aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py
diff options
context:
space:
mode:
authorshumkovnd <shumkovnd@yandex-team.com>2023-11-10 14:39:34 +0300
committershumkovnd <shumkovnd@yandex-team.com>2023-11-10 16:42:24 +0300
commit77eb2d3fdcec5c978c64e025ced2764c57c00285 (patch)
treec51edb0748ca8d4a08d7c7323312c27ba1a8b79a /contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py
parentdd6d20cadb65582270ac23f4b3b14ae189704b9d (diff)
downloadydb-77eb2d3fdcec5c978c64e025ced2764c57c00285.tar.gz
KIKIMR-19287: add task_stats_drawing script
Diffstat (limited to 'contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py')
-rw-r--r--contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py259
1 files changed, 259 insertions, 0 deletions
diff --git a/contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py b/contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py
new file mode 100644
index 0000000000..098a7b6f66
--- /dev/null
+++ b/contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py
@@ -0,0 +1,259 @@
+"""
+Various transforms used for by the 3D code
+"""
+
+import numpy as np
+
+from matplotlib import _api
+
+
+def world_transformation(xmin, xmax,
+ ymin, ymax,
+ zmin, zmax, pb_aspect=None):
+ """
+ Produce a matrix that scales homogeneous coords in the specified ranges
+ to [0, 1], or [0, pb_aspect[i]] if the plotbox aspect ratio is specified.
+ """
+ dx = xmax - xmin
+ dy = ymax - ymin
+ dz = zmax - zmin
+ if pb_aspect is not None:
+ ax, ay, az = pb_aspect
+ dx /= ax
+ dy /= ay
+ dz /= az
+
+ return np.array([[1/dx, 0, 0, -xmin/dx],
+ [0, 1/dy, 0, -ymin/dy],
+ [0, 0, 1/dz, -zmin/dz],
+ [0, 0, 0, 1]])
+
+
+@_api.deprecated("3.8")
+def rotation_about_vector(v, angle):
+ """
+ Produce a rotation matrix for an angle in radians about a vector.
+ """
+ return _rotation_about_vector(v, angle)
+
+
+def _rotation_about_vector(v, angle):
+ """
+ Produce a rotation matrix for an angle in radians about a vector.
+ """
+ vx, vy, vz = v / np.linalg.norm(v)
+ s = np.sin(angle)
+ c = np.cos(angle)
+ t = 2*np.sin(angle/2)**2 # more numerically stable than t = 1-c
+
+ R = np.array([
+ [t*vx*vx + c, t*vx*vy - vz*s, t*vx*vz + vy*s],
+ [t*vy*vx + vz*s, t*vy*vy + c, t*vy*vz - vx*s],
+ [t*vz*vx - vy*s, t*vz*vy + vx*s, t*vz*vz + c]])
+
+ return R
+
+
+def _view_axes(E, R, V, roll):
+ """
+ Get the unit viewing axes in data coordinates.
+
+ Parameters
+ ----------
+ E : 3-element numpy array
+ The coordinates of the eye/camera.
+ R : 3-element numpy array
+ The coordinates of the center of the view box.
+ V : 3-element numpy array
+ Unit vector in the direction of the vertical axis.
+ roll : float
+ The roll angle in radians.
+
+ Returns
+ -------
+ u : 3-element numpy array
+ Unit vector pointing towards the right of the screen.
+ v : 3-element numpy array
+ Unit vector pointing towards the top of the screen.
+ w : 3-element numpy array
+ Unit vector pointing out of the screen.
+ """
+ w = (E - R)
+ w = w/np.linalg.norm(w)
+ u = np.cross(V, w)
+ u = u/np.linalg.norm(u)
+ v = np.cross(w, u) # Will be a unit vector
+
+ # Save some computation for the default roll=0
+ if roll != 0:
+ # A positive rotation of the camera is a negative rotation of the world
+ Rroll = _rotation_about_vector(w, -roll)
+ u = np.dot(Rroll, u)
+ v = np.dot(Rroll, v)
+ return u, v, w
+
+
+def _view_transformation_uvw(u, v, w, E):
+ """
+ Return the view transformation matrix.
+
+ Parameters
+ ----------
+ u : 3-element numpy array
+ Unit vector pointing towards the right of the screen.
+ v : 3-element numpy array
+ Unit vector pointing towards the top of the screen.
+ w : 3-element numpy array
+ Unit vector pointing out of the screen.
+ E : 3-element numpy array
+ The coordinates of the eye/camera.
+ """
+ Mr = np.eye(4)
+ Mt = np.eye(4)
+ Mr[:3, :3] = [u, v, w]
+ Mt[:3, -1] = -E
+ M = np.dot(Mr, Mt)
+ return M
+
+
+@_api.deprecated("3.8")
+def view_transformation(E, R, V, roll):
+ """
+ Return the view transformation matrix.
+
+ Parameters
+ ----------
+ E : 3-element numpy array
+ The coordinates of the eye/camera.
+ R : 3-element numpy array
+ The coordinates of the center of the view box.
+ V : 3-element numpy array
+ Unit vector in the direction of the vertical axis.
+ roll : float
+ The roll angle in radians.
+ """
+ u, v, w = _view_axes(E, R, V, roll)
+ M = _view_transformation_uvw(u, v, w, E)
+ return M
+
+
+@_api.deprecated("3.8")
+def persp_transformation(zfront, zback, focal_length):
+ return _persp_transformation(zfront, zback, focal_length)
+
+
+def _persp_transformation(zfront, zback, focal_length):
+ e = focal_length
+ a = 1 # aspect ratio
+ b = (zfront+zback)/(zfront-zback)
+ c = -2*(zfront*zback)/(zfront-zback)
+ proj_matrix = np.array([[e, 0, 0, 0],
+ [0, e/a, 0, 0],
+ [0, 0, b, c],
+ [0, 0, -1, 0]])
+ return proj_matrix
+
+
+@_api.deprecated("3.8")
+def ortho_transformation(zfront, zback):
+ return _ortho_transformation(zfront, zback)
+
+
+def _ortho_transformation(zfront, zback):
+ # note: w component in the resulting vector will be (zback-zfront), not 1
+ a = -(zfront + zback)
+ b = -(zfront - zback)
+ proj_matrix = np.array([[2, 0, 0, 0],
+ [0, 2, 0, 0],
+ [0, 0, -2, 0],
+ [0, 0, a, b]])
+ return proj_matrix
+
+
+def _proj_transform_vec(vec, M):
+ vecw = np.dot(M, vec)
+ w = vecw[3]
+ # clip here..
+ txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w
+ return txs, tys, tzs
+
+
+def _proj_transform_vec_clip(vec, M):
+ vecw = np.dot(M, vec)
+ w = vecw[3]
+ # clip here.
+ txs, tys, tzs = vecw[0] / w, vecw[1] / w, vecw[2] / w
+ tis = (0 <= vecw[0]) & (vecw[0] <= 1) & (0 <= vecw[1]) & (vecw[1] <= 1)
+ if np.any(tis):
+ tis = vecw[1] < 1
+ return txs, tys, tzs, tis
+
+
+def inv_transform(xs, ys, zs, invM):
+ """
+ Transform the points by the inverse of the projection matrix, *invM*.
+ """
+ vec = _vec_pad_ones(xs, ys, zs)
+ vecr = np.dot(invM, vec)
+ if vecr.shape == (4,):
+ vecr = vecr.reshape((4, 1))
+ for i in range(vecr.shape[1]):
+ if vecr[3][i] != 0:
+ vecr[:, i] = vecr[:, i] / vecr[3][i]
+ return vecr[0], vecr[1], vecr[2]
+
+
+def _vec_pad_ones(xs, ys, zs):
+ return np.array([xs, ys, zs, np.ones_like(xs)])
+
+
+def proj_transform(xs, ys, zs, M):
+ """
+ Transform the points by the projection matrix *M*.
+ """
+ vec = _vec_pad_ones(xs, ys, zs)
+ return _proj_transform_vec(vec, M)
+
+
+transform = _api.deprecated(
+ "3.8", obj_type="function", name="transform",
+ alternative="proj_transform")(proj_transform)
+
+
+def proj_transform_clip(xs, ys, zs, M):
+ """
+ Transform the points by the projection matrix
+ and return the clipping result
+ returns txs, tys, tzs, tis
+ """
+ vec = _vec_pad_ones(xs, ys, zs)
+ return _proj_transform_vec_clip(vec, M)
+
+
+@_api.deprecated("3.8")
+def proj_points(points, M):
+ return _proj_points(points, M)
+
+
+def _proj_points(points, M):
+ return np.column_stack(_proj_trans_points(points, M))
+
+
+@_api.deprecated("3.8")
+def proj_trans_points(points, M):
+ return _proj_trans_points(points, M)
+
+
+def _proj_trans_points(points, M):
+ xs, ys, zs = zip(*points)
+ return proj_transform(xs, ys, zs, M)
+
+
+@_api.deprecated("3.8")
+def rot_x(V, alpha):
+ cosa, sina = np.cos(alpha), np.sin(alpha)
+ M1 = np.array([[1, 0, 0, 0],
+ [0, cosa, -sina, 0],
+ [0, sina, cosa, 0],
+ [0, 0, 0, 1]])
+ return np.dot(M1, V)