aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib/py2/src/_contour.cpp
diff options
context:
space:
mode:
authorshumkovnd <shumkovnd@yandex-team.com>2023-11-10 14:39:34 +0300
committershumkovnd <shumkovnd@yandex-team.com>2023-11-10 16:42:24 +0300
commit77eb2d3fdcec5c978c64e025ced2764c57c00285 (patch)
treec51edb0748ca8d4a08d7c7323312c27ba1a8b79a /contrib/python/matplotlib/py2/src/_contour.cpp
parentdd6d20cadb65582270ac23f4b3b14ae189704b9d (diff)
downloadydb-77eb2d3fdcec5c978c64e025ced2764c57c00285.tar.gz
KIKIMR-19287: add task_stats_drawing script
Diffstat (limited to 'contrib/python/matplotlib/py2/src/_contour.cpp')
-rw-r--r--contrib/python/matplotlib/py2/src/_contour.cpp1790
1 files changed, 1790 insertions, 0 deletions
diff --git a/contrib/python/matplotlib/py2/src/_contour.cpp b/contrib/python/matplotlib/py2/src/_contour.cpp
new file mode 100644
index 0000000000..aecb442c7e
--- /dev/null
+++ b/contrib/python/matplotlib/py2/src/_contour.cpp
@@ -0,0 +1,1790 @@
+// This file contains liberal use of asserts to assist code development and
+// debugging. Standard matplotlib builds disable asserts so they cause no
+// performance reduction. To enable the asserts, you need to undefine the
+// NDEBUG macro, which is achieved by adding the following
+// undef_macros=['NDEBUG']
+// to the appropriate make_extension call in setupext.py, and then rebuilding.
+#define NO_IMPORT_ARRAY
+
+#include "src/mplutils.h"
+#include "src/_contour.h"
+#include <algorithm>
+
+
+// 'kind' codes.
+#define MOVETO 1
+#define LINETO 2
+#define CLOSEPOLY 79
+
+// Point indices from current quad index.
+#define POINT_SW (quad)
+#define POINT_SE (quad+1)
+#define POINT_NW (quad+_nx)
+#define POINT_NE (quad+_nx+1)
+
+// CacheItem masks, only accessed directly to set. To read, use accessors
+// detailed below. 1 and 2 refer to level indices (lower and upper).
+#define MASK_Z_LEVEL 0x0003 // Combines the following two.
+#define MASK_Z_LEVEL_1 0x0001 // z > lower_level.
+#define MASK_Z_LEVEL_2 0x0002 // z > upper_level.
+#define MASK_VISITED_1 0x0004 // Algorithm has visited this quad.
+#define MASK_VISITED_2 0x0008
+#define MASK_SADDLE_1 0x0010 // quad is a saddle quad.
+#define MASK_SADDLE_2 0x0020
+#define MASK_SADDLE_LEFT_1 0x0040 // Contours turn left at saddle quad.
+#define MASK_SADDLE_LEFT_2 0x0080
+#define MASK_SADDLE_START_SW_1 0x0100 // Next visit starts on S or W edge.
+#define MASK_SADDLE_START_SW_2 0x0200
+#define MASK_BOUNDARY_S 0x0400 // S edge of quad is a boundary.
+#define MASK_BOUNDARY_W 0x0800 // W edge of quad is a boundary.
+// EXISTS_QUAD bit is always used, but the 4 EXISTS_CORNER are only used if
+// _corner_mask is true. Only one of EXISTS_QUAD or EXISTS_??_CORNER is ever
+// set per quad, hence not using unique bits for each; care is needed when
+// testing for these flags as they overlap.
+#define MASK_EXISTS_QUAD 0x1000 // All of quad exists (is not masked).
+#define MASK_EXISTS_SW_CORNER 0x2000 // SW corner exists, NE corner is masked.
+#define MASK_EXISTS_SE_CORNER 0x3000
+#define MASK_EXISTS_NW_CORNER 0x4000
+#define MASK_EXISTS_NE_CORNER 0x5000
+#define MASK_EXISTS 0x7000 // Combines all 5 EXISTS masks.
+
+// The following are only needed for filled contours.
+#define MASK_VISITED_S 0x10000 // Algorithm has visited S boundary.
+#define MASK_VISITED_W 0x20000 // Algorithm has visited W boundary.
+#define MASK_VISITED_CORNER 0x40000 // Algorithm has visited corner edge.
+
+
+// Accessors for various CacheItem masks. li is shorthand for level_index.
+#define Z_LEVEL(quad) (_cache[quad] & MASK_Z_LEVEL)
+#define Z_NE Z_LEVEL(POINT_NE)
+#define Z_NW Z_LEVEL(POINT_NW)
+#define Z_SE Z_LEVEL(POINT_SE)
+#define Z_SW Z_LEVEL(POINT_SW)
+#define VISITED(quad,li) (_cache[quad] & (li==1 ? MASK_VISITED_1 : MASK_VISITED_2))
+#define VISITED_S(quad) (_cache[quad] & MASK_VISITED_S)
+#define VISITED_W(quad) (_cache[quad] & MASK_VISITED_W)
+#define VISITED_CORNER(quad) (_cache[quad] & MASK_VISITED_CORNER)
+#define SADDLE(quad,li) (_cache[quad] & (li==1 ? MASK_SADDLE_1 : MASK_SADDLE_2))
+#define SADDLE_LEFT(quad,li) (_cache[quad] & (li==1 ? MASK_SADDLE_LEFT_1 : MASK_SADDLE_LEFT_2))
+#define SADDLE_START_SW(quad,li) (_cache[quad] & (li==1 ? MASK_SADDLE_START_SW_1 : MASK_SADDLE_START_SW_2))
+#define BOUNDARY_S(quad) (_cache[quad] & MASK_BOUNDARY_S)
+#define BOUNDARY_W(quad) (_cache[quad] & MASK_BOUNDARY_W)
+#define BOUNDARY_N(quad) BOUNDARY_S(quad+_nx)
+#define BOUNDARY_E(quad) BOUNDARY_W(quad+1)
+#define EXISTS_QUAD(quad) ((_cache[quad] & MASK_EXISTS) == MASK_EXISTS_QUAD)
+#define EXISTS_NONE(quad) ((_cache[quad] & MASK_EXISTS) == 0)
+// The following are only used if _corner_mask is true.
+#define EXISTS_SW_CORNER(quad) ((_cache[quad] & MASK_EXISTS) == MASK_EXISTS_SW_CORNER)
+#define EXISTS_SE_CORNER(quad) ((_cache[quad] & MASK_EXISTS) == MASK_EXISTS_SE_CORNER)
+#define EXISTS_NW_CORNER(quad) ((_cache[quad] & MASK_EXISTS) == MASK_EXISTS_NW_CORNER)
+#define EXISTS_NE_CORNER(quad) ((_cache[quad] & MASK_EXISTS) == MASK_EXISTS_NE_CORNER)
+#define EXISTS_ANY_CORNER(quad) (!EXISTS_NONE(quad) && !EXISTS_QUAD(quad))
+#define EXISTS_W_EDGE(quad) (EXISTS_QUAD(quad) || EXISTS_SW_CORNER(quad) || EXISTS_NW_CORNER(quad))
+#define EXISTS_E_EDGE(quad) (EXISTS_QUAD(quad) || EXISTS_SE_CORNER(quad) || EXISTS_NE_CORNER(quad))
+#define EXISTS_S_EDGE(quad) (EXISTS_QUAD(quad) || EXISTS_SW_CORNER(quad) || EXISTS_SE_CORNER(quad))
+#define EXISTS_N_EDGE(quad) (EXISTS_QUAD(quad) || EXISTS_NW_CORNER(quad) || EXISTS_NE_CORNER(quad))
+// Note that EXISTS_NE_CORNER(quad) is equivalent to BOUNDARY_SW(quad), etc.
+
+
+
+QuadEdge::QuadEdge()
+ : quad(-1), edge(Edge_None)
+{}
+
+QuadEdge::QuadEdge(long quad_, Edge edge_)
+ : quad(quad_), edge(edge_)
+{}
+
+bool QuadEdge::operator<(const QuadEdge& other) const
+{
+ if (quad != other.quad)
+ return quad < other.quad;
+ else
+ return edge < other.edge;
+}
+
+bool QuadEdge::operator==(const QuadEdge& other) const
+{
+ return quad == other.quad && edge == other.edge;
+}
+
+bool QuadEdge::operator!=(const QuadEdge& other) const
+{
+ return !operator==(other);
+}
+
+std::ostream& operator<<(std::ostream& os, const QuadEdge& quad_edge)
+{
+ return os << quad_edge.quad << ' ' << quad_edge.edge;
+}
+
+
+// conflict with code from matplotlib/tri/_tri.cpp
+#if 0
+XY::XY()
+{}
+
+XY::XY(const double& x_, const double& y_)
+ : x(x_), y(y_)
+{}
+
+bool XY::operator==(const XY& other) const
+{
+ return x == other.x && y == other.y;
+}
+
+bool XY::operator!=(const XY& other) const
+{
+ return x != other.x || y != other.y;
+}
+
+XY XY::operator*(const double& multiplier) const
+{
+ return XY(x*multiplier, y*multiplier);
+}
+
+const XY& XY::operator+=(const XY& other)
+{
+ x += other.x;
+ y += other.y;
+ return *this;
+}
+
+const XY& XY::operator-=(const XY& other)
+{
+ x -= other.x;
+ y -= other.y;
+ return *this;
+}
+
+XY XY::operator+(const XY& other) const
+{
+ return XY(x + other.x, y + other.y);
+}
+
+XY XY::operator-(const XY& other) const
+{
+ return XY(x - other.x, y - other.y);
+}
+
+std::ostream& operator<<(std::ostream& os, const XY& xy)
+{
+ return os << '(' << xy.x << ' ' << xy.y << ')';
+}
+#endif
+
+
+ContourLine::ContourLine(bool is_hole)
+ : std::vector<XY>(),
+ _is_hole(is_hole),
+ _parent(0)
+{}
+
+void ContourLine::add_child(ContourLine* child)
+{
+ assert(!_is_hole && "Cannot add_child to a hole");
+ assert(child != 0 && "Null child ContourLine");
+ _children.push_back(child);
+}
+
+void ContourLine::clear_parent()
+{
+ assert(is_hole() && "Cannot clear parent of non-hole");
+ assert(_parent != 0 && "Null parent ContourLine");
+ _parent = 0;
+}
+
+const ContourLine::Children& ContourLine::get_children() const
+{
+ assert(!_is_hole && "Cannot get_children of a hole");
+ return _children;
+}
+
+const ContourLine* ContourLine::get_parent() const
+{
+ assert(_is_hole && "Cannot get_parent of a non-hole");
+ return _parent;
+}
+
+ContourLine* ContourLine::get_parent()
+{
+ assert(_is_hole && "Cannot get_parent of a non-hole");
+ return _parent;
+}
+
+bool ContourLine::is_hole() const
+{
+ return _is_hole;
+}
+
+// conflict with code from matplotlib/tri/_tri.cpp
+#if 0
+void ContourLine::push_back(const XY& point)
+{
+ if (empty() || point != back())
+ std::vector<XY>::push_back(point);
+}
+#endif
+
+void ContourLine::set_parent(ContourLine* parent)
+{
+ assert(_is_hole && "Cannot set parent of a non-hole");
+ assert(parent != 0 && "Null parent ContourLine");
+ _parent = parent;
+}
+
+// conflict with code from matplotlib/tri/_tri.cpp
+#if 0
+void ContourLine::write() const
+{
+ std::cout << "ContourLine " << this << " of " << size() << " points:";
+ for (const_iterator it = begin(); it != end(); ++it)
+ std::cout << ' ' << *it;
+ if (is_hole())
+ std::cout << " hole, parent=" << get_parent();
+ else {
+ std::cout << " not hole";
+ if (!_children.empty()) {
+ std::cout << ", children=";
+ for (Children::const_iterator it = _children.begin();
+ it != _children.end(); ++it)
+ std::cout << *it << ' ';
+ }
+ }
+ std::cout << std::endl;
+}
+#endif
+
+
+Contour::Contour()
+{}
+
+Contour::~Contour()
+{
+ delete_contour_lines();
+}
+
+void Contour::delete_contour_lines()
+{
+ for (iterator line_it = begin(); line_it != end(); ++line_it) {
+ delete *line_it;
+ *line_it = 0;
+ }
+ std::vector<ContourLine*>::clear();
+}
+
+void Contour::write() const
+{
+ std::cout << "Contour of " << size() << " lines." << std::endl;
+ for (const_iterator it = begin(); it != end(); ++it)
+ (*it)->write();
+}
+
+
+
+ParentCache::ParentCache(long nx, long x_chunk_points, long y_chunk_points)
+ : _nx(nx),
+ _x_chunk_points(x_chunk_points),
+ _y_chunk_points(y_chunk_points),
+ _lines(0), // Initialised when first needed.
+ _istart(0),
+ _jstart(0)
+{
+ assert(_x_chunk_points > 0 && _y_chunk_points > 0 &&
+ "Chunk sizes must be positive");
+}
+
+ContourLine* ParentCache::get_parent(long quad)
+{
+ long index = quad_to_index(quad);
+ ContourLine* parent = _lines[index];
+ while (parent == 0) {
+ index -= _x_chunk_points;
+ assert(index >= 0 && "Failed to find parent in chunk ParentCache");
+ parent = _lines[index];
+ }
+ assert(parent != 0 && "Failed to find parent in chunk ParentCache");
+ return parent;
+}
+
+long ParentCache::quad_to_index(long quad) const
+{
+ long i = quad % _nx;
+ long j = quad / _nx;
+ long index = (i-_istart) + (j-_jstart)*_x_chunk_points;
+
+ assert(i >= _istart && i < _istart + _x_chunk_points &&
+ "i-index outside chunk");
+ assert(j >= _jstart && j < _jstart + _y_chunk_points &&
+ "j-index outside chunk");
+ assert(index >= 0 && index < static_cast<long>(_lines.size()) &&
+ "ParentCache index outside chunk");
+
+ return index;
+}
+
+void ParentCache::set_chunk_starts(long istart, long jstart)
+{
+ assert(istart >= 0 && jstart >= 0 &&
+ "Chunk start indices cannot be negative");
+ _istart = istart;
+ _jstart = jstart;
+ if (_lines.empty())
+ _lines.resize(_x_chunk_points*_y_chunk_points, 0);
+ else
+ std::fill(_lines.begin(), _lines.end(), (ContourLine*)0);
+}
+
+void ParentCache::set_parent(long quad, ContourLine& contour_line)
+{
+ assert(!_lines.empty() &&
+ "Accessing ParentCache before it has been initialised");
+ long index = quad_to_index(quad);
+ if (_lines[index] == 0)
+ _lines[index] = (contour_line.is_hole() ? contour_line.get_parent()
+ : &contour_line);
+}
+
+
+
+QuadContourGenerator::QuadContourGenerator(const CoordinateArray& x,
+ const CoordinateArray& y,
+ const CoordinateArray& z,
+ const MaskArray& mask,
+ bool corner_mask,
+ long chunk_size)
+ : _x(x),
+ _y(y),
+ _z(z),
+ _nx(static_cast<long>(_x.dim(1))),
+ _ny(static_cast<long>(_x.dim(0))),
+ _n(_nx*_ny),
+ _corner_mask(corner_mask),
+ _chunk_size(chunk_size > 0 ? std::min(chunk_size, std::max(_nx, _ny)-1)
+ : std::max(_nx, _ny)-1),
+ _nxchunk(calc_chunk_count(_nx)),
+ _nychunk(calc_chunk_count(_ny)),
+ _chunk_count(_nxchunk*_nychunk),
+ _cache(new CacheItem[_n]),
+ _parent_cache(_nx,
+ chunk_size > 0 ? chunk_size+1 : _nx,
+ chunk_size > 0 ? chunk_size+1 : _ny)
+{
+ assert(!_x.empty() && !_y.empty() && !_z.empty() && "Empty array");
+ assert(_y.dim(0) == _x.dim(0) && _y.dim(1) == _x.dim(1) &&
+ "Different-sized y and x arrays");
+ assert(_z.dim(0) == _x.dim(0) && _z.dim(1) == _x.dim(1) &&
+ "Different-sized z and x arrays");
+ assert((mask.empty() ||
+ (mask.dim(0) == _x.dim(0) && mask.dim(1) == _x.dim(1))) &&
+ "Different-sized mask and x arrays");
+
+ init_cache_grid(mask);
+}
+
+QuadContourGenerator::~QuadContourGenerator()
+{
+ delete [] _cache;
+}
+
+void QuadContourGenerator::append_contour_line_to_vertices(
+ ContourLine& contour_line,
+ PyObject* vertices_list) const
+{
+ assert(vertices_list != 0 && "Null python vertices_list");
+
+ // Convert ContourLine to python equivalent, and clear it.
+ npy_intp dims[2] = {static_cast<npy_intp>(contour_line.size()), 2};
+ numpy::array_view<double, 2> line(dims);
+ npy_intp i = 0;
+ for (ContourLine::const_iterator point = contour_line.begin();
+ point != contour_line.end(); ++point, ++i) {
+ line(i, 0) = point->x;
+ line(i, 1) = point->y;
+ }
+ if (PyList_Append(vertices_list, line.pyobj_steal())) {
+ Py_XDECREF(vertices_list);
+ throw std::runtime_error("Unable to add contour line to vertices_list");
+ }
+
+ contour_line.clear();
+}
+
+void QuadContourGenerator::append_contour_to_vertices_and_codes(
+ Contour& contour,
+ PyObject* vertices_list,
+ PyObject* codes_list) const
+{
+ assert(vertices_list != 0 && "Null python vertices_list");
+ assert(codes_list != 0 && "Null python codes_list");
+
+ // Convert Contour to python equivalent, and clear it.
+ for (Contour::iterator line_it = contour.begin(); line_it != contour.end();
+ ++line_it) {
+ ContourLine& line = **line_it;
+ if (line.is_hole()) {
+ // If hole has already been converted to python its parent will be
+ // set to 0 and it can be deleted.
+ if (line.get_parent() != 0) {
+ delete *line_it;
+ *line_it = 0;
+ }
+ }
+ else {
+ // Non-holes are converted to python together with their child
+ // holes so that they are rendered correctly.
+ ContourLine::const_iterator point;
+ ContourLine::Children::const_iterator children_it;
+
+ const ContourLine::Children& children = line.get_children();
+ npy_intp npoints = static_cast<npy_intp>(line.size() + 1);
+ for (children_it = children.begin(); children_it != children.end();
+ ++children_it)
+ npoints += static_cast<npy_intp>((*children_it)->size() + 1);
+
+ npy_intp vertices_dims[2] = {npoints, 2};
+ numpy::array_view<double, 2> vertices(vertices_dims);
+ double* vertices_ptr = vertices.data();
+
+ npy_intp codes_dims[1] = {npoints};
+ numpy::array_view<unsigned char, 1> codes(codes_dims);
+ unsigned char* codes_ptr = codes.data();
+
+ for (point = line.begin(); point != line.end(); ++point) {
+ *vertices_ptr++ = point->x;
+ *vertices_ptr++ = point->y;
+ *codes_ptr++ = (point == line.begin() ? MOVETO : LINETO);
+ }
+ point = line.begin();
+ *vertices_ptr++ = point->x;
+ *vertices_ptr++ = point->y;
+ *codes_ptr++ = CLOSEPOLY;
+
+ for (children_it = children.begin(); children_it != children.end();
+ ++children_it) {
+ ContourLine& child = **children_it;
+ for (point = child.begin(); point != child.end(); ++point) {
+ *vertices_ptr++ = point->x;
+ *vertices_ptr++ = point->y;
+ *codes_ptr++ = (point == child.begin() ? MOVETO : LINETO);
+ }
+ point = child.begin();
+ *vertices_ptr++ = point->x;
+ *vertices_ptr++ = point->y;
+ *codes_ptr++ = CLOSEPOLY;
+
+ child.clear_parent(); // To indicate it can be deleted.
+ }
+
+ if (PyList_Append(vertices_list, vertices.pyobj_steal()) ||
+ PyList_Append(codes_list, codes.pyobj_steal())) {
+ Py_XDECREF(vertices_list);
+ Py_XDECREF(codes_list);
+ contour.delete_contour_lines();
+ throw std::runtime_error("Unable to add contour line to vertices and codes lists");
+ }
+
+ delete *line_it;
+ *line_it = 0;
+ }
+ }
+
+ // Delete remaining contour lines.
+ contour.delete_contour_lines();
+}
+
+long QuadContourGenerator::calc_chunk_count(long point_count) const
+{
+ assert(point_count > 0 && "point count must be positive");
+ assert(_chunk_size > 0 && "Chunk size must be positive");
+
+ if (_chunk_size > 0) {
+ long count = (point_count-1) / _chunk_size;
+ if (count*_chunk_size < point_count-1)
+ ++count;
+
+ assert(count >= 1 && "Invalid chunk count");
+ return count;
+ }
+ else
+ return 1;
+}
+
+PyObject* QuadContourGenerator::create_contour(const double& level)
+{
+ init_cache_levels(level, level);
+
+ PyObject* vertices_list = PyList_New(0);
+ if (vertices_list == 0)
+ throw std::runtime_error("Failed to create Python list");
+
+ // Lines that start and end on boundaries.
+ long ichunk, jchunk, istart, iend, jstart, jend;
+ for (long ijchunk = 0; ijchunk < _chunk_count; ++ijchunk) {
+ get_chunk_limits(ijchunk, ichunk, jchunk, istart, iend, jstart, jend);
+
+ for (long j = jstart; j < jend; ++j) {
+ long quad_end = iend + j*_nx;
+ for (long quad = istart + j*_nx; quad < quad_end; ++quad) {
+ if (EXISTS_NONE(quad) || VISITED(quad,1)) continue;
+
+ if (BOUNDARY_S(quad) && Z_SW >= 1 && Z_SE < 1 &&
+ start_line(vertices_list, quad, Edge_S, level)) continue;
+
+ if (BOUNDARY_W(quad) && Z_NW >= 1 && Z_SW < 1 &&
+ start_line(vertices_list, quad, Edge_W, level)) continue;
+
+ if (BOUNDARY_N(quad) && Z_NE >= 1 && Z_NW < 1 &&
+ start_line(vertices_list, quad, Edge_N, level)) continue;
+
+ if (BOUNDARY_E(quad) && Z_SE >= 1 && Z_NE < 1 &&
+ start_line(vertices_list, quad, Edge_E, level)) continue;
+
+ if (_corner_mask) {
+ // Equates to NE boundary.
+ if (EXISTS_SW_CORNER(quad) && Z_SE >= 1 && Z_NW < 1 &&
+ start_line(vertices_list, quad, Edge_NE, level)) continue;
+
+ // Equates to NW boundary.
+ if (EXISTS_SE_CORNER(quad) && Z_NE >= 1 && Z_SW < 1 &&
+ start_line(vertices_list, quad, Edge_NW, level)) continue;
+
+ // Equates to SE boundary.
+ if (EXISTS_NW_CORNER(quad) && Z_SW >= 1 && Z_NE < 1 &&
+ start_line(vertices_list, quad, Edge_SE, level)) continue;
+
+ // Equates to SW boundary.
+ if (EXISTS_NE_CORNER(quad) && Z_NW >= 1 && Z_SE < 1 &&
+ start_line(vertices_list, quad, Edge_SW, level)) continue;
+ }
+ }
+ }
+ }
+
+ // Internal loops.
+ ContourLine contour_line(false); // Reused for each contour line.
+ for (long ijchunk = 0; ijchunk < _chunk_count; ++ijchunk) {
+ get_chunk_limits(ijchunk, ichunk, jchunk, istart, iend, jstart, jend);
+
+ for (long j = jstart; j < jend; ++j) {
+ long quad_end = iend + j*_nx;
+ for (long quad = istart + j*_nx; quad < quad_end; ++quad) {
+ if (EXISTS_NONE(quad) || VISITED(quad,1))
+ continue;
+
+ Edge start_edge = get_start_edge(quad, 1);
+ if (start_edge == Edge_None)
+ continue;
+
+ QuadEdge quad_edge(quad, start_edge);
+ QuadEdge start_quad_edge(quad_edge);
+
+ // To obtain output identical to that produced by legacy code,
+ // sometimes need to ignore the first point and add it on the
+ // end instead.
+ bool ignore_first = (start_edge == Edge_N);
+ follow_interior(contour_line, quad_edge, 1, level,
+ !ignore_first, &start_quad_edge, 1, false);
+ if (ignore_first && !contour_line.empty())
+ contour_line.push_back(contour_line.front());
+ append_contour_line_to_vertices(contour_line, vertices_list);
+
+ // Repeat if saddle point but not visited.
+ if (SADDLE(quad,1) && !VISITED(quad,1))
+ --quad;
+ }
+ }
+ }
+
+ return vertices_list;
+}
+
+PyObject* QuadContourGenerator::create_filled_contour(const double& lower_level,
+ const double& upper_level)
+{
+ init_cache_levels(lower_level, upper_level);
+
+ Contour contour;
+
+ PyObject* vertices = PyList_New(0);
+ if (vertices == 0)
+ throw std::runtime_error("Failed to create Python list");
+
+ PyObject* codes = PyList_New(0);
+ if (codes == 0) {
+ Py_XDECREF(vertices);
+ throw std::runtime_error("Failed to create Python list");
+ }
+
+ long ichunk, jchunk, istart, iend, jstart, jend;
+ for (long ijchunk = 0; ijchunk < _chunk_count; ++ijchunk) {
+ get_chunk_limits(ijchunk, ichunk, jchunk, istart, iend, jstart, jend);
+ _parent_cache.set_chunk_starts(istart, jstart);
+
+ for (long j = jstart; j < jend; ++j) {
+ long quad_end = iend + j*_nx;
+ for (long quad = istart + j*_nx; quad < quad_end; ++quad) {
+ if (!EXISTS_NONE(quad))
+ single_quad_filled(contour, quad, lower_level, upper_level);
+ }
+ }
+
+ // Clear VISITED_W and VISITED_S flags that are reused by later chunks.
+ if (jchunk < _nychunk-1) {
+ long quad_end = iend + jend*_nx;
+ for (long quad = istart + jend*_nx; quad < quad_end; ++quad)
+ _cache[quad] &= ~MASK_VISITED_S;
+ }
+
+ if (ichunk < _nxchunk-1) {
+ long quad_end = iend + jend*_nx;
+ for (long quad = iend + jstart*_nx; quad < quad_end; quad += _nx)
+ _cache[quad] &= ~MASK_VISITED_W;
+ }
+
+ // Create python objects to return for this chunk.
+ append_contour_to_vertices_and_codes(contour, vertices, codes);
+ }
+
+ PyObject* tuple = PyTuple_New(2);
+ if (tuple == 0) {
+ Py_XDECREF(vertices);
+ Py_XDECREF(codes);
+ throw std::runtime_error("Failed to create Python tuple");
+ }
+
+ // No error checking here as filling in a brand new pre-allocated tuple.
+ PyTuple_SET_ITEM(tuple, 0, vertices);
+ PyTuple_SET_ITEM(tuple, 1, codes);
+
+ return tuple;
+}
+
+XY QuadContourGenerator::edge_interp(const QuadEdge& quad_edge,
+ const double& level)
+{
+ assert(quad_edge.quad >= 0 && quad_edge.quad < _n &&
+ "Quad index out of bounds");
+ assert(quad_edge.edge != Edge_None && "Invalid edge");
+ return interp(get_edge_point_index(quad_edge, true),
+ get_edge_point_index(quad_edge, false),
+ level);
+}
+
+unsigned int QuadContourGenerator::follow_boundary(
+ ContourLine& contour_line,
+ QuadEdge& quad_edge,
+ const double& lower_level,
+ const double& upper_level,
+ unsigned int level_index,
+ const QuadEdge& start_quad_edge)
+{
+ assert(quad_edge.quad >= 0 && quad_edge.quad < _n &&
+ "Quad index out of bounds");
+ assert(quad_edge.edge != Edge_None && "Invalid edge");
+ assert(is_edge_a_boundary(quad_edge) && "Not a boundary edge");
+ assert((level_index == 1 || level_index == 2) &&
+ "level index must be 1 or 2");
+ assert(start_quad_edge.quad >= 0 && start_quad_edge.quad < _n &&
+ "Start quad index out of bounds");
+ assert(start_quad_edge.edge != Edge_None && "Invalid start edge");
+
+ // Only called for filled contours, so always updates _parent_cache.
+ unsigned int end_level = 0;
+ bool first_edge = true;
+ bool stop = false;
+ long& quad = quad_edge.quad;
+
+ while (true) {
+ // Levels of start and end points of quad_edge.
+ unsigned int start_level =
+ (first_edge ? Z_LEVEL(get_edge_point_index(quad_edge, true))
+ : end_level);
+ long end_point = get_edge_point_index(quad_edge, false);
+ end_level = Z_LEVEL(end_point);
+
+ if (level_index == 1) {
+ if (start_level <= level_index && end_level == 2) {
+ // Increasing z, switching levels from 1 to 2.
+ level_index = 2;
+ stop = true;
+ }
+ else if (start_level >= 1 && end_level == 0) {
+ // Decreasing z, keeping same level.
+ stop = true;
+ }
+ }
+ else { // level_index == 2
+ if (start_level <= level_index && end_level == 2) {
+ // Increasing z, keeping same level.
+ stop = true;
+ }
+ else if (start_level >= 1 && end_level == 0) {
+ // Decreasing z, switching levels from 2 to 1.
+ level_index = 1;
+ stop = true;
+ }
+ }
+
+ if (!first_edge && !stop && quad_edge == start_quad_edge)
+ // Return if reached start point of contour line. Do this before
+ // checking/setting VISITED flags as will already have been
+ // visited.
+ break;
+
+ switch (quad_edge.edge) {
+ case Edge_E:
+ assert(!VISITED_W(quad+1) && "Already visited");
+ _cache[quad+1] |= MASK_VISITED_W;
+ break;
+ case Edge_N:
+ assert(!VISITED_S(quad+_nx) && "Already visited");
+ _cache[quad+_nx] |= MASK_VISITED_S;
+ break;
+ case Edge_W:
+ assert(!VISITED_W(quad) && "Already visited");
+ _cache[quad] |= MASK_VISITED_W;
+ break;
+ case Edge_S:
+ assert(!VISITED_S(quad) && "Already visited");
+ _cache[quad] |= MASK_VISITED_S;
+ break;
+ case Edge_NE:
+ case Edge_NW:
+ case Edge_SW:
+ case Edge_SE:
+ assert(!VISITED_CORNER(quad) && "Already visited");
+ _cache[quad] |= MASK_VISITED_CORNER;
+ break;
+ default:
+ assert(0 && "Invalid Edge");
+ break;
+ }
+
+ if (stop) {
+ // Exiting boundary to enter interior.
+ contour_line.push_back(edge_interp(quad_edge,
+ level_index == 1 ? lower_level
+ : upper_level));
+ break;
+ }
+
+ move_to_next_boundary_edge(quad_edge);
+
+ // Just moved to new quad edge, so label parent of start of quad edge.
+ switch (quad_edge.edge) {
+ case Edge_W:
+ case Edge_SW:
+ case Edge_S:
+ case Edge_SE:
+ if (!EXISTS_SE_CORNER(quad))
+ _parent_cache.set_parent(quad, contour_line);
+ break;
+ case Edge_E:
+ case Edge_NE:
+ case Edge_N:
+ case Edge_NW:
+ if (!EXISTS_SW_CORNER(quad))
+ _parent_cache.set_parent(quad + 1, contour_line);
+ break;
+ default:
+ assert(0 && "Invalid edge");
+ break;
+ }
+
+ // Add point to contour.
+ contour_line.push_back(get_point_xy(end_point));
+
+ if (first_edge)
+ first_edge = false;
+ }
+
+ return level_index;
+}
+
+void QuadContourGenerator::follow_interior(ContourLine& contour_line,
+ QuadEdge& quad_edge,
+ unsigned int level_index,
+ const double& level,
+ bool want_initial_point,
+ const QuadEdge* start_quad_edge,
+ unsigned int start_level_index,
+ bool set_parents)
+{
+ assert(quad_edge.quad >= 0 && quad_edge.quad < _n &&
+ "Quad index out of bounds.");
+ assert(quad_edge.edge != Edge_None && "Invalid edge");
+ assert((level_index == 1 || level_index == 2) &&
+ "level index must be 1 or 2");
+ assert((start_quad_edge == 0 ||
+ (start_quad_edge->quad >= 0 && start_quad_edge->quad < _n)) &&
+ "Start quad index out of bounds.");
+ assert((start_quad_edge == 0 || start_quad_edge->edge != Edge_None) &&
+ "Invalid start edge");
+ assert((start_level_index == 1 || start_level_index == 2) &&
+ "start level index must be 1 or 2");
+
+ long& quad = quad_edge.quad;
+ Edge& edge = quad_edge.edge;
+
+ if (want_initial_point)
+ contour_line.push_back(edge_interp(quad_edge, level));
+
+ CacheItem visited_mask = (level_index == 1 ? MASK_VISITED_1 : MASK_VISITED_2);
+ CacheItem saddle_mask = (level_index == 1 ? MASK_SADDLE_1 : MASK_SADDLE_2);
+ Dir dir = Dir_Straight;
+
+ while (true) {
+ assert(!EXISTS_NONE(quad) && "Quad does not exist");
+ assert(!(_cache[quad] & visited_mask) && "Quad already visited");
+
+ // Determine direction to move to next quad. If the quad is already
+ // labelled as a saddle quad then the direction is easily read from
+ // the cache. Otherwise the direction is determined differently
+ // depending on whether the quad is a corner quad or not.
+
+ if (_cache[quad] & saddle_mask) {
+ // Already identified as a saddle quad, so direction is easy.
+ dir = (SADDLE_LEFT(quad,level_index) ? Dir_Left : Dir_Right);
+ _cache[quad] |= visited_mask;
+ }
+ else if (EXISTS_ANY_CORNER(quad)) {
+ // Need z-level of point opposite the entry edge, as that
+ // determines whether contour turns left or right.
+ long point_opposite = -1;
+ switch (edge) {
+ case Edge_E:
+ point_opposite = (EXISTS_SE_CORNER(quad) ? POINT_SW
+ : POINT_NW);
+ break;
+ case Edge_N:
+ point_opposite = (EXISTS_NW_CORNER(quad) ? POINT_SW
+ : POINT_SE);
+ break;
+ case Edge_W:
+ point_opposite = (EXISTS_SW_CORNER(quad) ? POINT_SE
+ : POINT_NE);
+ break;
+ case Edge_S:
+ point_opposite = (EXISTS_SW_CORNER(quad) ? POINT_NW
+ : POINT_NE);
+ break;
+ case Edge_NE: point_opposite = POINT_SW; break;
+ case Edge_NW: point_opposite = POINT_SE; break;
+ case Edge_SW: point_opposite = POINT_NE; break;
+ case Edge_SE: point_opposite = POINT_NW; break;
+ default: assert(0 && "Invalid edge"); break;
+ }
+ assert(point_opposite != -1 && "Failed to find opposite point");
+
+ // Lower-level polygons (level_index == 1) always have higher
+ // values to the left of the contour. Upper-level contours
+ // (level_index == 2) are reversed, which is what the fancy XOR
+ // does below.
+ if ((Z_LEVEL(point_opposite) >= level_index) ^ (level_index == 2))
+ dir = Dir_Right;
+ else
+ dir = Dir_Left;
+ _cache[quad] |= visited_mask;
+ }
+ else {
+ // Calculate configuration of this quad.
+ long point_left = -1, point_right = -1;
+ switch (edge) {
+ case Edge_E: point_left = POINT_SW; point_right = POINT_NW; break;
+ case Edge_N: point_left = POINT_SE; point_right = POINT_SW; break;
+ case Edge_W: point_left = POINT_NE; point_right = POINT_SE; break;
+ case Edge_S: point_left = POINT_NW; point_right = POINT_NE; break;
+ default: assert(0 && "Invalid edge"); break;
+ }
+
+ unsigned int config = (Z_LEVEL(point_left) >= level_index) << 1 |
+ (Z_LEVEL(point_right) >= level_index);
+
+ // Upper level (level_index == 2) polygons are reversed compared to
+ // lower level ones, i.e. higher values on the right rather than
+ // the left.
+ if (level_index == 2)
+ config = 3 - config;
+
+ // Calculate turn direction to move to next quad along contour line.
+ if (config == 1) {
+ // New saddle quad, set up cache bits for it.
+ double zmid = 0.25*(get_point_z(POINT_SW) +
+ get_point_z(POINT_SE) +
+ get_point_z(POINT_NW) +
+ get_point_z(POINT_NE));
+ _cache[quad] |= (level_index == 1 ? MASK_SADDLE_1 : MASK_SADDLE_2);
+ if ((zmid > level) ^ (level_index == 2)) {
+ dir = Dir_Right;
+ }
+ else {
+ dir = Dir_Left;
+ _cache[quad] |= (level_index == 1 ? MASK_SADDLE_LEFT_1
+ : MASK_SADDLE_LEFT_2);
+ }
+ if (edge == Edge_N || edge == Edge_E) {
+ // Next visit to this quad must start on S or W.
+ _cache[quad] |= (level_index == 1 ? MASK_SADDLE_START_SW_1
+ : MASK_SADDLE_START_SW_2);
+ }
+ }
+ else {
+ // Normal (non-saddle) quad.
+ dir = (config == 0 ? Dir_Left
+ : (config == 3 ? Dir_Right : Dir_Straight));
+ _cache[quad] |= visited_mask;
+ }
+ }
+
+ // Use dir to determine exit edge.
+ edge = get_exit_edge(quad_edge, dir);
+
+ if (set_parents) {
+ if (edge == Edge_E)
+ _parent_cache.set_parent(quad+1, contour_line);
+ else if (edge == Edge_W)
+ _parent_cache.set_parent(quad, contour_line);
+ }
+
+ // Add new point to contour line.
+ contour_line.push_back(edge_interp(quad_edge, level));
+
+ // Stop if reached boundary.
+ if (is_edge_a_boundary(quad_edge))
+ break;
+
+ move_to_next_quad(quad_edge);
+ assert(quad_edge.quad >= 0 && quad_edge.quad < _n &&
+ "Quad index out of bounds");
+
+ // Return if reached start point of contour line.
+ if (start_quad_edge != 0 &&
+ quad_edge == *start_quad_edge &&
+ level_index == start_level_index)
+ break;
+ }
+}
+
+void QuadContourGenerator::get_chunk_limits(long ijchunk,
+ long& ichunk,
+ long& jchunk,
+ long& istart,
+ long& iend,
+ long& jstart,
+ long& jend)
+{
+ assert(ijchunk >= 0 && ijchunk < _chunk_count && "ijchunk out of bounds");
+ ichunk = ijchunk % _nxchunk;
+ jchunk = ijchunk / _nxchunk;
+ istart = ichunk*_chunk_size;
+ iend = (ichunk == _nxchunk-1 ? _nx : (ichunk+1)*_chunk_size);
+ jstart = jchunk*_chunk_size;
+ jend = (jchunk == _nychunk-1 ? _ny : (jchunk+1)*_chunk_size);
+}
+
+Edge QuadContourGenerator::get_corner_start_edge(long quad,
+ unsigned int level_index) const
+{
+ assert(quad >= 0 && quad < _n && "Quad index out of bounds");
+ assert((level_index == 1 || level_index == 2) &&
+ "level index must be 1 or 2");
+ assert(EXISTS_ANY_CORNER(quad) && "Quad is not a corner");
+
+ // Diagram for NE corner. Rotate for other corners.
+ //
+ // edge12
+ // point1 +---------+ point2
+ // \ |
+ // \ | edge23
+ // edge31 \ |
+ // \ |
+ // + point3
+ //
+ long point1, point2, point3;
+ Edge edge12, edge23, edge31;
+ switch (_cache[quad] & MASK_EXISTS) {
+ case MASK_EXISTS_SW_CORNER:
+ point1 = POINT_SE; point2 = POINT_SW; point3 = POINT_NW;
+ edge12 = Edge_S; edge23 = Edge_W; edge31 = Edge_NE;
+ break;
+ case MASK_EXISTS_SE_CORNER:
+ point1 = POINT_NE; point2 = POINT_SE; point3 = POINT_SW;
+ edge12 = Edge_E; edge23 = Edge_S; edge31 = Edge_NW;
+ break;
+ case MASK_EXISTS_NW_CORNER:
+ point1 = POINT_SW; point2 = POINT_NW; point3 = POINT_NE;
+ edge12 = Edge_W; edge23 = Edge_N; edge31 = Edge_SE;
+ break;
+ case MASK_EXISTS_NE_CORNER:
+ point1 = POINT_NW; point2 = POINT_NE; point3 = POINT_SE;
+ edge12 = Edge_N; edge23 = Edge_E; edge31 = Edge_SW;
+ break;
+ default:
+ assert(0 && "Invalid EXISTS for quad");
+ return Edge_None;
+ }
+
+ unsigned int config = (Z_LEVEL(point1) >= level_index) << 2 |
+ (Z_LEVEL(point2) >= level_index) << 1 |
+ (Z_LEVEL(point3) >= level_index);
+
+ // Upper level (level_index == 2) polygons are reversed compared to lower
+ // level ones, i.e. higher values on the right rather than the left.
+ if (level_index == 2)
+ config = 7 - config;
+
+ switch (config) {
+ case 0: return Edge_None;
+ case 1: return edge23;
+ case 2: return edge12;
+ case 3: return edge12;
+ case 4: return edge31;
+ case 5: return edge23;
+ case 6: return edge31;
+ case 7: return Edge_None;
+ default: assert(0 && "Invalid config"); return Edge_None;
+ }
+}
+
+long QuadContourGenerator::get_edge_point_index(const QuadEdge& quad_edge,
+ bool start) const
+{
+ assert(quad_edge.quad >= 0 && quad_edge.quad < _n &&
+ "Quad index out of bounds");
+ assert(quad_edge.edge != Edge_None && "Invalid edge");
+
+ // Edges are ordered anticlockwise around their quad, as indicated by
+ // directions of arrows in diagrams below.
+ // Full quad NW corner (others similar)
+ //
+ // POINT_NW Edge_N POINT_NE POINT_NW Edge_N POINT_NE
+ // +----<-----+ +----<-----+
+ // | | | /
+ // | | | quad /
+ // Edge_W V quad ^ Edge_E Edge_W V ^
+ // | | | / Edge_SE
+ // | | | /
+ // +---->-----+ +
+ // POINT_SW Edge_S POINT_SE POINT_SW
+ //
+ const long& quad = quad_edge.quad;
+ switch (quad_edge.edge) {
+ case Edge_E: return (start ? POINT_SE : POINT_NE);
+ case Edge_N: return (start ? POINT_NE : POINT_NW);
+ case Edge_W: return (start ? POINT_NW : POINT_SW);
+ case Edge_S: return (start ? POINT_SW : POINT_SE);
+ case Edge_NE: return (start ? POINT_SE : POINT_NW);
+ case Edge_NW: return (start ? POINT_NE : POINT_SW);
+ case Edge_SW: return (start ? POINT_NW : POINT_SE);
+ case Edge_SE: return (start ? POINT_SW : POINT_NE);
+ default: assert(0 && "Invalid edge"); return 0;
+ }
+}
+
+Edge QuadContourGenerator::get_exit_edge(const QuadEdge& quad_edge,
+ Dir dir) const
+{
+ assert(quad_edge.quad >= 0 && quad_edge.quad < _n &&
+ "Quad index out of bounds");
+ assert(quad_edge.edge != Edge_None && "Invalid edge");
+
+ const long& quad = quad_edge.quad;
+ const Edge& edge = quad_edge.edge;
+ if (EXISTS_ANY_CORNER(quad)) {
+ // Corner directions are always left or right. A corner is a triangle,
+ // entered via one edge so the other two edges are the left and right
+ // ones.
+ switch (edge) {
+ case Edge_E:
+ return (EXISTS_SE_CORNER(quad)
+ ? (dir == Dir_Left ? Edge_S : Edge_NW)
+ : (dir == Dir_Right ? Edge_N : Edge_SW));
+ case Edge_N:
+ return (EXISTS_NW_CORNER(quad)
+ ? (dir == Dir_Right ? Edge_W : Edge_SE)
+ : (dir == Dir_Left ? Edge_E : Edge_SW));
+ case Edge_W:
+ return (EXISTS_SW_CORNER(quad)
+ ? (dir == Dir_Right ? Edge_S : Edge_NE)
+ : (dir == Dir_Left ? Edge_N : Edge_SE));
+ case Edge_S:
+ return (EXISTS_SW_CORNER(quad)
+ ? (dir == Dir_Left ? Edge_W : Edge_NE)
+ : (dir == Dir_Right ? Edge_E : Edge_NW));
+ case Edge_NE: return (dir == Dir_Left ? Edge_S : Edge_W);
+ case Edge_NW: return (dir == Dir_Left ? Edge_E : Edge_S);
+ case Edge_SW: return (dir == Dir_Left ? Edge_N : Edge_E);
+ case Edge_SE: return (dir == Dir_Left ? Edge_W : Edge_N);
+ default: assert(0 && "Invalid edge"); return Edge_None;
+ }
+ }
+ else {
+ // A full quad has four edges, entered via one edge so that other three
+ // edges correspond to left, straight and right directions.
+ switch (edge) {
+ case Edge_E:
+ return (dir == Dir_Left ? Edge_S :
+ (dir == Dir_Right ? Edge_N : Edge_W));
+ case Edge_N:
+ return (dir == Dir_Left ? Edge_E :
+ (dir == Dir_Right ? Edge_W : Edge_S));
+ case Edge_W:
+ return (dir == Dir_Left ? Edge_N :
+ (dir == Dir_Right ? Edge_S : Edge_E));
+ case Edge_S:
+ return (dir == Dir_Left ? Edge_W :
+ (dir == Dir_Right ? Edge_E : Edge_N));
+ default: assert(0 && "Invalid edge"); return Edge_None;
+ }
+ }
+}
+
+XY QuadContourGenerator::get_point_xy(long point) const
+{
+ assert(point >= 0 && point < _n && "Point index out of bounds.");
+ return XY(_x.data()[static_cast<npy_intp>(point)],
+ _y.data()[static_cast<npy_intp>(point)]);
+}
+
+const double& QuadContourGenerator::get_point_z(long point) const
+{
+ assert(point >= 0 && point < _n && "Point index out of bounds.");
+ return _z.data()[static_cast<npy_intp>(point)];
+}
+
+Edge QuadContourGenerator::get_quad_start_edge(long quad,
+ unsigned int level_index) const
+{
+ assert(quad >= 0 && quad < _n && "Quad index out of bounds");
+ assert((level_index == 1 || level_index == 2) &&
+ "level index must be 1 or 2");
+ assert(EXISTS_QUAD(quad) && "Quad does not exist");
+
+ unsigned int config = (Z_NW >= level_index) << 3 |
+ (Z_NE >= level_index) << 2 |
+ (Z_SW >= level_index) << 1 |
+ (Z_SE >= level_index);
+
+ // Upper level (level_index == 2) polygons are reversed compared to lower
+ // level ones, i.e. higher values on the right rather than the left.
+ if (level_index == 2)
+ config = 15 - config;
+
+ switch (config) {
+ case 0: return Edge_None;
+ case 1: return Edge_E;
+ case 2: return Edge_S;
+ case 3: return Edge_E;
+ case 4: return Edge_N;
+ case 5: return Edge_N;
+ case 6:
+ // If already identified as a saddle quad then the start edge is
+ // read from the cache. Otherwise return either valid start edge
+ // and the subsequent call to follow_interior() will correctly set
+ // up saddle bits in cache.
+ if (!SADDLE(quad,level_index) || SADDLE_START_SW(quad,level_index))
+ return Edge_S;
+ else
+ return Edge_N;
+ case 7: return Edge_N;
+ case 8: return Edge_W;
+ case 9:
+ // See comment for 6 above.
+ if (!SADDLE(quad,level_index) || SADDLE_START_SW(quad,level_index))
+ return Edge_W;
+ else
+ return Edge_E;
+ case 10: return Edge_S;
+ case 11: return Edge_E;
+ case 12: return Edge_W;
+ case 13: return Edge_W;
+ case 14: return Edge_S;
+ case 15: return Edge_None;
+ default: assert(0 && "Invalid config"); return Edge_None;
+ }
+}
+
+Edge QuadContourGenerator::get_start_edge(long quad,
+ unsigned int level_index) const
+{
+ if (EXISTS_ANY_CORNER(quad))
+ return get_corner_start_edge(quad, level_index);
+ else
+ return get_quad_start_edge(quad, level_index);
+}
+
+void QuadContourGenerator::init_cache_grid(const MaskArray& mask)
+{
+ long i, j, quad;
+
+ if (mask.empty()) {
+ // No mask, easy to calculate quad existence and boundaries together.
+ quad = 0;
+ for (j = 0; j < _ny; ++j) {
+ for (i = 0; i < _nx; ++i, ++quad) {
+ _cache[quad] = 0;
+
+ if (i < _nx-1 && j < _ny-1)
+ _cache[quad] |= MASK_EXISTS_QUAD;
+
+ if ((i % _chunk_size == 0 || i == _nx-1) && j < _ny-1)
+ _cache[quad] |= MASK_BOUNDARY_W;
+
+ if ((j % _chunk_size == 0 || j == _ny-1) && i < _nx-1)
+ _cache[quad] |= MASK_BOUNDARY_S;
+ }
+ }
+ }
+ else {
+ // Casting avoids problem when sizeof(bool) != sizeof(npy_bool).
+ const npy_bool* mask_ptr =
+ reinterpret_cast<const npy_bool*>(mask.data());
+
+ // Have mask so use two stages.
+ // Stage 1, determine if quads/corners exist.
+ quad = 0;
+ for (j = 0; j < _ny; ++j) {
+ for (i = 0; i < _nx; ++i, ++quad) {
+ _cache[quad] = 0;
+
+ if (i < _nx-1 && j < _ny-1) {
+ unsigned int config = mask_ptr[POINT_NW] << 3 |
+ mask_ptr[POINT_NE] << 2 |
+ mask_ptr[POINT_SW] << 1 |
+ mask_ptr[POINT_SE];
+
+ if (_corner_mask) {
+ switch (config) {
+ case 0: _cache[quad] = MASK_EXISTS_QUAD; break;
+ case 1: _cache[quad] = MASK_EXISTS_NW_CORNER; break;
+ case 2: _cache[quad] = MASK_EXISTS_NE_CORNER; break;
+ case 4: _cache[quad] = MASK_EXISTS_SW_CORNER; break;
+ case 8: _cache[quad] = MASK_EXISTS_SE_CORNER; break;
+ default:
+ // Do nothing, quad is masked out.
+ break;
+ }
+ }
+ else if (config == 0)
+ _cache[quad] = MASK_EXISTS_QUAD;
+ }
+ }
+ }
+
+ // Stage 2, calculate W and S boundaries. For each quad use boundary
+ // data already calculated for quads to W and S, so must iterate
+ // through quads in correct order (increasing i and j indices).
+ // Cannot use boundary data for quads to E and N as have not yet
+ // calculated it.
+ quad = 0;
+ for (j = 0; j < _ny; ++j) {
+ for (i = 0; i < _nx; ++i, ++quad) {
+ if (_corner_mask) {
+ bool W_exists_none = (i == 0 || EXISTS_NONE(quad-1));
+ bool S_exists_none = (j == 0 || EXISTS_NONE(quad-_nx));
+ bool W_exists_E_edge = (i > 0 && EXISTS_E_EDGE(quad-1));
+ bool S_exists_N_edge = (j > 0 && EXISTS_N_EDGE(quad-_nx));
+
+ if ((EXISTS_W_EDGE(quad) && W_exists_none) ||
+ (EXISTS_NONE(quad) && W_exists_E_edge) ||
+ (i % _chunk_size == 0 && EXISTS_W_EDGE(quad) &&
+ W_exists_E_edge))
+ _cache[quad] |= MASK_BOUNDARY_W;
+
+ if ((EXISTS_S_EDGE(quad) && S_exists_none) ||
+ (EXISTS_NONE(quad) && S_exists_N_edge) ||
+ (j % _chunk_size == 0 && EXISTS_S_EDGE(quad) &&
+ S_exists_N_edge))
+ _cache[quad] |= MASK_BOUNDARY_S;
+ }
+ else {
+ bool W_exists_quad = (i > 0 && EXISTS_QUAD(quad-1));
+ bool S_exists_quad = (j > 0 && EXISTS_QUAD(quad-_nx));
+
+ if ((EXISTS_QUAD(quad) != W_exists_quad) ||
+ (i % _chunk_size == 0 && EXISTS_QUAD(quad) &&
+ W_exists_quad))
+ _cache[quad] |= MASK_BOUNDARY_W;
+
+ if ((EXISTS_QUAD(quad) != S_exists_quad) ||
+ (j % _chunk_size == 0 && EXISTS_QUAD(quad) &&
+ S_exists_quad))
+ _cache[quad] |= MASK_BOUNDARY_S;
+ }
+ }
+ }
+ }
+}
+
+void QuadContourGenerator::init_cache_levels(const double& lower_level,
+ const double& upper_level)
+{
+ assert(upper_level >= lower_level &&
+ "upper and lower levels are wrong way round");
+
+ bool two_levels = (lower_level != upper_level);
+ CacheItem keep_mask =
+ (_corner_mask ? MASK_EXISTS | MASK_BOUNDARY_S | MASK_BOUNDARY_W
+ : MASK_EXISTS_QUAD | MASK_BOUNDARY_S | MASK_BOUNDARY_W);
+
+ if (two_levels) {
+ const double* z_ptr = _z.data();
+ for (long quad = 0; quad < _n; ++quad, ++z_ptr) {
+ _cache[quad] &= keep_mask;
+ if (*z_ptr > upper_level)
+ _cache[quad] |= MASK_Z_LEVEL_2;
+ else if (*z_ptr > lower_level)
+ _cache[quad] |= MASK_Z_LEVEL_1;
+ }
+ }
+ else {
+ const double* z_ptr = _z.data();
+ for (long quad = 0; quad < _n; ++quad, ++z_ptr) {
+ _cache[quad] &= keep_mask;
+ if (*z_ptr > lower_level)
+ _cache[quad] |= MASK_Z_LEVEL_1;
+ }
+ }
+}
+
+XY QuadContourGenerator::interp(
+ long point1, long point2, const double& level) const
+{
+ assert(point1 >= 0 && point1 < _n && "Point index 1 out of bounds.");
+ assert(point2 >= 0 && point2 < _n && "Point index 2 out of bounds.");
+ assert(point1 != point2 && "Identical points");
+ double fraction = (get_point_z(point2) - level) /
+ (get_point_z(point2) - get_point_z(point1));
+ return get_point_xy(point1)*fraction + get_point_xy(point2)*(1.0 - fraction);
+}
+
+bool QuadContourGenerator::is_edge_a_boundary(const QuadEdge& quad_edge) const
+{
+ assert(quad_edge.quad >= 0 && quad_edge.quad < _n &&
+ "Quad index out of bounds");
+ assert(quad_edge.edge != Edge_None && "Invalid edge");
+
+ switch (quad_edge.edge) {
+ case Edge_E: return BOUNDARY_E(quad_edge.quad);
+ case Edge_N: return BOUNDARY_N(quad_edge.quad);
+ case Edge_W: return BOUNDARY_W(quad_edge.quad);
+ case Edge_S: return BOUNDARY_S(quad_edge.quad);
+ case Edge_NE: return EXISTS_SW_CORNER(quad_edge.quad);
+ case Edge_NW: return EXISTS_SE_CORNER(quad_edge.quad);
+ case Edge_SW: return EXISTS_NE_CORNER(quad_edge.quad);
+ case Edge_SE: return EXISTS_NW_CORNER(quad_edge.quad);
+ default: assert(0 && "Invalid edge"); return true;
+ }
+}
+
+void QuadContourGenerator::move_to_next_boundary_edge(QuadEdge& quad_edge) const
+{
+ assert(is_edge_a_boundary(quad_edge) && "QuadEdge is not a boundary");
+
+ long& quad = quad_edge.quad;
+ Edge& edge = quad_edge.edge;
+
+ quad = get_edge_point_index(quad_edge, false);
+
+ // quad is now such that POINT_SW is the end point of the quad_edge passed
+ // to this function.
+
+ // To find the next boundary edge, first attempt to turn left 135 degrees
+ // and if that edge is a boundary then move to it. If not, attempt to turn
+ // left 90 degrees, then left 45 degrees, then straight on, etc, until can
+ // move.
+ // First determine which edge to attempt first.
+ int index = 0;
+ switch (edge) {
+ case Edge_E: index = 0; break;
+ case Edge_SE: index = 1; break;
+ case Edge_S: index = 2; break;
+ case Edge_SW: index = 3; break;
+ case Edge_W: index = 4; break;
+ case Edge_NW: index = 5; break;
+ case Edge_N: index = 6; break;
+ case Edge_NE: index = 7; break;
+ default: assert(0 && "Invalid edge"); break;
+ }
+
+ // If _corner_mask not set, only need to consider odd index in loop below.
+ if (!_corner_mask)
+ ++index;
+
+ // Try each edge in turn until a boundary is found.
+ int start_index = index;
+ do
+ {
+ switch (index) {
+ case 0:
+ if (EXISTS_SE_CORNER(quad-_nx-1)) { // Equivalent to BOUNDARY_NW
+ quad -= _nx+1;
+ edge = Edge_NW;
+ return;
+ }
+ break;
+ case 1:
+ if (BOUNDARY_N(quad-_nx-1)) {
+ quad -= _nx+1;
+ edge = Edge_N;
+ return;
+ }
+ break;
+ case 2:
+ if (EXISTS_SW_CORNER(quad-1)) { // Equivalent to BOUNDARY_NE
+ quad -= 1;
+ edge = Edge_NE;
+ return;
+ }
+ break;
+ case 3:
+ if (BOUNDARY_E(quad-1)) {
+ quad -= 1;
+ edge = Edge_E;
+ return;
+ }
+ break;
+ case 4:
+ if (EXISTS_NW_CORNER(quad)) { // Equivalent to BOUNDARY_SE
+ edge = Edge_SE;
+ return;
+ }
+ break;
+ case 5:
+ if (BOUNDARY_S(quad)) {
+ edge = Edge_S;
+ return;
+ }
+ break;
+ case 6:
+ if (EXISTS_NE_CORNER(quad-_nx)) { // Equivalent to BOUNDARY_SW
+ quad -= _nx;
+ edge = Edge_SW;
+ return;
+ }
+ break;
+ case 7:
+ if (BOUNDARY_W(quad-_nx)) {
+ quad -= _nx;
+ edge = Edge_W;
+ return;
+ }
+ break;
+ default: assert(0 && "Invalid index"); break;
+ }
+
+ if (_corner_mask)
+ index = (index + 1) % 8;
+ else
+ index = (index + 2) % 8;
+ } while (index != start_index);
+
+ assert(0 && "Failed to find next boundary edge");
+}
+
+void QuadContourGenerator::move_to_next_quad(QuadEdge& quad_edge) const
+{
+ assert(quad_edge.quad >= 0 && quad_edge.quad < _n &&
+ "Quad index out of bounds");
+ assert(quad_edge.edge != Edge_None && "Invalid edge");
+
+ // Move from quad_edge.quad to the neighbouring quad in the direction
+ // specified by quad_edge.edge.
+ switch (quad_edge.edge) {
+ case Edge_E: quad_edge.quad += 1; quad_edge.edge = Edge_W; break;
+ case Edge_N: quad_edge.quad += _nx; quad_edge.edge = Edge_S; break;
+ case Edge_W: quad_edge.quad -= 1; quad_edge.edge = Edge_E; break;
+ case Edge_S: quad_edge.quad -= _nx; quad_edge.edge = Edge_N; break;
+ default: assert(0 && "Invalid edge"); break;
+ }
+}
+
+void QuadContourGenerator::single_quad_filled(Contour& contour,
+ long quad,
+ const double& lower_level,
+ const double& upper_level)
+{
+ assert(quad >= 0 && quad < _n && "Quad index out of bounds");
+
+ // Order of checking is important here as can have different ContourLines
+ // from both lower and upper levels in the same quad. First check the S
+ // edge, then move up the quad to the N edge checking as required.
+
+ // Possible starts from S boundary.
+ if (BOUNDARY_S(quad) && EXISTS_S_EDGE(quad)) {
+
+ // Lower-level start from S boundary into interior.
+ if (!VISITED_S(quad) && Z_SW >= 1 && Z_SE == 0)
+ contour.push_back(start_filled(quad, Edge_S, 1, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Upper-level start from S boundary into interior.
+ if (!VISITED_S(quad) && Z_SW < 2 && Z_SE == 2)
+ contour.push_back(start_filled(quad, Edge_S, 2, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Lower-level start following S boundary from W to E.
+ if (!VISITED_S(quad) && Z_SW <= 1 && Z_SE == 1)
+ contour.push_back(start_filled(quad, Edge_S, 1, NotHole, Boundary,
+ lower_level, upper_level));
+
+ // Upper-level start following S boundary from W to E.
+ if (!VISITED_S(quad) && Z_SW == 2 && Z_SE == 1)
+ contour.push_back(start_filled(quad, Edge_S, 2, NotHole, Boundary,
+ lower_level, upper_level));
+ }
+
+ // Possible starts from W boundary.
+ if (BOUNDARY_W(quad) && EXISTS_W_EDGE(quad)) {
+
+ // Lower-level start from W boundary into interior.
+ if (!VISITED_W(quad) && Z_NW >= 1 && Z_SW == 0)
+ contour.push_back(start_filled(quad, Edge_W, 1, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Upper-level start from W boundary into interior.
+ if (!VISITED_W(quad) && Z_NW < 2 && Z_SW == 2)
+ contour.push_back(start_filled(quad, Edge_W, 2, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Lower-level start following W boundary from N to S.
+ if (!VISITED_W(quad) && Z_NW <= 1 && Z_SW == 1)
+ contour.push_back(start_filled(quad, Edge_W, 1, NotHole, Boundary,
+ lower_level, upper_level));
+
+ // Upper-level start following W boundary from N to S.
+ if (!VISITED_W(quad) && Z_NW == 2 && Z_SW == 1)
+ contour.push_back(start_filled(quad, Edge_W, 2, NotHole, Boundary,
+ lower_level, upper_level));
+ }
+
+ // Possible starts from NE boundary.
+ if (EXISTS_SW_CORNER(quad)) { // i.e. BOUNDARY_NE
+
+ // Lower-level start following NE boundary from SE to NW, hole.
+ if (!VISITED_CORNER(quad) && Z_NW == 1 && Z_SE == 1)
+ contour.push_back(start_filled(quad, Edge_NE, 1, Hole, Boundary,
+ lower_level, upper_level));
+ }
+ // Possible starts from SE boundary.
+ else if (EXISTS_NW_CORNER(quad)) { // i.e. BOUNDARY_SE
+
+ // Lower-level start from N to SE.
+ if (!VISITED(quad,1) && Z_NW == 0 && Z_SW == 0 && Z_NE >= 1)
+ contour.push_back(start_filled(quad, Edge_N, 1, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Upper-level start from SE to N, hole.
+ if (!VISITED(quad,2) && Z_NW < 2 && Z_SW < 2 && Z_NE == 2)
+ contour.push_back(start_filled(quad, Edge_SE, 2, Hole, Interior,
+ lower_level, upper_level));
+
+ // Upper-level start from N to SE.
+ if (!VISITED(quad,2) && Z_NW == 2 && Z_SW == 2 && Z_NE < 2)
+ contour.push_back(start_filled(quad, Edge_N, 2, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Lower-level start from SE to N, hole.
+ if (!VISITED(quad,1) && Z_NW >= 1 && Z_SW >= 1 && Z_NE == 0)
+ contour.push_back(start_filled(quad, Edge_SE, 1, Hole, Interior,
+ lower_level, upper_level));
+ }
+ // Possible starts from NW boundary.
+ else if (EXISTS_SE_CORNER(quad)) { // i.e. BOUNDARY_NW
+
+ // Lower-level start from NW to E.
+ if (!VISITED(quad,1) && Z_SW == 0 && Z_SE == 0 && Z_NE >= 1)
+ contour.push_back(start_filled(quad, Edge_NW, 1, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Upper-level start from E to NW, hole.
+ if (!VISITED(quad,2) && Z_SW < 2 && Z_SE < 2 && Z_NE == 2)
+ contour.push_back(start_filled(quad, Edge_E, 2, Hole, Interior,
+ lower_level, upper_level));
+
+ // Upper-level start from NW to E.
+ if (!VISITED(quad,2) && Z_SW == 2 && Z_SE == 2 && Z_NE < 2)
+ contour.push_back(start_filled(quad, Edge_NW, 2, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Lower-level start from E to NW, hole.
+ if (!VISITED(quad,1) && Z_SW >= 1 && Z_SE >= 1 && Z_NE == 0)
+ contour.push_back(start_filled(quad, Edge_E, 1, Hole, Interior,
+ lower_level, upper_level));
+ }
+ // Possible starts from SW boundary.
+ else if (EXISTS_NE_CORNER(quad)) { // i.e. BOUNDARY_SW
+
+ // Lower-level start from SW boundary into interior.
+ if (!VISITED_CORNER(quad) && Z_NW >= 1 && Z_SE == 0)
+ contour.push_back(start_filled(quad, Edge_SW, 1, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Upper-level start from SW boundary into interior.
+ if (!VISITED_CORNER(quad) && Z_NW < 2 && Z_SE == 2)
+ contour.push_back(start_filled(quad, Edge_SW, 2, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Lower-level start following SW boundary from NW to SE.
+ if (!VISITED_CORNER(quad) && Z_NW <= 1 && Z_SE == 1)
+ contour.push_back(start_filled(quad, Edge_SW, 1, NotHole, Boundary,
+ lower_level, upper_level));
+
+ // Upper-level start following SW boundary from NW to SE.
+ if (!VISITED_CORNER(quad) && Z_NW == 2 && Z_SE == 1)
+ contour.push_back(start_filled(quad, Edge_SW, 2, NotHole, Boundary,
+ lower_level, upper_level));
+ }
+
+ // A full (unmasked) quad can only have a start on the NE corner, i.e. from
+ // N to E (lower level) or E to N (upper level). Any other start will have
+ // already been created in a call to this function for a prior quad so we
+ // don't need to test for it again here.
+ //
+ // The situation is complicated by the possibility that the quad is a
+ // saddle quad, in which case a contour line starting on the N could leave
+ // by either the W or the E. We only need to consider those leaving E.
+ //
+ // A NE corner can also have a N to E or E to N start.
+ if (EXISTS_QUAD(quad) || EXISTS_NE_CORNER(quad)) {
+
+ // Lower-level start from N to E.
+ if (!VISITED(quad,1) && Z_NW == 0 && Z_SE == 0 && Z_NE >= 1 &&
+ (!SADDLE(quad,1) || SADDLE_LEFT(quad,1)))
+ contour.push_back(start_filled(quad, Edge_N, 1, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Upper-level start from E to N, hole.
+ if (!VISITED(quad,2) && Z_NW < 2 && Z_SE < 2 && Z_NE == 2 &&
+ (!SADDLE(quad,2) || !SADDLE_LEFT(quad,2)))
+ contour.push_back(start_filled(quad, Edge_E, 2, Hole, Interior,
+ lower_level, upper_level));
+
+ // Upper-level start from N to E.
+ if (!VISITED(quad,2) && Z_NW == 2 && Z_SE == 2 && Z_NE < 2 &&
+ (!SADDLE(quad,2) || SADDLE_LEFT(quad,2)))
+ contour.push_back(start_filled(quad, Edge_N, 2, NotHole, Interior,
+ lower_level, upper_level));
+
+ // Lower-level start from E to N, hole.
+ if (!VISITED(quad,1) && Z_NW >= 1 && Z_SE >= 1 && Z_NE == 0 &&
+ (!SADDLE(quad,1) || !SADDLE_LEFT(quad,1)))
+ contour.push_back(start_filled(quad, Edge_E, 1, Hole, Interior,
+ lower_level, upper_level));
+
+ // All possible contours passing through the interior of this quad
+ // should have already been created, so assert this.
+ assert((VISITED(quad,1) || get_start_edge(quad, 1) == Edge_None) &&
+ "Found start of contour that should have already been created");
+ assert((VISITED(quad,2) || get_start_edge(quad, 2) == Edge_None) &&
+ "Found start of contour that should have already been created");
+ }
+
+ // Lower-level start following N boundary from E to W, hole.
+ // This is required for an internal masked region which is a hole in a
+ // surrounding contour line.
+ if (BOUNDARY_N(quad) && EXISTS_N_EDGE(quad) &&
+ !VISITED_S(quad+_nx) && Z_NW == 1 && Z_NE == 1)
+ contour.push_back(start_filled(quad, Edge_N, 1, Hole, Boundary,
+ lower_level, upper_level));
+}
+
+ContourLine* QuadContourGenerator::start_filled(
+ long quad,
+ Edge edge,
+ unsigned int start_level_index,
+ HoleOrNot hole_or_not,
+ BoundaryOrInterior boundary_or_interior,
+ const double& lower_level,
+ const double& upper_level)
+{
+ assert(quad >= 0 && quad < _n && "Quad index out of bounds");
+ assert(edge != Edge_None && "Invalid edge");
+ assert((start_level_index == 1 || start_level_index == 2) &&
+ "start level index must be 1 or 2");
+
+ ContourLine* contour_line = new ContourLine(hole_or_not == Hole);
+ if (hole_or_not == Hole) {
+ // Find and set parent ContourLine.
+ ContourLine* parent = _parent_cache.get_parent(quad + 1);
+ assert(parent != 0 && "Failed to find parent ContourLine");
+ contour_line->set_parent(parent);
+ parent->add_child(contour_line);
+ }
+
+ QuadEdge quad_edge(quad, edge);
+ const QuadEdge start_quad_edge(quad_edge);
+ unsigned int level_index = start_level_index;
+
+ // If starts on interior, can only finish on interior.
+ // If starts on boundary, can only finish on boundary.
+
+ while (true) {
+ if (boundary_or_interior == Interior) {
+ double level = (level_index == 1 ? lower_level : upper_level);
+ follow_interior(*contour_line, quad_edge, level_index, level,
+ false, &start_quad_edge, start_level_index, true);
+ }
+ else {
+ level_index = follow_boundary(
+ *contour_line, quad_edge, lower_level,
+ upper_level, level_index, start_quad_edge);
+ }
+
+ if (quad_edge == start_quad_edge && (boundary_or_interior == Boundary ||
+ level_index == start_level_index))
+ break;
+
+ if (boundary_or_interior == Boundary)
+ boundary_or_interior = Interior;
+ else
+ boundary_or_interior = Boundary;
+ }
+
+ return contour_line;
+}
+
+bool QuadContourGenerator::start_line(
+ PyObject* vertices_list, long quad, Edge edge, const double& level)
+{
+ assert(vertices_list != 0 && "Null python vertices list");
+ assert(is_edge_a_boundary(QuadEdge(quad, edge)) &&
+ "QuadEdge is not a boundary");
+
+ QuadEdge quad_edge(quad, edge);
+ ContourLine contour_line(false);
+ follow_interior(contour_line, quad_edge, 1, level, true, 0, 1, false);
+ append_contour_line_to_vertices(contour_line, vertices_list);
+ return VISITED(quad,1);
+}
+
+void QuadContourGenerator::write_cache(bool grid_only) const
+{
+ std::cout << "-----------------------------------------------" << std::endl;
+ for (long quad = 0; quad < _n; ++quad)
+ write_cache_quad(quad, grid_only);
+ std::cout << "-----------------------------------------------" << std::endl;
+}
+
+void QuadContourGenerator::write_cache_quad(long quad, bool grid_only) const
+{
+ long j = quad / _nx;
+ long i = quad - j*_nx;
+ std::cout << quad << ": i=" << i << " j=" << j
+ << " EXISTS=" << EXISTS_QUAD(quad);
+ if (_corner_mask)
+ std::cout << " CORNER=" << EXISTS_SW_CORNER(quad) << EXISTS_SE_CORNER(quad)
+ << EXISTS_NW_CORNER(quad) << EXISTS_NE_CORNER(quad);
+ std::cout << " BNDY=" << (BOUNDARY_S(quad)>0) << (BOUNDARY_W(quad)>0);
+ if (!grid_only) {
+ std::cout << " Z=" << Z_LEVEL(quad)
+ << " SAD=" << (SADDLE(quad,1)>0) << (SADDLE(quad,2)>0)
+ << " LEFT=" << (SADDLE_LEFT(quad,1)>0) << (SADDLE_LEFT(quad,2)>0)
+ << " NW=" << (SADDLE_START_SW(quad,1)>0) << (SADDLE_START_SW(quad,2)>0)
+ << " VIS=" << (VISITED(quad,1)>0) << (VISITED(quad,2)>0)
+ << (VISITED_S(quad)>0) << (VISITED_W(quad)>0)
+ << (VISITED_CORNER(quad)>0);
+ }
+ std::cout << std::endl;
+}