aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib/py2/src/_image_wrapper.cpp
diff options
context:
space:
mode:
authorshumkovnd <shumkovnd@yandex-team.com>2023-11-10 14:39:34 +0300
committershumkovnd <shumkovnd@yandex-team.com>2023-11-10 16:42:24 +0300
commit77eb2d3fdcec5c978c64e025ced2764c57c00285 (patch)
treec51edb0748ca8d4a08d7c7323312c27ba1a8b79a /contrib/python/matplotlib/py2/src/_image_wrapper.cpp
parentdd6d20cadb65582270ac23f4b3b14ae189704b9d (diff)
downloadydb-77eb2d3fdcec5c978c64e025ced2764c57c00285.tar.gz
KIKIMR-19287: add task_stats_drawing script
Diffstat (limited to 'contrib/python/matplotlib/py2/src/_image_wrapper.cpp')
-rw-r--r--contrib/python/matplotlib/py2/src/_image_wrapper.cpp510
1 files changed, 510 insertions, 0 deletions
diff --git a/contrib/python/matplotlib/py2/src/_image_wrapper.cpp b/contrib/python/matplotlib/py2/src/_image_wrapper.cpp
new file mode 100644
index 0000000000..ee0bfe84c7
--- /dev/null
+++ b/contrib/python/matplotlib/py2/src/_image_wrapper.cpp
@@ -0,0 +1,510 @@
+#include "mplutils.h"
+#include "_image_resample.h"
+#include "_image.h"
+#include "py_converters.h"
+
+
+#ifndef NPY_1_7_API_VERSION
+#define NPY_ARRAY_C_CONTIGUOUS NPY_C_CONTIGUOUS
+#endif
+
+
+/**********************************************************************
+ * Free functions
+ * */
+
+const char* image_resample__doc__ =
+"resample(input_array, output_array, matrix, interpolation=NEAREST, alpha=1.0, norm=0, radius=1)\n\n"
+
+"Resample input_array, blending it in-place into output_array, using an\n"
+"affine transformation.\n\n"
+
+"Parameters\n"
+"----------\n"
+"input_array : 2-d or 3-d Numpy array of float, double or uint8\n"
+" If 2-d, the image is grayscale. If 3-d, the image must be of size\n"
+" 4 in the last dimension and represents RGBA data.\n\n"
+
+"output_array : 2-d or 3-d Numpy array of float, double or uint8\n"
+" The dtype and number of dimensions must match `input_array`.\n\n"
+
+"transform : matplotlib.transforms.Transform instance\n"
+" The transformation from the input array to the output\n"
+" array.\n\n"
+
+"interpolation : int, optional\n"
+" The interpolation method. Must be one of the following constants\n"
+" defined in this module:\n\n"
+
+" NEAREST (default), BILINEAR, BICUBIC, SPLINE16, SPLINE36,\n"
+" HANNING, HAMMING, HERMITE, KAISER, QUADRIC, CATROM, GAUSSIAN,\n"
+" BESSEL, MITCHELL, SINC, LANCZOS, BLACKMAN\n\n"
+
+"resample : bool, optional\n"
+" When `True`, use a full resampling method. When `False`, only\n"
+" resample when the output image is larger than the input image.\n\n"
+
+"alpha : float, optional\n"
+" The level of transparency to apply. 1.0 is completely opaque.\n"
+" 0.0 is completely transparent.\n\n"
+
+"norm : float, optional\n"
+" The norm for the interpolation function. Default is 0.\n\n"
+
+"radius: float, optional\n"
+" The radius of the kernel, if method is SINC, LANCZOS or BLACKMAN.\n"
+" Default is 1.\n";
+
+
+static PyArrayObject *
+_get_transform_mesh(PyObject *py_affine, npy_intp *dims)
+{
+ /* TODO: Could we get away with float, rather than double, arrays here? */
+
+ /* Given a non-affine transform object, create a mesh that maps
+ every pixel in the output image to the input image. This is used
+ as a lookup table during the actual resampling. */
+
+ PyObject *py_inverse = NULL;
+ npy_intp out_dims[3];
+
+ out_dims[0] = dims[0] * dims[1];
+ out_dims[1] = 2;
+
+ py_inverse = PyObject_CallMethod(
+ py_affine, (char *)"inverted", (char *)"", NULL);
+ if (py_inverse == NULL) {
+ return NULL;
+ }
+
+ numpy::array_view<double, 2> input_mesh(out_dims);
+ double *p = (double *)input_mesh.data();
+
+ for (npy_intp y = 0; y < dims[0]; ++y) {
+ for (npy_intp x = 0; x < dims[1]; ++x) {
+ *p++ = (double)x;
+ *p++ = (double)y;
+ }
+ }
+
+ PyObject *output_mesh =
+ PyObject_CallMethod(
+ py_inverse, (char *)"transform", (char *)"O",
+ (char *)input_mesh.pyobj(), NULL);
+
+ Py_DECREF(py_inverse);
+
+ if (output_mesh == NULL) {
+ return NULL;
+ }
+
+ PyArrayObject *output_mesh_array =
+ (PyArrayObject *)PyArray_ContiguousFromAny(
+ output_mesh, NPY_DOUBLE, 2, 2);
+
+ Py_DECREF(output_mesh);
+
+ if (output_mesh_array == NULL) {
+ return NULL;
+ }
+
+ return output_mesh_array;
+}
+
+
+static PyObject *
+image_resample(PyObject *self, PyObject* args, PyObject *kwargs)
+{
+ PyObject *py_input_array = NULL;
+ PyObject *py_output_array = NULL;
+ PyObject *py_transform = NULL;
+ resample_params_t params;
+ int resample_;
+
+ PyArrayObject *input_array = NULL;
+ PyArrayObject *output_array = NULL;
+ PyArrayObject *transform_mesh_array = NULL;
+
+ params.transform_mesh = NULL;
+
+ const char *kwlist[] = {
+ "input_array", "output_array", "transform", "interpolation",
+ "resample", "alpha", "norm", "radius", NULL };
+
+ if (!PyArg_ParseTupleAndKeywords(
+ args, kwargs, "OOO|iiddd:resample", (char **)kwlist,
+ &py_input_array, &py_output_array, &py_transform,
+ &params.interpolation, &resample_, &params.alpha, &params.norm,
+ &params.radius)) {
+ return NULL;
+ }
+
+ if (params.interpolation < 0 || params.interpolation >= _n_interpolation) {
+ PyErr_Format(PyExc_ValueError, "invalid interpolation value %d",
+ params.interpolation);
+ goto error;
+ }
+
+ params.resample = (resample_ != 0);
+
+ input_array = (PyArrayObject *)PyArray_FromAny(
+ py_input_array, NULL, 2, 3, NPY_ARRAY_C_CONTIGUOUS, NULL);
+ if (input_array == NULL) {
+ goto error;
+ }
+
+ output_array = (PyArrayObject *)PyArray_FromAny(
+ py_output_array, NULL, 2, 3, NPY_ARRAY_C_CONTIGUOUS, NULL);
+ if (output_array == NULL) {
+ goto error;
+ }
+
+ if (py_transform == NULL || py_transform == Py_None) {
+ params.is_affine = true;
+ } else {
+ PyObject *py_is_affine;
+ int py_is_affine2;
+ py_is_affine = PyObject_GetAttrString(py_transform, "is_affine");
+ if (py_is_affine == NULL) {
+ goto error;
+ }
+
+ py_is_affine2 = PyObject_IsTrue(py_is_affine);
+ Py_DECREF(py_is_affine);
+
+ if (py_is_affine2 == -1) {
+ goto error;
+ } else if (py_is_affine2) {
+ if (!convert_trans_affine(py_transform, &params.affine)) {
+ goto error;
+ }
+ params.is_affine = true;
+ } else {
+ transform_mesh_array = _get_transform_mesh(
+ py_transform, PyArray_DIMS(output_array));
+ if (transform_mesh_array == NULL) {
+ goto error;
+ }
+ params.transform_mesh = (double *)PyArray_DATA(transform_mesh_array);
+ params.is_affine = false;
+ }
+ }
+
+ if (PyArray_NDIM(input_array) != PyArray_NDIM(output_array)) {
+ PyErr_Format(
+ PyExc_ValueError,
+ "Mismatched number of dimensions. Got %d and %d.",
+ PyArray_NDIM(input_array), PyArray_NDIM(output_array));
+ goto error;
+ }
+
+ if (PyArray_TYPE(input_array) != PyArray_TYPE(output_array)) {
+ PyErr_SetString(PyExc_ValueError, "Mismatched types");
+ goto error;
+ }
+
+ if (PyArray_NDIM(input_array) == 3) {
+ if (PyArray_DIM(output_array, 2) != 4) {
+ PyErr_SetString(
+ PyExc_ValueError,
+ "Output array must be RGBA");
+ goto error;
+ }
+
+ if (PyArray_DIM(input_array, 2) == 4) {
+ switch(PyArray_TYPE(input_array)) {
+ case NPY_BYTE:
+ case NPY_UINT8:
+ Py_BEGIN_ALLOW_THREADS
+ resample(
+ (agg::rgba8 *)PyArray_DATA(input_array),
+ PyArray_DIM(input_array, 1),
+ PyArray_DIM(input_array, 0),
+ (agg::rgba8 *)PyArray_DATA(output_array),
+ PyArray_DIM(output_array, 1),
+ PyArray_DIM(output_array, 0),
+ params);
+ Py_END_ALLOW_THREADS
+ break;
+ case NPY_UINT16:
+ case NPY_INT16:
+ Py_BEGIN_ALLOW_THREADS
+ resample(
+ (agg::rgba16 *)PyArray_DATA(input_array),
+ PyArray_DIM(input_array, 1),
+ PyArray_DIM(input_array, 0),
+ (agg::rgba16 *)PyArray_DATA(output_array),
+ PyArray_DIM(output_array, 1),
+ PyArray_DIM(output_array, 0),
+ params);
+ Py_END_ALLOW_THREADS
+ break;
+ case NPY_FLOAT32:
+ Py_BEGIN_ALLOW_THREADS
+ resample(
+ (agg::rgba32 *)PyArray_DATA(input_array),
+ PyArray_DIM(input_array, 1),
+ PyArray_DIM(input_array, 0),
+ (agg::rgba32 *)PyArray_DATA(output_array),
+ PyArray_DIM(output_array, 1),
+ PyArray_DIM(output_array, 0),
+ params);
+ Py_END_ALLOW_THREADS
+ break;
+ case NPY_FLOAT64:
+ Py_BEGIN_ALLOW_THREADS
+ resample(
+ (agg::rgba64 *)PyArray_DATA(input_array),
+ PyArray_DIM(input_array, 1),
+ PyArray_DIM(input_array, 0),
+ (agg::rgba64 *)PyArray_DATA(output_array),
+ PyArray_DIM(output_array, 1),
+ PyArray_DIM(output_array, 0),
+ params);
+ Py_END_ALLOW_THREADS
+ break;
+ default:
+ PyErr_SetString(
+ PyExc_ValueError,
+ "3-dimensional arrays must be of dtype unsigned byte, "
+ "unsigned short, float32 or float64");
+ goto error;
+ }
+ } else {
+ PyErr_Format(
+ PyExc_ValueError,
+ "If 3-dimensional, array must be RGBA. Got %" NPY_INTP_FMT " planes.",
+ PyArray_DIM(input_array, 2));
+ goto error;
+ }
+ } else { // NDIM == 2
+ switch (PyArray_TYPE(input_array)) {
+ case NPY_DOUBLE:
+ Py_BEGIN_ALLOW_THREADS
+ resample(
+ (double *)PyArray_DATA(input_array),
+ PyArray_DIM(input_array, 1),
+ PyArray_DIM(input_array, 0),
+ (double *)PyArray_DATA(output_array),
+ PyArray_DIM(output_array, 1),
+ PyArray_DIM(output_array, 0),
+ params);
+ Py_END_ALLOW_THREADS
+ break;
+ case NPY_FLOAT:
+ Py_BEGIN_ALLOW_THREADS
+ resample(
+ (float *)PyArray_DATA(input_array),
+ PyArray_DIM(input_array, 1),
+ PyArray_DIM(input_array, 0),
+ (float *)PyArray_DATA(output_array),
+ PyArray_DIM(output_array, 1),
+ PyArray_DIM(output_array, 0),
+ params);
+ Py_END_ALLOW_THREADS
+ break;
+ case NPY_UINT8:
+ case NPY_BYTE:
+ Py_BEGIN_ALLOW_THREADS
+ resample(
+ (unsigned char *)PyArray_DATA(input_array),
+ PyArray_DIM(input_array, 1),
+ PyArray_DIM(input_array, 0),
+ (unsigned char *)PyArray_DATA(output_array),
+ PyArray_DIM(output_array, 1),
+ PyArray_DIM(output_array, 0),
+ params);
+ Py_END_ALLOW_THREADS
+ break;
+ case NPY_UINT16:
+ case NPY_INT16:
+ Py_BEGIN_ALLOW_THREADS
+ resample(
+ (unsigned short *)PyArray_DATA(input_array),
+ PyArray_DIM(input_array, 1),
+ PyArray_DIM(input_array, 0),
+ (unsigned short *)PyArray_DATA(output_array),
+ PyArray_DIM(output_array, 1),
+ PyArray_DIM(output_array, 0),
+ params);
+ Py_END_ALLOW_THREADS
+ break;
+ default:
+ PyErr_SetString(PyExc_ValueError, "Unsupported dtype");
+ goto error;
+ }
+ }
+
+ Py_DECREF(input_array);
+ Py_XDECREF(transform_mesh_array);
+ return (PyObject *)output_array;
+
+ error:
+ Py_XDECREF(input_array);
+ Py_XDECREF(output_array);
+ Py_XDECREF(transform_mesh_array);
+ return NULL;
+}
+
+
+const char *image_pcolor__doc__ =
+ "pcolor(x, y, data, rows, cols, bounds)\n"
+ "\n"
+ "Generate a pseudo-color image from data on a non-uniform grid using\n"
+ "nearest neighbour or linear interpolation.\n"
+ "bounds = (x_min, x_max, y_min, y_max)\n"
+ "interpolation = NEAREST or BILINEAR \n";
+
+static PyObject *image_pcolor(PyObject *self, PyObject *args, PyObject *kwds)
+{
+ numpy::array_view<const float, 1> x;
+ numpy::array_view<const float, 1> y;
+ numpy::array_view<const agg::int8u, 3> d;
+ npy_intp rows, cols;
+ float bounds[4];
+ int interpolation;
+
+ if (!PyArg_ParseTuple(args,
+ "O&O&O&nn(ffff)i:pcolor",
+ &x.converter,
+ &x,
+ &y.converter,
+ &y,
+ &d.converter_contiguous,
+ &d,
+ &rows,
+ &cols,
+ &bounds[0],
+ &bounds[1],
+ &bounds[2],
+ &bounds[3],
+ &interpolation)) {
+ return NULL;
+ }
+
+ npy_intp dim[3] = {rows, cols, 4};
+ numpy::array_view<const agg::int8u, 3> output(dim);
+
+ CALL_CPP("pcolor", (pcolor(x, y, d, rows, cols, bounds, interpolation, output)));
+
+ return output.pyobj();
+}
+
+const char *image_pcolor2__doc__ =
+ "pcolor2(x, y, data, rows, cols, bounds, bg)\n"
+ "\n"
+ "Generate a pseudo-color image from data on a non-uniform grid\n"
+ "specified by its cell boundaries.\n"
+ "bounds = (x_left, x_right, y_bot, y_top)\n"
+ "bg = ndarray of 4 uint8 representing background rgba\n";
+
+static PyObject *image_pcolor2(PyObject *self, PyObject *args, PyObject *kwds)
+{
+ numpy::array_view<const double, 1> x;
+ numpy::array_view<const double, 1> y;
+ numpy::array_view<const agg::int8u, 3> d;
+ npy_intp rows, cols;
+ float bounds[4];
+ numpy::array_view<const agg::int8u, 1> bg;
+
+ if (!PyArg_ParseTuple(args,
+ "O&O&O&nn(ffff)O&:pcolor2",
+ &x.converter_contiguous,
+ &x,
+ &y.converter_contiguous,
+ &y,
+ &d.converter_contiguous,
+ &d,
+ &rows,
+ &cols,
+ &bounds[0],
+ &bounds[1],
+ &bounds[2],
+ &bounds[3],
+ &bg.converter,
+ &bg)) {
+ return NULL;
+ }
+
+ npy_intp dim[3] = {rows, cols, 4};
+ numpy::array_view<const agg::int8u, 3> output(dim);
+
+ CALL_CPP("pcolor2", (pcolor2(x, y, d, rows, cols, bounds, bg, output)));
+
+ return output.pyobj();
+}
+
+static PyMethodDef module_functions[] = {
+ {"resample", (PyCFunction)image_resample, METH_VARARGS|METH_KEYWORDS, image_resample__doc__},
+ {"pcolor", (PyCFunction)image_pcolor, METH_VARARGS, image_pcolor__doc__},
+ {"pcolor2", (PyCFunction)image_pcolor2, METH_VARARGS, image_pcolor2__doc__},
+ {NULL}
+};
+
+extern "C" {
+
+#if PY3K
+static struct PyModuleDef moduledef = {
+ PyModuleDef_HEAD_INIT,
+ "_image",
+ NULL,
+ 0,
+ module_functions,
+ NULL,
+ NULL,
+ NULL,
+ NULL
+};
+
+#define INITERROR return NULL
+
+PyMODINIT_FUNC PyInit__image(void)
+
+#else
+#define INITERROR return
+
+PyMODINIT_FUNC init_image(void)
+#endif
+
+{
+ PyObject *m;
+
+#if PY3K
+ m = PyModule_Create(&moduledef);
+#else
+ m = Py_InitModule3("_image", module_functions, NULL);
+#endif
+
+ if (m == NULL) {
+ INITERROR;
+ }
+
+ if (PyModule_AddIntConstant(m, "NEAREST", NEAREST) ||
+ PyModule_AddIntConstant(m, "BILINEAR", BILINEAR) ||
+ PyModule_AddIntConstant(m, "BICUBIC", BICUBIC) ||
+ PyModule_AddIntConstant(m, "SPLINE16", SPLINE16) ||
+ PyModule_AddIntConstant(m, "SPLINE36", SPLINE36) ||
+ PyModule_AddIntConstant(m, "HANNING", HANNING) ||
+ PyModule_AddIntConstant(m, "HAMMING", HAMMING) ||
+ PyModule_AddIntConstant(m, "HERMITE", HERMITE) ||
+ PyModule_AddIntConstant(m, "KAISER", KAISER) ||
+ PyModule_AddIntConstant(m, "QUADRIC", QUADRIC) ||
+ PyModule_AddIntConstant(m, "CATROM", CATROM) ||
+ PyModule_AddIntConstant(m, "GAUSSIAN", GAUSSIAN) ||
+ PyModule_AddIntConstant(m, "BESSEL", BESSEL) ||
+ PyModule_AddIntConstant(m, "MITCHELL", MITCHELL) ||
+ PyModule_AddIntConstant(m, "SINC", SINC) ||
+ PyModule_AddIntConstant(m, "LANCZOS", LANCZOS) ||
+ PyModule_AddIntConstant(m, "BLACKMAN", BLACKMAN) ||
+ PyModule_AddIntConstant(m, "_n_interpolation", _n_interpolation)) {
+ INITERROR;
+ }
+
+ import_array();
+
+#if PY3K
+ return m;
+#endif
+}
+
+} // extern "C"