diff options
author | shumkovnd <shumkovnd@yandex-team.com> | 2023-11-10 14:39:34 +0300 |
---|---|---|
committer | shumkovnd <shumkovnd@yandex-team.com> | 2023-11-10 16:42:24 +0300 |
commit | 77eb2d3fdcec5c978c64e025ced2764c57c00285 (patch) | |
tree | c51edb0748ca8d4a08d7c7323312c27ba1a8b79a /contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py | |
parent | dd6d20cadb65582270ac23f4b3b14ae189704b9d (diff) | |
download | ydb-77eb2d3fdcec5c978c64e025ced2764c57c00285.tar.gz |
KIKIMR-19287: add task_stats_drawing script
Diffstat (limited to 'contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py')
-rw-r--r-- | contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py | 259 |
1 files changed, 259 insertions, 0 deletions
diff --git a/contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py b/contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py new file mode 100644 index 0000000000..098a7b6f66 --- /dev/null +++ b/contrib/python/matplotlib/py3/mpl_toolkits/mplot3d/proj3d.py @@ -0,0 +1,259 @@ +""" +Various transforms used for by the 3D code +""" + +import numpy as np + +from matplotlib import _api + + +def world_transformation(xmin, xmax, + ymin, ymax, + zmin, zmax, pb_aspect=None): + """ + Produce a matrix that scales homogeneous coords in the specified ranges + to [0, 1], or [0, pb_aspect[i]] if the plotbox aspect ratio is specified. + """ + dx = xmax - xmin + dy = ymax - ymin + dz = zmax - zmin + if pb_aspect is not None: + ax, ay, az = pb_aspect + dx /= ax + dy /= ay + dz /= az + + return np.array([[1/dx, 0, 0, -xmin/dx], + [0, 1/dy, 0, -ymin/dy], + [0, 0, 1/dz, -zmin/dz], + [0, 0, 0, 1]]) + + +@_api.deprecated("3.8") +def rotation_about_vector(v, angle): + """ + Produce a rotation matrix for an angle in radians about a vector. + """ + return _rotation_about_vector(v, angle) + + +def _rotation_about_vector(v, angle): + """ + Produce a rotation matrix for an angle in radians about a vector. + """ + vx, vy, vz = v / np.linalg.norm(v) + s = np.sin(angle) + c = np.cos(angle) + t = 2*np.sin(angle/2)**2 # more numerically stable than t = 1-c + + R = np.array([ + [t*vx*vx + c, t*vx*vy - vz*s, t*vx*vz + vy*s], + [t*vy*vx + vz*s, t*vy*vy + c, t*vy*vz - vx*s], + [t*vz*vx - vy*s, t*vz*vy + vx*s, t*vz*vz + c]]) + + return R + + +def _view_axes(E, R, V, roll): + """ + Get the unit viewing axes in data coordinates. + + Parameters + ---------- + E : 3-element numpy array + The coordinates of the eye/camera. + R : 3-element numpy array + The coordinates of the center of the view box. + V : 3-element numpy array + Unit vector in the direction of the vertical axis. + roll : float + The roll angle in radians. + + Returns + ------- + u : 3-element numpy array + Unit vector pointing towards the right of the screen. + v : 3-element numpy array + Unit vector pointing towards the top of the screen. + w : 3-element numpy array + Unit vector pointing out of the screen. + """ + w = (E - R) + w = w/np.linalg.norm(w) + u = np.cross(V, w) + u = u/np.linalg.norm(u) + v = np.cross(w, u) # Will be a unit vector + + # Save some computation for the default roll=0 + if roll != 0: + # A positive rotation of the camera is a negative rotation of the world + Rroll = _rotation_about_vector(w, -roll) + u = np.dot(Rroll, u) + v = np.dot(Rroll, v) + return u, v, w + + +def _view_transformation_uvw(u, v, w, E): + """ + Return the view transformation matrix. + + Parameters + ---------- + u : 3-element numpy array + Unit vector pointing towards the right of the screen. + v : 3-element numpy array + Unit vector pointing towards the top of the screen. + w : 3-element numpy array + Unit vector pointing out of the screen. + E : 3-element numpy array + The coordinates of the eye/camera. + """ + Mr = np.eye(4) + Mt = np.eye(4) + Mr[:3, :3] = [u, v, w] + Mt[:3, -1] = -E + M = np.dot(Mr, Mt) + return M + + +@_api.deprecated("3.8") +def view_transformation(E, R, V, roll): + """ + Return the view transformation matrix. + + Parameters + ---------- + E : 3-element numpy array + The coordinates of the eye/camera. + R : 3-element numpy array + The coordinates of the center of the view box. + V : 3-element numpy array + Unit vector in the direction of the vertical axis. + roll : float + The roll angle in radians. + """ + u, v, w = _view_axes(E, R, V, roll) + M = _view_transformation_uvw(u, v, w, E) + return M + + +@_api.deprecated("3.8") +def persp_transformation(zfront, zback, focal_length): + return _persp_transformation(zfront, zback, focal_length) + + +def _persp_transformation(zfront, zback, focal_length): + e = focal_length + a = 1 # aspect ratio + b = (zfront+zback)/(zfront-zback) + c = -2*(zfront*zback)/(zfront-zback) + proj_matrix = np.array([[e, 0, 0, 0], + [0, e/a, 0, 0], + [0, 0, b, c], + [0, 0, -1, 0]]) + return proj_matrix + + +@_api.deprecated("3.8") +def ortho_transformation(zfront, zback): + return _ortho_transformation(zfront, zback) + + +def _ortho_transformation(zfront, zback): + # note: w component in the resulting vector will be (zback-zfront), not 1 + a = -(zfront + zback) + b = -(zfront - zback) + proj_matrix = np.array([[2, 0, 0, 0], + [0, 2, 0, 0], + [0, 0, -2, 0], + [0, 0, a, b]]) + return proj_matrix + + +def _proj_transform_vec(vec, M): + vecw = np.dot(M, vec) + w = vecw[3] + # clip here.. + txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w + return txs, tys, tzs + + +def _proj_transform_vec_clip(vec, M): + vecw = np.dot(M, vec) + w = vecw[3] + # clip here. + txs, tys, tzs = vecw[0] / w, vecw[1] / w, vecw[2] / w + tis = (0 <= vecw[0]) & (vecw[0] <= 1) & (0 <= vecw[1]) & (vecw[1] <= 1) + if np.any(tis): + tis = vecw[1] < 1 + return txs, tys, tzs, tis + + +def inv_transform(xs, ys, zs, invM): + """ + Transform the points by the inverse of the projection matrix, *invM*. + """ + vec = _vec_pad_ones(xs, ys, zs) + vecr = np.dot(invM, vec) + if vecr.shape == (4,): + vecr = vecr.reshape((4, 1)) + for i in range(vecr.shape[1]): + if vecr[3][i] != 0: + vecr[:, i] = vecr[:, i] / vecr[3][i] + return vecr[0], vecr[1], vecr[2] + + +def _vec_pad_ones(xs, ys, zs): + return np.array([xs, ys, zs, np.ones_like(xs)]) + + +def proj_transform(xs, ys, zs, M): + """ + Transform the points by the projection matrix *M*. + """ + vec = _vec_pad_ones(xs, ys, zs) + return _proj_transform_vec(vec, M) + + +transform = _api.deprecated( + "3.8", obj_type="function", name="transform", + alternative="proj_transform")(proj_transform) + + +def proj_transform_clip(xs, ys, zs, M): + """ + Transform the points by the projection matrix + and return the clipping result + returns txs, tys, tzs, tis + """ + vec = _vec_pad_ones(xs, ys, zs) + return _proj_transform_vec_clip(vec, M) + + +@_api.deprecated("3.8") +def proj_points(points, M): + return _proj_points(points, M) + + +def _proj_points(points, M): + return np.column_stack(_proj_trans_points(points, M)) + + +@_api.deprecated("3.8") +def proj_trans_points(points, M): + return _proj_trans_points(points, M) + + +def _proj_trans_points(points, M): + xs, ys, zs = zip(*points) + return proj_transform(xs, ys, zs, M) + + +@_api.deprecated("3.8") +def rot_x(V, alpha): + cosa, sina = np.cos(alpha), np.sin(alpha) + M1 = np.array([[1, 0, 0, 0], + [0, cosa, -sina, 0], + [0, sina, cosa, 0], + [0, 0, 0, 1]]) + return np.dot(M1, V) |