diff options
author | shumkovnd <shumkovnd@yandex-team.com> | 2023-11-10 14:39:34 +0300 |
---|---|---|
committer | shumkovnd <shumkovnd@yandex-team.com> | 2023-11-10 16:42:24 +0300 |
commit | 77eb2d3fdcec5c978c64e025ced2764c57c00285 (patch) | |
tree | c51edb0748ca8d4a08d7c7323312c27ba1a8b79a /contrib/python/matplotlib/py2/extern/agg24-svn/include/agg_math.h | |
parent | dd6d20cadb65582270ac23f4b3b14ae189704b9d (diff) | |
download | ydb-77eb2d3fdcec5c978c64e025ced2764c57c00285.tar.gz |
KIKIMR-19287: add task_stats_drawing script
Diffstat (limited to 'contrib/python/matplotlib/py2/extern/agg24-svn/include/agg_math.h')
-rw-r--r-- | contrib/python/matplotlib/py2/extern/agg24-svn/include/agg_math.h | 437 |
1 files changed, 437 insertions, 0 deletions
diff --git a/contrib/python/matplotlib/py2/extern/agg24-svn/include/agg_math.h b/contrib/python/matplotlib/py2/extern/agg24-svn/include/agg_math.h new file mode 100644 index 0000000000..2ec49cf3ff --- /dev/null +++ b/contrib/python/matplotlib/py2/extern/agg24-svn/include/agg_math.h @@ -0,0 +1,437 @@ +//---------------------------------------------------------------------------- +// Anti-Grain Geometry - Version 2.4 +// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) +// +// Permission to copy, use, modify, sell and distribute this software +// is granted provided this copyright notice appears in all copies. +// This software is provided "as is" without express or implied +// warranty, and with no claim as to its suitability for any purpose. +// +//---------------------------------------------------------------------------- +// Contact: mcseem@antigrain.com +// mcseemagg@yahoo.com +// http://www.antigrain.com +//---------------------------------------------------------------------------- +// Bessel function (besj) was adapted for use in AGG library by Andy Wilk +// Contact: castor.vulgaris@gmail.com +//---------------------------------------------------------------------------- + +#ifndef AGG_MATH_INCLUDED +#define AGG_MATH_INCLUDED + +#include <math.h> +#include "agg_basics.h" + +namespace agg +{ + + //------------------------------------------------------vertex_dist_epsilon + // Coinciding points maximal distance (Epsilon) + const double vertex_dist_epsilon = 1e-14; + + //-----------------------------------------------------intersection_epsilon + // See calc_intersection + const double intersection_epsilon = 1.0e-30; + + //------------------------------------------------------------cross_product + AGG_INLINE double cross_product(double x1, double y1, + double x2, double y2, + double x, double y) + { + return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1); + } + + //--------------------------------------------------------point_in_triangle + AGG_INLINE bool point_in_triangle(double x1, double y1, + double x2, double y2, + double x3, double y3, + double x, double y) + { + bool cp1 = cross_product(x1, y1, x2, y2, x, y) < 0.0; + bool cp2 = cross_product(x2, y2, x3, y3, x, y) < 0.0; + bool cp3 = cross_product(x3, y3, x1, y1, x, y) < 0.0; + return cp1 == cp2 && cp2 == cp3 && cp3 == cp1; + } + + //-----------------------------------------------------------calc_distance + AGG_INLINE double calc_distance(double x1, double y1, double x2, double y2) + { + double dx = x2-x1; + double dy = y2-y1; + return sqrt(dx * dx + dy * dy); + } + + //--------------------------------------------------------calc_sq_distance + AGG_INLINE double calc_sq_distance(double x1, double y1, double x2, double y2) + { + double dx = x2-x1; + double dy = y2-y1; + return dx * dx + dy * dy; + } + + //------------------------------------------------calc_line_point_distance + AGG_INLINE double calc_line_point_distance(double x1, double y1, + double x2, double y2, + double x, double y) + { + double dx = x2-x1; + double dy = y2-y1; + double d = sqrt(dx * dx + dy * dy); + if(d < vertex_dist_epsilon) + { + return calc_distance(x1, y1, x, y); + } + return ((x - x2) * dy - (y - y2) * dx) / d; + } + + //-------------------------------------------------------calc_line_point_u + AGG_INLINE double calc_segment_point_u(double x1, double y1, + double x2, double y2, + double x, double y) + { + double dx = x2 - x1; + double dy = y2 - y1; + + if(dx == 0 && dy == 0) + { + return 0; + } + + double pdx = x - x1; + double pdy = y - y1; + + return (pdx * dx + pdy * dy) / (dx * dx + dy * dy); + } + + //---------------------------------------------calc_line_point_sq_distance + AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1, + double x2, double y2, + double x, double y, + double u) + { + if(u <= 0) + { + return calc_sq_distance(x, y, x1, y1); + } + else + if(u >= 1) + { + return calc_sq_distance(x, y, x2, y2); + } + return calc_sq_distance(x, y, x1 + u * (x2 - x1), y1 + u * (y2 - y1)); + } + + //---------------------------------------------calc_line_point_sq_distance + AGG_INLINE double calc_segment_point_sq_distance(double x1, double y1, + double x2, double y2, + double x, double y) + { + return + calc_segment_point_sq_distance( + x1, y1, x2, y2, x, y, + calc_segment_point_u(x1, y1, x2, y2, x, y)); + } + + //-------------------------------------------------------calc_intersection + AGG_INLINE bool calc_intersection(double ax, double ay, double bx, double by, + double cx, double cy, double dx, double dy, + double* x, double* y) + { + double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy); + double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx); + if(fabs(den) < intersection_epsilon) return false; + double r = num / den; + *x = ax + r * (bx-ax); + *y = ay + r * (by-ay); + return true; + } + + //-----------------------------------------------------intersection_exists + AGG_INLINE bool intersection_exists(double x1, double y1, double x2, double y2, + double x3, double y3, double x4, double y4) + { + // It's less expensive but you can't control the + // boundary conditions: Less or LessEqual + double dx1 = x2 - x1; + double dy1 = y2 - y1; + double dx2 = x4 - x3; + double dy2 = y4 - y3; + return ((x3 - x2) * dy1 - (y3 - y2) * dx1 < 0.0) != + ((x4 - x2) * dy1 - (y4 - y2) * dx1 < 0.0) && + ((x1 - x4) * dy2 - (y1 - y4) * dx2 < 0.0) != + ((x2 - x4) * dy2 - (y2 - y4) * dx2 < 0.0); + + // It's is more expensive but more flexible + // in terms of boundary conditions. + //-------------------- + //double den = (x2-x1) * (y4-y3) - (y2-y1) * (x4-x3); + //if(fabs(den) < intersection_epsilon) return false; + //double nom1 = (x4-x3) * (y1-y3) - (y4-y3) * (x1-x3); + //double nom2 = (x2-x1) * (y1-y3) - (y2-y1) * (x1-x3); + //double ua = nom1 / den; + //double ub = nom2 / den; + //return ua >= 0.0 && ua <= 1.0 && ub >= 0.0 && ub <= 1.0; + } + + //--------------------------------------------------------calc_orthogonal + AGG_INLINE void calc_orthogonal(double thickness, + double x1, double y1, + double x2, double y2, + double* x, double* y) + { + double dx = x2 - x1; + double dy = y2 - y1; + double d = sqrt(dx*dx + dy*dy); + *x = thickness * dy / d; + *y = -thickness * dx / d; + } + + //--------------------------------------------------------dilate_triangle + AGG_INLINE void dilate_triangle(double x1, double y1, + double x2, double y2, + double x3, double y3, + double *x, double* y, + double d) + { + double dx1=0.0; + double dy1=0.0; + double dx2=0.0; + double dy2=0.0; + double dx3=0.0; + double dy3=0.0; + double loc = cross_product(x1, y1, x2, y2, x3, y3); + if(fabs(loc) > intersection_epsilon) + { + if(cross_product(x1, y1, x2, y2, x3, y3) > 0.0) + { + d = -d; + } + calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1); + calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2); + calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3); + } + *x++ = x1 + dx1; *y++ = y1 + dy1; + *x++ = x2 + dx1; *y++ = y2 + dy1; + *x++ = x2 + dx2; *y++ = y2 + dy2; + *x++ = x3 + dx2; *y++ = y3 + dy2; + *x++ = x3 + dx3; *y++ = y3 + dy3; + *x++ = x1 + dx3; *y++ = y1 + dy3; + } + + //------------------------------------------------------calc_triangle_area + AGG_INLINE double calc_triangle_area(double x1, double y1, + double x2, double y2, + double x3, double y3) + { + return (x1*y2 - x2*y1 + x2*y3 - x3*y2 + x3*y1 - x1*y3) * 0.5; + } + + //-------------------------------------------------------calc_polygon_area + template<class Storage> double calc_polygon_area(const Storage& st) + { + unsigned i; + double sum = 0.0; + double x = st[0].x; + double y = st[0].y; + double xs = x; + double ys = y; + + for(i = 1; i < st.size(); i++) + { + const typename Storage::value_type& v = st[i]; + sum += x * v.y - y * v.x; + x = v.x; + y = v.y; + } + return (sum + x * ys - y * xs) * 0.5; + } + + //------------------------------------------------------------------------ + // Tables for fast sqrt + extern int16u g_sqrt_table[1024]; + extern int8 g_elder_bit_table[256]; + + + //---------------------------------------------------------------fast_sqrt + //Fast integer Sqrt - really fast: no cycles, divisions or multiplications + #if defined(_MSC_VER) + #pragma warning(push) + #pragma warning(disable : 4035) //Disable warning "no return value" + #endif + AGG_INLINE unsigned fast_sqrt(unsigned val) + { + #if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM) + //For Ix86 family processors this assembler code is used. + //The key command here is bsr - determination the number of the most + //significant bit of the value. For other processors + //(and maybe compilers) the pure C "#else" section is used. + __asm + { + mov ebx, val + mov edx, 11 + bsr ecx, ebx + sub ecx, 9 + jle less_than_9_bits + shr ecx, 1 + adc ecx, 0 + sub edx, ecx + shl ecx, 1 + shr ebx, cl + less_than_9_bits: + xor eax, eax + mov ax, g_sqrt_table[ebx*2] + mov ecx, edx + shr eax, cl + } + #else + + //This code is actually pure C and portable to most + //arcitectures including 64bit ones. + unsigned t = val; + int bit=0; + unsigned shift = 11; + + //The following piece of code is just an emulation of the + //Ix86 assembler command "bsr" (see above). However on old + //Intels (like Intel MMX 233MHz) this code is about twice + //faster (sic!) then just one "bsr". On PIII and PIV the + //bsr is optimized quite well. + bit = t >> 24; + if(bit) + { + bit = g_elder_bit_table[bit] + 24; + } + else + { + bit = (t >> 16) & 0xFF; + if(bit) + { + bit = g_elder_bit_table[bit] + 16; + } + else + { + bit = (t >> 8) & 0xFF; + if(bit) + { + bit = g_elder_bit_table[bit] + 8; + } + else + { + bit = g_elder_bit_table[t]; + } + } + } + + //This code calculates the sqrt. + bit -= 9; + if(bit > 0) + { + bit = (bit >> 1) + (bit & 1); + shift -= bit; + val >>= (bit << 1); + } + return g_sqrt_table[val] >> shift; + #endif + } + #if defined(_MSC_VER) + #pragma warning(pop) + #endif + + + + + //--------------------------------------------------------------------besj + // Function BESJ calculates Bessel function of first kind of order n + // Arguments: + // n - an integer (>=0), the order + // x - value at which the Bessel function is required + //-------------------- + // C++ Mathematical Library + // Convereted from equivalent FORTRAN library + // Converetd by Gareth Walker for use by course 392 computational project + // All functions tested and yield the same results as the corresponding + // FORTRAN versions. + // + // If you have any problems using these functions please report them to + // M.Muldoon@UMIST.ac.uk + // + // Documentation available on the web + // http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html + // Version 1.0 8/98 + // 29 October, 1999 + //-------------------- + // Adapted for use in AGG library by Andy Wilk (castor.vulgaris@gmail.com) + //------------------------------------------------------------------------ + inline double besj(double x, int n) + { + if(n < 0) + { + return 0; + } + double d = 1E-6; + double b = 0; + if(fabs(x) <= d) + { + if(n != 0) return 0; + return 1; + } + double b1 = 0; // b1 is the value from the previous iteration + // Set up a starting order for recurrence + int m1 = (int)fabs(x) + 6; + if(fabs(x) > 5) + { + m1 = (int)(fabs(1.4 * x + 60 / x)); + } + int m2 = (int)(n + 2 + fabs(x) / 4); + if (m1 > m2) + { + m2 = m1; + } + + // Apply recurrence down from curent max order + for(;;) + { + double c3 = 0; + double c2 = 1E-30; + double c4 = 0; + int m8 = 1; + if (m2 / 2 * 2 == m2) + { + m8 = -1; + } + int imax = m2 - 2; + for (int i = 1; i <= imax; i++) + { + double c6 = 2 * (m2 - i) * c2 / x - c3; + c3 = c2; + c2 = c6; + if(m2 - i - 1 == n) + { + b = c6; + } + m8 = -1 * m8; + if (m8 > 0) + { + c4 = c4 + 2 * c6; + } + } + double c6 = 2 * c2 / x - c3; + if(n == 0) + { + b = c6; + } + c4 += c6; + b /= c4; + if(fabs(b - b1) < d) + { + return b; + } + b1 = b; + m2 += 3; + } + } + +} + + +#endif |