aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py
diff options
context:
space:
mode:
authorshumkovnd <shumkovnd@yandex-team.com>2023-11-10 14:39:34 +0300
committershumkovnd <shumkovnd@yandex-team.com>2023-11-10 16:42:24 +0300
commit77eb2d3fdcec5c978c64e025ced2764c57c00285 (patch)
treec51edb0748ca8d4a08d7c7323312c27ba1a8b79a /contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py
parentdd6d20cadb65582270ac23f4b3b14ae189704b9d (diff)
downloadydb-77eb2d3fdcec5c978c64e025ced2764c57c00285.tar.gz
KIKIMR-19287: add task_stats_drawing script
Diffstat (limited to 'contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py')
-rw-r--r--contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py2958
1 files changed, 2958 insertions, 0 deletions
diff --git a/contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py b/contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py
new file mode 100644
index 0000000000..b99a090c62
--- /dev/null
+++ b/contrib/python/matplotlib/py2/mpl_toolkits/mplot3d/axes3d.py
@@ -0,0 +1,2958 @@
+"""
+axes3d.py, original mplot3d version by John Porter
+Created: 23 Sep 2005
+
+Parts fixed by Reinier Heeres <reinier@heeres.eu>
+Minor additions by Ben Axelrod <baxelrod@coroware.com>
+Significant updates and revisions by Ben Root <ben.v.root@gmail.com>
+
+Module containing Axes3D, an object which can plot 3D objects on a
+2D matplotlib figure.
+"""
+from __future__ import (absolute_import, division, print_function,
+ unicode_literals)
+
+import six
+from six.moves import map, xrange, zip, reduce
+
+import math
+import warnings
+from collections import defaultdict
+
+import numpy as np
+
+import matplotlib.axes as maxes
+import matplotlib.cbook as cbook
+import matplotlib.collections as mcoll
+import matplotlib.colors as mcolors
+import matplotlib.docstring as docstring
+import matplotlib.scale as mscale
+import matplotlib.transforms as mtransforms
+from matplotlib.axes import Axes, rcParams
+from matplotlib.cbook import _backports
+from matplotlib.colors import Normalize, LightSource
+from matplotlib.transforms import Bbox
+from matplotlib.tri.triangulation import Triangulation
+
+from . import art3d
+from . import proj3d
+from . import axis3d
+
+
+def unit_bbox():
+ box = Bbox(np.array([[0, 0], [1, 1]]))
+ return box
+
+
+class Axes3D(Axes):
+ """
+ 3D axes object.
+ """
+ name = '3d'
+ _shared_z_axes = cbook.Grouper()
+
+ def __init__(self, fig, rect=None, *args, **kwargs):
+ '''
+ Build an :class:`Axes3D` instance in
+ :class:`~matplotlib.figure.Figure` *fig* with
+ *rect=[left, bottom, width, height]* in
+ :class:`~matplotlib.figure.Figure` coordinates
+
+ Optional keyword arguments:
+
+ ================ =========================================
+ Keyword Description
+ ================ =========================================
+ *azim* Azimuthal viewing angle (default -60)
+ *elev* Elevation viewing angle (default 30)
+ *zscale* [%(scale)s]
+ *sharez* Other axes to share z-limits with
+ *proj_type* 'persp' or 'ortho' (default 'persp')
+ ================ =========================================
+
+ .. versionadded :: 1.2.1
+ *sharez*
+
+ ''' % {'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()])}
+
+ if rect is None:
+ rect = [0.0, 0.0, 1.0, 1.0]
+ self._cids = []
+
+ self.initial_azim = kwargs.pop('azim', -60)
+ self.initial_elev = kwargs.pop('elev', 30)
+ zscale = kwargs.pop('zscale', None)
+ sharez = kwargs.pop('sharez', None)
+ self.set_proj_type(kwargs.pop('proj_type', 'persp'))
+
+ self.xy_viewLim = unit_bbox()
+ self.zz_viewLim = unit_bbox()
+ self.xy_dataLim = unit_bbox()
+ self.zz_dataLim = unit_bbox()
+ # inihibit autoscale_view until the axes are defined
+ # they can't be defined until Axes.__init__ has been called
+ self.view_init(self.initial_elev, self.initial_azim)
+ self._ready = 0
+
+ self._sharez = sharez
+ if sharez is not None:
+ self._shared_z_axes.join(self, sharez)
+ self._adjustable = 'datalim'
+
+ super(Axes3D, self).__init__(fig, rect,
+ frameon=True,
+ *args, **kwargs)
+ # Disable drawing of axes by base class
+ super(Axes3D, self).set_axis_off()
+ # Enable drawing of axes by Axes3D class
+ self.set_axis_on()
+ self.M = None
+
+ # func used to format z -- fall back on major formatters
+ self.fmt_zdata = None
+
+ if zscale is not None:
+ self.set_zscale(zscale)
+
+ if self.zaxis is not None:
+ self._zcid = self.zaxis.callbacks.connect(
+ 'units finalize', lambda: self._on_units_changed(scalez=True))
+ else:
+ self._zcid = None
+
+ self._ready = 1
+ self.mouse_init()
+ self.set_top_view()
+
+ self.patch.set_linewidth(0)
+ # Calculate the pseudo-data width and height
+ pseudo_bbox = self.transLimits.inverted().transform([(0, 0), (1, 1)])
+ self._pseudo_w, self._pseudo_h = pseudo_bbox[1] - pseudo_bbox[0]
+
+ self.figure.add_axes(self)
+
+ def set_axis_off(self):
+ self._axis3don = False
+ self.stale = True
+
+ def set_axis_on(self):
+ self._axis3don = True
+ self.stale = True
+
+ def have_units(self):
+ """
+ Return *True* if units are set on the *x*, *y*, or *z* axes
+
+ """
+ return (self.xaxis.have_units() or self.yaxis.have_units() or
+ self.zaxis.have_units())
+
+ def convert_zunits(self, z):
+ """
+ For artists in an axes, if the zaxis has units support,
+ convert *z* using zaxis unit type
+
+ .. versionadded :: 1.2.1
+
+ """
+ return self.zaxis.convert_units(z)
+
+ def _process_unit_info(self, xdata=None, ydata=None, zdata=None,
+ kwargs=None):
+ """
+ Look for unit *kwargs* and update the axis instances as necessary
+
+ """
+ super(Axes3D, self)._process_unit_info(xdata=xdata, ydata=ydata,
+ kwargs=kwargs)
+
+ if self.xaxis is None or self.yaxis is None or self.zaxis is None:
+ return
+
+ if zdata is not None:
+ # we only need to update if there is nothing set yet.
+ if not self.zaxis.have_units():
+ self.zaxis.update_units(xdata)
+
+ # process kwargs 2nd since these will override default units
+ if kwargs is not None:
+ zunits = kwargs.pop('zunits', self.zaxis.units)
+ if zunits != self.zaxis.units:
+ self.zaxis.set_units(zunits)
+ # If the units being set imply a different converter,
+ # we need to update.
+ if zdata is not None:
+ self.zaxis.update_units(zdata)
+
+ def set_top_view(self):
+ # this happens to be the right view for the viewing coordinates
+ # moved up and to the left slightly to fit labels and axes
+ xdwl = (0.95/self.dist)
+ xdw = (0.9/self.dist)
+ ydwl = (0.95/self.dist)
+ ydw = (0.9/self.dist)
+
+ # This is purposely using the 2D Axes's set_xlim and set_ylim,
+ # because we are trying to place our viewing pane.
+ super(Axes3D, self).set_xlim(-xdwl, xdw, auto=None)
+ super(Axes3D, self).set_ylim(-ydwl, ydw, auto=None)
+
+ def _init_axis(self):
+ '''Init 3D axes; overrides creation of regular X/Y axes'''
+ self.w_xaxis = axis3d.XAxis('x', self.xy_viewLim.intervalx,
+ self.xy_dataLim.intervalx, self)
+ self.xaxis = self.w_xaxis
+ self.w_yaxis = axis3d.YAxis('y', self.xy_viewLim.intervaly,
+ self.xy_dataLim.intervaly, self)
+ self.yaxis = self.w_yaxis
+ self.w_zaxis = axis3d.ZAxis('z', self.zz_viewLim.intervalx,
+ self.zz_dataLim.intervalx, self)
+ self.zaxis = self.w_zaxis
+
+ for ax in self.xaxis, self.yaxis, self.zaxis:
+ ax.init3d()
+
+ def get_children(self):
+ return [self.zaxis, ] + super(Axes3D, self).get_children()
+
+ def _get_axis_list(self):
+ return super(Axes3D, self)._get_axis_list() + (self.zaxis, )
+
+ def unit_cube(self, vals=None):
+ minx, maxx, miny, maxy, minz, maxz = vals or self.get_w_lims()
+ xs, ys, zs = ([minx, maxx, maxx, minx, minx, maxx, maxx, minx],
+ [miny, miny, maxy, maxy, miny, miny, maxy, maxy],
+ [minz, minz, minz, minz, maxz, maxz, maxz, maxz])
+ return list(zip(xs, ys, zs))
+
+ def tunit_cube(self, vals=None, M=None):
+ if M is None:
+ M = self.M
+ xyzs = self.unit_cube(vals)
+ tcube = proj3d.proj_points(xyzs, M)
+ return tcube
+
+ def tunit_edges(self, vals=None, M=None):
+ tc = self.tunit_cube(vals, M)
+ edges = [(tc[0], tc[1]),
+ (tc[1], tc[2]),
+ (tc[2], tc[3]),
+ (tc[3], tc[0]),
+
+ (tc[0], tc[4]),
+ (tc[1], tc[5]),
+ (tc[2], tc[6]),
+ (tc[3], tc[7]),
+
+ (tc[4], tc[5]),
+ (tc[5], tc[6]),
+ (tc[6], tc[7]),
+ (tc[7], tc[4])]
+ return edges
+
+ def draw(self, renderer):
+ # draw the background patch
+ self.patch.draw(renderer)
+ self._frameon = False
+
+ # first, set the aspect
+ # this is duplicated from `axes._base._AxesBase.draw`
+ # but must be called before any of the artist are drawn as
+ # it adjusts the view limits and the size of the bounding box
+ # of the axes
+ locator = self.get_axes_locator()
+ if locator:
+ pos = locator(self, renderer)
+ self.apply_aspect(pos)
+ else:
+ self.apply_aspect()
+
+ # add the projection matrix to the renderer
+ self.M = self.get_proj()
+ renderer.M = self.M
+ renderer.vvec = self.vvec
+ renderer.eye = self.eye
+ renderer.get_axis_position = self.get_axis_position
+
+ # Calculate projection of collections and zorder them
+ for i, col in enumerate(
+ sorted(self.collections,
+ key=lambda col: col.do_3d_projection(renderer),
+ reverse=True)):
+ col.zorder = i
+
+ # Calculate projection of patches and zorder them
+ for i, patch in enumerate(
+ sorted(self.patches,
+ key=lambda patch: patch.do_3d_projection(renderer),
+ reverse=True)):
+ patch.zorder = i
+
+ if self._axis3don:
+ axes = (self.xaxis, self.yaxis, self.zaxis)
+ # Draw panes first
+ for ax in axes:
+ ax.draw_pane(renderer)
+ # Then axes
+ for ax in axes:
+ ax.draw(renderer)
+
+ # Then rest
+ super(Axes3D, self).draw(renderer)
+
+ def get_axis_position(self):
+ vals = self.get_w_lims()
+ tc = self.tunit_cube(vals, self.M)
+ xhigh = tc[1][2] > tc[2][2]
+ yhigh = tc[3][2] > tc[2][2]
+ zhigh = tc[0][2] > tc[2][2]
+ return xhigh, yhigh, zhigh
+
+ def _on_units_changed(self, scalex=False, scaley=False, scalez=False):
+ """
+ Callback for processing changes to axis units.
+
+ Currently forces updates of data limits and view limits.
+ """
+ self.relim()
+ self.autoscale_view(scalex=scalex, scaley=scaley, scalez=scalez)
+
+ def update_datalim(self, xys, **kwargs):
+ pass
+
+ def get_autoscale_on(self):
+ """
+ Get whether autoscaling is applied for all axes on plot commands
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ return super(Axes3D, self).get_autoscale_on() and self.get_autoscalez_on()
+
+ def get_autoscalez_on(self):
+ """
+ Get whether autoscaling for the z-axis is applied on plot commands
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ return self._autoscaleZon
+
+ def set_autoscale_on(self, b):
+ """
+ Set whether autoscaling is applied on plot commands
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+
+ Parameters
+ ----------
+ b : bool
+ .. ACCEPTS: bool
+ """
+ super(Axes3D, self).set_autoscale_on(b)
+ self.set_autoscalez_on(b)
+
+ def set_autoscalez_on(self, b):
+ """
+ Set whether autoscaling for the z-axis is applied on plot commands
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+
+ Parameters
+ ----------
+ b : bool
+ .. ACCEPTS: bool
+ """
+ self._autoscaleZon = b
+
+ def set_zmargin(self, m):
+ """
+ Set padding of Z data limits prior to autoscaling.
+
+ *m* times the data interval will be added to each
+ end of that interval before it is used in autoscaling.
+
+ accepts: float in range 0 to 1
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ if m < 0 or m > 1 :
+ raise ValueError("margin must be in range 0 to 1")
+ self._zmargin = m
+ self.stale = True
+
+ def margins(self, *args, **kw):
+ """
+ Convenience method to set or retrieve autoscaling margins.
+
+ signatures::
+ margins()
+
+ returns xmargin, ymargin, zmargin
+
+ ::
+
+ margins(margin)
+
+ margins(xmargin, ymargin, zmargin)
+
+ margins(x=xmargin, y=ymargin, z=zmargin)
+
+ margins(..., tight=False)
+
+ All forms above set the xmargin, ymargin and zmargin
+ parameters. All keyword parameters are optional. A single argument
+ specifies xmargin, ymargin and zmargin. The *tight* parameter
+ is passed to :meth:`autoscale_view`, which is executed after
+ a margin is changed; the default here is *True*, on the
+ assumption that when margins are specified, no additional
+ padding to match tick marks is usually desired. Setting
+ *tight* to *None* will preserve the previous setting.
+
+ Specifying any margin changes only the autoscaling; for example,
+ if *xmargin* is not None, then *xmargin* times the X data
+ interval will be added to each end of that interval before
+ it is used in autoscaling.
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ if not args and not kw:
+ return self._xmargin, self._ymargin, self._zmargin
+
+ tight = kw.pop('tight', True)
+ mx = kw.pop('x', None)
+ my = kw.pop('y', None)
+ mz = kw.pop('z', None)
+ if not args:
+ pass
+ elif len(args) == 1:
+ mx = my = mz = args[0]
+ elif len(args) == 2:
+ warnings.warn(
+ "Passing exactly two positional arguments to Axes3D.margins "
+ "is deprecated. If needed, pass them as keyword arguments "
+ "instead", cbook.mplDeprecation)
+ mx, my = args
+ elif len(args) == 3:
+ mx, my, mz = args
+ else:
+ raise ValueError(
+ "Axes3D.margins takes at most three positional arguments")
+ if mx is not None:
+ self.set_xmargin(mx)
+ if my is not None:
+ self.set_ymargin(my)
+ if mz is not None:
+ self.set_zmargin(mz)
+
+ scalex = mx is not None
+ scaley = my is not None
+ scalez = mz is not None
+
+ self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley,
+ scalez=scalez)
+
+ def autoscale(self, enable=True, axis='both', tight=None):
+ """
+ Convenience method for simple axis view autoscaling.
+ See :meth:`matplotlib.axes.Axes.autoscale` for full explanation.
+ Note that this function behaves the same, but for all
+ three axes. Therefore, 'z' can be passed for *axis*,
+ and 'both' applies to all three axes.
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ if enable is None:
+ scalex = True
+ scaley = True
+ scalez = True
+ else:
+ if axis in ['x', 'both']:
+ self._autoscaleXon = scalex = bool(enable)
+ else:
+ scalex = False
+ if axis in ['y', 'both']:
+ self._autoscaleYon = scaley = bool(enable)
+ else:
+ scaley = False
+ if axis in ['z', 'both']:
+ self._autoscaleZon = scalez = bool(enable)
+ else:
+ scalez = False
+ self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley,
+ scalez=scalez)
+
+ def auto_scale_xyz(self, X, Y, Z=None, had_data=None):
+ x, y, z = map(np.asarray, (X, Y, Z))
+ try:
+ x, y = x.flatten(), y.flatten()
+ if Z is not None:
+ z = z.flatten()
+ except AttributeError:
+ raise
+
+ # This updates the bounding boxes as to keep a record as
+ # to what the minimum sized rectangular volume holds the
+ # data.
+ self.xy_dataLim.update_from_data_xy(np.array([x, y]).T, not had_data)
+ if z is not None:
+ self.zz_dataLim.update_from_data_xy(np.array([z, z]).T, not had_data)
+
+ # Let autoscale_view figure out how to use this data.
+ self.autoscale_view()
+
+ def autoscale_view(self, tight=None, scalex=True, scaley=True,
+ scalez=True):
+ """
+ Autoscale the view limits using the data limits.
+ See :meth:`matplotlib.axes.Axes.autoscale_view` for documentation.
+ Note that this function applies to the 3D axes, and as such
+ adds the *scalez* to the function arguments.
+
+ .. versionchanged :: 1.1.0
+ Function signature was changed to better match the 2D version.
+ *tight* is now explicitly a kwarg and placed first.
+
+ .. versionchanged :: 1.2.1
+ This is now fully functional.
+
+ """
+ if not self._ready:
+ return
+
+ # This method looks at the rectangular volume (see above)
+ # of data and decides how to scale the view portal to fit it.
+ if tight is None:
+ # if image data only just use the datalim
+ _tight = self._tight or (len(self.images)>0 and
+ len(self.lines)==0 and
+ len(self.patches)==0)
+ else:
+ _tight = self._tight = bool(tight)
+
+ if scalex and self._autoscaleXon:
+ xshared = self._shared_x_axes.get_siblings(self)
+ dl = [ax.dataLim for ax in xshared]
+ bb = mtransforms.BboxBase.union(dl)
+ x0, x1 = self.xy_dataLim.intervalx
+ xlocator = self.xaxis.get_major_locator()
+ try:
+ x0, x1 = xlocator.nonsingular(x0, x1)
+ except AttributeError:
+ x0, x1 = mtransforms.nonsingular(x0, x1, increasing=False,
+ expander=0.05)
+ if self._xmargin > 0:
+ delta = (x1 - x0) * self._xmargin
+ x0 -= delta
+ x1 += delta
+ if not _tight:
+ x0, x1 = xlocator.view_limits(x0, x1)
+ self.set_xbound(x0, x1)
+
+ if scaley and self._autoscaleYon:
+ yshared = self._shared_y_axes.get_siblings(self)
+ dl = [ax.dataLim for ax in yshared]
+ bb = mtransforms.BboxBase.union(dl)
+ y0, y1 = self.xy_dataLim.intervaly
+ ylocator = self.yaxis.get_major_locator()
+ try:
+ y0, y1 = ylocator.nonsingular(y0, y1)
+ except AttributeError:
+ y0, y1 = mtransforms.nonsingular(y0, y1, increasing=False,
+ expander=0.05)
+ if self._ymargin > 0:
+ delta = (y1 - y0) * self._ymargin
+ y0 -= delta
+ y1 += delta
+ if not _tight:
+ y0, y1 = ylocator.view_limits(y0, y1)
+ self.set_ybound(y0, y1)
+
+ if scalez and self._autoscaleZon:
+ zshared = self._shared_z_axes.get_siblings(self)
+ dl = [ax.dataLim for ax in zshared]
+ bb = mtransforms.BboxBase.union(dl)
+ z0, z1 = self.zz_dataLim.intervalx
+ zlocator = self.zaxis.get_major_locator()
+ try:
+ z0, z1 = zlocator.nonsingular(z0, z1)
+ except AttributeError:
+ z0, z1 = mtransforms.nonsingular(z0, z1, increasing=False,
+ expander=0.05)
+ if self._zmargin > 0:
+ delta = (z1 - z0) * self._zmargin
+ z0 -= delta
+ z1 += delta
+ if not _tight:
+ z0, z1 = zlocator.view_limits(z0, z1)
+ self.set_zbound(z0, z1)
+
+ def get_w_lims(self):
+ '''Get 3D world limits.'''
+ minx, maxx = self.get_xlim3d()
+ miny, maxy = self.get_ylim3d()
+ minz, maxz = self.get_zlim3d()
+ return minx, maxx, miny, maxy, minz, maxz
+
+ def _determine_lims(self, xmin=None, xmax=None, *args, **kwargs):
+ if xmax is None and cbook.iterable(xmin):
+ xmin, xmax = xmin
+ if xmin == xmax:
+ xmin -= 0.05
+ xmax += 0.05
+ return (xmin, xmax)
+
+ def set_xlim3d(self, left=None, right=None, emit=True, auto=False, **kw):
+ """
+ Set 3D x limits.
+
+ See :meth:`matplotlib.axes.Axes.set_xlim` for full documentation.
+
+ """
+ if 'xmin' in kw:
+ left = kw.pop('xmin')
+ if 'xmax' in kw:
+ right = kw.pop('xmax')
+ if kw:
+ raise ValueError("unrecognized kwargs: %s" % list(kw))
+
+ if right is None and cbook.iterable(left):
+ left, right = left
+
+ self._process_unit_info(xdata=(left, right))
+ left = self._validate_converted_limits(left, self.convert_xunits)
+ right = self._validate_converted_limits(right, self.convert_xunits)
+
+ old_left, old_right = self.get_xlim()
+ if left is None:
+ left = old_left
+ if right is None:
+ right = old_right
+
+ if left == right:
+ warnings.warn(('Attempting to set identical left==right results\n'
+ 'in singular transformations; automatically expanding.\n'
+ 'left=%s, right=%s') % (left, right))
+ left, right = mtransforms.nonsingular(left, right, increasing=False)
+ left, right = self.xaxis.limit_range_for_scale(left, right)
+ self.xy_viewLim.intervalx = (left, right)
+
+ if auto is not None:
+ self._autoscaleXon = bool(auto)
+
+ if emit:
+ self.callbacks.process('xlim_changed', self)
+ # Call all of the other x-axes that are shared with this one
+ for other in self._shared_x_axes.get_siblings(self):
+ if other is not self:
+ other.set_xlim(self.xy_viewLim.intervalx,
+ emit=False, auto=auto)
+ if (other.figure != self.figure and
+ other.figure.canvas is not None):
+ other.figure.canvas.draw_idle()
+ self.stale = True
+ return left, right
+ set_xlim = set_xlim3d
+
+ def set_ylim3d(self, bottom=None, top=None, emit=True, auto=False, **kw):
+ """
+ Set 3D y limits.
+
+ See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation.
+
+ """
+ if 'ymin' in kw:
+ bottom = kw.pop('ymin')
+ if 'ymax' in kw:
+ top = kw.pop('ymax')
+ if kw:
+ raise ValueError("unrecognized kwargs: %s" % list(kw))
+
+ if top is None and cbook.iterable(bottom):
+ bottom, top = bottom
+
+ self._process_unit_info(ydata=(bottom, top))
+ bottom = self._validate_converted_limits(bottom, self.convert_yunits)
+ top = self._validate_converted_limits(top, self.convert_yunits)
+
+ old_bottom, old_top = self.get_ylim()
+ if bottom is None:
+ bottom = old_bottom
+ if top is None:
+ top = old_top
+
+ if top == bottom:
+ warnings.warn(('Attempting to set identical bottom==top results\n'
+ 'in singular transformations; automatically expanding.\n'
+ 'bottom=%s, top=%s') % (bottom, top))
+ bottom, top = mtransforms.nonsingular(bottom, top, increasing=False)
+ bottom, top = self.yaxis.limit_range_for_scale(bottom, top)
+ self.xy_viewLim.intervaly = (bottom, top)
+
+ if auto is not None:
+ self._autoscaleYon = bool(auto)
+
+ if emit:
+ self.callbacks.process('ylim_changed', self)
+ # Call all of the other y-axes that are shared with this one
+ for other in self._shared_y_axes.get_siblings(self):
+ if other is not self:
+ other.set_ylim(self.xy_viewLim.intervaly,
+ emit=False, auto=auto)
+ if (other.figure != self.figure and
+ other.figure.canvas is not None):
+ other.figure.canvas.draw_idle()
+ self.stale = True
+ return bottom, top
+ set_ylim = set_ylim3d
+
+ def set_zlim3d(self, bottom=None, top=None, emit=True, auto=False, **kw):
+ """
+ Set 3D z limits.
+
+ See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation
+
+ """
+ if 'zmin' in kw:
+ bottom = kw.pop('zmin')
+ if 'zmax' in kw:
+ top = kw.pop('zmax')
+ if kw:
+ raise ValueError("unrecognized kwargs: %s" % list(kw))
+
+ if top is None and cbook.iterable(bottom):
+ bottom, top = bottom
+
+ self._process_unit_info(zdata=(bottom, top))
+ bottom = self._validate_converted_limits(bottom, self.convert_zunits)
+ top = self._validate_converted_limits(top, self.convert_zunits)
+
+ old_bottom, old_top = self.get_zlim()
+ if bottom is None:
+ bottom = old_bottom
+ if top is None:
+ top = old_top
+
+ if top == bottom:
+ warnings.warn(('Attempting to set identical bottom==top results\n'
+ 'in singular transformations; automatically expanding.\n'
+ 'bottom=%s, top=%s') % (bottom, top))
+ bottom, top = mtransforms.nonsingular(bottom, top, increasing=False)
+ bottom, top = self.zaxis.limit_range_for_scale(bottom, top)
+ self.zz_viewLim.intervalx = (bottom, top)
+
+ if auto is not None:
+ self._autoscaleZon = bool(auto)
+
+ if emit:
+ self.callbacks.process('zlim_changed', self)
+ # Call all of the other y-axes that are shared with this one
+ for other in self._shared_z_axes.get_siblings(self):
+ if other is not self:
+ other.set_zlim(self.zz_viewLim.intervalx,
+ emit=False, auto=auto)
+ if (other.figure != self.figure and
+ other.figure.canvas is not None):
+ other.figure.canvas.draw_idle()
+ self.stale = True
+ return bottom, top
+ set_zlim = set_zlim3d
+
+ def get_xlim3d(self):
+ return tuple(self.xy_viewLim.intervalx)
+ get_xlim3d.__doc__ = maxes.Axes.get_xlim.__doc__
+ get_xlim = get_xlim3d
+ if get_xlim.__doc__ is not None:
+ get_xlim.__doc__ += """
+ .. versionchanged :: 1.1.0
+ This function now correctly refers to the 3D x-limits
+ """
+
+ def get_ylim3d(self):
+ return tuple(self.xy_viewLim.intervaly)
+ get_ylim3d.__doc__ = maxes.Axes.get_ylim.__doc__
+ get_ylim = get_ylim3d
+ if get_ylim.__doc__ is not None:
+ get_ylim.__doc__ += """
+ .. versionchanged :: 1.1.0
+ This function now correctly refers to the 3D y-limits.
+ """
+
+ def get_zlim3d(self):
+ '''Get 3D z limits.'''
+ return tuple(self.zz_viewLim.intervalx)
+ get_zlim = get_zlim3d
+
+ def get_zscale(self):
+ """
+ Return the zaxis scale string %s
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """ % (", ".join(mscale.get_scale_names()))
+ return self.zaxis.get_scale()
+
+ # We need to slightly redefine these to pass scalez=False
+ # to their calls of autoscale_view.
+ def set_xscale(self, value, **kwargs):
+ self.xaxis._set_scale(value, **kwargs)
+ self.autoscale_view(scaley=False, scalez=False)
+ self._update_transScale()
+ if maxes.Axes.set_xscale.__doc__ is not None:
+ set_xscale.__doc__ = maxes.Axes.set_xscale.__doc__ + """
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+
+ def set_yscale(self, value, **kwargs):
+ self.yaxis._set_scale(value, **kwargs)
+ self.autoscale_view(scalex=False, scalez=False)
+ self._update_transScale()
+ self.stale = True
+ if maxes.Axes.set_yscale.__doc__ is not None:
+ set_yscale.__doc__ = maxes.Axes.set_yscale.__doc__ + """
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+
+ @docstring.dedent_interpd
+ def set_zscale(self, value, **kwargs):
+ """
+ Set the scaling of the z-axis: %(scale)s
+
+ ACCEPTS: [%(scale)s]
+
+ Different kwargs are accepted, depending on the scale:
+ %(scale_docs)s
+
+ .. note ::
+ Currently, Axes3D objects only supports linear scales.
+ Other scales may or may not work, and support for these
+ is improving with each release.
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ self.zaxis._set_scale(value, **kwargs)
+ self.autoscale_view(scalex=False, scaley=False)
+ self._update_transScale()
+ self.stale = True
+
+ def set_zticks(self, *args, **kwargs):
+ """
+ Set z-axis tick locations.
+ See :meth:`matplotlib.axes.Axes.set_yticks` for more details.
+
+ .. note::
+ Minor ticks are not supported.
+
+ .. versionadded:: 1.1.0
+ """
+ return self.zaxis.set_ticks(*args, **kwargs)
+
+ def get_zticks(self, minor=False):
+ """
+ Return the z ticks as a list of locations
+ See :meth:`matplotlib.axes.Axes.get_yticks` for more details.
+
+ .. note::
+ Minor ticks are not supported.
+
+ .. versionadded:: 1.1.0
+ """
+ return self.zaxis.get_ticklocs(minor=minor)
+
+ def get_zmajorticklabels(self):
+ """
+ Get the ztick labels as a list of Text instances
+
+ .. versionadded :: 1.1.0
+ """
+ return cbook.silent_list('Text zticklabel',
+ self.zaxis.get_majorticklabels())
+
+ def get_zminorticklabels(self):
+ """
+ Get the ztick labels as a list of Text instances
+
+ .. note::
+ Minor ticks are not supported. This function was added
+ only for completeness.
+
+ .. versionadded :: 1.1.0
+ """
+ return cbook.silent_list('Text zticklabel',
+ self.zaxis.get_minorticklabels())
+
+ def set_zticklabels(self, *args, **kwargs):
+ """
+ Set z-axis tick labels.
+ See :meth:`matplotlib.axes.Axes.set_yticklabels` for more details.
+
+ .. note::
+ Minor ticks are not supported by Axes3D objects.
+
+ .. versionadded:: 1.1.0
+ """
+ return self.zaxis.set_ticklabels(*args, **kwargs)
+
+ def get_zticklabels(self, minor=False):
+ """
+ Get ztick labels as a list of Text instances.
+ See :meth:`matplotlib.axes.Axes.get_yticklabels` for more details.
+
+ .. note::
+ Minor ticks are not supported.
+
+ .. versionadded:: 1.1.0
+ """
+ return cbook.silent_list('Text zticklabel',
+ self.zaxis.get_ticklabels(minor=minor))
+
+ def zaxis_date(self, tz=None):
+ """
+ Sets up z-axis ticks and labels that treat the z data as dates.
+
+ *tz* is a timezone string or :class:`tzinfo` instance.
+ Defaults to rc value.
+
+ .. note::
+ This function is merely provided for completeness.
+ Axes3D objects do not officially support dates for ticks,
+ and so this may or may not work as expected.
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ self.zaxis.axis_date(tz)
+
+ def get_zticklines(self):
+ """
+ Get ztick lines as a list of Line2D instances.
+ Note that this function is provided merely for completeness.
+ These lines are re-calculated as the display changes.
+
+ .. versionadded:: 1.1.0
+ """
+ return self.zaxis.get_ticklines()
+
+ def clabel(self, *args, **kwargs):
+ """
+ This function is currently not implemented for 3D axes.
+ Returns *None*.
+ """
+ return None
+
+ def view_init(self, elev=None, azim=None):
+ """
+ Set the elevation and azimuth of the axes.
+
+ This can be used to rotate the axes programmatically.
+
+ 'elev' stores the elevation angle in the z plane.
+ 'azim' stores the azimuth angle in the x,y plane.
+
+ if elev or azim are None (default), then the initial value
+ is used which was specified in the :class:`Axes3D` constructor.
+ """
+
+ self.dist = 10
+
+ if elev is None:
+ self.elev = self.initial_elev
+ else:
+ self.elev = elev
+
+ if azim is None:
+ self.azim = self.initial_azim
+ else:
+ self.azim = azim
+
+ def set_proj_type(self, proj_type):
+ """
+ Set the projection type.
+
+ Parameters
+ ----------
+ proj_type : str
+ Type of projection, accepts 'persp' and 'ortho'.
+
+ """
+ if proj_type == 'persp':
+ self._projection = proj3d.persp_transformation
+ elif proj_type == 'ortho':
+ self._projection = proj3d.ortho_transformation
+ else:
+ raise ValueError("unrecognized projection: %s" % proj_type)
+
+ def get_proj(self):
+ """
+ Create the projection matrix from the current viewing position.
+
+ elev stores the elevation angle in the z plane
+ azim stores the azimuth angle in the x,y plane
+
+ dist is the distance of the eye viewing point from the object
+ point.
+
+ """
+ relev, razim = np.pi * self.elev/180, np.pi * self.azim/180
+
+ xmin, xmax = self.get_xlim3d()
+ ymin, ymax = self.get_ylim3d()
+ zmin, zmax = self.get_zlim3d()
+
+ # transform to uniform world coordinates 0-1.0,0-1.0,0-1.0
+ worldM = proj3d.world_transformation(xmin, xmax,
+ ymin, ymax,
+ zmin, zmax)
+
+ # look into the middle of the new coordinates
+ R = np.array([0.5, 0.5, 0.5])
+
+ xp = R[0] + np.cos(razim) * np.cos(relev) * self.dist
+ yp = R[1] + np.sin(razim) * np.cos(relev) * self.dist
+ zp = R[2] + np.sin(relev) * self.dist
+ E = np.array((xp, yp, zp))
+
+ self.eye = E
+ self.vvec = R - E
+ self.vvec = self.vvec / proj3d.mod(self.vvec)
+
+ if abs(relev) > np.pi/2:
+ # upside down
+ V = np.array((0, 0, -1))
+ else:
+ V = np.array((0, 0, 1))
+ zfront, zback = -self.dist, self.dist
+
+ viewM = proj3d.view_transformation(E, R, V)
+ projM = self._projection(zfront, zback)
+ M0 = np.dot(viewM, worldM)
+ M = np.dot(projM, M0)
+ return M
+
+ def mouse_init(self, rotate_btn=1, zoom_btn=3):
+ """Initializes mouse button callbacks to enable 3D rotation of
+ the axes. Also optionally sets the mouse buttons for 3D rotation
+ and zooming.
+
+ ============ =======================================================
+ Argument Description
+ ============ =======================================================
+ *rotate_btn* The integer or list of integers specifying which mouse
+ button or buttons to use for 3D rotation of the axes.
+ Default = 1.
+
+ *zoom_btn* The integer or list of integers specifying which mouse
+ button or buttons to use to zoom the 3D axes.
+ Default = 3.
+ ============ =======================================================
+
+ """
+ self.button_pressed = None
+ canv = self.figure.canvas
+ if canv is not None:
+ c1 = canv.mpl_connect('motion_notify_event', self._on_move)
+ c2 = canv.mpl_connect('button_press_event', self._button_press)
+ c3 = canv.mpl_connect('button_release_event', self._button_release)
+ self._cids = [c1, c2, c3]
+ else:
+ warnings.warn(
+ "Axes3D.figure.canvas is 'None', mouse rotation disabled. "
+ "Set canvas then call Axes3D.mouse_init().")
+
+ # coerce scalars into array-like, then convert into
+ # a regular list to avoid comparisons against None
+ # which breaks in recent versions of numpy.
+ self._rotate_btn = np.atleast_1d(rotate_btn).tolist()
+ self._zoom_btn = np.atleast_1d(zoom_btn).tolist()
+
+ def can_zoom(self):
+ """
+ Return *True* if this axes supports the zoom box button functionality.
+
+ 3D axes objects do not use the zoom box button.
+ """
+ return False
+
+ def can_pan(self):
+ """
+ Return *True* if this axes supports the pan/zoom button functionality.
+
+ 3D axes objects do not use the pan/zoom button.
+ """
+ return False
+
+ def cla(self):
+ """
+ Clear axes
+ """
+ # Disabling mouse interaction might have been needed a long
+ # time ago, but I can't find a reason for it now - BVR (2012-03)
+ #self.disable_mouse_rotation()
+ super(Axes3D, self).cla()
+ self.zaxis.cla()
+
+ if self._sharez is not None:
+ self.zaxis.major = self._sharez.zaxis.major
+ self.zaxis.minor = self._sharez.zaxis.minor
+ z0, z1 = self._sharez.get_zlim()
+ self.set_zlim(z0, z1, emit=False, auto=None)
+ self.zaxis._set_scale(self._sharez.zaxis.get_scale())
+ else:
+ self.zaxis._set_scale('linear')
+ try:
+ self.set_zlim(0, 1)
+ except TypeError:
+ pass
+
+ self._autoscaleZon = True
+ self._zmargin = 0
+
+ self.grid(rcParams['axes3d.grid'])
+
+ def disable_mouse_rotation(self):
+ """Disable mouse button callbacks.
+ """
+ # Disconnect the various events we set.
+ for cid in self._cids:
+ self.figure.canvas.mpl_disconnect(cid)
+
+ self._cids = []
+
+ def _button_press(self, event):
+ if event.inaxes == self:
+ self.button_pressed = event.button
+ self.sx, self.sy = event.xdata, event.ydata
+
+ def _button_release(self, event):
+ self.button_pressed = None
+
+ def format_zdata(self, z):
+ """
+ Return *z* string formatted. This function will use the
+ :attr:`fmt_zdata` attribute if it is callable, else will fall
+ back on the zaxis major formatter
+ """
+ try: return self.fmt_zdata(z)
+ except (AttributeError, TypeError):
+ func = self.zaxis.get_major_formatter().format_data_short
+ val = func(z)
+ return val
+
+ def format_coord(self, xd, yd):
+ """
+ Given the 2D view coordinates attempt to guess a 3D coordinate.
+ Looks for the nearest edge to the point and then assumes that
+ the point is at the same z location as the nearest point on the edge.
+ """
+
+ if self.M is None:
+ return ''
+
+ if self.button_pressed in self._rotate_btn:
+ return 'azimuth=%d deg, elevation=%d deg ' % (self.azim, self.elev)
+ # ignore xd and yd and display angles instead
+
+ # nearest edge
+ p0, p1 = min(self.tunit_edges(),
+ key=lambda edge: proj3d.line2d_seg_dist(
+ edge[0], edge[1], (xd, yd)))
+
+ # scale the z value to match
+ x0, y0, z0 = p0
+ x1, y1, z1 = p1
+ d0 = np.hypot(x0-xd, y0-yd)
+ d1 = np.hypot(x1-xd, y1-yd)
+ dt = d0+d1
+ z = d1/dt * z0 + d0/dt * z1
+
+ x, y, z = proj3d.inv_transform(xd, yd, z, self.M)
+
+ xs = self.format_xdata(x)
+ ys = self.format_ydata(y)
+ zs = self.format_zdata(z)
+ return 'x=%s, y=%s, z=%s' % (xs, ys, zs)
+
+ def _on_move(self, event):
+ """Mouse moving
+
+ button-1 rotates by default. Can be set explicitly in mouse_init().
+ button-3 zooms by default. Can be set explicitly in mouse_init().
+ """
+
+ if not self.button_pressed:
+ return
+
+ if self.M is None:
+ return
+
+ x, y = event.xdata, event.ydata
+ # In case the mouse is out of bounds.
+ if x is None:
+ return
+
+ dx, dy = x - self.sx, y - self.sy
+ w = self._pseudo_w
+ h = self._pseudo_h
+ self.sx, self.sy = x, y
+
+ # Rotation
+ if self.button_pressed in self._rotate_btn:
+ # rotate viewing point
+ # get the x and y pixel coords
+ if dx == 0 and dy == 0:
+ return
+ self.elev = art3d.norm_angle(self.elev - (dy/h)*180)
+ self.azim = art3d.norm_angle(self.azim - (dx/w)*180)
+ self.get_proj()
+ self.stale = True
+ self.figure.canvas.draw_idle()
+
+# elif self.button_pressed == 2:
+ # pan view
+ # project xv,yv,zv -> xw,yw,zw
+ # pan
+# pass
+
+ # Zoom
+ elif self.button_pressed in self._zoom_btn:
+ # zoom view
+ # hmmm..this needs some help from clipping....
+ minx, maxx, miny, maxy, minz, maxz = self.get_w_lims()
+ df = 1-((h - dy)/h)
+ dx = (maxx-minx)*df
+ dy = (maxy-miny)*df
+ dz = (maxz-minz)*df
+ self.set_xlim3d(minx - dx, maxx + dx)
+ self.set_ylim3d(miny - dy, maxy + dy)
+ self.set_zlim3d(minz - dz, maxz + dz)
+ self.get_proj()
+ self.figure.canvas.draw_idle()
+
+ def set_zlabel(self, zlabel, fontdict=None, labelpad=None, **kwargs):
+ '''
+ Set zlabel. See doc for :meth:`set_ylabel` for description.
+
+ '''
+ if labelpad is not None : self.zaxis.labelpad = labelpad
+ return self.zaxis.set_label_text(zlabel, fontdict, **kwargs)
+
+ def get_zlabel(self):
+ """
+ Get the z-label text string.
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ label = self.zaxis.get_label()
+ return label.get_text()
+
+ #### Axes rectangle characteristics
+
+ def get_frame_on(self):
+ """
+ Get whether the 3D axes panels are drawn.
+
+ .. versionadded :: 1.1.0
+ """
+ return self._frameon
+
+ def set_frame_on(self, b):
+ """
+ Set whether the 3D axes panels are drawn.
+
+ .. versionadded :: 1.1.0
+
+ Parameters
+ ----------
+ b : bool
+ .. ACCEPTS: bool
+ """
+ self._frameon = bool(b)
+ self.stale = True
+
+ def get_axisbelow(self):
+ """
+ Get whether axis below is true or not.
+
+ For axes3d objects, this will always be *True*
+
+ .. versionadded :: 1.1.0
+ This function was added for completeness.
+ """
+ return True
+
+ def set_axisbelow(self, b):
+ """
+ Set whether axis ticks and gridlines are above or below most artists.
+
+ For axes3d objects, this will ignore any settings and just use *True*
+
+ .. versionadded :: 1.1.0
+ This function was added for completeness.
+
+ Parameters
+ ----------
+ b : bool
+ .. ACCEPTS: bool
+ """
+ self._axisbelow = True
+ self.stale = True
+
+ def grid(self, b=True, **kwargs):
+ '''
+ Set / unset 3D grid.
+
+ .. note::
+
+ Currently, this function does not behave the same as
+ :meth:`matplotlib.axes.Axes.grid`, but it is intended to
+ eventually support that behavior.
+
+ .. versionchanged :: 1.1.0
+ This function was changed, but not tested. Please report any bugs.
+ '''
+ # TODO: Operate on each axes separately
+ if len(kwargs):
+ b = True
+ self._draw_grid = cbook._string_to_bool(b)
+ self.stale = True
+
+ def ticklabel_format(self, **kwargs):
+ """
+ Convenience method for manipulating the ScalarFormatter
+ used by default for linear axes in Axed3D objects.
+
+ See :meth:`matplotlib.axes.Axes.ticklabel_format` for full
+ documentation. Note that this version applies to all three
+ axes of the Axes3D object. Therefore, the *axis* argument
+ will also accept a value of 'z' and the value of 'both' will
+ apply to all three axes.
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ style = kwargs.pop('style', '').lower()
+ scilimits = kwargs.pop('scilimits', None)
+ useOffset = kwargs.pop('useOffset', None)
+ axis = kwargs.pop('axis', 'both').lower()
+ if scilimits is not None:
+ try:
+ m, n = scilimits
+ m+n+1 # check that both are numbers
+ except (ValueError, TypeError):
+ raise ValueError("scilimits must be a sequence of 2 integers")
+ if style[:3] == 'sci':
+ sb = True
+ elif style in ['plain', 'comma']:
+ sb = False
+ if style == 'plain':
+ cb = False
+ else:
+ cb = True
+ raise NotImplementedError("comma style remains to be added")
+ elif style == '':
+ sb = None
+ else:
+ raise ValueError("%s is not a valid style value")
+ try:
+ if sb is not None:
+ if axis in ['both', 'z']:
+ self.xaxis.major.formatter.set_scientific(sb)
+ if axis in ['both', 'y']:
+ self.yaxis.major.formatter.set_scientific(sb)
+ if axis in ['both', 'z'] :
+ self.zaxis.major.formatter.set_scientific(sb)
+ if scilimits is not None:
+ if axis in ['both', 'x']:
+ self.xaxis.major.formatter.set_powerlimits(scilimits)
+ if axis in ['both', 'y']:
+ self.yaxis.major.formatter.set_powerlimits(scilimits)
+ if axis in ['both', 'z']:
+ self.zaxis.major.formatter.set_powerlimits(scilimits)
+ if useOffset is not None:
+ if axis in ['both', 'x']:
+ self.xaxis.major.formatter.set_useOffset(useOffset)
+ if axis in ['both', 'y']:
+ self.yaxis.major.formatter.set_useOffset(useOffset)
+ if axis in ['both', 'z']:
+ self.zaxis.major.formatter.set_useOffset(useOffset)
+ except AttributeError:
+ raise AttributeError(
+ "This method only works with the ScalarFormatter.")
+
+ def locator_params(self, axis='both', tight=None, **kwargs):
+ """
+ Convenience method for controlling tick locators.
+
+ See :meth:`matplotlib.axes.Axes.locator_params` for full
+ documentation Note that this is for Axes3D objects,
+ therefore, setting *axis* to 'both' will result in the
+ parameters being set for all three axes. Also, *axis*
+ can also take a value of 'z' to apply parameters to the
+ z axis.
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ _x = axis in ['x', 'both']
+ _y = axis in ['y', 'both']
+ _z = axis in ['z', 'both']
+ if _x:
+ self.xaxis.get_major_locator().set_params(**kwargs)
+ if _y:
+ self.yaxis.get_major_locator().set_params(**kwargs)
+ if _z:
+ self.zaxis.get_major_locator().set_params(**kwargs)
+ self.autoscale_view(tight=tight, scalex=_x, scaley=_y, scalez=_z)
+
+ def tick_params(self, axis='both', **kwargs):
+ """
+ Convenience method for changing the appearance of ticks and
+ tick labels.
+
+ See :meth:`matplotlib.axes.Axes.tick_params` for more complete
+ documentation.
+
+ The only difference is that setting *axis* to 'both' will
+ mean that the settings are applied to all three axes. Also,
+ the *axis* parameter also accepts a value of 'z', which
+ would mean to apply to only the z-axis.
+
+ Also, because of how Axes3D objects are drawn very differently
+ from regular 2D axes, some of these settings may have
+ ambiguous meaning. For simplicity, the 'z' axis will
+ accept settings as if it was like the 'y' axis.
+
+ .. note::
+ While this function is currently implemented, the core part
+ of the Axes3D object may ignore some of these settings.
+ Future releases will fix this. Priority will be given to
+ those who file bugs.
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ super(Axes3D, self).tick_params(axis, **kwargs)
+ if axis in ['z', 'both'] :
+ zkw = dict(kwargs)
+ zkw.pop('top', None)
+ zkw.pop('bottom', None)
+ zkw.pop('labeltop', None)
+ zkw.pop('labelbottom', None)
+ self.zaxis.set_tick_params(**zkw)
+
+ ### data limits, ticks, tick labels, and formatting
+
+ def invert_zaxis(self):
+ """
+ Invert the z-axis.
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ bottom, top = self.get_zlim()
+ self.set_zlim(top, bottom, auto=None)
+
+ def zaxis_inverted(self):
+ '''
+ Returns True if the z-axis is inverted.
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ '''
+ bottom, top = self.get_zlim()
+ return top < bottom
+
+ def get_zbound(self):
+ """
+ Returns the z-axis numerical bounds where::
+
+ lowerBound < upperBound
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ bottom, top = self.get_zlim()
+ if bottom < top:
+ return bottom, top
+ else:
+ return top, bottom
+
+ def set_zbound(self, lower=None, upper=None):
+ """
+ Set the lower and upper numerical bounds of the z-axis.
+ This method will honor axes inversion regardless of parameter order.
+ It will not change the :attr:`_autoscaleZon` attribute.
+
+ .. versionadded :: 1.1.0
+ This function was added, but not tested. Please report any bugs.
+ """
+ if upper is None and cbook.iterable(lower):
+ lower,upper = lower
+
+ old_lower,old_upper = self.get_zbound()
+
+ if lower is None: lower = old_lower
+ if upper is None: upper = old_upper
+
+ if self.zaxis_inverted():
+ if lower < upper:
+ self.set_zlim(upper, lower, auto=None)
+ else:
+ self.set_zlim(lower, upper, auto=None)
+ else :
+ if lower < upper:
+ self.set_zlim(lower, upper, auto=None)
+ else :
+ self.set_zlim(upper, lower, auto=None)
+
+ def text(self, x, y, z, s, zdir=None, **kwargs):
+ '''
+ Add text to the plot. kwargs will be passed on to Axes.text,
+ except for the `zdir` keyword, which sets the direction to be
+ used as the z direction.
+ '''
+ text = super(Axes3D, self).text(x, y, s, **kwargs)
+ art3d.text_2d_to_3d(text, z, zdir)
+ return text
+
+ text3D = text
+ text2D = Axes.text
+
+ def plot(self, xs, ys, *args, **kwargs):
+ '''
+ Plot 2D or 3D data.
+
+ ========== ================================================
+ Argument Description
+ ========== ================================================
+ *xs*, *ys* x, y coordinates of vertices
+
+ *zs* z value(s), either one for all points or one for
+ each point.
+ *zdir* Which direction to use as z ('x', 'y' or 'z')
+ when plotting a 2D set.
+ ========== ================================================
+
+ Other arguments are passed on to
+ :func:`~matplotlib.axes.Axes.plot`
+ '''
+ had_data = self.has_data()
+
+ # `zs` can be passed positionally or as keyword; checking whether
+ # args[0] is a string matches the behavior of 2D `plot` (via
+ # `_process_plot_var_args`).
+ if args and not isinstance(args[0], six.string_types):
+ zs = args[0]
+ args = args[1:]
+ if 'zs' in kwargs:
+ raise TypeError("plot() for multiple values for argument 'z'")
+ else:
+ zs = kwargs.pop('zs', 0)
+ zdir = kwargs.pop('zdir', 'z')
+
+ # Match length
+ zs = _backports.broadcast_to(zs, len(xs))
+
+ lines = super(Axes3D, self).plot(xs, ys, *args, **kwargs)
+ for line in lines:
+ art3d.line_2d_to_3d(line, zs=zs, zdir=zdir)
+
+ xs, ys, zs = art3d.juggle_axes(xs, ys, zs, zdir)
+ self.auto_scale_xyz(xs, ys, zs, had_data)
+ return lines
+
+ plot3D = plot
+
+ def plot_surface(self, X, Y, Z, *args, **kwargs):
+ """
+ Create a surface plot.
+
+ By default it will be colored in shades of a solid color, but it also
+ supports color mapping by supplying the *cmap* argument.
+
+ .. note::
+
+ The *rcount* and *ccount* kwargs, which both default to 50,
+ determine the maximum number of samples used in each direction. If
+ the input data is larger, it will be downsampled (by slicing) to
+ these numbers of points.
+
+ Parameters
+ ----------
+ X, Y, Z : 2d arrays
+ Data values.
+
+ rcount, ccount : int
+ Maximum number of samples used in each direction. If the input
+ data is larger, it will be downsampled (by slicing) to these
+ numbers of points. Defaults to 50.
+
+ .. versionadded:: 2.0
+
+ rstride, cstride : int
+ Downsampling stride in each direction. These arguments are
+ mutually exclusive with *rcount* and *ccount*. If only one of
+ *rstride* or *cstride* is set, the other defaults to 10.
+
+ 'classic' mode uses a default of ``rstride = cstride = 10`` instead
+ of the new default of ``rcount = ccount = 50``.
+
+ color : color-like
+ Color of the surface patches.
+
+ cmap : Colormap
+ Colormap of the surface patches.
+
+ facecolors : array-like of colors.
+ Colors of each individual patch.
+
+ norm : Normalize
+ Normalization for the colormap.
+
+ vmin, vmax : float
+ Bounds for the normalization.
+
+ shade : bool
+ Whether to shade the face colors.
+
+ **kwargs :
+ Other arguments are forwarded to `.Poly3DCollection`.
+ """
+
+ had_data = self.has_data()
+
+ if Z.ndim != 2:
+ raise ValueError("Argument Z must be 2-dimensional.")
+ # TODO: Support masked arrays
+ X, Y, Z = np.broadcast_arrays(X, Y, Z)
+ rows, cols = Z.shape
+
+ has_stride = 'rstride' in kwargs or 'cstride' in kwargs
+ has_count = 'rcount' in kwargs or 'ccount' in kwargs
+
+ if has_stride and has_count:
+ raise ValueError("Cannot specify both stride and count arguments")
+
+ rstride = kwargs.pop('rstride', 10)
+ cstride = kwargs.pop('cstride', 10)
+ rcount = kwargs.pop('rcount', 50)
+ ccount = kwargs.pop('ccount', 50)
+
+ if rcParams['_internal.classic_mode']:
+ # Strides have priority over counts in classic mode.
+ # So, only compute strides from counts
+ # if counts were explicitly given
+ if has_count:
+ rstride = int(max(np.ceil(rows / rcount), 1))
+ cstride = int(max(np.ceil(cols / ccount), 1))
+ else:
+ # If the strides are provided then it has priority.
+ # Otherwise, compute the strides from the counts.
+ if not has_stride:
+ rstride = int(max(np.ceil(rows / rcount), 1))
+ cstride = int(max(np.ceil(cols / ccount), 1))
+
+ if 'facecolors' in kwargs:
+ fcolors = kwargs.pop('facecolors')
+ else:
+ color = kwargs.pop('color', None)
+ if color is None:
+ color = self._get_lines.get_next_color()
+ color = np.array(mcolors.to_rgba(color))
+ fcolors = None
+
+ cmap = kwargs.get('cmap', None)
+ norm = kwargs.pop('norm', None)
+ vmin = kwargs.pop('vmin', None)
+ vmax = kwargs.pop('vmax', None)
+ linewidth = kwargs.get('linewidth', None)
+ shade = kwargs.pop('shade', cmap is None)
+ lightsource = kwargs.pop('lightsource', None)
+
+ # Shade the data
+ if shade and cmap is not None and fcolors is not None:
+ fcolors = self._shade_colors_lightsource(Z, cmap, lightsource)
+
+ polys = []
+ # Only need these vectors to shade if there is no cmap
+ if cmap is None and shade :
+ totpts = int(np.ceil((rows - 1) / rstride) *
+ np.ceil((cols - 1) / cstride))
+ v1 = np.empty((totpts, 3))
+ v2 = np.empty((totpts, 3))
+ # This indexes the vertex points
+ which_pt = 0
+
+
+ #colset contains the data for coloring: either average z or the facecolor
+ colset = []
+ for rs in xrange(0, rows-1, rstride):
+ for cs in xrange(0, cols-1, cstride):
+ ps = []
+ for a in (X, Y, Z):
+ ztop = a[rs,cs:min(cols, cs+cstride+1)]
+ zleft = a[rs+1:min(rows, rs+rstride+1),
+ min(cols-1, cs+cstride)]
+ zbase = a[min(rows-1, rs+rstride), cs:min(cols, cs+cstride+1):][::-1]
+ zright = a[rs:min(rows-1, rs+rstride):, cs][::-1]
+ z = np.concatenate((ztop, zleft, zbase, zright))
+ ps.append(z)
+
+ # The construction leaves the array with duplicate points, which
+ # are removed here.
+ ps = list(zip(*ps))
+ lastp = np.array([])
+ ps2 = [ps[0]] + [ps[i] for i in xrange(1, len(ps)) if ps[i] != ps[i-1]]
+ avgzsum = sum(p[2] for p in ps2)
+ polys.append(ps2)
+
+ if fcolors is not None:
+ colset.append(fcolors[rs][cs])
+ else:
+ colset.append(avgzsum / len(ps2))
+
+ # Only need vectors to shade if no cmap
+ if cmap is None and shade:
+ i1, i2, i3 = 0, int(len(ps2)/3), int(2*len(ps2)/3)
+ v1[which_pt] = np.array(ps2[i1]) - np.array(ps2[i2])
+ v2[which_pt] = np.array(ps2[i2]) - np.array(ps2[i3])
+ which_pt += 1
+ if cmap is None and shade:
+ normals = np.cross(v1, v2)
+ else :
+ normals = []
+
+ polyc = art3d.Poly3DCollection(polys, *args, **kwargs)
+
+ if fcolors is not None:
+ if shade:
+ colset = self._shade_colors(colset, normals)
+ polyc.set_facecolors(colset)
+ polyc.set_edgecolors(colset)
+ elif cmap:
+ colset = np.array(colset)
+ polyc.set_array(colset)
+ if vmin is not None or vmax is not None:
+ polyc.set_clim(vmin, vmax)
+ if norm is not None:
+ polyc.set_norm(norm)
+ else:
+ if shade:
+ colset = self._shade_colors(color, normals)
+ else:
+ colset = color
+ polyc.set_facecolors(colset)
+
+ self.add_collection(polyc)
+ self.auto_scale_xyz(X, Y, Z, had_data)
+
+ return polyc
+
+ def _generate_normals(self, polygons):
+ '''
+ Generate normals for polygons by using the first three points.
+ This normal of course might not make sense for polygons with
+ more than three points not lying in a plane.
+ '''
+
+ normals = []
+ for verts in polygons:
+ v1 = np.array(verts[0]) - np.array(verts[1])
+ v2 = np.array(verts[2]) - np.array(verts[0])
+ normals.append(np.cross(v1, v2))
+ return normals
+
+ def _shade_colors(self, color, normals):
+ '''
+ Shade *color* using normal vectors given by *normals*.
+ *color* can also be an array of the same length as *normals*.
+ '''
+
+ shade = np.array([np.dot(n / proj3d.mod(n), [-1, -1, 0.5])
+ if proj3d.mod(n) else np.nan
+ for n in normals])
+ mask = ~np.isnan(shade)
+
+ if len(shade[mask]) > 0:
+ norm = Normalize(min(shade[mask]), max(shade[mask]))
+ shade[~mask] = min(shade[mask])
+ color = mcolors.to_rgba_array(color)
+ # shape of color should be (M, 4) (where M is number of faces)
+ # shape of shade should be (M,)
+ # colors should have final shape of (M, 4)
+ alpha = color[:, 3]
+ colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color
+ colors[:, 3] = alpha
+ else:
+ colors = np.asanyarray(color).copy()
+
+ return colors
+
+ def _shade_colors_lightsource(self, data, cmap, lightsource):
+ if lightsource is None:
+ lightsource = LightSource(azdeg=135, altdeg=55)
+ return lightsource.shade(data, cmap)
+
+ def plot_wireframe(self, X, Y, Z, *args, **kwargs):
+ """
+ Plot a 3D wireframe.
+
+ .. note::
+
+ The *rcount* and *ccount* kwargs, which both default to 50,
+ determine the maximum number of samples used in each direction. If
+ the input data is larger, it will be downsampled (by slicing) to
+ these numbers of points.
+
+ Parameters
+ ----------
+ X, Y, Z : 2d arrays
+ Data values.
+
+ rcount, ccount : int
+ Maximum number of samples used in each direction. If the input
+ data is larger, it will be downsampled (by slicing) to these
+ numbers of points. Setting a count to zero causes the data to be
+ not sampled in the corresponding direction, producing a 3D line
+ plot rather than a wireframe plot. Defaults to 50.
+
+ .. versionadded:: 2.0
+
+ rstride, cstride : int
+ Downsampling stride in each direction. These arguments are
+ mutually exclusive with *rcount* and *ccount*. If only one of
+ *rstride* or *cstride* is set, the other defaults to 1. Setting a
+ stride to zero causes the data to be not sampled in the
+ corresponding direction, producing a 3D line plot rather than a
+ wireframe plot.
+
+ 'classic' mode uses a default of ``rstride = cstride = 1`` instead
+ of the new default of ``rcount = ccount = 50``.
+
+ **kwargs :
+ Other arguments are forwarded to `.Line3DCollection`.
+ """
+
+ had_data = self.has_data()
+ if Z.ndim != 2:
+ raise ValueError("Argument Z must be 2-dimensional.")
+ # FIXME: Support masked arrays
+ X, Y, Z = np.broadcast_arrays(X, Y, Z)
+ rows, cols = Z.shape
+
+ has_stride = 'rstride' in kwargs or 'cstride' in kwargs
+ has_count = 'rcount' in kwargs or 'ccount' in kwargs
+
+ if has_stride and has_count:
+ raise ValueError("Cannot specify both stride and count arguments")
+
+ rstride = kwargs.pop('rstride', 1)
+ cstride = kwargs.pop('cstride', 1)
+ rcount = kwargs.pop('rcount', 50)
+ ccount = kwargs.pop('ccount', 50)
+
+ if rcParams['_internal.classic_mode']:
+ # Strides have priority over counts in classic mode.
+ # So, only compute strides from counts
+ # if counts were explicitly given
+ if has_count:
+ rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
+ cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0
+ else:
+ # If the strides are provided then it has priority.
+ # Otherwise, compute the strides from the counts.
+ if not has_stride:
+ rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
+ cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0
+
+ # We want two sets of lines, one running along the "rows" of
+ # Z and another set of lines running along the "columns" of Z.
+ # This transpose will make it easy to obtain the columns.
+ tX, tY, tZ = np.transpose(X), np.transpose(Y), np.transpose(Z)
+
+ if rstride:
+ rii = list(xrange(0, rows, rstride))
+ # Add the last index only if needed
+ if rows > 0 and rii[-1] != (rows - 1):
+ rii += [rows-1]
+ else:
+ rii = []
+ if cstride:
+ cii = list(xrange(0, cols, cstride))
+ # Add the last index only if needed
+ if cols > 0 and cii[-1] != (cols - 1):
+ cii += [cols-1]
+ else:
+ cii = []
+
+ if rstride == 0 and cstride == 0:
+ raise ValueError("Either rstride or cstride must be non zero")
+
+ # If the inputs were empty, then just
+ # reset everything.
+ if Z.size == 0:
+ rii = []
+ cii = []
+
+ xlines = [X[i] for i in rii]
+ ylines = [Y[i] for i in rii]
+ zlines = [Z[i] for i in rii]
+
+ txlines = [tX[i] for i in cii]
+ tylines = [tY[i] for i in cii]
+ tzlines = [tZ[i] for i in cii]
+
+ lines = ([list(zip(xl, yl, zl))
+ for xl, yl, zl in zip(xlines, ylines, zlines)]
+ + [list(zip(xl, yl, zl))
+ for xl, yl, zl in zip(txlines, tylines, tzlines)])
+
+ linec = art3d.Line3DCollection(lines, *args, **kwargs)
+ self.add_collection(linec)
+ self.auto_scale_xyz(X, Y, Z, had_data)
+
+ return linec
+
+ def plot_trisurf(self, *args, **kwargs):
+ """
+ ============= ================================================
+ Argument Description
+ ============= ================================================
+ *X*, *Y*, *Z* Data values as 1D arrays
+ *color* Color of the surface patches
+ *cmap* A colormap for the surface patches.
+ *norm* An instance of Normalize to map values to colors
+ *vmin* Minimum value to map
+ *vmax* Maximum value to map
+ *shade* Whether to shade the facecolors
+ ============= ================================================
+
+ The (optional) triangulation can be specified in one of two ways;
+ either::
+
+ plot_trisurf(triangulation, ...)
+
+ where triangulation is a :class:`~matplotlib.tri.Triangulation`
+ object, or::
+
+ plot_trisurf(X, Y, ...)
+ plot_trisurf(X, Y, triangles, ...)
+ plot_trisurf(X, Y, triangles=triangles, ...)
+
+ in which case a Triangulation object will be created. See
+ :class:`~matplotlib.tri.Triangulation` for a explanation of
+ these possibilities.
+
+ The remaining arguments are::
+
+ plot_trisurf(..., Z)
+
+ where *Z* is the array of values to contour, one per point
+ in the triangulation.
+
+ Other arguments are passed on to
+ :class:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`
+
+ **Examples:**
+
+ .. plot:: gallery/mplot3d/trisurf3d.py
+ .. plot:: gallery/mplot3d/trisurf3d_2.py
+
+ .. versionadded:: 1.2.0
+ This plotting function was added for the v1.2.0 release.
+ """
+
+ had_data = self.has_data()
+
+ # TODO: Support custom face colours
+ color = kwargs.pop('color', None)
+ if color is None:
+ color = self._get_lines.get_next_color()
+ color = np.array(mcolors.to_rgba(color))
+
+ cmap = kwargs.get('cmap', None)
+ norm = kwargs.pop('norm', None)
+ vmin = kwargs.pop('vmin', None)
+ vmax = kwargs.pop('vmax', None)
+ linewidth = kwargs.get('linewidth', None)
+ shade = kwargs.pop('shade', cmap is None)
+ lightsource = kwargs.pop('lightsource', None)
+
+ tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)
+ if 'Z' in kwargs:
+ z = np.asarray(kwargs.pop('Z'))
+ else:
+ z = np.asarray(args[0])
+ # We do this so Z doesn't get passed as an arg to PolyCollection
+ args = args[1:]
+
+ triangles = tri.get_masked_triangles()
+ xt = tri.x[triangles]
+ yt = tri.y[triangles]
+ zt = z[triangles]
+
+ # verts = np.stack((xt, yt, zt), axis=-1)
+ verts = np.concatenate((
+ xt[..., np.newaxis], yt[..., np.newaxis], zt[..., np.newaxis]
+ ), axis=-1)
+
+ polyc = art3d.Poly3DCollection(verts, *args, **kwargs)
+
+ if cmap:
+ # average over the three points of each triangle
+ avg_z = verts[:, :, 2].mean(axis=1)
+ polyc.set_array(avg_z)
+ if vmin is not None or vmax is not None:
+ polyc.set_clim(vmin, vmax)
+ if norm is not None:
+ polyc.set_norm(norm)
+ else:
+ if shade:
+ v1 = verts[:, 0, :] - verts[:, 1, :]
+ v2 = verts[:, 1, :] - verts[:, 2, :]
+ normals = np.cross(v1, v2)
+ colset = self._shade_colors(color, normals)
+ else:
+ colset = color
+ polyc.set_facecolors(colset)
+
+ self.add_collection(polyc)
+ self.auto_scale_xyz(tri.x, tri.y, z, had_data)
+
+ return polyc
+
+ def _3d_extend_contour(self, cset, stride=5):
+ '''
+ Extend a contour in 3D by creating
+ '''
+
+ levels = cset.levels
+ colls = cset.collections
+ dz = (levels[1] - levels[0]) / 2
+
+ for z, linec in zip(levels, colls):
+ topverts = art3d.paths_to_3d_segments(linec.get_paths(), z - dz)
+ botverts = art3d.paths_to_3d_segments(linec.get_paths(), z + dz)
+
+ color = linec.get_color()[0]
+
+ polyverts = []
+ normals = []
+ nsteps = np.round(len(topverts[0]) / stride)
+ if nsteps <= 1:
+ if len(topverts[0]) > 1:
+ nsteps = 2
+ else:
+ continue
+
+ stepsize = (len(topverts[0]) - 1) / (nsteps - 1)
+ for i in range(int(np.round(nsteps)) - 1):
+ i1 = int(np.round(i * stepsize))
+ i2 = int(np.round((i + 1) * stepsize))
+ polyverts.append([topverts[0][i1],
+ topverts[0][i2],
+ botverts[0][i2],
+ botverts[0][i1]])
+
+ v1 = np.array(topverts[0][i1]) - np.array(topverts[0][i2])
+ v2 = np.array(topverts[0][i1]) - np.array(botverts[0][i1])
+ normals.append(np.cross(v1, v2))
+
+ colors = self._shade_colors(color, normals)
+ colors2 = self._shade_colors(color, normals)
+ polycol = art3d.Poly3DCollection(polyverts,
+ facecolors=colors,
+ edgecolors=colors2)
+ polycol.set_sort_zpos(z)
+ self.add_collection3d(polycol)
+
+ for col in colls:
+ self.collections.remove(col)
+
+ def add_contour_set(self, cset, extend3d=False, stride=5, zdir='z', offset=None):
+ zdir = '-' + zdir
+ if extend3d:
+ self._3d_extend_contour(cset, stride)
+ else:
+ for z, linec in zip(cset.levels, cset.collections):
+ if offset is not None:
+ z = offset
+ art3d.line_collection_2d_to_3d(linec, z, zdir=zdir)
+
+ def add_contourf_set(self, cset, zdir='z', offset=None):
+ zdir = '-' + zdir
+ for z, linec in zip(cset.levels, cset.collections):
+ if offset is not None :
+ z = offset
+ art3d.poly_collection_2d_to_3d(linec, z, zdir=zdir)
+ linec.set_sort_zpos(z)
+
+ def contour(self, X, Y, Z, *args, **kwargs):
+ '''
+ Create a 3D contour plot.
+
+ ========== ================================================
+ Argument Description
+ ========== ================================================
+ *X*, *Y*, Data values as numpy.arrays
+ *Z*
+ *extend3d* Whether to extend contour in 3D (default: False)
+ *stride* Stride (step size) for extending contour
+ *zdir* The direction to use: x, y or z (default)
+ *offset* If specified plot a projection of the contour
+ lines on this position in plane normal to zdir
+ ========== ================================================
+
+ The positional and other keyword arguments are passed on to
+ :func:`~matplotlib.axes.Axes.contour`
+
+ Returns a :class:`~matplotlib.axes.Axes.contour`
+ '''
+
+ extend3d = kwargs.pop('extend3d', False)
+ stride = kwargs.pop('stride', 5)
+ zdir = kwargs.pop('zdir', 'z')
+ offset = kwargs.pop('offset', None)
+
+ had_data = self.has_data()
+
+ jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
+ cset = super(Axes3D, self).contour(jX, jY, jZ, *args, **kwargs)
+ self.add_contour_set(cset, extend3d, stride, zdir, offset)
+
+ self.auto_scale_xyz(X, Y, Z, had_data)
+ return cset
+
+ contour3D = contour
+
+ def tricontour(self, *args, **kwargs):
+ """
+ Create a 3D contour plot.
+
+ ========== ================================================
+ Argument Description
+ ========== ================================================
+ *X*, *Y*, Data values as numpy.arrays
+ *Z*
+ *extend3d* Whether to extend contour in 3D (default: False)
+ *stride* Stride (step size) for extending contour
+ *zdir* The direction to use: x, y or z (default)
+ *offset* If specified plot a projection of the contour
+ lines on this position in plane normal to zdir
+ ========== ================================================
+
+ Other keyword arguments are passed on to
+ :func:`~matplotlib.axes.Axes.tricontour`
+
+ Returns a :class:`~matplotlib.axes.Axes.contour`
+
+ .. versionchanged:: 1.3.0
+ Added support for custom triangulations
+
+ EXPERIMENTAL: This method currently produces incorrect output due to a
+ longstanding bug in 3D PolyCollection rendering.
+ """
+
+ extend3d = kwargs.pop('extend3d', False)
+ stride = kwargs.pop('stride', 5)
+ zdir = kwargs.pop('zdir', 'z')
+ offset = kwargs.pop('offset', None)
+
+ had_data = self.has_data()
+
+ tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
+ *args, **kwargs)
+ X = tri.x
+ Y = tri.y
+ if 'Z' in kwargs:
+ Z = kwargs.pop('Z')
+ else:
+ Z = args[0]
+ # We do this so Z doesn't get passed as an arg to Axes.tricontour
+ args = args[1:]
+
+ jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
+ tri = Triangulation(jX, jY, tri.triangles, tri.mask)
+
+ cset = super(Axes3D, self).tricontour(tri, jZ, *args, **kwargs)
+ self.add_contour_set(cset, extend3d, stride, zdir, offset)
+
+ self.auto_scale_xyz(X, Y, Z, had_data)
+ return cset
+
+ def contourf(self, X, Y, Z, *args, **kwargs):
+ '''
+ Create a 3D contourf plot.
+
+ ========== ================================================
+ Argument Description
+ ========== ================================================
+ *X*, *Y*, Data values as numpy.arrays
+ *Z*
+ *zdir* The direction to use: x, y or z (default)
+ *offset* If specified plot a projection of the filled contour
+ on this position in plane normal to zdir
+ ========== ================================================
+
+ The positional and keyword arguments are passed on to
+ :func:`~matplotlib.axes.Axes.contourf`
+
+ Returns a :class:`~matplotlib.axes.Axes.contourf`
+
+ .. versionchanged :: 1.1.0
+ The *zdir* and *offset* kwargs were added.
+ '''
+
+ zdir = kwargs.pop('zdir', 'z')
+ offset = kwargs.pop('offset', None)
+
+ had_data = self.has_data()
+
+ jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
+ cset = super(Axes3D, self).contourf(jX, jY, jZ, *args, **kwargs)
+ self.add_contourf_set(cset, zdir, offset)
+
+ self.auto_scale_xyz(X, Y, Z, had_data)
+ return cset
+
+ contourf3D = contourf
+
+ def tricontourf(self, *args, **kwargs):
+ """
+ Create a 3D contourf plot.
+
+ ========== ================================================
+ Argument Description
+ ========== ================================================
+ *X*, *Y*, Data values as numpy.arrays
+ *Z*
+ *zdir* The direction to use: x, y or z (default)
+ *offset* If specified plot a projection of the contour
+ lines on this position in plane normal to zdir
+ ========== ================================================
+
+ Other keyword arguments are passed on to
+ :func:`~matplotlib.axes.Axes.tricontour`
+
+ Returns a :class:`~matplotlib.axes.Axes.contour`
+
+ .. versionchanged :: 1.3.0
+ Added support for custom triangulations
+
+ EXPERIMENTAL: This method currently produces incorrect output due to a
+ longstanding bug in 3D PolyCollection rendering.
+ """
+ zdir = kwargs.pop('zdir', 'z')
+ offset = kwargs.pop('offset', None)
+
+ had_data = self.has_data()
+
+ tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
+ *args, **kwargs)
+ X = tri.x
+ Y = tri.y
+ if 'Z' in kwargs:
+ Z = kwargs.pop('Z')
+ else:
+ Z = args[0]
+ # We do this so Z doesn't get passed as an arg to Axes.tricontourf
+ args = args[1:]
+
+ jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
+ tri = Triangulation(jX, jY, tri.triangles, tri.mask)
+
+ cset = super(Axes3D, self).tricontourf(tri, jZ, *args, **kwargs)
+ self.add_contourf_set(cset, zdir, offset)
+
+ self.auto_scale_xyz(X, Y, Z, had_data)
+ return cset
+
+ def add_collection3d(self, col, zs=0, zdir='z'):
+ '''
+ Add a 3D collection object to the plot.
+
+ 2D collection types are converted to a 3D version by
+ modifying the object and adding z coordinate information.
+
+ Supported are:
+ - PolyCollection
+ - LineCollection
+ - PatchCollection
+ '''
+ zvals = np.atleast_1d(zs)
+ if len(zvals) > 0 :
+ zsortval = min(zvals)
+ else :
+ zsortval = 0 # FIXME: Fairly arbitrary. Is there a better value?
+
+ # FIXME: use issubclass() (although, then a 3D collection
+ # object would also pass.) Maybe have a collection3d
+ # abstract class to test for and exclude?
+ if type(col) is mcoll.PolyCollection:
+ art3d.poly_collection_2d_to_3d(col, zs=zs, zdir=zdir)
+ col.set_sort_zpos(zsortval)
+ elif type(col) is mcoll.LineCollection:
+ art3d.line_collection_2d_to_3d(col, zs=zs, zdir=zdir)
+ col.set_sort_zpos(zsortval)
+ elif type(col) is mcoll.PatchCollection:
+ art3d.patch_collection_2d_to_3d(col, zs=zs, zdir=zdir)
+ col.set_sort_zpos(zsortval)
+
+ super(Axes3D, self).add_collection(col)
+
+ def scatter(self, xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True,
+ *args, **kwargs):
+ '''
+ Create a scatter plot.
+
+ ============ ========================================================
+ Argument Description
+ ============ ========================================================
+ *xs*, *ys* Positions of data points.
+ *zs* Either an array of the same length as *xs* and
+ *ys* or a single value to place all points in
+ the same plane. Default is 0.
+ *zdir* Which direction to use as z ('x', 'y' or 'z')
+ when plotting a 2D set.
+ *s* Size in points^2. It is a scalar or an array of the
+ same length as *x* and *y*.
+
+ *c* A color. *c* can be a single color format string, or a
+ sequence of color specifications of length *N*, or a
+ sequence of *N* numbers to be mapped to colors using the
+ *cmap* and *norm* specified via kwargs (see below). Note
+ that *c* should not be a single numeric RGB or RGBA
+ sequence because that is indistinguishable from an array
+ of values to be colormapped. *c* can be a 2-D array in
+ which the rows are RGB or RGBA, however, including the
+ case of a single row to specify the same color for
+ all points.
+
+ *depthshade*
+ Whether or not to shade the scatter markers to give
+ the appearance of depth. Default is *True*.
+ ============ ========================================================
+
+ Keyword arguments are passed on to
+ :func:`~matplotlib.axes.Axes.scatter`.
+
+ Returns a :class:`~mpl_toolkits.mplot3d.art3d.Patch3DCollection`
+ '''
+
+ had_data = self.has_data()
+
+ xs, ys, zs = np.broadcast_arrays(
+ *[np.ravel(np.ma.filled(t, np.nan)) for t in [xs, ys, zs]])
+ s = np.ma.ravel(s) # This doesn't have to match x, y in size.
+
+ xs, ys, zs, s, c = cbook.delete_masked_points(xs, ys, zs, s, c)
+
+ patches = super(Axes3D, self).scatter(
+ xs, ys, s=s, c=c, *args, **kwargs)
+ is_2d = not cbook.iterable(zs)
+ zs = _backports.broadcast_to(zs, len(xs))
+ art3d.patch_collection_2d_to_3d(patches, zs=zs, zdir=zdir,
+ depthshade=depthshade)
+
+ if self._zmargin < 0.05 and xs.size > 0:
+ self.set_zmargin(0.05)
+
+ #FIXME: why is this necessary?
+ if not is_2d:
+ self.auto_scale_xyz(xs, ys, zs, had_data)
+
+ return patches
+
+ scatter3D = scatter
+
+ def bar(self, left, height, zs=0, zdir='z', *args, **kwargs):
+ '''
+ Add 2D bar(s).
+
+ ========== ================================================
+ Argument Description
+ ========== ================================================
+ *left* The x coordinates of the left sides of the bars.
+ *height* The height of the bars.
+ *zs* Z coordinate of bars, if one value is specified
+ they will all be placed at the same z.
+ *zdir* Which direction to use as z ('x', 'y' or 'z')
+ when plotting a 2D set.
+ ========== ================================================
+
+ Keyword arguments are passed onto :func:`~matplotlib.axes.Axes.bar`.
+
+ Returns a :class:`~mpl_toolkits.mplot3d.art3d.Patch3DCollection`
+ '''
+
+ had_data = self.has_data()
+
+ patches = super(Axes3D, self).bar(left, height, *args, **kwargs)
+
+ zs = _backports.broadcast_to(zs, len(left))
+
+ verts = []
+ verts_zs = []
+ for p, z in zip(patches, zs):
+ vs = art3d.get_patch_verts(p)
+ verts += vs.tolist()
+ verts_zs += [z] * len(vs)
+ art3d.patch_2d_to_3d(p, z, zdir)
+ if 'alpha' in kwargs:
+ p.set_alpha(kwargs['alpha'])
+
+ if len(verts) > 0 :
+ # the following has to be skipped if verts is empty
+ # NOTE: Bugs could still occur if len(verts) > 0,
+ # but the "2nd dimension" is empty.
+ xs, ys = list(zip(*verts))
+ else :
+ xs, ys = [], []
+
+ xs, ys, verts_zs = art3d.juggle_axes(xs, ys, verts_zs, zdir)
+ self.auto_scale_xyz(xs, ys, verts_zs, had_data)
+
+ return patches
+
+ def bar3d(self, x, y, z, dx, dy, dz, color=None,
+ zsort='average', shade=True, *args, **kwargs):
+ """Generate a 3D barplot.
+
+ This method creates three dimensional barplot where the width,
+ depth, height, and color of the bars can all be uniquely set.
+
+ Parameters
+ ----------
+ x, y, z : array-like
+ The coordinates of the anchor point of the bars.
+
+ dx, dy, dz : scalar or array-like
+ The width, depth, and height of the bars, respectively.
+
+ color : sequence of valid color specifications, optional
+ The color of the bars can be specified globally or
+ individually. This parameter can be:
+
+ - A single color value, to color all bars the same color.
+ - An array of colors of length N bars, to color each bar
+ independently.
+ - An array of colors of length 6, to color the faces of the
+ bars similarly.
+ - An array of colors of length 6 * N bars, to color each face
+ independently.
+
+ When coloring the faces of the boxes specifically, this is
+ the order of the coloring:
+
+ 1. -Z (bottom of box)
+ 2. +Z (top of box)
+ 3. -Y
+ 4. +Y
+ 5. -X
+ 6. +X
+
+ zsort : str, optional
+ The z-axis sorting scheme passed onto
+ :func:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`
+
+ shade : bool, optional (default = True)
+ When true, this shades the dark sides of the bars (relative
+ to the plot's source of light).
+
+ Any additional keyword arguments are passed onto
+ :func:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`
+
+ Returns
+ -------
+ collection : Poly3DCollection
+ A collection of three dimensional polygons representing
+ the bars.
+ """
+
+ had_data = self.has_data()
+
+ x, y, z, dx, dy, dz = np.broadcast_arrays(
+ np.atleast_1d(x), y, z, dx, dy, dz)
+ minx = np.min(x)
+ maxx = np.max(x + dx)
+ miny = np.min(y)
+ maxy = np.max(y + dy)
+ minz = np.min(z)
+ maxz = np.max(z + dz)
+
+ polys = []
+ for xi, yi, zi, dxi, dyi, dzi in zip(x, y, z, dx, dy, dz):
+ polys.extend([
+ ((xi, yi, zi), (xi + dxi, yi, zi),
+ (xi + dxi, yi + dyi, zi), (xi, yi + dyi, zi)),
+ ((xi, yi, zi + dzi), (xi + dxi, yi, zi + dzi),
+ (xi + dxi, yi + dyi, zi + dzi), (xi, yi + dyi, zi + dzi)),
+
+ ((xi, yi, zi), (xi + dxi, yi, zi),
+ (xi + dxi, yi, zi + dzi), (xi, yi, zi + dzi)),
+ ((xi, yi + dyi, zi), (xi + dxi, yi + dyi, zi),
+ (xi + dxi, yi + dyi, zi + dzi), (xi, yi + dyi, zi + dzi)),
+
+ ((xi, yi, zi), (xi, yi + dyi, zi),
+ (xi, yi + dyi, zi + dzi), (xi, yi, zi + dzi)),
+ ((xi + dxi, yi, zi), (xi + dxi, yi + dyi, zi),
+ (xi + dxi, yi + dyi, zi + dzi), (xi + dxi, yi, zi + dzi)),
+ ])
+
+ facecolors = []
+ if color is None:
+ color = [self._get_patches_for_fill.get_next_color()]
+
+ if len(color) == len(x):
+ # bar colors specified, need to expand to number of faces
+ for c in color:
+ facecolors.extend([c] * 6)
+ else:
+ # a single color specified, or face colors specified explicitly
+ facecolors = list(mcolors.to_rgba_array(color))
+ if len(facecolors) < len(x):
+ facecolors *= (6 * len(x))
+
+ if shade:
+ normals = self._generate_normals(polys)
+ sfacecolors = self._shade_colors(facecolors, normals)
+ else:
+ sfacecolors = facecolors
+
+ col = art3d.Poly3DCollection(polys,
+ zsort=zsort,
+ facecolor=sfacecolors,
+ *args, **kwargs)
+ self.add_collection(col)
+
+ self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data)
+
+ return col
+
+ def set_title(self, label, fontdict=None, loc='center', **kwargs):
+ ret = super(Axes3D, self).set_title(label, fontdict=fontdict, loc=loc,
+ **kwargs)
+ (x, y) = self.title.get_position()
+ self.title.set_y(0.92 * y)
+ return ret
+ set_title.__doc__ = maxes.Axes.set_title.__doc__
+
+ def quiver(self, *args, **kwargs):
+ """
+ Plot a 3D field of arrows.
+
+ call signatures::
+
+ quiver(X, Y, Z, U, V, W, **kwargs)
+
+ Arguments:
+
+ *X*, *Y*, *Z*:
+ The x, y and z coordinates of the arrow locations (default is
+ tail of arrow; see *pivot* kwarg)
+
+ *U*, *V*, *W*:
+ The x, y and z components of the arrow vectors
+
+ The arguments could be array-like or scalars, so long as they
+ they can be broadcast together. The arguments can also be
+ masked arrays. If an element in any of argument is masked, then
+ that corresponding quiver element will not be plotted.
+
+ Keyword arguments:
+
+ *length*: [1.0 | float]
+ The length of each quiver, default to 1.0, the unit is
+ the same with the axes
+
+ *arrow_length_ratio*: [0.3 | float]
+ The ratio of the arrow head with respect to the quiver,
+ default to 0.3
+
+ *pivot*: [ 'tail' | 'middle' | 'tip' ]
+ The part of the arrow that is at the grid point; the arrow
+ rotates about this point, hence the name *pivot*.
+ Default is 'tail'
+
+ *normalize*: bool
+ When True, all of the arrows will be the same length. This
+ defaults to False, where the arrows will be different lengths
+ depending on the values of u,v,w.
+
+ Any additional keyword arguments are delegated to
+ :class:`~matplotlib.collections.LineCollection`
+
+ """
+ def calc_arrow(uvw, angle=15):
+ """
+ To calculate the arrow head. uvw should be a unit vector.
+ We normalize it here:
+ """
+ # get unit direction vector perpendicular to (u,v,w)
+ norm = np.linalg.norm(uvw[:2])
+ if norm > 0:
+ x = uvw[1] / norm
+ y = -uvw[0] / norm
+ else:
+ x, y = 0, 1
+
+ # compute the two arrowhead direction unit vectors
+ ra = math.radians(angle)
+ c = math.cos(ra)
+ s = math.sin(ra)
+
+ # construct the rotation matrices
+ Rpos = np.array([[c+(x**2)*(1-c), x*y*(1-c), y*s],
+ [y*x*(1-c), c+(y**2)*(1-c), -x*s],
+ [-y*s, x*s, c]])
+ # opposite rotation negates all the sin terms
+ Rneg = Rpos.copy()
+ Rneg[[0,1,2,2],[2,2,0,1]] = -Rneg[[0,1,2,2],[2,2,0,1]]
+
+ # multiply them to get the rotated vector
+ return Rpos.dot(uvw), Rneg.dot(uvw)
+
+ had_data = self.has_data()
+
+ # handle kwargs
+ # shaft length
+ length = kwargs.pop('length', 1)
+ # arrow length ratio to the shaft length
+ arrow_length_ratio = kwargs.pop('arrow_length_ratio', 0.3)
+ # pivot point
+ pivot = kwargs.pop('pivot', 'tail')
+ # normalize
+ normalize = kwargs.pop('normalize', False)
+
+ # handle args
+ argi = 6
+ if len(args) < argi:
+ raise ValueError('Wrong number of arguments. Expected %d got %d' %
+ (argi, len(args)))
+
+ # first 6 arguments are X, Y, Z, U, V, W
+ input_args = args[:argi]
+ # if any of the args are scalar, convert into list
+ input_args = [[k] if isinstance(k, (int, float)) else k
+ for k in input_args]
+
+ # extract the masks, if any
+ masks = [k.mask for k in input_args if isinstance(k, np.ma.MaskedArray)]
+ # broadcast to match the shape
+ bcast = np.broadcast_arrays(*(input_args + masks))
+ input_args = bcast[:argi]
+ masks = bcast[argi:]
+ if masks:
+ # combine the masks into one
+ mask = reduce(np.logical_or, masks)
+ # put mask on and compress
+ input_args = [np.ma.array(k, mask=mask).compressed()
+ for k in input_args]
+ else:
+ input_args = [k.flatten() for k in input_args]
+
+ if any(len(v) == 0 for v in input_args):
+ # No quivers, so just make an empty collection and return early
+ linec = art3d.Line3DCollection([], *args[argi:], **kwargs)
+ self.add_collection(linec)
+ return linec
+
+ # Following assertions must be true before proceeding
+ # must all be ndarray
+ assert all(isinstance(k, np.ndarray) for k in input_args)
+ # must all in same shape
+ assert len({k.shape for k in input_args}) == 1
+
+ shaft_dt = np.linspace(0, length, num=2)
+ arrow_dt = shaft_dt * arrow_length_ratio
+
+ if pivot == 'tail':
+ shaft_dt -= length
+ elif pivot == 'middle':
+ shaft_dt -= length/2.
+ elif pivot != 'tip':
+ raise ValueError('Invalid pivot argument: ' + str(pivot))
+
+ XYZ = np.column_stack(input_args[:3])
+ UVW = np.column_stack(input_args[3:argi]).astype(float)
+
+ # Normalize rows of UVW
+ # Note: with numpy 1.9+, could use np.linalg.norm(UVW, axis=1)
+ norm = np.sqrt(np.sum(UVW**2, axis=1))
+
+ # If any row of UVW is all zeros, don't make a quiver for it
+ mask = norm > 0
+ XYZ = XYZ[mask]
+ if normalize:
+ UVW = UVW[mask] / norm[mask].reshape((-1, 1))
+ else:
+ UVW = UVW[mask]
+
+ if len(XYZ) > 0:
+ # compute the shaft lines all at once with an outer product
+ shafts = (XYZ - np.multiply.outer(shaft_dt, UVW)).swapaxes(0, 1)
+ # compute head direction vectors, n heads by 2 sides by 3 dimensions
+ head_dirs = np.array([calc_arrow(d) for d in UVW])
+ # compute all head lines at once, starting from where the shaft ends
+ heads = shafts[:, :1] - np.multiply.outer(arrow_dt, head_dirs)
+ # stack left and right head lines together
+ heads.shape = (len(arrow_dt), -1, 3)
+ # transpose to get a list of lines
+ heads = heads.swapaxes(0, 1)
+
+ lines = list(shafts) + list(heads)
+ else:
+ lines = []
+
+ linec = art3d.Line3DCollection(lines, *args[argi:], **kwargs)
+ self.add_collection(linec)
+
+ self.auto_scale_xyz(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], had_data)
+
+ return linec
+
+ quiver3D = quiver
+
+ def voxels(self, *args, **kwargs):
+ """
+ ax.voxels([x, y, z,] /, filled, **kwargs)
+
+ Plot a set of filled voxels
+
+ All voxels are plotted as 1x1x1 cubes on the axis, with filled[0,0,0]
+ placed with its lower corner at the origin. Occluded faces are not
+ plotted.
+
+ Call signatures::
+
+ voxels(filled, facecolors=fc, edgecolors=ec, **kwargs)
+ voxels(x, y, z, filled, facecolors=fc, edgecolors=ec, **kwargs)
+
+ .. versionadded:: 2.1
+
+ Parameters
+ ----------
+ filled : 3D np.array of bool
+ A 3d array of values, with truthy values indicating which voxels
+ to fill
+
+ x, y, z : 3D np.array, optional
+ The coordinates of the corners of the voxels. This should broadcast
+ to a shape one larger in every dimension than the shape of `filled`.
+ These can be used to plot non-cubic voxels.
+
+ If not specified, defaults to increasing integers along each axis,
+ like those returned by :func:`~numpy.indices`.
+ As indicated by the ``/`` in the function signature, these arguments
+ can only be passed positionally.
+
+ facecolors, edgecolors : array_like, optional
+ The color to draw the faces and edges of the voxels. Can only be
+ passed as keyword arguments.
+ This parameter can be:
+
+ - A single color value, to color all voxels the same color. This
+ can be either a string, or a 1D rgb/rgba array
+ - ``None``, the default, to use a single color for the faces, and
+ the style default for the edges.
+ - A 3D ndarray of color names, with each item the color for the
+ corresponding voxel. The size must match the voxels.
+ - A 4D ndarray of rgb/rgba data, with the components along the
+ last axis.
+
+ **kwargs
+ Additional keyword arguments to pass onto
+ :func:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`
+
+ Returns
+ -------
+ faces : dict
+ A dictionary indexed by coordinate, where ``faces[i,j,k]`` is a
+ `Poly3DCollection` of the faces drawn for the voxel
+ ``filled[i,j,k]``. If no faces were drawn for a given voxel, either
+ because it was not asked to be drawn, or it is fully occluded, then
+ ``(i,j,k) not in faces``.
+
+ Examples
+ --------
+ .. plot:: gallery/mplot3d/voxels.py
+ .. plot:: gallery/mplot3d/voxels_rgb.py
+ .. plot:: gallery/mplot3d/voxels_torus.py
+ .. plot:: gallery/mplot3d/voxels_numpy_logo.py
+ """
+
+ # work out which signature we should be using, and use it to parse
+ # the arguments. Name must be voxels for the correct error message
+ if len(args) >= 3:
+ # underscores indicate position only
+ def voxels(__x, __y, __z, filled, **kwargs):
+ return (__x, __y, __z), filled, kwargs
+ else:
+ def voxels(filled, **kwargs):
+ return None, filled, kwargs
+
+ xyz, filled, kwargs = voxels(*args, **kwargs)
+
+ # check dimensions
+ if filled.ndim != 3:
+ raise ValueError("Argument filled must be 3-dimensional")
+ size = np.array(filled.shape, dtype=np.intp)
+
+ # check xyz coordinates, which are one larger than the filled shape
+ coord_shape = tuple(size + 1)
+ if xyz is None:
+ x, y, z = np.indices(coord_shape)
+ else:
+ x, y, z = (_backports.broadcast_to(c, coord_shape) for c in xyz)
+
+ def _broadcast_color_arg(color, name):
+ if np.ndim(color) in (0, 1):
+ # single color, like "red" or [1, 0, 0]
+ return _backports.broadcast_to(
+ color, filled.shape + np.shape(color))
+ elif np.ndim(color) in (3, 4):
+ # 3D array of strings, or 4D array with last axis rgb
+ if np.shape(color)[:3] != filled.shape:
+ raise ValueError(
+ "When multidimensional, {} must match the shape of "
+ "filled".format(name))
+ return color
+ else:
+ raise ValueError("Invalid {} argument".format(name))
+
+ # intercept the facecolors, handling defaults and broacasting
+ facecolors = kwargs.pop('facecolors', None)
+ if facecolors is None:
+ facecolors = self._get_patches_for_fill.get_next_color()
+ facecolors = _broadcast_color_arg(facecolors, 'facecolors')
+
+ # broadcast but no default on edgecolors
+ edgecolors = kwargs.pop('edgecolors', None)
+ edgecolors = _broadcast_color_arg(edgecolors, 'edgecolors')
+
+ # always scale to the full array, even if the data is only in the center
+ self.auto_scale_xyz(x, y, z)
+
+ # points lying on corners of a square
+ square = np.array([
+ [0, 0, 0],
+ [0, 1, 0],
+ [1, 1, 0],
+ [1, 0, 0]
+ ], dtype=np.intp)
+
+ voxel_faces = defaultdict(list)
+
+ def permutation_matrices(n):
+ """ Generator of cyclic permutation matices """
+ mat = np.eye(n, dtype=np.intp)
+ for i in range(n):
+ yield mat
+ mat = np.roll(mat, 1, axis=0)
+
+ # iterate over each of the YZ, ZX, and XY orientations, finding faces to
+ # render
+ for permute in permutation_matrices(3):
+ # find the set of ranges to iterate over
+ pc, qc, rc = permute.T.dot(size)
+ pinds = np.arange(pc)
+ qinds = np.arange(qc)
+ rinds = np.arange(rc)
+
+ square_rot = square.dot(permute.T)
+
+ # iterate within the current plane
+ for p in pinds:
+ for q in qinds:
+ # iterate perpendicularly to the current plane, handling
+ # boundaries. We only draw faces between a voxel and an
+ # empty space, to avoid drawing internal faces.
+
+ # draw lower faces
+ p0 = permute.dot([p, q, 0])
+ i0 = tuple(p0)
+ if filled[i0]:
+ voxel_faces[i0].append(p0 + square_rot)
+
+ # draw middle faces
+ for r1, r2 in zip(rinds[:-1], rinds[1:]):
+ p1 = permute.dot([p, q, r1])
+ p2 = permute.dot([p, q, r2])
+
+ i1 = tuple(p1)
+ i2 = tuple(p2)
+
+ if filled[i1] and not filled[i2]:
+ voxel_faces[i1].append(p2 + square_rot)
+ elif not filled[i1] and filled[i2]:
+ voxel_faces[i2].append(p2 + square_rot)
+
+ # draw upper faces
+ pk = permute.dot([p, q, rc-1])
+ pk2 = permute.dot([p, q, rc])
+ ik = tuple(pk)
+ if filled[ik]:
+ voxel_faces[ik].append(pk2 + square_rot)
+
+ # iterate over the faces, and generate a Poly3DCollection for each voxel
+ polygons = {}
+ for coord, faces_inds in voxel_faces.items():
+ # convert indices into 3D positions
+ if xyz is None:
+ faces = faces_inds
+ else:
+ faces = []
+ for face_inds in faces_inds:
+ ind = face_inds[:, 0], face_inds[:, 1], face_inds[:, 2]
+ face = np.empty(face_inds.shape)
+ face[:, 0] = x[ind]
+ face[:, 1] = y[ind]
+ face[:, 2] = z[ind]
+ faces.append(face)
+
+ poly = art3d.Poly3DCollection(faces,
+ facecolors=facecolors[coord],
+ edgecolors=edgecolors[coord],
+ **kwargs
+ )
+ self.add_collection3d(poly)
+ polygons[coord] = poly
+
+ return polygons
+
+
+def get_test_data(delta=0.05):
+ '''
+ Return a tuple X, Y, Z with a test data set.
+ '''
+ x = y = np.arange(-3.0, 3.0, delta)
+ X, Y = np.meshgrid(x, y)
+
+ Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
+ Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
+ (2 * np.pi * 0.5 * 1.5))
+ Z = Z2 - Z1
+
+ X = X * 10
+ Y = Y * 10
+ Z = Z * 500
+ return X, Y, Z
+
+
+########################################################
+# Register Axes3D as a 'projection' object available
+# for use just like any other axes
+########################################################
+import matplotlib.projections as proj
+proj.projection_registry.register(Axes3D)