diff options
author | shumkovnd <shumkovnd@yandex-team.com> | 2023-11-10 14:39:34 +0300 |
---|---|---|
committer | shumkovnd <shumkovnd@yandex-team.com> | 2023-11-10 16:42:24 +0300 |
commit | 77eb2d3fdcec5c978c64e025ced2764c57c00285 (patch) | |
tree | c51edb0748ca8d4a08d7c7323312c27ba1a8b79a /contrib/python/matplotlib/py3/src/_image_wrapper.cpp | |
parent | dd6d20cadb65582270ac23f4b3b14ae189704b9d (diff) | |
download | ydb-77eb2d3fdcec5c978c64e025ced2764c57c00285.tar.gz |
KIKIMR-19287: add task_stats_drawing script
Diffstat (limited to 'contrib/python/matplotlib/py3/src/_image_wrapper.cpp')
-rw-r--r-- | contrib/python/matplotlib/py3/src/_image_wrapper.cpp | 297 |
1 files changed, 297 insertions, 0 deletions
diff --git a/contrib/python/matplotlib/py3/src/_image_wrapper.cpp b/contrib/python/matplotlib/py3/src/_image_wrapper.cpp new file mode 100644 index 0000000000..ca6ae8b222 --- /dev/null +++ b/contrib/python/matplotlib/py3/src/_image_wrapper.cpp @@ -0,0 +1,297 @@ +#include "mplutils.h" +#include "_image_resample.h" +#include "numpy_cpp.h" +#include "py_converters.h" + + +/********************************************************************** + * Free functions + * */ + +const char* image_resample__doc__ = +"resample(input_array, output_array, transform, interpolation=NEAREST, resample=False, alpha=1.0, norm=False, radius=1.0)\n" +"--\n\n" + +"Resample input_array, blending it in-place into output_array, using an\n" +"affine transformation.\n\n" + +"Parameters\n" +"----------\n" +"input_array : 2-d or 3-d NumPy array of float, double or `numpy.uint8`\n" +" If 2-d, the image is grayscale. If 3-d, the image must be of size\n" +" 4 in the last dimension and represents RGBA data.\n\n" + +"output_array : 2-d or 3-d NumPy array of float, double or `numpy.uint8`\n" +" The dtype and number of dimensions must match `input_array`.\n\n" + +"transform : matplotlib.transforms.Transform instance\n" +" The transformation from the input array to the output array.\n\n" + +"interpolation : int, default: NEAREST\n" +" The interpolation method. Must be one of the following constants\n" +" defined in this module:\n\n" + +" NEAREST, BILINEAR, BICUBIC, SPLINE16, SPLINE36,\n" +" HANNING, HAMMING, HERMITE, KAISER, QUADRIC, CATROM, GAUSSIAN,\n" +" BESSEL, MITCHELL, SINC, LANCZOS, BLACKMAN\n\n" + +"resample : bool, optional\n" +" When `True`, use a full resampling method. When `False`, only\n" +" resample when the output image is larger than the input image.\n\n" + +"alpha : float, default: 1\n" +" The transparency level, from 0 (transparent) to 1 (opaque).\n\n" + +"norm : bool, default: False\n" +" Whether to norm the interpolation function.\n\n" + +"radius: float, default: 1\n" +" The radius of the kernel, if method is SINC, LANCZOS or BLACKMAN.\n"; + + +static PyArrayObject * +_get_transform_mesh(PyObject *py_affine, npy_intp *dims) +{ + /* TODO: Could we get away with float, rather than double, arrays here? */ + + /* Given a non-affine transform object, create a mesh that maps + every pixel in the output image to the input image. This is used + as a lookup table during the actual resampling. */ + + PyObject *py_inverse = NULL; + npy_intp out_dims[3]; + + out_dims[0] = dims[0] * dims[1]; + out_dims[1] = 2; + + py_inverse = PyObject_CallMethod(py_affine, "inverted", NULL); + if (py_inverse == NULL) { + return NULL; + } + + numpy::array_view<double, 2> input_mesh(out_dims); + double *p = (double *)input_mesh.data(); + + for (npy_intp y = 0; y < dims[0]; ++y) { + for (npy_intp x = 0; x < dims[1]; ++x) { + *p++ = (double)x; + *p++ = (double)y; + } + } + + PyObject *output_mesh = PyObject_CallMethod( + py_inverse, "transform", "O", input_mesh.pyobj_steal()); + + Py_DECREF(py_inverse); + + if (output_mesh == NULL) { + return NULL; + } + + PyArrayObject *output_mesh_array = + (PyArrayObject *)PyArray_ContiguousFromAny( + output_mesh, NPY_DOUBLE, 2, 2); + + Py_DECREF(output_mesh); + + if (output_mesh_array == NULL) { + return NULL; + } + + return output_mesh_array; +} + + +static PyObject * +image_resample(PyObject *self, PyObject* args, PyObject *kwargs) +{ + PyObject *py_input = NULL; + PyObject *py_output = NULL; + PyObject *py_transform = NULL; + resample_params_t params; + + PyArrayObject *input = NULL; + PyArrayObject *output = NULL; + PyArrayObject *transform_mesh = NULL; + int ndim; + int type; + + params.interpolation = NEAREST; + params.transform_mesh = NULL; + params.resample = false; + params.norm = false; + params.radius = 1.0; + params.alpha = 1.0; + + const char *kwlist[] = { + "input_array", "output_array", "transform", "interpolation", + "resample", "alpha", "norm", "radius", NULL }; + + if (!PyArg_ParseTupleAndKeywords( + args, kwargs, "OOO|iO&dO&d:resample", (char **)kwlist, + &py_input, &py_output, &py_transform, + ¶ms.interpolation, &convert_bool, ¶ms.resample, + ¶ms.alpha, &convert_bool, ¶ms.norm, ¶ms.radius)) { + return NULL; + } + + if (params.interpolation < 0 || params.interpolation >= _n_interpolation) { + PyErr_Format(PyExc_ValueError, "Invalid interpolation value %d", + params.interpolation); + goto error; + } + + input = (PyArrayObject *)PyArray_FromAny( + py_input, NULL, 2, 3, NPY_ARRAY_C_CONTIGUOUS, NULL); + if (!input) { + goto error; + } + ndim = PyArray_NDIM(input); + type = PyArray_TYPE(input); + + if (!PyArray_Check(py_output)) { + PyErr_SetString(PyExc_ValueError, "Output array must be a NumPy array"); + goto error; + } + output = (PyArrayObject *)py_output; + if (PyArray_NDIM(output) != ndim) { + PyErr_Format( + PyExc_ValueError, + "Input (%dD) and output (%dD) have different dimensionalities.", + ndim, PyArray_NDIM(output)); + goto error; + } + // PyArray_FromAny above checks that input is 2D or 3D. + if (ndim == 3 && (PyArray_DIM(input, 2) != 4 || PyArray_DIM(output, 2) != 4)) { + PyErr_Format( + PyExc_ValueError, + "If 3D, input and output arrays must be RGBA with shape (M, N, 4); " + "got trailing dimensions of %" NPY_INTP_FMT " and %" NPY_INTP_FMT + " respectively", PyArray_DIM(input, 2), PyArray_DIM(output, 2)); + goto error; + } + if (PyArray_TYPE(output) != type) { + PyErr_SetString(PyExc_ValueError, "Mismatched types"); + goto error; + } + if (!PyArray_IS_C_CONTIGUOUS(output)) { + PyErr_SetString(PyExc_ValueError, "Output array must be C-contiguous"); + goto error; + } + + if (py_transform == NULL || py_transform == Py_None) { + params.is_affine = true; + } else { + PyObject *py_is_affine; + int py_is_affine2; + py_is_affine = PyObject_GetAttrString(py_transform, "is_affine"); + if (!py_is_affine) { + goto error; + } + + py_is_affine2 = PyObject_IsTrue(py_is_affine); + Py_DECREF(py_is_affine); + + if (py_is_affine2 == -1) { + goto error; + } else if (py_is_affine2) { + if (!convert_trans_affine(py_transform, ¶ms.affine)) { + goto error; + } + params.is_affine = true; + } else { + transform_mesh = _get_transform_mesh( + py_transform, PyArray_DIMS(output)); + if (!transform_mesh) { + goto error; + } + params.transform_mesh = (double *)PyArray_DATA(transform_mesh); + params.is_affine = false; + } + } + + if (auto resampler = + (ndim == 2) ? ( + (type == NPY_UINT8) ? resample<agg::gray8> : + (type == NPY_INT8) ? resample<agg::gray8> : + (type == NPY_UINT16) ? resample<agg::gray16> : + (type == NPY_INT16) ? resample<agg::gray16> : + (type == NPY_FLOAT32) ? resample<agg::gray32> : + (type == NPY_FLOAT64) ? resample<agg::gray64> : + nullptr) : ( + // ndim == 3 + (type == NPY_UINT8) ? resample<agg::rgba8> : + (type == NPY_INT8) ? resample<agg::rgba8> : + (type == NPY_UINT16) ? resample<agg::rgba16> : + (type == NPY_INT16) ? resample<agg::rgba16> : + (type == NPY_FLOAT32) ? resample<agg::rgba32> : + (type == NPY_FLOAT64) ? resample<agg::rgba64> : + nullptr)) { + Py_BEGIN_ALLOW_THREADS + resampler( + PyArray_DATA(input), PyArray_DIM(input, 1), PyArray_DIM(input, 0), + PyArray_DATA(output), PyArray_DIM(output, 1), PyArray_DIM(output, 0), + params); + Py_END_ALLOW_THREADS + } else { + PyErr_SetString( + PyExc_ValueError, + "arrays must be of dtype byte, short, float32 or float64"); + goto error; + } + + Py_DECREF(input); + Py_XDECREF(transform_mesh); + Py_RETURN_NONE; + + error: + Py_XDECREF(input); + Py_XDECREF(transform_mesh); + return NULL; +} + +static PyMethodDef module_functions[] = { + {"resample", (PyCFunction)image_resample, METH_VARARGS|METH_KEYWORDS, image_resample__doc__}, + {NULL} +}; + +static struct PyModuleDef moduledef = { + PyModuleDef_HEAD_INIT, "_image", NULL, 0, module_functions, +}; + +PyMODINIT_FUNC PyInit__image(void) +{ + PyObject *m; + + import_array(); + + m = PyModule_Create(&moduledef); + + if (m == NULL) { + return NULL; + } + + if (PyModule_AddIntConstant(m, "NEAREST", NEAREST) || + PyModule_AddIntConstant(m, "BILINEAR", BILINEAR) || + PyModule_AddIntConstant(m, "BICUBIC", BICUBIC) || + PyModule_AddIntConstant(m, "SPLINE16", SPLINE16) || + PyModule_AddIntConstant(m, "SPLINE36", SPLINE36) || + PyModule_AddIntConstant(m, "HANNING", HANNING) || + PyModule_AddIntConstant(m, "HAMMING", HAMMING) || + PyModule_AddIntConstant(m, "HERMITE", HERMITE) || + PyModule_AddIntConstant(m, "KAISER", KAISER) || + PyModule_AddIntConstant(m, "QUADRIC", QUADRIC) || + PyModule_AddIntConstant(m, "CATROM", CATROM) || + PyModule_AddIntConstant(m, "GAUSSIAN", GAUSSIAN) || + PyModule_AddIntConstant(m, "BESSEL", BESSEL) || + PyModule_AddIntConstant(m, "MITCHELL", MITCHELL) || + PyModule_AddIntConstant(m, "SINC", SINC) || + PyModule_AddIntConstant(m, "LANCZOS", LANCZOS) || + PyModule_AddIntConstant(m, "BLACKMAN", BLACKMAN) || + PyModule_AddIntConstant(m, "_n_interpolation", _n_interpolation)) { + Py_DECREF(m); + return NULL; + } + + return m; +} |