diff options
author | shumkovnd <shumkovnd@yandex-team.com> | 2023-11-10 14:39:34 +0300 |
---|---|---|
committer | shumkovnd <shumkovnd@yandex-team.com> | 2023-11-10 16:42:24 +0300 |
commit | 77eb2d3fdcec5c978c64e025ced2764c57c00285 (patch) | |
tree | c51edb0748ca8d4a08d7c7323312c27ba1a8b79a /contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py | |
parent | dd6d20cadb65582270ac23f4b3b14ae189704b9d (diff) | |
download | ydb-77eb2d3fdcec5c978c64e025ced2764c57c00285.tar.gz |
KIKIMR-19287: add task_stats_drawing script
Diffstat (limited to 'contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py')
-rw-r--r-- | contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py | 2958 |
1 files changed, 2958 insertions, 0 deletions
diff --git a/contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py b/contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py new file mode 100644 index 0000000000..b99a090c62 --- /dev/null +++ b/contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py @@ -0,0 +1,2958 @@ +""" +axes3d.py, original mplot3d version by John Porter +Created: 23 Sep 2005 + +Parts fixed by Reinier Heeres <reinier@heeres.eu> +Minor additions by Ben Axelrod <baxelrod@coroware.com> +Significant updates and revisions by Ben Root <ben.v.root@gmail.com> + +Module containing Axes3D, an object which can plot 3D objects on a +2D matplotlib figure. +""" +from __future__ import (absolute_import, division, print_function, + unicode_literals) + +import six +from six.moves import map, xrange, zip, reduce + +import math +import warnings +from collections import defaultdict + +import numpy as np + +import matplotlib.axes as maxes +import matplotlib.cbook as cbook +import matplotlib.collections as mcoll +import matplotlib.colors as mcolors +import matplotlib.docstring as docstring +import matplotlib.scale as mscale +import matplotlib.transforms as mtransforms +from matplotlib.axes import Axes, rcParams +from matplotlib.cbook import _backports +from matplotlib.colors import Normalize, LightSource +from matplotlib.transforms import Bbox +from matplotlib.tri.triangulation import Triangulation + +from . import art3d +from . import proj3d +from . import axis3d + + +def unit_bbox(): + box = Bbox(np.array([[0, 0], [1, 1]])) + return box + + +class Axes3D(Axes): + """ + 3D axes object. + """ + name = '3d' + _shared_z_axes = cbook.Grouper() + + def __init__(self, fig, rect=None, *args, **kwargs): + ''' + Build an :class:`Axes3D` instance in + :class:`~matplotlib.figure.Figure` *fig* with + *rect=[left, bottom, width, height]* in + :class:`~matplotlib.figure.Figure` coordinates + + Optional keyword arguments: + + ================ ========================================= + Keyword Description + ================ ========================================= + *azim* Azimuthal viewing angle (default -60) + *elev* Elevation viewing angle (default 30) + *zscale* [%(scale)s] + *sharez* Other axes to share z-limits with + *proj_type* 'persp' or 'ortho' (default 'persp') + ================ ========================================= + + .. versionadded :: 1.2.1 + *sharez* + + ''' % {'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()])} + + if rect is None: + rect = [0.0, 0.0, 1.0, 1.0] + self._cids = [] + + self.initial_azim = kwargs.pop('azim', -60) + self.initial_elev = kwargs.pop('elev', 30) + zscale = kwargs.pop('zscale', None) + sharez = kwargs.pop('sharez', None) + self.set_proj_type(kwargs.pop('proj_type', 'persp')) + + self.xy_viewLim = unit_bbox() + self.zz_viewLim = unit_bbox() + self.xy_dataLim = unit_bbox() + self.zz_dataLim = unit_bbox() + # inihibit autoscale_view until the axes are defined + # they can't be defined until Axes.__init__ has been called + self.view_init(self.initial_elev, self.initial_azim) + self._ready = 0 + + self._sharez = sharez + if sharez is not None: + self._shared_z_axes.join(self, sharez) + self._adjustable = 'datalim' + + super(Axes3D, self).__init__(fig, rect, + frameon=True, + *args, **kwargs) + # Disable drawing of axes by base class + super(Axes3D, self).set_axis_off() + # Enable drawing of axes by Axes3D class + self.set_axis_on() + self.M = None + + # func used to format z -- fall back on major formatters + self.fmt_zdata = None + + if zscale is not None: + self.set_zscale(zscale) + + if self.zaxis is not None: + self._zcid = self.zaxis.callbacks.connect( + 'units finalize', lambda: self._on_units_changed(scalez=True)) + else: + self._zcid = None + + self._ready = 1 + self.mouse_init() + self.set_top_view() + + self.patch.set_linewidth(0) + # Calculate the pseudo-data width and height + pseudo_bbox = self.transLimits.inverted().transform([(0, 0), (1, 1)]) + self._pseudo_w, self._pseudo_h = pseudo_bbox[1] - pseudo_bbox[0] + + self.figure.add_axes(self) + + def set_axis_off(self): + self._axis3don = False + self.stale = True + + def set_axis_on(self): + self._axis3don = True + self.stale = True + + def have_units(self): + """ + Return *True* if units are set on the *x*, *y*, or *z* axes + + """ + return (self.xaxis.have_units() or self.yaxis.have_units() or + self.zaxis.have_units()) + + def convert_zunits(self, z): + """ + For artists in an axes, if the zaxis has units support, + convert *z* using zaxis unit type + + .. versionadded :: 1.2.1 + + """ + return self.zaxis.convert_units(z) + + def _process_unit_info(self, xdata=None, ydata=None, zdata=None, + kwargs=None): + """ + Look for unit *kwargs* and update the axis instances as necessary + + """ + super(Axes3D, self)._process_unit_info(xdata=xdata, ydata=ydata, + kwargs=kwargs) + + if self.xaxis is None or self.yaxis is None or self.zaxis is None: + return + + if zdata is not None: + # we only need to update if there is nothing set yet. + if not self.zaxis.have_units(): + self.zaxis.update_units(xdata) + + # process kwargs 2nd since these will override default units + if kwargs is not None: + zunits = kwargs.pop('zunits', self.zaxis.units) + if zunits != self.zaxis.units: + self.zaxis.set_units(zunits) + # If the units being set imply a different converter, + # we need to update. + if zdata is not None: + self.zaxis.update_units(zdata) + + def set_top_view(self): + # this happens to be the right view for the viewing coordinates + # moved up and to the left slightly to fit labels and axes + xdwl = (0.95/self.dist) + xdw = (0.9/self.dist) + ydwl = (0.95/self.dist) + ydw = (0.9/self.dist) + + # This is purposely using the 2D Axes's set_xlim and set_ylim, + # because we are trying to place our viewing pane. + super(Axes3D, self).set_xlim(-xdwl, xdw, auto=None) + super(Axes3D, self).set_ylim(-ydwl, ydw, auto=None) + + def _init_axis(self): + '''Init 3D axes; overrides creation of regular X/Y axes''' + self.w_xaxis = axis3d.XAxis('x', self.xy_viewLim.intervalx, + self.xy_dataLim.intervalx, self) + self.xaxis = self.w_xaxis + self.w_yaxis = axis3d.YAxis('y', self.xy_viewLim.intervaly, + self.xy_dataLim.intervaly, self) + self.yaxis = self.w_yaxis + self.w_zaxis = axis3d.ZAxis('z', self.zz_viewLim.intervalx, + self.zz_dataLim.intervalx, self) + self.zaxis = self.w_zaxis + + for ax in self.xaxis, self.yaxis, self.zaxis: + ax.init3d() + + def get_children(self): + return [self.zaxis, ] + super(Axes3D, self).get_children() + + def _get_axis_list(self): + return super(Axes3D, self)._get_axis_list() + (self.zaxis, ) + + def unit_cube(self, vals=None): + minx, maxx, miny, maxy, minz, maxz = vals or self.get_w_lims() + xs, ys, zs = ([minx, maxx, maxx, minx, minx, maxx, maxx, minx], + [miny, miny, maxy, maxy, miny, miny, maxy, maxy], + [minz, minz, minz, minz, maxz, maxz, maxz, maxz]) + return list(zip(xs, ys, zs)) + + def tunit_cube(self, vals=None, M=None): + if M is None: + M = self.M + xyzs = self.unit_cube(vals) + tcube = proj3d.proj_points(xyzs, M) + return tcube + + def tunit_edges(self, vals=None, M=None): + tc = self.tunit_cube(vals, M) + edges = [(tc[0], tc[1]), + (tc[1], tc[2]), + (tc[2], tc[3]), + (tc[3], tc[0]), + + (tc[0], tc[4]), + (tc[1], tc[5]), + (tc[2], tc[6]), + (tc[3], tc[7]), + + (tc[4], tc[5]), + (tc[5], tc[6]), + (tc[6], tc[7]), + (tc[7], tc[4])] + return edges + + def draw(self, renderer): + # draw the background patch + self.patch.draw(renderer) + self._frameon = False + + # first, set the aspect + # this is duplicated from `axes._base._AxesBase.draw` + # but must be called before any of the artist are drawn as + # it adjusts the view limits and the size of the bounding box + # of the axes + locator = self.get_axes_locator() + if locator: + pos = locator(self, renderer) + self.apply_aspect(pos) + else: + self.apply_aspect() + + # add the projection matrix to the renderer + self.M = self.get_proj() + renderer.M = self.M + renderer.vvec = self.vvec + renderer.eye = self.eye + renderer.get_axis_position = self.get_axis_position + + # Calculate projection of collections and zorder them + for i, col in enumerate( + sorted(self.collections, + key=lambda col: col.do_3d_projection(renderer), + reverse=True)): + col.zorder = i + + # Calculate projection of patches and zorder them + for i, patch in enumerate( + sorted(self.patches, + key=lambda patch: patch.do_3d_projection(renderer), + reverse=True)): + patch.zorder = i + + if self._axis3don: + axes = (self.xaxis, self.yaxis, self.zaxis) + # Draw panes first + for ax in axes: + ax.draw_pane(renderer) + # Then axes + for ax in axes: + ax.draw(renderer) + + # Then rest + super(Axes3D, self).draw(renderer) + + def get_axis_position(self): + vals = self.get_w_lims() + tc = self.tunit_cube(vals, self.M) + xhigh = tc[1][2] > tc[2][2] + yhigh = tc[3][2] > tc[2][2] + zhigh = tc[0][2] > tc[2][2] + return xhigh, yhigh, zhigh + + def _on_units_changed(self, scalex=False, scaley=False, scalez=False): + """ + Callback for processing changes to axis units. + + Currently forces updates of data limits and view limits. + """ + self.relim() + self.autoscale_view(scalex=scalex, scaley=scaley, scalez=scalez) + + def update_datalim(self, xys, **kwargs): + pass + + def get_autoscale_on(self): + """ + Get whether autoscaling is applied for all axes on plot commands + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + return super(Axes3D, self).get_autoscale_on() and self.get_autoscalez_on() + + def get_autoscalez_on(self): + """ + Get whether autoscaling for the z-axis is applied on plot commands + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + return self._autoscaleZon + + def set_autoscale_on(self, b): + """ + Set whether autoscaling is applied on plot commands + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + + Parameters + ---------- + b : bool + .. ACCEPTS: bool + """ + super(Axes3D, self).set_autoscale_on(b) + self.set_autoscalez_on(b) + + def set_autoscalez_on(self, b): + """ + Set whether autoscaling for the z-axis is applied on plot commands + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + + Parameters + ---------- + b : bool + .. ACCEPTS: bool + """ + self._autoscaleZon = b + + def set_zmargin(self, m): + """ + Set padding of Z data limits prior to autoscaling. + + *m* times the data interval will be added to each + end of that interval before it is used in autoscaling. + + accepts: float in range 0 to 1 + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + if m < 0 or m > 1 : + raise ValueError("margin must be in range 0 to 1") + self._zmargin = m + self.stale = True + + def margins(self, *args, **kw): + """ + Convenience method to set or retrieve autoscaling margins. + + signatures:: + margins() + + returns xmargin, ymargin, zmargin + + :: + + margins(margin) + + margins(xmargin, ymargin, zmargin) + + margins(x=xmargin, y=ymargin, z=zmargin) + + margins(..., tight=False) + + All forms above set the xmargin, ymargin and zmargin + parameters. All keyword parameters are optional. A single argument + specifies xmargin, ymargin and zmargin. The *tight* parameter + is passed to :meth:`autoscale_view`, which is executed after + a margin is changed; the default here is *True*, on the + assumption that when margins are specified, no additional + padding to match tick marks is usually desired. Setting + *tight* to *None* will preserve the previous setting. + + Specifying any margin changes only the autoscaling; for example, + if *xmargin* is not None, then *xmargin* times the X data + interval will be added to each end of that interval before + it is used in autoscaling. + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + if not args and not kw: + return self._xmargin, self._ymargin, self._zmargin + + tight = kw.pop('tight', True) + mx = kw.pop('x', None) + my = kw.pop('y', None) + mz = kw.pop('z', None) + if not args: + pass + elif len(args) == 1: + mx = my = mz = args[0] + elif len(args) == 2: + warnings.warn( + "Passing exactly two positional arguments to Axes3D.margins " + "is deprecated. If needed, pass them as keyword arguments " + "instead", cbook.mplDeprecation) + mx, my = args + elif len(args) == 3: + mx, my, mz = args + else: + raise ValueError( + "Axes3D.margins takes at most three positional arguments") + if mx is not None: + self.set_xmargin(mx) + if my is not None: + self.set_ymargin(my) + if mz is not None: + self.set_zmargin(mz) + + scalex = mx is not None + scaley = my is not None + scalez = mz is not None + + self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley, + scalez=scalez) + + def autoscale(self, enable=True, axis='both', tight=None): + """ + Convenience method for simple axis view autoscaling. + See :meth:`matplotlib.axes.Axes.autoscale` for full explanation. + Note that this function behaves the same, but for all + three axes. Therefore, 'z' can be passed for *axis*, + and 'both' applies to all three axes. + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + if enable is None: + scalex = True + scaley = True + scalez = True + else: + if axis in ['x', 'both']: + self._autoscaleXon = scalex = bool(enable) + else: + scalex = False + if axis in ['y', 'both']: + self._autoscaleYon = scaley = bool(enable) + else: + scaley = False + if axis in ['z', 'both']: + self._autoscaleZon = scalez = bool(enable) + else: + scalez = False + self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley, + scalez=scalez) + + def auto_scale_xyz(self, X, Y, Z=None, had_data=None): + x, y, z = map(np.asarray, (X, Y, Z)) + try: + x, y = x.flatten(), y.flatten() + if Z is not None: + z = z.flatten() + except AttributeError: + raise + + # This updates the bounding boxes as to keep a record as + # to what the minimum sized rectangular volume holds the + # data. + self.xy_dataLim.update_from_data_xy(np.array([x, y]).T, not had_data) + if z is not None: + self.zz_dataLim.update_from_data_xy(np.array([z, z]).T, not had_data) + + # Let autoscale_view figure out how to use this data. + self.autoscale_view() + + def autoscale_view(self, tight=None, scalex=True, scaley=True, + scalez=True): + """ + Autoscale the view limits using the data limits. + See :meth:`matplotlib.axes.Axes.autoscale_view` for documentation. + Note that this function applies to the 3D axes, and as such + adds the *scalez* to the function arguments. + + .. versionchanged :: 1.1.0 + Function signature was changed to better match the 2D version. + *tight* is now explicitly a kwarg and placed first. + + .. versionchanged :: 1.2.1 + This is now fully functional. + + """ + if not self._ready: + return + + # This method looks at the rectangular volume (see above) + # of data and decides how to scale the view portal to fit it. + if tight is None: + # if image data only just use the datalim + _tight = self._tight or (len(self.images)>0 and + len(self.lines)==0 and + len(self.patches)==0) + else: + _tight = self._tight = bool(tight) + + if scalex and self._autoscaleXon: + xshared = self._shared_x_axes.get_siblings(self) + dl = [ax.dataLim for ax in xshared] + bb = mtransforms.BboxBase.union(dl) + x0, x1 = self.xy_dataLim.intervalx + xlocator = self.xaxis.get_major_locator() + try: + x0, x1 = xlocator.nonsingular(x0, x1) + except AttributeError: + x0, x1 = mtransforms.nonsingular(x0, x1, increasing=False, + expander=0.05) + if self._xmargin > 0: + delta = (x1 - x0) * self._xmargin + x0 -= delta + x1 += delta + if not _tight: + x0, x1 = xlocator.view_limits(x0, x1) + self.set_xbound(x0, x1) + + if scaley and self._autoscaleYon: + yshared = self._shared_y_axes.get_siblings(self) + dl = [ax.dataLim for ax in yshared] + bb = mtransforms.BboxBase.union(dl) + y0, y1 = self.xy_dataLim.intervaly + ylocator = self.yaxis.get_major_locator() + try: + y0, y1 = ylocator.nonsingular(y0, y1) + except AttributeError: + y0, y1 = mtransforms.nonsingular(y0, y1, increasing=False, + expander=0.05) + if self._ymargin > 0: + delta = (y1 - y0) * self._ymargin + y0 -= delta + y1 += delta + if not _tight: + y0, y1 = ylocator.view_limits(y0, y1) + self.set_ybound(y0, y1) + + if scalez and self._autoscaleZon: + zshared = self._shared_z_axes.get_siblings(self) + dl = [ax.dataLim for ax in zshared] + bb = mtransforms.BboxBase.union(dl) + z0, z1 = self.zz_dataLim.intervalx + zlocator = self.zaxis.get_major_locator() + try: + z0, z1 = zlocator.nonsingular(z0, z1) + except AttributeError: + z0, z1 = mtransforms.nonsingular(z0, z1, increasing=False, + expander=0.05) + if self._zmargin > 0: + delta = (z1 - z0) * self._zmargin + z0 -= delta + z1 += delta + if not _tight: + z0, z1 = zlocator.view_limits(z0, z1) + self.set_zbound(z0, z1) + + def get_w_lims(self): + '''Get 3D world limits.''' + minx, maxx = self.get_xlim3d() + miny, maxy = self.get_ylim3d() + minz, maxz = self.get_zlim3d() + return minx, maxx, miny, maxy, minz, maxz + + def _determine_lims(self, xmin=None, xmax=None, *args, **kwargs): + if xmax is None and cbook.iterable(xmin): + xmin, xmax = xmin + if xmin == xmax: + xmin -= 0.05 + xmax += 0.05 + return (xmin, xmax) + + def set_xlim3d(self, left=None, right=None, emit=True, auto=False, **kw): + """ + Set 3D x limits. + + See :meth:`matplotlib.axes.Axes.set_xlim` for full documentation. + + """ + if 'xmin' in kw: + left = kw.pop('xmin') + if 'xmax' in kw: + right = kw.pop('xmax') + if kw: + raise ValueError("unrecognized kwargs: %s" % list(kw)) + + if right is None and cbook.iterable(left): + left, right = left + + self._process_unit_info(xdata=(left, right)) + left = self._validate_converted_limits(left, self.convert_xunits) + right = self._validate_converted_limits(right, self.convert_xunits) + + old_left, old_right = self.get_xlim() + if left is None: + left = old_left + if right is None: + right = old_right + + if left == right: + warnings.warn(('Attempting to set identical left==right results\n' + 'in singular transformations; automatically expanding.\n' + 'left=%s, right=%s') % (left, right)) + left, right = mtransforms.nonsingular(left, right, increasing=False) + left, right = self.xaxis.limit_range_for_scale(left, right) + self.xy_viewLim.intervalx = (left, right) + + if auto is not None: + self._autoscaleXon = bool(auto) + + if emit: + self.callbacks.process('xlim_changed', self) + # Call all of the other x-axes that are shared with this one + for other in self._shared_x_axes.get_siblings(self): + if other is not self: + other.set_xlim(self.xy_viewLim.intervalx, + emit=False, auto=auto) + if (other.figure != self.figure and + other.figure.canvas is not None): + other.figure.canvas.draw_idle() + self.stale = True + return left, right + set_xlim = set_xlim3d + + def set_ylim3d(self, bottom=None, top=None, emit=True, auto=False, **kw): + """ + Set 3D y limits. + + See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation. + + """ + if 'ymin' in kw: + bottom = kw.pop('ymin') + if 'ymax' in kw: + top = kw.pop('ymax') + if kw: + raise ValueError("unrecognized kwargs: %s" % list(kw)) + + if top is None and cbook.iterable(bottom): + bottom, top = bottom + + self._process_unit_info(ydata=(bottom, top)) + bottom = self._validate_converted_limits(bottom, self.convert_yunits) + top = self._validate_converted_limits(top, self.convert_yunits) + + old_bottom, old_top = self.get_ylim() + if bottom is None: + bottom = old_bottom + if top is None: + top = old_top + + if top == bottom: + warnings.warn(('Attempting to set identical bottom==top results\n' + 'in singular transformations; automatically expanding.\n' + 'bottom=%s, top=%s') % (bottom, top)) + bottom, top = mtransforms.nonsingular(bottom, top, increasing=False) + bottom, top = self.yaxis.limit_range_for_scale(bottom, top) + self.xy_viewLim.intervaly = (bottom, top) + + if auto is not None: + self._autoscaleYon = bool(auto) + + if emit: + self.callbacks.process('ylim_changed', self) + # Call all of the other y-axes that are shared with this one + for other in self._shared_y_axes.get_siblings(self): + if other is not self: + other.set_ylim(self.xy_viewLim.intervaly, + emit=False, auto=auto) + if (other.figure != self.figure and + other.figure.canvas is not None): + other.figure.canvas.draw_idle() + self.stale = True + return bottom, top + set_ylim = set_ylim3d + + def set_zlim3d(self, bottom=None, top=None, emit=True, auto=False, **kw): + """ + Set 3D z limits. + + See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation + + """ + if 'zmin' in kw: + bottom = kw.pop('zmin') + if 'zmax' in kw: + top = kw.pop('zmax') + if kw: + raise ValueError("unrecognized kwargs: %s" % list(kw)) + + if top is None and cbook.iterable(bottom): + bottom, top = bottom + + self._process_unit_info(zdata=(bottom, top)) + bottom = self._validate_converted_limits(bottom, self.convert_zunits) + top = self._validate_converted_limits(top, self.convert_zunits) + + old_bottom, old_top = self.get_zlim() + if bottom is None: + bottom = old_bottom + if top is None: + top = old_top + + if top == bottom: + warnings.warn(('Attempting to set identical bottom==top results\n' + 'in singular transformations; automatically expanding.\n' + 'bottom=%s, top=%s') % (bottom, top)) + bottom, top = mtransforms.nonsingular(bottom, top, increasing=False) + bottom, top = self.zaxis.limit_range_for_scale(bottom, top) + self.zz_viewLim.intervalx = (bottom, top) + + if auto is not None: + self._autoscaleZon = bool(auto) + + if emit: + self.callbacks.process('zlim_changed', self) + # Call all of the other y-axes that are shared with this one + for other in self._shared_z_axes.get_siblings(self): + if other is not self: + other.set_zlim(self.zz_viewLim.intervalx, + emit=False, auto=auto) + if (other.figure != self.figure and + other.figure.canvas is not None): + other.figure.canvas.draw_idle() + self.stale = True + return bottom, top + set_zlim = set_zlim3d + + def get_xlim3d(self): + return tuple(self.xy_viewLim.intervalx) + get_xlim3d.__doc__ = maxes.Axes.get_xlim.__doc__ + get_xlim = get_xlim3d + if get_xlim.__doc__ is not None: + get_xlim.__doc__ += """ + .. versionchanged :: 1.1.0 + This function now correctly refers to the 3D x-limits + """ + + def get_ylim3d(self): + return tuple(self.xy_viewLim.intervaly) + get_ylim3d.__doc__ = maxes.Axes.get_ylim.__doc__ + get_ylim = get_ylim3d + if get_ylim.__doc__ is not None: + get_ylim.__doc__ += """ + .. versionchanged :: 1.1.0 + This function now correctly refers to the 3D y-limits. + """ + + def get_zlim3d(self): + '''Get 3D z limits.''' + return tuple(self.zz_viewLim.intervalx) + get_zlim = get_zlim3d + + def get_zscale(self): + """ + Return the zaxis scale string %s + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ % (", ".join(mscale.get_scale_names())) + return self.zaxis.get_scale() + + # We need to slightly redefine these to pass scalez=False + # to their calls of autoscale_view. + def set_xscale(self, value, **kwargs): + self.xaxis._set_scale(value, **kwargs) + self.autoscale_view(scaley=False, scalez=False) + self._update_transScale() + if maxes.Axes.set_xscale.__doc__ is not None: + set_xscale.__doc__ = maxes.Axes.set_xscale.__doc__ + """ + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + + def set_yscale(self, value, **kwargs): + self.yaxis._set_scale(value, **kwargs) + self.autoscale_view(scalex=False, scalez=False) + self._update_transScale() + self.stale = True + if maxes.Axes.set_yscale.__doc__ is not None: + set_yscale.__doc__ = maxes.Axes.set_yscale.__doc__ + """ + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + + @docstring.dedent_interpd + def set_zscale(self, value, **kwargs): + """ + Set the scaling of the z-axis: %(scale)s + + ACCEPTS: [%(scale)s] + + Different kwargs are accepted, depending on the scale: + %(scale_docs)s + + .. note :: + Currently, Axes3D objects only supports linear scales. + Other scales may or may not work, and support for these + is improving with each release. + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + self.zaxis._set_scale(value, **kwargs) + self.autoscale_view(scalex=False, scaley=False) + self._update_transScale() + self.stale = True + + def set_zticks(self, *args, **kwargs): + """ + Set z-axis tick locations. + See :meth:`matplotlib.axes.Axes.set_yticks` for more details. + + .. note:: + Minor ticks are not supported. + + .. versionadded:: 1.1.0 + """ + return self.zaxis.set_ticks(*args, **kwargs) + + def get_zticks(self, minor=False): + """ + Return the z ticks as a list of locations + See :meth:`matplotlib.axes.Axes.get_yticks` for more details. + + .. note:: + Minor ticks are not supported. + + .. versionadded:: 1.1.0 + """ + return self.zaxis.get_ticklocs(minor=minor) + + def get_zmajorticklabels(self): + """ + Get the ztick labels as a list of Text instances + + .. versionadded :: 1.1.0 + """ + return cbook.silent_list('Text zticklabel', + self.zaxis.get_majorticklabels()) + + def get_zminorticklabels(self): + """ + Get the ztick labels as a list of Text instances + + .. note:: + Minor ticks are not supported. This function was added + only for completeness. + + .. versionadded :: 1.1.0 + """ + return cbook.silent_list('Text zticklabel', + self.zaxis.get_minorticklabels()) + + def set_zticklabels(self, *args, **kwargs): + """ + Set z-axis tick labels. + See :meth:`matplotlib.axes.Axes.set_yticklabels` for more details. + + .. note:: + Minor ticks are not supported by Axes3D objects. + + .. versionadded:: 1.1.0 + """ + return self.zaxis.set_ticklabels(*args, **kwargs) + + def get_zticklabels(self, minor=False): + """ + Get ztick labels as a list of Text instances. + See :meth:`matplotlib.axes.Axes.get_yticklabels` for more details. + + .. note:: + Minor ticks are not supported. + + .. versionadded:: 1.1.0 + """ + return cbook.silent_list('Text zticklabel', + self.zaxis.get_ticklabels(minor=minor)) + + def zaxis_date(self, tz=None): + """ + Sets up z-axis ticks and labels that treat the z data as dates. + + *tz* is a timezone string or :class:`tzinfo` instance. + Defaults to rc value. + + .. note:: + This function is merely provided for completeness. + Axes3D objects do not officially support dates for ticks, + and so this may or may not work as expected. + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + self.zaxis.axis_date(tz) + + def get_zticklines(self): + """ + Get ztick lines as a list of Line2D instances. + Note that this function is provided merely for completeness. + These lines are re-calculated as the display changes. + + .. versionadded:: 1.1.0 + """ + return self.zaxis.get_ticklines() + + def clabel(self, *args, **kwargs): + """ + This function is currently not implemented for 3D axes. + Returns *None*. + """ + return None + + def view_init(self, elev=None, azim=None): + """ + Set the elevation and azimuth of the axes. + + This can be used to rotate the axes programmatically. + + 'elev' stores the elevation angle in the z plane. + 'azim' stores the azimuth angle in the x,y plane. + + if elev or azim are None (default), then the initial value + is used which was specified in the :class:`Axes3D` constructor. + """ + + self.dist = 10 + + if elev is None: + self.elev = self.initial_elev + else: + self.elev = elev + + if azim is None: + self.azim = self.initial_azim + else: + self.azim = azim + + def set_proj_type(self, proj_type): + """ + Set the projection type. + + Parameters + ---------- + proj_type : str + Type of projection, accepts 'persp' and 'ortho'. + + """ + if proj_type == 'persp': + self._projection = proj3d.persp_transformation + elif proj_type == 'ortho': + self._projection = proj3d.ortho_transformation + else: + raise ValueError("unrecognized projection: %s" % proj_type) + + def get_proj(self): + """ + Create the projection matrix from the current viewing position. + + elev stores the elevation angle in the z plane + azim stores the azimuth angle in the x,y plane + + dist is the distance of the eye viewing point from the object + point. + + """ + relev, razim = np.pi * self.elev/180, np.pi * self.azim/180 + + xmin, xmax = self.get_xlim3d() + ymin, ymax = self.get_ylim3d() + zmin, zmax = self.get_zlim3d() + + # transform to uniform world coordinates 0-1.0,0-1.0,0-1.0 + worldM = proj3d.world_transformation(xmin, xmax, + ymin, ymax, + zmin, zmax) + + # look into the middle of the new coordinates + R = np.array([0.5, 0.5, 0.5]) + + xp = R[0] + np.cos(razim) * np.cos(relev) * self.dist + yp = R[1] + np.sin(razim) * np.cos(relev) * self.dist + zp = R[2] + np.sin(relev) * self.dist + E = np.array((xp, yp, zp)) + + self.eye = E + self.vvec = R - E + self.vvec = self.vvec / proj3d.mod(self.vvec) + + if abs(relev) > np.pi/2: + # upside down + V = np.array((0, 0, -1)) + else: + V = np.array((0, 0, 1)) + zfront, zback = -self.dist, self.dist + + viewM = proj3d.view_transformation(E, R, V) + projM = self._projection(zfront, zback) + M0 = np.dot(viewM, worldM) + M = np.dot(projM, M0) + return M + + def mouse_init(self, rotate_btn=1, zoom_btn=3): + """Initializes mouse button callbacks to enable 3D rotation of + the axes. Also optionally sets the mouse buttons for 3D rotation + and zooming. + + ============ ======================================================= + Argument Description + ============ ======================================================= + *rotate_btn* The integer or list of integers specifying which mouse + button or buttons to use for 3D rotation of the axes. + Default = 1. + + *zoom_btn* The integer or list of integers specifying which mouse + button or buttons to use to zoom the 3D axes. + Default = 3. + ============ ======================================================= + + """ + self.button_pressed = None + canv = self.figure.canvas + if canv is not None: + c1 = canv.mpl_connect('motion_notify_event', self._on_move) + c2 = canv.mpl_connect('button_press_event', self._button_press) + c3 = canv.mpl_connect('button_release_event', self._button_release) + self._cids = [c1, c2, c3] + else: + warnings.warn( + "Axes3D.figure.canvas is 'None', mouse rotation disabled. " + "Set canvas then call Axes3D.mouse_init().") + + # coerce scalars into array-like, then convert into + # a regular list to avoid comparisons against None + # which breaks in recent versions of numpy. + self._rotate_btn = np.atleast_1d(rotate_btn).tolist() + self._zoom_btn = np.atleast_1d(zoom_btn).tolist() + + def can_zoom(self): + """ + Return *True* if this axes supports the zoom box button functionality. + + 3D axes objects do not use the zoom box button. + """ + return False + + def can_pan(self): + """ + Return *True* if this axes supports the pan/zoom button functionality. + + 3D axes objects do not use the pan/zoom button. + """ + return False + + def cla(self): + """ + Clear axes + """ + # Disabling mouse interaction might have been needed a long + # time ago, but I can't find a reason for it now - BVR (2012-03) + #self.disable_mouse_rotation() + super(Axes3D, self).cla() + self.zaxis.cla() + + if self._sharez is not None: + self.zaxis.major = self._sharez.zaxis.major + self.zaxis.minor = self._sharez.zaxis.minor + z0, z1 = self._sharez.get_zlim() + self.set_zlim(z0, z1, emit=False, auto=None) + self.zaxis._set_scale(self._sharez.zaxis.get_scale()) + else: + self.zaxis._set_scale('linear') + try: + self.set_zlim(0, 1) + except TypeError: + pass + + self._autoscaleZon = True + self._zmargin = 0 + + self.grid(rcParams['axes3d.grid']) + + def disable_mouse_rotation(self): + """Disable mouse button callbacks. + """ + # Disconnect the various events we set. + for cid in self._cids: + self.figure.canvas.mpl_disconnect(cid) + + self._cids = [] + + def _button_press(self, event): + if event.inaxes == self: + self.button_pressed = event.button + self.sx, self.sy = event.xdata, event.ydata + + def _button_release(self, event): + self.button_pressed = None + + def format_zdata(self, z): + """ + Return *z* string formatted. This function will use the + :attr:`fmt_zdata` attribute if it is callable, else will fall + back on the zaxis major formatter + """ + try: return self.fmt_zdata(z) + except (AttributeError, TypeError): + func = self.zaxis.get_major_formatter().format_data_short + val = func(z) + return val + + def format_coord(self, xd, yd): + """ + Given the 2D view coordinates attempt to guess a 3D coordinate. + Looks for the nearest edge to the point and then assumes that + the point is at the same z location as the nearest point on the edge. + """ + + if self.M is None: + return '' + + if self.button_pressed in self._rotate_btn: + return 'azimuth=%d deg, elevation=%d deg ' % (self.azim, self.elev) + # ignore xd and yd and display angles instead + + # nearest edge + p0, p1 = min(self.tunit_edges(), + key=lambda edge: proj3d.line2d_seg_dist( + edge[0], edge[1], (xd, yd))) + + # scale the z value to match + x0, y0, z0 = p0 + x1, y1, z1 = p1 + d0 = np.hypot(x0-xd, y0-yd) + d1 = np.hypot(x1-xd, y1-yd) + dt = d0+d1 + z = d1/dt * z0 + d0/dt * z1 + + x, y, z = proj3d.inv_transform(xd, yd, z, self.M) + + xs = self.format_xdata(x) + ys = self.format_ydata(y) + zs = self.format_zdata(z) + return 'x=%s, y=%s, z=%s' % (xs, ys, zs) + + def _on_move(self, event): + """Mouse moving + + button-1 rotates by default. Can be set explicitly in mouse_init(). + button-3 zooms by default. Can be set explicitly in mouse_init(). + """ + + if not self.button_pressed: + return + + if self.M is None: + return + + x, y = event.xdata, event.ydata + # In case the mouse is out of bounds. + if x is None: + return + + dx, dy = x - self.sx, y - self.sy + w = self._pseudo_w + h = self._pseudo_h + self.sx, self.sy = x, y + + # Rotation + if self.button_pressed in self._rotate_btn: + # rotate viewing point + # get the x and y pixel coords + if dx == 0 and dy == 0: + return + self.elev = art3d.norm_angle(self.elev - (dy/h)*180) + self.azim = art3d.norm_angle(self.azim - (dx/w)*180) + self.get_proj() + self.stale = True + self.figure.canvas.draw_idle() + +# elif self.button_pressed == 2: + # pan view + # project xv,yv,zv -> xw,yw,zw + # pan +# pass + + # Zoom + elif self.button_pressed in self._zoom_btn: + # zoom view + # hmmm..this needs some help from clipping.... + minx, maxx, miny, maxy, minz, maxz = self.get_w_lims() + df = 1-((h - dy)/h) + dx = (maxx-minx)*df + dy = (maxy-miny)*df + dz = (maxz-minz)*df + self.set_xlim3d(minx - dx, maxx + dx) + self.set_ylim3d(miny - dy, maxy + dy) + self.set_zlim3d(minz - dz, maxz + dz) + self.get_proj() + self.figure.canvas.draw_idle() + + def set_zlabel(self, zlabel, fontdict=None, labelpad=None, **kwargs): + ''' + Set zlabel. See doc for :meth:`set_ylabel` for description. + + ''' + if labelpad is not None : self.zaxis.labelpad = labelpad + return self.zaxis.set_label_text(zlabel, fontdict, **kwargs) + + def get_zlabel(self): + """ + Get the z-label text string. + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + label = self.zaxis.get_label() + return label.get_text() + + #### Axes rectangle characteristics + + def get_frame_on(self): + """ + Get whether the 3D axes panels are drawn. + + .. versionadded :: 1.1.0 + """ + return self._frameon + + def set_frame_on(self, b): + """ + Set whether the 3D axes panels are drawn. + + .. versionadded :: 1.1.0 + + Parameters + ---------- + b : bool + .. ACCEPTS: bool + """ + self._frameon = bool(b) + self.stale = True + + def get_axisbelow(self): + """ + Get whether axis below is true or not. + + For axes3d objects, this will always be *True* + + .. versionadded :: 1.1.0 + This function was added for completeness. + """ + return True + + def set_axisbelow(self, b): + """ + Set whether axis ticks and gridlines are above or below most artists. + + For axes3d objects, this will ignore any settings and just use *True* + + .. versionadded :: 1.1.0 + This function was added for completeness. + + Parameters + ---------- + b : bool + .. ACCEPTS: bool + """ + self._axisbelow = True + self.stale = True + + def grid(self, b=True, **kwargs): + ''' + Set / unset 3D grid. + + .. note:: + + Currently, this function does not behave the same as + :meth:`matplotlib.axes.Axes.grid`, but it is intended to + eventually support that behavior. + + .. versionchanged :: 1.1.0 + This function was changed, but not tested. Please report any bugs. + ''' + # TODO: Operate on each axes separately + if len(kwargs): + b = True + self._draw_grid = cbook._string_to_bool(b) + self.stale = True + + def ticklabel_format(self, **kwargs): + """ + Convenience method for manipulating the ScalarFormatter + used by default for linear axes in Axed3D objects. + + See :meth:`matplotlib.axes.Axes.ticklabel_format` for full + documentation. Note that this version applies to all three + axes of the Axes3D object. Therefore, the *axis* argument + will also accept a value of 'z' and the value of 'both' will + apply to all three axes. + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + style = kwargs.pop('style', '').lower() + scilimits = kwargs.pop('scilimits', None) + useOffset = kwargs.pop('useOffset', None) + axis = kwargs.pop('axis', 'both').lower() + if scilimits is not None: + try: + m, n = scilimits + m+n+1 # check that both are numbers + except (ValueError, TypeError): + raise ValueError("scilimits must be a sequence of 2 integers") + if style[:3] == 'sci': + sb = True + elif style in ['plain', 'comma']: + sb = False + if style == 'plain': + cb = False + else: + cb = True + raise NotImplementedError("comma style remains to be added") + elif style == '': + sb = None + else: + raise ValueError("%s is not a valid style value") + try: + if sb is not None: + if axis in ['both', 'z']: + self.xaxis.major.formatter.set_scientific(sb) + if axis in ['both', 'y']: + self.yaxis.major.formatter.set_scientific(sb) + if axis in ['both', 'z'] : + self.zaxis.major.formatter.set_scientific(sb) + if scilimits is not None: + if axis in ['both', 'x']: + self.xaxis.major.formatter.set_powerlimits(scilimits) + if axis in ['both', 'y']: + self.yaxis.major.formatter.set_powerlimits(scilimits) + if axis in ['both', 'z']: + self.zaxis.major.formatter.set_powerlimits(scilimits) + if useOffset is not None: + if axis in ['both', 'x']: + self.xaxis.major.formatter.set_useOffset(useOffset) + if axis in ['both', 'y']: + self.yaxis.major.formatter.set_useOffset(useOffset) + if axis in ['both', 'z']: + self.zaxis.major.formatter.set_useOffset(useOffset) + except AttributeError: + raise AttributeError( + "This method only works with the ScalarFormatter.") + + def locator_params(self, axis='both', tight=None, **kwargs): + """ + Convenience method for controlling tick locators. + + See :meth:`matplotlib.axes.Axes.locator_params` for full + documentation Note that this is for Axes3D objects, + therefore, setting *axis* to 'both' will result in the + parameters being set for all three axes. Also, *axis* + can also take a value of 'z' to apply parameters to the + z axis. + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + _x = axis in ['x', 'both'] + _y = axis in ['y', 'both'] + _z = axis in ['z', 'both'] + if _x: + self.xaxis.get_major_locator().set_params(**kwargs) + if _y: + self.yaxis.get_major_locator().set_params(**kwargs) + if _z: + self.zaxis.get_major_locator().set_params(**kwargs) + self.autoscale_view(tight=tight, scalex=_x, scaley=_y, scalez=_z) + + def tick_params(self, axis='both', **kwargs): + """ + Convenience method for changing the appearance of ticks and + tick labels. + + See :meth:`matplotlib.axes.Axes.tick_params` for more complete + documentation. + + The only difference is that setting *axis* to 'both' will + mean that the settings are applied to all three axes. Also, + the *axis* parameter also accepts a value of 'z', which + would mean to apply to only the z-axis. + + Also, because of how Axes3D objects are drawn very differently + from regular 2D axes, some of these settings may have + ambiguous meaning. For simplicity, the 'z' axis will + accept settings as if it was like the 'y' axis. + + .. note:: + While this function is currently implemented, the core part + of the Axes3D object may ignore some of these settings. + Future releases will fix this. Priority will be given to + those who file bugs. + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + super(Axes3D, self).tick_params(axis, **kwargs) + if axis in ['z', 'both'] : + zkw = dict(kwargs) + zkw.pop('top', None) + zkw.pop('bottom', None) + zkw.pop('labeltop', None) + zkw.pop('labelbottom', None) + self.zaxis.set_tick_params(**zkw) + + ### data limits, ticks, tick labels, and formatting + + def invert_zaxis(self): + """ + Invert the z-axis. + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + bottom, top = self.get_zlim() + self.set_zlim(top, bottom, auto=None) + + def zaxis_inverted(self): + ''' + Returns True if the z-axis is inverted. + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + ''' + bottom, top = self.get_zlim() + return top < bottom + + def get_zbound(self): + """ + Returns the z-axis numerical bounds where:: + + lowerBound < upperBound + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + bottom, top = self.get_zlim() + if bottom < top: + return bottom, top + else: + return top, bottom + + def set_zbound(self, lower=None, upper=None): + """ + Set the lower and upper numerical bounds of the z-axis. + This method will honor axes inversion regardless of parameter order. + It will not change the :attr:`_autoscaleZon` attribute. + + .. versionadded :: 1.1.0 + This function was added, but not tested. Please report any bugs. + """ + if upper is None and cbook.iterable(lower): + lower,upper = lower + + old_lower,old_upper = self.get_zbound() + + if lower is None: lower = old_lower + if upper is None: upper = old_upper + + if self.zaxis_inverted(): + if lower < upper: + self.set_zlim(upper, lower, auto=None) + else: + self.set_zlim(lower, upper, auto=None) + else : + if lower < upper: + self.set_zlim(lower, upper, auto=None) + else : + self.set_zlim(upper, lower, auto=None) + + def text(self, x, y, z, s, zdir=None, **kwargs): + ''' + Add text to the plot. kwargs will be passed on to Axes.text, + except for the `zdir` keyword, which sets the direction to be + used as the z direction. + ''' + text = super(Axes3D, self).text(x, y, s, **kwargs) + art3d.text_2d_to_3d(text, z, zdir) + return text + + text3D = text + text2D = Axes.text + + def plot(self, xs, ys, *args, **kwargs): + ''' + Plot 2D or 3D data. + + ========== ================================================ + Argument Description + ========== ================================================ + *xs*, *ys* x, y coordinates of vertices + + *zs* z value(s), either one for all points or one for + each point. + *zdir* Which direction to use as z ('x', 'y' or 'z') + when plotting a 2D set. + ========== ================================================ + + Other arguments are passed on to + :func:`~matplotlib.axes.Axes.plot` + ''' + had_data = self.has_data() + + # `zs` can be passed positionally or as keyword; checking whether + # args[0] is a string matches the behavior of 2D `plot` (via + # `_process_plot_var_args`). + if args and not isinstance(args[0], six.string_types): + zs = args[0] + args = args[1:] + if 'zs' in kwargs: + raise TypeError("plot() for multiple values for argument 'z'") + else: + zs = kwargs.pop('zs', 0) + zdir = kwargs.pop('zdir', 'z') + + # Match length + zs = _backports.broadcast_to(zs, len(xs)) + + lines = super(Axes3D, self).plot(xs, ys, *args, **kwargs) + for line in lines: + art3d.line_2d_to_3d(line, zs=zs, zdir=zdir) + + xs, ys, zs = art3d.juggle_axes(xs, ys, zs, zdir) + self.auto_scale_xyz(xs, ys, zs, had_data) + return lines + + plot3D = plot + + def plot_surface(self, X, Y, Z, *args, **kwargs): + """ + Create a surface plot. + + By default it will be colored in shades of a solid color, but it also + supports color mapping by supplying the *cmap* argument. + + .. note:: + + The *rcount* and *ccount* kwargs, which both default to 50, + determine the maximum number of samples used in each direction. If + the input data is larger, it will be downsampled (by slicing) to + these numbers of points. + + Parameters + ---------- + X, Y, Z : 2d arrays + Data values. + + rcount, ccount : int + Maximum number of samples used in each direction. If the input + data is larger, it will be downsampled (by slicing) to these + numbers of points. Defaults to 50. + + .. versionadded:: 2.0 + + rstride, cstride : int + Downsampling stride in each direction. These arguments are + mutually exclusive with *rcount* and *ccount*. If only one of + *rstride* or *cstride* is set, the other defaults to 10. + + 'classic' mode uses a default of ``rstride = cstride = 10`` instead + of the new default of ``rcount = ccount = 50``. + + color : color-like + Color of the surface patches. + + cmap : Colormap + Colormap of the surface patches. + + facecolors : array-like of colors. + Colors of each individual patch. + + norm : Normalize + Normalization for the colormap. + + vmin, vmax : float + Bounds for the normalization. + + shade : bool + Whether to shade the face colors. + + **kwargs : + Other arguments are forwarded to `.Poly3DCollection`. + """ + + had_data = self.has_data() + + if Z.ndim != 2: + raise ValueError("Argument Z must be 2-dimensional.") + # TODO: Support masked arrays + X, Y, Z = np.broadcast_arrays(X, Y, Z) + rows, cols = Z.shape + + has_stride = 'rstride' in kwargs or 'cstride' in kwargs + has_count = 'rcount' in kwargs or 'ccount' in kwargs + + if has_stride and has_count: + raise ValueError("Cannot specify both stride and count arguments") + + rstride = kwargs.pop('rstride', 10) + cstride = kwargs.pop('cstride', 10) + rcount = kwargs.pop('rcount', 50) + ccount = kwargs.pop('ccount', 50) + + if rcParams['_internal.classic_mode']: + # Strides have priority over counts in classic mode. + # So, only compute strides from counts + # if counts were explicitly given + if has_count: + rstride = int(max(np.ceil(rows / rcount), 1)) + cstride = int(max(np.ceil(cols / ccount), 1)) + else: + # If the strides are provided then it has priority. + # Otherwise, compute the strides from the counts. + if not has_stride: + rstride = int(max(np.ceil(rows / rcount), 1)) + cstride = int(max(np.ceil(cols / ccount), 1)) + + if 'facecolors' in kwargs: + fcolors = kwargs.pop('facecolors') + else: + color = kwargs.pop('color', None) + if color is None: + color = self._get_lines.get_next_color() + color = np.array(mcolors.to_rgba(color)) + fcolors = None + + cmap = kwargs.get('cmap', None) + norm = kwargs.pop('norm', None) + vmin = kwargs.pop('vmin', None) + vmax = kwargs.pop('vmax', None) + linewidth = kwargs.get('linewidth', None) + shade = kwargs.pop('shade', cmap is None) + lightsource = kwargs.pop('lightsource', None) + + # Shade the data + if shade and cmap is not None and fcolors is not None: + fcolors = self._shade_colors_lightsource(Z, cmap, lightsource) + + polys = [] + # Only need these vectors to shade if there is no cmap + if cmap is None and shade : + totpts = int(np.ceil((rows - 1) / rstride) * + np.ceil((cols - 1) / cstride)) + v1 = np.empty((totpts, 3)) + v2 = np.empty((totpts, 3)) + # This indexes the vertex points + which_pt = 0 + + + #colset contains the data for coloring: either average z or the facecolor + colset = [] + for rs in xrange(0, rows-1, rstride): + for cs in xrange(0, cols-1, cstride): + ps = [] + for a in (X, Y, Z): + ztop = a[rs,cs:min(cols, cs+cstride+1)] + zleft = a[rs+1:min(rows, rs+rstride+1), + min(cols-1, cs+cstride)] + zbase = a[min(rows-1, rs+rstride), cs:min(cols, cs+cstride+1):][::-1] + zright = a[rs:min(rows-1, rs+rstride):, cs][::-1] + z = np.concatenate((ztop, zleft, zbase, zright)) + ps.append(z) + + # The construction leaves the array with duplicate points, which + # are removed here. + ps = list(zip(*ps)) + lastp = np.array([]) + ps2 = [ps[0]] + [ps[i] for i in xrange(1, len(ps)) if ps[i] != ps[i-1]] + avgzsum = sum(p[2] for p in ps2) + polys.append(ps2) + + if fcolors is not None: + colset.append(fcolors[rs][cs]) + else: + colset.append(avgzsum / len(ps2)) + + # Only need vectors to shade if no cmap + if cmap is None and shade: + i1, i2, i3 = 0, int(len(ps2)/3), int(2*len(ps2)/3) + v1[which_pt] = np.array(ps2[i1]) - np.array(ps2[i2]) + v2[which_pt] = np.array(ps2[i2]) - np.array(ps2[i3]) + which_pt += 1 + if cmap is None and shade: + normals = np.cross(v1, v2) + else : + normals = [] + + polyc = art3d.Poly3DCollection(polys, *args, **kwargs) + + if fcolors is not None: + if shade: + colset = self._shade_colors(colset, normals) + polyc.set_facecolors(colset) + polyc.set_edgecolors(colset) + elif cmap: + colset = np.array(colset) + polyc.set_array(colset) + if vmin is not None or vmax is not None: + polyc.set_clim(vmin, vmax) + if norm is not None: + polyc.set_norm(norm) + else: + if shade: + colset = self._shade_colors(color, normals) + else: + colset = color + polyc.set_facecolors(colset) + + self.add_collection(polyc) + self.auto_scale_xyz(X, Y, Z, had_data) + + return polyc + + def _generate_normals(self, polygons): + ''' + Generate normals for polygons by using the first three points. + This normal of course might not make sense for polygons with + more than three points not lying in a plane. + ''' + + normals = [] + for verts in polygons: + v1 = np.array(verts[0]) - np.array(verts[1]) + v2 = np.array(verts[2]) - np.array(verts[0]) + normals.append(np.cross(v1, v2)) + return normals + + def _shade_colors(self, color, normals): + ''' + Shade *color* using normal vectors given by *normals*. + *color* can also be an array of the same length as *normals*. + ''' + + shade = np.array([np.dot(n / proj3d.mod(n), [-1, -1, 0.5]) + if proj3d.mod(n) else np.nan + for n in normals]) + mask = ~np.isnan(shade) + + if len(shade[mask]) > 0: + norm = Normalize(min(shade[mask]), max(shade[mask])) + shade[~mask] = min(shade[mask]) + color = mcolors.to_rgba_array(color) + # shape of color should be (M, 4) (where M is number of faces) + # shape of shade should be (M,) + # colors should have final shape of (M, 4) + alpha = color[:, 3] + colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color + colors[:, 3] = alpha + else: + colors = np.asanyarray(color).copy() + + return colors + + def _shade_colors_lightsource(self, data, cmap, lightsource): + if lightsource is None: + lightsource = LightSource(azdeg=135, altdeg=55) + return lightsource.shade(data, cmap) + + def plot_wireframe(self, X, Y, Z, *args, **kwargs): + """ + Plot a 3D wireframe. + + .. note:: + + The *rcount* and *ccount* kwargs, which both default to 50, + determine the maximum number of samples used in each direction. If + the input data is larger, it will be downsampled (by slicing) to + these numbers of points. + + Parameters + ---------- + X, Y, Z : 2d arrays + Data values. + + rcount, ccount : int + Maximum number of samples used in each direction. If the input + data is larger, it will be downsampled (by slicing) to these + numbers of points. Setting a count to zero causes the data to be + not sampled in the corresponding direction, producing a 3D line + plot rather than a wireframe plot. Defaults to 50. + + .. versionadded:: 2.0 + + rstride, cstride : int + Downsampling stride in each direction. These arguments are + mutually exclusive with *rcount* and *ccount*. If only one of + *rstride* or *cstride* is set, the other defaults to 1. Setting a + stride to zero causes the data to be not sampled in the + corresponding direction, producing a 3D line plot rather than a + wireframe plot. + + 'classic' mode uses a default of ``rstride = cstride = 1`` instead + of the new default of ``rcount = ccount = 50``. + + **kwargs : + Other arguments are forwarded to `.Line3DCollection`. + """ + + had_data = self.has_data() + if Z.ndim != 2: + raise ValueError("Argument Z must be 2-dimensional.") + # FIXME: Support masked arrays + X, Y, Z = np.broadcast_arrays(X, Y, Z) + rows, cols = Z.shape + + has_stride = 'rstride' in kwargs or 'cstride' in kwargs + has_count = 'rcount' in kwargs or 'ccount' in kwargs + + if has_stride and has_count: + raise ValueError("Cannot specify both stride and count arguments") + + rstride = kwargs.pop('rstride', 1) + cstride = kwargs.pop('cstride', 1) + rcount = kwargs.pop('rcount', 50) + ccount = kwargs.pop('ccount', 50) + + if rcParams['_internal.classic_mode']: + # Strides have priority over counts in classic mode. + # So, only compute strides from counts + # if counts were explicitly given + if has_count: + rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0 + cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0 + else: + # If the strides are provided then it has priority. + # Otherwise, compute the strides from the counts. + if not has_stride: + rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0 + cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0 + + # We want two sets of lines, one running along the "rows" of + # Z and another set of lines running along the "columns" of Z. + # This transpose will make it easy to obtain the columns. + tX, tY, tZ = np.transpose(X), np.transpose(Y), np.transpose(Z) + + if rstride: + rii = list(xrange(0, rows, rstride)) + # Add the last index only if needed + if rows > 0 and rii[-1] != (rows - 1): + rii += [rows-1] + else: + rii = [] + if cstride: + cii = list(xrange(0, cols, cstride)) + # Add the last index only if needed + if cols > 0 and cii[-1] != (cols - 1): + cii += [cols-1] + else: + cii = [] + + if rstride == 0 and cstride == 0: + raise ValueError("Either rstride or cstride must be non zero") + + # If the inputs were empty, then just + # reset everything. + if Z.size == 0: + rii = [] + cii = [] + + xlines = [X[i] for i in rii] + ylines = [Y[i] for i in rii] + zlines = [Z[i] for i in rii] + + txlines = [tX[i] for i in cii] + tylines = [tY[i] for i in cii] + tzlines = [tZ[i] for i in cii] + + lines = ([list(zip(xl, yl, zl)) + for xl, yl, zl in zip(xlines, ylines, zlines)] + + [list(zip(xl, yl, zl)) + for xl, yl, zl in zip(txlines, tylines, tzlines)]) + + linec = art3d.Line3DCollection(lines, *args, **kwargs) + self.add_collection(linec) + self.auto_scale_xyz(X, Y, Z, had_data) + + return linec + + def plot_trisurf(self, *args, **kwargs): + """ + ============= ================================================ + Argument Description + ============= ================================================ + *X*, *Y*, *Z* Data values as 1D arrays + *color* Color of the surface patches + *cmap* A colormap for the surface patches. + *norm* An instance of Normalize to map values to colors + *vmin* Minimum value to map + *vmax* Maximum value to map + *shade* Whether to shade the facecolors + ============= ================================================ + + The (optional) triangulation can be specified in one of two ways; + either:: + + plot_trisurf(triangulation, ...) + + where triangulation is a :class:`~matplotlib.tri.Triangulation` + object, or:: + + plot_trisurf(X, Y, ...) + plot_trisurf(X, Y, triangles, ...) + plot_trisurf(X, Y, triangles=triangles, ...) + + in which case a Triangulation object will be created. See + :class:`~matplotlib.tri.Triangulation` for a explanation of + these possibilities. + + The remaining arguments are:: + + plot_trisurf(..., Z) + + where *Z* is the array of values to contour, one per point + in the triangulation. + + Other arguments are passed on to + :class:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection` + + **Examples:** + + .. plot:: gallery/mplot3d/trisurf3d.py + .. plot:: gallery/mplot3d/trisurf3d_2.py + + .. versionadded:: 1.2.0 + This plotting function was added for the v1.2.0 release. + """ + + had_data = self.has_data() + + # TODO: Support custom face colours + color = kwargs.pop('color', None) + if color is None: + color = self._get_lines.get_next_color() + color = np.array(mcolors.to_rgba(color)) + + cmap = kwargs.get('cmap', None) + norm = kwargs.pop('norm', None) + vmin = kwargs.pop('vmin', None) + vmax = kwargs.pop('vmax', None) + linewidth = kwargs.get('linewidth', None) + shade = kwargs.pop('shade', cmap is None) + lightsource = kwargs.pop('lightsource', None) + + tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) + if 'Z' in kwargs: + z = np.asarray(kwargs.pop('Z')) + else: + z = np.asarray(args[0]) + # We do this so Z doesn't get passed as an arg to PolyCollection + args = args[1:] + + triangles = tri.get_masked_triangles() + xt = tri.x[triangles] + yt = tri.y[triangles] + zt = z[triangles] + + # verts = np.stack((xt, yt, zt), axis=-1) + verts = np.concatenate(( + xt[..., np.newaxis], yt[..., np.newaxis], zt[..., np.newaxis] + ), axis=-1) + + polyc = art3d.Poly3DCollection(verts, *args, **kwargs) + + if cmap: + # average over the three points of each triangle + avg_z = verts[:, :, 2].mean(axis=1) + polyc.set_array(avg_z) + if vmin is not None or vmax is not None: + polyc.set_clim(vmin, vmax) + if norm is not None: + polyc.set_norm(norm) + else: + if shade: + v1 = verts[:, 0, :] - verts[:, 1, :] + v2 = verts[:, 1, :] - verts[:, 2, :] + normals = np.cross(v1, v2) + colset = self._shade_colors(color, normals) + else: + colset = color + polyc.set_facecolors(colset) + + self.add_collection(polyc) + self.auto_scale_xyz(tri.x, tri.y, z, had_data) + + return polyc + + def _3d_extend_contour(self, cset, stride=5): + ''' + Extend a contour in 3D by creating + ''' + + levels = cset.levels + colls = cset.collections + dz = (levels[1] - levels[0]) / 2 + + for z, linec in zip(levels, colls): + topverts = art3d.paths_to_3d_segments(linec.get_paths(), z - dz) + botverts = art3d.paths_to_3d_segments(linec.get_paths(), z + dz) + + color = linec.get_color()[0] + + polyverts = [] + normals = [] + nsteps = np.round(len(topverts[0]) / stride) + if nsteps <= 1: + if len(topverts[0]) > 1: + nsteps = 2 + else: + continue + + stepsize = (len(topverts[0]) - 1) / (nsteps - 1) + for i in range(int(np.round(nsteps)) - 1): + i1 = int(np.round(i * stepsize)) + i2 = int(np.round((i + 1) * stepsize)) + polyverts.append([topverts[0][i1], + topverts[0][i2], + botverts[0][i2], + botverts[0][i1]]) + + v1 = np.array(topverts[0][i1]) - np.array(topverts[0][i2]) + v2 = np.array(topverts[0][i1]) - np.array(botverts[0][i1]) + normals.append(np.cross(v1, v2)) + + colors = self._shade_colors(color, normals) + colors2 = self._shade_colors(color, normals) + polycol = art3d.Poly3DCollection(polyverts, + facecolors=colors, + edgecolors=colors2) + polycol.set_sort_zpos(z) + self.add_collection3d(polycol) + + for col in colls: + self.collections.remove(col) + + def add_contour_set(self, cset, extend3d=False, stride=5, zdir='z', offset=None): + zdir = '-' + zdir + if extend3d: + self._3d_extend_contour(cset, stride) + else: + for z, linec in zip(cset.levels, cset.collections): + if offset is not None: + z = offset + art3d.line_collection_2d_to_3d(linec, z, zdir=zdir) + + def add_contourf_set(self, cset, zdir='z', offset=None): + zdir = '-' + zdir + for z, linec in zip(cset.levels, cset.collections): + if offset is not None : + z = offset + art3d.poly_collection_2d_to_3d(linec, z, zdir=zdir) + linec.set_sort_zpos(z) + + def contour(self, X, Y, Z, *args, **kwargs): + ''' + Create a 3D contour plot. + + ========== ================================================ + Argument Description + ========== ================================================ + *X*, *Y*, Data values as numpy.arrays + *Z* + *extend3d* Whether to extend contour in 3D (default: False) + *stride* Stride (step size) for extending contour + *zdir* The direction to use: x, y or z (default) + *offset* If specified plot a projection of the contour + lines on this position in plane normal to zdir + ========== ================================================ + + The positional and other keyword arguments are passed on to + :func:`~matplotlib.axes.Axes.contour` + + Returns a :class:`~matplotlib.axes.Axes.contour` + ''' + + extend3d = kwargs.pop('extend3d', False) + stride = kwargs.pop('stride', 5) + zdir = kwargs.pop('zdir', 'z') + offset = kwargs.pop('offset', None) + + had_data = self.has_data() + + jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) + cset = super(Axes3D, self).contour(jX, jY, jZ, *args, **kwargs) + self.add_contour_set(cset, extend3d, stride, zdir, offset) + + self.auto_scale_xyz(X, Y, Z, had_data) + return cset + + contour3D = contour + + def tricontour(self, *args, **kwargs): + """ + Create a 3D contour plot. + + ========== ================================================ + Argument Description + ========== ================================================ + *X*, *Y*, Data values as numpy.arrays + *Z* + *extend3d* Whether to extend contour in 3D (default: False) + *stride* Stride (step size) for extending contour + *zdir* The direction to use: x, y or z (default) + *offset* If specified plot a projection of the contour + lines on this position in plane normal to zdir + ========== ================================================ + + Other keyword arguments are passed on to + :func:`~matplotlib.axes.Axes.tricontour` + + Returns a :class:`~matplotlib.axes.Axes.contour` + + .. versionchanged:: 1.3.0 + Added support for custom triangulations + + EXPERIMENTAL: This method currently produces incorrect output due to a + longstanding bug in 3D PolyCollection rendering. + """ + + extend3d = kwargs.pop('extend3d', False) + stride = kwargs.pop('stride', 5) + zdir = kwargs.pop('zdir', 'z') + offset = kwargs.pop('offset', None) + + had_data = self.has_data() + + tri, args, kwargs = Triangulation.get_from_args_and_kwargs( + *args, **kwargs) + X = tri.x + Y = tri.y + if 'Z' in kwargs: + Z = kwargs.pop('Z') + else: + Z = args[0] + # We do this so Z doesn't get passed as an arg to Axes.tricontour + args = args[1:] + + jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) + tri = Triangulation(jX, jY, tri.triangles, tri.mask) + + cset = super(Axes3D, self).tricontour(tri, jZ, *args, **kwargs) + self.add_contour_set(cset, extend3d, stride, zdir, offset) + + self.auto_scale_xyz(X, Y, Z, had_data) + return cset + + def contourf(self, X, Y, Z, *args, **kwargs): + ''' + Create a 3D contourf plot. + + ========== ================================================ + Argument Description + ========== ================================================ + *X*, *Y*, Data values as numpy.arrays + *Z* + *zdir* The direction to use: x, y or z (default) + *offset* If specified plot a projection of the filled contour + on this position in plane normal to zdir + ========== ================================================ + + The positional and keyword arguments are passed on to + :func:`~matplotlib.axes.Axes.contourf` + + Returns a :class:`~matplotlib.axes.Axes.contourf` + + .. versionchanged :: 1.1.0 + The *zdir* and *offset* kwargs were added. + ''' + + zdir = kwargs.pop('zdir', 'z') + offset = kwargs.pop('offset', None) + + had_data = self.has_data() + + jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) + cset = super(Axes3D, self).contourf(jX, jY, jZ, *args, **kwargs) + self.add_contourf_set(cset, zdir, offset) + + self.auto_scale_xyz(X, Y, Z, had_data) + return cset + + contourf3D = contourf + + def tricontourf(self, *args, **kwargs): + """ + Create a 3D contourf plot. + + ========== ================================================ + Argument Description + ========== ================================================ + *X*, *Y*, Data values as numpy.arrays + *Z* + *zdir* The direction to use: x, y or z (default) + *offset* If specified plot a projection of the contour + lines on this position in plane normal to zdir + ========== ================================================ + + Other keyword arguments are passed on to + :func:`~matplotlib.axes.Axes.tricontour` + + Returns a :class:`~matplotlib.axes.Axes.contour` + + .. versionchanged :: 1.3.0 + Added support for custom triangulations + + EXPERIMENTAL: This method currently produces incorrect output due to a + longstanding bug in 3D PolyCollection rendering. + """ + zdir = kwargs.pop('zdir', 'z') + offset = kwargs.pop('offset', None) + + had_data = self.has_data() + + tri, args, kwargs = Triangulation.get_from_args_and_kwargs( + *args, **kwargs) + X = tri.x + Y = tri.y + if 'Z' in kwargs: + Z = kwargs.pop('Z') + else: + Z = args[0] + # We do this so Z doesn't get passed as an arg to Axes.tricontourf + args = args[1:] + + jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) + tri = Triangulation(jX, jY, tri.triangles, tri.mask) + + cset = super(Axes3D, self).tricontourf(tri, jZ, *args, **kwargs) + self.add_contourf_set(cset, zdir, offset) + + self.auto_scale_xyz(X, Y, Z, had_data) + return cset + + def add_collection3d(self, col, zs=0, zdir='z'): + ''' + Add a 3D collection object to the plot. + + 2D collection types are converted to a 3D version by + modifying the object and adding z coordinate information. + + Supported are: + - PolyCollection + - LineCollection + - PatchCollection + ''' + zvals = np.atleast_1d(zs) + if len(zvals) > 0 : + zsortval = min(zvals) + else : + zsortval = 0 # FIXME: Fairly arbitrary. Is there a better value? + + # FIXME: use issubclass() (although, then a 3D collection + # object would also pass.) Maybe have a collection3d + # abstract class to test for and exclude? + if type(col) is mcoll.PolyCollection: + art3d.poly_collection_2d_to_3d(col, zs=zs, zdir=zdir) + col.set_sort_zpos(zsortval) + elif type(col) is mcoll.LineCollection: + art3d.line_collection_2d_to_3d(col, zs=zs, zdir=zdir) + col.set_sort_zpos(zsortval) + elif type(col) is mcoll.PatchCollection: + art3d.patch_collection_2d_to_3d(col, zs=zs, zdir=zdir) + col.set_sort_zpos(zsortval) + + super(Axes3D, self).add_collection(col) + + def scatter(self, xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True, + *args, **kwargs): + ''' + Create a scatter plot. + + ============ ======================================================== + Argument Description + ============ ======================================================== + *xs*, *ys* Positions of data points. + *zs* Either an array of the same length as *xs* and + *ys* or a single value to place all points in + the same plane. Default is 0. + *zdir* Which direction to use as z ('x', 'y' or 'z') + when plotting a 2D set. + *s* Size in points^2. It is a scalar or an array of the + same length as *x* and *y*. + + *c* A color. *c* can be a single color format string, or a + sequence of color specifications of length *N*, or a + sequence of *N* numbers to be mapped to colors using the + *cmap* and *norm* specified via kwargs (see below). Note + that *c* should not be a single numeric RGB or RGBA + sequence because that is indistinguishable from an array + of values to be colormapped. *c* can be a 2-D array in + which the rows are RGB or RGBA, however, including the + case of a single row to specify the same color for + all points. + + *depthshade* + Whether or not to shade the scatter markers to give + the appearance of depth. Default is *True*. + ============ ======================================================== + + Keyword arguments are passed on to + :func:`~matplotlib.axes.Axes.scatter`. + + Returns a :class:`~mpl_toolkits.mplot3d.art3d.Patch3DCollection` + ''' + + had_data = self.has_data() + + xs, ys, zs = np.broadcast_arrays( + *[np.ravel(np.ma.filled(t, np.nan)) for t in [xs, ys, zs]]) + s = np.ma.ravel(s) # This doesn't have to match x, y in size. + + xs, ys, zs, s, c = cbook.delete_masked_points(xs, ys, zs, s, c) + + patches = super(Axes3D, self).scatter( + xs, ys, s=s, c=c, *args, **kwargs) + is_2d = not cbook.iterable(zs) + zs = _backports.broadcast_to(zs, len(xs)) + art3d.patch_collection_2d_to_3d(patches, zs=zs, zdir=zdir, + depthshade=depthshade) + + if self._zmargin < 0.05 and xs.size > 0: + self.set_zmargin(0.05) + + #FIXME: why is this necessary? + if not is_2d: + self.auto_scale_xyz(xs, ys, zs, had_data) + + return patches + + scatter3D = scatter + + def bar(self, left, height, zs=0, zdir='z', *args, **kwargs): + ''' + Add 2D bar(s). + + ========== ================================================ + Argument Description + ========== ================================================ + *left* The x coordinates of the left sides of the bars. + *height* The height of the bars. + *zs* Z coordinate of bars, if one value is specified + they will all be placed at the same z. + *zdir* Which direction to use as z ('x', 'y' or 'z') + when plotting a 2D set. + ========== ================================================ + + Keyword arguments are passed onto :func:`~matplotlib.axes.Axes.bar`. + + Returns a :class:`~mpl_toolkits.mplot3d.art3d.Patch3DCollection` + ''' + + had_data = self.has_data() + + patches = super(Axes3D, self).bar(left, height, *args, **kwargs) + + zs = _backports.broadcast_to(zs, len(left)) + + verts = [] + verts_zs = [] + for p, z in zip(patches, zs): + vs = art3d.get_patch_verts(p) + verts += vs.tolist() + verts_zs += [z] * len(vs) + art3d.patch_2d_to_3d(p, z, zdir) + if 'alpha' in kwargs: + p.set_alpha(kwargs['alpha']) + + if len(verts) > 0 : + # the following has to be skipped if verts is empty + # NOTE: Bugs could still occur if len(verts) > 0, + # but the "2nd dimension" is empty. + xs, ys = list(zip(*verts)) + else : + xs, ys = [], [] + + xs, ys, verts_zs = art3d.juggle_axes(xs, ys, verts_zs, zdir) + self.auto_scale_xyz(xs, ys, verts_zs, had_data) + + return patches + + def bar3d(self, x, y, z, dx, dy, dz, color=None, + zsort='average', shade=True, *args, **kwargs): + """Generate a 3D barplot. + + This method creates three dimensional barplot where the width, + depth, height, and color of the bars can all be uniquely set. + + Parameters + ---------- + x, y, z : array-like + The coordinates of the anchor point of the bars. + + dx, dy, dz : scalar or array-like + The width, depth, and height of the bars, respectively. + + color : sequence of valid color specifications, optional + The color of the bars can be specified globally or + individually. This parameter can be: + + - A single color value, to color all bars the same color. + - An array of colors of length N bars, to color each bar + independently. + - An array of colors of length 6, to color the faces of the + bars similarly. + - An array of colors of length 6 * N bars, to color each face + independently. + + When coloring the faces of the boxes specifically, this is + the order of the coloring: + + 1. -Z (bottom of box) + 2. +Z (top of box) + 3. -Y + 4. +Y + 5. -X + 6. +X + + zsort : str, optional + The z-axis sorting scheme passed onto + :func:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection` + + shade : bool, optional (default = True) + When true, this shades the dark sides of the bars (relative + to the plot's source of light). + + Any additional keyword arguments are passed onto + :func:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection` + + Returns + ------- + collection : Poly3DCollection + A collection of three dimensional polygons representing + the bars. + """ + + had_data = self.has_data() + + x, y, z, dx, dy, dz = np.broadcast_arrays( + np.atleast_1d(x), y, z, dx, dy, dz) + minx = np.min(x) + maxx = np.max(x + dx) + miny = np.min(y) + maxy = np.max(y + dy) + minz = np.min(z) + maxz = np.max(z + dz) + + polys = [] + for xi, yi, zi, dxi, dyi, dzi in zip(x, y, z, dx, dy, dz): + polys.extend([ + ((xi, yi, zi), (xi + dxi, yi, zi), + (xi + dxi, yi + dyi, zi), (xi, yi + dyi, zi)), + ((xi, yi, zi + dzi), (xi + dxi, yi, zi + dzi), + (xi + dxi, yi + dyi, zi + dzi), (xi, yi + dyi, zi + dzi)), + + ((xi, yi, zi), (xi + dxi, yi, zi), + (xi + dxi, yi, zi + dzi), (xi, yi, zi + dzi)), + ((xi, yi + dyi, zi), (xi + dxi, yi + dyi, zi), + (xi + dxi, yi + dyi, zi + dzi), (xi, yi + dyi, zi + dzi)), + + ((xi, yi, zi), (xi, yi + dyi, zi), + (xi, yi + dyi, zi + dzi), (xi, yi, zi + dzi)), + ((xi + dxi, yi, zi), (xi + dxi, yi + dyi, zi), + (xi + dxi, yi + dyi, zi + dzi), (xi + dxi, yi, zi + dzi)), + ]) + + facecolors = [] + if color is None: + color = [self._get_patches_for_fill.get_next_color()] + + if len(color) == len(x): + # bar colors specified, need to expand to number of faces + for c in color: + facecolors.extend([c] * 6) + else: + # a single color specified, or face colors specified explicitly + facecolors = list(mcolors.to_rgba_array(color)) + if len(facecolors) < len(x): + facecolors *= (6 * len(x)) + + if shade: + normals = self._generate_normals(polys) + sfacecolors = self._shade_colors(facecolors, normals) + else: + sfacecolors = facecolors + + col = art3d.Poly3DCollection(polys, + zsort=zsort, + facecolor=sfacecolors, + *args, **kwargs) + self.add_collection(col) + + self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data) + + return col + + def set_title(self, label, fontdict=None, loc='center', **kwargs): + ret = super(Axes3D, self).set_title(label, fontdict=fontdict, loc=loc, + **kwargs) + (x, y) = self.title.get_position() + self.title.set_y(0.92 * y) + return ret + set_title.__doc__ = maxes.Axes.set_title.__doc__ + + def quiver(self, *args, **kwargs): + """ + Plot a 3D field of arrows. + + call signatures:: + + quiver(X, Y, Z, U, V, W, **kwargs) + + Arguments: + + *X*, *Y*, *Z*: + The x, y and z coordinates of the arrow locations (default is + tail of arrow; see *pivot* kwarg) + + *U*, *V*, *W*: + The x, y and z components of the arrow vectors + + The arguments could be array-like or scalars, so long as they + they can be broadcast together. The arguments can also be + masked arrays. If an element in any of argument is masked, then + that corresponding quiver element will not be plotted. + + Keyword arguments: + + *length*: [1.0 | float] + The length of each quiver, default to 1.0, the unit is + the same with the axes + + *arrow_length_ratio*: [0.3 | float] + The ratio of the arrow head with respect to the quiver, + default to 0.3 + + *pivot*: [ 'tail' | 'middle' | 'tip' ] + The part of the arrow that is at the grid point; the arrow + rotates about this point, hence the name *pivot*. + Default is 'tail' + + *normalize*: bool + When True, all of the arrows will be the same length. This + defaults to False, where the arrows will be different lengths + depending on the values of u,v,w. + + Any additional keyword arguments are delegated to + :class:`~matplotlib.collections.LineCollection` + + """ + def calc_arrow(uvw, angle=15): + """ + To calculate the arrow head. uvw should be a unit vector. + We normalize it here: + """ + # get unit direction vector perpendicular to (u,v,w) + norm = np.linalg.norm(uvw[:2]) + if norm > 0: + x = uvw[1] / norm + y = -uvw[0] / norm + else: + x, y = 0, 1 + + # compute the two arrowhead direction unit vectors + ra = math.radians(angle) + c = math.cos(ra) + s = math.sin(ra) + + # construct the rotation matrices + Rpos = np.array([[c+(x**2)*(1-c), x*y*(1-c), y*s], + [y*x*(1-c), c+(y**2)*(1-c), -x*s], + [-y*s, x*s, c]]) + # opposite rotation negates all the sin terms + Rneg = Rpos.copy() + Rneg[[0,1,2,2],[2,2,0,1]] = -Rneg[[0,1,2,2],[2,2,0,1]] + + # multiply them to get the rotated vector + return Rpos.dot(uvw), Rneg.dot(uvw) + + had_data = self.has_data() + + # handle kwargs + # shaft length + length = kwargs.pop('length', 1) + # arrow length ratio to the shaft length + arrow_length_ratio = kwargs.pop('arrow_length_ratio', 0.3) + # pivot point + pivot = kwargs.pop('pivot', 'tail') + # normalize + normalize = kwargs.pop('normalize', False) + + # handle args + argi = 6 + if len(args) < argi: + raise ValueError('Wrong number of arguments. Expected %d got %d' % + (argi, len(args))) + + # first 6 arguments are X, Y, Z, U, V, W + input_args = args[:argi] + # if any of the args are scalar, convert into list + input_args = [[k] if isinstance(k, (int, float)) else k + for k in input_args] + + # extract the masks, if any + masks = [k.mask for k in input_args if isinstance(k, np.ma.MaskedArray)] + # broadcast to match the shape + bcast = np.broadcast_arrays(*(input_args + masks)) + input_args = bcast[:argi] + masks = bcast[argi:] + if masks: + # combine the masks into one + mask = reduce(np.logical_or, masks) + # put mask on and compress + input_args = [np.ma.array(k, mask=mask).compressed() + for k in input_args] + else: + input_args = [k.flatten() for k in input_args] + + if any(len(v) == 0 for v in input_args): + # No quivers, so just make an empty collection and return early + linec = art3d.Line3DCollection([], *args[argi:], **kwargs) + self.add_collection(linec) + return linec + + # Following assertions must be true before proceeding + # must all be ndarray + assert all(isinstance(k, np.ndarray) for k in input_args) + # must all in same shape + assert len({k.shape for k in input_args}) == 1 + + shaft_dt = np.linspace(0, length, num=2) + arrow_dt = shaft_dt * arrow_length_ratio + + if pivot == 'tail': + shaft_dt -= length + elif pivot == 'middle': + shaft_dt -= length/2. + elif pivot != 'tip': + raise ValueError('Invalid pivot argument: ' + str(pivot)) + + XYZ = np.column_stack(input_args[:3]) + UVW = np.column_stack(input_args[3:argi]).astype(float) + + # Normalize rows of UVW + # Note: with numpy 1.9+, could use np.linalg.norm(UVW, axis=1) + norm = np.sqrt(np.sum(UVW**2, axis=1)) + + # If any row of UVW is all zeros, don't make a quiver for it + mask = norm > 0 + XYZ = XYZ[mask] + if normalize: + UVW = UVW[mask] / norm[mask].reshape((-1, 1)) + else: + UVW = UVW[mask] + + if len(XYZ) > 0: + # compute the shaft lines all at once with an outer product + shafts = (XYZ - np.multiply.outer(shaft_dt, UVW)).swapaxes(0, 1) + # compute head direction vectors, n heads by 2 sides by 3 dimensions + head_dirs = np.array([calc_arrow(d) for d in UVW]) + # compute all head lines at once, starting from where the shaft ends + heads = shafts[:, :1] - np.multiply.outer(arrow_dt, head_dirs) + # stack left and right head lines together + heads.shape = (len(arrow_dt), -1, 3) + # transpose to get a list of lines + heads = heads.swapaxes(0, 1) + + lines = list(shafts) + list(heads) + else: + lines = [] + + linec = art3d.Line3DCollection(lines, *args[argi:], **kwargs) + self.add_collection(linec) + + self.auto_scale_xyz(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], had_data) + + return linec + + quiver3D = quiver + + def voxels(self, *args, **kwargs): + """ + ax.voxels([x, y, z,] /, filled, **kwargs) + + Plot a set of filled voxels + + All voxels are plotted as 1x1x1 cubes on the axis, with filled[0,0,0] + placed with its lower corner at the origin. Occluded faces are not + plotted. + + Call signatures:: + + voxels(filled, facecolors=fc, edgecolors=ec, **kwargs) + voxels(x, y, z, filled, facecolors=fc, edgecolors=ec, **kwargs) + + .. versionadded:: 2.1 + + Parameters + ---------- + filled : 3D np.array of bool + A 3d array of values, with truthy values indicating which voxels + to fill + + x, y, z : 3D np.array, optional + The coordinates of the corners of the voxels. This should broadcast + to a shape one larger in every dimension than the shape of `filled`. + These can be used to plot non-cubic voxels. + + If not specified, defaults to increasing integers along each axis, + like those returned by :func:`~numpy.indices`. + As indicated by the ``/`` in the function signature, these arguments + can only be passed positionally. + + facecolors, edgecolors : array_like, optional + The color to draw the faces and edges of the voxels. Can only be + passed as keyword arguments. + This parameter can be: + + - A single color value, to color all voxels the same color. This + can be either a string, or a 1D rgb/rgba array + - ``None``, the default, to use a single color for the faces, and + the style default for the edges. + - A 3D ndarray of color names, with each item the color for the + corresponding voxel. The size must match the voxels. + - A 4D ndarray of rgb/rgba data, with the components along the + last axis. + + **kwargs + Additional keyword arguments to pass onto + :func:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection` + + Returns + ------- + faces : dict + A dictionary indexed by coordinate, where ``faces[i,j,k]`` is a + `Poly3DCollection` of the faces drawn for the voxel + ``filled[i,j,k]``. If no faces were drawn for a given voxel, either + because it was not asked to be drawn, or it is fully occluded, then + ``(i,j,k) not in faces``. + + Examples + -------- + .. plot:: gallery/mplot3d/voxels.py + .. plot:: gallery/mplot3d/voxels_rgb.py + .. plot:: gallery/mplot3d/voxels_torus.py + .. plot:: gallery/mplot3d/voxels_numpy_logo.py + """ + + # work out which signature we should be using, and use it to parse + # the arguments. Name must be voxels for the correct error message + if len(args) >= 3: + # underscores indicate position only + def voxels(__x, __y, __z, filled, **kwargs): + return (__x, __y, __z), filled, kwargs + else: + def voxels(filled, **kwargs): + return None, filled, kwargs + + xyz, filled, kwargs = voxels(*args, **kwargs) + + # check dimensions + if filled.ndim != 3: + raise ValueError("Argument filled must be 3-dimensional") + size = np.array(filled.shape, dtype=np.intp) + + # check xyz coordinates, which are one larger than the filled shape + coord_shape = tuple(size + 1) + if xyz is None: + x, y, z = np.indices(coord_shape) + else: + x, y, z = (_backports.broadcast_to(c, coord_shape) for c in xyz) + + def _broadcast_color_arg(color, name): + if np.ndim(color) in (0, 1): + # single color, like "red" or [1, 0, 0] + return _backports.broadcast_to( + color, filled.shape + np.shape(color)) + elif np.ndim(color) in (3, 4): + # 3D array of strings, or 4D array with last axis rgb + if np.shape(color)[:3] != filled.shape: + raise ValueError( + "When multidimensional, {} must match the shape of " + "filled".format(name)) + return color + else: + raise ValueError("Invalid {} argument".format(name)) + + # intercept the facecolors, handling defaults and broacasting + facecolors = kwargs.pop('facecolors', None) + if facecolors is None: + facecolors = self._get_patches_for_fill.get_next_color() + facecolors = _broadcast_color_arg(facecolors, 'facecolors') + + # broadcast but no default on edgecolors + edgecolors = kwargs.pop('edgecolors', None) + edgecolors = _broadcast_color_arg(edgecolors, 'edgecolors') + + # always scale to the full array, even if the data is only in the center + self.auto_scale_xyz(x, y, z) + + # points lying on corners of a square + square = np.array([ + [0, 0, 0], + [0, 1, 0], + [1, 1, 0], + [1, 0, 0] + ], dtype=np.intp) + + voxel_faces = defaultdict(list) + + def permutation_matrices(n): + """ Generator of cyclic permutation matices """ + mat = np.eye(n, dtype=np.intp) + for i in range(n): + yield mat + mat = np.roll(mat, 1, axis=0) + + # iterate over each of the YZ, ZX, and XY orientations, finding faces to + # render + for permute in permutation_matrices(3): + # find the set of ranges to iterate over + pc, qc, rc = permute.T.dot(size) + pinds = np.arange(pc) + qinds = np.arange(qc) + rinds = np.arange(rc) + + square_rot = square.dot(permute.T) + + # iterate within the current plane + for p in pinds: + for q in qinds: + # iterate perpendicularly to the current plane, handling + # boundaries. We only draw faces between a voxel and an + # empty space, to avoid drawing internal faces. + + # draw lower faces + p0 = permute.dot([p, q, 0]) + i0 = tuple(p0) + if filled[i0]: + voxel_faces[i0].append(p0 + square_rot) + + # draw middle faces + for r1, r2 in zip(rinds[:-1], rinds[1:]): + p1 = permute.dot([p, q, r1]) + p2 = permute.dot([p, q, r2]) + + i1 = tuple(p1) + i2 = tuple(p2) + + if filled[i1] and not filled[i2]: + voxel_faces[i1].append(p2 + square_rot) + elif not filled[i1] and filled[i2]: + voxel_faces[i2].append(p2 + square_rot) + + # draw upper faces + pk = permute.dot([p, q, rc-1]) + pk2 = permute.dot([p, q, rc]) + ik = tuple(pk) + if filled[ik]: + voxel_faces[ik].append(pk2 + square_rot) + + # iterate over the faces, and generate a Poly3DCollection for each voxel + polygons = {} + for coord, faces_inds in voxel_faces.items(): + # convert indices into 3D positions + if xyz is None: + faces = faces_inds + else: + faces = [] + for face_inds in faces_inds: + ind = face_inds[:, 0], face_inds[:, 1], face_inds[:, 2] + face = np.empty(face_inds.shape) + face[:, 0] = x[ind] + face[:, 1] = y[ind] + face[:, 2] = z[ind] + faces.append(face) + + poly = art3d.Poly3DCollection(faces, + facecolors=facecolors[coord], + edgecolors=edgecolors[coord], + **kwargs + ) + self.add_collection3d(poly) + polygons[coord] = poly + + return polygons + + +def get_test_data(delta=0.05): + ''' + Return a tuple X, Y, Z with a test data set. + ''' + x = y = np.arange(-3.0, 3.0, delta) + X, Y = np.meshgrid(x, y) + + Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi) + Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) / + (2 * np.pi * 0.5 * 1.5)) + Z = Z2 - Z1 + + X = X * 10 + Y = Y * 10 + Z = Z * 500 + return X, Y, Z + + +######################################################## +# Register Axes3D as a 'projection' object available +# for use just like any other axes +######################################################## +import matplotlib.projections as proj +proj.projection_registry.register(Axes3D) |