diff options
author | shumkovnd <shumkovnd@yandex-team.com> | 2023-11-10 14:39:34 +0300 |
---|---|---|
committer | shumkovnd <shumkovnd@yandex-team.com> | 2023-11-10 16:42:24 +0300 |
commit | 77eb2d3fdcec5c978c64e025ced2764c57c00285 (patch) | |
tree | c51edb0748ca8d4a08d7c7323312c27ba1a8b79a /contrib/python/matplotlib/py2/extern/agg24-svn/src/agg_curves.cpp | |
parent | dd6d20cadb65582270ac23f4b3b14ae189704b9d (diff) | |
download | ydb-77eb2d3fdcec5c978c64e025ced2764c57c00285.tar.gz |
KIKIMR-19287: add task_stats_drawing script
Diffstat (limited to 'contrib/python/matplotlib/py2/extern/agg24-svn/src/agg_curves.cpp')
-rw-r--r-- | contrib/python/matplotlib/py2/extern/agg24-svn/src/agg_curves.cpp | 613 |
1 files changed, 613 insertions, 0 deletions
diff --git a/contrib/python/matplotlib/py2/extern/agg24-svn/src/agg_curves.cpp b/contrib/python/matplotlib/py2/extern/agg24-svn/src/agg_curves.cpp new file mode 100644 index 0000000000..4701734718 --- /dev/null +++ b/contrib/python/matplotlib/py2/extern/agg24-svn/src/agg_curves.cpp @@ -0,0 +1,613 @@ +//---------------------------------------------------------------------------- +// Anti-Grain Geometry - Version 2.4 +// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) +// +// Permission to copy, use, modify, sell and distribute this software +// is granted provided this copyright notice appears in all copies. +// This software is provided "as is" without express or implied +// warranty, and with no claim as to its suitability for any purpose. +// +//---------------------------------------------------------------------------- +// Contact: mcseem@antigrain.com +// mcseemagg@yahoo.com +// http://www.antigrain.com +//---------------------------------------------------------------------------- + +#include <math.h> +#include "agg_curves.h" +#include "agg_math.h" + +namespace agg +{ + + //------------------------------------------------------------------------ + const double curve_distance_epsilon = 1e-30; + const double curve_collinearity_epsilon = 1e-30; + const double curve_angle_tolerance_epsilon = 0.01; + enum curve_recursion_limit_e { curve_recursion_limit = 32 }; + + + + //------------------------------------------------------------------------ + void curve3_inc::approximation_scale(double s) + { + m_scale = s; + } + + //------------------------------------------------------------------------ + double curve3_inc::approximation_scale() const + { + return m_scale; + } + + //------------------------------------------------------------------------ + void curve3_inc::init(double x1, double y1, + double x2, double y2, + double x3, double y3) + { + m_start_x = x1; + m_start_y = y1; + m_end_x = x3; + m_end_y = y3; + + double dx1 = x2 - x1; + double dy1 = y2 - y1; + double dx2 = x3 - x2; + double dy2 = y3 - y2; + + double len = sqrt(dx1 * dx1 + dy1 * dy1) + sqrt(dx2 * dx2 + dy2 * dy2); + + m_num_steps = uround(len * 0.25 * m_scale); + + if(m_num_steps < 4) + { + m_num_steps = 4; + } + + double subdivide_step = 1.0 / m_num_steps; + double subdivide_step2 = subdivide_step * subdivide_step; + + double tmpx = (x1 - x2 * 2.0 + x3) * subdivide_step2; + double tmpy = (y1 - y2 * 2.0 + y3) * subdivide_step2; + + m_saved_fx = m_fx = x1; + m_saved_fy = m_fy = y1; + + m_saved_dfx = m_dfx = tmpx + (x2 - x1) * (2.0 * subdivide_step); + m_saved_dfy = m_dfy = tmpy + (y2 - y1) * (2.0 * subdivide_step); + + m_ddfx = tmpx * 2.0; + m_ddfy = tmpy * 2.0; + + m_step = m_num_steps; + } + + //------------------------------------------------------------------------ + void curve3_inc::rewind(unsigned) + { + if(m_num_steps == 0) + { + m_step = -1; + return; + } + m_step = m_num_steps; + m_fx = m_saved_fx; + m_fy = m_saved_fy; + m_dfx = m_saved_dfx; + m_dfy = m_saved_dfy; + } + + //------------------------------------------------------------------------ + unsigned curve3_inc::vertex(double* x, double* y) + { + if(m_step < 0) return path_cmd_stop; + if(m_step == m_num_steps) + { + *x = m_start_x; + *y = m_start_y; + --m_step; + return path_cmd_move_to; + } + if(m_step == 0) + { + *x = m_end_x; + *y = m_end_y; + --m_step; + return path_cmd_line_to; + } + m_fx += m_dfx; + m_fy += m_dfy; + m_dfx += m_ddfx; + m_dfy += m_ddfy; + *x = m_fx; + *y = m_fy; + --m_step; + return path_cmd_line_to; + } + + //------------------------------------------------------------------------ + void curve3_div::init(double x1, double y1, + double x2, double y2, + double x3, double y3) + { + m_points.remove_all(); + m_distance_tolerance_square = 0.5 / m_approximation_scale; + m_distance_tolerance_square *= m_distance_tolerance_square; + bezier(x1, y1, x2, y2, x3, y3); + m_count = 0; + } + + //------------------------------------------------------------------------ + void curve3_div::recursive_bezier(double x1, double y1, + double x2, double y2, + double x3, double y3, + unsigned level) + { + if(level > curve_recursion_limit) + { + return; + } + + // Calculate all the mid-points of the line segments + //---------------------- + double x12 = (x1 + x2) / 2; + double y12 = (y1 + y2) / 2; + double x23 = (x2 + x3) / 2; + double y23 = (y2 + y3) / 2; + double x123 = (x12 + x23) / 2; + double y123 = (y12 + y23) / 2; + + double dx = x3-x1; + double dy = y3-y1; + double d = fabs(((x2 - x3) * dy - (y2 - y3) * dx)); + double da; + + if(d > curve_collinearity_epsilon) + { + // Regular case + //----------------- + if(d * d <= m_distance_tolerance_square * (dx*dx + dy*dy)) + { + // If the curvature doesn't exceed the distance_tolerance value + // we tend to finish subdivisions. + //---------------------- + if(m_angle_tolerance < curve_angle_tolerance_epsilon) + { + m_points.add(point_d(x123, y123)); + return; + } + + // Angle & Cusp Condition + //---------------------- + da = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1)); + if(da >= pi) da = 2*pi - da; + + if(da < m_angle_tolerance) + { + // Finally we can stop the recursion + //---------------------- + m_points.add(point_d(x123, y123)); + return; + } + } + } + else + { + // Collinear case + //------------------ + da = dx*dx + dy*dy; + if(da == 0) + { + d = calc_sq_distance(x1, y1, x2, y2); + } + else + { + d = ((x2 - x1)*dx + (y2 - y1)*dy) / da; + if(d > 0 && d < 1) + { + // Simple collinear case, 1---2---3 + // We can leave just two endpoints + return; + } + if(d <= 0) d = calc_sq_distance(x2, y2, x1, y1); + else if(d >= 1) d = calc_sq_distance(x2, y2, x3, y3); + else d = calc_sq_distance(x2, y2, x1 + d*dx, y1 + d*dy); + } + if(d < m_distance_tolerance_square) + { + m_points.add(point_d(x2, y2)); + return; + } + } + + // Continue subdivision + //---------------------- + recursive_bezier(x1, y1, x12, y12, x123, y123, level + 1); + recursive_bezier(x123, y123, x23, y23, x3, y3, level + 1); + } + + //------------------------------------------------------------------------ + void curve3_div::bezier(double x1, double y1, + double x2, double y2, + double x3, double y3) + { + m_points.add(point_d(x1, y1)); + recursive_bezier(x1, y1, x2, y2, x3, y3, 0); + m_points.add(point_d(x3, y3)); + } + + + + + + //------------------------------------------------------------------------ + void curve4_inc::approximation_scale(double s) + { + m_scale = s; + } + + //------------------------------------------------------------------------ + double curve4_inc::approximation_scale() const + { + return m_scale; + } + +#if defined(_MSC_VER) && _MSC_VER <= 1200 + //------------------------------------------------------------------------ + static double MSC60_fix_ICE(double v) { return v; } +#endif + + //------------------------------------------------------------------------ + void curve4_inc::init(double x1, double y1, + double x2, double y2, + double x3, double y3, + double x4, double y4) + { + m_start_x = x1; + m_start_y = y1; + m_end_x = x4; + m_end_y = y4; + + double dx1 = x2 - x1; + double dy1 = y2 - y1; + double dx2 = x3 - x2; + double dy2 = y3 - y2; + double dx3 = x4 - x3; + double dy3 = y4 - y3; + + double len = (sqrt(dx1 * dx1 + dy1 * dy1) + + sqrt(dx2 * dx2 + dy2 * dy2) + + sqrt(dx3 * dx3 + dy3 * dy3)) * 0.25 * m_scale; + +#if defined(_MSC_VER) && _MSC_VER <= 1200 + m_num_steps = uround(MSC60_fix_ICE(len)); +#else + m_num_steps = uround(len); +#endif + + if(m_num_steps < 4) + { + m_num_steps = 4; + } + + double subdivide_step = 1.0 / m_num_steps; + double subdivide_step2 = subdivide_step * subdivide_step; + double subdivide_step3 = subdivide_step * subdivide_step * subdivide_step; + + double pre1 = 3.0 * subdivide_step; + double pre2 = 3.0 * subdivide_step2; + double pre4 = 6.0 * subdivide_step2; + double pre5 = 6.0 * subdivide_step3; + + double tmp1x = x1 - x2 * 2.0 + x3; + double tmp1y = y1 - y2 * 2.0 + y3; + + double tmp2x = (x2 - x3) * 3.0 - x1 + x4; + double tmp2y = (y2 - y3) * 3.0 - y1 + y4; + + m_saved_fx = m_fx = x1; + m_saved_fy = m_fy = y1; + + m_saved_dfx = m_dfx = (x2 - x1) * pre1 + tmp1x * pre2 + tmp2x * subdivide_step3; + m_saved_dfy = m_dfy = (y2 - y1) * pre1 + tmp1y * pre2 + tmp2y * subdivide_step3; + + m_saved_ddfx = m_ddfx = tmp1x * pre4 + tmp2x * pre5; + m_saved_ddfy = m_ddfy = tmp1y * pre4 + tmp2y * pre5; + + m_dddfx = tmp2x * pre5; + m_dddfy = tmp2y * pre5; + + m_step = m_num_steps; + } + + //------------------------------------------------------------------------ + void curve4_inc::rewind(unsigned) + { + if(m_num_steps == 0) + { + m_step = -1; + return; + } + m_step = m_num_steps; + m_fx = m_saved_fx; + m_fy = m_saved_fy; + m_dfx = m_saved_dfx; + m_dfy = m_saved_dfy; + m_ddfx = m_saved_ddfx; + m_ddfy = m_saved_ddfy; + } + + //------------------------------------------------------------------------ + unsigned curve4_inc::vertex(double* x, double* y) + { + if(m_step < 0) return path_cmd_stop; + if(m_step == m_num_steps) + { + *x = m_start_x; + *y = m_start_y; + --m_step; + return path_cmd_move_to; + } + + if(m_step == 0) + { + *x = m_end_x; + *y = m_end_y; + --m_step; + return path_cmd_line_to; + } + + m_fx += m_dfx; + m_fy += m_dfy; + m_dfx += m_ddfx; + m_dfy += m_ddfy; + m_ddfx += m_dddfx; + m_ddfy += m_dddfy; + + *x = m_fx; + *y = m_fy; + --m_step; + return path_cmd_line_to; + } + + + + + //------------------------------------------------------------------------ + void curve4_div::init(double x1, double y1, + double x2, double y2, + double x3, double y3, + double x4, double y4) + { + m_points.remove_all(); + m_distance_tolerance_square = 0.5 / m_approximation_scale; + m_distance_tolerance_square *= m_distance_tolerance_square; + bezier(x1, y1, x2, y2, x3, y3, x4, y4); + m_count = 0; + } + + //------------------------------------------------------------------------ + void curve4_div::recursive_bezier(double x1, double y1, + double x2, double y2, + double x3, double y3, + double x4, double y4, + unsigned level) + { + if(level > curve_recursion_limit) + { + return; + } + + // Calculate all the mid-points of the line segments + //---------------------- + double x12 = (x1 + x2) / 2; + double y12 = (y1 + y2) / 2; + double x23 = (x2 + x3) / 2; + double y23 = (y2 + y3) / 2; + double x34 = (x3 + x4) / 2; + double y34 = (y3 + y4) / 2; + double x123 = (x12 + x23) / 2; + double y123 = (y12 + y23) / 2; + double x234 = (x23 + x34) / 2; + double y234 = (y23 + y34) / 2; + double x1234 = (x123 + x234) / 2; + double y1234 = (y123 + y234) / 2; + + + // Try to approximate the full cubic curve by a single straight line + //------------------ + double dx = x4-x1; + double dy = y4-y1; + + double d2 = fabs(((x2 - x4) * dy - (y2 - y4) * dx)); + double d3 = fabs(((x3 - x4) * dy - (y3 - y4) * dx)); + double da1, da2, k; + + switch((int(d2 > curve_collinearity_epsilon) << 1) + + int(d3 > curve_collinearity_epsilon)) + { + case 0: + // All collinear OR p1==p4 + //---------------------- + k = dx*dx + dy*dy; + if(k == 0) + { + d2 = calc_sq_distance(x1, y1, x2, y2); + d3 = calc_sq_distance(x4, y4, x3, y3); + } + else + { + k = 1 / k; + da1 = x2 - x1; + da2 = y2 - y1; + d2 = k * (da1*dx + da2*dy); + da1 = x3 - x1; + da2 = y3 - y1; + d3 = k * (da1*dx + da2*dy); + if(d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1) + { + // Simple collinear case, 1---2---3---4 + // We can leave just two endpoints + return; + } + if(d2 <= 0) d2 = calc_sq_distance(x2, y2, x1, y1); + else if(d2 >= 1) d2 = calc_sq_distance(x2, y2, x4, y4); + else d2 = calc_sq_distance(x2, y2, x1 + d2*dx, y1 + d2*dy); + + if(d3 <= 0) d3 = calc_sq_distance(x3, y3, x1, y1); + else if(d3 >= 1) d3 = calc_sq_distance(x3, y3, x4, y4); + else d3 = calc_sq_distance(x3, y3, x1 + d3*dx, y1 + d3*dy); + } + if(d2 > d3) + { + if(d2 < m_distance_tolerance_square) + { + m_points.add(point_d(x2, y2)); + return; + } + } + else + { + if(d3 < m_distance_tolerance_square) + { + m_points.add(point_d(x3, y3)); + return; + } + } + break; + + case 1: + // p1,p2,p4 are collinear, p3 is significant + //---------------------- + if(d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy)) + { + if(m_angle_tolerance < curve_angle_tolerance_epsilon) + { + m_points.add(point_d(x23, y23)); + return; + } + + // Angle Condition + //---------------------- + da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2)); + if(da1 >= pi) da1 = 2*pi - da1; + + if(da1 < m_angle_tolerance) + { + m_points.add(point_d(x2, y2)); + m_points.add(point_d(x3, y3)); + return; + } + + if(m_cusp_limit != 0.0) + { + if(da1 > m_cusp_limit) + { + m_points.add(point_d(x3, y3)); + return; + } + } + } + break; + + case 2: + // p1,p3,p4 are collinear, p2 is significant + //---------------------- + if(d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy)) + { + if(m_angle_tolerance < curve_angle_tolerance_epsilon) + { + m_points.add(point_d(x23, y23)); + return; + } + + // Angle Condition + //---------------------- + da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1)); + if(da1 >= pi) da1 = 2*pi - da1; + + if(da1 < m_angle_tolerance) + { + m_points.add(point_d(x2, y2)); + m_points.add(point_d(x3, y3)); + return; + } + + if(m_cusp_limit != 0.0) + { + if(da1 > m_cusp_limit) + { + m_points.add(point_d(x2, y2)); + return; + } + } + } + break; + + case 3: + // Regular case + //----------------- + if((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy)) + { + // If the curvature doesn't exceed the distance_tolerance value + // we tend to finish subdivisions. + //---------------------- + if(m_angle_tolerance < curve_angle_tolerance_epsilon) + { + m_points.add(point_d(x23, y23)); + return; + } + + // Angle & Cusp Condition + //---------------------- + k = atan2(y3 - y2, x3 - x2); + da1 = fabs(k - atan2(y2 - y1, x2 - x1)); + da2 = fabs(atan2(y4 - y3, x4 - x3) - k); + if(da1 >= pi) da1 = 2*pi - da1; + if(da2 >= pi) da2 = 2*pi - da2; + + if(da1 + da2 < m_angle_tolerance) + { + // Finally we can stop the recursion + //---------------------- + m_points.add(point_d(x23, y23)); + return; + } + + if(m_cusp_limit != 0.0) + { + if(da1 > m_cusp_limit) + { + m_points.add(point_d(x2, y2)); + return; + } + + if(da2 > m_cusp_limit) + { + m_points.add(point_d(x3, y3)); + return; + } + } + } + break; + } + + // Continue subdivision + //---------------------- + recursive_bezier(x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1); + recursive_bezier(x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1); + } + + //------------------------------------------------------------------------ + void curve4_div::bezier(double x1, double y1, + double x2, double y2, + double x3, double y3, + double x4, double y4) + { + m_points.add(point_d(x1, y1)); + recursive_bezier(x1, y1, x2, y2, x3, y3, x4, y4, 0); + m_points.add(point_d(x4, y4)); + } + +} + |