diff options
author | maxim-yurchuk <maxim-yurchuk@yandex-team.com> | 2025-02-11 13:26:52 +0300 |
---|---|---|
committer | maxim-yurchuk <maxim-yurchuk@yandex-team.com> | 2025-02-11 13:57:59 +0300 |
commit | f895bba65827952ed934b2b46f9a45e30a191fd2 (patch) | |
tree | 03260c906d9ec41cdc03e2a496b15d407459cec0 /contrib/python/matplotlib/py3/extern/agg24-svn/include/agg_math.h | |
parent | 5f7060466f7b9707818c2091e1a25c14f33c3474 (diff) | |
download | ydb-f895bba65827952ed934b2b46f9a45e30a191fd2.tar.gz |
Remove deps on pandas
<https://github.com/ydb-platform/ydb/pull/14418>
<https://github.com/ydb-platform/ydb/pull/14419>
\-- аналогичные правки в gh
Хочу залить в обход синка, чтобы посмотреть удалится ли pandas в нашей gh репе через piglet
commit_hash:abca127aa37d4dbb94b07e1e18cdb8eb5b711860
Diffstat (limited to 'contrib/python/matplotlib/py3/extern/agg24-svn/include/agg_math.h')
-rw-r--r-- | contrib/python/matplotlib/py3/extern/agg24-svn/include/agg_math.h | 437 |
1 files changed, 0 insertions, 437 deletions
diff --git a/contrib/python/matplotlib/py3/extern/agg24-svn/include/agg_math.h b/contrib/python/matplotlib/py3/extern/agg24-svn/include/agg_math.h deleted file mode 100644 index 2ec49cf3ff8..00000000000 --- a/contrib/python/matplotlib/py3/extern/agg24-svn/include/agg_math.h +++ /dev/null @@ -1,437 +0,0 @@ -//---------------------------------------------------------------------------- -// Anti-Grain Geometry - Version 2.4 -// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) -// -// Permission to copy, use, modify, sell and distribute this software -// is granted provided this copyright notice appears in all copies. -// This software is provided "as is" without express or implied -// warranty, and with no claim as to its suitability for any purpose. -// -//---------------------------------------------------------------------------- -// Contact: mcseem@antigrain.com -// mcseemagg@yahoo.com -// http://www.antigrain.com -//---------------------------------------------------------------------------- -// Bessel function (besj) was adapted for use in AGG library by Andy Wilk -// Contact: castor.vulgaris@gmail.com -//---------------------------------------------------------------------------- - -#ifndef AGG_MATH_INCLUDED -#define AGG_MATH_INCLUDED - -#include <math.h> -#include "agg_basics.h" - -namespace agg -{ - - //------------------------------------------------------vertex_dist_epsilon - // Coinciding points maximal distance (Epsilon) - const double vertex_dist_epsilon = 1e-14; - - //-----------------------------------------------------intersection_epsilon - // See calc_intersection - const double intersection_epsilon = 1.0e-30; - - //------------------------------------------------------------cross_product - AGG_INLINE double cross_product(double x1, double y1, - double x2, double y2, - double x, double y) - { - return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1); - } - - //--------------------------------------------------------point_in_triangle - AGG_INLINE bool point_in_triangle(double x1, double y1, - double x2, double y2, - double x3, double y3, - double x, double y) - { - bool cp1 = cross_product(x1, y1, x2, y2, x, y) < 0.0; - bool cp2 = cross_product(x2, y2, x3, y3, x, y) < 0.0; - bool cp3 = cross_product(x3, y3, x1, y1, x, y) < 0.0; - return cp1 == cp2 && cp2 == cp3 && cp3 == cp1; - } - - //-----------------------------------------------------------calc_distance - AGG_INLINE double calc_distance(double x1, double y1, double x2, double y2) - { - double dx = x2-x1; - double dy = y2-y1; - return sqrt(dx * dx + dy * dy); - } - - //--------------------------------------------------------calc_sq_distance - AGG_INLINE double calc_sq_distance(double x1, double y1, double x2, double y2) - { - double dx = x2-x1; - double dy = y2-y1; - return dx * dx + dy * dy; - } - - //------------------------------------------------calc_line_point_distance - AGG_INLINE double calc_line_point_distance(double x1, double y1, - double x2, double y2, - double x, double y) - { - double dx = x2-x1; - double dy = y2-y1; - double d = sqrt(dx * dx + dy * dy); - if(d < vertex_dist_epsilon) - { - return calc_distance(x1, y1, x, y); - } - return ((x - x2) * dy - (y - y2) * dx) / d; - } - - //-------------------------------------------------------calc_line_point_u - AGG_INLINE double calc_segment_point_u(double x1, double y1, - double x2, double y2, - double x, double y) - { - double dx = x2 - x1; - double dy = y2 - y1; - - if(dx == 0 && dy == 0) - { - return 0; - } - - double pdx = x - x1; - double pdy = y - y1; - - return (pdx * dx + pdy * dy) / (dx * dx + dy * dy); - } - - //---------------------------------------------calc_line_point_sq_distance - AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1, - double x2, double y2, - double x, double y, - double u) - { - if(u <= 0) - { - return calc_sq_distance(x, y, x1, y1); - } - else - if(u >= 1) - { - return calc_sq_distance(x, y, x2, y2); - } - return calc_sq_distance(x, y, x1 + u * (x2 - x1), y1 + u * (y2 - y1)); - } - - //---------------------------------------------calc_line_point_sq_distance - AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1, - double x2, double y2, - double x, double y) - { - return - calc_segment_point_sq_distance( - x1, y1, x2, y2, x, y, - calc_segment_point_u(x1, y1, x2, y2, x, y)); - } - - //-------------------------------------------------------calc_intersection - AGG_INLINE bool calc_intersection(double ax, double ay, double bx, double by, - double cx, double cy, double dx, double dy, - double* x, double* y) - { - double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy); - double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx); - if(fabs(den) < intersection_epsilon) return false; - double r = num / den; - *x = ax + r * (bx-ax); - *y = ay + r * (by-ay); - return true; - } - - //-----------------------------------------------------intersection_exists - AGG_INLINE bool intersection_exists(double x1, double y1, double x2, double y2, - double x3, double y3, double x4, double y4) - { - // It's less expensive but you can't control the - // boundary conditions: Less or LessEqual - double dx1 = x2 - x1; - double dy1 = y2 - y1; - double dx2 = x4 - x3; - double dy2 = y4 - y3; - return ((x3 - x2) * dy1 - (y3 - y2) * dx1 < 0.0) != - ((x4 - x2) * dy1 - (y4 - y2) * dx1 < 0.0) && - ((x1 - x4) * dy2 - (y1 - y4) * dx2 < 0.0) != - ((x2 - x4) * dy2 - (y2 - y4) * dx2 < 0.0); - - // It's is more expensive but more flexible - // in terms of boundary conditions. - //-------------------- - //double den = (x2-x1) * (y4-y3) - (y2-y1) * (x4-x3); - //if(fabs(den) < intersection_epsilon) return false; - //double nom1 = (x4-x3) * (y1-y3) - (y4-y3) * (x1-x3); - //double nom2 = (x2-x1) * (y1-y3) - (y2-y1) * (x1-x3); - //double ua = nom1 / den; - //double ub = nom2 / den; - //return ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0; - } - - //--------------------------------------------------------calc_orthogonal - AGG_INLINE void calc_orthogonal(double thickness, - double x1, double y1, - double x2, double y2, - double* x, double* y) - { - double dx = x2 - x1; - double dy = y2 - y1; - double d = sqrt(dx*dx + dy*dy); - *x = thickness * dy / d; - *y = -thickness * dx / d; - } - - //--------------------------------------------------------dilate_triangle - AGG_INLINE void dilate_triangle(double x1, double y1, - double x2, double y2, - double x3, double y3, - double *x, double* y, - double d) - { - double dx1=0.0; - double dy1=0.0; - double dx2=0.0; - double dy2=0.0; - double dx3=0.0; - double dy3=0.0; - double loc = cross_product(x1, y1, x2, y2, x3, y3); - if(fabs(loc) > intersection_epsilon) - { - if(cross_product(x1, y1, x2, y2, x3, y3) > 0.0) - { - d = -d; - } - calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1); - calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2); - calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3); - } - *x++ = x1 + dx1; *y++ = y1 + dy1; - *x++ = x2 + dx1; *y++ = y2 + dy1; - *x++ = x2 + dx2; *y++ = y2 + dy2; - *x++ = x3 + dx2; *y++ = y3 + dy2; - *x++ = x3 + dx3; *y++ = y3 + dy3; - *x++ = x1 + dx3; *y++ = y1 + dy3; - } - - //------------------------------------------------------calc_triangle_area - AGG_INLINE double calc_triangle_area(double x1, double y1, - double x2, double y2, - double x3, double y3) - { - return (x1*y2 - x2*y1 + x2*y3 - x3*y2 + x3*y1 - x1*y3) * 0.5; - } - - //-------------------------------------------------------calc_polygon_area - template<class Storage> double calc_polygon_area(const Storage& st) - { - unsigned i; - double sum = 0.0; - double x = st[0].x; - double y = st[0].y; - double xs = x; - double ys = y; - - for(i = 1; i < st.size(); i++) - { - const typename Storage::value_type& v = st[i]; - sum += x * v.y - y * v.x; - x = v.x; - y = v.y; - } - return (sum + x * ys - y * xs) * 0.5; - } - - //------------------------------------------------------------------------ - // Tables for fast sqrt - extern int16u g_sqrt_table[1024]; - extern int8 g_elder_bit_table[256]; - - - //---------------------------------------------------------------fast_sqrt - //Fast integer Sqrt - really fast: no cycles, divisions or multiplications - #if defined(_MSC_VER) - #pragma warning(push) - #pragma warning(disable : 4035) //Disable warning "no return value" - #endif - AGG_INLINE unsigned fast_sqrt(unsigned val) - { - #if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM) - //For Ix86 family processors this assembler code is used. - //The key command here is bsr - determination the number of the most - //significant bit of the value. For other processors - //(and maybe compilers) the pure C "#else" section is used. - __asm - { - mov ebx, val - mov edx, 11 - bsr ecx, ebx - sub ecx, 9 - jle less_than_9_bits - shr ecx, 1 - adc ecx, 0 - sub edx, ecx - shl ecx, 1 - shr ebx, cl - less_than_9_bits: - xor eax, eax - mov ax, g_sqrt_table[ebx*2] - mov ecx, edx - shr eax, cl - } - #else - - //This code is actually pure C and portable to most - //arcitectures including 64bit ones. - unsigned t = val; - int bit=0; - unsigned shift = 11; - - //The following piece of code is just an emulation of the - //Ix86 assembler command "bsr" (see above). However on old - //Intels (like Intel MMX 233MHz) this code is about twice - //faster (sic!) then just one "bsr". On PIII and PIV the - //bsr is optimized quite well. - bit = t >> 24; - if(bit) - { - bit = g_elder_bit_table[bit] + 24; - } - else - { - bit = (t >> 16) & 0xFF; - if(bit) - { - bit = g_elder_bit_table[bit] + 16; - } - else - { - bit = (t >> 8) & 0xFF; - if(bit) - { - bit = g_elder_bit_table[bit] + 8; - } - else - { - bit = g_elder_bit_table[t]; - } - } - } - - //This code calculates the sqrt. - bit -= 9; - if(bit > 0) - { - bit = (bit >> 1) + (bit & 1); - shift -= bit; - val >>= (bit << 1); - } - return g_sqrt_table[val] >> shift; - #endif - } - #if defined(_MSC_VER) - #pragma warning(pop) - #endif - - - - - //--------------------------------------------------------------------besj - // Function BESJ calculates Bessel function of first kind of order n - // Arguments: - // n - an integer (>=0), the order - // x - value at which the Bessel function is required - //-------------------- - // C++ Mathematical Library - // Convereted from equivalent FORTRAN library - // Converetd by Gareth Walker for use by course 392 computational project - // All functions tested and yield the same results as the corresponding - // FORTRAN versions. - // - // If you have any problems using these functions please report them to - // M.Muldoon@UMIST.ac.uk - // - // Documentation available on the web - // http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html - // Version 1.0 8/98 - // 29 October, 1999 - //-------------------- - // Adapted for use in AGG library by Andy Wilk (castor.vulgaris@gmail.com) - //------------------------------------------------------------------------ - inline double besj(double x, int n) - { - if(n < 0) - { - return 0; - } - double d = 1E-6; - double b = 0; - if(fabs(x) <= d) - { - if(n != 0) return 0; - return 1; - } - double b1 = 0; // b1 is the value from the previous iteration - // Set up a starting order for recurrence - int m1 = (int)fabs(x) + 6; - if(fabs(x) > 5) - { - m1 = (int)(fabs(1.4 * x + 60 / x)); - } - int m2 = (int)(n + 2 + fabs(x) / 4); - if (m1 > m2) - { - m2 = m1; - } - - // Apply recurrence down from curent max order - for(;;) - { - double c3 = 0; - double c2 = 1E-30; - double c4 = 0; - int m8 = 1; - if (m2 / 2 * 2 == m2) - { - m8 = -1; - } - int imax = m2 - 2; - for (int i = 1; i <= imax; i++) - { - double c6 = 2 * (m2 - i) * c2 / x - c3; - c3 = c2; - c2 = c6; - if(m2 - i - 1 == n) - { - b = c6; - } - m8 = -1 * m8; - if (m8 > 0) - { - c4 = c4 + 2 * c6; - } - } - double c6 = 2 * c2 / x - c3; - if(n == 0) - { - b = c6; - } - c4 += c6; - b /= c4; - if(fabs(b - b1) < d) - { - return b; - } - b1 = b; - m2 += 3; - } - } - -} - - -#endif |