _boundaries_visited.end(); ++it)
+ std::fill(it->begin(), it->end(), false);
+
+ // Clear _boundaries_used.
+ std::fill(_boundaries_used.begin(), _boundaries_used.end(), false);
+ }
+}
+
+py::tuple TriContourGenerator::contour_line_to_segs_and_kinds(const Contour& contour)
+{
+ // Convert all of the lines generated by a call to create_contour() into
+ // their Python equivalents for return to the calling function.
+ // A line is either a closed line loop (in which case the last point is
+ // identical to the first) or an open line strip. Two NumPy arrays are
+ // created for each line:
+ // vertices is a double array of shape (npoints, 2) containing the (x, y)
+ // coordinates of the points in the line
+ // codes is a uint8 array of shape (npoints,) containing the 'kind codes'
+ // which are defined in the Path class
+ // and they are appended to the Python lists vertices_list and codes_list
+ // respectively for return to the Python calling function.
+
+ py::list vertices_list(contour.size());
+ py::list codes_list(contour.size());
+
+ for (Contour::size_type i = 0; i < contour.size(); ++i) {
+ const ContourLine& contour_line = contour[i];
+ py::ssize_t npoints = static_cast<py::ssize_t>(contour_line.size());
+
+ py::ssize_t segs_dims[2] = {npoints, 2};
+ CoordinateArray segs(segs_dims);
+ double* segs_ptr = segs.mutable_data();
+
+ py::ssize_t codes_dims[1] = {npoints};
+ CodeArray codes(codes_dims);
+ unsigned char* codes_ptr = codes.mutable_data();
+
+ for (ContourLine::const_iterator it = contour_line.begin();
+ it != contour_line.end(); ++it) {
+ *segs_ptr++ = it->x;
+ *segs_ptr++ = it->y;
+ *codes_ptr++ = (it == contour_line.begin() ? MOVETO : LINETO);
+ }
+
+ // Closed line loop has identical first and last (x, y) points.
+ if (contour_line.size() > 1 &&
+ contour_line.front() == contour_line.back())
+ *(codes_ptr-1) = CLOSEPOLY;
+
+ vertices_list[i] = segs;
+ codes_list[i] = codes;
+ }
+
+ return py::make_tuple(vertices_list, codes_list);
+}
+
+py::tuple TriContourGenerator::contour_to_segs_and_kinds(const Contour& contour)
+{
+ // Convert all of the polygons generated by a call to
+ // create_filled_contour() into their Python equivalents for return to the
+ // calling function. All of the polygons' points and kinds codes are
+ // combined into single NumPy arrays for each; this avoids having
+ // to determine which polygons are holes as this will be determined by the
+ // renderer. If there are ntotal points in all of the polygons, the two
+ // NumPy arrays created are:
+ // vertices is a double array of shape (ntotal, 2) containing the (x, y)
+ // coordinates of the points in the polygons
+ // codes is a uint8 array of shape (ntotal,) containing the 'kind codes'
+ // which are defined in the Path class
+ // and they are returned in the Python lists vertices_list and codes_list
+ // respectively.
+
+ Contour::const_iterator line;
+ ContourLine::const_iterator point;
+
+ // Find total number of points in all contour lines.
+ py::ssize_t n_points = 0;
+ for (line = contour.begin(); line != contour.end(); ++line)
+ n_points += static_cast<py::ssize_t>(line->size());
+
+ // Create segs array for point coordinates.
+ py::ssize_t segs_dims[2] = {n_points, 2};
+ TwoCoordinateArray segs(segs_dims);
+ double* segs_ptr = segs.mutable_data();
+
+ // Create kinds array for code types.
+ py::ssize_t codes_dims[1] = {n_points};
+ CodeArray codes(codes_dims);
+ unsigned char* codes_ptr = codes.mutable_data();
+
+ for (line = contour.begin(); line != contour.end(); ++line) {
+ for (point = line->begin(); point != line->end(); point++) {
+ *segs_ptr++ = point->x;
+ *segs_ptr++ = point->y;
+ *codes_ptr++ = (point == line->begin() ? MOVETO : LINETO);
+ }
+
+ if (line->size() > 1)
+ *(codes_ptr-1) = CLOSEPOLY;
+ }
+
+ py::list vertices_list(1);
+ vertices_list[0] = segs;
+
+ py::list codes_list(1);
+ codes_list[0] = codes;
+
+ return py::make_tuple(vertices_list, codes_list);
+}
+
+py::tuple TriContourGenerator::create_contour(const double& level)
+{
+ clear_visited_flags(false);
+ Contour contour;
+
+ find_boundary_lines(contour, level);
+ find_interior_lines(contour, level, false, false);
+
+ return contour_line_to_segs_and_kinds(contour);
+}
+
+py::tuple TriContourGenerator::create_filled_contour(const double& lower_level,
+ const double& upper_level)
+{
+ if (lower_level >= upper_level)
+ throw std::invalid_argument("filled contour levels must be increasing");
+
+ clear_visited_flags(true);
+ Contour contour;
+
+ find_boundary_lines_filled(contour, lower_level, upper_level);
+ find_interior_lines(contour, lower_level, false, true);
+ find_interior_lines(contour, upper_level, true, true);
+
+ return contour_to_segs_and_kinds(contour);
+}
+
+XY TriContourGenerator::edge_interp(int tri, int edge, const double& level)
+{
+ return interp(_triangulation.get_triangle_point(tri, edge),
+ _triangulation.get_triangle_point(tri, (edge+1)%3),
+ level);
+}
+
+void TriContourGenerator::find_boundary_lines(Contour& contour,
+ const double& level)
+{
+ // Traverse boundaries to find starting points for all contour lines that
+ // intersect the boundaries. For each starting point found, follow the
+ // line to its end before continuing.
+ const Triangulation& triang = _triangulation;
+ const Boundaries& boundaries = get_boundaries();
+ for (Boundaries::const_iterator it = boundaries.begin();
+ it != boundaries.end(); ++it) {
+ const Boundary& boundary = *it;
+ bool startAbove, endAbove = false;
+ for (Boundary::const_iterator itb = boundary.begin();
+ itb != boundary.end(); ++itb) {
+ if (itb == boundary.begin())
+ startAbove = get_z(triang.get_triangle_point(*itb)) >= level;
+ else
+ startAbove = endAbove;
+ endAbove = get_z(triang.get_triangle_point(itb->tri,
+ (itb->edge+1)%3)) >= level;
+ if (startAbove && !endAbove) {
+ // This boundary edge is the start point for a contour line,
+ // so follow the line.
+ contour.push_back(ContourLine());
+ ContourLine& contour_line = contour.back();
+ TriEdge tri_edge = *itb;
+ follow_interior(contour_line, tri_edge, true, level, false);
+ }
+ }
+ }
+}
+
+void TriContourGenerator::find_boundary_lines_filled(Contour& contour,
+ const double& lower_level,
+ const double& upper_level)
+{
+ // Traverse boundaries to find starting points for all contour lines that
+ // intersect the boundaries. For each starting point found, follow the
+ // line to its end before continuing.
+ const Triangulation& triang = _triangulation;
+ const Boundaries& boundaries = get_boundaries();
+ for (Boundaries::size_type i = 0; i < boundaries.size(); ++i) {
+ const Boundary& boundary = boundaries[i];
+ for (Boundary::size_type j = 0; j < boundary.size(); ++j) {
+ if (!_boundaries_visited[i][j]) {
+ // z values of start and end of this boundary edge.
+ double z_start = get_z(triang.get_triangle_point(boundary[j]));
+ double z_end = get_z(triang.get_triangle_point(
+ boundary[j].tri, (boundary[j].edge+1)%3));
+
+ // Does this boundary edge's z increase through upper level
+ // and/or decrease through lower level?
+ bool incr_upper = (z_start < upper_level && z_end >= upper_level);
+ bool decr_lower = (z_start >= lower_level && z_end < lower_level);
+
+ if (decr_lower || incr_upper) {
+ // Start point for contour line, so follow it.
+ contour.push_back(ContourLine());
+ ContourLine& contour_line = contour.back();
+ TriEdge start_tri_edge = boundary[j];
+ TriEdge tri_edge = start_tri_edge;
+
+ // Traverse interior and boundaries until return to start.
+ bool on_upper = incr_upper;
+ do {
+ follow_interior(contour_line, tri_edge, true,
+ on_upper ? upper_level : lower_level, on_upper);
+ on_upper = follow_boundary(contour_line, tri_edge,
+ lower_level, upper_level, on_upper);
+ } while (tri_edge != start_tri_edge);
+
+ // Close polygon.
+ contour_line.push_back(contour_line.front());
+ }
+ }
+ }
+ }
+
+ // Add full boundaries that lie between the lower and upper levels. These
+ // are boundaries that have not been touched by an internal contour line
+ // which are stored in _boundaries_used.
+ for (Boundaries::size_type i = 0; i < boundaries.size(); ++i) {
+ if (!_boundaries_used[i]) {
+ const Boundary& boundary = boundaries[i];
+ double z = get_z(triang.get_triangle_point(boundary[0]));
+ if (z >= lower_level && z < upper_level) {
+ contour.push_back(ContourLine());
+ ContourLine& contour_line = contour.back();
+ for (Boundary::size_type j = 0; j < boundary.size(); ++j)
+ contour_line.push_back(triang.get_point_coords(
+ triang.get_triangle_point(boundary[j])));
+
+ // Close polygon.
+ contour_line.push_back(contour_line.front());
+ }
+ }
+ }
+}
+
+void TriContourGenerator::find_interior_lines(Contour& contour,
+ const double& level,
+ bool on_upper,
+ bool filled)
+{
+ const Triangulation& triang = _triangulation;
+ int ntri = triang.get_ntri();
+ for (int tri = 0; tri < ntri; ++tri) {
+ int visited_index = (on_upper ? tri+ntri : tri);
+
+ if (_interior_visited[visited_index] || triang.is_masked(tri))
+ continue; // Triangle has already been visited or is masked.
+
+ _interior_visited[visited_index] = true;
+
+ // Determine edge via which to leave this triangle.
+ int edge = get_exit_edge(tri, level, on_upper);
+ assert(edge >= -1 && edge < 3 && "Invalid exit edge");
+ if (edge == -1)
+ continue; // Contour does not pass through this triangle.
+
+ // Found start of new contour line loop.
+ contour.push_back(ContourLine());
+ ContourLine& contour_line = contour.back();
+ TriEdge tri_edge = triang.get_neighbor_edge(tri, edge);
+ follow_interior(contour_line, tri_edge, false, level, on_upper);
+
+ // Close line loop
+ contour_line.push_back(contour_line.front());
+ }
+}
+
+bool TriContourGenerator::follow_boundary(ContourLine& contour_line,
+ TriEdge& tri_edge,
+ const double& lower_level,
+ const double& upper_level,
+ bool on_upper)
+{
+ const Triangulation& triang = _triangulation;
+ const Boundaries& boundaries = get_boundaries();
+
+ // Have TriEdge to start at, need equivalent boundary edge.
+ int boundary, edge;
+ triang.get_boundary_edge(tri_edge, boundary, edge);
+ _boundaries_used[boundary] = true;
+
+ bool stop = false;
+ bool first_edge = true;
+ double z_start, z_end = 0;
+ while (!stop)
+ {
+ assert(!_boundaries_visited[boundary][edge] && "Boundary already visited");
+ _boundaries_visited[boundary][edge] = true;
+
+ // z values of start and end points of boundary edge.
+ if (first_edge)
+ z_start = get_z(triang.get_triangle_point(tri_edge));
+ else
+ z_start = z_end;
+ z_end = get_z(triang.get_triangle_point(tri_edge.tri,
+ (tri_edge.edge+1)%3));
+
+ if (z_end > z_start) { // z increasing.
+ if (!(!on_upper && first_edge) &&
+ z_end >= lower_level && z_start < lower_level) {
+ stop = true;
+ on_upper = false;
+ } else if (z_end >= upper_level && z_start < upper_level) {
+ stop = true;
+ on_upper = true;
+ }
+ } else { // z decreasing.
+ if (!(on_upper && first_edge) &&
+ z_start >= upper_level && z_end < upper_level) {
+ stop = true;
+ on_upper = true;
+ } else if (z_start >= lower_level && z_end < lower_level) {
+ stop = true;
+ on_upper = false;
+ }
+ }
+
+ first_edge = false;
+
+ if (!stop) {
+ // Move to next boundary edge, adding point to contour line.
+ edge = (edge+1) % (int)boundaries[boundary].size();
+ tri_edge = boundaries[boundary][edge];
+ contour_line.push_back(triang.get_point_coords(
+ triang.get_triangle_point(tri_edge)));
+ }
+ }
+
+ return on_upper;
+}
+
+void TriContourGenerator::follow_interior(ContourLine& contour_line,
+ TriEdge& tri_edge,
+ bool end_on_boundary,
+ const double& level,
+ bool on_upper)
+{
+ int& tri = tri_edge.tri;
+ int& edge = tri_edge.edge;
+
+ // Initial point.
+ contour_line.push_back(edge_interp(tri, edge, level));
+
+ while (true) {
+ int visited_index = tri;
+ if (on_upper)
+ visited_index += _triangulation.get_ntri();
+
+ // Check for end not on boundary.
+ if (!end_on_boundary && _interior_visited[visited_index])
+ break; // Reached start point, so return.
+
+ // Determine edge by which to leave this triangle.
+ edge = get_exit_edge(tri, level, on_upper);
+ assert(edge >= 0 && edge < 3 && "Invalid exit edge");
+
+ _interior_visited[visited_index] = true;
+
+ // Append new point to point set.
+ assert(edge >= 0 && edge < 3 && "Invalid triangle edge");
+ contour_line.push_back(edge_interp(tri, edge, level));
+
+ // Move to next triangle.
+ TriEdge next_tri_edge = _triangulation.get_neighbor_edge(tri,edge);
+
+ // Check if ending on a boundary.
+ if (end_on_boundary && next_tri_edge.tri == -1)
+ break;
+
+ tri_edge = next_tri_edge;
+ assert(tri_edge.tri != -1 && "Invalid triangle for internal loop");
+ }
+}
+
+const TriContourGenerator::Boundaries& TriContourGenerator::get_boundaries() const
+{
+ return _triangulation.get_boundaries();
+}
+
+int TriContourGenerator::get_exit_edge(int tri,
+ const double& level,
+ bool on_upper) const
+{
+ assert(tri >= 0 && tri < _triangulation.get_ntri() &&
+ "Triangle index out of bounds.");
+
+ unsigned int config =
+ (get_z(_triangulation.get_triangle_point(tri, 0)) >= level) |
+ (get_z(_triangulation.get_triangle_point(tri, 1)) >= level) << 1 |
+ (get_z(_triangulation.get_triangle_point(tri, 2)) >= level) << 2;
+
+ if (on_upper) config = 7-config;
+
+ switch (config) {
+ case 0: return -1;
+ case 1: return 2;
+ case 2: return 0;
+ case 3: return 2;
+ case 4: return 1;
+ case 5: return 1;
+ case 6: return 0;
+ case 7: return -1;
+ default: assert(0 && "Invalid config value"); return -1;
+ }
+}
+
+const double& TriContourGenerator::get_z(int point) const
+{
+ assert(point >= 0 && point < _triangulation.get_npoints() &&
+ "Point index out of bounds.");
+ return _z.data()[point];
+}
+
+XY TriContourGenerator::interp(int point1,
+ int point2,
+ const double& level) const
+{
+ assert(point1 >= 0 && point1 < _triangulation.get_npoints() &&
+ "Point index 1 out of bounds.");
+ assert(point2 >= 0 && point2 < _triangulation.get_npoints() &&
+ "Point index 2 out of bounds.");
+ assert(point1 != point2 && "Identical points");
+ double fraction = (get_z(point2) - level) / (get_z(point2) - get_z(point1));
+ return _triangulation.get_point_coords(point1)*fraction +
+ _triangulation.get_point_coords(point2)*(1.0 - fraction);
+}
+
+
+
+TrapezoidMapTriFinder::TrapezoidMapTriFinder(Triangulation& triangulation)
+ : _triangulation(triangulation),
+ _points(0),
+ _tree(0)
+{}
+
+TrapezoidMapTriFinder::~TrapezoidMapTriFinder()
+{
+ clear();
+}
+
+bool
+TrapezoidMapTriFinder::add_edge_to_tree(const Edge& edge)
+{
+ std::vector<Trapezoid*> trapezoids;
+ if (!find_trapezoids_intersecting_edge(edge, trapezoids))
+ return false;
+ assert(!trapezoids.empty() && "No trapezoids intersect edge");
+
+ const Point* p = edge.left;
+ const Point* q = edge.right;
+ Trapezoid* left_old = 0; // old trapezoid to the left.
+ Trapezoid* left_below = 0; // below trapezoid to the left.
+ Trapezoid* left_above = 0; // above trapezoid to the left.
+
+ // Iterate through trapezoids intersecting edge from left to right.
+ // Replace each old trapezoid with 2+ new trapezoids, and replace its
+ // corresponding nodes in the search tree with new nodes.
+ size_t ntraps = trapezoids.size();
+ for (size_t i = 0; i < ntraps; ++i) {
+ Trapezoid* old = trapezoids[i]; // old trapezoid to replace.
+ bool start_trap = (i == 0);
+ bool end_trap = (i == ntraps-1);
+ bool have_left = (start_trap && edge.left != old->left);
+ bool have_right = (end_trap && edge.right != old->right);
+
+ // Old trapezoid is replaced by up to 4 new trapezoids: left is to the
+ // left of the start point p, below/above are below/above the edge
+ // inserted, and right is to the right of the end point q.
+ Trapezoid* left = 0;
+ Trapezoid* below = 0;
+ Trapezoid* above = 0;
+ Trapezoid* right = 0;
+
+ // There are 4 different cases here depending on whether the old
+ // trapezoid in question is the start and/or end trapezoid of those
+ // that intersect the edge inserted. There is some code duplication
+ // here but it is much easier to understand this way rather than
+ // interleave the 4 different cases with many more if-statements.
+ if (start_trap && end_trap) {
+ // Edge intersects a single trapezoid.
+ if (have_left)
+ left = new Trapezoid(old->left, p, old->below, old->above);
+ below = new Trapezoid(p, q, old->below, edge);
+ above = new Trapezoid(p, q, edge, old->above);
+ if (have_right)
+ right = new Trapezoid(q, old->right, old->below, old->above);
+
+ // Set pairs of trapezoid neighbours.
+ if (have_left) {
+ left->set_lower_left(old->lower_left);
+ left->set_upper_left(old->upper_left);
+ left->set_lower_right(below);
+ left->set_upper_right(above);
+ }
+ else {
+ below->set_lower_left(old->lower_left);
+ above->set_upper_left(old->upper_left);
+ }
+
+ if (have_right) {
+ right->set_lower_right(old->lower_right);
+ right->set_upper_right(old->upper_right);
+ below->set_lower_right(right);
+ above->set_upper_right(right);
+ }
+ else {
+ below->set_lower_right(old->lower_right);
+ above->set_upper_right(old->upper_right);
+ }
+ }
+ else if (start_trap) {
+ // Old trapezoid is the first of 2+ trapezoids that the edge
+ // intersects.
+ if (have_left)
+ left = new Trapezoid(old->left, p, old->below, old->above);
+ below = new Trapezoid(p, old->right, old->below, edge);
+ above = new Trapezoid(p, old->right, edge, old->above);
+
+ // Set pairs of trapezoid neighbours.
+ if (have_left) {
+ left->set_lower_left(old->lower_left);
+ left->set_upper_left(old->upper_left);
+ left->set_lower_right(below);
+ left->set_upper_right(above);
+ }
+ else {
+ below->set_lower_left(old->lower_left);
+ above->set_upper_left(old->upper_left);
+ }
+
+ below->set_lower_right(old->lower_right);
+ above->set_upper_right(old->upper_right);
+ }
+ else if (end_trap) {
+ // Old trapezoid is the last of 2+ trapezoids that the edge
+ // intersects.
+ if (left_below->below == old->below) {
+ below = left_below;
+ below->right = q;
+ }
+ else
+ below = new Trapezoid(old->left, q, old->below, edge);
+
+ if (left_above->above == old->above) {
+ above = left_above;
+ above->right = q;
+ }
+ else
+ above = new Trapezoid(old->left, q, edge, old->above);
+
+ if (have_right)
+ right = new Trapezoid(q, old->right, old->below, old->above);
+
+ // Set pairs of trapezoid neighbours.
+ if (have_right) {
+ right->set_lower_right(old->lower_right);
+ right->set_upper_right(old->upper_right);
+ below->set_lower_right(right);
+ above->set_upper_right(right);
+ }
+ else {
+ below->set_lower_right(old->lower_right);
+ above->set_upper_right(old->upper_right);
+ }
+
+ // Connect to new trapezoids replacing prevOld.
+ if (below != left_below) {
+ below->set_upper_left(left_below);
+ if (old->lower_left == left_old)
+ below->set_lower_left(left_below);
+ else
+ below->set_lower_left(old->lower_left);
+ }
+
+ if (above != left_above) {
+ above->set_lower_left(left_above);
+ if (old->upper_left == left_old)
+ above->set_upper_left(left_above);
+ else
+ above->set_upper_left(old->upper_left);
+ }
+ }
+ else { // Middle trapezoid.
+ // Old trapezoid is neither the first nor last of the 3+ trapezoids
+ // that the edge intersects.
+ if (left_below->below == old->below) {
+ below = left_below;
+ below->right = old->right;
+ }
+ else
+ below = new Trapezoid(old->left, old->right, old->below, edge);
+
+ if (left_above->above == old->above) {
+ above = left_above;
+ above->right = old->right;
+ }
+ else
+ above = new Trapezoid(old->left, old->right, edge, old->above);
+
+ // Connect to new trapezoids replacing prevOld.
+ if (below != left_below) { // below is new.
+ below->set_upper_left(left_below);
+ if (old->lower_left == left_old)
+ below->set_lower_left(left_below);
+ else
+ below->set_lower_left(old->lower_left);
+ }
+
+ if (above != left_above) { // above is new.
+ above->set_lower_left(left_above);
+ if (old->upper_left == left_old)
+ above->set_upper_left(left_above);
+ else
+ above->set_upper_left(old->upper_left);
+ }
+
+ below->set_lower_right(old->lower_right);
+ above->set_upper_right(old->upper_right);
+ }
+
+ // Create new nodes to add to search tree. Below and above trapezoids
+ // may already have owning trapezoid nodes, in which case reuse them.
+ Node* new_top_node = new Node(
+ &edge,
+ below == left_below ? below->trapezoid_node : new Node(below),
+ above == left_above ? above->trapezoid_node : new Node(above));
+ if (have_right)
+ new_top_node = new Node(q, new_top_node, new Node(right));
+ if (have_left)
+ new_top_node = new Node(p, new Node(left), new_top_node);
+
+ // Insert new_top_node in correct position or positions in search tree.
+ Node* old_node = old->trapezoid_node;
+ if (old_node == _tree)
+ _tree = new_top_node;
+ else
+ old_node->replace_with(new_top_node);
+
+ // old_node has been removed from all of its parents and is no longer
+ // needed.
+ assert(old_node->has_no_parents() && "Node should have no parents");
+ delete old_node;
+
+ // Clearing up.
+ if (!end_trap) {
+ // Prepare for next loop.
+ left_old = old;
+ left_above = above;
+ left_below = below;
+ }
+ }
+
+ return true;
+}
+
+void
+TrapezoidMapTriFinder::clear()
+{
+ delete [] _points;
+ _points = 0;
+
+ _edges.clear();
+
+ delete _tree;
+ _tree = 0;
+}
+
+TrapezoidMapTriFinder::TriIndexArray
+TrapezoidMapTriFinder::find_many(const CoordinateArray& x,
+ const CoordinateArray& y)
+{
+ if (x.ndim() != 1 || x.shape(0) != y.shape(0))
+ throw std::invalid_argument(
+ "x and y must be array-like with same shape");
+
+ // Create integer array to return.
+ auto n = x.shape(0);
+ TriIndexArray tri_indices_array(n);
+ auto tri_indices = tri_indices_array.mutable_unchecked<1>();
+ auto x_data = x.data();
+ auto y_data = y.data();
+
+ // Fill returned array.
+ for (py::ssize_t i = 0; i < n; ++i)
+ tri_indices(i) = find_one(XY(x_data[i], y_data[i]));
+
+ return tri_indices_array;
+}
+
+int
+TrapezoidMapTriFinder::find_one(const XY& xy)
+{
+ const Node* node = _tree->search(xy);
+ assert(node != 0 && "Search tree for point returned null node");
+ return node->get_tri();
+}
+
+bool
+TrapezoidMapTriFinder::find_trapezoids_intersecting_edge(
+ const Edge& edge,
+ std::vector<Trapezoid*>& trapezoids)
+{
+ // This is the FollowSegment algorithm of de Berg et al, with some extra
+ // checks to deal with simple colinear (i.e. invalid) triangles.
+ trapezoids.clear();
+ Trapezoid* trapezoid = _tree->search(edge);
+ if (trapezoid == 0) {
+ assert(trapezoid != 0 && "search(edge) returns null trapezoid");
+ return false;
+ }
+
+ trapezoids.push_back(trapezoid);
+ while (edge.right->is_right_of(*trapezoid->right)) {
+ int orient = edge.get_point_orientation(*trapezoid->right);
+ if (orient == 0) {
+ if (edge.point_below == trapezoid->right)
+ orient = +1;
+ else if (edge.point_above == trapezoid->right)
+ orient = -1;
+ else {
+ assert(0 && "Unable to deal with point on edge");
+ return false;
+ }
+ }
+
+ if (orient == -1)
+ trapezoid = trapezoid->lower_right;
+ else if (orient == +1)
+ trapezoid = trapezoid->upper_right;
+
+ if (trapezoid == 0) {
+ assert(0 && "Expected trapezoid neighbor");
+ return false;
+ }
+ trapezoids.push_back(trapezoid);
+ }
+
+ return true;
+}
+
+py::list
+TrapezoidMapTriFinder::get_tree_stats()
+{
+ NodeStats stats;
+ _tree->get_stats(0, stats);
+
+ py::list ret(7);
+ ret[0] = stats.node_count;
+ ret[1] = stats.unique_nodes.size(),
+ ret[2] = stats.trapezoid_count,
+ ret[3] = stats.unique_trapezoid_nodes.size(),
+ ret[4] = stats.max_parent_count,
+ ret[5] = stats.max_depth,
+ ret[6] = stats.sum_trapezoid_depth / stats.trapezoid_count;
+ return ret;
+}
+
+void
+TrapezoidMapTriFinder::initialize()
+{
+ clear();
+ const Triangulation& triang = _triangulation;
+
+ // Set up points array, which contains all of the points in the
+ // triangulation plus the 4 corners of the enclosing rectangle.
+ int npoints = triang.get_npoints();
+ _points = new Point[npoints + 4];
+ BoundingBox bbox;
+ for (int i = 0; i < npoints; ++i) {
+ XY xy = triang.get_point_coords(i);
+ // Avoid problems with -0.0 values different from 0.0
+ if (xy.x == -0.0)
+ xy.x = 0.0;
+ if (xy.y == -0.0)
+ xy.y = 0.0;
+ _points[i] = Point(xy);
+ bbox.add(xy);
+ }
+
+ // Last 4 points are corner points of enclosing rectangle. Enclosing
+ // rectangle made slightly larger in case corner points are already in the
+ // triangulation.
+ if (bbox.empty) {
+ bbox.add(XY(0.0, 0.0));
+ bbox.add(XY(1.0, 1.0));
+ }
+ else {
+ const double small = 0.1; // Any value > 0.0
+ bbox.expand( (bbox.upper - bbox.lower)*small );
+ }
+ _points[npoints ] = Point(bbox.lower); // SW point.
+ _points[npoints+1] = Point(bbox.upper.x, bbox.lower.y); // SE point.
+ _points[npoints+2] = Point(bbox.lower.x, bbox.upper.y); // NW point.
+ _points[npoints+3] = Point(bbox.upper); // NE point.
+
+ // Set up edges array.
+ // First the bottom and top edges of the enclosing rectangle.
+ _edges.push_back(Edge(&_points[npoints], &_points[npoints+1],-1,-1,0,0));
+ _edges.push_back(Edge(&_points[npoints+2],&_points[npoints+3],-1,-1,0,0));
+
+ // Add all edges in the triangulation that point to the right. Do not
+ // explicitly include edges that point to the left as the neighboring
+ // triangle will supply that, unless there is no such neighbor.
+ int ntri = triang.get_ntri();
+ for (int tri = 0; tri < ntri; ++tri) {
+ if (!triang.is_masked(tri)) {
+ for (int edge = 0; edge < 3; ++edge) {
+ Point* start = _points + triang.get_triangle_point(tri,edge);
+ Point* end = _points +
+ triang.get_triangle_point(tri,(edge+1)%3);
+ Point* other = _points +
+ triang.get_triangle_point(tri,(edge+2)%3);
+ TriEdge neighbor = triang.get_neighbor_edge(tri,edge);
+ if (end->is_right_of(*start)) {
+ const Point* neighbor_point_below = (neighbor.tri == -1) ?
+ 0 : _points + triang.get_triangle_point(
+ neighbor.tri, (neighbor.edge+2)%3);
+ _edges.push_back(Edge(start, end, neighbor.tri, tri,
+ neighbor_point_below, other));
+ }
+ else if (neighbor.tri == -1)
+ _edges.push_back(Edge(end, start, tri, -1, other, 0));
+
+ // Set triangle associated with start point if not already set.
+ if (start->tri == -1)
+ start->tri = tri;
+ }
+ }
+ }
+
+ // Initial trapezoid is enclosing rectangle.
+ _tree = new Node(new Trapezoid(&_points[npoints], &_points[npoints+1],
+ _edges[0], _edges[1]));
+ _tree->assert_valid(false);
+
+ // Randomly shuffle all edges other than first 2.
+ std::mt19937 rng(1234);
+ std::shuffle(_edges.begin()+2, _edges.end(), rng);
+
+ // Add edges, one at a time, to tree.
+ size_t nedges = _edges.size();
+ for (size_t index = 2; index < nedges; ++index) {
+ if (!add_edge_to_tree(_edges[index]))
+ throw std::runtime_error("Triangulation is invalid");
+ _tree->assert_valid(index == nedges-1);
+ }
+}
+
+void
+TrapezoidMapTriFinder::print_tree()
+{
+ assert(_tree != 0 && "Null Node tree");
+ _tree->print();
+}
+
+TrapezoidMapTriFinder::Edge::Edge(const Point* left_,
+ const Point* right_,
+ int triangle_below_,
+ int triangle_above_,
+ const Point* point_below_,
+ const Point* point_above_)
+ : left(left_),
+ right(right_),
+ triangle_below(triangle_below_),
+ triangle_above(triangle_above_),
+ point_below(point_below_),
+ point_above(point_above_)
+{
+ assert(left != 0 && "Null left point");
+ assert(right != 0 && "Null right point");
+ assert(right->is_right_of(*left) && "Incorrect point order");
+ assert(triangle_below >= -1 && "Invalid triangle below index");
+ assert(triangle_above >= -1 && "Invalid triangle above index");
+}
+
+int
+TrapezoidMapTriFinder::Edge::get_point_orientation(const XY& xy) const
+{
+ double cross_z = (xy - *left).cross_z(*right - *left);
+ return (cross_z > 0.0) ? +1 : ((cross_z < 0.0) ? -1 : 0);
+}
+
+double
+TrapezoidMapTriFinder::Edge::get_slope() const
+{
+ // Divide by zero is acceptable here.
+ XY diff = *right - *left;
+ return diff.y / diff.x;
+}
+
+double
+TrapezoidMapTriFinder::Edge::get_y_at_x(const double& x) const
+{
+ if (left->x == right->x) {
+ // If edge is vertical, return lowest y from left point.
+ assert(x == left->x && "x outside of edge");
+ return left->y;
+ }
+ else {
+ // Equation of line: left + lambda*(right - left) = xy.
+ // i.e. left.x + lambda(right.x - left.x) = x and similar for y.
+ double lambda = (x - left->x) / (right->x - left->x);
+ assert(lambda >= 0 && lambda <= 1.0 && "Lambda out of bounds");
+ return left->y + lambda*(right->y - left->y);
+ }
+}
+
+bool
+TrapezoidMapTriFinder::Edge::has_point(const Point* point) const
+{
+ assert(point != 0 && "Null point");
+ return (left == point || right == point);
+}
+
+bool
+TrapezoidMapTriFinder::Edge::operator==(const Edge& other) const
+{
+ return this == &other;
+}
+
+void
+TrapezoidMapTriFinder::Edge::print_debug() const
+{
+ std::cout << "Edge " << *this << " tri_below=" << triangle_below
+ << " tri_above=" << triangle_above << std::endl;
+}
+
+TrapezoidMapTriFinder::Node::Node(const Point* point, Node* left, Node* right)
+ : _type(Type_XNode)
+{
+ assert(point != 0 && "Invalid point");
+ assert(left != 0 && "Invalid left node");
+ assert(right != 0 && "Invalid right node");
+ _union.xnode.point = point;
+ _union.xnode.left = left;
+ _union.xnode.right = right;
+ left->add_parent(this);
+ right->add_parent(this);
+}
+
+TrapezoidMapTriFinder::Node::Node(const Edge* edge, Node* below, Node* above)
+ : _type(Type_YNode)
+{
+ assert(edge != 0 && "Invalid edge");
+ assert(below != 0 && "Invalid below node");
+ assert(above != 0 && "Invalid above node");
+ _union.ynode.edge = edge;
+ _union.ynode.below = below;
+ _union.ynode.above = above;
+ below->add_parent(this);
+ above->add_parent(this);
+}
+
+TrapezoidMapTriFinder::Node::Node(Trapezoid* trapezoid)
+ : _type(Type_TrapezoidNode)
+{
+ assert(trapezoid != 0 && "Null Trapezoid");
+ _union.trapezoid = trapezoid;
+ trapezoid->trapezoid_node = this;
+}
+
+TrapezoidMapTriFinder::Node::~Node()
+{
+ switch (_type) {
+ case Type_XNode:
+ if (_union.xnode.left->remove_parent(this))
+ delete _union.xnode.left;
+ if (_union.xnode.right->remove_parent(this))
+ delete _union.xnode.right;
+ break;
+ case Type_YNode:
+ if (_union.ynode.below->remove_parent(this))
+ delete _union.ynode.below;
+ if (_union.ynode.above->remove_parent(this))
+ delete _union.ynode.above;
+ break;
+ case Type_TrapezoidNode:
+ delete _union.trapezoid;
+ break;
+ }
+}
+
+void
+TrapezoidMapTriFinder::Node::add_parent(Node* parent)
+{
+ assert(parent != 0 && "Null parent");
+ assert(parent != this && "Cannot be parent of self");
+ assert(!has_parent(parent) && "Parent already in collection");
+ _parents.push_back(parent);
+}
+
+void
+TrapezoidMapTriFinder::Node::assert_valid(bool tree_complete) const
+{
+#ifndef NDEBUG
+ // Check parents.
+ for (Parents::const_iterator it = _parents.begin();
+ it != _parents.end(); ++it) {
+ Node* parent = *it;
+ assert(parent != this && "Cannot be parent of self");
+ assert(parent->has_child(this) && "Parent missing child");
+ }
+
+ // Check children, and recurse.
+ switch (_type) {
+ case Type_XNode:
+ assert(_union.xnode.left != 0 && "Null left child");
+ assert(_union.xnode.left->has_parent(this) && "Incorrect parent");
+ assert(_union.xnode.right != 0 && "Null right child");
+ assert(_union.xnode.right->has_parent(this) && "Incorrect parent");
+ _union.xnode.left->assert_valid(tree_complete);
+ _union.xnode.right->assert_valid(tree_complete);
+ break;
+ case Type_YNode:
+ assert(_union.ynode.below != 0 && "Null below child");
+ assert(_union.ynode.below->has_parent(this) && "Incorrect parent");
+ assert(_union.ynode.above != 0 && "Null above child");
+ assert(_union.ynode.above->has_parent(this) && "Incorrect parent");
+ _union.ynode.below->assert_valid(tree_complete);
+ _union.ynode.above->assert_valid(tree_complete);
+ break;
+ case Type_TrapezoidNode:
+ assert(_union.trapezoid != 0 && "Null trapezoid");
+ assert(_union.trapezoid->trapezoid_node == this &&
+ "Incorrect trapezoid node");
+ _union.trapezoid->assert_valid(tree_complete);
+ break;
+ }
+#endif
+}
+
+void
+TrapezoidMapTriFinder::Node::get_stats(int depth,
+ NodeStats& stats) const
+{
+ stats.node_count++;
+ if (depth > stats.max_depth)
+ stats.max_depth = depth;
+ bool new_node = stats.unique_nodes.insert(this).second;
+ if (new_node)
+ stats.max_parent_count = std::max(stats.max_parent_count,
+ static_cast<long>(_parents.size()));
+
+ switch (_type) {
+ case Type_XNode:
+ _union.xnode.left->get_stats(depth+1, stats);
+ _union.xnode.right->get_stats(depth+1, stats);
+ break;
+ case Type_YNode:
+ _union.ynode.below->get_stats(depth+1, stats);
+ _union.ynode.above->get_stats(depth+1, stats);
+ break;
+ default: // Type_TrapezoidNode:
+ stats.unique_trapezoid_nodes.insert(this);
+ stats.trapezoid_count++;
+ stats.sum_trapezoid_depth += depth;
+ break;
+ }
+}
+
+int
+TrapezoidMapTriFinder::Node::get_tri() const
+{
+ switch (_type) {
+ case Type_XNode:
+ return _union.xnode.point->tri;
+ case Type_YNode:
+ if (_union.ynode.edge->triangle_above != -1)
+ return _union.ynode.edge->triangle_above;
+ else
+ return _union.ynode.edge->triangle_below;
+ default: // Type_TrapezoidNode:
+ assert(_union.trapezoid->below.triangle_above ==
+ _union.trapezoid->above.triangle_below &&
+ "Inconsistent triangle indices from trapezoid edges");
+ return _union.trapezoid->below.triangle_above;
+ }
+}
+
+bool
+TrapezoidMapTriFinder::Node::has_child(const Node* child) const
+{
+ assert(child != 0 && "Null child node");
+ switch (_type) {
+ case Type_XNode:
+ return (_union.xnode.left == child || _union.xnode.right == child);
+ case Type_YNode:
+ return (_union.ynode.below == child ||
+ _union.ynode.above == child);
+ default: // Type_TrapezoidNode:
+ return false;
+ }
+}
+
+bool
+TrapezoidMapTriFinder::Node::has_no_parents() const
+{
+ return _parents.empty();
+}
+
+bool
+TrapezoidMapTriFinder::Node::has_parent(const Node* parent) const
+{
+ return (std::find(_parents.begin(), _parents.end(), parent) !=
+ _parents.end());
+}
+
+void
+TrapezoidMapTriFinder::Node::print(int depth /* = 0 */) const
+{
+ for (int i = 0; i < depth; ++i) std::cout << " ";
+ switch (_type) {
+ case Type_XNode:
+ std::cout << "XNode " << *_union.xnode.point << std::endl;
+ _union.xnode.left->print(depth + 1);
+ _union.xnode.right->print(depth + 1);
+ break;
+ case Type_YNode:
+ std::cout << "YNode " << *_union.ynode.edge << std::endl;
+ _union.ynode.below->print(depth + 1);
+ _union.ynode.above->print(depth + 1);
+ break;
+ case Type_TrapezoidNode:
+ std::cout << "Trapezoid ll="
+ << _union.trapezoid->get_lower_left_point() << " lr="
+ << _union.trapezoid->get_lower_right_point() << " ul="
+ << _union.trapezoid->get_upper_left_point() << " ur="
+ << _union.trapezoid->get_upper_right_point() << std::endl;
+ break;
+ }
+}
+
+bool
+TrapezoidMapTriFinder::Node::remove_parent(Node* parent)
+{
+ assert(parent != 0 && "Null parent");
+ assert(parent != this && "Cannot be parent of self");
+ Parents::iterator it = std::find(_parents.begin(), _parents.end(), parent);
+ assert(it != _parents.end() && "Parent not in collection");
+ _parents.erase(it);
+ return _parents.empty();
+}
+
+void
+TrapezoidMapTriFinder::Node::replace_child(Node* old_child, Node* new_child)
+{
+ switch (_type) {
+ case Type_XNode:
+ assert((_union.xnode.left == old_child ||
+ _union.xnode.right == old_child) && "Not a child Node");
+ assert(new_child != 0 && "Null child node");
+ if (_union.xnode.left == old_child)
+ _union.xnode.left = new_child;
+ else
+ _union.xnode.right = new_child;
+ break;
+ case Type_YNode:
+ assert((_union.ynode.below == old_child ||
+ _union.ynode.above == old_child) && "Not a child node");
+ assert(new_child != 0 && "Null child node");
+ if (_union.ynode.below == old_child)
+ _union.ynode.below = new_child;
+ else
+ _union.ynode.above = new_child;
+ break;
+ case Type_TrapezoidNode:
+ assert(0 && "Invalid type for this operation");
+ break;
+ }
+ old_child->remove_parent(this);
+ new_child->add_parent(this);
+}
+
+void
+TrapezoidMapTriFinder::Node::replace_with(Node* new_node)
+{
+ assert(new_node != 0 && "Null replacement node");
+ // Replace child of each parent with new_node. As each has parent has its
+ // child replaced it is removed from the _parents collection.
+ while (!_parents.empty())
+ _parents.front()->replace_child(this, new_node);
+}
+
+const TrapezoidMapTriFinder::Node*
+TrapezoidMapTriFinder::Node::search(const XY& xy)
+{
+ switch (_type) {
+ case Type_XNode:
+ if (xy == *_union.xnode.point)
+ return this;
+ else if (xy.is_right_of(*_union.xnode.point))
+ return _union.xnode.right->search(xy);
+ else
+ return _union.xnode.left->search(xy);
+ case Type_YNode: {
+ int orient = _union.ynode.edge->get_point_orientation(xy);
+ if (orient == 0)
+ return this;
+ else if (orient < 0)
+ return _union.ynode.above->search(xy);
+ else
+ return _union.ynode.below->search(xy);
+ }
+ default: // Type_TrapezoidNode:
+ return this;
+ }
+}
+
+TrapezoidMapTriFinder::Trapezoid*
+TrapezoidMapTriFinder::Node::search(const Edge& edge)
+{
+ switch (_type) {
+ case Type_XNode:
+ if (edge.left == _union.xnode.point)
+ return _union.xnode.right->search(edge);
+ else {
+ if (edge.left->is_right_of(*_union.xnode.point))
+ return _union.xnode.right->search(edge);
+ else
+ return _union.xnode.left->search(edge);
+ }
+ case Type_YNode:
+ if (edge.left == _union.ynode.edge->left) {
+ // Coinciding left edge points.
+ if (edge.get_slope() == _union.ynode.edge->get_slope()) {
+ if (_union.ynode.edge->triangle_above ==
+ edge.triangle_below)
+ return _union.ynode.above->search(edge);
+ else if (_union.ynode.edge->triangle_below ==
+ edge.triangle_above)
+ return _union.ynode.below->search(edge);
+ else {
+ assert(0 &&
+ "Invalid triangulation, common left points");
+ return 0;
+ }
+ }
+ if (edge.get_slope() > _union.ynode.edge->get_slope())
+ return _union.ynode.above->search(edge);
+ else
+ return _union.ynode.below->search(edge);
+ }
+ else if (edge.right == _union.ynode.edge->right) {
+ // Coinciding right edge points.
+ if (edge.get_slope() == _union.ynode.edge->get_slope()) {
+ if (_union.ynode.edge->triangle_above ==
+ edge.triangle_below)
+ return _union.ynode.above->search(edge);
+ else if (_union.ynode.edge->triangle_below ==
+ edge.triangle_above)
+ return _union.ynode.below->search(edge);
+ else {
+ assert(0 &&
+ "Invalid triangulation, common right points");
+ return 0;
+ }
+ }
+ if (edge.get_slope() > _union.ynode.edge->get_slope())
+ return _union.ynode.below->search(edge);
+ else
+ return _union.ynode.above->search(edge);
+ }
+ else {
+ int orient =
+ _union.ynode.edge->get_point_orientation(*edge.left);
+ if (orient == 0) {
+ // edge.left lies on _union.ynode.edge
+ if (_union.ynode.edge->point_above != 0 &&
+ edge.has_point(_union.ynode.edge->point_above))
+ orient = -1;
+ else if (_union.ynode.edge->point_below != 0 &&
+ edge.has_point(_union.ynode.edge->point_below))
+ orient = +1;
+ else {
+ assert(0 && "Invalid triangulation, point on edge");
+ return 0;
+ }
+ }
+ if (orient < 0)
+ return _union.ynode.above->search(edge);
+ else
+ return _union.ynode.below->search(edge);
+ }
+ default: // Type_TrapezoidNode:
+ return _union.trapezoid;
+ }
+}
+
+TrapezoidMapTriFinder::Trapezoid::Trapezoid(const Point* left_,
+ const Point* right_,
+ const Edge& below_,
+ const Edge& above_)
+ : left(left_), right(right_), below(below_), above(above_),
+ lower_left(0), lower_right(0), upper_left(0), upper_right(0),
+ trapezoid_node(0)
+{
+ assert(left != 0 && "Null left point");
+ assert(right != 0 && "Null right point");
+ assert(right->is_right_of(*left) && "Incorrect point order");
+}
+
+void
+TrapezoidMapTriFinder::Trapezoid::assert_valid(bool tree_complete) const
+{
+#ifndef NDEBUG
+ assert(left != 0 && "Null left point");
+ assert(right != 0 && "Null right point");
+
+ if (lower_left != 0) {
+ assert(lower_left->below == below &&
+ lower_left->lower_right == this &&
+ "Incorrect lower_left trapezoid");
+ assert(get_lower_left_point() == lower_left->get_lower_right_point() &&
+ "Incorrect lower left point");
+ }
+
+ if (lower_right != 0) {
+ assert(lower_right->below == below &&
+ lower_right->lower_left == this &&
+ "Incorrect lower_right trapezoid");
+ assert(get_lower_right_point() == lower_right->get_lower_left_point() &&
+ "Incorrect lower right point");
+ }
+
+ if (upper_left != 0) {
+ assert(upper_left->above == above &&
+ upper_left->upper_right == this &&
+ "Incorrect upper_left trapezoid");
+ assert(get_upper_left_point() == upper_left->get_upper_right_point() &&
+ "Incorrect upper left point");
+ }
+
+ if (upper_right != 0) {
+ assert(upper_right->above == above &&
+ upper_right->upper_left == this &&
+ "Incorrect upper_right trapezoid");
+ assert(get_upper_right_point() == upper_right->get_upper_left_point() &&
+ "Incorrect upper right point");
+ }
+
+ assert(trapezoid_node != 0 && "Null trapezoid_node");
+
+ if (tree_complete) {
+ assert(below.triangle_above == above.triangle_below &&
+ "Inconsistent triangle indices from trapezoid edges");
+ }
+#endif
+}
+
+XY
+TrapezoidMapTriFinder::Trapezoid::get_lower_left_point() const
+{
+ double x = left->x;
+ return XY(x, below.get_y_at_x(x));
+}
+
+XY
+TrapezoidMapTriFinder::Trapezoid::get_lower_right_point() const
+{
+ double x = right->x;
+ return XY(x, below.get_y_at_x(x));
+}
+
+XY
+TrapezoidMapTriFinder::Trapezoid::get_upper_left_point() const
+{
+ double x = left->x;
+ return XY(x, above.get_y_at_x(x));
+}
+
+XY
+TrapezoidMapTriFinder::Trapezoid::get_upper_right_point() const
+{
+ double x = right->x;
+ return XY(x, above.get_y_at_x(x));
+}
+
+void
+TrapezoidMapTriFinder::Trapezoid::print_debug() const
+{
+ std::cout << "Trapezoid " << this
+ << " left=" << *left
+ << " right=" << *right
+ << " below=" << below
+ << " above=" << above
+ << " ll=" << lower_left
+ << " lr=" << lower_right
+ << " ul=" << upper_left
+ << " ur=" << upper_right
+ << " node=" << trapezoid_node
+ << " llp=" << get_lower_left_point()
+ << " lrp=" << get_lower_right_point()
+ << " ulp=" << get_upper_left_point()
+ << " urp=" << get_upper_right_point() << std::endl;
+}
+
+void
+TrapezoidMapTriFinder::Trapezoid::set_lower_left(Trapezoid* lower_left_)
+{
+ lower_left = lower_left_;
+ if (lower_left != 0)
+ lower_left->lower_right = this;
+}
+
+void
+TrapezoidMapTriFinder::Trapezoid::set_lower_right(Trapezoid* lower_right_)
+{
+ lower_right = lower_right_;
+ if (lower_right != 0)
+ lower_right->lower_left = this;
+}
+
+void
+TrapezoidMapTriFinder::Trapezoid::set_upper_left(Trapezoid* upper_left_)
+{
+ upper_left = upper_left_;
+ if (upper_left != 0)
+ upper_left->upper_right = this;
+}
+
+void
+TrapezoidMapTriFinder::Trapezoid::set_upper_right(Trapezoid* upper_right_)
+{
+ upper_right = upper_right_;
+ if (upper_right != 0)
+ upper_right->upper_left = this;
+}
diff --git a/contrib/python/matplotlib/py3/src/tri/_tri.h b/contrib/python/matplotlib/py3/src/tri/_tri.h
new file mode 100644
index 00000000000..c176b4c0e8f
--- /dev/null
+++ b/contrib/python/matplotlib/py3/src/tri/_tri.h
@@ -0,0 +1,799 @@
+/*
+ * Unstructured triangular grid functions, particularly contouring.
+ *
+ * There are two main classes: Triangulation and TriContourGenerator.
+ *
+ * Triangulation
+ * -------------
+ * Triangulation is an unstructured triangular grid with npoints and ntri
+ * triangles. It consists of point x and y coordinates, and information about
+ * the triangulation stored in an integer array of shape (ntri,3) called
+ * triangles. Each triangle is represented by three point indices (in the
+ * range 0 to npoints-1) that comprise the triangle, ordered anticlockwise.
+ * There is an optional mask of length ntri which can be used to mask out
+ * triangles and has the same result as removing those triangles from the
+ * 'triangles' array.
+ *
+ * A particular edge of a triangulation is termed a TriEdge, which is a
+ * triangle index and an edge index in the range 0 to 2. TriEdge(tri,edge)
+ * refers to the edge that starts at point index triangles(tri,edge) and ends
+ * at point index triangles(tri,(edge+1)%3).
+ *
+ * Various derived fields are calculated when they are first needed. The
+ * triangle connectivity is stored in a neighbors array of shape (ntri,3) such
+ * that neighbors(tri,edge) is the index of the triangle that adjoins the
+ * TriEdge(tri,edge), or -1 if there is no such neighbor.
+ *
+ * A triangulation has one or more boundaries, each of which is a 1D array of
+ * the TriEdges that comprise the boundary, in order following the boundary
+ * with non-masked triangles on the left.
+ *
+ * TriContourGenerator
+ * -------------------
+ * A TriContourGenerator generates contours for a particular Triangulation.
+ * The process followed is different for non-filled and filled contours, with
+ * one and two contour levels respectively. In both cases boundary contour
+ * lines are found first, then interior lines.
+ *
+ * Boundary lines start and end on a boundary. They are found by traversing
+ * the triangulation boundary edges until a suitable start point is found, and
+ * then the contour line is followed across the interior of the triangulation
+ * until it ends on another boundary edge. For a non-filled contour this
+ * completes a line, whereas a filled contour continues by following the
+ * boundary around until either another boundary start point is found or the
+ * start of the contour line is reached. Filled contour generation stores
+ * boolean flags to indicate which boundary edges have already been traversed
+ * so that they are not dealt with twice. Similar flags are used to indicate
+ * which triangles have been used when following interior lines.
+ *
+ * Interior lines do not intersect any boundaries. They are found by
+ * traversing all triangles that have not yet been visited until a suitable
+ * starting point is found, and then the contour line is followed across the
+ * interior of the triangulation until it returns to the start point. For
+ * filled contours this process is repeated for both lower and upper contour
+ * levels, and the direction of traversal is reversed for upper contours.
+ *
+ * Working out in which direction a contour line leaves a triangle uses the
+ * a lookup table. A triangle has three points, each of which has a z-value
+ * which is either less than the contour level or not. Hence there are 8
+ * configurations to deal with, 2 of which do not have a contour line (all
+ * points below or above (including the same as) the contour level) and 6 that
+ * do. See the function get_exit_edge for details.
+ */
+#ifndef MPL_TRI_H
+#define MPL_TRI_H
+
+#include <pybind11/pybind11.h>
+#include <pybind11/numpy.h>
+
+#include <iostream>
+#include <list>
+#include <map>
+#include <set>
+#include <vector>
+
+namespace py = pybind11;
+
+
+/* An edge of a triangle consisting of an triangle index in the range 0 to
+ * ntri-1 and an edge index in the range 0 to 2. Edge i goes from the
+ * triangle's point i to point (i+1)%3. */
+struct TriEdge
+{
+ TriEdge();
+ TriEdge(int tri_, int edge_);
+ bool operator<(const TriEdge& other) const;
+ bool operator==(const TriEdge& other) const;
+ bool operator!=(const TriEdge& other) const;
+ friend std::ostream& operator<<(std::ostream& os, const TriEdge& tri_edge);
+
+ int tri, edge;
+};
+
+// 2D point with x,y coordinates.
+struct XY
+{
+ XY();
+ XY(const double& x_, const double& y_);
+ double angle() const; // Angle in radians with respect to x-axis.
+ double cross_z(const XY& other) const; // z-component of cross product.
+ bool is_right_of(const XY& other) const; // Compares x then y.
+ bool operator==(const XY& other) const;
+ bool operator!=(const XY& other) const;
+ XY operator*(const double& multiplier) const;
+ const XY& operator+=(const XY& other);
+ const XY& operator-=(const XY& other);
+ XY operator+(const XY& other) const;
+ XY operator-(const XY& other) const;
+ friend std::ostream& operator<<(std::ostream& os, const XY& xy);
+
+ double x, y;
+};
+
+// 3D point with x,y,z coordinates.
+struct XYZ
+{
+ XYZ(const double& x_, const double& y_, const double& z_);
+ XYZ cross(const XYZ& other) const;
+ double dot(const XYZ& other) const;
+ XYZ operator-(const XYZ& other) const;
+ friend std::ostream& operator<<(std::ostream& os, const XYZ& xyz);
+
+ double x, y, z;
+};
+
+// 2D bounding box, which may be empty.
+class BoundingBox
+{
+public:
+ BoundingBox();
+ void add(const XY& point);
+ void expand(const XY& delta);
+
+ // Consider these member variables read-only.
+ bool empty;
+ XY lower, upper;
+};
+
+/* A single line of a contour, which may be a closed line loop or an open line
+ * strip. Identical adjacent points are avoided using push_back(), and a closed
+ * line loop should also not have identical first and last points. */
+class ContourLine : public std::vector<XY>
+{
+public:
+ ContourLine();
+ void push_back(const XY& point);
+ void write() const;
+};
+
+// A Contour is a collection of zero or more ContourLines.
+typedef std::vector<ContourLine> Contour;
+
+// Debug contour writing function.
+void write_contour(const Contour& contour);
+
+
+
+
+/* Triangulation with npoints points and ntri triangles. Derived fields are
+ * calculated when they are first needed. */
+class Triangulation
+{
+public:
+ typedef py::array_t<double, py::array::c_style | py::array::forcecast> CoordinateArray;
+ typedef py::array_t<double, py::array::c_style | py::array::forcecast> TwoCoordinateArray;
+ typedef py::array_t<int, py::array::c_style | py::array::forcecast> TriangleArray;
+ typedef py::array_t<bool, py::array::c_style | py::array::forcecast> MaskArray;
+ typedef py::array_t<int, py::array::c_style | py::array::forcecast> EdgeArray;
+ typedef py::array_t<int, py::array::c_style | py::array::forcecast> NeighborArray;
+
+ /* A single boundary is a vector of the TriEdges that make up that boundary
+ * following it around with unmasked triangles on the left. */
+ typedef std::vector<TriEdge> Boundary;
+ typedef std::vector<Boundary> Boundaries;
+
+ /* Constructor with optional mask, edges and neighbors. The latter two
+ * are calculated when first needed.
+ * x: double array of shape (npoints) of points' x-coordinates.
+ * y: double array of shape (npoints) of points' y-coordinates.
+ * triangles: int array of shape (ntri,3) of triangle point indices.
+ * Those ordered clockwise are changed to be anticlockwise.
+ * mask: Optional bool array of shape (ntri) indicating which triangles
+ * are masked.
+ * edges: Optional int array of shape (?,2) of start and end point
+ * indices, each edge (start,end and end,start) appearing only
+ * once.
+ * neighbors: Optional int array of shape (ntri,3) indicating which
+ * triangles are the neighbors of which TriEdges, or -1 if
+ * there is no such neighbor.
+ * correct_triangle_orientations: Whether or not should correct triangle
+ * orientations so that vertices are
+ * ordered anticlockwise. */
+ Triangulation(const CoordinateArray& x,
+ const CoordinateArray& y,
+ const TriangleArray& triangles,
+ const MaskArray& mask,
+ const EdgeArray& edges,
+ const NeighborArray& neighbors,
+ bool correct_triangle_orientations);
+
+ /* Calculate plane equation coefficients for all unmasked triangles from
+ * the point (x,y) coordinates and point z-array of shape (npoints) passed
+ * in via the args. Returned array has shape (npoints,3) and allows
+ * z-value at (x,y) coordinates in triangle tri to be calculated using
+ * z = array[tri,0]*x + array[tri,1]*y + array[tri,2]. */
+ TwoCoordinateArray calculate_plane_coefficients(const CoordinateArray& z);
+
+ // Return the boundaries collection, creating it if necessary.
+ const Boundaries& get_boundaries() const;
+
+ // Return which boundary and boundary edge the specified TriEdge is.
+ void get_boundary_edge(const TriEdge& triEdge,
+ int& boundary,
+ int& edge) const;
+
+ /* Return the edges array, creating it if necessary. */
+ EdgeArray& get_edges();
+
+ /* Return the triangle index of the neighbor of the specified triangle
+ * edge. */
+ int get_neighbor(int tri, int edge) const;
+
+ /* Return the TriEdge that is the neighbor of the specified triangle edge,
+ * or TriEdge(-1,-1) if there is no such neighbor. */
+ TriEdge get_neighbor_edge(int tri, int edge) const;
+
+ /* Return the neighbors array, creating it if necessary. */
+ NeighborArray& get_neighbors();
+
+ // Return the number of points in this triangulation.
+ int get_npoints() const;
+
+ // Return the number of triangles in this triangulation.
+ int get_ntri() const;
+
+ /* Return the index of the point that is at the start of the specified
+ * triangle edge. */
+ int get_triangle_point(int tri, int edge) const;
+ int get_triangle_point(const TriEdge& tri_edge) const;
+
+ // Return the coordinates of the specified point index.
+ XY get_point_coords(int point) const;
+
+ // Indicates if the specified triangle is masked or not.
+ bool is_masked(int tri) const;
+
+ /* Set or clear the mask array. Clears various derived fields so they are
+ * recalculated when next needed.
+ * mask: bool array of shape (ntri) indicating which triangles are
+ * masked, or an empty array to clear mask. */
+ void set_mask(const MaskArray& mask);
+
+ // Debug function to write boundaries.
+ void write_boundaries() const;
+
+private:
+ // An edge of a triangulation, composed of start and end point indices.
+ struct Edge
+ {
+ Edge() : start(-1), end(-1) {}
+ Edge(int start_, int end_) : start(start_), end(end_) {}
+ bool operator<(const Edge& other) const {
+ return start != other.start ? start < other.start : end < other.end;
+ }
+ int start, end;
+ };
+
+ /* An edge of a boundary of a triangulation, composed of a boundary index
+ * and an edge index within that boundary. Used to index into the
+ * boundaries collection to obtain the corresponding TriEdge. */
+ struct BoundaryEdge
+ {
+ BoundaryEdge() : boundary(-1), edge(-1) {}
+ BoundaryEdge(int boundary_, int edge_)
+ : boundary(boundary_), edge(edge_) {}
+ int boundary, edge;
+ };
+
+ /* Calculate the boundaries collection. Should normally be accessed via
+ * get_boundaries(), which will call this function if necessary. */
+ void calculate_boundaries();
+
+ /* Calculate the edges array. Should normally be accessed via
+ * get_edges(), which will call this function if necessary. */
+ void calculate_edges();
+
+ /* Calculate the neighbors array. Should normally be accessed via
+ * get_neighbors(), which will call this function if necessary. */
+ void calculate_neighbors();
+
+ /* Correct each triangle so that the vertices are ordered in an
+ * anticlockwise manner. */
+ void correct_triangles();
+
+ /* Determine which edge index (0,1 or 2) the specified point index is in
+ * the specified triangle, or -1 if the point is not in the triangle. */
+ int get_edge_in_triangle(int tri, int point) const;
+
+ bool has_edges() const;
+
+ bool has_mask() const;
+
+ bool has_neighbors() const;
+
+
+ // Variables shared with python, always set.
+ CoordinateArray _x, _y; // double array (npoints).
+ TriangleArray _triangles; // int array (ntri,3) of triangle point indices,
+ // ordered anticlockwise.
+
+ // Variables shared with python, may be unset (size == 0).
+ MaskArray _mask; // bool array (ntri).
+
+ // Derived variables shared with python, may be unset (size == 0).
+ // If unset, are recalculated when needed.
+ EdgeArray _edges; // int array (?,2) of start & end point indices.
+ NeighborArray _neighbors; // int array (ntri,3), neighbor triangle indices
+ // or -1 if no neighbor.
+
+ // Variables internal to C++ only.
+ Boundaries _boundaries;
+
+ // Map used to look up BoundaryEdges from TriEdges. Normally accessed via
+ // get_boundary_edge().
+ typedef std::map<TriEdge, BoundaryEdge> TriEdgeToBoundaryMap;
+ TriEdgeToBoundaryMap _tri_edge_to_boundary_map;
+};
+
+
+
+// Contour generator for a triangulation.
+class TriContourGenerator
+{
+public:
+ typedef Triangulation::CoordinateArray CoordinateArray;
+ typedef Triangulation::TwoCoordinateArray TwoCoordinateArray;
+ typedef py::array_t<unsigned char> CodeArray;
+
+ /* Constructor.
+ * triangulation: Triangulation to generate contours for.
+ * z: Double array of shape (npoints) of z-values at triangulation
+ * points. */
+ TriContourGenerator(Triangulation& triangulation,
+ const CoordinateArray& z);
+
+ /* Create and return a non-filled contour.
+ * level: Contour level.
+ * Returns new python list [segs0, segs1, ...] where
+ * segs0: double array of shape (?,2) of point coordinates of first
+ * contour line, etc. */
+ py::tuple create_contour(const double& level);
+
+ /* Create and return a filled contour.
+ * lower_level: Lower contour level.
+ * upper_level: Upper contour level.
+ * Returns new python tuple (segs, kinds) where
+ * segs: double array of shape (n_points,2) of all point coordinates,
+ * kinds: ubyte array of shape (n_points) of all point code types. */
+ py::tuple create_filled_contour(const double& lower_level,
+ const double& upper_level);
+
+private:
+ typedef Triangulation::Boundary Boundary;
+ typedef Triangulation::Boundaries Boundaries;
+
+ /* Clear visited flags.
+ * include_boundaries: Whether to clear boundary flags or not, which are
+ * only used for filled contours. */
+ void clear_visited_flags(bool include_boundaries);
+
+ /* Convert a non-filled Contour from C++ to Python.
+ * Returns new python tuple ([segs0, segs1, ...], [kinds0, kinds1...])
+ * where
+ * segs0: double array of shape (n_points,2) of point coordinates of first
+ * contour line, etc.
+ * kinds0: ubyte array of shape (n_points) of kinds codes of first contour
+ * line, etc. */
+ py::tuple contour_line_to_segs_and_kinds(const Contour& contour);
+
+ /* Convert a filled Contour from C++ to Python.
+ * Returns new python tuple ([segs], [kinds]) where
+ * segs: double array of shape (n_points,2) of all point coordinates,
+ * kinds: ubyte array of shape (n_points) of all point code types. */
+ py::tuple contour_to_segs_and_kinds(const Contour& contour);
+
+ /* Return the point on the specified TriEdge that intersects the specified
+ * level. */
+ XY edge_interp(int tri, int edge, const double& level);
+
+ /* Find and follow non-filled contour lines that start and end on a
+ * boundary of the Triangulation.
+ * contour: Contour to add new lines to.
+ * level: Contour level. */
+ void find_boundary_lines(Contour& contour,
+ const double& level);
+
+ /* Find and follow filled contour lines at either of the specified contour
+ * levels that start and end of a boundary of the Triangulation.
+ * contour: Contour to add new lines to.
+ * lower_level: Lower contour level.
+ * upper_level: Upper contour level. */
+ void find_boundary_lines_filled(Contour& contour,
+ const double& lower_level,
+ const double& upper_level);
+
+ /* Find and follow lines at the specified contour level that are
+ * completely in the interior of the Triangulation and hence do not
+ * intersect any boundary.
+ * contour: Contour to add new lines to.
+ * level: Contour level.
+ * on_upper: Whether on upper or lower contour level.
+ * filled: Whether contours are filled or not. */
+ void find_interior_lines(Contour& contour,
+ const double& level,
+ bool on_upper,
+ bool filled);
+
+ /* Follow contour line around boundary of the Triangulation from the
+ * specified TriEdge to its end which can be on either the lower or upper
+ * levels. Only used for filled contours.
+ * contour_line: Contour line to append new points to.
+ * tri_edge: On entry, TriEdge to start from. On exit, TriEdge that is
+ * finished on.
+ * lower_level: Lower contour level.
+ * upper_level: Upper contour level.
+ * on_upper: Whether starts on upper level or not.
+ * Return true if finishes on upper level, false if lower. */
+ bool follow_boundary(ContourLine& contour_line,
+ TriEdge& tri_edge,
+ const double& lower_level,
+ const double& upper_level,
+ bool on_upper);
+
+ /* Follow contour line across interior of Triangulation.
+ * contour_line: Contour line to append new points to.
+ * tri_edge: On entry, TriEdge to start from. On exit, TriEdge that is
+ * finished on.
+ * end_on_boundary: Whether this line ends on a boundary, or loops back
+ * upon itself.
+ * level: Contour level to follow.
+ * on_upper: Whether following upper or lower contour level. */
+ void follow_interior(ContourLine& contour_line,
+ TriEdge& tri_edge,
+ bool end_on_boundary,
+ const double& level,
+ bool on_upper);
+
+ // Return the Triangulation boundaries.
+ const Boundaries& get_boundaries() const;
+
+ /* Return the edge by which the a level leaves a particular triangle,
+ * which is 0, 1 or 2 if the contour passes through the triangle or -1
+ * otherwise.
+ * tri: Triangle index.
+ * level: Contour level to follow.
+ * on_upper: Whether following upper or lower contour level. */
+ int get_exit_edge(int tri, const double& level, bool on_upper) const;
+
+ // Return the z-value at the specified point index.
+ const double& get_z(int point) const;
+
+ /* Return the point at which the a level intersects the line connecting the
+ * two specified point indices. */
+ XY interp(int point1, int point2, const double& level) const;
+
+
+
+ // Variables shared with python, always set.
+ Triangulation _triangulation;
+ CoordinateArray _z; // double array (npoints).
+
+ // Variables internal to C++ only.
+ typedef std::vector<bool> InteriorVisited; // Size 2*ntri
+ typedef std::vector<bool> BoundaryVisited;
+ typedef std::vector<BoundaryVisited> BoundariesVisited;
+ typedef std::vector<bool> BoundariesUsed;
+
+ InteriorVisited _interior_visited;
+ BoundariesVisited _boundaries_visited; // Only used for filled contours.
+ BoundariesUsed _boundaries_used; // Only used for filled contours.
+};
+
+
+
+/* TriFinder class implemented using the trapezoid map algorithm from the book
+ * "Computational Geometry, Algorithms and Applications", second edition, by
+ * M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf.
+ *
+ * The domain of interest is composed of vertical-sided trapezoids that are
+ * bounded to the left and right by points of the triangulation, and below and
+ * above by edges of the triangulation. Each triangle is represented by 1 or
+ * more of these trapezoids. Edges are inserted one a time in a random order.
+ *
+ * As the trapezoid map is created, a search tree is also created which allows
+ * fast lookup O(log N) of the trapezoid containing the point of interest.
+ * There are 3 types of node in the search tree: all leaf nodes represent
+ * trapezoids and all branch nodes have 2 child nodes and are either x-nodes or
+ * y-nodes. X-nodes represent points in the triangulation, and their 2 children
+ * refer to those parts of the search tree to the left and right of the point.
+ * Y-nodes represent edges in the triangulation, and their 2 children refer to
+ * those parts of the search tree below and above the edge.
+ *
+ * Nodes can be repeated throughout the search tree, and each is reference
+ * counted through the multiple parent nodes it is a child of.
+ *
+ * The algorithm is only intended to work with valid triangulations, i.e. it
+ * must not contain duplicate points, triangles formed from colinear points, or
+ * overlapping triangles. It does have some tolerance to triangles formed from
+ * colinear points but only in the simplest of cases. No explicit testing of
+ * the validity of the triangulation is performed as this is a computationally
+ * more complex task than the trifinding itself. */
+class TrapezoidMapTriFinder
+{
+public:
+ typedef Triangulation::CoordinateArray CoordinateArray;
+ typedef py::array_t<int, py::array::c_style | py::array::forcecast> TriIndexArray;
+
+ /* Constructor. A separate call to initialize() is required to initialize
+ * the object before use.
+ * triangulation: Triangulation to find triangles in. */
+ TrapezoidMapTriFinder(Triangulation& triangulation);
+
+ ~TrapezoidMapTriFinder();
+
+ /* Return an array of triangle indices. Takes 1D arrays x and y of
+ * point coordinates, and returns an array of the same size containing the
+ * indices of the triangles at those points. */
+ TriIndexArray find_many(const CoordinateArray& x, const CoordinateArray& y);
+
+ /* Return a reference to a new python list containing the following
+ * statistics about the tree:
+ * 0: number of nodes (tree size)
+ * 1: number of unique nodes (number of unique Node objects in tree)
+ * 2: number of trapezoids (tree leaf nodes)
+ * 3: number of unique trapezoids
+ * 4: maximum parent count (max number of times a node is repeated in
+ * tree)
+ * 5: maximum depth of tree (one more than the maximum number of
+ * comparisons needed to search through the tree)
+ * 6: mean of all trapezoid depths (one more than the average number of
+ * comparisons needed to search through the tree) */
+ py::list get_tree_stats();
+
+ /* Initialize this object before use. May be called multiple times, if,
+ * for example, the triangulation is changed by setting the mask. */
+ void initialize();
+
+ // Print the search tree as text to stdout; useful for debug purposes.
+ void print_tree();
+
+private:
+ /* A Point consists of x,y coordinates as well as the index of a triangle
+ * associated with the point, so that a search at this point's coordinates
+ * can return a valid triangle index. */
+ struct Point : XY
+ {
+ Point() : XY(), tri(-1) {}
+ Point(const double& x, const double& y) : XY(x,y), tri(-1) {}
+ explicit Point(const XY& xy) : XY(xy), tri(-1) {}
+
+ int tri;
+ };
+
+ /* An Edge connects two Points, left and right. It is always true that
+ * right->is_right_of(*left). Stores indices of triangles below and above
+ * the Edge which are used to map from trapezoid to triangle index. Also
+ * stores pointers to the 3rd points of the below and above triangles,
+ * which are only used to disambiguate triangles with colinear points. */
+ struct Edge
+ {
+ Edge(const Point* left_,
+ const Point* right_,
+ int triangle_below_,
+ int triangle_above_,
+ const Point* point_below_,
+ const Point* point_above_);
+
+ // Return -1 if point to left of edge, 0 if on edge, +1 if to right.
+ int get_point_orientation(const XY& xy) const;
+
+ // Return slope of edge, even if vertical (divide by zero is OK here).
+ double get_slope() const;
+
+ /* Return y-coordinate of point on edge with specified x-coordinate.
+ * x must be within the x-limits of this edge. */
+ double get_y_at_x(const double& x) const;
+
+ // Return true if the specified point is either of the edge end points.
+ bool has_point(const Point* point) const;
+
+ bool operator==(const Edge& other) const;
+
+ friend std::ostream& operator<<(std::ostream& os, const Edge& edge)
+ {
+ return os << *edge.left << "->" << *edge.right;
+ }
+
+ void print_debug() const;
+
+
+ const Point* left; // Not owned.
+ const Point* right; // Not owned.
+ int triangle_below; // Index of triangle below (to right of) Edge.
+ int triangle_above; // Index of triangle above (to left of) Edge.
+ const Point* point_below; // Used only for resolving ambiguous cases;
+ const Point* point_above; // is 0 if corresponding triangle is -1
+ };
+
+ class Node; // Forward declaration.
+
+ // Helper structure used by TrapezoidMapTriFinder::get_tree_stats.
+ struct NodeStats
+ {
+ NodeStats()
+ : node_count(0), trapezoid_count(0), max_parent_count(0),
+ max_depth(0), sum_trapezoid_depth(0.0)
+ {}
+
+ long node_count, trapezoid_count, max_parent_count, max_depth;
+ double sum_trapezoid_depth;
+ std::set<const Node*> unique_nodes, unique_trapezoid_nodes;
+ };
+
+ struct Trapezoid; // Forward declaration.
+
+ /* Node of the trapezoid map search tree. There are 3 possible types:
+ * Type_XNode, Type_YNode and Type_TrapezoidNode. Data members are
+ * represented using a union: an XNode has a Point and 2 child nodes
+ * (left and right of the point), a YNode has an Edge and 2 child nodes
+ * (below and above the edge), and a TrapezoidNode has a Trapezoid.
+ * Each Node has multiple parents so it can appear in the search tree
+ * multiple times without having to create duplicate identical Nodes.
+ * The parent collection acts as a reference count to the number of times
+ * a Node occurs in the search tree. When the parent count is reduced to
+ * zero a Node can be safely deleted. */
+ class Node
+ {
+ public:
+ Node(const Point* point, Node* left, Node* right);// Type_XNode.
+ Node(const Edge* edge, Node* below, Node* above); // Type_YNode.
+ Node(Trapezoid* trapezoid); // Type_TrapezoidNode.
+
+ ~Node();
+
+ void add_parent(Node* parent);
+
+ /* Recurse through the search tree and assert that everything is valid.
+ * Reduces to a no-op if NDEBUG is defined. */
+ void assert_valid(bool tree_complete) const;
+
+ // Recurse through the tree to return statistics about it.
+ void get_stats(int depth, NodeStats& stats) const;
+
+ // Return the index of the triangle corresponding to this node.
+ int get_tri() const;
+
+ bool has_child(const Node* child) const;
+ bool has_no_parents() const;
+ bool has_parent(const Node* parent) const;
+
+ /* Recurse through the tree and print a textual representation to
+ * stdout. Argument depth used to indent for readability. */
+ void print(int depth = 0) const;
+
+ /* Remove a parent from this Node. Return true if no parents remain
+ * so that this Node can be deleted. */
+ bool remove_parent(Node* parent);
+
+ void replace_child(Node* old_child, Node* new_child);
+
+ // Replace this node with the specified new_node in all parents.
+ void replace_with(Node* new_node);
+
+ /* Recursive search through the tree to find the Node containing the
+ * specified XY point. */
+ const Node* search(const XY& xy);
+
+ /* Recursive search through the tree to find the Trapezoid containing
+ * the left endpoint of the specified Edge. Return 0 if fails, which
+ * can only happen if the triangulation is invalid. */
+ Trapezoid* search(const Edge& edge);
+
+ /* Copy constructor and assignment operator defined but not implemented
+ * to prevent objects being copied. */
+ Node(const Node& other);
+ Node& operator=(const Node& other);
+
+ private:
+ typedef enum {
+ Type_XNode,
+ Type_YNode,
+ Type_TrapezoidNode
+ } Type;
+ Type _type;
+
+ union {
+ struct {
+ const Point* point; // Not owned.
+ Node* left; // Owned.
+ Node* right; // Owned.
+ } xnode;
+ struct {
+ const Edge* edge; // Not owned.
+ Node* below; // Owned.
+ Node* above; // Owned.
+ } ynode;
+ Trapezoid* trapezoid; // Owned.
+ } _union;
+
+ typedef std::list<Node*> Parents;
+ Parents _parents; // Not owned.
+ };
+
+ /* A Trapezoid is bounded by Points to left and right, and Edges below and
+ * above. Has up to 4 neighboring Trapezoids to lower/upper left/right.
+ * Lower left neighbor is Trapezoid to left that shares the below Edge, or
+ * is 0 if there is no such Trapezoid (and similar for other neighbors).
+ * To obtain the index of the triangle corresponding to a particular
+ * Trapezoid, use the Edge member variables below.triangle_above or
+ * above.triangle_below. */
+ struct Trapezoid
+ {
+ Trapezoid(const Point* left_,
+ const Point* right_,
+ const Edge& below_,
+ const Edge& above_);
+
+ /* Assert that this Trapezoid is valid. Reduces to a no-op if NDEBUG
+ * is defined. */
+ void assert_valid(bool tree_complete) const;
+
+ /* Return one of the 4 corner points of this Trapezoid. Only used for
+ * debugging purposes. */
+ XY get_lower_left_point() const;
+ XY get_lower_right_point() const;
+ XY get_upper_left_point() const;
+ XY get_upper_right_point() const;
+
+ void print_debug() const;
+
+ /* Set one of the 4 neighbor trapezoids and the corresponding reverse
+ * Trapezoid of the new neighbor (if it is not 0), so that they are
+ * consistent. */
+ void set_lower_left(Trapezoid* lower_left_);
+ void set_lower_right(Trapezoid* lower_right_);
+ void set_upper_left(Trapezoid* upper_left_);
+ void set_upper_right(Trapezoid* upper_right_);
+
+ /* Copy constructor and assignment operator defined but not implemented
+ * to prevent objects being copied. */
+ Trapezoid(const Trapezoid& other);
+ Trapezoid& operator=(const Trapezoid& other);
+
+
+ const Point* left; // Not owned.
+ const Point* right; // Not owned.
+ const Edge& below;
+ const Edge& above;
+
+ // 4 neighboring trapezoids, can be 0, not owned.
+ Trapezoid* lower_left; // Trapezoid to left that shares below
+ Trapezoid* lower_right; // Trapezoid to right that shares below
+ Trapezoid* upper_left; // Trapezoid to left that shares above
+ Trapezoid* upper_right; // Trapezoid to right that shares above
+
+ Node* trapezoid_node; // Node that owns this Trapezoid.
+ };
+
+
+ // Add the specified Edge to the search tree, returning true if successful.
+ bool add_edge_to_tree(const Edge& edge);
+
+ // Clear all memory allocated by this object.
+ void clear();
+
+ // Return the triangle index at the specified point, or -1 if no triangle.
+ int find_one(const XY& xy);
+
+ /* Determine the trapezoids that the specified Edge intersects, returning
+ * true if successful. */
+ bool find_trapezoids_intersecting_edge(const Edge& edge,
+ std::vector<Trapezoid*>& trapezoids);
+
+
+
+ // Variables shared with python, always set.
+ Triangulation& _triangulation;
+
+ // Variables internal to C++ only.
+ Point* _points; // Array of all points in triangulation plus corners of
+ // enclosing rectangle. Owned.
+
+ typedef std::vector<Edge> Edges;
+ Edges _edges; // All Edges in triangulation plus bottom and top Edges of
+ // enclosing rectangle.
+
+ Node* _tree; // Root node of the trapezoid map search tree. Owned.
+};
+
+#endif
diff --git a/contrib/python/matplotlib/py3/src/tri/_tri_wrapper.cpp b/contrib/python/matplotlib/py3/src/tri/_tri_wrapper.cpp
new file mode 100644
index 00000000000..1b0c3d75555
--- /dev/null
+++ b/contrib/python/matplotlib/py3/src/tri/_tri_wrapper.cpp
@@ -0,0 +1,58 @@
+#include "_tri.h"
+
+PYBIND11_MODULE(_tri, m) {
+ py::class_<Triangulation>(m, "Triangulation")
+ .def(py::init<const Triangulation::CoordinateArray&,
+ const Triangulation::CoordinateArray&,
+ const Triangulation::TriangleArray&,
+ const Triangulation::MaskArray&,
+ const Triangulation::EdgeArray&,
+ const Triangulation::NeighborArray&,
+ bool>(),
+ py::arg("x"),
+ py::arg("y"),
+ py::arg("triangles"),
+ py::arg("mask"),
+ py::arg("edges"),
+ py::arg("neighbors"),
+ py::arg("correct_triangle_orientations"),
+ "Create a new C++ Triangulation object.\n"
+ "This should not be called directly, use the python class\n"
+ "matplotlib.tri.Triangulation instead.\n")
+ .def("calculate_plane_coefficients", &Triangulation::calculate_plane_coefficients,
+ "Calculate plane equation coefficients for all unmasked triangles.")
+ .def("get_edges", &Triangulation::get_edges,
+ "Return edges array.")
+ .def("get_neighbors", &Triangulation::get_neighbors,
+ "Return neighbors array.")
+ .def("set_mask", &Triangulation::set_mask,
+ "Set or clear the mask array.");
+
+ py::class_<TriContourGenerator>(m, "TriContourGenerator")
+ .def(py::init<Triangulation&,
+ const TriContourGenerator::CoordinateArray&>(),
+ py::arg("triangulation"),
+ py::arg("z"),
+ "Create a new C++ TriContourGenerator object.\n"
+ "This should not be called directly, use the functions\n"
+ "matplotlib.axes.tricontour and tricontourf instead.\n")
+ .def("create_contour", &TriContourGenerator::create_contour,
+ "Create and return a non-filled contour.")
+ .def("create_filled_contour", &TriContourGenerator::create_filled_contour,
+ "Create and return a filled contour.");
+
+ py::class_<TrapezoidMapTriFinder>(m, "TrapezoidMapTriFinder")
+ .def(py::init<Triangulation&>(),
+ py::arg("triangulation"),
+ "Create a new C++ TrapezoidMapTriFinder object.\n"
+ "This should not be called directly, use the python class\n"
+ "matplotlib.tri.TrapezoidMapTriFinder instead.\n")
+ .def("find_many", &TrapezoidMapTriFinder::find_many,
+ "Find indices of triangles containing the point coordinates (x, y).")
+ .def("get_tree_stats", &TrapezoidMapTriFinder::get_tree_stats,
+ "Return statistics about the tree used by the trapezoid map.")
+ .def("initialize", &TrapezoidMapTriFinder::initialize,
+ "Initialize this object, creating the trapezoid map from the triangulation.")
+ .def("print_tree", &TrapezoidMapTriFinder::print_tree,
+ "Print the search tree as text to stdout; useful for debug purposes.");
+}